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Summary

Autonomous driving is experiencing a rapid evolution in recent years. Basing on a com-
bination of sensors, actuators and softwares, the final aim is to completely replace human
driver in its operations, while improving safety and reliability. This thesis work has focused
on the study and implementation of algorithms aiming at improving vehicle localization
and aiming at the implementation of path tracking application. Regarding the first objec-
tive, Linear and Non-Linear Kalman Filters have been developed to estimate some essential
variables and to improve the accuracy of the measurement, particularly those provided by
the LiDar, allowing outliers to be neglected. For the second objective a PI controller and
a LQR controller have been designed, letting the car to be able to follow a pre-determined
trajectory with the use of data registered by LiDar and IMU sensors together with odo-
metric informations. All the developed solutions have been designed and validated at first
in simulation environment then validated and tested also in an experimental setup using
the QCar, a real scaled fully autonomous vehicle prototype.
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Chapter 1

Nomenclature

Symbol Variable Unit of measure
xb, yb Body axes m
XI , YI Global axes m
X,Y Coordinates of the c.g. of vehicle in the inertial frame m
V Total velocity at c.g. of vehicle in the inertial frame m/s
Vx Total velocity at c.g. of vehicle in the inertial frame m/s
Vy Lateral velocity at c.g. of vehicle in the inertial frame m/s
v Total velocity at c.g. of vehicle in the body frame m/s
vx Longitudinal velocity at c.g. of vehicle in the body frame m/s
vy Lateral velocity at c.g. of vehicle in the body frame m/s
ax Longitudinal acceleration at c.g. of vehicle in the body frame m/s2

aX Longitudinal acceleration at c.g. of vehicle in the inertial frame m/s2

ay Lateral acceleration at c.g. of vehicle in the body frame m/s2

aY Lateral acceleration at c.g. of vehicle in the inertial frame m/s2

ψ Yaw angle of vehicle in global axes rad
ψ̇ Yaw rate of vehicle rad/s
Fy Lateral tire force N
Fyf Lateral tire force on front tires N
Fyr Lateral tire force on rear tire N
m Total mass of vehicle kg
Iz Yaw moment of inertia of vehicle kg m2

lf Longitudinal distance from c.g. to front tires m
lr Longitudinal distance from c.g. to rear tires m
δf Front wheel steering angle rad
δr Rear wheel steering angle rad
αf Front wheel slip angle rad
αr Rear wheel slip angle rad
Cαf Cornering stiffness of front tire N/rad
Cαr Cornering stiffness of rear tire N/rad
β Slip angle at vehicle c.g rad
rw Wheel radius m
τ Transmission ratio -
Va Armature voltage V
ω Motor speed rad/s
Ra Terminal resistance Ω
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Nomenclature

Kt Torque constant N m/A
Kv Motor back-emf constant V s/rad
J Inertia equivalent to the motor kg m2

B Coefficient of viscous friction N m s
Cr Static friction torque N m
s Distance covered along the path m
ρ Road curvature 1/m
ey Lateral offset error m
eψ Heading angle error rad

Table 1.1: List of symbols
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Chapter 2

Introduction

Over the last twenty years there has been a growing interest in the field of autonomous
driving by research groups and automotive companies. The main aim of control systems
for automated driving [1] is to make driving safer by reducing accidents. Additionally, a
secondary focus is about the optimization of traffic flows and the optimization of energy
consumption.
The early autonomous driving research lead to the development of the first driver assistance
systems such as Adaptive Cruise Control (ACC), Lane keeping assist (LKA) and Lane
Departure Warning (LDW). The former is related to control of the longitudinal dynamics
of the vehicle whereas the second is related to lateral dynamics control and is achieved
essentially through steering actuation. The third one simply gives warnings to the drivers
if the vehicle starts to drift from the current line. One of the more recent evolution of this
systems is the Lane Change Assist (LCA), which computes and tracks safe and comfortable
trajectories for lane changing manoeuvres in highway scenarios.
Autonomous driving represents so a quickly evlving technology but there are still several
technical and legislative challenges before this technology can become spread on large
scale.
In 2016 the Society for Automotive Engineers (SAE) revised its technology for autonomous
vehicles and defined several layers basing on the level of automation. As reported in figure
2.1, there are six layers starting from level 0 (no automation) ending with level 5(complete
automation) in which the vehicle can handle every situation, also the emergency ones.

Figure 2.1: Levels for autonomous driving defined by SAE International.
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As for now, the majority of series vehicles can be classified at level 2 or level 3. One of
the challenges that autonomous vehicle encounter is the capability to operate in complex
environments such as urban scenarios. In addition also the problem of data security is also
very important, considering that a lot of sensible information are collected by autonomous
vehicles during their working.

2.1 Localization and Path Tracking

Figure 2.2: Structural layers for autonomous driving strategies. From "Automated Driv-
ing: Safer and More Efficient Future Driving", by D. Watzenig and M. Horn, 2017, p.162,
Springer International.

From a more practical point of view, the main aim for autonomous vehicles is to navigate
in a safe and efficient way from one point to another avoiding obstacles and making smart
driving decisions. This task can be divided into three parts: first, planning the best route
from point A to point B; second, making decisions about how to drive in response to
the environment and figuring out the exact path the car should follow; third making the
vehicle follow that planned trajectory and this is what this thesis work focused on in the
second part.
Prior to the development of the path tracking control strategies, the initial part of the
work focused on enhancing the vehicle localization through the development of Kalman
Filters. This effort, that can be included in the perception layer showed in figure 2.2, is
essential for two purposes: first to estimate such variables that cannot be directly measured
from the plant but are essential for the control architecture, such as the vehicle lateral
speed; second, using also data coming from other sensors provides estimations at a higher
sampling frequency compared to the sensor’s original data output. This is essential since
a specific sampling frequency requirement must be met for the controller to work properly.

14



2.2 – Introduction to QCar

The work has been developed at University of Surrey (Guildford, UK) under the guidance
of Dr. Umberto Montanaro, Prof. Aldo Sorniotti and Prof. Alessandro Rizzo. Valuable
support was also provided PhD students Pietro Stano and Carmine Caponio.

2.2 Introduction to QCar

The vehicle used for the experimental tests is a 1:10 scaled prototype for indoor applica-
tions and designed for academic purposes. As it is possible to see in figure 2.3, the vehicle
is provided with a wide variety of sensors including LiDAR, 360° cameras, depth camera,
IMU, encoders, signalling devices, set of I/O ports to expand the funcitonalities. All this
hardware is handled by a central on-board computer, the NVIDIA Jetson TX2, based on
Linux OS: CPU 2 GHz quad-core ARM Cortex-A57 64-bit, GPU 256 CUDA core NVIDIA
Pascal.
The manufacturing company also provides a set of Simulink libraries and Python scripts
through which is possible to create ROS nodes, facilitating communication between the
on-board computer and the ground station, allowing the user to directly interface with
the vehicle, avoiding the need of low level programmin languages. In particular, all the
work within this thesis has been developed in Matlab/Simulink environment. Addition-
ally, they provide also a virtual environment for the development of mixed-reality scenario
applications.

Figure 2.3: Qcar vehicle with its sensor equipment.

2.2.1 On-board hardware

This subsection to explain more in details about sensors and actuators the vehicle is
equipped with:

• CSI (Camera Serial Interface) cameras: Qcar mounts four of this cameras that are
able together to provide a 360° vision of the environment. Each of this camera has
an horizontal Field-Of-View of 160° and a vertical Field-Of-View of 120°. Moreover
them are characterized by a variable resolution and a resolution dependant frame
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rate. In the following an image of CSI camera (2.4a) with highlight on its reference
system (2.4c) and a table (2.1) where the technical specifications are summarized.

(a) CSI camera (b) Camera reference frame.

(c) QCar reference frame.

Figure 2.4: CSI camera the vehicle is equipped with, its reference frame and vehicle
reference frame.

Resolution Max Frame Rate (FPS) Horizontal FOV Vertical FOV
3280x2464 21 Hz 160° 120°
1640x1232 80 Hz 160° 120°
1640x820 120 Hz 160° 80°
820x616 80 Hz 160° 120°
820x410 120 Hz 160° 80°

Table 2.1: Achievable frame rates for CSI cameras.

• Inertial-Measurement-Unit (9-axis):

– Three for the accelerometer to measure linear accelerations;
– Three for the gyroscope to measure angular speeds around each axis of the

global reference frame;
– Three for the magnetometer, to measure the magnetic field along each axis of

the global reference frame.
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2.2 – Introduction to QCar

The main problem of the accelerometer is that it provides highly noisy measure-
ments. On the other end, the magnetometer is particularly slow and susceptible
to environmental factors, such as the presence of iron in reinforced concrete floors.
Characteristics of the sensor are reported in table 2.3.

Sensor Description
Accelerometer 16-bit with configuration range ±2g to ±16g

Gyroscope Configurable range from ±125°/s to ±2000°/s
Magnetometer Resolution of 0.3 µ/LSB

Table 2.2: IMU sensor specifications.

• DC motor (Titan 12T 550 produced by Trsxxas) for wheels actuation, made possible
thanks to a drive shaft and two differentials.

Symbol Description Value
Rm Terminal resistance 0.470Ω
kt Torque constant 0.0027 N-m/A
km Motor back-emf constant 0.0027 V/(rad/s)

Table 2.3: DC motor for wheels actuation parameters.

• Steering servo actuator with limited steering in the range ±30° and a time constant
τ = 0.16s;

• Single-ended optical shaft encoder ?? used to measure the angular position of the
drive motor. Produced bu US Digital, provides 720 counts per revolution or 2880
counts per revolution in quadrature mode. The same device provides also the angular
speed of the shaft using the time difference between encoder edges. This variable is
measured in count/s and the following relation is used to convert it in rad/s:

ωrad/s = ωcount/s · 4
720 · 2π (2.1)

Figure 2.5: Optical encoder used to measure drive shaft angular speed.

• RGB-Depth Camera: RealSense D435 manufactured by Intel. It includes also one
IR IR projector and two IR imagers, making this unit a stereo tracking solution.
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This device can provide RGB, IR and depth stream of data at several frame rates
and resolutions, depending on the specific needs. The informations about distance
from the obstacle in front of the car can be useful for the development of platooning
or adaptive cruise control applications.

Figure 2.6: Intel RealSense D435 RGB-D camera.

• LiDAR (Light-Detection-And-Ranging, figure 2.7) measures the distances with ob-
jects in the neighborhood through laser beams which are received upon reflection.
The system calculates the distance between the LiDAR and an object based on the
time it takes for the laser beam to travel from the emitter to the receiver. The tech-
nical specifications of the device the QCar is equipped with, are reported in table
2.4

Frequency Samples per revolution Angular Resolution (Degrees)
5 Hz 1600 0.225°
10 Hz 800 0.45°
15 Hz 533 0.675°

Table 2.4: DC motor for wheels actuation parameters.

Additionally, the measuring range is between 0.2m to 12m.

Figure 2.7: RPLiDAR A2M8 the QCar is equipped with.

For indoor applications, the LiDAR is usually employed for Simultaneous Localiza-
tion and Mapping (SLAM) services. The algorithm developed by the manufacturing
company to determinate the vehicle position within a simultaneously mapped envi-
ronment is structured as follows:
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2.3 – QCar in the academic research

– Initially, a scan is performed with vehicle at a standstill. Data about the
mapped environment are stored in memory and this point, is taken as reference
for the global fixed reference frame;

– As the vehicle moves, real-time data from the sensor is compared to the stored
data to determine the vehicle position in fixed reference frame coordinates.
Additionally, this comparison provides also informations about current heading.

The main problems encountered are related to inaccurate measurements and out-
liers, due to the fact that this algorithm is still under development by the company.
Another issue arises from the sensor limited maximum data output frequency of 15
Hz, which is not enough to ensure optimal performance for the path tracking control
strategies that rely heavily on vehicle positioning. To tackle these issues, Kalman
filters have been designed and discussed in chapter 5.

2.3 QCar in the academic research
Thanks to its practicality of use, the QCar has been used in several research works. In [2],
the authors discuss about collaborative mapping approach using occupancy maps. These
maps help multiple entities work together to explore faster the environment. They tackle
the challenge of matching maps from different robots by using a feature-based method
with adaptive filtering to process occupancy data. The approach demonstrated to work
properly when merging six maps to create a single one for simultaneous localization and
mapping.
J. Hu, Y.Zhang and S. Rakheja, "Adaptive Lane Change Trajectory Planning Scheme for
Autonomous Vehicles under Various Road Frictions and Vehicle Speeds" [3], introduces
a dynamic lane change trajectory planning system for autonomous driving, taking into
account road friction and vehicle speed. It prioritizes both the safety of the maneuver and
the comfort of the passengers. To further demonstrate the effectiveness of the proposed
idea, experimental validation through QCars has been performed.
In [4], the authors present a cooperative adaptive cruise control system by leveraging V2V
communication and integrated LiDAR. Firstly they develop an Adaptive-Cruise-Control
then this algorithm is enhanced through an agent trained by Deep Q learning. Experi-
mental tests with QCars showed that this solution can decrease the average inter-vehicular
distance.
A cooperative UAV-UGV control mechanism is presented in [5]. Thanks to the collabo-
rative operation between Unmanned ground vehicles and Unmanned aerial vehicles, the
trajectory tracking is achieved through leader-follower strategy established together with
the applicative scenario.
Additionally, the article proposed by J. Hu, Y. Zhang and S. Rakheja, "Adaptive Trajec-
tory Tracking for Car-Like Vehicles With Input Constraints" ([6]), proposes an adaptive
control scheme for trajectory tracking on low speed scenarios. The design of the adap-
tive gains is aimed to achieving a better convergence rate for the tracking errors while
maintaining the commanded inputs within certain boundaries.
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Chapter 3

System modelling: Kinematical
and Dynamical analysis

In this chapter the aim is to describe the physical models used for the modellization of
the behaviour of the QCar vehicle. For what concerns the longitudinal dynamics, either
the kinematic either the dynamic models have been object of study and application. In
particular, the two models have been used in the realization of the two Kalman filters
descrived in subsequent chapter.

