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Abstract

This work presents a 3D multiphysics model to investigate a lateral Ge-on-
Si waveguide photodetector. The simulation is performed using commercial
tools: Synopsys TCAD Sentaurus for the electrical part, implementing the
drift-diffusion method, and Synopsys RSoft for the light propagation prob-
lem using the Finite-Difference-Time-Domain method (FDTD). The first
part (chapters 1 and 2) introduces the context and reasons that prompted
the start of this work. In the second part (chapter 3), the actual simulation
is presented, aimed at reproducing the experimental results from the work of
S. Lichke et al. (Nat. Photon 2021). The simulation results for the electro-
optic frequency response show a good agreement with the measurements,
with a relative mean error of 8% for frequencies over 200GHz.



Summary

In the last years, Silicon Photonics has become a promising solution for the
ever-growing need for fast data exchange, removing the actual limitation
of conventional electrical interconnections in terms of power consumption,
bandwidth, and cross-talk, to keep pace with datacom and telecom needs,
and with novel technologies and applications like Cloud services and AI
training for machine learning. Silicon Photonics is a technology based on
silicon for the optical transmission of information that allows complete in-
tegration with CMOS technology and silicon production processes. Thanks
to this compatibility, this technology is leading toward the production of
a single-chip platform composed of multiple devices for signal modulation
(modulators) and detection (photodetectors). The capability of complete
integration on a single chip is a key factor for scaling and production of
more compact circuits, also decreasing the fabrication cost. Silicon has a
low absorption coefficient in the bands used for telecom applications (up to
the C-Band, centered at a wavelength of 1550 nm), making it a good ma-
terial to fabricate waveguides and other passive components. On the other
hand, silicon cannot be used for signal detection since it doesn’t absorb light
in the required wavelength range. Germanium, thanks to its capability to
be epitaxially grown over silicon despite the significant lattice mismatch be-
tween the two materials, and its good optical properties in the wavelength
range of interest, has gained increasing popularity in Silicon Photonics, per-
mitting a higher versatility in applications than the use of silicon alone, such
as the possibility to integrate photodetectors in the technology.

This work focuses on studying one of the main types of photodetec-
tors used in Silicon Photonics, a lateral Ge-on-Si waveguide photodetector.
The reference configuration and technology were inspired by the work of
S.Lichke et al.1, which was also used to compare our results with measured
data. The device is simulated by performing a 3D multiphysics electro-
optical simulation, employing commercial simulation tools from Synopsys.
TCAD Sentaurus suite was used to solve the electrical problem employing a
Drift-Diffusion (DD) model, and RSoft FullWAVE for the light propagation
problem and the calculation of the optical generation rate, solving Maxwell’s
equations using the Finite Difference Time Domain (FDTD) method. This
work shows the capability of the multiphysics model to predict the device
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Figure 1: Simulation of the electro-optical frequency response compared
to the experimental data. The numbers in the terms “Ge 100 10” and
“Ge 150 10” define the thickness and length in nanometers and micrometers
respectively of the germanium region for the device represented. Device 1
and Device 2 are the respective simulations for the two measurements.

behavior with complex geometries and sub-micron features even for band-
width higher than 200GHz, with a relative mean error of 8%, as shown in
figure 1. In this thesis, the critical points of the device are also analyzed in
detail, such as the strong dependence of responsivity from material proper-
ties such as the absorption coefficient, the effect of the saturation velocity
of carriers in the germanium region on the bandwidth (which was further
explored outside the thesis scope in a separate work2), and the possible
optimizations considering variations on the geometry and applied voltage
bias.

This work is divided into three chapters and one appendix:

• Chapter 1 introduces the building blocks of Silicon Photonics and the
main configuration used in Ge-on-Si waveguide photodetector, the lat-
eral and the vertical configuration. Then, typical figures of merit are
analyzed for the two configurations, showing their advantages and dis-
advantages in terms of production and applications.

• Chapter 2 describes the physics behind the simulation of the device.
It starts by describing the electronic transport in semiconductors to
introduce the Drift-Diffusion model and the small-signal analysis, then

1S. Lischke, A. Peczek, J. S. Morgan, K. Sun, D. Steckler, Y. Yamamoto, F. Korndörfer,
C. Mai, S. Marschmeyer, M. Fraschke, A. Krüger, A. Beling, and L. Zimmermann, “Ultra-
fast germanium photodiode with 3-dB bandwidth of 265 GHz,” Nature Photon., pp. 1–7,
2021.
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it describes the Finite Difference Time Domain method for light prop-
agation. It also presents the details of the main physical properties
that have a significant impact on the simulation.

• Chapter 3 presents the simulation results, in terms of electro-optical
bandwidth, dark current, and responsivity, comparing them with the
measurements from the reference paper and highlighting the critical
points and possible improvements.

• The Appendix focuses on the technical aspects of the simulation, such
as the definition of the mesh and mole fraction profile. It also provides
additional theory details about the simulation methods.

2M. G. C. Alasio, M. Zhu, A. Fronteddu, A. Cardinale, A. Ballarati, E. Bellotti, G.
Ghione, A. Tibaldi, F. Bertazzi, M. Vallone, and M. Goano, “Modeling the electronic
transport in FinFET-like lateral Ge-on-Si pin waveguide photodetectors for ultra-wide
bandwidth applications,” in 23rd International Conference on Numerical Simulation of
Optoelectronic Devices (NUSOD 2023), Torino, Italy, Sep. 2023, pp. 107–108.
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Chapter 1

Introduction

1.1 Research context

One of the most active research topics in optoelectronics today is Silicon
Photonics. This technology comprehends all electro-optic devices based on
silicon, which has the advantage of being fully integrable with CMOS tech-
nology and relative production processes. Photodetectors are one example
of the application of this technology. Silicon alone, however, doesn’t have
the ideal characteristics for optic sensing in telecom applications, given its
inability to absorb light over 1.1µm, which excludes the most used bands
used for data transmission, which are the O-Band (1.31µm) and C-Band
(1.55µm), the II and III windows of the optical fibers, corresponding to
minimum fiber dispersion and absorption, respectively. The I window which
is placed around 0.85 µm, exists only for historical reasons and is no longer
used since it was not particularly good from the start, but rather the only
one compatible with light sources available at the time (lasers based on
GaAs alloys). It is, however, still used for low-cost and non-telecom ap-
plications. What permitted the success of silicon-based technology in the
optoelectronics field for data transmission, in fact, was not silicon but ger-
manium, which, thanks to its broader absorption profile, includes both O
and C bands. More specifically, the interest in the use of germanium on
silicon-based devices comes from the possibility of growing epitaxially thin
films of germanium over a silicon substrate, even with the large lattice mis-
match between the two materials in lattice constant of ∼4.2% [1, 2].

1.2 Ge-on-Si Waveguide Photodetector (WPD)

In this work, we focus on waveguide photodetectors (WPD), a specific class
of pin photodiode made of silicon with a germanium absorber, connected to
a silicon waveguide. The waveguide and the detector can be part of a bigger
silicon photonics circuit grown on the same wafer, which can also contain

6
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Figure 1.1: Geometries of vertical and lateral configurations of a Si-on-Ge
waveguide photodetector.

CMOS electronics. There are two main categories of WPD called lateral
and vertical depending on the orientation of the pin junction, as shown in
fig.1.1.

1.2.1 Vertical WPD

In the vertical WPD, a silicon waveguide is connected to a wider p-type
doped silicon substrate over which a layer of germanium is epitaxially grown
and patterned with etching. Then, the metal contacts are deposited over
the silicon substrate and the germanium region. For the latter, before the
deposition of the metal contact, implantation of arsenic is performed to
create the n-type region of the pin junction and to obtain an ohmic contact
between germanium and metal. The device is then encapsulated in a silicon
oxide layer [3, 4]. The production processes of germanium, however, are
not extensively researched and comprehended as much as for silicon, so it is
often preferred to avoid too much processing of germanium, such as doping
implantation and metal growth [5], which is one the reasons why a lateral
configuration can be a good alternative.

