
POLITECNICO DI TORINO

Master Degree Course in Electronic Engineering

Master Degree Thesis

Trace&Follow: Modular Power
Monitoring Device Based on Open Source

Software

Supervisor

Prof. Giovanna TURVANI

Candidate

Federico PECORARA

ACADEMIC YEAR 2022/2023





Summary

Over the past two years, the cost of electrical energy has consistently increased

due to the war declared in February 2022 between Russia and Ukraine, and the

resulting complex global geopolitical situation. Consequently, companies have felt

the need to raise the price of their products as a countermeasure to the escalation

of production costs. They require a more precise approach to determine how

these cost increases impact the manufacturing of each specific item. This not only

helps them better justify price increases on their products, but also provides a

transparent explanation to their customers. The device developed in this thesis,

named Trace&Follow, focuses on measuring power consumption. It is a modular

solution that can be installed on various industrial machines, including welding

machines, presses, laser cutting machines and many others. Trace&Follow consists

of a baseboard and different add-on boards that expand its functionalities. Data can

be sent to a cloud platform over different protocols: Wi-Fi, Ethernet, LoRaWAN,

and 4G. The first two are integrated into the baseboard, while an expansion board

is required for the others. Once the collected data reach the cloud platform, they

are filtered, sorted, and stored into an internal database. They can be retrieved at

a later time by an application and displayed to the user. Additionally, commands

can be sent to the platform, which will then forward them to the device.

iii



The Trace&Follow board feature an ESP32 microcontroller from Espressif

Systems. It is built upon The Xtensa® dual core 32-bit LX6 microprocessor,

a highly flexible and energy-efficient microprocessor architecture developed by

Cadence Design Systems. The project’s software components rely entirely on open-

source code. Espressif offers its development tools, SDKs, and microcontroller core

library as open source. Furthermore, Espressif microcontrollers are supported within

the Arduino ecosystem, which encompasses a vast range of open-source libraries

that can be utilized free-of-cost. ThingsBoard, an open-source IoT platform, is

employed as the cloud platform. This platform serves for data collection, processing,

visualization, and device management. When using LoRaWAN connectivity, an

intermediary software is required to convert physical frames into a format that can

be received by the cloud. This software, known as ChirpStack, is fully open source.

Firmware running on the device strongly relies on FreeRTOS real-time operating

system and it is coded using Arduino programming language, a variant of the C++

language that widely uses the concept of classes and objects to achieve better code

organization.

This work begins with an overview of the company where this project has been

carried out and a general introduction to the whole project in chapter 1.

Chapter 2 introduces the previously developed device and explain the motivation

behind the needs of a new platform development.

Chapter 3 outlines the device’s hardware, from the prototype to the final PCB.

Chapter 4 focuses on how firmware running on the board is organized. A brief

overview of software running on the cloud is presented.

Chapter 5 shows an installation of the device onto a welding machine.

Chapter 6 explores potential future developments and board costs.

iv



Acknowledgements

“To all those who made this work possible, starting with my supervisor Prof.

Turvani and the entire IDT organization for welcoming and allowing me to develop

this project. To my family and particularly my sister Camilla for helping me

whenever I needed it. To Carola and all my friends for their unwavering support

throughout this long journey. And last but not least, to my colleagues, without

whom I could not have made it to the end.”

v





Table of Contents

List of Tables x

List of Figures xi

Abbreviations xv

1 Introduction 1

1.1 The company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Trace&Follow first version 5

3 Hardware 7

3.1 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Final PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Stackup and ground connections . . . . . . . . . . . . . . . . 9

3.2.2 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.3 Microcontroller and component interface . . . . . . . . . . . 13

3.2.4 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.5 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



3.2.6 Power measurement . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Expansion boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Software 29

4.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 IO Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Leds Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.4 Power task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.5 IDC task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.6 Localization task . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.7 Packet task . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.8 Cloud task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Cloud platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 ChirpStack for LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 First Trace&Follow installation 77

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Wire monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Installed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusions and future works 89

viii



6.1 Economical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Future improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A LoRaWAN 95

B FreeRTOS 99

Bibliography 101

ix



List of Tables

4.1 CAN expansion board frame . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Prices comparison between T&F board and base PLC setup . . . . 93

6.2 Prices comparison between T&F board and advanced PLC setup . . 93

A.1 LoRa regional parameters [25] . . . . . . . . . . . . . . . . . . . . . 96

x



List of Figures

2.1 T&F board first version . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Trace&Follow board . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 T&F board block diagram . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Stackup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Ground plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Power distribution within the board . . . . . . . . . . . . . . . . . . 12

3.6 ESP32 module overview [1] . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 Available ESP32 WROOM package [2, 3] . . . . . . . . . . . . . . . 14

3.8 SPI distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.9 Input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.10 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.11 Wi-Fi STATION mode [4] . . . . . . . . . . . . . . . . . . . . . . . 17

3.12 Wi-Fi AP mode [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.13 Ethernet connection . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.14 LoRaWAN board connection . . . . . . . . . . . . . . . . . . . . . . 19

3.15 ATM90E32 energy meter [6] . . . . . . . . . . . . . . . . . . . . . . 20

3.16 CT input filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



3.17 Filter simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.18 Voltage sampling board . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.19 ATM connection schematic . . . . . . . . . . . . . . . . . . . . . . . 23

3.20 Measurement in 3P3W systems using Aron method [7] . . . . . . . 24

3.21 LoRa expansion board . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.22 PCIe signals interface . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.23 Relay expansion board . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.24 CAN expansion board . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.25 SD expansion board . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.26 Interface with expansion boards . . . . . . . . . . . . . . . . . . . . 28

4.1 Task creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Task interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 IO task function flow chart . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Manage output message flow chart . . . . . . . . . . . . . . . . . . 41

4.5 Manage input message flow chart . . . . . . . . . . . . . . . . . . . 42

4.6 Manage normal input flow chart . . . . . . . . . . . . . . . . . . . . 43

4.7 Manage counter input flow chart . . . . . . . . . . . . . . . . . . . . 43

4.8 Timer callback flow chart . . . . . . . . . . . . . . . . . . . . . . . . 44

4.9 Manage function input flow chart . . . . . . . . . . . . . . . . . . . 45

4.10 LED task flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Power task function flow chart . . . . . . . . . . . . . . . . . . . . . 51

4.12 IDC task function flow chart . . . . . . . . . . . . . . . . . . . . . . 53

4.13 ESP32 RF coexistence [10] . . . . . . . . . . . . . . . . . . . . . . . 54

4.14 Localization areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xii



4.15 Localization algorithm flow chart . . . . . . . . . . . . . . . . . . . 56

4.16 Packet task interactions . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 Packet task function flow chart . . . . . . . . . . . . . . . . . . . . 59

4.18 Cloud data task function flow chart . . . . . . . . . . . . . . . . . . 62

4.19 Connectivity interface classes . . . . . . . . . . . . . . . . . . . . . 67

4.20 Cloud loop task function flow chart . . . . . . . . . . . . . . . . . . 68

4.21 Cloud init function flow chart . . . . . . . . . . . . . . . . . . . . . 69

4.22 Send data function flow chart . . . . . . . . . . . . . . . . . . . . . 71

4.23 ThingsBoard architecture overview [12] . . . . . . . . . . . . . . . . 72

4.24 Trace&Follow board rule chain . . . . . . . . . . . . . . . . . . . . . 73

4.25 ChirpStack architecture [14] . . . . . . . . . . . . . . . . . . . . . . 75

4.26 LoRaWAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Complete system inside its steel box . . . . . . . . . . . . . . . . . 78

5.2 Top view of the steel box . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Cutoff element electrical connection . . . . . . . . . . . . . . . . . . 80

5.4 Waveform for power and wire consumption . . . . . . . . . . . . . . 81

5.5 Screenshot showing localization feature . . . . . . . . . . . . . . . . 82

5.6 Screenshots showing mobile app pages . . . . . . . . . . . . . . . . 84

5.7 Web app total consumption page . . . . . . . . . . . . . . . . . . . 85

5.8 Web app machine overview page . . . . . . . . . . . . . . . . . . . . 85

5.9 Welder equipped with Trace&Follow box . . . . . . . . . . . . . . . 86

5.10 Content of Trace&Follow box . . . . . . . . . . . . . . . . . . . . . 87

A.1 Bandwidth vs range in wireless communications [26] . . . . . . . . . 96

A.2 LoRaWAN layers [28] . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xiii



B.1 FreeRTOS layers structure [32] . . . . . . . . . . . . . . . . . . . . . 100

xiv



Abbreviations

3P3W 3-Phase-3-Wire

3P3W 3-Phase-4-Wire

AC Alternating Current

ADC Analog-to-Digital Converter

BLE Bluetooth Low Energy

CAN Controller Area Network

CT Current Transformers

DAC Digital-to-Analog Converter

DC Direct Current

I/O Inputs/Outputs

I2C Inter-Integrated Circuit

IC Integrated Circuit

xv



IDC Insulation-Displacement Connector

IoT Internet Of Things

JSON JavaScript Object Notation

LED Light-Emitting Diode

LDO Low-Dropout

LoRaWAN Long Range Wide Area Network

MAC Media Access Control

Mbps Megabits per second

MQTT Message Queuing Telemetry Transport

NC Normally Closed

NO Normally Open

OTA Over-the-air

PCB Printed Circuit Board

PCIe Peripheral Component Interconnect Express

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-Transmitter

MCU Microcontroller

xvi



Chapter 1

Introduction

1.1 The company

IDT Solution was founded in 2016 with an innovative aim: to introduce "open

source" platforms to the industrial automation sector, a relatively unexplored

domain at that time. The company began by utilizing Arduino boards, which

were well-recognized within the hobbyist community, and subsequently designed

the necessary electronics to adapt them for the industrial environment. IDT’s

main challenge has always been to convince companies that, with the proper

support structures, it is possible to employ these platforms in an industrial context

delivering comparable results to those of more established proprietary platforms but

at significantly lower costs. A challenge that has been widely overcome: IDT today

has operational machinery in several Italian and European companies that have

faith in their idea. Since its establishment, the company has experienced continuous

growth, affording them the ability to fully design their machinery in-house. This

includes mechanical, electrical, software, and hardware design, without depending

1



Introduction

on third party companies. Their primary advantage is their group of motivated and

youthful team members, allowing IDT to stay competitive and develop innovative

solutions to meet the needs of their customers. Following increasing demand for

custom hardware to build machinery that can meet customer requirements, our

R&D department was established in 2020. Initially, the department focused on

internal projects, but soon received project requests from external customers. In

2022, the division became a self-contained business unit known as "RedSmart",

capable of creating tailor-made embedded solutions according to clients’ needs.

The project is developed in-house and may involve a range of steps depending on

the project’s specifications including:

1. PCB Designs

2. Firmware and application development

3. Creation of cloud infrastructure

4. Development of mobile applications and web apps

Examples of RedSmart’s developed projects include:

• An IoT-enabled food truck, which utilizes a board mounted on the truck

to collect signals from various sensors and sends them to a cloud platform

using 4G connectivity. Data collected can be visualized through a mobile

application and commands can be sent to the board.

• A smart luggage handle that integrates sensors such as an accelerometer

and inclinometer. Capable of identifying any impacts the suitcase may have

sustained, using Bluetooth low energy connectivity, the device transfers this

data to a mobile application.