3.1 Single-track model
Single-track model (figure 3.1) of the vehicle has been considered in this work, as suggested
by the QCar vehicle manufacturing company. It considers three degrees of freedom and if
compared with other advanced models allows to reduce system complexity. The vehicle is
considered to have front and rear wheels collapsed in a single entity at point M and point
O respectively. For front-wheel-only steering vehicles, the steering angles are δf , that is
the angle between vehicle longitudinal axis and front wheel longitudinal axis, and δr = 0.
The vehicle mass is assumed to be concentrated at point G, which is its center of gravity
(c.o.g). The distances of M and O from the center of gravity are lf and lr respectively
and their sum equals L = lf + lr, the vehicle wheelbase. Other assumptions [7] are at the
foundation of this modeling:

• Vehicle is operating in 2D plane: roll, pitch and lift are neglected;

• The longitudinal component of the vehicle’s centre of gravity velocity is constant in
module;

• From the assumption of constant longitudinal velocity, the longitudinal forces on the
tires are neglected.

• The load of the vehicle is supposed to be equally distributed between front and rear
axles;

Whithin this set of hypothesis, the vehicle moves along a circle of radius R, with the
center of the curvature being C. This point coincides also with the istantaneous centre of
rotation of the body and can be found as the intersection of the normal-segment to the
longitudinal plane of the front and rear wheels MC and OC. The velocity of the system
is perpendicular to the line CG and the angle between velocity and longitudinal vehicle
axis is called body side slip angle β. The angle between the abscissa-axis and the vehicle
heading is called yaw angle or heading angle of the vehicle ψ.
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3.2 – Reference systems

Figure 3.1: Bycicle model schematization

3.2 Reference systems

This section has been added to explain the two reference systems that have been used in
the development of the work. As it can be imagined, in localization problems there is the
need to express the vehicle position and orientation with respect to a fixed point in the
space.

To this aim, considering that the vehicle is moving in the space, with a mobile reference
frame fixed on the vehicle itself (centered in ’B’ in the figure 3.2) that we call ’body reference
frame’. The ’inertial reference frame’ (centered in ’I’ in the figure 3.2) is the fixed one.
All the informations regarding the position and orientation of the vehicle are referenced
with respect to this latter:

pI(t) =

 x
y
ψ

 (3.1)

Where pI is the generic vector composed by x, y coordinates and value of yaw angle ψ.
In order to move from one reference system to another, simple analytical procedure has
to be followed. Considering that the body reference frame is rotating with respect to the
fixed one by the angle ψ, vectors in one or in the other reference frame can be related by
the following expressions:

21



System modelling: Kinematical and Dynamical analysis

Figure 3.2: Inertial and body reference frames

vB = RBI v
I

vI = (RBI )⊤vB

where, RBI =
A

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

B

RIB =
A

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

B
(3.2)

3.3 Kinematic model

Under the assumptions discussed before and under the following consideration, the vehicle
behaviour can be described using this less complicated model.

• The slip angles between the road and the front or rear tyres are considered to be
zero. This implies also that velocities vectors vM and vO are oriented along the
direction of the front and rear wheels respectively. If we suppose that the vehicle is
driving at a low speed v < 5m/s), since the lateral forces are small, this assumption
is reasonable.
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3.3 – Kinematic model

In this case, the motion of the vehicle is described independently from the factors influ-
encing the motion itself, namely the forces acting on the system.

Figure 3.3: Vehicle representation and geometrical highlight

The rate of change of the vehicle’s orientation ψ̇, in steady-state condition, can be consid-
ered equal to the angular velocity of the vehicle itself. Indeed, if the sine-rule is applied
to the triangle MOC, assuming that the radius of the path trajectory varies slowly as the
vehicle is moving at a low speed ψ̇ is equal to the angular velocity of the vehicle itself:

ψ̇ = ω = v

R
. (3.3)

Looking at the two triangles CGM and CGO, it is possible to make some geometrical
considerations. Considering the former one:

sin (δf − β)
lf

=
sin
!
π
2 − δf

"
R

(3.4)

Applying the same rule to the other one:

sin(β)
lr

=
sin(π2 )
R

= 1
R

(3.5)

Multiplying both sides of 3.4 by lf
cos(δf )

sin(δf ) cos(β) − cos(δf ) sin(β)
lf

= cos(δf )
R

⇒ tan(δf ) cos(β) − sin(β) = lf
R

(3.6)
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Multiplying both sides of 3.5 by lf

sin(β) = lr
R

(3.7)

Combining together 3.6 and 3.7 it is possible to obtain:

cos(β) tan(δf ) = lf + lr
R

(3.8)

Finally, substituting 3.8 in 3.3 the yaw rate can be expressed as function of model’s input
variables, v and δ as follows:

ψ̇ = v cos(β)
lf + lr

(tan(δf )) . (3.9)

Equation 3.9, is one of the four equations that constitute the complete set of the kinematic
model. Considering now that we want to express the velocity of the vehicle, known in the
body frame, in the inertial reference frame. As said before, body reference is at every
time instant rotated of an angle ψ(t) with respect to the fixed reference one. So, given the
velocity vector decomposed in components in the body reference frame as:

v =
C
vx
vy

D
=
C
v · cos(β)
v · sin(β)

D
(3.10)

As explained before, two reference frames are related by geometrical transformation
such that:

V (I) =
C
VX
VY

D
= RIBv

(B) =
A

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

B
·
C
v · cos(β)
v · sin(β)

D
(3.11)

Developing equation 3.11, one obtain that:

VX = v · cos(ψ) · cos(β) − v · sin(ψ) · sin(β) = v · cos(ψ + β) (3.12)

VY = v · sin(ψ) · cos(β) + v · cos(ψ) · sin(β) = v · sin(ψ + β) (3.13)

Finally, the body side slip angle as function of model inputs, can be obtained combining
eq 3.6 multiplied by lr and eq 3.7 multiplied by lf :

lr(tan(β) cos(β) − sin(β)) = lr·lf
R

lf · sin(β) = lr·lf
R

(3.14)

From which it can be obtained that:

β = tan−1
A
lr tan(δf )
lr + lf

B
(3.15)
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3.4 – Vehicle lateral analysis

Figure 3.4: Block diagram of kinematic single-track model

Summarizing, the inputs of this model 3.9 are two, namely the front steering angle δf
and the longitudinal velocity v. In a path tracking framework either both the input can
be controlled or velocity can be provided to the plant in open-loop as it has been done in
our simulations and in our experimental tests.

To conclude the chapter, the equations of the vehicle kinematic model are grouped in the
following:



ψ̇ = v cos(β)
lf +lr (tan(δf))

β = tan−1
3
lr tan(δf )
lr+lf

4
VX = v cos(ψ + β)
VY = v sin(ψ + β)

(3.16)

3.4 Vehicle lateral analysis

In more challenging conditions the kinematic model does not approximate properly the
vehicle’s behaviour. At high vehicle speed, it can no more be assumed that the speed at
each wheel is in the direction of the longitudinal axis of the wheel itself, so a different
approach is required. This new model must take into account for the lateral dynamics of
the body. In this framework we are considering the vehicle to be on a curve of radius R
at constant speed, in steady state condition.

Before formulating the equation of motion, the description of the forces acting on the
vehicle is required, specifically on the forces acting on the wheels. Through experimental
observations, it can be stated that lateral tire forces are proportional to the slip-angle
of the tire itself. Tire side slip angle denoted as α, represents the angle between the
longitudinal axis of the wheel and the direction of the velocity vector of that wheel. For
a steering wheel, it must be also taken into account of the steering angle. However, for
non-steering wheels, this term is absent. It is possible to determine the side slip angles
for both the front and rear wheels using the single-track model’s, by means of a balance
between the longitudinal and lateral direction of the velocities of the tires and the chassis.
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Figure 3.5: Front wheel side slip angle

The slip angle for the front wheel (figure 3.5) can be derived as follows:

Lateral direction ⇒ vf sin(δf − αf ) = v sin(β) + lf ψ̇ (3.17)

Longitudinal direction ⇒ vf cos(δf − αf ) = v cos(β) (3.18)

The ratio between 3.17 and 3.18 gives:

tan(δf − αf ) = lf ψ̇ + v sin β
v cosβ (3.19)

Using small angle approximation such that β ≤ 10◦, sin(β) ∼= β, cos(β) = 1, tan(β) = β,
equation 3.19 become:

αf = δf − lf ψ̇ + vβ

v
(3.20)

The rear tire slip angle (figure 3.6) can be derived as follows:

Lateral direction ⇒ vr sin(αr) = −v sin(β) + lrψ̇ (3.21)

Longitudinal direction ⇒ vr cos(αr) = v cos(β) (3.22)

The ratio between 3.21 and 3.22 gives:

tan(αr) = lf ψ̇ − v sin β
v cosβ (3.23)

Using small angle approximation such that β ≤ 10◦, sin(β) ∼= β, cos(β) = 1, tan(β) = β,
equation 3.23 become:

αr = lrψ̇ − vβ

v
(3.24)
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3.4 – Vehicle lateral analysis

Figure 3.6: Rear wheel side slip angle

Given the formulation of the wheels side slip angles in equations 3.20 and 3.24, the forces
generated by the wheel-road interaction that oppose to the centrifugal effect are highlighted
in figure 3.7 and described below. Equation 3.25 for the front wheel and equation 3.26 for
the rear wheel:

Fyf = Cαf · αf = (Cαfl + Cαfr) · αf (3.25)

Fyr = Cαr · αr = (Cαrl + Cαrr) · αr (3.26)

Where, Cαf and Cαr are the cornering stiffness of the front and rear wheel for the single-
track model which are in turn the sum of the cornering stiffness of the two front wheels
and of the two rear wheels.
These forces have a particular dependance from the side-slip angle as them are generated by
the viscoelastic deformation of the tire. The magnitude of this deformation, as explained
in [8] depends on the magnitude of the lateral velocity and on the time spent by the
tread in the contact point. The first contribute is proportional to the wheel rotational
velocity multiplied by the side slip angle whereas the second is inversely proportional to
the rotational velocity of the wheel making so the overall contribute proportional to the
side slip angle only. For small lateral velocities, hence for small slip angles, the lateral
forces are proportional to the slip angle itself. As soon as the lateral velocitiy become
higher, meaning the presence of a considerable tire deformation, the relation become higly
non-linear. Figure 3.8 gives an idea of the explained relation.
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Figure 3.7: Single-track model cornering dynamics

Figure 3.8: Lateral tire-road force as function of tire side-slip angle

The cornering stiffness Cα is the tangent to the curve for each point (α, Fy). For small
α angles, it is possible to consider a constant cornering stiffness, denoted as Cα0. In the
framework of this work, it can be assumed that the condition of small side slip angle is
achieved.
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3.5 – Lateral dynamic equations

3.5 Lateral dynamic equations

After considering the previous explanations it is possible to proceed to derive the equations
of the dynamics. Referring to the figure 3.7, it is possible to write the equilibrium of forces
along the y axis of the body reference frame:

m · ay = Fc cosβ = Fyr + Fyf cos(δf ) (3.27)

In the following, the aim is to present the derivation of the formula of the lateral accelera-
tion of the vehicle ([7]). Starting from the velocity of the vehicle in the vehicle’s reference

frame vb =

 v cos(β)
v sin(β)
0

, the acceleration of the body in this reference frame is expressed

as:

ab = dvb

dt + ωb ∧ vb =

 −v sin(β) · β̇
v cos(β) · β̇
0

+

 0
0
ψ̇

 ∧

 v cos(β)
v sin(β)
0

 =

=

 −v sin(β) · β̇
v cos(β) · β̇
0

+

 −v sin(β) · ψ̇
v cos(β) · ψ̇
0

 =

 −v sin(β) · (β̇ + ψ̇)
v cos(β) · (β̇ + ψ̇)
0


(3.28)

The acceleration of the vehicle, having assumed constant longitudinal velocity, has only
the normal component which magnitude is given by:

|ab| = an
b = v · (β̇ + ψ̇) (3.29)

The acceleration component perpendicular to the longitudinal direction of the vehicle
under the assumption of small side slip angle (cosβ ∼= 1, such that vx = v · cos(β) ∼= v) is
the following:

ay = v cosβ(β̇ + ψ̇) ∼= v(β̇ + ψ̇) (3.30)

From the balance of the forces along y-direction (refer to figure 3.7) it is possible to write
the equation for the lateral dynamics:

mv · (β̇ + ψ̇) = Fc cosβ = Fyr + Fyf cos(δf ) (3.31)

Substituting expressions 3.20, 3.25, 3.24, 3.26 in the previous equation:

mv · (β̇ + ψ̇) = Cαrαr + Cαfαf cos(δf ) =

= Cαr
1
lrψ̇
v − β

2
+ Cαf cos(δf )

3
δf − lf ψ̇

v − β

4 (3.32)

Under the same assumptions of small front steering angles (such that cos δf ∼= 1), the
previous equations can be written as:

mvβ̇ + ψ̇

v

1
mv2 − Cαrlr + Cαf lf

2
+ β (Cαf − Cαr) = Cαfδf (3.33)
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That is the equation for the vehicle lateral dynamics.
Based on the balance of the moments around the z-axis of the vehicle’s centre of mass it
is possible to derive that:

Izψ̈ = lfFyf − lrFyr (3.34)

Substituting equations 3.20, 3.25, 3.24, 3.26 in the previous equation:

Izψ̈ = lfFyf − lrFyr = lfCαf

A
δf − lf ψ̇

v
− β

B
− lrCαr

A
lrψ̇

v
− β

B
(3.35)

Which can be rewritten as:

Izψ̈ + ψ̇

v

A
Cαf lf

2

v
+ Cαrlr

2

v

B
+ β (Cαf lf − Cαrlr) = Cαf lfδf (3.36)

That is the equation for the vehicle yaw dynamics.