1.2.2 Lateral WPD

In the lateral WPD case, there are many more variants in the design with
respect to the vertical. Generally, a lateral WPD is composed of a silicon
waveguide connected to a silicon substrate, where a layer of germanium is
deposited. In this case, the pin junction is created horizontally. It could
be made by doping the intrinsic germanium in both sides [6], or doping the
silicon substrate, creating a double pin junction with the central intrinsic re-
gion of the substrate and with the germanium deposited over it [7]. Another
particularly interesting method, is the one used in [8], where the germanium
is patterned in a fin shape and doped silicon is deposited on both sides. This
last design will be described in major detail further on since it is the main
inspiration for the simulation work on which this thesis is based.

7



(a) Evanescent coupling (b) Butt coupling

Figure 1.2: Schematics of waveguide coupling methods for vertical Ge-on-Si
WPD. Figures taken from [9].

1.2.3 Waveguide coupling

For both vertical and lateral WPD the waveguide was described as connected
to the silicon substrate to propagate the light inside the device. This type of
configuration is called evanescent coupling, that together with butt coupling
are the most commonly used coupling methods [9]. Evanescent coupling
(fig.1.2a) exploits the difference in refractive index between silicon oxide
and germanium. The light is confined in the silicon waveguide because of
the higher refractive index with respect to the surrounding oxide. When
the light reaches the germanium, placed over the silicon, it is no longer well
confined as before because of the increase in refractive index. Moreover,
the energy gap of Ge is only 0.66 eV, low enough to have absorption for
our wavelengths of interest (O-Band and C-Band). The evanescent field on
the germanium is thus absorbed by the material gradually transferring the
optical power from the waveguide to the detector. Butt coupling (fig.1.2b),
instead, is more efficient because it directly couples the optical power into
the Ge region, however, it requires a more complex and accurate design
and production process to satisfy the mode-matching conditions between
the waveguide and germanium region.

1.2.4 Electro-Optical properties and figures of merit1

The Ge-on-Si waveguide photodetector is a particular type of pin photode-
tector, which is, in turn, part of a bigger class of devices called photodiodes.
A photodetector is a device used to convert a light signal into an electrical
signal, by absorbing incident photons on the device with sufficient energy

1The formulations in this subsection are partially taken from [10].
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(Eph ≥ Eg) to generate electron-hole pairs. This process is called optical
generation (see 2.2.1.1). The photogenerated electron-hole pairs are divided
by the electric field induced by the reverse bias applied to the diode junc-
tion and collected into the contacts, making up the photogenerated current
[10]. As for any diode-like device, the reverse bias generates a small cur-
rent even in dark conditions (i.e. absence of a light source) which is the
reverse saturation current that, however, in most cases, represents a negli-
gible noise contribution to the current photogenerated by the input optical
power. A pin photodiode is a double junction diode composed of a p-type
region, an intrinsic region, and a n-type region. The intrinsic section is the
depleted region of the device and also where the photons are absorbed and
the photocurrent generated.

The total current generated by the photodiode can be modeled, without
considering the optical power modulation, as:

IPD = IL − I0

[
exp

(
−VPD

ηVT

)
− 1

]
(1.1)

where IL represents the photocurrent, I0 is the reverse saturation current,
VPD is the external reverse voltage bias, η is the ideality factor (1 ≤ η ≤ 2)
and VT = kBT/q is the thermal voltage, which is equal to 26mV at a
temperature T = 300K. In reverse bias condition, VPD/ηVT ≫ 1, so we can
approximate the expression as:

IPD = IL + Id (1.2)

where Id = I0 and represents the dark current.

1.2.4.1 Responsivity and Quantum efficiency

The photocurrent IL can be calculated by integrating the optical generation
rate over the device’s active region’s volume:

IL = q

∫
V
Gopt(r, P opt)dr (1.3)

The optical power is absorbed inside a material with an exponential decay
behavior, which, in a simplified one-dimensional view is written as:

P opt(x) = P opt(0) exp(−αx) (1.4)

where α is the absorption coefficient, a material property whose value is
dependent on the impinging light wavelength. Differentiating (1.4) with
respect to x, and defining a optical power density P̃ opt = P opt/A, where A
is the illuminated active area:

dP̃ opt

dx
= −αP̃ opt(x) = (power absorbed in x direction)/V (1.5)

9



Assuming a linear relation between current and optical power, and consid-
ering the generation of one electron-hole pair for every absorbed photon, we
have:

(Power absorbed)/V

Photon energy
=

αP̃ opt

Eph
=

(Energy absorbed)/(t · V )

Photon energy
=

=
Number of photons absorbed

(t · V )
=

=
Number of e-h pairs generated

(t · V )
= Gopt

so the optical generation is equal to:

Gopt =
αP̃ opt

Eph
=

αλ

hc
P̃ opt (1.6)

The same relation is valid also for the extended three-dimensional case.
Now, assuming that the number of collected carriers in the device contacts
is equal to the e-h pairs we have:

Number of collected carriers

t
=

IL
q

=

= V · Number of e-h pairs generated

t · V
=

= V · Number of photons absorbed

t · V
=

= A

∫ ∞

0
Gopt(x)dx = A

∫ ∞

0

αλ

hc
P̃ optdx

= −Aλ

hc

∫ ∞

0

dP̃ opt(x)

dx
dx ≈ λ

hc
P opt(0)

resulting in:
IL
q

=
λ

hc
P opt(0) (1.7)

where P opt(0) is the incident power. The expression of the photocurrent
then becomes:

IL =
qλ

hc
P opt(0) = RP opt(0) (1.8)

where R is the responsivity, whose definition is the ratio between the pho-
tocurrent and the incident optical power:

R ≜
IL

P opt(0)
=

qλ

hc
=

q

Eph
(1.9)

The second and third passages in (1.9) obtained from the derivation of IL
are a best-case scenario where all incident photons are converted in e-h pairs

10



and collected to the contacts. The responsivity is dependent on the photon
energy. It is zero for Eph < Eg, since photons don’t have enough energy to
generate carriers, and reaches a maximum for Eph ≈ Eg, then it decreases
for higher values of photon energy. The decrease can be explained as a
reduction in the efficiency of the generation process: every photon, even
with energy much higher than the energy gap generates only one electron-
hole pair, so the excess of energy is lost in thermalization processes (phonon
emission) instead of being used for the generation of other carriers.

If we take into consideration more realistic cases, it is necessary to in-
troduce the definition of internal quantum efficiency and external quantum
efficiency. The internal quantum efficiency is defined as:

ηQ =
Generated pairs

Photons reaching the active region
(1.10)

whose value is typically ηQ ≈ 1 (0 ≤ ηQ ≤ 1). The internal quantum
efficiency considers only the conversion process of photons in carriers in the
active region, while the external quantum efficiency takes into consideration
the total conversion efficiency of the device treating it as a black box in a
similar way to the responsivity, to which is directly related:

ηχ =
Collected pairs

Incident photons
=

IL/q

P opt/Eph
=

Eph

q
R (1.11)

Typically, ηχ ≤ 1, in the absence of gain2, moreover, it results to be always
lower than ηQ because it considers all loss contributions in the device, in-
cluding the ones that define the internal quantum efficiency (ηχ < ηQ). From
the definition of external quantum efficiency, we can rewrite the definition
of responsivity including this new term:

R = ηχ
q

Eph
= ηχ

qλ

hc
(1.12)

If we consider ηχ = 1 we obtain again (1.9).