2



1.2 – Project overview

• A defibrillator trainer, a device that emulates the functionalities of a

real defibrillator used during training. It receives commands through an IR

(Infrared radiation) receiver.

1.2 Project overview

The project aims to develop a device capable of measuring the power consumption

of industrial-grade machinery and sending the acquired data to a cloud platform.

The design follows a modular approach, which includes a baseboard containing a

microcontroller that already embeds a Wi-Fi module, Ethernet, power measurement,

and I/O circuitry. The baseboard can be extended with expansion boards:

• LoRaWAN expansion board

• 4G expansion Board

• Relay expansion board

• CAN expansion board

• RS485 expansion board

• SD expansion board

Based on the applications in which this system will be installed, the appropriate

board will be mounted to meet the demands of each individual project.

3



Introduction

In terms of connectivity, there are four available options:

• Wi-Fi (built-in)

• Ethernet (built-in)

• LoRaWAN (exp-board)

• 4G (exp-board)

Once data reach the cloud platform, it is stored in a database and displayed

via a web application or mobile app. It can also monitor various types of data.

Digital inputs can be configured to count pulses or connect buttons to specific

functions. Additionally, it can receive different data from expansion boards, such

as the CAN board connected through an expansion IDC connector present on the

baseboard. Using an external infrastructure consisting of multiple Bluetooth low

energy gateways, it is possible to determine the location of machinery on which the

device is mounted within various sections of the production plant. Each piece of

collected information is standardized for easy interpretation by the cloud platform

and user applications.

4



Chapter 2

Trace&Follow first version

A previous version of this project was already available, and the board can be

seen in Figure 2.1. It was developed using an Arduino board mounted on a

specifically designed carrier board. This version was customized for a specific

machine, specifically an industrial welder and it features LoRaWAN connectivity

provided by the Arduino board through a LoRaWAN modem.

Figure 2.1: T&F board first version

5



Trace&Follow first version

Even though it was working well on that specific machine and in that specific

environment, it presents some problems when considering the expansion of the

product to a wider range of machines:

• LoRaWAN connectivity is relatively slow. If we would face a situation re-

quiring a higher volume of data, this protocol could become a bottleneck. In

addition, Moreover, it necessitates a more intricate and costly infrastructure

in comparison to other types of connectivity.

• Power consumption evaluation method was calibrated specifically for that

type of machine and and its accuracy beyond that range was limited. To

calibrate the device for a new machine type, modifications to certain firmware

parameters would be required. This process is time-consuming and, above all,

not scalable for larger numbers.

• Some of the microcontroller I/O pins are designated for specific functions that

may not be necessary for other machines, reducing available I/O for other

features that may be required instead.

• Availability of the Arduino board has decreased since the project began,

creating a high risk of it becoming out of stock, which is not feasible in the

long term.

Due to the aforementioned reasons, a more flexible version was necessary. This work

will describe the various components of the updated version and their interactions

with each other.

6



Chapter 3

Hardware

3.1 Prototypes

Before reaching its final state, every electronic board must undergo several pro-

totypes in which the singles ICs are tested, the functionality of the circuits is

analyzed, and the communication between the different components is verified.

The development of the Trace&Follow board started on a breadboard with a com-

mercial ESP32 development kit connected to individual components to test their

functionality and determine the optimal circuitry to surround them.

After completing the initial stage, a non-modular prototype has been created to

test the most critical components together using a preliminary firmware. Once all

the required tests had been passed, the modular PCB development process began.

7



Hardware

3.2 Final PCB

Figure 3.1: Trace&Follow board

The Final PCB, showed in Figure 3.1, incorporates Wi-Fi and Ethernet connectivity

and is designed to maximize expandability. Two connectors serve this purpose. A

first Mini PCIe form connector allows for expanded board connectivity options,

such as LoRaWAN or 4G PCIe boards, while a second IDC connector allows to

connect expansion board to support multiple protocols, such as CAN-BUS or

RS485. Additionally, it has four digital inputs and outputs. The system state

can be communicated to the user through an RGB LED. If the board is enclosed,

an external LED can be connected via a connector. Power consumption can be

measured using an Atmel energy meter IC. Furthermore, by connecting an SD

expansion board, it is possible to save logs on a micro-SD card. The board can be

programmed using a USB-Serial converter through a dedicated port.

In Figure 3.2 a block diagram of the main board is reported.

8



3.2 – Final PCB

Figure 3.2: T&F board block diagram

3.2.1 Stackup and ground connections

The final printed circuit board is a four-layered PCB with components mounted

solely on the top layer to minimize automatic assembly costs. The top and bottom

layers contain signal traces while the first inner layer serves as a power plane to

distribute supply voltage across the board. The last layer contains both digital

and analog ground planes, with a specifically allocated analog ground plane for the

analog section of the power meter chip, which internally establishes the connection

9



Hardware

between the two planes, thus eliminating the need for external bridges. To ensure

more efficient return current distribution and reduce disturbances, connections

between the ground pins of components and the ground plane are achieved through

multiple vias.

Figure 3.3: Stackup

Looking at Figure 3.4 it is possible to see how ground plane is organized.

As previously explained, the digital and analog planes are not directly connected.

The analog section covers the area where the analog signals from the current

and voltage sensors are received. The digital section covers most of the board

with the exception of two areas. One of them is located near the power supply

connector. A TVS (Transient Voltage Suppressor) is located after it to protect the

board’s components against overvoltages. The ground plane is intentionally not

linked directly to the external ground to maximize the protection provided by this

component. The second opening has been designed to accommodate the ESP32

package with an SMT (Surface-mount technology) antenna integrated.

10



3.2 – Final PCB

Figure 3.4: Ground plane

3.2.2 Power supply

In the figure, the power distribution tree is presented. The primary buck converter

accepts DC voltage within the specified range of 9-38 V. Exceeding this range

may cause damage to the converter or result in incorrect regulation of the output

voltage. The converter outputs 5V, which supplies three LDOs and can provide

up to 3A of continuous current and up to 3.5A of peak current. The regulated 5V

supply three different linear regulators:

• PCIe 3.3V regulator: The PCIe 3.3V regulator supplies power to the

PCIe expansion board if connected. The device must provide at least 2.5A of

continuous current and 3A of peak current as these are the requirements when

using the 4G module. This regulator can be turned off if no PCIe expansion

11



Hardware

module is connected

• ETHERNET 3.3V regulator: A dedicated Ethernet power supply module

has been added to avoid overloading the main 3.3V regulator. This module is

particularly important as it allows for the physical deactivation of the Ethernet

interface when it is not in use.

• BOARD 3.3V regulator: It supplies everything on the board except for

the Ethernet module. It is capable of providing a continuous current of up to

500 mA and a peak current of 700 mA.

Figure 3.5: Power distribution within the board

12



3.2 – Final PCB

3.2.3 Microcontroller and component interface

The board uses the ESP32 WROOM microcontroller, a dual-core microcontroller

capable of speeds up to 240 MHz. The selection of this microcontroller was based

on its excellent cost-to-performance ratio, open-source libraries availability and on

its high availability in the market, which is crucial, especially during the current

period. The ESP32 microcontroller is available as a standalone device or as part

of a module with integrated antenna matching circuitry and a QUAD-SPI flash,

which is itself available with two packages:

• With an on-board PCB antenna directly embedded into the module.

• With a pigtail connector for an external antenna.

Figure 3.6: ESP32 module overview [1]

The preferred setup involves connecting the module to an external antenna. How-

ever, the PCB is also compatible with the alternative package in case of a shortage

of the primary option. Among all the available versions of this microcontroller (C3,

13



Hardware

S2, S3, H. . . ), the WROOM was selected because it already includes the Ethernet

MAC interface. Here a summary of ESP32 main feature taken from datasheet is

reported [1].

• 448 KB ROM (Read-only memory)

• 520 KB SRAM (Static random access memory)

• 16 KB SRAM in RTC (real-time clock)

• Wi-Fi 802.11b/g/n up to 150 Mbps

• Bluetooth 4.2

• Peripherals: SD card, UART, SPI, I2C, PWM (Pulse width modulation), IR,

ADC, DAC

• Operating conditions: -40 ∼ 85 °C

Figure 3.7: Available ESP32 WROOM package [2, 3]

The microcontroller communicates with other components on the board via the

SPI bus. As shown in the diagram below, the bus lines (MISO, MOSI, CLK) are

shared among all the components, but each chip has its dedicated chip select. Only

one chip select can be active at any given time. The ESP32’s SPI peripheral has

14



3.2 – Final PCB

the potential to reach speeds of up to 10 Mbps, but due to constraints from other

chips, the maximum achievable bit rate is limited to 8 Mbps.

Figure 3.8: SPI distribution

3.2.4 Input/output

The board includes four inputs and four outputs. Due to the restricted number

of pins on the microcontroller, the MCP23S17 IC, an 16-pin I/O expander has

been added to the board. This chip replicates the microcontroller’s ports, enabling

the direction to be set and both pull-up and pull-down resistors to be enabled

or disabled for each pin. It is split into two 8-pin ports, each with a dedicated

interrupt line that is used to signal changes in the state of pins configured as inputs.

The four outputs are connected to four pins on the I/O expander, with an output

driver in between. It is a BTS724G IC able to provide up to 3.3A of current per

channel and an overall total of 7.3A across all four channels. The high-level voltage

of these pins matches the supply voltage, as the driver is powered directly by it.

The four digital inputs are also connected to the IO exp. Each input is opto-

coupled to obtain a galvanic isolation between the outer world and the board.

15



Hardware

Figure 3.9: Input circuitry

This circuit is designed to scale the input voltage to 3.3 volts, which is the accepted

level by the IO expander IC. At first, the input voltage is reduced by a voltage

divider before reaching the opto-coupler, which, together with the pull-up resistor

on its output, guarantees a pin voltage of 3.3V. The drawback of this circuit is

that it introduces logic inversion. It translates a high input voltage into a low

voltage read on the IO exp port. This consideration must be taken into account in

firmware development.

Figure 3.10: Input/output

16



3.2 – Final PCB

3.2.5 Connectivity

The board is specifically designed to allow multiple connectivity based on specific

application requirements:

• Wi-Fi: The ESP32 includes native Wi-Fi connectivity, which can be utilized

in two modes, both of which are employed in this project. Specifically, the

device can operate in STATION mode, enabling it to connect to pre-existing

Wi-Fi networks with internet access, and establish connections to send data

to the cloud platform.

Figure 3.11: Wi-Fi STATION mode [4]

Another mode that can be utilized is the ACCESS POINT mode, where the

microcontroller generates its own Wi-Fi network and allows configuration of

SSID (Service set identifier), password, type of encryption and other connection

parameters. This mode is helpful because when used in this mode, it is possible

to host a web server on it, managed directly by the microcontroller. In this

project, the web server has been used to host a web page to perform OTA

updates. In a future release, the board will also feature a web page that allows

for configuring certain parameters without the need for manual editing of the

17



Hardware

configuration file.

Figure 3.12: Wi-Fi AP mode [5]

• Ethernet: The WROOM variant of ESP32 features the Ethernet Medium

Access Control (MAC) layer, which interfaces directly with the physical

channel of the Ethernet connection. However, a transceiver, specifically the

LAN8720 IC, is still required. Disabling the Ethernet interface is achievable

by deactivating the LDO providing power to the transceiver. In accordance

with Ethernet specifications, a transformer is required between the transceiver

and the RJ45 connector. The Trace&Follow board mounts a connector that

incorporates this transformer, which allows for space optimization on the

board.