In conclusion the equations (3.33, 3.36) for the dynamics of the vehicle within the assump-
tions of the single-track model are grouped below:

mvβ̇ + ψ̇
v

!
mv2 − Cαrlr + Cαf lf

"
+ β (Cαf − Cαr) = Cαfδf

Izψ̈ + ψ̇
v

3
Cαf lf

2

v + Cαrlr
2

v

4
+ β (Cαf lf − Cαrlr) = Cαf lfδf

(3.37)

As done before a scheme of the dynamic single-track model is presented below. Inputs are
front steering angle and velocity, that are provided in closed and open loop respectively.
As outputs we have the states of the model which are the yaw-rate ψ̇ and the side-slip
angle β.

Figure 3.9: Block diagram of dynamic single-track model
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3.6 Equations for the longitudinal model

The equations for the longitudinal model are derived leveraging the equations of a DC
machine. The first equation is derived from Kirchoff law while the second one of the
driving torque is obtained from the system dynamic equilibrium.

Va = Raia + La
dia
dt

+ E

Cm − Cr = J dω
dt

+Bω
(3.38)

where,

• Va is the armature voltage;

• Raia is the voltage drop across the equivalent armature resistance;

• La
dia
dt is the voltage drop due to equivalent inductance during transients. We are

considering steady-state analysis so this term can be neglected;

• E is the back electro-motive-force;

• Cm is the driving torque provided by the motor;

• Cr is the load torque due to actions opposing the motion;

• J dωdt is the product between motor inertia and motor angular acceleration; item Bω
is the product between viscous friction and motor angular speed.

For a DC motor it is possible to express the driving torque and the back e.m.f as
follows: I

Cm = KmΦia
E = KeΦω

(3.39)

where,

• Km is a constant that depends on the specific characteristics of the machine;

• Φ is the excitation flux, a constant for permanent magnet machines;

• ω is the motor angular speed;

• Ke is again a motor constant that depends on specific characteristichs of the device.

Putting together 3.38, 3.39, considering that Kt = KmΦ and Kv = KeΦ it is possible
to obtain the following: I

ia = Va−Kvω
Ra

Ktia − Cr = J dω
dt

+Bω
(3.40)

Substituting the expression of armature current ia in the second equation:

Kt
Va −Kvω

Ra
− Cr = J

dω

dt
+Bω (3.41)
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Rewriting the equation as explicit funciton of angular acceleration:

ω̇ = 1
J

(Kt

Ra

(Va −Kvω) −Bω − Cr) (3.42)

Equation 3.42 is referred to the electric motor, however under the assumptions of no
longitudinal wheels slip and small vehicle side-slip angle, this relation can be linked to the
wheel speed through the transmission ratio τ :

vwh = 1
τ

· ωrwh (3.43)

Equation 3.42 will be used in section 5.3 and can be rewritten as:

ω̇ = Kt

J ·Ra
Va + (KtKv

JRa
−B)ω − Cr

J
(3.44)

or, equivalently:
ω̇ = P1Va − P2ω − P3 (3.45)
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Chapter 4

Trajectory generation and
derivation of state-space
representation

In this chapter we want to describe the metodology used to generate the trajectory used as
reference for path tracking problem. This part plays a crucial role since the curvature that
derives from the created trajectory is used for the states generation whithin the control
environment. In this work, five trajectories are presented:

• U-shaped trajectory;

• S-shaped trajectory;

• Trajectory for obstacle avoidance, as example of severe lane-change manoeuvre.

• Circular-shaped trajectory;

• Eight-shaped trajectory.
Notice that in the design process, the reference environment taken into consideration was
the laboratory test track, visible in figure 4.1.

Figure 4.1: Test track used in the experimental setup.
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Trajectory generation and derivation of state-space representation

4.1 U-shaped trajectory

The procedure begins with geometrical considerations: from (0,0) position we designed
a path that consists of two straight horizontal segments connected by a semicircular arc.
All the measures, unless otherwise specified, are provided in meters.

Figure 4.2: U-shaped trajectory drawn on the experimental track

The elements which constitute the path in figure 4.2 are detailed below:

• Straight segment 1 m long starting at (X,Y) = (0,0), ending at (X,Y) = (1, 0);

• Semicircumference with radius r = 1.335 m starting at (X,Y) = (1,0), ending at

(X,Y) = (1, 2.67);

• straight segment 1m long starting at (X,Y)=(1, 2.67), ending at (X,Y) = (0, 2.67).

After these geometrical elements coordinates have been defined, they must be combined
together to produce a first reference vector. It is crucial to emphasise the requirement for
consecutive vectors not to overlap in order to prevent issues with the following procedure.
This first part can be appreciated in the extract of code below:

Listing 4.1: Geometrical definition of the entities used to construct the trajectory
% I n i t i a l s t r a i g h t segment
y_in = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y = 0
x_in = l i n s p a c e ( 0 , 0 . 9 99 , 1000 ) ; % s t r a i g h t l i n e from x=0 to x=1
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4.1 – U-shaped trajectory

% Semic i rcumference
r = 1 . 3 3 5 ; % rad iu s
theta = l i n s p a c e (−pi /2 , p i /2 , 1000 ) ;
x = r ∗ cos ( theta ) + 1 ; % x coo rd ina t e s
y = r ∗ s i n ( theta ) + r ; % y coo rd ina t e s

% Fina l s t r a i g h t segment
y_fin = 2.67∗ ones (1 , 1000 ) ; % s t r a i g h t l i n e at y = 2.67
x_fin = l i n s p a c e ( 0 . 999 , 0 , 1000 ) ; % s t r a i g h t l i n e from x=1 to x=0

x_f = [ x_in , x , x_fin ] ’ ; % f i n a l c oo rd ina t e s
y_f = [ y_in , y , y_fin ] ’ ; % f i n a l c oo rd ina t e s

xRef = x_f ;
yRef = y_f ;

r e f p o s = [ xRef , yRef ] ; % vec to r conta in ing the column vec to r s o f x and
% y coo rd ina t e s f o r each po int o f the t r a j e c t o r y

The procedure goes on with the interpolation over a defined number of points and
smoothing of the reference trajectory as reported in the following code extract which
allows to obtain the reference coordinates XRef , YRef and the reference heading angle
ψRef that are reported in figure 4.3.

Listing 4.2: Geometrical definition of the entities used to construct the trajectory
%% Distance computation
% pd i s t command i s used to compute the euc l i d ean d i s t ance between each
% couple o f po in t s ( xRef , yRef ) . Squareform command c r e a t e s a symmetric
% and square matrix , making the data provided by pd i s t readable , so
% that Z( i , j ) denotes the d i s t anc e between the i and j o b j e c t s in the
% o r i g i n a l data

d i s tancematr ix = squareform ( pd i s t ( r e f p o s ) ) ;
d i s t a n c e s t e p s = ze ro s ( l ength ( r e f p o s ) −1 ,1) ;

% d i s t a n c e s t e p s vec to r conta in s the d i s t anc e between conse cu t i v e po in t s
f o r i = 2 : l ength ( r e f p o s )

d i s t a n c e s t e p s ( i −1 ,1) = di s tancematr ix ( i , i −1);
end

t o t a l D i s t a n c e = sum( d i s t a n c e s t e p s ) ; %Total d i s t anc e
d i s tbp = cumsum ( [ 0 ; d i s t a n c e s t e p s ] ) ; %Cumulative d i s t ance
s = l i n s p a c e (0 , to ta lD i s tance , 300 ) ; %c u r v i l i n e a r a b s c i s s a

% I t i s p o s s i b l e to r e g u l a t e the sampling ra t e f o r the c u r v i l i n e a r
% a b c i s s a ac t ing on N parameter o f l i n s p a c e command . In the f o l l ow ing ,
% the in t e rp1 command w i l l i n t e r p o l a t e to f i n d the xRef2 and yRef2
% va lue s o f the func t i on y = f ( x ) , c o n s i d e r i n g y to be xRef and yRef ,
% x to be distbp , at the query po in t s s . S u c c e s s i v e l y the i n t e r p o l a t e d
% va lue s are smoothed with the corre spond ing command .

xRef2 = in t e rp1 ( distbp , xRef , s , ’ pchip ’ ) ;
yRef2 = in t e rp1 ( distbp , yRef , s , ’ pchip ’ ) ;
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Trajectory generation and derivation of state-space representation

yRef2s = smooth ( s , yRef2 ) ;
xRef2s = smooth ( s , xRef2 ) ;

%% Calcu la te p s i_re f
ps iRe f = ze ro s ( l ength ( s ) , 1 ) ;
f o r i = 2 : l ength ( s )

ps iRe f ( i , 1 ) = atan2d ( ( yRef2s ( i ) − yRef2s ( i − 1 ) ) , . . .
( xRef2s ( i ) − xRef2s ( i −1)) ) ;

end
ps iRe f s = smooth ( s , ps iRe f ) ;

The last step is to calculate the curvature for each point of the trajectory. Curvature is
the reciprocal of the curvature radius that represents the radius of circular arc which best
approximates the curve at that point.
The radius of curvature of the curve given in parametric coordinates as (x(s), y(s)), is
given by Equation 4.1 ([9]):

ρ(s) = 1
R

= x′y′′ − x′′y′

(x′2 + y′2)3/2 (4.1)

Where:
x′ = dx

ds
(4.2)

x′′ = dx′

ds
(4.3)

The implementation of this formula is reported in the code extract below.

Listing 4.3: Computation of curvature value for each point of the trajectory
% Calcu la te curvature vec to r through curvature func t i on
curvature = getCurvature ( xRef2s , yRef2s ) ;

% Curvature Function

func t i on curvature = getCurvature ( xRef , yRef )
% Calcu la te g rad i ent by the grad i en t o f the X and Y vec to r s
DX = grad i en t ( xRef ) ;
D2X = grad i en t (DX) ;
DY = grad i en t ( yRef ) ;
D2Y = grad i en t (DY) ;
curvature = (DX. ∗D2Y − DY. ∗D2X) . / (DX.^2+DY. ^ 2 ) . ^ ( 3 / 2 ) ;
end

In the following figures the reference variables for this trajectory are presented.
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4.1 – U-shaped trajectory

(a) X reference coordinate for U-shaped
trajectory

(b) Y reference coordinate for U-shaped
trajectory

(c) Reference heading angle ψRef for U-shaped
trajectory

(d) Reference curvature ρRef for U-shaped
trajectory

Figure 4.3
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4.2 S-shaped trajectory
With some additional geometric considerations, the process used to construct this second
trajectory is identical to the one previously discussed. The reference trajectory begins at
(0,0) and consists of a straight horizontal segment, three consecutive semicircumferences
and a final vertical straight segment.
The entire reference trajectory, represented in figure 4.4 is made up of these elements:

• straight segment 1m long starting at (X,Y) = (0,0), ending at (X,Y) = (1.334, 0);

• a quarter of circumference with radius r = 1.335m starting at (X,Y) = (1.335,0), end-
ing at
(X,Y) = (0, 1.335);

• semicircumference with radius r = 1.335m starting at (X,Y) = (0, 1.335), ending at

(X,Y) = (-2.67, 1,335);

• semicircumference with radius r = 1.335m starting at (X,Y) = (0, 1.335), ending at

(X,Y) = (-2.335, 1,335);

• straight segment 1m long starting at (X,Y)=(-2.67, 1.335), ending at (X,Y) = (-2.67,
2.335).