1.2.4.2 Photodetector frequency response

A photodetector is used to convert a light signal into an electrical signal.
The light contains a high-frequency component that carries the information.
The photodetector absorbs the light and generates a photocurrent that must
retain the same frequency modulation to transfer the information correctly.
This requires a stable behavior of the device in a large frequency range, also
called bandwidth. If the optical signal frequency is too high, is possible

2there are other types of photodetectors, like avalanche photodiodes, that exploit cer-
tain physical phenomena to increase the collected photocurrent, resulting in an external
quantum efficiency ηχ > 1.
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that the detector is not capable of following the same time variation of the
light, resulting in deformations in the output electrical signal that could
affect the information fidelity. A way to verify if a photodetector is capable
of transferring information at a certain frequency correctly is to study the
frequency behavior of its responsivity. Assuming that the device works
linearly, or is linearized around an operating point (DC component), we can
separate the DC component from the AC component (signal):

P opt(t) = P opt
DC + δP opt(t) (1.13a)

V (t) = VDC + δV (t) (1.13b)

I(t) = IDC + δI(t) (1.13c)

assuming a sinusoidal modulation of light, we have:

δP opt(t) = Re{P opt
0 eiωt} (1.14a)

δV (t) = Re{V0 e
iωt} (1.14b)

δI(t) = Re{I0 eiωt} (1.14c)

where ω is the angular modulation frequency of the light signal. The pho-
todetector current is a function of the optical power and the applied voltage.
If the signal perturbation is small enough, we can linearize around the op-
eration point, obtaining:

I(t) = IDC + δI(t) = IDC +
∂I(t)

∂P opt

∣∣∣∣
DC

δP opt(t) +
∂I(t)

∂V

∣∣∣∣
DC

δV (t) (1.15)

where the second and third terms are the contribution to the signal compo-
nent of the photocurrent and dark current respectively:

δI(t) =
∂I(t)

∂P opt

∣∣∣∣
DC

δP opt(t) +
∂I(t)

∂V

∣∣∣∣
DC

δV (t) = δIL(t) + δId(t) (1.16)

which can be rewritten as:

δI(t) = δIL(t) + δId(t) =

= Re{R(ω)P opt
0 eiωt}+Re{YPD(ω)V0 e

iωt}
(1.17)

where R(ω) is the small-signal responsivity, and YPD(ω) is the small-signal
admittance. Rewriting the current expression is the frequency domain:

I(ω) = YPD(ω)V (ω) + IL(ω) (1.18)

where,
IL(ω) = R(ω)P opt(ω) (1.19)

the photocurrent IL(ω) is linearly dependent on the optical power P opt(ω) by
means of the complex responsivity R(ω), which can be used to describe the

12



device frequency response. Considering the small-signal voltage amplitude
V0 = 0 (i.e. no modulation of the voltage), the small-signal current δI(ω)
becomes equal to the single photogenerated current δI(ω) = δIL(ω) and it
is called short-circuit photocurrent (i.e. the photocurrent of the detector
whose small-signal load is a short).

The first step is to define a normalized responsivity r(ω) with respect to
the static case:

IL(ω)

IL(0)
=

R(ω)

R(0)

P opt(ω)

P opt(0)
= r(ω)

P opt(ω)

P opt(0)
(1.20)

assuming a constant value of optical power, independently from the modu-
lation frequency, we have:

r(ω) =
IL(ω)

IL(0)
=

R(ω)

R(0)
→ |r(ω)|dB = 20 log10

∣∣∣∣R(ω)

R(0)

∣∣∣∣ (1.21)

The resulting frequency response typically is similar to a low-pass filter. The
total bandwidth of the device is defined by the frequency value for which
the normalized responsivity drops to −3 dB:

|r(ω3dB)|dB = −3 → 20 log10

∣∣∣∣R(ω3dB)

R(0)

∣∣∣∣ = −3

R(f3dB) =
1√
2
R(0)

(1.22)

where f3dB is called intrinsic cut-off frequency, because it is calculated con-
sidering only the short-circuit current, and it is so independent from the de-
tector loading. The intrinsic cut-off frequency, as the name suggests, takes
into account only intrinsic phenomena that can influence the final band-
width of the device, such as transit time and avalanche build-up delay (only
in avalanche photodetectors). However, extrinsic contributions, such as load
impedance and parasitic contributions in the device contacts can influence
greatly the bandwidth. The effect of resistance and capacitive elements both
intrinsic and extrinsic is called RC cut-off. In pin photodiodes transit time
and RC cut-off are the main limiting factors of the device bandwidth.

1.2.4.3 Transit time limited bandwidth in a pin PD

To study the limitation in transit time of the bandwidth of a pin pho-
todetector, is necessary to start with an analysis of the photocurrent. In a
semiconductor device, the current behavior can be described using the Drift-
Diffusion model (see 2.2). Starting from the continuity equations, assuming
a constant electric field, and neglecting the diffusion currents:

∂n

∂t
=

1

q
∇ · Jn − Un (1.23a)

∂p

∂t
= −1

q
∇ · Jp − Up (1.23b)

13
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Figure 1.3: pin photodiode illuminated from the bottom.

where Un = Up = Gopt(x, t), and the constitutive relations are:

Jn = Jn,drift = qvn,satn (1.24a)

Jp = Jp,drift = qvp,satp (1.24b)

Assuming that the device has no variation in the z-direction, we can consider
a 2D equivalent geometry, as shown in figure 1.3.

∂p

∂t
= −1

q

(
∂Jp
∂x

+
∂Jp
∂y

)
+G0(y, t) (1.25a)

∂n

∂t
=

1

q

(
∂Jn
∂x

+
∂Jn
∂y

)
+G0(y, t) (1.25b)

where the derivatives of the current density in function of the y-direction
can be considered equal to zero assuming a negligible variation of the current
in that direction, which is generally true given the high electric field, due to
the applied reverse bias, directed almost exclusively in the x-direction.

The photodetector is illuminated from the bottom of the intrinsic region.
The optical power is assumed to be harmonic with angular frequency ω:

P opt(t) = P opt(ω) eiωt (1.26)

substituting the constitutive relations (1.24) in the continuity equations
(1.23), and working in the frequency domain, we have:

iωp(x) = G0(y)− vp,sat
∂p(x)

∂x
(1.27a)

iωn(x) = G0(y) + vn,sat
∂n(x)

∂x
(1.27b)

The boundary conditions at the junctions p+i and in+ are, respectively,
n(0) = 0 and p(W ) = 0, since in those positions the total minority carrier
densities are zero.

To obtain a solution for the two differential equations (1.27), we can
start by considering the homogeneous associate equations, which, for the
holes, is:

iωp′(x) = −vp,sat
∂p′(x)

∂x
(1.28)
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Since the equation is linear in x, the trial solution is in exponential form:

p′(x) = A eikx (1.29)

substituting (1.29) in (1.28):

iωA eikx = −vp,sat
∂A eikx

∂x

iωA eikx = −vp,sat(ik)A eikx

ω = −vp,satk → k = − ω

vp,sat

The solution of the complete equation (1.27a) can be expressed as:

p(x) = p1(x) + p2(x) = A e
− iωx

vp,sat +B (1.30)

The values of the constants A and B can be found imposing the boundary
conditions defined before:

p(W ) = 0 = A e
− iωW

vp,sat +B → B = −A e
− iωW

vp,sat

susbtituing in (1.27a) we can find also the expression for A:

iωp(W ) = 0 = G0(y)− vp,sat
∂p(x)

∂x

∣∣∣∣
x=0

⇒

⇒ G0(y) = vp,sat

[
A

(
−i

ω

vp,sat

)
e
− iωW

vp,sat

]
A = −G0(y)

iω
e

iωW
vp,sat

substituting A in B we have:

B =
G0(y)

iω

and finally substituting in the complete trial solution (1.30):

p(x, y) = −G0(y)

iω
e
− iω(x−W )

vp,sat +
G0(y)

iω
=

=
G0(y)

iω

(
1− e

− iω(x−W )
vp,sat

) (1.31)

repeating the same passages for the electron continuity equation we have:

n(x, y) =
G0(y)

iω

(
1− e

iωx
vn,sat

)
(1.32)
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substituting both solutions in the current densities:

Jp(x, y) = qvp,satp(x, y) =
qvp,satG0(y)

iω

[
1− e

− iω(x−W )
vp,sat

]
(1.33a)

Jn(x, y) = qvn,satn(x, y) =
qvn,satG0(y)

iω

[
1− e

iωx
vn,sat

]
(1.33b)

The total current density is the sum of Jp, Jn and the displacement current
density Jdisp:

Jtot(ω) = Jp + Jn + Jdisp = Jp + Jn + iωϵsE(x, ω) (1.34)

where ϵs is the semiconductor electrical permittivity and E(x, ω) is the elec-
tric field.