Figure 3.13: Ethernet connection

18



3.2 – Final PCB

• LoRaWAN: The microcontroller cannot support LoRaWAN connectivity by

itself. Therefore, a PCIe expansion board was designed, with a LoRaWAN

modem installed, which only requires a UART and reset signal to communicate

with the microcontroller. Since this protocol does not allow for direct internet

connectivity, an intermediate gateway is necessary. Once the data reaches the

gateway, it is distributed to the selected network server, which in this specific

case is one part of a software called "Chirpstack" running on an AWS (Amazon

Web Services) virtual machine. Additional information will be provided in

chapter 4.3 ChirpStack for LoRa.

Figure 3.14: LoRaWAN board connection

• 4G: As with LoRaWAN, 4G connectivity is not supported by the baseboard

and requires a PCIe expansion board. Chapter 3.3 Expansion boards contains

additional information on this board.

19



Hardware

3.2.6 Power measurement

The Trace&Follow product is mainly used for the monitoring of the power con-

sumption. This device can monitor power consumption of individual industrial

machinery on which it is mounted. To achieve this, the product integrates the

ATM90E32 from Atmel, a poly-phase energy metering IC with outstanding ±0.1%

accuracy for active energy and ±0.2% accuracy for reactive energy. It is versatile

and can work with both 3P4W and 3P3W systems. It features six autonomous

2nd order sigma-delta analog-to-digital converters used to sample waveforms from

three current channels and three voltage channels. Additionally, it integrates a

digital signal processor (DSP) to execute calculations related to various kinds of

energy [6]. A block diagram of the integrated circuit is presented in Figure 3.15.

Figure 3.15: ATM90E32 energy meter [6]

Signals on current channels are obtained using three current transformers which

function as current sensors. A current transformer is a device that, when placed

around a cable, uses electromagnetic induction to produce a current output that

20



3.2 – Final PCB

is proportional to the current flowing through the cable. By inserting a resistor

between the two terminals of the secondary winding, it’s possible to convert the

current signal into a voltage signal. Since this device relies on electromagnetic

induction, it is limited to use with AC signals. Its output is a sinusoidal signal

that matches the frequency of the current flowing through the cable. However,

due to power consumption variations, this signal is not perfectly sinusoidal, as its

amplitude may vary. It is also possible that some high-frequency noise is collected

along the cable and to mitigate its effects, a low-pass filter has been inserted before

CT signal is fed into the IC. CT conditioning circuit can be seen in Figure 3.16

Figure 3.16: CT input filter circuit

The first three resistors convert a current signal to a voltage signal, while the other

four components create the filter. The cutoff frequency is about 4.8 kHz. The

simulation shows the filter in action, in Figure 3.17 the red trace represents the

unfiltered signal and the green trace represents the signal received by the IC.

21



Hardware

Figure 3.17: Filter simulation

Figure 3.18: Voltage sampling board

After sampling current signals, voltage signals must also be sampled. The voltage

to be sampled can be 230V AC or 400V AC, depending on the power supply, as

current is measured on the grid cable. This can be achieved through the use of

a voltage divider circuit. To prevent damage to the board in case of malfunction,

a separate board was developed to isolate the high voltage section. The scaled

22



3.2 – Final PCB

signals are then transmitted to the main board via a flat cable. A picture of a 3D

model of the voltage sampling module is reported in Figure 3.18

Figure 3.19: ATM connection schematic

The machinery’s supply configuration determines the type of connection configu-

ration required. In a 3-phase, 4-wire system, which includes three phases and a

neutral connector, all three channels must be used to achieve accurate measure-

ments. However, if there is no neutral connector, as in a 3-phase, 3-wire system,

the Aron method can be used.

Aron method

The Aron method is a technique for measuring power consumption in a 3-phase,

3-wire system that only requires 2 channels of a wattmeter. For every three-phase

device, power consumption can be written in this way [7]:

P = E⃗1 · I⃗1 + E⃗2 · I⃗2 + E⃗3 · I⃗3

23



Hardware

In this kind of systems, since they do not have the neutral conductor, is it true

that:

I⃗1 + I⃗2 + I⃗3 = 0

We can write one of the current as:

I⃗2 = −I⃗1 − I⃗3

If we came back to substitute in the initial formula, we end up to:

P = E⃗1 · I⃗1 + E⃗2 · (−I⃗1 − I⃗3) + E⃗3 · I⃗3 = (E⃗1 − E⃗2) · I⃗1 + (E⃗3 − E⃗2) · I⃗3

P = V⃗12 · I⃗1 + V⃗32 · I⃗3

P = Wa + Wb

That shows that the total power consumption can be evaluated only using two

channels of the wattmeter, saving one current sensor for each machine.

Figure 3.20: Measurement in 3P3W systems using Aron method [7]

24



3.3 – Expansion boards

3.3 Expansion boards

Since this system was designed following a modular approach, multiple expansion

boards were developed to extend the basic functionality of the main board. These

boards can be connected to the main board using either the PCIe connector or

the IDC expansion connector with a flat cable. The PCIe board complies with the

PCIe mini card standard with dimensions of 30 x 50.95 mm. Within this project

there are two PCIe board:

• LoRaWAN board: This board allows the use of LoRa connectivity. It was

created as a component of the project and features a LoRa modem connected

to the microcontroller via a UART interface. The board contains both pigtail

and SMA (SubMiniature version A) antenna connectors.

Figure 3.21: LoRa expansion board

• 4G board: This device enables the use of 4G connectivity. The board has not

been designed specifically for this project. It arrives with modems pre-installed,

available with various models. Among these, two modems have been identified

for integration into Trace&Follow.

When utilizing 4G modems, an issue arises as a result of variations in the logic

levels of signals between different modems. Although both modems communicate

25



Hardware

via UART interface, some use 3.3V while others use 1.8V. As a solution, a system

with two level shifters, each including an enable signal, has been created. As a

result, driving the enable signals correctly allows for only one logic level to be

active at any given time. Additionally, the two enable signals drive the enable

signal of the LDO, which supplies power to the entire PCIe board. This method

saves a microcontroller pin. It also works with the Lora board, which operates at

the 3.3V level and only requires the activation of the corresponding level shifter.

Figure 3.22: PCIe signals interface

The main board is equipped with two IDC connectors. As explained earlier, one

port is dedicated to connecting the voltage sample module while the other is

reserved for expansion boards. The boards do not comply with a specific format,

but they can be commercially available modules or ones designed specifically for

needed purpose.

26



3.3 – Expansion boards

Already available ones are:

• Relay board: Some machinery might need a relay to control some signals

or to cut off some power. As discussed in section 5.2 Cutoff, the board was

first employed in the implementation of the cutoff system. It utilizes just one

digital output from the primary board. The second IDC connector allows easy

connection of extra expansion boards.

Figure 3.23: Relay expansion board

• CAN board: This board is available on the market and includes an Atmel

microcontroller and a CAN transceiver. It can be programmed to receive CAN

frames from a CAN-BUS line, analyze them, and transmit the obtained data

over UART. The example provided in section 5.3 Wire monitoring illustrates

how it was utilized to retrieve specific data from a welding machine.

Figure 3.24: CAN expansion board

27



Hardware

• RS485 board: At the time of writing, this board is still in the development

phase. Its functionality includes virtualizing I/O through an RS485 bus, with

the implementation of a MODBUS-RTU protocol.

Other expansion boards:

• SD board: In case some log files need to be saved for monitoring the proper

functioning of the entire system and easily identifying problems if they occur,

this board can be installed. It has its own connector on the main board.

Figure 3.25: SD expansion board

In Figure 3.26, a summary of the available boards with their respective

communication protocols is provided.

Figure 3.26: Interface with expansion boards

28



Chapter 4

Software

In this chapter the software part developed for the Trace&Follow project will be

examined. This includes analyzing the firmware for the main board, providing an

overview of the cloud platform with its rule chain for correctly interpreting data

from the device, and examining the program necessary for receiving LoRaWAN

frames and forwarding them to the cloud platform.

29



Software

4.1 Firmware

The firmware was developed using open-source software components. Espressif

system provides all the libraries for their microcontrollers and development tools

as open source. Additionally, Espressif microcontrollers can be integrated into

the Arduino ecosystem, enabling the use of all developed libraries present within

it. Using this programming approach has clear advantages, including decreased

development time, but also potential drawbacks. In the Arduino ecosystem, anyone

is able to add libraries, which can be a problem because when using some libraries,

there is no tearing they have been fully tested. Hence, it is a good practice to verify

and test everything to ensure that everything works properly. Firmware is entirely

based on FreeRTOS, which is already embedded within Espressif framework and

provide specific functions to interact more effectively with the ESP32 microcontroller

hardware.

4.1.1 Overview

The board’s primary function is to collect data from the machine to which it is

attached and send it to a cloud platform. The collected data are categorized as

either periodic or asynchronous. The first category includes all data that needs to

be monitored over time, which are:

• Power consumption value

• Pulses on digital inputs if configured in this way

• Data coming from expansions board (CAN or RS485)

• Position if this feature is enabled

30



4.1 – Firmware

The second category consists of data that can change at any moment, and it’s more

important to know their current state than to track their changes over time. It

includes:

• Current inputs and outputs digital value

• Function associated to inputs if configured in this manner

• Configuration parameters that can be modified at run-time

To correctly track periodic data over time, it is very important that no data is lost

due to lack of connectivity or transmission errors, while in the case of asynchronous

data, an error during transmission can be handled on the next attempt without

loss of data. To address this potential problem, periodic data is inserted into a

structure with associated a timestamp at configurable intervals. This structure

is called a "packet" and, when one of them is ready is saved into a buffer. Once

the board is ready to send data to the cloud, it sends all existing packets into the

buffer (up to the maximum payload size that can be sent). If the sending operation

is successful, the packets are removed from the buffer. Otherwise, they will remain

untouched and will be attempted for transmission in the next opportunity.

To acquire and transmit these data, the application relies on the freeRTOS

operating system. Within a freeRTOS application, tasks are executed based on

their priority under the control of the scheduler. They interact with each other

using special features provided by the operating system such as queues, mutexes,

semaphores and more. The Arduino framework automatically creates a task that

execute the main function that starts at boot time. Therefore, any code added to

the main function is executed within this task. The main task is responsible for

two functions. The first one involves retrieving the configuration file from flash

31



Software

memory. This file contains all the necessary parameters for the correct operation of

the board in JSON format. It is possible to load this file onto the ESP32 without

having to reprogram the entire firmware. Beside this it handles OTA updates. The

board can be updated using Wi-Fi connectivity instead of a cable, as explained in

section 3.2.5 Connectivity. This feature is based on an open-source library found

on GitHub[8], and it allows for the uploading of either a new firmware version or a

new configuration file only.

After completing the board configuration steps, the main function generates

additional tasks to handle system functionalities, as summarized in Figure 4.1.

Figure 4.1: Task creation

32



4.1 – Firmware

• IO TASK: Manage I/O, that can be configured into different modes.

• LED and RUN LED TASKS: Manage status LEDs according to current

state of the board.

• POWER TASK: Measure power consumption interacting with ATM IC.

• IDC TASK: Manage data coming from IDC connected expansion board if

present.

• LOCALIZATION TASK: Manage localization using Bluetooth if enabled.

• PACKET TASK: Retrieve data from different task and prepare them to be

inserted into packet.