Figure 4.4: S-shaped trajectory drawn on the experimental track

As previously done, an extract of the code required to define and combine all the
mentioned entities is presented below. This code creates the reference trajectory vector,
which is then used in the smoothing operation and to determine the reference coordinates,
the reference heading angle and the point-to-point curvature. These entities are reported
in figure 4.5.
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4.2 – S-shaped trajectory

Listing 4.4: Geometrical definition of the entities used to construct the trajectory
% I n i t i a l s t r a i g h t segment
r = 1 . 3 3 5 ; %rad iu s
theta0 = l i n s p a c e (−pi /2 , 0 , 1000 ) ; % ang l e s from 0 to p i
y_in = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y = 0
x_in = l i n s p a c e (0 , 1 . 334 , 1000 ) ; % s t r a i g h t l i n e from x=0 to x=1.334

% F i r s t 1/4 o f c i r cumfe r ence
x0 = r ∗ cos ( theta0 ) + 1.335 ; % x coo rd ina t e s
y0 = r ∗ s i n ( theta0 ) + r ; % y coo rd ina t e s

% Second semic i r fumfe r ence
theta1 = l i n s p a c e ( 0 . 001 , pi , 1000 ) ;
x1 = r ∗ cos ( theta1 ) + 1 . 3 3 5 ;
y1 = r ∗ s i n ( theta1 ) + r ;

% Third semic i r cumference
theta2 = l i n s p a c e ( 0 . 001 , pi , 1000 ) ;
x2 = r ∗ cos ( theta2 ) − 1 . 3 3 5 ;
y2 = −r ∗ s i n ( theta2 ) + r ;

% Fina l v e r t i c a l s t r a i g h t l i n e
y_fin = l i n s p a c e ( r +0.001 , r +1, 1000 ) ; % s t r a i g h t l i n e from

% y = 1.336 to y = 2.335
x_fin = −2∗r ∗ ones (1 , 1000)− 0 . 0 0 1 ; % s t r a i g h t l i n e at x=−2.67

x_f = [ x_in , x0 , x1 , x2 , x_fin ] ’ ; % f i n a l c oo rd ina t e s
y_f = [ y_in , y0 , y1 , y2 , y_fin ] ’ ; % f i n a l c oo rd ina t e s

xRef = x_f ;
yRef = y_f ;

r e f p o s = [ xRef , yRef ] ;

In the following figures the reference variables for this trajectory are presented.
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Trajectory generation and derivation of state-space representation

(a) X reference coordinate for U-shaped
trajectory

(b) Y reference coordinate for U-shaped
trajectory

(c) Reference heading angle ψRef for U-shaped
trajectory

(d) Reference curvature ρRef for U-shaped
trajectory

Figure 4.5
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4.3 – Trajectory for obstacle-avoidance manouevure

4.3 Trajectory for obstacle-avoidance manouevure

Figure 4.6: Obstacle-avoidance trajectory drawn on the experimental track

In order to design the obstacle avoidance section of the complete trajectory reported in
figure 4.6, the normative [10] was consulted. However, some adjustments were required
owing to the dimension of the test vehicle and the constraints of the test track.

• The vehicle being considered is in a 1:10 scale, therefore the measures of the track
are scaled by a factor of 10;

• Vehicle width is equal to 0.192 m;

• The initial and final sectors of the track were shortened from 1.2 m to 0.4 m and
from 1.2 m to 0.12 m, respectively.

Figure 4.7: Obstacle avoidance track with designation of sections from ISO regulation.
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Section Lenght Lane offset Width
b

1 0,4 - 1,1 · vehicle width + 0,25
2 1,35 - 1,1 · vehicle width + 0,25
3 1,1 1 vehicle width + 1
4 1,25 - vehicle width + 1
5 0,12 - 1,3 · vehicle width + 0,25, but not less than 0,3

Table 4.1: Obstacle avoidance track dimension in meters

Finally, the lane change maneuvre section which schematic is reported in figure 4.7,
was combined with the remaining portions of trajectory listed in the bullet list below, such
that the QCar starting point was at the halfway point of the track lower straight segment,
where better lidar behaviour is obtained:

• Straight segment 1 m long starting at (X,Y) = (0,0), ending at (X,Y) = (1, 0);

• Semicircumference with radius r = 1.335 m starting at (X,Y) = (1,0), ending at

(X,Y) = (1, 2.67).

Finally, the code extract where the trajectory is created is reported below.

Listing 4.5: Computation of curvature value for each point of the trajectory
%% I n i t i a l s t r a i g h t segment
in t e rpPo in t s = 1000 ;
y_in = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y = 0
x_in = l i n s p a c e ( 0 , 1 . 4 99 , i n t e rpPo in t s ) ; % s t r a i g h t l i n e from x=0 to

% x=1.499
% Semic i rcumference
r = 1 . 3 3 5 ; %rad iu s
theta = l i n s p a c e (−pi /2 , p i /2 , i n t e rpPo in t s ) ;
x = r ∗ cos ( theta ) + 1 .5 ; % x coo rd ina t e s
y = r ∗ s i n ( theta ) + r ; % y coo rd ina t e s

%% Obstac le avoidance s e c t i o n
s_ in i t = 0 ;
l a n e _ o f f s e t = 0 . 1 ;

% Test l i m i t d e f i n i t i o n
vehic le_width = 0 . 1 9 2 ;
x_in i t = x ( end ) − 0 . 0 0 1 ;
x_1 = x_ini t − 0 . 4 ;
x_2 = x_1 − 1 . 3 5 ;
x_3 = x_2 − 1 . 1 ;
x_4 = x_3 − 1 . 2 5 ;
x_5 = x_4 − 0 . 3 ;
x_end = x_5 − 0 . 1 2 ;

% Right l i m i t
reference_path_tmp . x_right = [ x_in i t ; x_init −10^−10; x_1 ; x_1−10^−10;

x_2 ; x_2−10^−10; x_3 ; x_3−10^−10; x_4 ;
x_4−10^−10; x_5 ; x_end ] ;

y_right_1 = y ( end ) + (1 . 1∗ vehic le_width +0.025)/2 ;
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4.3 – Trajectory for obstacle-avoidance manouevure

y_right_2 = y_right_1 ;
y_right_3 = y ( end ) − l a n e _ o f f s e t − ( ( vehic le_width +0 .1 )/2) ;
y_right_4 = y ( end ) + ( 0 . 3 ) / 2 ; % (1 . 3∗ vehic le_width +0.025) but not l e s s

% than 0 .3m
y_right_5 = y_right_4 ;
reference_path_tmp . y_right = [ y_right_1 ; y_right_1 ; y_right_1 ; y_right_2 ;

y_right_2 ; y_right_3 ; y_right_3 ; y_right_4 ;
y_right_4 ; y_right_5 ; y_right_5 ; y_right_5 ] ;

% Le f t l i m i t
reference_path_tmp . x_le f t = [ x_in i t ; x_init −10^−10; x_1 ; x_1−10^−10;

x_2 ; x_2−10^−10; x_3 ; x_3−10^−10; x_4 ;
x_4−10^−10; x_5 ; x_end ] ;

y_left_1 = y ( end ) − (1 . 1∗ vehic le_width +0.025)/2 ;
y_left_2 = y_left_1 − l a n e _ o f f s e t − ( vehic le_width +0.1) ;
y_left_3 = y_left_2 ;
y_left_4 = y_left_2 ;
y_left_5 = y ( end ) − ( 0 . 3 ) / 2 ; % (1 . 3∗ vehic le_width +0.025) but not l e s s

% than 0 .3m

reference_path_tmp . y_le f t =[ y_left_1 ; y_left_1 ; y_left_1 ; y_left_2 ; y_left_2 ;
y_left_3 ; y_left_3 ; y_left_4 ; y_left_4 ; y_left_5 ;
y_left_5 ; y_left_5 ] ;

% Mid l i n e
reference_path_tmp . x_mid = reference_path_tmp . x_le f t ;
y_mid_1 = mean ( [ y_left_1 y_right_1 ] ) ;
y_mid_2 = mean ( [ y_left_2 y_right_2 ] ) ;
y_mid_3 = mean ( [ y_left_3 y_right_3 ] ) ;
y_mid_4 = mean ( [ y_left_4 y_right_4 ] ) ;
y_mid_5 = mean ( [ y_left_5 y_right_5 ] ) ;
reference_path_tmp . y_mid = [ y_mid_1 ; y_mid_1 ; y_mid_1 ; y_mid_1 ; y_mid_3 ;

y_mid_3 ; y_mid_3 ; y_mid_3 ; y_mid_5 ; y_mid_5 ;
y_mid_5 ; y_mid_5 ] ;

%% Calcu la te r e f e r e n c e ve c to r s with the same length
reference_path_tmp . x_ref=reference_path_tmp . x_mid ;
reference_path_tmp . y_ref=reference_path_tmp . y_mid ;

% I n t e r p o l a t e the o r i g i n a l v e c t o r s
x_interp = in t e rp1 ( 1 : numel ( reference_path_tmp . x_ref ) , . . .

reference_path_tmp . x_ref , . . .
l i n s p a c e (1 , numel ( reference_path_tmp . x_ref ) , i n t e rpPo in t s ) ) ;

y_interp = in t e rp1 ( 1 : numel ( reference_path_tmp . y_ref ) , . . .
reference_path_tmp . y_ref , . . .
l i n s p a c e (1 , numel ( reference_path_tmp . y_ref ) , i n t e rpPo in t s ) ) ;

x_f = [ x_in , x , x_interp ] ’ ; % f i n a l c oo rd ina t e s
y_f = [ y_in , y , y_interp ] ’ ; % f i n a l c oo rd ina t e s
xRef = x_f ;
yRef = y_f ;

r e f p o s = [ xRef , yRef ] ;

In the following figures the reference variables for this trajectory are presented.
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Trajectory generation and derivation of state-space representation

(a) X reference coordinate for
Obstacle-avoidance trajectory

(b) Y reference coordinate for
Obstacle-avoidance trajectory

(c) Reference heading angle ψRef for
Obstacle-avoidance trajectory

(d) Reference curvature ρRef for
Obstacle-avoidance trajectory

Figure 4.8
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4.4 Circular trajectory
This section to present the geometrical considerations used to create this path. The
reference trajectory begins at (0,0) and consists of an initial straight segment followed by
a complete circumference, ending with a final straight segment.
The entire reference trajectory, represented in figure 4.9 is made up of these elements:

• straight segment starting at (X,Y) = (0,0), ending at (X,Y) = (1.535, 0);

• circumference with radius r = 1.335m starting and ending at (X,Y) = (1.535,0), with
center in (X,Y) = (1.535, 1,335);

• straight segment starting at (X,Y)=(1.535, 0), ending at (X,Y) = (2.5, 0).

Figure 4.9: Circular trajectory drawn on the experimental track

As previously done, an extract of the code required to define and combine all the men-
tioned entities is presented below. This code creates the reference trajectory vector, which
is then used for the smoothing operation and to determine the point-to-point curvature.

Listing 4.6: Geometrical definition of the entities used to construct the trajectory
%% I n i t i a l s t r a i g h t segment
y_in = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y=0
x_in = l i n s p a c e (0 , r +0.199 , 1000 ) ; % s t r a i g h t l i n e from

% x=0 to x=1.534

% F i r s t c i r cumfe rence
r = 1 . 3 3 5 ; % rad iu s
theta = l i n s p a c e (−pi /2 , +3∗pi /2 −0.001 , 1000 ) ;
x = r ∗ cos ( theta ) + r + 0 . 2 ; % x coo rd ina t e s
y = r ∗ s i n ( theta ) + r ; % y coo rd ina t e s
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% Second c i r cumfe rence ( as the f i r s t one )
% Third c i r cumfe rence ( as the f i r s t one )

% Fina l s t r a i g h t segment
y_fin = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y=0
x_fin = l i n s p a c e ( x ( end )+0.001 , 2 . 5 , 1000 ) ; % s t r a i g h t l i n e from

x=1.536 to x=2.5

% Fina l coo rd ina t e s
x_f = [ x_in , x , x_fin ] ’ ; % f i n a l c oo rd ina t e s
y_f = [ y_in , y , y_fin ] ’ ; % f i n a l c oo rd ina t e s

xRef = x_f ;
yRef = y_f ;

r e f p o s =[xRef , yRef ] ; % vec to r conta in ing the column vec to r s o f x and y
% coo rd ina t e s f o r each po int o f the t r a j e c t o r y

In the following figures the reference variables for this trajectory are presented.

(a) X reference coordinate for Circular
trajectory

(b) Y reference coordinate for Circular
trajectory

(c) Reference heading angle ψRef for Circular
trajectory

(d) Reference curvature ρRef for Circular
trajectory

Figure 4.10
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4.5 Eight-shaped trajectory
This section to present the geometrical considerations used to construct this path. The
reference trajectory begins at (0,0) and consists of an initial straight segment followed by
a complete circumference followed by a final straight segment.
The entire reference trajectory, represented in figure 4.9 is made up of these elements:

• straight segment starting at (X,Y) = (0,0), ending at (X,Y) = (1.335, 0);

• quarter of circumference with radius r = 1.335m starting at (X,Y) = (1.335, 0),
ending at (X,Y) = (2.67, 1.335), with center in (X,Y) = (1.335, 1.335);

• semicircumference with radius r = 1.335m starting at (X,Y) = (2.67, 1.335), ending
at (X,Y) = (0, 1.335), with center in (X,Y) = (1.335, 1.335);

• semicircumference with radius r = 1.335m starting at (X,Y) = (0, 1.335) and ending
at (X,Y) = (-2.67, 1.335), with center in (X,Y) = (-1.335, 1.335);

• semicircumference with radius r = 1.335m starting at (X,Y) = (-2.67, 1.335) and
ending at (X,Y) = (1.335, 0), with center in (X,Y) = (-1.335, 1.335);

• quarter of circumference with radius r = 1.335m starting at (X,Y) = (0, 1.335) and
ending at (X,Y) = (1.335, 0), with center in (X,Y) = (1.335, 1.335);

• final straight segment starting at (X,Y)=(1.335, 0), ending at (X,Y) = (2.5, 0).