Integrating both sides of the total current density equation from x = 0
to x = W :∫ W

0
Jtot(ω)dx = WJtot(ω) =

∫ W

0
[Jp(x, y) + Jn(x, y) + iωϵsE(x, ω)] dx ⇒

⇒ Jtot(ω) =
1

W

qvp,satG0(y)

iω

W − 1− e
iωW
vp,sat

i ω
vp,sat

+

+
1

W

qvn,satG0(y)

iω

W +
1− e

iωW
vn,sat

i ω
vn,sat

+

+iωϵs[V (0)− V (W )]

introducing the definition of the electron and hole transit times:

τtr,p =
W

vp,sat
τtr,n =

W

vn,sat
(1.35)

then substituting in the expression, and dividing and multiplying for W , we
have:

Jtot(ω) = qWG0(y)

[
1

iωτtr,p
− 1− eiωτtr,p

ω2τ2tr,p
+

1

iωτtr,n
− 1− eiωτtr,n

ω2τ2tr,n

]
+iω

ϵs
W

VA(ω)

integrating also in the y-direction, between y = 0 and y = L, and considering
a distribution of the optical generation rate as

G0(y) = G0(0) e
−αy (1.36)
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it becomes:

Jtot(ω) =
qWG0(y)

Lα

(
1− e−αL

) [ 1

iωτtr,p
− 1− eiωτtr,p

ω2τ2tr,p
+

+
1

iωτtr,n
− 1− eiωτtr,n

ω2τ2tr,n

]
+ iω

ϵs
W

VA(ω)

considering that G0(0, ω) is expressed as:

G0(0, ω) = ηQ(1−R)
αP opt(ω)

Aopt

(
λ

hc

)
(1.37)

where R is the reflectance of the light on the illuminated area Aopt = W ·H,
with H being the device height (z-direction). The term (1−R) then repre-
sents the transmitted light inside the device. Substituting the expression in
Itot(ω) = A · Jtot(ω), where A = H · L:

Itot(ω) = qηQ(1−R)P opt(ω)

(
λ

hc

)(
1− e−αL

) [ 1

iωτtr,p
− 1− eiωτtr,p

ω2τ2tr,p
+

+
1

iωτtr,n
− 1− eiωτtr,n

ω2τ2tr,n

]
+ iωCVA(ω) = −IL(ω) + Idisp

with C = ϵs
W A being the intrinsic device capacitance given by the geometry.

The equation for ω → 0 reduces to:

Itot(0) = −IL(0) = −qηQ(1−R)P opt(0)

(
λ

hc

)(
1− e−αL

)
(1.38)

whose expression can be easily obtained by expanding the exponential terms
inside the square brackets in Taylor’s series at second order.

Finally, the normalized responsivity can be defined as:

r(ω) =
IL(ω)

IL(0)
=

[
1

iωτtr,p
− 1− eiωτtr,p

ω2τ2tr,p
+

1

iωτtr,n
− 1− eiωτtr,n

ω2τ2tr,n

]
(1.39)

1.2.4.4 RC limited bandwidth in a pin PD

The pin photodiode’s bandwidth is also limited by capacitive effects, both
intrinsic and extrinsic. The RC limit can be evaluated from the equivalent
circuit of the photodiode, represented in figure 1.4, where Cj is the junction
capacitance, RD is the diode resistance and IL is the photocurrent, derived
in the previous section (1.39); Cp is the parasitic capacitance and Rs is the
parasitic series resistance. These last two elements are extrinsic parameters
due to the contacts between the diode and the rest of the circuit, generally
an amplifier, here represented as a load resistance RL = 50Ω.
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Figure 1.4: Equivalent circuit of a pin photodiode.

In general, RD ≫ Rs, RL so the equivalent resistance of the circuit seen
by the current source is R = RD||(Rs+RL) ≈ Rs+RL, while the equivalent
capacitance is C = Cj+Cp. The cut-off frequency can be then approximated
as:

f3dB,RC ≈ 1

2πRC
(1.40)

Finally, the total cut-off frequency of the device, considering both the RC
and transit time limitations can be calculated using the following approxi-
mated expression:

f3dB ≈ 1√
f−2
3dB,RC + f−2

3dB,tr

(1.41)

1.2.4.5 Bandwidth-efficiency trade-off in a pin PD and WPD

The RC and transit time limits are affected by the geometry characteristics
of the photodiode. Increasing the thickness of the active region the transit
time increases which results in a lower transit time limit for the bandwidth.
At the same time, a thicker depleted region results in lower intrinsic capac-
itance and thus a higher RC limit. The opposite would happen decreasing
the thickness. A variation in the area A, instead, would influence only the
capacitance, to which it is inversely proportional since it would not change
the travel distance of the photogenerated carriers. In brief f3dB,RC ∝ W/A
while f3dB,tr ∝ 1/W . Figure 1.5 shows the total cut-off frequency calculated
with (1.41) in function of the active region width. Usually, a pin photodiode
is illuminated laterally through one of the doped regions, meaning that the
optical propagation direction is parallel to the carrier’s motion. This means
that the quantum efficiency is proportional to the width of the intrinsic re-
gion ηχ ∝ W . Increasing the thickness would improve the efficiency but
the device would become transit time limited. Decreasing the thickness,
instead, would remove the limit of transit time but decrease the device effi-
ciency. Moreover, if the device is too thin it would become also RC-limited.
This device limitation is called bandwidth-efficiency trade-off. In the pre-
vious section, however, pin photodiode was illuminated from the bottom,
directly in the intrinsic region. In this case, the optical propagation direction
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Figure 1.5: pin photodiode cut-off frequency in function of the active re-
gion width. The represented curves are obtained considering a height
H = 400 nm, a length L = 10 µm and a saturation velocity for electrons
and holes vsat = 0.743× 107 cm s−1.

and the direction of the carriers are orthogonal, so the quantum efficiency is
no longer proportional to the thickness W , but instead is proportional to the
device length ηχ ∝ L. This is the configuration used in the waveguide pin
photodiode (WPD) where the device is connected to a waveguide directly on
the intrinsic region and can be made long as much as needed to reach the
highest efficiency possible. The intrinsic region is also made thin to avoid
the transit time limit and the RC limit is contained by limiting the height
of the device to avoid large values of the junction area (A = H · L).

1.3 Ultra-fast germanium photodiode

At the end of 2021 S. Lischke et al. presented a novel lateral waveguide
photodetector [8] with evanescent coupling, capable of reaching a −3 dB
bandwidth of 265GHz. One of the focus points of this thesis work is to
simulate this same device and reproduce the measurement results from this
paper. After validating the simulation framework, it will be possible to use
it to investigate further the device in ways that are not feasible from simple
production and measurement.

The geometry of the device can be observed from the cross-section in fig-
ure 1.6. A waveguide is connected to a silicon substrate where germanium
is grown epitaxially. Then the germanium is etched in a fin shape, and
doped silicon is deposited on both sides to create a horizontal pin junction.
The silicon is deposited already doped to reduce at minimum the contami-
nation of germanium with doping since it must remain intrinsic. Contacts
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(a) STEM imaging (b) EDX imaging

Figure 1.6: Figure (a) shows a Scanning Transmission Electron Microscopy
(STEM) image of the cross-section of the device. Figure (b) shows the same
cross-section analyzed using Energy-Dispersive X-ray spectroscopy (EDX)
to show the material composition. Both figures are taken from [8].

in tungsten are then grown on both doped silicon regions. all the device is
then covered with silicon oxide, leaving only the contacts and the end of the
silicon waveguide uncovered. The novelty of this device can be found in the
unusual geometry of the germanium absorber, characterized by a biconcave
shape, which has the advantage of reducing the transit time for photogen-
erated carriers on the central region of the fin, where the electric field has
the peak intensity.

Two different geometries are presented, one with a germanium absorber
width of ∼60 nm in the narrowest point of the biconcave shape, and with
a calculated mean width of 100 nm, denominated “Ge 100 10”; another,
with ∼100 nm in the narrowest point and mean value of 150 nm called
“Ge 150 10”. The height of both absorbers is 400 nm, while the length
is 10 µm to assure the complete absorption of the light.