• CLOUD DATA TASK: Create packet that will be sent to cloud.

• CLOUD LOOP TASK: Send data to cloud.

After all these tasks have been created, they start executing their functions, interact

one to each other to realize the complete program running on the microcontroller.

They mainly interact using queues though which they also exchange data. An

overview of the whole program is provided in Figure 4.2

33



Software

Figure 4.2: Task interactions

34



4.1 – Firmware

4.1.2 IO Task

This task manages the physical input/output. Initially, the IO expander IC is

configured to set each pin’s direction and enable interrupts. Afterwards, the I/O

configuration is retrieved from the flash memory configuration file. Each input is

associated with a configuration structure, which is outlined below.

1 typede f s t r u c t

2 {

3 uint8_t num; // input number

4 bool enabled ; // i f =0 operat ion are not a l lowed

5 uint8_t mod ; // 1−>NORMAL, 2−>COUNTER, 3−>FUNCTION

6 bool p o l a r i t y ; // i f =1 l o g i c i s i nve r t ed

7 pin_t pin ; // p hy s i c a l MCU pin

8 bool i s V i r t u a l ; // i f =1 not correspond to a p h y s i c a l pin

9

10 } input_conf ig_t ;

• num: Number associated with that input.

• enabled: Each pin can be enabled on disabled. If operations are performed on

a disabled input an error will be reported.

• mod: Each input can be configured into three different modes:

– Normal: A generic input pin where only its current state is important.

– Counter: In this mode the firmware counts the number of pulses received.

– Function: Using a CAN or RS485 expansion board makes it possible to

process data from them as virtual inputs. An example of this operation

35



Software

is demonstrated in cap(). By utilizing this field in the configuration

structure, it’s possible to determine whether the input is physical or

virtual.

• polarity: Configures whether logic level 1 corresponds to a high or low physical

level.

• pin: Physical pin associated with that input.

• isVirtual: Using CAN or RS485 expansion board is possible to treat data

coming from them as virtualized inputs. An example of this operation is

shown in chapter 5.3 Wire monitoring. By using this field in the configuration

structure, is possible to determine whether it is a physical or virtual input.

Similarly, each output has its own configuration structure.

1 typede f s t r u c t

2 {

3 uint8_t num; // output number

4 bool p o l a r i t y ; // i f =1 l o g i c i s i nve r t ed

5 pin_t pin ; // p hy s i c a l MCU pin

6 bool i s V i r t u a l ; // i f =1 not correspond to a p h y s i c a l pin

7

8 } output_config_t ;

The meanings of the fields are the same as input ones. I/O data are kept in memory

using two classes: Input and Output classes.

36



4.1 – Firmware

1 c l a s s Input

2 {

3 pub l i c :

4 // pub l i c methods

5 pr i va t e :

6 input_conf ig_t _conf ig ; // c o n f i g s t r u c t u r e

7 uint64_t _count ; // needed i f mod=COUNTER

8 bool _funct ionAct ive ; // needed i f mod=FUNCTION

9 TickType_t _pressTime ; // time at which a pr e s s i s detec ted

10 bool _state ; // l o g i c a l s t a t e

11 uint32_t _longPressTime ; // long pr e s s timeout

12 TimerHandle_t _longPressTimer_handle ; // t imer handle

13 Mcp23S17 ∗ _ioExp ; // po in t e r to i o exp ob j e c t

14 mutex_t _dataMutex ; // mutex to p ro t e c t a c c e s s to data

15 } ;

16

17 c l a s s Output

18 {

19 pub l i c :

20 // pub l i c methods

21 pr i va t e :

22 output_config_t _conf ig ; // c o n f i g s t r u c t u r e

23 bool _state ; // pin s t a t e

24 TimerHandle_t _pulseTimer_handle ; // t imer handle

25 Mcp23S17 ∗ _ioExp ; // po in t e r to i o exp ob j e c t

26 } ;

37



Software

Here, only data structure is presented, while methods are omitted. Each class holds

a pointer to the IO expander object to enable communication and interacts with

respective configuration structures. To ensure the protection of all data during

access, a mutex is present because some of them can be accessed by multiple tasks.

IO expander is also managed through a class.

1 c l a s s Mcp23S17

2 {

3 pub l i c :

4 // pub l i c methods

5 pr i va t e :

6 uint8_t _error ; // l a s t detec ted e r r o r

7 uint8_t _se l e c t ; // chip s e l e c t

8 uint32_t _SPIspeed ; // s p i bus speed

9 spiObj_t ∗ _spi ; // s p i po in t e r ob j e c t

10 SPISet t ings _sp i_set t ings ; // s p i c o n f i g s t r u c t

11

12 mutex_t _mutex = {

13 . handle = NULL,

14 . name = " ioexp mutex "

15 } ; // mutex

16

17 } ;

Since SPI is necessary for the use of this IC, the class holds a pointer to a SPI object

to interact with physical hardware. As this object can be accessed by multiple

tasks, it is protected by a mutex to prevent simultaneous access.

38



4.1 – Firmware

Figure 4.3: IO task function flow chart

39



Software

After the configuration steps are completed, the task will wait until the IO

queue is no longer empty. The structure of an IO message is the following:

1 typede f s t r u c t

2 {

3 //0−> input , 1−> output

4 bool type ;

5 // i f type=input unused , i f type=output−>t e l l the output number

6 uint8_t num;

7 // i f type=input unused , i f type=output−>t e l l the output new value

8 bool va l ;

9 // i f type=input unused , i f type=output−>t e l l the output pu l s e

time

10 uint32_t time ;

11

12 } IoMsg ;

Messages in the IO queue can originate from two sources: the IO expander ISR,

which is triggered by a change in input pin state, and the Cloud loop task, which

arises from receiving an output command from cloud to board.

When dealing with an output message, two scenarios are possible: either the

message time is set to 0, which means that the output must be set for an unlimited

duration or time is non-zero, indicating that the output must remain at the required

level for a designated time before returning to its previous state. To regulate the

output state modification, a FreeRTOS software timer (pulse timer) is used.

40



4.1 – Firmware

Figure 4.4: Manage output message flow chart

In the case of an input message, the logic becomes more complex. Firstly, it is

necessary to determine which pin has changed its state, which can be done by

inspecting the interrupt flag register of the IO expander. Then, by reading the port

register, the new state of the pin can be obtained. Once this information has been

retrieved, a series of actions must be performed depending on the configured mode.

41



Software

Figure 4.5: Manage input message flow chart

42



4.1 – Firmware

If normal mode is selected, the only required operation is to send the updated

value to the cloud task for transmission to the cloud platform.

Figure 4.6: Manage normal input flow chart

When the counter mode is set, the counter simply increments on the rising or

falling edge, depending on the polarity selected.

Figure 4.7: Manage counter input flow chart

43



Software

Finally, when the input mode is set to function, the first thing to do is to check

what the current state of the function is. If it is not currently active and a button

press (logical zero) occurs, it indicates that the function needs to be activated.

However, if the function was already active, a button press may signal the start of a

long press, which is the action required to deactivate it. In this situation, a software

timer is started with a three-second timeout. If a button release is detected, the

timer is stopped if it was running. If no button release occurs within three seconds,

the timer’s callback is triggered leading to function’s deactivation.

Figure 4.8: Timer callback flow chart

44



4.1 – Firmware

Figure 4.9: Manage function input flow chart

45



Software

4.1.3 Leds Tasks

There are two LEDs on the board, each assigned to a distinct task. The first LED is

a simple green light that blinks at 1 Hz. The task sleeps for 500ms before toggling

the LED state. The second one is a RGB LED, which is useful to signal the system

state to the user. The task receives the color required to set the LED via a queue.

1 typede f s t r u c t

2 {

3 uint8_t c o l o r ; // reques ted c o l o r

4 uint32_t time ; // pu l s e durat ion , i f =0, l ed s e t without timeout

5

6 } led_queue_msg_t ;

This is the message format that it receives in the queue:

• color: The required color.

• time: It is possible to change the LED state for un unlimited period by setting

this time to 0, or set a timeout after which the LED returns to its previous

color. This timeout is implemented using software timer with an elapsed time

equal to the specified timeout. Once it expires, its callback is triggered, and it

reset LED color. While a pulse is executing, no message from the queue are

accepted.

The task’s function waits that some messages are received in the queue. Once

messages are present, it changes the LED color accordingly and, if necessary, starts

the timer. The function then waits again for a new message after the pulse has

concluded.

46



4.1 – Firmware

Figure 4.10: LED task flow chart

47



Software

4.1.4 Power task

This task is responsible for acquiring power measurements. The majority of calcu-

lations occur within the energy meter IC, thus it is only necessary to periodically

read a few registers to obtain the total and instantaneous consumption. Similarly

to inputs and outputs, the necessary variables for the management of this chip are

stored in memory by utilizing a class. The class includes configuration structures

that hold calibration values for the ATM90E32 IC, a mutex to protect data access,

variables for the cutoff function, and the object used for direct interaction with the

IC registers.

1 c l a s s Power

2 {

3 pub l i c :

4 // pub l i c methods

5 pr i va t e :

6 power_measurement_config_t _conf ig ; // c o n f i g s t r u c t

7 power_data_t _powerData ; //power va lue s

8 mutex_t _powerDataMutex ; // data mutex

9 cut_of f_conf ig_t _cutOffConfig ; // c u t o f f c o n f i g s t r u c t

10 ATM90E32 _atm ; // energy meter ob j e c t

11 TimerHandle_t _cutOffTimer_handle ; // t imer handle

f o r c u t o f f f e a t u r e

12 bool _idle ; // t e l l s i f power consumption

i s above or below the threa sho ld

13

14

15 } ;

48



4.1 – Firmware

Data structure needed for management of this IC is similar to the one used for IO

exp.

1 c l a s s ATM90E32

2 {

3 pub l i c :

4 // pub l i c methods

5 pr i va t e :

6 i n t _cs ; //SPI chip s e l e c t

7 spiObj_t ∗ _spi ; // po in t e r to SPI ob j e c t

8 SPISet t ings _sp iSe t t ing s ; // c o n f i g s t r u c t f o r SPI bus

9 uint32_t _spiSpeed ; //SPI bus speed

10 } ;

Even in this case, an SPI object is needed to interact with the hardware. However,

a mutex was not implemented as this object is only accessed by this task. It is

also important to note that the ESP32 SPI library already contains a mutex that

prevents multiple SPI transactions from occurring simultaneously.

Calibration is the most crucial aspect to ensure correct operation of the ATM

IC. It requires a reference power meter to correctly set IC calibration registers and

obtain a precise measurement of power consumption. During this operation, both

gain and offset registers must be configured for each voltage and current channel.

This calibration will remain valid until a different type of CT is utilized. If this

situation occurs, the procedure must be repeated.

The ATM IC has two important types of registers used in this project:

• Total energy register: It accumulates energy consumption across the three

phases in Watt-hours (Wh). This register is cleared upon reading and is used

49



Software

to evaluate total consumption, from which the value sent to the cloud platform

is derived. It is not read periodically and then accumulated, but it is only

read when its value is needed by another task to build a packet.

• Instantaneous power register: provides the instantaneous power consump-

tion, which is useful for the cutoff function to determine whether the machine

is in idle state (below the power threshold) or in running state (above the

threshold).