Figure 4.11: Eight-shaped trajectory drawn on the experimental track

As previously done, an extract of the code required to define and combine all the
mentioned entities is presented below. This code creates the reference trajectory vector,
which is then used to for the smoothing operation and to determine the point-to-point
curvature.
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Listing 4.7: Geometrical definition of the entities used to construct the trajectory
%% I n i t i a l s t r a i g h t segment
y_in = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y=0
x_in = l i n s p a c e (0 , 1 . 349 , 1000 ) ; % s t r a i g h t l i n e from

% x=0 to x=1.349

% f i r s t 1/4 o f c i r cumfe rence
r = 1 . 3 3 5 ; %rad iu s
theta0 = l i n s p a c e (−pi /2 , 0 , 1000 ) ;
x0 = r ∗ cos ( theta0 ) + r ; % x coo rd ina t e s
y0 = r ∗ s i n ( theta0 ) + r ; % y coo rd ina t e s

% second semic i r fumfe r ence
theta1 = l i n s p a c e ( 0 . 001 , pi , 1000 ) ;
x1 = r ∗ cos ( theta1 ) + r ; % x coo rd ina t e s
y1 = r ∗ s i n ( theta1 ) + r ; % y coo rd ina t e s

% th i rd semic i r cumference
theta2 = l i n s p a c e ( 0 . 001 , pi , 1000 ) ;
x2 = r ∗ cos ( theta2 ) − r ; % x coo rd ina t e s
y2 = −r ∗ s i n ( theta2 ) + r ; % y coo rd ina t e s

% four th semic i r cumference
theta3 = l i n s p a c e ( p i +0.001 , 0 . 001 , 1000 ) ;
x3 = r ∗ cos ( theta3 ) − r ; % x coo rd ina t e s
y3 = r ∗ s i n ( theta3 ) + r ; % y coo rd ina t e s

% f i f t h quarte r o f s emic i r cumference
theta4 = l i n s p a c e ( pi , p i /2 , 1000 ) ;
x4 = r ∗ cos ( theta4 ) + r ; % x coo rd ina t e s
y4 = −r ∗ s i n ( theta4 ) + r ; % y coo rd ina t e s

% f i n a l v e r t i c a l s t r a i g h t l i n e
y_fin = ze ro s (1 , 1000 ) ; % s t r a i g h t l i n e at y=0
x_fin = l i n s p a c e ( r +0.001 , 2 . 5 , 1000 ) ; % s t r a i g h t l i n e from

% x=1.336 to x=25

x_f = [ x_in , x0 , x1 , x2 , x3 , x4 , x_fin ] ’ ; % f i n a l c oo rd ina t e s

y_f = [ y_in , y0 , y1 , y2 , y3 , y4 , y_fin ] ’ ; % f i n a l c oo rd ina t e s

xRef = x_f ;
yRef = y_f ;

r e f p o s = [ xRef , yRef ] ;

In the following figures the reference variables for this trajectory are presented.
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4.5 – Eight-shaped trajectory

(a) X reference coordinate for Eight-shaped
trajectory

(b) Y reference coordinate for Eight-shaped
trajectory

(c) Reference heading angle ψRef for
Eight-shaped trajectory

(d) Reference curvature ρRef for Eight-shaped
trajectory

Figure 4.12
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4.6 Derivation of tracking errors and vehicle travelled dis-
tance for path tracking control

The trajectory generation architecture discussed in the previous sections, provides the ref-
erence path in terms of travelled distance spath, reference curvature ρref , reference heading
angle ψref and reference coordinates in the inertial frame Xref , Yref . For simulation and
experimental purposes, these variables are provided to the control architecture through
look-up-tables as function of actual distance travelled by the vehicle s, as shown in figure
4.13. If the vehicle was travelling ideally on the reference path, position, curvature and
yaw angle of the car would be coincident with the reference ones. However in the exper-
imental setup the vehicle deviates from the reference path and the method to deal with
this issue is presented in the following. The idea is to keep trace of this mismatch between
reference and actual path thanks to two indicators that are the lateral displacement error
ey and the heading angle error eψ. The first one takes into account the distance between
the vehicle center of gravity and the reference path line, whereas the second one takes into
account the orientation error of the vehicle with respect to the road.

Figure 4.13: Look-Up-Tables used to provide the reference variables to the control archi-
tecture, ’s’ is the vehicle travelled distance.

The lateral distance between vehicle and reference path is given by ([11]):

d = ey = (Y − Yref ) cos(ψref ) − (X −Xref ) sin(ψref ) (4.4)

This formula can be used both for cases in which the vehicle has only a lateral mismatch
both in situations characterized also by longitudinal mismatch with respect to the desired
point on the reference path at a certain travelled distance s as the lateral mismatch is the
only thing that matters in lateral control.

For what concerns the heading angle error it can be simply calculated as difference between
current heading angle of the vehicle and reference heading angle for the vehicle at the
travelled distance s.

eψ = (ψ − ψref ) (4.5)
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These errors described above are implemented in Simulink through a subsystem which
output are provided to the control architecture.

Now it is needed to introduce the way the travelled distance is calculated. For each discrete
time instant a segment ds1 is calculated considering the Euclidean distance between two
consecutive points (X,Xprevious), (Y, Yprevious) as reported in equation 4.6. This segment
is the distance travelled by the vehicle on its longitudinal direction and can be related to
the space travelled on the reference trajectory ds with this formula:

ds1 =
ñ

(X −Xref )2 + (Y − Yref )2 (4.6)

ds = ds1

1 − e1
ρ

(4.7)

All the ds segments are summed in a cumulative way to compute the total distance trav-
elled, namely s up to the end of the trajectory as odometric reference. This variable is
then fed to the look-up-tables in order to obtain all the reference variables.

Figure 4.14: Definition of variables used for calculation of distance travelled along the
path
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4.7 Derivation of dynamic state-space representation

In this chapter the aim is to expose the procedure to derive the state-space representation
of the plant in terms of errors with respect to the road, lateral velocity and yaw rate. As
vehicle model, the dynamic one is considered, namely the one developed in chapter 3.5.
This will be re-expressed in terms of two error variables, lateral error ey and heading angle
error eψ that have been already introduced in section 4.6.
Considering a vehicle travelling with constant longitudinal speed Vx being in steady state
cornering condition, it is possible to define, as reported in [12]:

I
ëy = ÿ + vx(ψ̇ − ˙ψdes)
eψ = ψ − ψdes

(4.8)

From the assumption of constant longitudinal velocity, which lead to a Linear-Time-
Invariant model, it is possible to rewrite:

I
ėy = ẏ + vx(ψ − ψdes)
eψ = ψ − ψdes

(4.9)

Substituting equations 3.25 and 3.26 into the following two equations (and noting that
that the first equation is equivalent to 3.31, considering v · β̇ = ÿ and small steering angle
δf ) : I

m(ÿ + ψ̇vx) = Fyf + Fyr
Izψ̈ = lfFyf − lrFyr

(4.10)

This lead to the following: m(ÿ + ψ̇) = Cαf (δ − ( ẏ+lf ψ̇
vx

)) + Cαr( lrψ̇−ẏ
vx

)
Izψ̈ = lfCαf (δ + (−ẏ−lf ψ̇

vx
)) − lrCαr( lrψ̇−ẏ

vx
)

 ÿ = −(Cαf+Cαr
mvx

)ẏ − (Cαf lf−Cαrlr
mvx

+ vx)ψ̇ + Cαf
m
δ

ψ̈ = (Cαrlr−Cαf lf
Izvx

)ẏ − (Cαrl
2
r+Cαf l2f
Izvx

)ψ̇ + Cαf lf
Iz

δ

(4.11)

Combining all together, considering that ψdes = vx · ρ, the four equations can be written
in the following state-space form:

ẋ = Ax+B1δ +B2ρ (4.12)

where, state vector is x =
è
ẏ ψ̇ ey eψ

é
and matrices A,B1, B2 are defined as follows:

A =


−(Cαf+Cαr

mvx
) −(Cαf lf−Cαrlr

mvx
+ vx) 0 0

(Cαrlr−Cαf lf
Izvx

) −(Cαrl
2
r+Cαf l2f
Izvx

) 0 0
1 0 0 vx
0 1 0 0

 (4.13)
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B1 =



Cαf
m

Cαlf
Iz

0

0


(4.14)

B2 =



0

0

0

−vx


(4.15)

The description presented above represents the model employed to characterize the plant
within the simulation environment, where the initial design of path tracking controllers
has been performed. Moreover this state-space model is employed in the optimization
routine environment that will be described in section 6.1.4.
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Chapter 5

Kalman filters

The use of Kalman filters for estimating vehicle’s state variables is a common technique
especially for autonomous driving, navigation, and vehicle control applications, where this
knowledge is essential. This task is complicated by some factors that are related to real
world such as the vehicle’s dynamics uncertainties, sensors noises, and measurements mis-
takes. In this thesis work, one of the aims is to provide examples of this technique.
The technique that Kalman filter algorithm uses to provide its estimation is composed by
two steps: prediction and update. Based on the prior estimate and on the plant model
dynamics, the filter predicts the state variables and an uncertainty covariance matrix (Q),
that reflects the prediction’s level of confidence, and is linked to the prediction itself.
In the update phase, the filter uses the measurements from the sensors to generate a correc-
tion of the previous stage prediction. By means of a weighted average, where the weights
are based on the uncertainties of both the predicted state variables and the measurements
(through covariance matrix R), the Kalman filter is able to provide a better estimation
compared to the one provided by the model only. In this work, filters are employed to
correct the vehicle’s pose, velocity and accelerations respectively provided by lidar, en-
coder and IMU. Indeed, despite the localization system producing precise measurement
of the vehicle’s pose, sometimes happens that the measurements differ considerably from
the actual pose producing outliers referred as "spikes" in the following.
In addition to the correction of the measurements, the filter is a way to have vehicle posi-
tion data (X,Y, ψ, provided by the LiDAR at a frequency of 15 Hz) at sample frequency
of 100 Hz, that is the one required by the path tracking control architecture.
In the following an explanation of the algorithm is provided.

5.1 Kalman Filters algorithm

Consider the discrete-time nonlinear system ([13]):I
xk+1 = f(xk, uk) + dk

yk = h(xk) + dyk

Suppose that xk, dk, dyk are unknown and yk, uk are measured. The goal is to obtain an
accurate estimate x̂k of xk from current and past measurements of yk and uk.

Notation part 1:

• xk is the state;

• uk is the input;
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5.1 – Kalman Filters algorithm

• yk is the output;

• dk is the process disturbance;

• dyk is the measurement noise.

The elements xk, dk, dyk are supposed to be unknown whereas yk, uk to be measured. The
aim is to have an estimate x̂k of the state xk from current and past measurements of yk
and uk.

Notation part 2:

• xpk: prediction of xk (computed at step k-1);

• x̂k: estimate of xk (computed at step k);

• δxk = xk − xpk: state prediction error;

• x̃k=xk − x̂k: state estimation error;

• P pk = E[δxkδxTk ]: covariance matrix of the prediction error;

• Pk = E[x̃kx̃Tk ]: covariance matrix of the estimation error;

• Q = E[dkdTk ]: covariance matrix of process noise dk;

• R = E[dyk(d
y
k)T ]: covariance matrix of measurement noise dyk.

Assumptions:

• The noises are independent, identically distribuited and white:

– Zero-mean:


E[dk] = 0

E[dyk] = 0
;

– Bounded variance:


var(dk) < ∞

var(dyk) < ∞
;

• Noise cross-uncorrelation: E[dk(dyk)T ] = 0;

• Input-noise cross-uncorrelation: E[dkuTk ] = 0 , E[dykuTk ] = 0;

• The system is globally observable.

The algorithm, as previously mentioned, is composed by two steps:

1. Prediction: at time tk−1, compute a prediction xpk of the state xk using the predic-
tion model:

xpk = f(x̂k−1, uk−1)

P pk = Fk−1Pk−1F
T
k−1 +Q
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2. Update: at time tk, the prediction xpk is corrected using the output yk, providing
more accurate estimate:

Sk = HkP
p
kH

T
k +R

Kk = P pkH
T
k S

−1
k

δyk = yk − h(xpk)

x̂k = xpk +Kkδyk

Pk = (I −KkHk)P pk

In the linear case Kk is computed with the aim to minimize the variance of the estimation
error norm, while in the non-linear case is computed from Fk and Hk matrices, in turn
obtained linearizing the system around the current estimate:

Fk = ∂f

∂x
(x̂k, uk)

Hk = ∂h

∂x
(x̂k)

For what concerns the initial conditions, the estimated initial state is typically set to
x̂0 = 0 and the estimated initial covariance matrix is typically set to P0 = I.

5.2 Kinematic Kalman filter

The first Filter to be developed, makes use of the single-track kinematic model which,
as previously explained, is valid in the case of uniformly accelerated motion. Considered
this assumption, writing the equation of motion 5.1 and discretizing them, the model’s
equations are 5.2 

x(t) = x0 + vx,0t+ 1
2axt

2

y(t) = y0 + vy,0t+ 1
2ayt

2

ẋ(t) = vx,0 + axt

ẏ(t) = vy,0 + ayt

(5.1)



X(k + 1) = X(k) + Vx(k)Ts + aX(k)T
2
s

2
Y (k + 1) = Y (k) + Vy(k)Ts + aY (k)T

2
s

2
Vx(k + 1) = Vx(k) + aX(k)Ts
Vy(k + 1) = Vy(k) + aY (k)Ts
ψ(k + 1) = ψ(k) + ψ̇(k)Ts

(5.2)

where Ts is the sampling time.

The longitudinal and lateral accelerations has to be expressed in the inertial reference
frame. Since the acceleration vector provided by the IMU is referred to the body reference
frame, a rotation is needed, as shown in 5.3:
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5.2 – Kinematic Kalman filter

C
aX
aY

D
=
C
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

D C
ax
ay

D
(5.3)

where ax ≡ ax,IMU , ay ≡ ay,IMU .

The linear time invariant system in ?? can be rewritten in the discrete time state-space
form:

x(k + 1) = Ax(k) +Bu(k) (5.4)

where:

A =


1 0 Ts 0 0
0 1 0 Ts 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B =



T 2
s

2 0 0
0 T 2

s

2 0
Ts 0 0
0 Ts 0
0 0 Ts


x(k) =

è
X(k) Y (k) Vx(k) Vy(k) ψ(k)

éT
, u =

è
aX(k) aY (k) ψ̇(k)

éT

The measurements are the vehicle pose (X,Y, ψ) provided by the lidar and vehicle longi-
tudinal velocity vx computed starting from the motor rotational velocity provided by the
encoder. Instead, from the IMU, the accelerations, suitably rotated as indicated in 5.3,
and the yaw rate are used as model input.