The first device, Ge 100 10, reached a measured −3 dB bandwidth of
265GHz for a photocurrent of 1mA. The second device, Ge 150 10, in-
stead, had a −3 dB bandwidth of 240GHz for the same photocurrent. The
difference is due to the higher width of the germanium region in Ge 150 10
since an increased thickness of the absorber, means a longer travel distance
for the photogenerated carriers, increasing the transit time. This means
that the device Ge 150 10 is transit-time limited. The different thickness,
however, influences also the internal responsivity, which is 0.3AW−1 for
Ge 100 10, and 0.45AW−1 for Ge 150 10. The smaller volume of the ab-
sorber in Ge 100 10 limits the generated photocurrent from the input optical
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Ge 100 10 Ge 150 10

Nominal width (nm) 100 150
f−3dB (GHz) 265 240
Dark current (A) ≤1× 10−7 ≤2× 10−7

Photocurrent (A) 1× 10−3 1× 10−3

Internal responsivity (AW−1) 0.3 0.45
Internal quantum efficiency 0.24 0.36
External responsivity (AW−1) 0.12 0.2
External quantum efficiency 0.1 0.16
Bandwidth-efficiency product (GHz) 63 86

Table 1.1: Measurements from the paper for devices Ge 100 10 and
Ge 150 10 for an applied voltage Vbias = −2V.

power, reducing the responsivity. There is, then, a trade-off between the two
devices, depending on the germanium region geometry. All measurements
were performed with an input optical power at a wavelength of 1.55 µm and
a bias of −2V. Table 1.1 summarizes all the important measurements on
the two devices from the paper to be compared with the simulation.

The table also shows the external responsivity and external quantum
efficiency, but, unfortunately, they are calculated with respect to the input
optical power in the optical fiber used to feed the silicon waveguide, so
the main contribution of losses in the external values are from the grating
coupler, and not from the photodetector. The bandwidth-efficiency product
is, in fact, calculated with respect to the internal values, since, otherwise,
they would have almost any dependence on the photodetector performances.
This also means that we can simulate only the internal responsivity and
quantum efficiency and not the external ones. Figure 1.7 shows the measured
electro-optic frequency response and photocurrent for the two devices.

21



50 100 150 200 250 300 350 400

Frequency, GHz

-8

-7

-6

-5

-4

-3

-2

-1

0

1

E
le

c
tr

o
-O

p
ti
c
 f
re

q
u
e
n
c
y
 r

e
s
p
o
n
s
e
, 
d
B

 = 1.55 m, V
bias

 = -2V

-3 dB

S. Lischke et al., Ge_100_10

S. Lischke et al., Ge_150_10

(a) Electro-optic frequency response

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Optical power, mW

0

0.2

0.4

0.6

0.8

1

1.2
P

h
o
to

c
u
rr

e
n
t,
 m

A

 = 1.55 m, V
bias

 = -2V

WGe_100_10, S. Lischke et al.

WGe_150_10, S. Lischke et al.

(b) Photocurrent

Figure 1.7: Figure (a) shows the electro-optic frequency response of the two
devices. Figure (b) shows, instead, the photocurrent. The smaller size of the
absorber in Ge 100 10 is reflected in the bigger bandwidth, but also in the
smaller photocurrent at equal optical power. Both figures are reproduced
using the data from [8].
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Chapter 2

Methods

2.1 Electronic transport in semiconductors

To study the electronic transport in a semiconductor is necessary to know
the distribution in energy of the carriers [11]. The electrons and holes can
have only specific values of energy defined by the band structure of the semi-
conductor. The conductance and valence band in the energy band structure
are defined by the respective dispersion relations calculated in the effective
mass approximation (see appendix A). In the following section, the defini-
tions of the density of electrons and holes are presented, which are then used
for the description and application of the drift-diffusion method in section
2.2.

2.1.1 Carrier densities at equilibrium conditions

Electrons and holes are distributed in energy in the allowed states described
by the dispersion relation. Their distribution inside the allowed states, in-
stead, depends on their fermionic nature, so their distributions follow the
Fermi-Dirac statistics. The distribution of the states in energy is defined
by the Density of States (DOS) which for a 3D (bulk) semiconductor, in
the effective mass approximation, is subdivided into two contributions, the
density of states of the conduction band Nc(E) and the density of states of
the valence band Nv(E):

Nc(E) =
4π

h3
(2m∗

n)
3/2

√
E − Ec (2.1a)

Nv(E) =
4π

h3
(2m∗

p)
3/2

√
Ev − E (2.1b)
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As mentioned before, the electrons and holes are distributed in the allowed
states following the Fermi-Dirac statistics, whose formulation is

fn(E) =
1

1 + exp
(
E−EF
kBT

) (2.2a)

fp(E) =
1

1 + exp
(
EF−E
kBT

) (2.2b)

for electrons and holes respectively. EF is the Fermi level and it is an index
of the total level occupation, representing the point in energy where half of
the states are occupied. For a semiconductor in equilibrium conditions, the
Fermi level is a constant value. For an intrinsic semiconductor in equilibrium
conditions, the Fermi level is placed in the center of the band gap. If the
material is doped, the fermi level is shifted from the center, nearer to the
conduction band for n-type doping and neared to the valence band for p-
type. When the Fermi level is contained inside the band gap, we talk about
a nondegenerate semiconductor. In this condition is possible to apply the
Boltzmann approximation of the Fermi-Dirac statistics:

fn(E) ≈
E≫EF

exp

(
EF − E

kBT

)
fp(E) ≈

E≪EF

exp

(
E − EF

kBT

)
(2.3)

This approximation is valid, however, only if the distance between E and EF

is larger than a few KBT units. When the Fermi level is near the conduction
or valence band, like in the case of a strongly doped semiconductor, the
Boltzmann approximation starts to be no more valid and there will be a
notable difference with the Fermi distribution. If, instead, we consider a
case where the Fermi level is inside one of the two bands, then we talk
about a degenerate semicondutor, and the Boltzamm approximation cannot
be used anymore.

As explained above, the density of states describes the available states for
electrons and holes, while the Fermi-Dirac statistic describes how the states
are occupied. The product of these two functions gives the total distribution
in energy of the carriers. To calculate the electrons and holes densities is
sufficient to integrate the product with respect to the energy:

n =

∫ ∞

Ec

Nc(E)fn(E)dE = Nc exp

(
EF − Ec

kBT

)
(2.4a)

p =

∫ Ev

−∞
Nv(E)fp(E)dE = Nv exp

(
Ev − EF

kBT

)
(2.4b)

where Nc and Nv are now the effective densities of states and are defined
as:

Nc = 2
(2πm∗

nkBT )
3/2

h3
Nv = 2

(2πm∗
pkBT )

3/2

h3
(2.5)
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The product of n and p, in equilibrium condition, is independent from the
fermi level, and is equal to the square of the intrinsic concentration:

np = n2
i (2.6)

this relation is called mass action law and is also valid for doped semicon-
ductors.

2.1.2 Carrier densities out of equilibrium conditions

A semiconductor is defined as out of equilibrium when the action of an
external cause modifies the electron and hole distributions from the ones at
equilibrium. In equilibrium conditions, the carrier population must follow
the mass action law, so np−n2

i = 0. Out of equilibrium, this difference is no
more zero, because of generation and recombination mechanisms (see 2.2.1).
If the cause of the deviation from the equilibrium condition is maintained
stable in time, like in the case of an applied voltage, the system will result to
be stationary and can be studied with a similar statistics to the one used for
the equilibrium case, called the quasi-Fermi distribution. In the quasi-Fermi
distribution, the Fermi level is subdivided into two different levels, EFn and
EFp, which account for the electron and hole populations separately. Aside
from this, the expressions are equal to the ones in the equilibrium case:

fn(E,EFn) =
1

1 + exp
(
E−EFn
kBT

) ≈
E≫EFn

exp

(
EFn − E

kBT

)
(2.7a)

fp(E,EFp) =
1

1 + exp
(
EFp−E
kBT

) ≈
E≪EFp

exp

(
E − EFp

kBT

)
(2.7b)