Cutoff is a feature that can be enabled in the configuration file. It allows the system

to turn off the machinery it is connected to using the relay expansion board and

some additional hardware that depends on the type of machine it is being installed

on (an example is provided in section 5.2Cutoff). It is possible to configure it in

two ways:

• Automatic cutoff: The board automatically switches off the machine if the

instantaneous power consumption falls below a configurable threshold for a

configurable amount of time.

• Manual cutoff: Users can send a command to the board from the user

application to switch off the machine.

This task manages the automatic cutoff when it is enabled. It checks the current

power consumption at fixed, configurable intervals. If the power consumption falls

below the threshold, a software timer is reset and started, while if it goes above

the timer is stopped. The board activates the relay and switches off the machine if

the timer is not halted before the callback is triggered. The initialization of this

timer occurs when the task function starts.

50



4.1 – Firmware

Figure 4.11: Power task function flow chart

51



Software

4.1.5 IDC task

IDC connector has been designed to Extend main board functionalities using

expansion boards. This connector brings out the RX and TX signals of a UART,

which means that expansion boards have to use this serial connection to exchange

data with the main board. Currently, only the CAN expansion board is supported,

since the RS485 expansion board is still under development. The board processes

the data from the CAN expansion board as a virtualized input. The standard

message consists of a start byte, two data bytes and one byte for the CRC, evaluated

with the CRC8 algorithm [9].

Frame

Starting char Byte 0 Byte 1 Byte 2

% 0xyy 0xyy CRC

Table 4.1: CAN expansion board frame

From the configuration file is possible to configure this virtual input in normal,

counter or function mode just like physical ones. In case of normal and function

mode, in the serial frames the data bytes contains only 0 or 1 values, indicating

whether the input/function is active or not. In counter mode, instead, data bytes

are interpreted as a count, that the board accumulates. By using this strategy, it’s

possible to manage a wide variety of data since, at the board level, they are treated

as simple counters. They will acquire meaning when they reach the cloud platform,

where their units of measurement will be assigned. For example, considering two

machines in which the board has to measure wire consumption. This information

is directly provided by the machine on a CAN-BUS line, received by the CAN

expansion board and sent to the main board as described above. The two machines

52



4.1 – Firmware

uses different unit of measurements, centimeters for the first, inches for the latter.

The main board will acquire the data in the same way and send them to the cloud

platform as dimensionless count. When this data will reach the platform, the correct

meaning is assigned and showed to the user with the correct unit of measurement.

Obviously, this require an additional configuration step on the cloud platform,

which is easier than configuring it on the board. The task function configures

UART peripheral at the beginning and then, when some data are available, checks

if starting byte and CRC are correct and then increment the counter inside the

virtual input data structure or save the new state.

Figure 4.12: IDC task function flow chart

53



Software

4.1.6 Localization task

ESP32 microcontrollers natively embed Bluetooth connectivity, which can coexist

with Wi-Fi. However, they share the same antenna. Consequently, Bluetooth

cannot receive or transmit data while Wi-Fi is actively receiving or transmitting

data, and vice versa. ESP32 uses the time-division multiplexing method to handle

the reception and transmission of packets.

Figure 4.13: ESP32 RF coexistence [10]

The possibility of using also BLE has led to the development of a method for

locating machines within the production plant. This is particularly useful for

smaller machinery that can be moved. To enable this localization capability, an

external infrastructure must be installed inside the plant. It consists of several

BLE gateway that can be detected by the Trace&Follow board during a BLE

scanning operation. The localization algorithm is based on RSSI (Received Signal

Strength Indicator) received by the main board when it encounters a new gateway.

Higher RSSI indicates a closer gateway while lower RSSI means a farther gateway.

However, it’s important to note that objects between the board and a gateway can

drop the RSSI value. This is generally not a significant issue since most plants have

wide, open spaces. During system installation, careful analysis of floor plans is

54



4.1 – Firmware

conducted to determine the optimal gateway placements. Furthermore, the required

precision is in the order of meters, so even if the board occasionally considers a

slightly more distant gateway as closer, it does not represent a major problem.

Figure 4.14: Localization areas

To locate gateways, the main board performs a scan operation. The discovered

devices are stored in a vector and analyzed to determine whether a device is

a gateway or not. This sorting is based on Bluetooth device names, which for

gateways starts with a standard identifier. When the scan ends, the board analyzes

gateways RSSI value to determine the closest one, which is saved. If it differs from

the closest gateway found during the previous scan, a flag is set to notify the packet

task that it needs to be sent to the cloud.

55



Software

Figure 4.15: Localization algorithm flow chart

56



4.1 – Firmware

4.1.7 Packet task

While previous analyzed tasks are responsible for data acquisition, this task’s role

is to organize and send them to the first of the cloud tasks. Once again, a queue is

employed to transfer data from this task to the cloud task. The most important

step the task perform is the assignment of the timestamp to each data. This

step is particularly important when using LoRa connectivity because it doesn’t

automatically provide the current date and time. To solve this issue, timestamp

associate to each value is relative to a starting point, which coincides with the

moment the connection to the cloud is established To keep track of the current time,

we rely on FreeRTOS ticks. A tick represents the smallest unit of time that the

operating system can measure. For example, if the cloud connection is established

at tick = 1000, and a data packet is created at tick 5000, the timestamp associated

with that packet would be 5000-1000 = 4000. When this packet reaches the cloud

platform relative TS will be translated into the absolute one. The required values

are extracted from data structures managed by other tasks. To ensure the integrity

of the retrieved data, each of these structures is protected by a mutex.

Figure 4.16: Packet task interactions

After each data is read, and its timestamp has been assigned, they are sent, using

57



Software

packet data queue, to cloud data task, which stores them in the appropriate buffer.

The message sent via this queue is provided below.

1 typede f s t r u c t

2 {

3 uint32_t timeStamp ; // timestamp o f the acqu i r e data

4 uint64_t uintData ; // acqu i red data

5 uint8_t type ; // f l a g that t e l l s data meaning

6 uint8_t num; // r equ i r ed i f the re are more in s t ance o f

the same ob j e c t

7 } packet_queue_msg_t ;

• timestamp: timestamp associated with the transmitted data.

• uintData: the data transmitted.

• type: an integer value representing the type of data present into the message.

• num: used only in case there are multiple entity of the same type, such as

inputs or outputs.

Time interval between consecutive sample is configurable in the configuration file

and is called “Packet time”. The task waits for this time before entering in ready

state, and after it is scheduled and executed for one loop cycle, it comes back to

blocked state. To reduce the number of transmissions, all periodic data is sampled

at the same time and then inserted into the same packet, which means they have

the same timestamp. Since data are sent individually, an "end of packet" message

is sent after the data messages to simplify packet creation and reception by the

cloud task. The end-of-packet message doesn’t carry any information but serves as

58



4.1 – Firmware

an indicator for the cloud task to recognize when a packet is complete. Packets

are not directly created within this task and sent already grouped. This approach

allows us to manage asynchronous data that also needs to reach the cloud task,

and it enables the use of a single queue for handling all types of data flows.

Figure 4.17: Packet task function flow chart

59



Software

4.1.8 Cloud task

There are two tasks that manage cloud connection and data sending.

• Cloud data task: this task is responsible for receiving data from other tasks

using a queue and prepare them to be sent to cloud.

• Cloud loop task: this task is responsible for managing the connection to

cloud and send data when sending condition are satisfied. These conditions

differ based on the used protocol (Wi-Fi, Ethernet, LoRa, 4G)

Cloud data task organize single received data into packets or save them if they

belong to the asynchronous type. To better organize data, packets are managed

using a class, which is presented below.

1 c l a s s Packet

2 {

3 pub l i c :

4 // . . . pub l i c methods

5 pr i va t e :

6 uint32_t _timestamp ; // packet timestamp

7 int32_t _power ; // power value

8 uint64_t _pos i t ion ; // p o s i t i o n i f a v a i l a b l e

9 uint8_t _inSize = 0 ; // counter array s i z e

10 input_cnt_element_t _inputCounters [ 1 0 ] ; // array o f counter s f o r

input with mod=COUNTER

11 uint8_t _ser ia l i zedPacketDimens ion ; // dimension o f

the packet when s e r i a l i z e d f o r LoRa i n t e r f a c e

12 bool _ready ; // i f =1 pck i s ready to be proces sed

13 } ;

60



4.1 – Firmware

The cloud global structure is kept in memory instantiating a class object. The

class structure is here reported.

1 c l a s s Cloud

2 {

3 pub l i c :

4 // . . . pub l i c methods

5 pr i va t e :

6 // po in t e r to c loud i n t e r f a c e base c l a s s

7 CloudInte r f ace ∗ _cloudInte r f ace ;

8 // b u f f e r f o r ready packets

9 std : : vector<Packet> _packetBuffer ;

10 // maximum al lowed b u f f e r e lements

11 uint16_t _maxQueueElements ;

12 // b u f f e r f o r asynchronous data

13 std : : vector<packet_queue_msg_t> _asynchDataBuffer ;

14 //mutex to p ro t e c t data a c c e s s

15 mutex_t _dataMutex = {

16 . handle = NULL,

17 . name = " cloud data mutex "

18 } ;

19 } ;

It includes:

• A pointer to the physical cloud structure used to interact with different modules

based on the required connectivity. This concept will be explained later in

this chapter

61



Software

• Packet and asynchronous data buffers implemented using vector objects pro-

vided by the C++ libraries

• Mutex for protecting data access

The task saves data into packet object and, when a “end of packet” message is

received, sets the ready flag, allowing it to be saved into packet buffer. Asynchronous

data coming from queue are directly saved into asynchronous buffer.

Figure 4.18: Cloud data task function flow chart

62



4.1 – Firmware

Once the data are correctly placed into buffers, cloud loop task is responsible for

sending them according to the configured connectivity interface. Since we don’t

know at compile time which interface needs to be used, we need to keep the code

generic. Each interface has its own data structures, its own methods to interact

with cloud. These interfaces are kept in memory using classes and object. One

option we have is to instantiate all the four objects, one for each interface, and

then select the active one at the beginning. However, this approach would lead to

complex and messy code because we’d have to call dedicated functions for each

operation, and it would consume significant RAM to store unused variables for

unused interfaces. To address this issue, we can use C++ concepts of inheritance

and pure virtual classes. As shown earlier, in the cloud class, there is only one

pointer to a generic cloud interface:

1 CloudInte r f ace ∗ _cloudInte r f ace ;

This class has been defined as a pure virtual class. This means that it is not

possible to instantiate it, but it can be used as a template for derived classes.

1 c l a s s C loudInte r f ace

2 {

3 pub l i c :

4 CloudInte r f ace ( ) {} // cons t ruc to r

5 ~ CloudInte r f ace ( ) {} // decons t ruc to r

6

7 v i r t u a l bool I n i t ( ) = 0 ; // i n i t method

8 // other v i r t u a l methods

63



Software

9 protec ted :

10 i n t _state = 0 ; // connect ion s t a t e

11 TickType_t _lastSend ; // timestamp o f l a s t data sending

12 uint32_t _transmi s s i on In t e rva l ; // time between t ransmi s s i on

13 mutex_t _mutex = {

14 . handle = NULL,

15 . name = " cloud mutex "

16 } ; // data mutex

17 pr i va t e :

18

19 } ;

Looking at the Init() function (other ones have been omitted), it is defined as a

‘virtual’ followed by ‘= 0’. This notation means that this function must be redefined

in each of the derived classes. Failure to do so will result in a compiler error. From

this class, individual interface classes are derived. For example, the LoRa interface

class is provided below. As it is possible to see, the Init() function is defined

without the ‘virtual’ and the ’= 0’ qualifier, as this is not a pure virtual class.