Under the assumption of small velocity and small vehicle side-slip angle, it can be written
that:

vx ≃ v =
ñ
V 2
x + V 2

y (5.5)

Therefore, the output equations are:
y1(k) = X(k)
y2(k) = Y (k)
y3(k) = ψ(k)
y4(k) = vx ≃ v

The filtered state vector is x̂ =
è
X̂ Ŷ V̂x V̂y ψ̂

éT
.

Additionally, from the filtered state variables it is possible to derive the velocity compo-
nents in the body reference frame and the side-slip angle:

C
v̂x

v̂y

D
=
C
cos(ψ̂) − sin(ψ̂)
sin(ψ̂) cos(ψ̂)

DT C
V̂x

V̂y

D

v̂ =
ñ
v̂2
x + v̂2

y

β̂ = tan−1( v̂yv̂x )
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The complete filtered state vector x̂a =
è
X̂ Ŷ ψ̂ v̂ v̂x v̂y β̂

éT
is obtained.

A schematic overview of the described filter is presented below.

Figure 5.1: Kinematic Kalman filter schematic. Vehicle pose X,Y , vehicle heading angle
ψ and vehicle velocity vx are the measured quantities; the accelerations aX , aY and yaw
rate ψ̇ provided by IMU are the model inputs.
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5.3 Dynamic Extended Kalman Filter
The second filter developed is a non-linear Extended Kalman Filter, based on the single-
track dynamic model described in chapter 3.5. This vehicle model is more complex than
the one used for the kinematic filter and considers also the tyre-road interaction, providing
better results in terms of estimation capabilities. For small tire slip angle and small front
steering angle, the following equations describe the model lateral dynamics:β̇ = −ψ̇ + Cαf

mv
(δ − β − lf ψ̇

v
) + Cαr

mv
(−β + lrψ̇

v
)

ψ̈ = lfCαf
Iz

(δ − β − lf ψ̇

v
) − lrCαr

Iz
(−β + lrψ̇

v
)

(5.6)

The time derivatives of the global coordinates i.e. the velocities expressed in the global
reference frame can be written as (3.16):

Ẋ = v cos(β + ψ)
Ẏ = v sin(β + ψ)
ψ̇ = r

(5.7)

The differential equation that describes the electric motor dynamics (3.44) is:

ω̇ = P1Va − P2ω − P3 (5.8)

Considering the transmission ratio τ between the motor and the wheel, the wheel radius
rw, neglecting the slip in the longitudinal direction it is possible to write that:

vx = ωτrw (5.9)

Finally:
v̇x = τrw(P1Va − P2

τrw
vx − P3) (5.10)

Putting together 5.6, 5.7 and 5.10 and discretizing, the complete model’s equations are:



X(k + 1) = X(k) + (v(k) cos(β(k) + ψ(k)))Ts
Y (k + 1) = Y (k) + (v(k) sin(β(k) + ψ(k)))Ts
ψ(k + 1) = ψ(k) + ψ̇(k)Ts
v(k + 1) = v(k) + (τrw(P1Va(k) − P2

τrw
v(k) − P3))Ts

β(k + 1) = β(k) + (−ψ̇(k) + Cαf
mv(k)(δ(k) − β(k) − lf ψ̇(k)

v(k) ) + Cαr
mv(k)(−β(k) + lrψ̇(k)

v(k) ))Ts
ψ̇(k + 1) = ψ̇(k) + ( lfCαfIz

(δ(k) − β(k) − lf ψ̇(k)
v(k) ) − lrCαr

Iz
(−β(k) + lrψ̇(k)

v(k) ))Ts
(5.11)

The measurements are the vehicle pose provided by the LiDAR, the longitudinal velocity
obtained from the encoder and the yaw rate provided by the IMU. The steering angle and
the motor armature voltage are the inputs to the model.

y1(k) = X(k)
y2(k) = Y (k)
y3(k) = ψ(k)
y4(k) = vx(k) ≃ v

y5(k) = ψ̇(k)

(5.12)
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The filtered state vector is: x̂ =
è
X̂ Ŷ ψ̂ v̂ β̂ ˆ̇ψ

éT
Additionally, considering these relations:I

v̂x = v̂ cos(β̂)
v̂y = v̂ sin(β̂)

(5.13)

it is possible to obtain the complete vector of filtered states x̂a =
è
X̂ Ŷ ψ̂ v̂ v̂x v̂y β̂

ˆ̇ψ
éT

A schematic of this dynamic extended kalman filter is presented in the figure below.

Figure 5.2: Dynamic Extended Kalman filter schematic. Vehicle pose X,Y , heading angle
ψ, velocity vx and yaw rate ψ̇ are the measurements, whereas the front steering angle δf
and the motor armature voltage Va are the inputs to the model.
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5.4 Simulation results
The filters have been designed at first in simulation where the QCar is emulated using the
single-track dynamic model. After validation in this environment, the solutions have been
implemented in the experimental setup.
In the simulation environment the variables that in the real case were provided by the
sensors have been obtained from the vehicle model output, leading to an ideal situation
where no model uncertainty is affecting the results and the informations about disturbances
are completely available. In this way a comparison between the two ideally tuned filters
has been realized.

Figure 5.3: Architecture used in simulation. White noise is supposed to affect the mea-
surements whereas ideality is considered for the process.

The output measurements are generated by summing white noises to the model output
vector ym. The considered noises variances are presented below.

Signal Variance UoM
ax 0.05 m2/s4

ay 0.05 m2/s4

ψ̇ 0.005 rad2/s2

X 0.2 m2

Y 0.01 m2

ψ 0.05 rad2

vx 0.001 m2/s2

Table 5.1: White noise variances

The filter is tested on a simulated manoeuvre performed in open-loop imposing constant
longitudinal velocity and a steering angle with square-wave shape.
The quality of the results is evaluated by means of the root-mean-squared error calculated
between the model output states (i.e. the ideal ones) and the filtered states that are
provided by the filter.

Figure 5.4: Inputs provided to the model for simulation:motor voltage on the left and
steering angle command on the right.
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5.4.1 Kinematic Kalman Filter

By using the covariance matrices Q and R presented in the following table, the simulation
results of the KKF are shown below. In blue are reported the output variables affected by
white noise, in green the model variables and in red the estimated ones provided by the
filter.

Q R

10−7I5 diag(0.2,0.01,0.05,0.001)

Table 5.2: Covariance matrices KKF

(a) X position (b) Y position

(c) Yaw angle (d) Longitudinal velocity

(e) Lateral velocity (f) Vehicle sideslip angle

Figure 5.5: Kinematic Kalman filter results in simulation.
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5.4.2 Dynamic Extended Kalman Filter

By using the covariance matrices Q and R presented in the following table, the simulation
results of the second DEKF are shown below. In blue are reported the output variables
affected by white noise, in green the model variables and in red the estimated ones provided
by the filter.

Q R

10−7I6 diag(0.2,0.01,0.05,0.001,0.005)

Table 5.3: Covariance matrices DEKF β

(a) X position (b) Y position

(c) Yaw angle (d) Longitudinal velocity

(e) Yaw rate

Figure 5.6: Dynamic Extended Kalman filter results in simulation (1/2).
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(a) Lateral velocity (b) Vehicle sideslip angle

Figure 5.7: Dynamic Extended Kalman filter results in simulation (2/2).

5.4.3 Comparison of simulation results

The Root-Mean-Squared-Error values between the filtered signals and the model state
variables in simulation environment of the two filters that have been designed are reported
in following table. As expected, the dynamic filter lead to better results with respect to
the kinematic one.

KKF DEKF β UoM
RMSE(X̂,Xm) 0.0921 0.0503 m
RMSE(Ŷ , Ym) 0.1120 0.0417 m
RMSE(ψ̂, ψm) 0.0455 0.0316 rad
RMSE(v̂x, vx,m) 0.0337 0.0301 m/s
RMSE(v̂y, vy,m) 0.0199 0.0027 m/s
RMSE(v̂, vm) 0.0336 0.0302 m/s
RMSE(β̂, βm) 0.0204 0.0135 rad
RMSE( ˆ̇ψ, ψ̇m) - 0.0193 rad/s

Table 5.4: Root-Mean-Squared-Error comparison for the Kinematic Kalman Filter and
for the Dynamic Extended Kalman Filter.
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5.5 Experimental results

As anticipated before, the designed filters are based on LiDAR measurements for the ve-
hicle pose, the motor encoder for the longitudinal speed and the IMU for the accelerations
and yaw rate. For the implementation of the filter, the relative Simulink block has been
used as it has given the possibility to consider multi-rate system, where sensors provide
data at different sample rate. In particular, the state is updated every 10 ms, the LiDAR
provides data at a frequency of 15 Hz, encoder and IMU provide data at 10 ms. As already
explained in the hardware chapter, the LiDAR registers data and computes the pose of the
car basing on a comparison between real-time data (ranges and angles) and stored data
obtained during the initialization step in which the sensor scans and creates a map of the
surrounding environment with stationary car. Moreover, the point in which the LiDAR
performs the initial scan is considered as the origin of the inertial reference frame.
Although the localization system provides quite precise measurements it happens some-
time, due to external disturbances, that some of them diverge from the actual values of
the vehicle pose. In the figures below it is possible to see an example of these outliers:
the data provided by the LiDAR sensor are reported in blue and are compared with the
respective reference coordinate which is reported in black.

Figure 5.8: Pose data provided by the LiDAR when spikes are produced. In this picture
some of them are visible in the red ellypse.

The LiDAR Simulink block designed by the manufacturing company provides a quality
index of the measurement accuracy of the sensor named LiDAR score (figure 5.9) that can
reach a maximum value of 200. An high value of the LiDAR score means accurate pose
measurement provided by the sensor. In order to address the issue of bad measurements,
the entries of the pose measurement noise’s covariance matrix are time-varying and de-
pendant on the LiDAR score value itself.
To give more importance to the model with respect to the measurements when outliers
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are detected, increasing though the values of the LiDAR covariance matrix R, the LiDAR
score is mapped into a sigmoid function (represented in figure 5.10) through a coefficient i
that takes into account of the inverse proportionality between "bad measures" and LiDAR
score and of the maximum value of this latter that is 200. In particular, the function is
slightly different for x,y coordinate and for heading angle due to empirical reasons. All
these considereations are summarized in equations 5.14.

Figure 5.9: Simulink sub-system block for LiDAR localization.


i = 200

|LiDarScore|
Rxx,0 = Ryy,0 = 80 · tanh( i

0.6 − 3) + 81
Rψψ,0 = 9 · tanh( i

0.7 − 3) + 9.3
(5.14)

Figure 5.10: Sigmoid functions for LiDar measurement noises

With these approach, as the accuracy of the pose measurement increases the respective
entry of the covariance matrix decreases in order to trust more the sensor data with respect
to the model prediction. However, in presence of spikes, the LiDar score does not penalize
enough the wrong measurement and this leads to poor performances due to one or more
values of Rxx, Ryy, Rψψ still too low.
In order to improve filters performance by further penalizing the spikes recognition, the
respective entry of the LiDar measurement noise’s covariance matrix, defined in ??, is
multiplied by a factor αX , αY , αψ > 1 when a spike (i.e. a very "bad" measurement) is
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detected respectively in the X, Y and ψ measurement. The conditions that have to be
satisfied to identify a spike are the following:



|X(k) −X(k − 1)| > 0.1 −→ SPIKEX −→ Rxx = αXRxx,0

or

|Y (k) − Y (k − 1)| > 0.1 −→ SPIKEY −→ Ryy = αYRyy,0

or

|ψ(k) − ψ(k − 1)| > 0.05 −→ SPIKEψ −→ Rψψ = αψRψψ,0

(5.15)

The values of the multiplicative factors are presented in table 5.5.

Multiplied factors KKF DEKF
αX 200 20
αY 1000 1000
αψ 10000 10000

Table 5.5: Multiplicative factors that are used to further increase the LiDAR covariance
matrix entries when very bad measurements (i.e. "spikes") are detected.

The values of covariances matrix entries for motor encoder Rvx and IMU Rψ̇ sensors, as
well as the ones used for process disturbances Q are shown in table 5.6. The specific entries
within the Q matrix are the result of a careful tuning performed during experimental tests
to achieve the best performances possible for the individual filter.

KKF DEKF
Rvx 0.025 0.025
Rψ̇ - 0.04
Q diag(1,0.6,100,60,80) diag(0.05,0.05,0.0628,0.01,0.0001,0.1257)

Table 5.6: Covariance matrix entries for disturbances affecting encoder and IMU measure-
ments as well as for the one affecting the process.

The experimental test whose results are shown below is performed in closed-loop im-
posing a S-trajectory tracking. With the numerical values presented above for matrices
R and Q, the following experimental results are obtained. In the following section, the
results of both Kinematic and Dynamic filters are presented with emphasis on the com-
parison of the two results rather than examining the results of each individual filter.
As it can be seen in Figure 5.11a some spikes are present (black line i.e. the data from
LiDAR) and the performances of both filters are excellent in terms of outlier management
and rejection.
For what concerns the vehicle side slip angle β, it can be seen in figure 5.12b that the es-
timation provided by the Dynamic EKF is better that the one provided by the Kinematic
KF, since this latter one presents an excessive floating shape. The same can be said for
the lateral velocity vy. To conclude,
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(a) X position (b) Y position

(c) Yaw angle (d) Longitudinal velocity

(e) Yaw rate

Figure 5.11: Kinematic and Dynamic Kalman Filter experimental result comparison (1/2).
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(a) Lateral velocity (b) Vehicle sideslip angle

Figure 5.12: Kinematic and Dynamic Kalman Filter experimental result comparison (2/2).