The expressions of the carrier densities within Boltzmann’s approximation
become:

n = Nc exp

(
EFn − Ec

kBT

)
(2.8a)

p = Nv exp

(
Ev − EFp

kBT

)
(2.8b)

the mass action law can also be rewritten with the new definitions of electron
and hole densities:

np = n2
i exp

(
EFn − EFp

kBT

)
(2.9)

in equilibrium conditions EFn = EFp = EF reducing the equation to the
original one. From the mass action law we can distinguish two possible
cases:

np > n2
i for EFn > EFp (Carrier injection) (2.10a)

np < n2
i for EFn < EFp (Carrier depletion) (2.10b)
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2.1.3 Doped semiconductors

Doping a semiconductor means adding donor or acceptor elements (v or
III group elements) to the semiconductor to increase the electrons or holes
population respectively. A donor type (n-type) doping is defined by a donor
density ND that is added to the already present n density. Equivalently,
for an acceptor type (p-type) there is an acceptor density added to the p
density. In the case of silicon, the typical doping elements for n-type doping
are Arsenic (As) and Phosphorus (P), while Boron (B) is used in p-type
doping. The addition of electrons and holes by means of doping is possible
because the doping elements added to the semiconductor have an energy
level near the conduction band, for n-type doping, or valence band, for p-
type doping, permitting an easy passage of the additional electron of holes
to the respective band. The probability of transition, however, depends
on the distance between the donor level ED or acceptor level EA and the
conduction or valence band respectively, which is of a few kBT units. This
means that the temperature influences the transition, and in fact, we have
complete ionization of the dopant only for temperatures that reach room
temperature.

2.1.3.1 Incomplete ionization model

The total donor or acceptor density that is actually ionized is determined
by the incomplete ionization model, based on the Fermi-Dirac distribution
[12]:

N+
D =

ND

1 + gD exp
(
EFn−ED

kBT

) , for ND < ND,crit (2.11a)

N−
A =

ND

1 + gA exp
(
EA−EFp

kBT

) , for NA < NA,crit (2.11b)

where gD and gA are the degeneracy factors for the impurity levels, while
ND,crit and NA,crit are the critic values of doping over which is assumed total
ionization. Table 2.1 shows the default parameters value for bulk silicon.

The electron and hole density have to be recalculated with the addition
of the doping contribution. Using the expression of the mass action law
np = n2

i and the charge neutrality condition n+N−
A = p+N+

D , is possible
to obtain the equations for n and p:

n =
1

2

[
N+

D −N−
A +

√
(N+

D −N−
A )2 + 4n2

i

]
(2.12a)

p =
1

2

[
N−

A −N+
D +

√
(N−

A −N+
D )2 + 4n2

i

]
(2.12b)
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Symbol
donor species

As P Sb N

ED (eV) 0.054 0.045 0.039 0.045
gD 2 2 2 2
ND,crit (cm

−1) 1× 1022 1× 1022 1× 1022 1× 1022

acceptor species
B Al In

EA (eV) 0.045 0.045 0.160
gA 4 4 4
NA,crit (cm

−1) 1× 1022 1× 1022 1× 1022

Table 2.1: Parameters table for incomplete ionization model. The values
shown are characteristic of bulk silicon and the default ones used by Synop-
sys Sentaurus.

2.1.4 Degenerate semiconductors

Until now the Fermi level has always been considered inside the energy gap.
Doping can shift the Fermi level to higher or lower energies, but even with
very high doping is not possible to shift the level outside the energy gap,
since the probability of ionization of the dopant atoms is reduced when ED

is under the Fermi level for electrons or over EA for holes, until the point
where the Fermi levels stops right before crossing the conduction or valence
band. However, even if it is not possible in equilibrium conditions, it is out
of equilibrium, like for example, the injection of carriers from illuminating
the semiconductor. For a degenerate semiconductor, the Boltzmann approx-
imation is not more valid and instead is necessary to use the Fermi-Dirac
statistics. This requires the use of the Fermi integral for the calculation of
the electron and hole densities:

n =
2√
π
NcF1/2

(
EFn − Ec

kBT

)
(2.13a)

p =
2√
π
NvF1/2

(
Ev − EFp

kBT

)
(2.13b)

The Fermi-Dirac integral can be solved only by a numerical approach.

2.2 Drift-Diffusion transport model

The model used to describe the electronic transport in the simulation is
the Drift-Diffusion model, a simplified macroscopic transport model derived
from the semi-classical Boltzmann’s transport equation [13]. The model
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is valid in steady-state conditions and models the current contribution of
electrons and holes in two terms, drift current and diffusion current :

Jn = Jn,drift + Jn,diff = qnµnE + qDn∇n (2.14a)

Jp = Jp,drift + Jp,diff = qpµpE − qDp∇p (2.14b)

The drift current represents the current component generated by the applied
electric field on the material. It depends, for electrons, on the electron
density n, the electron mobility µn, and the external electric field E . Where,
for holes, the first two are substituted with the hole density p and hole
mobility µp. The diffusion current, instead, is due to the natural behavior of
an ensemble of particles with a non-uniform density in space. The particles
in the denser region tend to move towards the regions with fewer particles
until they reach an equilibrium for the entire domain. This phenomenon is
described by Fick’s law, which relates the flux of particles in a direction with
the concentration gradient through a constant called diffusion coefficient
[14]. In the case of carriers the flux is represented by the current densities
Jn,diff and Jp,diff , the concentrations n and p, and the diffusion coefficients
Dn and Dp, defined by Einstein’s relations:

Dn =
kbT

q
µn = VTµn Dp =

kbT

q
µp = VTµp (2.15)

where VT = kBT/q ≈ 26meV is the thermal voltage. From the charge
conservation principle, the continuity equations for electrons and holes can
be obtained, which define their behavior in function of space and time inside
a semiconductor. The equations are defined as the equivalence of the carrier
variations in time, with the variation of the carrier fluxes in space, minus
the net contribution of generation and recombination phenomena inside the
material:

∂n

∂t
=

1

q
∇ · Jn − Un (2.16a)

∂p

∂t
= −1

q
∇ · Jp − Up (2.16b)

where Un = Rn − Gn and Up = Rp − Gp are the net recombination rates,
with R being the recombination and G the generation.

From (2.14) we know that the current density doesn’t depend only on
the carrier density n and p, but also on the electric field E . But, from Gauss’
law, we also know that a variation of the electric field in space is due to a
change in the charge density distribution ρ, which comprehends the carrier
densities and the fixed charges from doping in the material.

∇ · D = ∇ · (ϵE) = ρ ρ = q(p− n+N+
D −N−

A ) (2.17)
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Putting these two equations together and considering that the electric field
is equal to

E = −∇ϕ (2.18)

we find Poissons’ equation, which relates electrostatic potential directly to
the charge density:

∇ · (−ϵ∇ϕ) = ρ (2.19)

The continuity equations (2.16) with Poisson’s equation (2.19) and the defi-
nitions of the current densities (2.14) make up the Drift-Diffusion transport
model, summarized here:

∂n

∂t
=

1

q
∇ · Jn − Un

∂p

∂t
= −1

q
∇ · Jp − Up

∇ · (−ϵ∇ϕ) = ρ

(2.20)

this system of equations gives an approximate but effective prediction of
the electrical behavior of a semiconductor material or more complex devices
[11, 15].

2.2.1 Generation and Recombination rates

The generation and recombination rates are the terms that represent the
interaction of the electrons and holes in the conduction band with the other
bands and energy levels. There are multiple phenomena that are represented
as generation and recombination. They can be subdivided into intrinsic
processes, further subdivided in thermal, radiative and Auger, present even
in an ideal crystal, and extrinsic processes, defined by the Shockley-Read-
Hall (SRH) model and representing the generation and recombination due
to defects and impurities in the material. In the following, the processes and
relative models implemented in the simulation are presented.

The thermal process model is used to describe recombination and gen-
eration in case of the presence of models that consider multiple valence and
conduction bands, to describe the thermalization processes, or to approxi-
mate all non-radiative phenomena with a single model. In our case, however,
we simulate the various processes separately, so the thermal model is not
implemented.