1 c l a s s CloudInter faceLora : pub l i c C loudInte r f ace

2 {

3

4 pub l i c :

5 CloudInter faceLora ( ) ; // con s t ruc to r

6 ~ CloudInter faceLora ( ) ; // decons t ruc to r

7

8 bool I n i t ( ) ; // i n i t method

9 // other pub l i c methods

64



4.1 – Firmware

10 pr i va t e :

11 // p r i va t e methods r e l a t e d to LoRa management

12

13 LoraModule _loraModem ; // l o r a modem ob j e c t

14 l o ra_conf ig_t _conf ig ; // c o n f i g s t r u c t

15 bool _isPrevError = f a l s e ; // have e r r o r s occurred yet ?

16 i n t _consecut iveSendingError = 0 ; // e r r o r s number

17 receivedData_t _receivedData = {

18 . buf = { ’ \0 ’ } ,

19 . s i z e = 0

20 } ; // s t r u c t in which r e c e i v e d data i s saved

21 TickType_t _baseTimestamp = 0 ; // i n i t i a l timestamp

22 bool _waitingForDownlink = f a l s e ; // i f =1 the r e c ep t i on

window i s open

23 } ;

Since this class is derived from the “CloudInterface” virtual class, it is possible to

assign a pointer of type “CloudInterfaceLora” to a pointer of type “CloudInterface”.

This enables the calling of functions declared as pure virtual in the base class, which

have been redefined in the derived class. This is the reason for which in the cloud

class there is only a pointer to base class. This is why there is only a pointer to the

base class in the cloud class. The derived interfaces can have their own variables to

perform operations; for example, the LoRa class contains the “LoraModule” object

used to interact with the physical modem IC, which other interface classes do not

have. However, they follow a similar structure. The selection of the interface occurs

at the beginning of the cloud loop function. The interface that needs to be used is

saved into the configuration file Once this information is retrieved, the associated

object is dynamically allocated as follows.

65



Software

1 _cloudInte r f ace = new CloudInter faceLora ;

From this point on, every function called using this pointer is the one defined inside

LoRa interface. Let’s take the Init() method as example. It is called inside the

cloud loop task function, where the interface is initialized. If the code would be:

1 _cloudInte r f ace = new CloudInter faceLora ;

2 _cloudInter face −>I n i t ( ) ;

This means that the UART peripheral is initialized, since the LoRa expansion

board needs to be mounted on the PCIe connector, that the PCIe LDO must be

enabled to supply power to the board and finally the LoRa modem is started. If,

instead, the code would have been:

1 _cloudInte r f ace = new CloudInter faceWiFi ;

2 _cloudInter face −>I n i t ( ) ;

only the internal Wi-Fi module is initialized, and the previously described operation

are not executed.

66



4.1 – Firmware

Figure 4.19: Connectivity interface classes

Cloud loop task performs three important steps. It starts initializing the correct

interface and sending the starting message to cloud. Then every loop cycle it checks

if the connection with cloud is still active and, if all the sending condition are

satisfied tries to send data saved into buffers.

67



Software

Figure 4.20: Cloud loop task function flow chart

68



4.1 – Firmware

Figure 4.21: Cloud init function flow chart

During initialization phase, the most important step is the interface object instan-

tiation, that is executed as previously described. Once it is correctly configured,

the board sends a first message to cloud containing:

• Firmware and hardware versions

• Inputs, outputs and cutoff configurations

• Packet creation and cloud parameters

69



Software

This message is very important because allow the cloud platform to synchronize its

initial timestamp with the board timestamp. Consequently, the whole program

does not start until this sending operation succeeds, otherwise the received data

will be associated with a wrong timestamp.

Once the initial message has been sent correctly, the loop starts. At each cycle,

the connection state to the platform is checked, and if some problem arises, a

reconnection attempt is made. The exact procedure depends on the interface

currently used. After that, if all the sending condition are satisfied the system tries

to send data to cloud. Conditions includes correct cloud connection and minimum

sending interval elapsed. From configuration file, indeed, it’s possible to set a

minimum interval between two consecutive transmissions. This is necessary when

using LoRa connectivity because, because of the physical requirements derived

from the used LoRa connection class, which impose a minimum time between

transmissions.

The sending operation and data format depend on the type of interface being

used, which falls into two groups. When using Wi-Fi, Ethernet, and 4G interface,

the board is directly connected to the cloud. Data is sent to the platform using

the MQTT protocol, and it is formatted using a JSON document. As the device

utilizing LoRa connectivity type is not directly linked to the cloud platform (with

the gateway and network server acting as intermediaries), and due to the limited

data transmission capacity over the physical channel, the transmitted payload

requires compression into a byte array instead of JSON document, which size is

much bigger. Consequently, this array will be interpreted by the code running on

the network server and translated into a JSON document formatted as in other

interfaces. However, the process for constructing the payload remains the same:

70



4.1 – Firmware

asynchronous data is added first, followed by packets. Prior to adding any data, the

payload dimension is checked to ensure it does not exceed the maximum allowed

payload size. In case any errors occur during transmission, the board will notify

the user using a color sequence on the RGB LED.

Figure 4.22: Send data function flow chart

71



Software

4.2 Cloud platform

Once data have been sent from the board, they are collected by a cloud platform, in

our case it is called ThingsBoard. ThingsBoard is an open-source IoT platform for

data collection, processing, visualization, and device management [11]. it supports

multiple protocols to for receiving data, but this project only uses MQTT.

Figure 4.23: ThingsBoard architecture overview [12]

The most crucial element of the system is the Rule Engine, which enables the filtering

of incoming messages using various node types. The script nodes allow for the

72



4.2 – Cloud platform

insertion of JavaScript code to accomplish complex operations. The Trace&Follow

rule, visible in Figure 4.23, is an example of this.

Figure 4.24: Trace&Follow board rule chain

All received messages are sorted according to their typology. For instance, when

the starting message is received, the software separates all message fields. It then

saves them to the database and records the current UNIX timestamp, representing

the time as the number of seconds that have passed since January 1, 1970 at

00:00:00 UTC (Coordinated Universal Time). This timestamp will be utilized to

73



Software

convert the relative timestamp associated with the message coming from the board

to an absolute one. For instance, if the starting message arrives on 01/09/23 at

11:00:00, the corresponding UNIX timestamp would be 1693566000. The board

will save this value as the base timestamp. Upon receiving a message from the

board containing a packet with a relative timestamp of 1230, this value is added to

the base timestamp to obtain 1693567230, corresponding to 01/09/23 at 11:20:30.

This newly calculated timestamp is then associated with the data contained within

the packet. ThingsBoard provides APIs (Application Programming Interface) for

data retrieval and display in user applications after the values have been stored in

the internal database. It is also possible for user applications to send commands to

the cloud platform, which then forwards them to the device using a specific MQTT

topic. On the board, these commands are managed as RPCs (Remote Procedure

Calls). RPC is a request-response protocol, where the client initiates the request by

sending a message to a known remote server to execute a specified procedure with

supplied parameters. The remote server responds to the client, and the application

can proceed with its process. In this scenario, the Trace&Follow board functions

as the server, while the cloud platform functions as the client.

74



4.3 – ChirpStack for LoRa

4.3 ChirpStack for LoRa

When using Ethernet, Wi-Fi or 4G connectivity to interact with the cloud, the

connection to the cloud is direct, meaning there is no other software or physical

component between the board and the platform. They exchange data using the

MQTT protocol. This is not possible when using LoRa connectivity instead, as it

does not provide direct internet access. LoRa frames are then received by a gateway

equipped with an internet connection, which forwards these frames to a network

server that can handle them. This project uses ChirpStack. ChirpStack is an open-

source LoRaWAN Network Server which can be used to setup LoRaWAN networks.

ChirpStack provides a web-interface for the management of gateways, devices, and

tenants as well to setup data integrations with the major cloud providers, databases

and services commonly used for handling device data[13].

Figure 4.25: ChirpStack architecture [14]

75



Software

Once the frame reaches the Application Server, it is analyzed by a JavaScript

code running on it. The code is designed to convert the byte array within LoRa

frames into a JSON document that is formatted similarly to the documents sent

by the board. This eliminates the need to construct a customized rule chain on

ThingsBoard, while still allowing the use of the rule chain shown in Figure 4.24,

despite of the T&F board’s type of connectivity. The whole LoRaWAN architecture

in reported in Figure 4.26

Figure 4.26: LoRaWAN architecture

76



Chapter 5

First Trace&Follow

installation

5.1 Overview

After completing the development phase, we proceeded to install the system on

the first machine which happened to be a manual welder. It is important to note

that the Trace&Follow board cannot be mounted on its own, but instead requires

other components. To ensure proper installation, we have included it within a

steel box that contains all the necessary elements. The board utilizes LoRaWAN

connectivity as the welder may be moved, making Ethernet connection unsuitable.

77



First Trace&Follow installation

Figure 5.1: Complete system inside its steel box

Figure 5.2: Top view of the steel box

78



5.2 – Cutoff

1. Trace&Follow board with LoRa expansion board mounted on PCIe connector

2. Relay expansion board used to implement cutoff feature

3. Voltage sampling board

4. CAN expansion board enclosed in a 3D printed case

5. Contactor needed for cutoff feature

6. Transformer 400V AC – 230V AC

7. Transformer 400V AC – 230V AC

8. CT for current measurement

9. Switch on/off button

10. User button

11. Status led

5.2 Cutoff

The system includes a cutoff feature to turn off the machine either automatically

or manually via a command from the user application.

Two of the machine’s three-phase supplies are utilized for this feature. The

start/stop button is located on the top of the steel box to switch the machine on

and off. At the start, to power on the machine, simply press the green button which

closes its NO contact. Since both the board relay and red button are connected

to NC contact, phase 1 reaches the coil of the contactor. Another phase on the

79



First Trace&Follow installation

opposite side of the coil energizes it, resulting in the closure of the NA contacts of

the contactor. Since Phase 1 is currently present on the coil, it remains energized

and its normally open contacts remain closed. Pressing the stop button (red) or

activating the relay causes the NC contacts to open, stopping Phase 1, which will

no longer be present on the coil. This means that the normally open (NA) contact

of the contactor returns to an open state, causing the machine to switch off.

Figure 5.3: Cutoff element electrical connection

80



5.3 – Wire monitoring

5.3 Wire monitoring

On this welding machine, customers wanted to know how much welding wire they

were using, in addition to monitoring the power consumption. To address this,

the machine’s internal CAN-BUS line, which carries data related to wire speed, is

read and converted into a length value with the help of the CAN expansion board.

After conversion, the value is transmitted to the main board, where it is treated as

a virtual input configured as a counter and sent to the cloud. In this manner, it

is feasible to derive a curve similar to that of the power consumption, which can

be used both to better estimate the cost of each piece, and to compare it with a

reference in order to identify a potentially faulty piece. In Figure 5.4 the acquired

power consumption and wire plots are reported.

Figure 5.4: Waveform for power and wire consumption

81



First Trace&Follow installation

5.4 Localization

Other than maintenance, the customer requested a way to determine the approxi-

mate location of each machine within the plant. Thus, the localization feature has

been enabled, particularly helpful for the maintenance department to locate faulty

welders. Several BLE gateways were installed throughout the production plant,

dividing it into zones. When the Trace&Follow board finds a gateway, it sends its

identifier to the cloud, which associates the welder with the zone identified by the

gateway. The application display will then show this information, as demonstrated

in the screenshot provided in Figure 5.5.