To conclude, in light of these results, as predicted in simulation and verified experimentally,
the dynamic filter performs better than the kinematic one, so the former will be used for
the applications developed in the next chapters.
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Chapter 6

Control architectures for
Path-Tracking application

In this chapter the focus is about the design of the control algorithm for path tracking
control, then applied to the scaled vehicle. At first a Proportional-Integral controller
is designed, followed by the development of an LQR controller. After the design and
integration with the vehicle plant done in simulation, experimental validation has been
performed through tests in real scenario environment.

6.1 Proportional-Integral controller: introduction and ar-
chitecture

The first controller developed for the path tracking application is a simple PI controller. A
dynamic single-track model is used for the design process in simulation where the tuning
was carried out using the fmincon optimization routine. However this tuning approach
proved to be inadequate when transitioning to the experimental setup. In the experimental
phase, the controller gains were adjusted through a trial and error procedure, starting from
the ones provided by the optimization process.

PI controller is a common control algorithm ([14]) widely used also in industries, due to its
capabilities to give resilient performances across diverse operational conditions being at
the same time simple from the architectural point of view. The control action is realized
through the sum of the proportional and integral contribution which both multiply the
error calculated as the difference between reference and feedback from the plant, called
error term. The general control architecture can be appreciated in figure 8.18.

In our study case, the process variable u(t) i.e. the variable of the plant to be controlled, is
the steering angle δ(t). The third state of the plant, i.e. the lateral error ey is considered
for the feedback. To implement the control strategy, the tracking error e(t) fed to the
PI scheme is calculated as the difference between the current lateral error value and the
set point r(t) that in this case is zero. The reference road curvature ρ(t) is considered as
disturbance in the closed loop scheme.

The proportional component depends only on the error term and its correspondent gain
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Figure 6.1: Generic closed-loop Proportional-Integral control scheme

establishes a linear relationship between the output response and the error signal. Typi-
cally, enhancing the proportional gain results in a swifter response from the control system.
However an excessive high proportional gain can trigger oscillations in the process variable
causing the system to become unstable oscillating out of control.
The integral component essentially takes into account the previous values of the tracking
errors by summing them over time. The contribution is zero only if the error is zero and
even a small tracking error will cause the integral term to increase slowly. The aim of
this term is to drive the steady state tracking error to zero, which is the final difference
between the process variable and the set point.

The main problem associated with the integral part is the windup phenomena: when
a control system operates across diverse operational conditions, there’s a possibility that
the actuator could reach its limits. If this happens, the feedback loop is broken and
the integral part will continue to integrate the error, leading to contribution that could
potentially tend to infinity. Saturation is a nonlinearity that can be defined as follows:

sat(u) =


umin if u < umin
u if umin ≤ u ≤ umax
umax if u > umax

(6.1)

The consequences of windup are related to performance deterioration consisting on large
overshoots in the plant output and a long time is required to go steady-state. To address
this issue it is possible to use an anti-windup technique in the integral part of the controller.

6.1.1 Back-calculation method

With this technique [15], when the output of the controller reaches saturation, a recalcu-
lation of the integral component is executed; this recalculated value is adjusted to align
with the saturation limit. The adjustment is done considering another feedback branch
which consists on the difference between the controller output and the actuator output.
This signal is then multiplied with the back-calculation gain Kb and combined with the
product between the tracking error and the integral gain KI . This correction term is zero
on the normal operation when the actuator does not saturate.
The Kb constant governs the speed at which the integrator resets. A general rule of thumb
suggests suggests to choose a value of this coefficient equal to the integral one and then
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Figure 6.2: Closed-loop Proportional-Integral control scheme with back-calculation anti-
windup technique.

eventually tune the former if better performances are needed.
With increasing values of Kb the saturation time is reduced, making the system slower in
its response. Smaller values of Kb will provide a faster system response with the problem
of increasing the over-shoot.
The architecture can be appreciated in figure 6.2.

6.1.2 Architecture for QCar control

In our study case, the process variable u(t) i.e. the variable of the plant to be controlled, is
the steering angle δ(t). The third state of the plant, i.e. the lateral error ey is considered
for the feedback. To implement the control strategy, the tracking error e(t) fed to the
PI scheme is calculated as the difference between the current lateral error value and the
set point r(t) that in this case is zero. The reference road curvature ρ(t) is considered as
disturbance in the closed loop scheme.
The command that is fed to the plant is composed by a feedback and a feedworward con-
tributions. This architecture is similar to the one developed in [16]. The main advantage is
that, introducing the feedforward contribution, the reliance on feedback term provided by
controller is reduced allowing for smaller controller gains. Variations of this combinational
architecture are widely used in this area, see also [12] and [17]. The proposed scheme can
be appreciated in figure 6.3.

6.1.3 Controller tuning in simulation: Ziegler-Nichols tuning method

The tuning of the controlled has been performed at first in simulation, using fmincon
optimization algorithm. The guessing starting coefficients have been calculated using the
empirical Ziegler-Nichols PI tuning method.

As reported in [18], this tuning technique has to be performed in closed-loop. Giving
the system a step reference and observing its response starting with only the proportional
gain KP . Then increase this gain until the system response results in oscillations with
constant amplitude. At this point register the value of proportional gain and the period
of oscillation To. Having this two parameters it is possible to plug these values in the
equations below to find the numerical value of the coefficients that according to this
method give the best response.

The values that have been found with this tuning method are:

• KP = 25;
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Figure 6.3: Complete control architecture: PI and kinematic contribution.

Proportional gain KP Integral gain KI

P KP /2 -
PI KP /2.2 To/1.2

Table 6.1: Closed-loop calculation of controller gains with empirical Ziegler-Nichols
method.

• To = 0.8324;

Plugging these parameters into the equation of table 6.1 it is possible to obtain the nu-
merical values of the coefficients that are then used as guessing poles in the optimization
routine.

The values that have been found with this tuning method are:

• KP = 11,36;

• KI = 0.694;

The test has been performed with a step curvature input that is the set point for the
control scheme. The speed considered for the tests is 1.0 m/s that is in the middle of the
range at which the car is used in the simulation and experimental tests: 0.5:1.5 m/s.

6.1.4 fmincon optimization routine

The state equation of the plant is the following (derived in chapter 4.7):

ẋ = Ax+B1δf +B2ρ (6.2)

Where the input is the front wheel steering angle δf and the curvature ρ is the unactuated
input to the system.
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The vehicle dynamics is defined by the matrices reported in chapter 4.7 where

x =


vy
ψ̇
ey
eψ

 (6.3)

The design of the path tracking PI controller starts by defining the closed-loop dynamics.
As already shown in figure 6.3 the control action can be expressed by:

δf = KP (vx)e(t) +KI(vx)
Ú
e(t) + L · ρ (6.4)

Where the tracking error e(t):

e(t) = r(t) − y(t) = 0 − ey(t) = −ey(t) (6.5)

Applying the abovementioned control input, and considering the augmented state:

xI =
s
x3 =

s
ey

ẋI = x3 = ey
(6.6)

the closed-loop dynamics results to be:

ẋ = Ax−B1KPx3 −B1KIxI +B1Lρ+B2ρ (6.7)

The system can be rewritten:

Ã =



−
Cαf+Cαr
mvx

−
lfCαf−lrCαr

mvx
− vx −

Cαf
m KP 0 −

Cαf
m KI

−
lfCαf−lrCαr

vxIz
−
l2fCαf−l2rCαr

vxIz
−
lfCαf
Iz

KP 0 −
lfCαf
Iz

KI

1 0 0 vx 0
0 1 0 0 0
0 0 1 0 0



B̃1 =
C
B1
0

D
=
è
Cαf
m

lfCαf
Iz

0 0 0
éT

B̃2 =
C
B2
0

D
=
è
0 0 0 vx 0

éT

. (6.8)

The closed loop dynamics can be expressed by:

˙̃x = Ãx̃+ (B̃1L+ B̃2)ρ

x̃ =


vy
ψ
ey
eψs
ey


(6.9)

or equivalently:
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˙̃xcl = Ãx̃+ B̃clρ (6.10)

The gains of the controller are derived considering to minimize a positive cost function
[19], [20] J(KP ,KI) such that:

• J(KP ,KI) has finite value for stable solutions of the system 6.7 to which is applied
the command 6.4;

• Smaller values of J(KP ,KI) correspond to better tracking of the reference trajectory.

The final gains are the ones that satisfy the following equation:

J
1
Kfin
P ,Kfin

I

2
= min

KP ,KI
{J(KP ,KI)}. (6.11)

Where the function to be minimized is made by the weighted sum of the quadratic norm
of three terms and is reported in equation 6.12:

• Settling-time error: ets =
--ts,95% − ts,95%,des

--;
• Overshoot error: eŝ = ŝ− ŝdes, where ŝ = ey,max(i)−ey,ss

ey,ss
;

• Root mean squared error: RMSE =
ñ

1
N

qN
i=1 (ey(i) − ey(ss))2;

J (KP ,KI) = α · (ets)2 + β · (eŝ)2 + γ · (RMSE)2 (6.12)

The minimization problem can be written so as:

J
1
Kfin
P ,Kfin

I

2
= min

KP ,KI
{J(KP ,KI)}

J (KP ,KI) = α · (ets)2 + β · (eŝ)2 + γ · (RMSE)2

subject to:

KP , KI > 0

(6.13)

So the procedure will iterate starting from the guessing poles that have to be selected in a
way such that to guarantee the stability of the controlled system (in our case this condition
is satisfied as we used the Ziegler and Nichols method). Then stability is guaranteed at
each iteration of the optimization process, since unstable solution will lead to higher values
of the cost function. The optimization routine (figure 6.4) is numerically solved through
fmincon function in MatLab.
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Figure 6.4: Procedure to numerically solve the optimization problem
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6.2 Linear-Quadratic-Regulator controller
The second controller that has been designed is a Linear Quadratic Regulator (LQR). In
this section the aim is to describe the design process ([21]).
For the dynamical system described by the dynamical equation obtained in 4.7

ẋ = Ax+B1δf +B2ρ (6.14)

the infinite horizon LQ problem is considered so that to stabilize the system with a
time invariant controller. The infinite horizon LQR problem is formulated as follows:

min
u(t)

J(u) = min
u(t)

s t=∞
t=0 [xT (t)Qx(t)+uT (t)Ru(t)]dt

subject to:

˙x(t) = Ax+B1δf +B2ρ

(6.15)

The matrices Q and R are design parameters and will be chosen accordingly to the desired
performances.
The optimal cost function J(u∗) and the optimal input are:

u∗(t) = arg min
u(t)

J(u)

J∗ = J(u∗(t))
(6.16)

The system needs to be reachable to be stabilized by such an algorithm. Reachability (or
controllability) referes to the property of the dynamic of a system to be modified from
an initial state to a desired final state in a finite interval of time by applying a suitable
control input.
Reachability is strictly related to the reachability matrix which is contructed from the
state space matrices. If this matrix is full rank the system is reachable.

MR =
è
B AB A2B . . . An−1B

é
(6.17)

If:
ρ(MR) = ρ(

è
B AB A2B . . . An−1B

é
) = n (6.18)

where n is the system dimension, then the optimal solution to the LQR problem for the
control input is:

u∗(t) = −R−1BTPx(t) = −Kxx(t). (6.19)

P (P T > 0) is the solution to the Algebraic Riccati Equation (ARE) that is reported here:

Q− PBR−1BTP T + PA+ATP = 0 (6.20)

The control law for the static state feedback control architecture becomes:

u(t) = δf (t) = −Kxx(t) (6.21)
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The test for reachability has been performed for each case. Fore the sake of completeness
here it is reported the test for reachability at a speed of 0.5 m/s that is a value in the
middle of the range used in the tests. Reachability matrix at the selected speed has the
following numerical values:

MR = 1 · 105 ∗


0 0 −0.0006 0.0119
0 −0.0006 0.0119 −0.2139
0 0.0003 −0.0047 0.0727

0.0003 −0.0047 0.0727 −1.1236

 , (6.22)

whose rank is 4.

Moreover the plant matrix A, for the same speed of 0.5 m/s (eq 6.23), has two eigenvalues
at the origin with minimal polynomial multiplicity equal to 2 so the system is unstable.