2.2.1.1 Radiative process

The radiative process describes the interaction between photons and carriers,
and is responsible for the generation of the photocurrent in the photodetec-
tor. In the case of recombination, an electron is demoted to the valence band
and releases a photon with energy equal to the energy difference between
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the two bands (∼ Eg). The generation is the opposite, requiring an electron
with at least an energy equal to the energy gap. The recombination process
is the one responsible for the absorption of the light in the germanium, and
the generation of the photocurrent. If seen from the perspective of carriers
it is called optical generation rate. The intrinsic dependence on the energy
gap makes it a material-dependent process. This dependence is contained
in the absorption profile of the material where the process happens. The
model implemented is:

U rad = ropt(np− n2
i ) (2.21)

where ropt is the optical recombination coefficient, expressed in cm3s−1.

2.2.1.2 Auger process

The Auger process is a three-carrier process. It involves an electron, a
hole, and another electron or hole. Depending on the type of third carrier
considered, it can be an electron-assisted process or a hole-assisted process.
In the case of an electron-assisted recombination process, an electron in
the conduction band recombines with a hole, and the difference in energy
is given to a third electron in the conduction band in the form of kinetic
energy. In the case of the electron-assisted generation process, it is the third
electron that gives the energy necessary to promote an electron from the
valence band to the conduction band. The equation that implements the
Auger net recombination is the following:

UAu = (rAu
cn n+ rAu

cp p)(np− n2
i ) (2.22)

where rAu
cn and rAu

cp are the Auger recombination coefficients for electrons
and holes whose unit of measure is cm6s−1.

2.2.1.3 Shockley-Read-Hall process

The Shockley-Read-Hall (SRH) generation and recombination processes model
the interaction with trap states due to impurities, including doping, and lat-
tice defects in the material. The trap states have an energy level inside the
energy gap that acts as a mid-point between the conduction band and the
valence band, assisting thermal generation and recombination, in fact, these
phenomena are also called trap-assisted processes. The SRH model imple-
mented is the following:

USRH =
np− n2

i

τp(n+ n1) + τn(p+ p1)
(2.23)

where τp and τn are the lifetimes of carriers for SRH, which are proportional
to the trap density Nt by means of two coefficients of proportionality rSRH

cp
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and rSRH
cn :

τp =
1

rSRH
cp Nt

τn =
1

rSRH
cn Nt

(2.24)

and n1 and p1 are the unitary degeneration factors:

n1 = ni exp

(
EFi − Et

kBT

)
p1 = ni exp

(
−EFi − Et

kBT

)
(2.25)

where Et is the trap energy with respect to the valence band.

2.2.1.4 Avalanche process

When the electric field overcomes a certain threshold value, it can acceler-
ate carriers to the point where their interaction with the lattice can cause
ionization by impact. This is especially true in depletion regions, where
the electric field is very high. If the length of the depletion region is greater
than the mean free path, then the carriers accelerate enough to cause impact
ionization, which can be represented as a generation term:

Gava =
1

q

(
αn|Jn|+ αp|Jp|

)
(2.26)

where αn and αp are the ionization coefficients for electrons and holes, de-
fined as the reciprocal of the carrier mean free path. The ionization coeffi-
cients depend on the material properties and can be modelized with different
models. This simulation implements the Okuto-Crowell model :

α(F ) = a ·
(
1 + c(T − T0)

)
F γ exp

[
−
(
b [1 + d(T − T0)]

F

)δ
]

(2.27)

where T0 is the room temperature (300K) and F is the driving field, a term
that represents the electric field calculated in a way that improves numerical
convergence. The remaining terms are fitting parameters dependent on the
material. Table 2.2 contains the typical values for bulk silicon.

2.2.2 Mobility model

The mobility is the proportionality factor that defines the drift velocity of
a carrier consequent to the application of an electric field to the material:

vdrift,e = µeE vdrift,h = µhE (2.28)

2.2.2.1 Constant model

The simpler model for mobility would be to use a constant value, but this
would not consider the decrease of mobility due to the introduction of dop-
ing or the dependence on the electric field which is necessary to correctly
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Symbol Electrons Holes Unit

a 0.426 0.243 V−1

b 4.81× 105 6.53× 105 V cm−1

c 3.05× 10−4 5.35× 10−4 K−1

d 6.86× 10−4 5.67× 10−4 K−1

γ 1 1
δ 2 2

Table 2.2: Parameters table for Okuto-Crowell model. The values shown
are characteristic of bulk silicon and the default ones used by Synopsys
Sentaurus.

Symbol Electrons Holes Unit

µL 1417 470.5 cm2V−1 s−1

ζ 2.5 2.5

Table 2.3: Parameters table for Constant mobility model. The values shown
are characteristic of bulk silicon.

simulate the electronic transport in a highly depleted region like the intrin-
sic section of a pin device, where the electric field is very high resulting,
experimentally, in a saturation of the velocity, possible only with a degra-
dation of the mobility. The constant model’s only dependence is from the
temperature:

µconst = µL

(
T

300K

)−ζ

(2.29)

where µL is the value of mobility measured at low-field and room tempera-
ture (T0 = 300K), ζ instead is a fitting parameter depending on the material.
For this work, all simulations are done at room temperature, so the value
of constant mobility stays equal to µL. In table 2.3 are shown the typical
values used for silicon.

2.2.2.2 Masetti model

The model used to include the dependence from doping concentration is the
Masetti model [16]:

µdop = µmin1 exp

(
− Pc

NA +ND

)
+

µconst − µmin2

1 + ((NA +ND)/Cr)α

− µ1

1 + (Cs/(NA +ND))β
(2.30)
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Symbol Electrons Holes Unit

µmin1 52.2 44.9 cm2V−1 s−1

µmin2 52.2 0 cm2V−1 s−1

µ1 43.4 29.0 cm2V−1 s−1

Pc 0 9.23× 1016 cm−3

Cr 9.68× 1016 2.23× 1017 cm−3

Cs 3.43× 1020 6.10× 1020 cm−3

α 0.680 0.719
β 2.0 2.0

Table 2.4: Parameters table for Masetti mobility model. The values shown
are characteristic of bulk silicon and the default ones used by Synopsys
Sentaurus.

where µconst is the value of the constant model and NA and ND are respec-
tively the acceptors and donor concentrations, the other terms, instead, are
fitting parameters characteristic of the material. In table 2.4, reproduced
from [12], are shown the default values used by Synopsys Sentaurus, which
are the ones used for bulk silicon.

2.2.2.3 Extended Canali model

The Canali model describes the dependence on the electric field on mobility
[17]. The mobility starts from a maximum value that decreases with the
increase of the applied electric field. This causes a saturation of the drift
velocity (vsat) to values around 1 × 107 cm s−1 (for silicon). The model’s
equation is the following:

µfield(F ) =
(α+ 1)µlow

α+

[
1 +

(
(α+1)µlowF

vsat

)β
]1/β (2.31)

where µlow refers to the low-field mobility, which corresponds to the constant
mobility in the constant model, and β is a fitting parameter dependent on
temperature:

β = β0

(
T

300K

)βexp

(2.32)

The driving field F is the model used to consider the electric field depen-
dence. Different models can be used for different applications and to improve
numerical convergence. The remaining terms are fitting parameters depen-
dent on the material. Table 2.5 presents the typical values for bulk silicon.

In this work, both the doping dependence model (Masetti model) and
the high field saturation model (Canali model) are used for the simulation.
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Symbol Electrons Holes Unit

β0 1.109 1.213
βexp 0.66 0.17
α 0 0

Table 2.5: Parameters table for Extended Canali mobility model. The values
shown are characteristic of bulk silicon.

Matthiessen’s rule is used to combine multiple mobility models:

1

µ
=

1

µdop
+

1

µfield
(2.33)

2.3 Small-signal AC analysis

Small signal analysis is a method to study the dynamic behavior of a de-
vice. It considers a small perturbation of a source term around the static
operating point. The system can be then linearized with respect to the per-
turbation, simplifying the problem from a nonlinear system solvable only
using numerical methods, to a linear system that can be solved analytically.
The AC analysis starts from the Drift-Diffusion model reported here in a
more generalized form [12]:

∇ · (ϵ∇ϕ+ P ) = −q
(
p− n+N+

D −N−
A

)
− ρtrap

1

q
∇ · Jn − Un =

∂n

∂t

−1

q
∇ · Jp − Up =

∂p

∂t

(2.34)

where ρtrap is the density of trap states in the material. The equations can
be rewritten as:

∇ · (ϵ∇ϕ+ P ) + q
(
p− n+N+

D −N−
A

)
+ ρtrap = 0

1

q
∇ · Jn − Un =

∂n

∂t

−1

q
∇ · Jp − Up =

∂p

∂t

(2.35)

Discretizing the equations in the three-dimensional mesh we can write:

F ϕ,i(ϕ, n, p) = 0 (2.36a)

Fn,i(ϕ, n, p) = Ġn,i(n) (2.36b)

F p,i(ϕ, n, p) = Ġp,i(p) (2.36c)
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and

ϕ =



ϕ1

...