Figure 5.5: Screenshot showing localization feature

82



5.5 – Maintenance

5.5 Maintenance

The customer requested a means of knowing when maintenance is required for

the machine. To comply with their request, a board input has been configured in

function mode to connect a button. By pressing the button, the operator can signal

that the machine is not working properly and requires maintenance. When the

button is pressed, the associated function is activated and the new state is sent to

the cloud. Then, the user application displays that this particular machine requires

maintenance, and the maintenance department can be notified of the request. After

the issue has been solved, the function can be reset by either holding the button

for three seconds or resetting it directly from the application. When the function

is enabled, the status LED which is typically green under normal circumstances,

changes to yellow allowing the operator and maintenance team to easily identify if

the machine requires service.

5.6 Data visualization

Using a web or mobile application, it is possible to visualize the collected data.

The mobile app organizes machines by plant and department. For each department

a list of welders is present and indicates whether they are on or not. Each machine

has a page showing the power and wire consumption for the selected period. Users

have the ability to reset the maintenance flag, set the cutoff timeout, and turn it

off.

83



First Trace&Follow installation

Figure 5.6: Screenshots showing mobile app pages

84



5.6 – Data visualization

The web application is designed only for data visualization, so it is not possible to

set parameters on the devices. The mobile app displays a summary for all welders,

distinguishing between robotic and manual ones, and presenting the total power

consumption over the chosen period for the selected type of machine, in addition

to the data already visualized in the mobile app.

Figure 5.7: Web app total consumption page

Figure 5.8: Web app machine overview page

85



First Trace&Follow installation

5.7 Installed system

The positioning of the metal box, which contains the entire system, depends on the

model of the soldering machine on which it is to be installed. In this case, since it

was equipped with a cart, the box was anchored to it. All components within the

box are mountable on a DIN rail. Therefore, the steel box is no longer necessary if

the system is installed in an electrical cabinet.

Figure 5.9: Welder equipped with Trace&Follow box

86



5.7 – Installed system

Figure 5.10: Content of Trace&Follow box

87



88



Chapter 6

Conclusions and future

works

The initial version of the Trace&Follow board was limited to a specific machine

working in a specific environment. The improved version created during this thesis

resolves this limitation by being adaptable to a wider range of machines. Although

the board has been specifically designed for industrial environments, it can also be

used in civil environments, for example to monitor the consumption of an office or

a house.

Thanks to its versatile inputs and outputs, this device can be employed not

only for power consumption monitoring, but also for other types of data collection.

Its flexible connectivity allows it to function in nearly any environment, whether

it be a modern factory with Internet connectivity or an older plant, by selecting

the most appropriate hardware configuration. Following a modular approach

allows meeting customer needs while keeping costs low as only necessary modules

89



Conclusions and future works

are installed. Additionally, this feature facilitates extending board functionalities,

meeting the demand for custom implementations by simply developing an expansion

board instead of designing an entirely new system. The board creates its own

Wi-Fi network, enabling updates without requiring a programmer. This allows

for placement in difficult-to-reach areas, as for example a locked electrical cabinet,

while still receiving updates. The next evolutionary step in this area will be the

implementation of updating through the cloud platform, so that boards can be

updated remotely.

At the time of writing, eight boards are already installed and operational in

a production plant near Turin. An additional three boards are scheduled for

installation in the coming months. Furthermore, several companies have expressed

interest in testing this system in their own production facilities.

90



6.1 – Economical aspects

6.1 Economical aspects

Aside from technical considerations, commercial factors also play a crucial role in

product development. In order to demonstrate the advantages of this system it

has been compared to an existing one based on a Siemens PLC, declined in two

configurations: the first with basic and cheaper components and the seconds with

more powerful hardware.

The primary advantage of Trace&Follow lies in its modular approach. It allows

for the installation of only the necessary modules, which helps to keep the costs low.

The production costs of electronic boards are dependent on the number of devices

manufactured. As the number of units increases, the cost of both components and

PCBs decreases. This results in a reduction in the price at which the company

sells the device. It is important to note that the Trace&Follow board can be

utilized in two different modes. This board can function as a component within the

Trace&Follow product in combination with the cloud platform, web and mobile

applications, or it is possible to specify, through the configuration file, a different

platform to which the board will send the acquired data using the MQTT protocol.

This results in lower prices since there are no software licenses included.

It should be noted that the listed values indicate the sale price of the board, not the

production costs to obtain a better comparison. All prices are vat excluded. The

tables below outline the components of the commercial PLC-based systems used

for comparison. The selected PLCs have similar I/O configuration of Trace&Follow

board. The setups are based on two types of power meters, both equipped with

an RS-485 bus to communicate with the PLC. In addition, 4G and CAN modules

have been inserted to compare the possible expansion of the Trace&Follow board.

91



Conclusions and future works

For the base configuration the components are:

PLC Siemens LOGO! (8 inputs, 4 outputs)[15] 180 e

RS PRO power meter with RS485 bus[16] 194 e

Siemens 6NH3112-3BA00-6XX1 RS485 expansion module[17] 348 e

TOT 722 e

For the advanced configuration the components are:

PLC Siemens SIMATIC S7-1200 (6 inputs, 4 outputs)[18] 241 e

Finder power meter 7M[19] 337 e

Siemens 6NH3112-3BA00-6XX1 RS485 expansion module[20] 266 e

TOT 844 e

Expansion modules that can be added to the setup:

Siretta QUARTZ-COMPACT Router 4G[21] 329 e

Ixxat CM CANopen (compatible only with S7-1200 PLC)[22] 521 e

Table 6.1 and Table 6.2 show the comparison of these prices with those of the

Trace&Follow board. A 10% discount was assumed for the commercial system with

20 boards. The last column shows the savings compared to the PLC-based system.

Reported values represent the unitary cost across various configurations.

92



6.1 – Economical aspects

Trace&Follow PLC-based saving

1 board with Ethernet
connectivity 640 e 722 e 11.4%

20 boards with Ether-
net connectivity 511 e 650 e 21.4%

1 board with 4G con-
nectivity 820 e 1051 e 22%

20 boards with 4G con-
nectivity 655 e 946 e 30.8%

Table 6.1: Prices comparison between T&F board and base PLC setup

Trace&Follow PLC-based saving

1 board with Ethernet
connectivity 640 e 844 e 24.2%

20 boards with Ether-
net connectivity 511 e 760 e 32.8%

1 board with 4G con-
nectivity 820 e 1694 e 42.1%

20 boards with 4G con-
nectivity 655 e 1524 e 48.6%

Table 6.2: Prices comparison between T&F board and advanced PLC setup

As evidenced, the Trace&Follow board offers a significant price advantage. The

ability to be integrated into a complete platform is another strength of this product.

A customer purchasing this system does not have to develop anything, neither

at the PLC program level nor at the data visualization application level. But it

could also be appealing to system integrators who require a multifunctional power

monitoring platform that can be embedded into their solutions.

93



Conclusions and future works

6.2 Future improvements

The device developed during this project is not the final product, but rather a

starting point for the development of a more complete platform. Its modular design

allows for significant expansion, with the ability to collect data from additional

devices once the RS485 expansion board is completed, resulting in a more flexible

platform.

In addition to the hardware development, the software aspect is the most

interesting. First, in this next step, the ESP32 will function as a web server, much

like it did in the OTA update. Through a web page, the device will be configured

without having to manually edit and upload the configuration file. The file will be

automatically edited whenever any parameters are changed.

The next step in improving the Trace&Follow product will be to implement arti-

ficial intelligence algorithms on the cloud platform. Based on energy consumption

curves, the platform will be able to automatically recognize the manufacturer’s

piece. By comparing these curves with a reference one, it will be able to tell if

the produced piece meets the standards set by the company. This feature will

be useful for both discarding potentially faulty pieces and analyzing whether the

manufacturing process can be optimized.

94



Appendix A

LoRaWAN

When discussing LoRa and LoRaWAN networks, it is crucial to distinguish between

the two. LoRa refers only to the lower physical layer, while LoRaWAN is a network

protocols designed to build out all of the upper network layers. LoRa is a low-power,

wide area network (LPWAN) RF modulation technology that enables long-range

communication. Its range can reach up to 3 miles (5 kilometers) in urban areas

and 10 miles (15 kilometers) or more in rural areas (line of sight). Main drawback

is the low data rate achievable compared with other wireless technologies. Based

on the region where it is deployed, it uses a different frequency band. In Europe

for instance, the ISM (Industrial, Scientific and Medical) band is used. [23, 24]

95



LoRaWAN

Region Frequency (MHz)

Europe 863-870, 433.05-434.7

Australia 915-928

Canada 902-928

China 470-510, 779-787

US 902-928

Table A.1: LoRa regional parameters [25]

Figure A.1: Bandwidth vs range in wireless communications [26]

LoRaWAN is a Media Access Control (MAC) layer protocol built on top of LoRa

modulation. It is a software layer which defines how devices use the LoRa hardware,

for example when they transmit, and the format of messages [26] Messages from a

device to the network are called uplink messages. Messages received by a device

are called downlink messages.

The LoRaWAN specification defines three device classes, which define how the

devices communicate with the network [27]:

96



LoRaWAN

• Class A: A class A device has the ability to transmit an uplink message at

any given moment. Following the uplink transmission’s completion, the device

initiates two brief receive windows to receive downlink messages from the

network. It the lowest power mode but has the highest latency.

• Class B: Class B devices extend Class A capabilities by opening receive

windows, called ping slots, periodically, to receive downlink messages.

• Class C devices extend Class A capabilities by keeping the receive windows

open unless transmitting an uplink.

Figure A.2: LoRaWAN layers [28]

LoRaWAN specifies three security keys: NwkSKey, AppSKey, and AppKey. During

network activation, both an application session key (AppSKey) and a network

session key (NwkSKey) are generated. The network shares the NwkSKey, while

the AppSKey is kept private. Only the device and the application have knowledge

of the application key (AppKey). Dynamically activated devices (OTAA) utilize

the Application Key (AppKey) to generate the two session keys in the activation

process [29].

97



98



Appendix B

FreeRTOS

Developed in partnership with the world’s leading chip companies, FreeRTOS is a

market-leading real-time operating system (RTOS) for microcontrollers and small

microprocessors. Distributed freely under the MIT open source license, FreeRTOS

includes a kernel and a growing set of IoT libraries suitable for use across all

industry sectors [30].

FreeRTOS is a layered architecture featuring multiple customizable modules

that can be adapted to the needs of the system. This real-time operating system

is meant to run on small embedded systems and can be ported to a variety of

microcontrollers and processors. The architecture of FreeRTOS is based on a

kernel that provides multitasking and real-time scheduling capabilities. The kernel

manages task execution, which are the fundamental components of a FreeRTOS

system. Each task runs as a dedicated thread of execution, independent of other

tasks. The kernel provides the necessary mechanisms to create, delete, manage

and synchronize the execution of tasks. FreeRTOS supports various inter-task

communication mechanisms, including queues, semaphores, and mutexes. These

99



FreeRTOS

mechanisms enable tasks to communicate and synchronize their execution within a

real-time system [31].