A =


0 1.0000 0 0
0 −15.0574 7.5287 0.0182
0 0 0 1.0000
0 1.1862 −0.5931 −15.6825

 (6.23)

Figure 6.5: LQR control architecture with the feedback only

6.2.1 Feed-Forward contribution

Even if the the system is stabilized through the feedback (figure 6.6), because of the
presence of B2ρ term, when the desired curvature is not zero, i.e. when the vehicle is
moving on a turn, the tracking error will not converge to zero. To force this to happen
a feedforward contribution is added. Zero lateral displacement error at steady state is
imposed and through MATLAB symbolic toolbox the feedforward term is obtained. This
term is dependant from the system matrices (A, B1, B2), from the feedback gain and from
the curvature.
The procedure is detailed in the following lines. Considering the system 6.14, its transfer
function can be computed using the Laplace transform so that:

G(s) = C(sI4 −Apath)−1Bcl (6.24)

The third component ofG(s) is the tranfer function between input and lateral displacement
error G3(s) = ey(s)

ρ(s) . The steady state value can be computed by means of the final value
theorem, giving that:
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|ey(t)|∞ = | lim
t→∞

ey(t)| = | lim
s→0

s · ey(s)| = | lim
s→0

s ·G3(s) · ρ(s)| (6.25)

Considering costant reference curvature, its laplace transform is: L(ρ) = ρ̄
s

| lim
s→0

s ·G3(s) · ρ(s)| = | lim
s→0

G3(s) · ρ̄| = G3(0) · ρ̄ (6.26)

To have:
|ey(t)|∞ = 0 ⇒ G3(0) · ρ̄ = 0 (6.27)

The expression of feed-forward term is derived as function of δff with the command
solve(G1(0), δff ) and the result is quite long and complex so it can be resumed as:

δff = KR · ρ (6.28)

The complete control law becomes:

u(t) = δf (t) = −Kxx(t) +KRρ(t) (6.29)

The closed loop dynamics becomes:

ẋ = (A−B1Kx)x+ (B1KR +B2)ρ (6.30)

The design has been performed at first in simulation then, once sure about the proper
working of the control architecture the algorithm has been deployed on the QCar. The
tuning of the controller has been performed through trial and error procedure. Due to
the discrepancy between expected results from simulation, and obtained ones in exper-
imental tests, the experimental tuning has been readjusted in order to achieve the best
performances.

Figure 6.6: LQR control architecture with the feedback and feedforward contributions.
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Chapter 7

Simulation Results

This chapter to report the results of developed and simulated path tracking control archi-
tectures. The simulation primarily focuses on low-speed scenarios. For the most challeng-
ing trajectories that are the one for obstacle avoidance maneuvre and the eight-shaped
trajectory, are also provided figures for simulations conducted at higher speeds to illus-
trate the expected performance trends. Despite simulations have been performed on all
trajectories for several velocities, not all are reported here for the sake of brevity.
In particular, in the proposed plots are reported:

• Comparison between reference and actual trajectories;

• Lateral displacement error ey;

• Heading angle error eψ;

• Control action: steering angle δf .

It is worth to say that the trajectory for obstacle avoidance manoeuvre, that is dynam-
ically more demanding for the vehicle, has been designed to be executed on the laboratory
track, starting from the middle point of the lower straightaway segment. To ensure an
equal evaluation of the maneuver performance and to avoid any error carried over from
the previous U-shaped segment, the vehicle speed has been kept at a low value (0.5 m/s)
and only just after the vehicle finishes the semicircumference (after the vehicle travelled a
distance of 5.694 m), the speed is increased up to the target one. The implementation of
this concept is illustrated in the Simulink block shown in figure 7.1.

Figure 7.1: Block for speed variation used for the obstacle-avoidance trajectory.
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7.1 Proportional-Integral controller

This section to present the results obtained with Proportional-Integral control architec-
ture. As it can be seen in figures below, at low speed results are good enough both in
terms of lateral error, that is within the millimeter range, both in the control action signal.
Moreover, it can be appreciated how the controller manages to bring the lateral displace-
ment error to zero after a transient that can be observed each time there is a change in
the reference curvature.

7.1.1 Circular-shaped trajectory

Figure 7.2: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

7.1.2 U-shaped trajectory

Figure 7.3: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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7.1.3 S-shaped trajectory

Figure 7.4: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

7.1.4 Eight-shaped trajectory

Figure 7.5: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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Figure 7.6: Simulation results at 0.7 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

Figure 7.7: Simulation results at 1.0 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

As velocity of the vehicle increases, the control problem becomes more challenging. This
leads to an increase in the lateral displacement error and a deterioration in control perfor-
mances, as the oscillatory behaviour increases despite the increase in integral contribution.
This is one of the drawbacks of this baseline controller.
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7.1.5 Obstacle-avoidance trajectory

Figure 7.8: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

Figure 7.9: Simulation results at 0.7 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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Figure 7.10: Simulation results at 1.0 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

As for the eight-shaped trajectory, also here we can observe a deterioration of performances
as the speed increases. The tuning of the controller remains the same across all trajecto-
ries which can account for the larger lateral errors experienced in this more challenging
trajectory. Furthermore, since the controller tuning is speed-dependent but performed
offline, it results in being undertuned in the initial section due to the varying speed profile
after the initial U-shaped section, as previously explained.
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7.2 LQR controller
This section present the simulation results obtained with LQR controller. As it can be
noticed, The LQR controller demonstrates superior performance, compared to the previous
controller. For simpler trajectories such as S-shaped and U-shaped paths, the lateral
displacement errors are on the order of magnitude of 104 meters. Additionally, the control
action shows significantly reduced oscillations, even at higher speeds, particularly on the
eight-shaped and obstacle-avoidance trajectories. This represents a significant advantage
of this controller and is consistent with the outcomes observed during experimental tests.

7.2.1 Circular-shaped trajectory

Figure 7.11: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

7.2.2 U-shaped trajectory

Figure 7.12: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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7.2.3 S-shaped trajectory

Figure 7.13: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

7.2.4 Eight-shaped trajectory

Figure 7.14: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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Figure 7.15: Simulation results at 0.7 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

Figure 7.16: Simulation results at 1.0 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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7.2.5 Obstacle-avoidance trajectory

Figure 7.17: Simulation results at 0.5 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

Figure 7.18: Simulation results at 0.7 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.
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Simulation Results

Figure 7.19: Simulation results at 1.0 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

For complex trajectories, simulation results show that the lateral error increases with
increasing velocity. However, in comparison to the PI controller, the LQR controller
exhibits less oscillatory control action.
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Chapter 8

Experimental Results

In this chapter the aim is to present the results for each controller individually in a low-
speed scenario for all five trajectories. For the sake of brevity, there will be included plots
at higher speeds only for the most demanding trajectories. Considered though that the
experimental tests have been conducted for all the velocities listed here [0.5, 0.6, 0.7, 0.8,
0.9, 1.0, 1.2, 1.5] m/s, all the results will be presented in a more compact format using
Key-Performance-Indicators (KPIs), with istogram-bar plots in the following section.
One general observation is about the disparity between real-world signals and the simulated
ones. The former present a pronounced oscillatory behaviour which is accentuated in the
PI control scheme and slightly reduced when using the LQR control architecture. In the
first case, these oscillations are a results of the trade-off made during the experimental
tuning, where adjustments were necessary to adapt coefficients from the optimization
routine. This trade-off was intended to achieve smaller lateral displacement error with the
drawback of having more oscillatory control action.

8.1 Proportional-Integral controller

8.1.1 Circular-shaped trajectory

Figure 8.1: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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Experimental Results

8.1.2 U-shaped trajectory

Figure 8.2: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

8.1.3 S-shaped trajectory

Figure 8.3: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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8.1 – Proportional-Integral controller

8.1.4 Eight-shaped trajectory

Figure 8.4: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

Figure 8.5: Experimental results at 0.7 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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Experimental Results

Figure 8.6: Experimental results at 1 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

Figure 8.6 shows that the PI controller, in the case of eight-shaped trajectory travelled
at 1 m/s, faced some difficulty in tracking, with noticeable lateral errors and a highly
oscillating control action. Meanwhile, Figure 8.15 demonstrates the superior performance
of the LQR control scheme for the same scenario.

8.1.5 Obstacle-avoidance trajectory

Figure 8.7: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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8.1 – Proportional-Integral controller

Figure 8.8: Experimental results at 0.7 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

Figure 8.9: Experimental results at 1 m/s: reference and actual trajectories, lateral dis-
placement and heading angle errors, control action.

In this section it was chosen to include all the figures from the experimental tests to show
the cases in which the control system was able to make the car perform the complete
maneuver. Notably, at all velocities less or equal than 0.9 m/s the vehicle passed the test
without any collision with obstacles, with a maximum lateral error of 5.10 cm, as shown
in figure ??.
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Experimental Results

8.2 LQR controller

8.2.1 Circular-shaped trajectory

Figure 8.10: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

8.2.2 U-shaped trajectory

Figure 8.11: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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8.2 – LQR controller

8.2.3 S-shaped trajectory

Figure 8.12: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

8.2.4 Eight-shaped trajectory

Figure 8.13: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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Experimental Results

Figure 8.14: Experimental results at 0.7 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

Figure 8.15: Experimental results at 1 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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8.2 – LQR controller

8.2.5 Obstacle-avoidance trajectory

Figure 8.16: Experimental results at 0.5 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

Figure 8.17: Experimental results at 0.7 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.
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Experimental Results

Figure 8.18: Experimental results at 1 m/s: reference and actual trajectories, lateral
displacement and heading angle errors, control action.

As done for the PI control scheme, also here are presented plots at several velocities to
put evidence on the manoeuvre execution limit. In this case, the manouvre is completed
up to a speed of 1.0 m/s.
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8.3 – Comparison between experimental results

8.3 Comparison between experimental results
In this section the aim is to present a direct comparison between two control techniques
within the experimental tests conducted on the five trajectory at several velocities. Per-
formances are evaluated in a coincise way through six Key-Performance-Indicators (KPI):

• Maximum lateral error;

• Maximum heading angle error;

• Root-Mean-Squared-lateral Error;

• Root-Mean-Squared-heading angle Error;

• Integral of the Absolute value of the Control Action (IACA);

• Integral of the absolute value of the variations of the control action (IAVCA).

The analytical expression of the KPIs listed before is given below:

MAXey = max(ey) (8.1)

RMSey =
ó

1
tfin − tin

Ú tfin

tin

(ey)2dt (8.2)

MAXeψ = max(eψ) (8.3)

RMSeψ =
ó

1
tfin − tin

Ú tfin

tin

(eψ)2dt (8.4)

IACAδ = 1
tfin − tin

Ú tfin

tin

|δ| dt (8.5)

IAV CAδ = 1
tfin − tin

Ú tfin

tin

|∆δ| dt (8.6)
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Experimental Results

8.3.1 Circular-shaped trajectory

Figure 8.19: Maximum errors

(a) Maximum lateral error (b) Maximum heading angle error

Figure 8.20: Root-Mean-Squared-errors

(a) Root-mean-squared lateral error (b) Root-mean-squared heading angle error

Figure 8.21: Control action Key-Performance-Indicators

(a) IACA Key-Performance-Indicator (b) Oscillation Key-Performance-Indicator
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8.3 – Comparison between experimental results

8.3.2 Eight-shaped trajectory

Figure 8.22: Maximum errors

(a) Maximum lateral error (b) Maximum heading angle error

Figure 8.23: Root-Mean-Squared-errors

(a) Root-mean-squared lateral error (b) Root-mean-squared heading angle error

Figure 8.24: Control action Key-Performance-Indicators

(a) IACA Key-Performance-Indicator (b) Oscillation Key-Performance-Indicator
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Experimental Results

8.3.3 U-shaped trajectory

Figure 8.25: Maximum errors

(a) Maximum lateral error (b) Maximum heading angle error

Figure 8.26: Root-Mean-Squared-errors

(a) Root-mean-squared lateral error (b) Root-mean-squared heading angle error

Figure 8.27: Control action Key-Performance-Indicators

(a) IACA Key-Performance-Indicator (b) Oscillation Key-Performance-Indicator
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8.3 – Comparison between experimental results

8.3.4 S-shaped trajectory

Figure 8.28: Maximum errors

(a) Maximum lateral error (b) Maximum heading angle error

Figure 8.29: Root-Mean-Squared-errors

(a) Root-mean-squared lateral error (b) Root-mean-squared heading angle error

Figure 8.30: Control action Key-Performance-Indicators

(a) IACA Key-Performance-Indicator (b) Oscillation Key-Performance-Indicator
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Experimental Results

8.3.5 Obstacle-avoidance trajectory

Figure 8.31: Maximum errors

(a) Maximum lateral error (b) Maximum heading angle error

Figure 8.32: Root-Mean-Squared-errors

(a) Root-mean-squared lateral error (b) Root-mean-squared heading angle error

Figure 8.33: Control action Key-Performance-Indicators

(a) IACA Key-Performance-Indicator (b) Oscillation Key-Performance-Indicator

8.4 Conclusions and future works
To conclude, some considerations about the comparison: in simulation it could be appre-
ciated that the performaces of both controllers worsens with increasing speed and this is
what was also obtained in the experimental tests. Although in simulation the LQR con-
troller gave better performances in terms of maximum lateral error on all trajectories than
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8.4 – Conclusions and future works

the PI controller, this was not always the case in the experiments: for simpler trajectory
such as the U-shaped one the LQR controller performs better while for more complex tra-
jectories the PI achieves smaller lateral errors. This can be explained by considering that
the gains of the LQR controller are obtained through optimal placement, which in turn is
based on dynamic parameters of the system, inherited from previous works and probably
not very accurate; when the controller has to deal with a more complex trajectory, the
dynamic effects have a greater influence on the behaviour of the vehicle leading to these
variations in performance between the two controllers.
On the other hand it is important to consider that these good performances obtained with
the PI controller are the result of a trade-off between lateral error and the quality of control
action. In this trade-off, greater importance has been given on minimizing lateral error,
resulting in slightly oscillatory steering signal. This trade-off is reflected in the IACA key
performance indicator which is significantly higher for the PI controller.
If we consider the heading angle error, the LQR control resulted in a smaller error than
that obtained with the PI control. This difference in performance can be attributed to
the specific feedback signals used in each control scheme. In the PI control scheme the
feedback only concerns the lateral displacement error, so the heading angle one is not di-
rectly considered. On the other hand the LQR controller operates within the state space
representation where the heading angle error is one of the state variables, so it actively
works to minimize both of them.

As a future development, to enhance this study, system identification techniques with
Neural-Network approach will be implemented, in order to have a more realistic simulation
model. This could be useful for the development of more complex control strategies and
scenarios like vehicle platooning.
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