Figure B.1: FreeRTOS layers structure [32]

The original FreeRTOS is a small and efficient Real Time Operating System

supported on many single-core MCUs and SoCs. However, to support numerous

dual core ESP targets (such as the ESP32, ESP32-S3 and ESP32-P4), ESP-IDF

provides a dual core SMP (Symmetric Multiprocessing) capable implementation

of FreeRTOS. In general, an SMP system [33] is a computing architecture where

two or more identical CPUs (cores) are connected to a single shared main memory

and controlled by a single operating system. The main advantages of an SMP

system compared to single core or Asymmetric Multiprocessing systems are that

the presence of multiple CPUs allows for multiple hardware threads, thus increases

overall processing throughput. Furthermore, having symmetric memory means

that threads can switch cores during execution. This in general can lead to better

CPU utilization.

100



Bibliography

[1] ESP32 WROOM 32E datasheet. 1.6. Espressif Systems. Jan. 2023 (cit. on

pp. 13, 14).

[2] ESP32-WROOM-32U-N4. Accessed: 2023-09-3. url: https://www.digikey.

it/en/products/detail/espressif- systems/ESP32- WROOM- 32U- N4/

9381719 (cit. on p. 14).

[3] ESP32-WROOM-32D. Accessed: 2023-09-3. url: https://www.soselectr

onic.com/it/products/espressif/esp32-wroom-32d-esp32-wroom-32d-

n4-291230 (cit. on p. 14).

[4] Wi-Fi Station. Accessed: 2023-09-7. url: https://randomnerdtutorials.

com/esp32-useful-wi-fi-functions-arduino/ (cit. on p. 17).

[5] Access Point. Accessed: 2023-09-7. url: https://randomnerdtutorials.

com/esp32-useful-wi-fi-functions-arduino/ (cit. on p. 18).

[6] Enhanced Poly-Phase High-Performance Wide-Span Energy Metering IC.

2nd ed. Atmel Corporation. Dec. 2015 (cit. on p. 20).

[7] Inserzione Aron. Accessed: 2023-09-5. url: https://it.wikipedia.org/

wiki/Inserzione_Aron (cit. on pp. 23, 24).

101

https://www.digikey.it/en/products/detail/espressif-systems/ESP32-WROOM-32U-N4/9381719
https://www.digikey.it/en/products/detail/espressif-systems/ESP32-WROOM-32U-N4/9381719
https://www.digikey.it/en/products/detail/espressif-systems/ESP32-WROOM-32U-N4/9381719
https://www.soselectronic.com/it/products/espressif/esp32-wroom-32d-esp32-wroom-32d-n4-291230
https://www.soselectronic.com/it/products/espressif/esp32-wroom-32d-esp32-wroom-32d-n4-291230
https://www.soselectronic.com/it/products/espressif/esp32-wroom-32d-esp32-wroom-32d-n4-291230
https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/
https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/
https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/
https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/
https://it.wikipedia.org/wiki/Inserzione_Aron
https://it.wikipedia.org/wiki/Inserzione_Aron


BIBLIOGRAPHY

[8] ElegantOTA library Github repository. url: https://github.com/ayushsha

rma82/ElegantOTA (cit. on p. 32).

[9] CRC8 Simple Algorithm for C. Accessed: 2023-08-2. url: https://devcoons.

com/crc8/ (cit. on p. 52).

[10] RF Coexistence. Accessed: 2023-08-12. url: https://docs.espressif.

com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html#:

~ : text = ESP32 % 20has % 20only % 20one % 202 . 4 , to % 20receive % 20and %

20transmit%20packets (cit. on p. 54).

[11] ThingsBoard Open-source IoT Platform. Accessed: 2023-09-8. url: https:

//thingsboard.io/ (cit. on p. 72).

[12] ThingsBoard Architecture. Accessed: 2023-09-8. url: https://thingsboard.

io/docs/reference/architecture/ (cit. on p. 72).

[13] ChirpStack, open-source LoRaWAN® Network Server. Accessed: 2023-09-8.

url: https://www.chirpstack.io/ (cit. on p. 75).

[14] Bruno Mendes, Shani du Plessis, Dário Passos, and Noélia Correia. «Frame-

work for the Integration of Transmission Optimization Components into Lo-

RaWAN Stack». In: Communication and Intelligent Systems. Ed. by Harish

Sharma, Vivek Shrivastava, Kusum Kumari Bharti, and Lipo Wang. Singa-

pore: Springer Nature Singapore, 2022, pp. 421–431. isbn: 978-981-19-2130-8

(cit. on p. 75).

[15] PLC Siemens LOGO. Accessed: 2023-10-10. url: https://it.rs-online.

com/web/p/plc/2097104 (cit. on p. 92).

[16] RS PRO power meter. Accessed: 2023-10-10. url: https://it.rs-online.

com/web/p/misuratori-di-energia/2369297 (cit. on p. 92).

102

https://github.com/ayushsharma82/ElegantOTA
https://github.com/ayushsharma82/ElegantOTA
https://devcoons.com/crc8/
https://devcoons.com/crc8/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html#:~:text=ESP32%20has%20only%20one%202.4,to%20receive%20and%20transmit%20packets
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html#:~:text=ESP32%20has%20only%20one%202.4,to%20receive%20and%20transmit%20packets
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html#:~:text=ESP32%20has%20only%20one%202.4,to%20receive%20and%20transmit%20packets
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html#:~:text=ESP32%20has%20only%20one%202.4,to%20receive%20and%20transmit%20packets
https://thingsboard.io/
https://thingsboard.io/
https://thingsboard.io/docs/reference/architecture/
https://thingsboard.io/docs/reference/architecture/
https://www.chirpstack.io/
https://it.rs-online.com/web/p/plc/2097104
https://it.rs-online.com/web/p/plc/2097104
https://it.rs-online.com/web/p/misuratori-di-energia/2369297
https://it.rs-online.com/web/p/misuratori-di-energia/2369297


BIBLIOGRAPHY

[17] Siemens LOGO! CIM. Accessed: 2023-10-10. url: https://it.rs-online.

com/web/p/plc/2368553 (cit. on p. 92).

[18] PLC Siemens SIMATIC S7-1200. Accessed: 2023-10-10. url: https://it.rs-

online.com/web/p/plc/8624455?gb=s (cit. on p. 92).

[19] Finder power meter 7M. Accessed: 2023-10-10. url: https://it.rs-online.

com/web/p/misuratori-di-energia/2216573 (cit. on p. 92).

[20] Siemens 6NH3112-3BA00-6XX1 RS485 expansion module. Accessed: 2023-

10-10. url: https://it.rs-online.com/web/p/schede-di-espansione-

e-adattatori/2553948?gb=s (cit. on p. 92).

[21] Siretta QUARTZ-COMPACT Router 4G. Accessed: 2023-10-10. url: https:

//it.rs-online.com/web/p/router/1853070?gb=s (cit. on p. 92).

[22] Ixxat CM CANopen. Accessed: 2023-10-10. url: https://it.rs-online.

com/web/p/accessori-per-plc/2262730 (cit. on p. 92).

[23] LoRa technology: what you need to know. Accessed: 2023-09-15. url: https:

//edalab.it/en/lora-iot/ (cit. on p. 95).

[24] What is LoRaWAN® Specification. Accessed: 2023-09-15. url: https://lora-

alliance.org/about-lorawan/ (cit. on p. 95).

[25] LoRa. Accessed: 2023-09-16. url: https://lora.readthedocs.io/en/

latest/ (cit. on p. 96).

[26] What are LoRa and LoRaWAN? Accessed: 2023-09-15. url: https://www.

thethingsnetwork.org/docs/lorawan/what-is-lorawan/ (cit. on p. 96).

[27] Device Classes. Accessed: 2023-09-16. url: https://www.thethingsnetwork.

org/docs/lorawan/classes/ (cit. on p. 96).

103

https://it.rs-online.com/web/p/plc/2368553
https://it.rs-online.com/web/p/plc/2368553
https://it.rs-online.com/web/p/plc/8624455?gb=s
https://it.rs-online.com/web/p/plc/8624455?gb=s
https://it.rs-online.com/web/p/misuratori-di-energia/2216573
https://it.rs-online.com/web/p/misuratori-di-energia/2216573
https://it.rs-online.com/web/p/schede-di-espansione-e-adattatori/2553948?gb=s
https://it.rs-online.com/web/p/schede-di-espansione-e-adattatori/2553948?gb=s
https://it.rs-online.com/web/p/router/1853070?gb=s
https://it.rs-online.com/web/p/router/1853070?gb=s
https://it.rs-online.com/web/p/accessori-per-plc/2262730
https://it.rs-online.com/web/p/accessori-per-plc/2262730
https://edalab.it/en/lora-iot/
https://edalab.it/en/lora-iot/
https://lora-alliance.org/about-lorawan/
https://lora-alliance.org/about-lorawan/
https://lora.readthedocs.io/en/latest/
https://lora.readthedocs.io/en/latest/
https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/
https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/
https://www.thethingsnetwork.org/docs/lorawan/classes/
https://www.thethingsnetwork.org/docs/lorawan/classes/


BIBLIOGRAPHY

[28] What are LoRa® and LoRaWAN®? Accessed: 2023-09-15. url: https://lo

ra-developers.semtech.com/documentation/tech-papers-and-guides/

lora-and-lorawan/ (cit. on p. 97).

[29] Security. Accessed: 2023-09-15. url: https://www.thethingsnetwork.org/

docs/lorawan/security/ (cit. on p. 97).

[30] FreeRTOS™ Real-time operating system for microcontrollers. Accessed: 2023-

09-18. url: https://www.freertos.org/index.html (cit. on p. 99).

[31] FreeRTOS: Introduction to FreeRTOS. Accessed: 2023-09-18. url: https:

//piembsystech.com/free-rtos/ (cit. on p. 100).

[32] Richard Elberger. Why SESIP™ Certification for FreeRTOS Matters. Ac-

cessed: 2023-09-18. Mar. 20121. url: https://www.freertos.org/2021/03/

why-sesip-certification-for-freertos-matters.html (cit. on p. 100).

[33] FreeRTOS (ESP-IDF). Accessed: 2023-09-18. url: https://docs.espres

sif.com/projects/esp-idf/en/latest/esp32/api-reference/system/

freertos_idf.html (cit. on p. 100).

104

https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://www.thethingsnetwork.org/docs/lorawan/security/
https://www.thethingsnetwork.org/docs/lorawan/security/
https://www.freertos.org/index.html
https://piembsystech.com/free-rtos/
https://piembsystech.com/free-rtos/
https://www.freertos.org/2021/03/why-sesip-certification-for-freertos-matters.html
https://www.freertos.org/2021/03/why-sesip-certification-for-freertos-matters.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos_idf.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos_idf.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos_idf.html

	List of Tables
	List of Figures
	Abbreviations
	Introduction
	The company
	Project overview

	Trace&Follow first version
	Hardware
	Prototypes
	Final PCB
	Stackup and ground connections
	Power supply
	Microcontroller and component interface
	Input/output
	Connectivity
	Power measurement

	Expansion boards

	Software
	Firmware
	Overview
	IO Task
	Leds Tasks
	Power task
	IDC task
	Localization task
	Packet task
	Cloud task

	Cloud platform
	ChirpStack for LoRa

	First Trace&Follow installation
	Overview
	Cutoff
	Wire monitoring
	Localization
	Maintenance
	Data visualization
	Installed system

	Conclusions and future works
	Economical aspects
	Future improvements

	LoRaWAN
	FreeRTOS
	Bibliography