ϕj

...

ϕN


n =



n1

...

nj

...

nN


p =



p1
...

pj
...

pN


(2.37)

where i, j = 1, ..., N , withN being the total number of mesh points. The sys-
tem (2.36) is then a 3N × 3N matrix, with 3N equations and 3N unknowns.
The mesh points can be subdivided into internal points for i ∈ [1, N −m],
and boundary points for i ∈ (N −m,N ]. The boundary points contain the
boundary conditions, but, for now, they will be neglected in the formulation
and will be added later.

The harmonic source of the perturbation can be a voltage, for electrical
small signal analysis, or the optical generation rate for the electro-optical
small signal analysis. In both cases, the term is divided into the static
operating point (DC component) and the perturbating harmonic component
(AC component):

V tot = V DC + δV = V DC + V exp(−iω) (2.38a)

Gopt
tot = Gopt

DC + δGopt = Gopt
DC +Gopt exp(−iω) (2.38b)

The AC component influences also the electrostatic potential and carri-
ers distributions, which now have a perturbation with the same harmonic
behavior:

ζ
tot

= ζ
DC

+ ζ exp(−iω) (2.39)

where ζ represents ϕ, n, and p. Given that, for the definition of small signal,
the harmonic component is infinitesimal with respect to the static compo-
nent, we can develop the equations in (2.36) in Taylor’s series. Defining, for
simplicity, the following vector:

u =

ϕn
p

 (2.40)

The Taylor development of Poisson’s equation is:

F ϕ(u) = F ϕ(uDC + δu) = F ϕ(uDC) + J |DC δu (2.41)

The constant term is equal to zero because it corresponds to the static case,
whose equation is Fϕ(uDC) = 0, canceling the DC contribution1. J |DC ,
instead, is the Jacobian matrix evaluated in the operating point.

For the continuity equations, the passages are the same, but with a slight
complication given by the G terms. Considering the electron’s continuity
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equation (2.36b), it is necessary to rewrite the equation taking all the terms
on the left-hand side before linearizing.

Fn,i(ϕ, n, p)− Ġn,i(n) = 0 (2.42)

which is then redefined as:

F̃n,i(ϕ, n, p) = 0 (2.43)

so now expanding in the Taylor series at first order:

F̃n(u) = F̃n(uDC + δu) = F̃n(uDC) + J |DC δu (2.44)

The same passages are valid also for the hole continuity equation:

F̃ p(u) = F̃ p(uDC + δu) = F̃ p(uDC) + J |DC δu (2.45)

The static term can be considered equal to zero for the same reason as the
Poisson’s equation case.

The equations (2.41, 2.44, 2.45) are written with a compact and simple
notation, which, anyway, does not clarify the structure of the result obtained.
Expanding the notation of the jacobian and the solution vector u we have,
for a certain mesh node i:

Fϕ,i(ϕ1 + δϕ1, . . . , n1 + δn1, . . . , p1 + δp1, . . . ) = 0 (2.46a)

F̃n,i(ϕ1 + δϕ1, . . . , n1 + δn1, . . . , p1 + δp1, . . . ) = 0 (2.46b)

F̃p,i(ϕ1 + δϕ1, . . . , n1 + δn1, . . . , p1 + δp1, . . . ) = 0 (2.46c)

linearizing the equations and removing the static terms that, for now, are
considered equal to zero:

∂Fϕi

∂ϕ1
δϕ1 + · · ·+

∂Fϕi

∂n1
δn1 + · · ·+

∂Fϕi

∂p1
δp1 + · · · = 0

∂F̃ni

∂ϕ1
δϕ1 + · · ·+ ∂F̃ni

∂n1
δn1 + · · ·+ ∂F̃ni

∂p1
δp1 + · · · = 0

∂F̃pi

∂ϕ1
δϕ1 + · · ·+ ∂F̃pi

∂n1
δn1 + · · ·+ ∂F̃pi

∂p1
δp1 + · · · = 0

(2.47)

The 3 equations of the i-th mesh point have become a sum of partial deriva-
tives with respect to the 3N variables. They can be rewritten as a sum
of matrices, where every matrix is a 3 × 3 matrix composed of the terms

1Technically the static terms in the boundary could be not zero because of the boundary
condition, but, for now, they are not considered in the formulation.
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referred to the j-th variables. here we represent the sum of matrices for the
i-th mesh node:

∑
j


∂Fϕi
∂ϕj

∂Fϕi
∂nj

∂Fϕi
∂pj

∂Fni
∂ϕj

∂Fni
∂nj

− iω
∂Gni
∂nj

∂Fni
∂pj

∂Fpi
∂ϕj

∂Fpi
∂nj

∂Fpi
∂pj

− iω
∂Gpi
∂pj


DC

ϕ̃j

ñj

p̃j

 = 0 (2.48)

where the −iω term comes from the temporal derivative of the exponential
that defines the harmonic component, and ϕ̃j , ñj , p̃j are the electrostatic
potentials and carrier densities normalized. In the case of voltage, normal-
ization is done with respect to the contact where the voltage is applied.

The global AC matrix is obtained by imposing the boundary condi-
tions (BC) and performing the summation in j. The BC commonly used in
AC simulation are Newmann boundary conditions and oxide-semiconductor
jump conditions2 and also Dirichlet boundary conditions at the ohmic con-
tacts with ñ = p̃ = 0.

The assembled global matrix with the boundary condition can then be
written as: [

J + iD
]
ũ = B (2.49)

where J is the jacobian matrix and D contains the terms G present in 2.48.
The real vector B contains the source term (which could be voltage, optical
generation, etc.) and ũ is the solution vector. Considering separately real
and imaginary parts, (2.49) can be rewritten as:[

J −D

D J

][
uR

uI

]
=

[
B

0

]
(2.50)

with ũ = uR + iuI where uR and uI are the real and imaginary parts of the
solution matrix.

2.3.1 Small-signal Current density

From the small-signal analysis is also possible to calculate the current den-
sity of the device. The displacement, electron, and hole currents can be
calculated as:

J̃D = −iωϵ∇ϕ̃ (2.51)

J̃n =
∂Jn

∂ϕ

∣∣∣∣
DC

ϕ̃+
∂Jn

∂n

∣∣∣∣
DC

ñ+
∂Jn

∂p

∣∣∣∣
DC

p̃ (2.52a)

J̃p =
∂Jp

∂ϕ

∣∣∣∣
DC

ϕ̃+
∂Jp

∂n

∣∣∣∣
DC

ñ+
∂Jp

∂p

∣∣∣∣
DC

p̃ (2.52b)

2Boundary or transition conditions used when the domain is not continuously differ-
entiable [18].
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The unit of the current density responses is A cm−2V−1 in case of small-
signal calculated with respect to the voltage, and A cm s if it is calculated
with respect to optical generation.

2.3.2 Small-signal Transfer function

From the current density calculated in the previous section and the input
perturbation, is possible to obtain the frequency-dependent transfer func-
tion between circuit nodes of the specified electrical system to which the
simulated device is connected.

2.3.2.1 Electrical small-signal Admittance matrix

In the case of electrical small-signal, the transfer function is an admittance
matrix represented as:

δI = Y δV (2.53)

where Y is the admittance matrix, while δI and δV are the current and
voltage in complex values at the selected nodes, respectively. The Y matrix
can be then subdivided into real and imaginary parts:

Y = A+ i ωC (2.54)

where A is the conductance matrix, C is the capacitance matrix, and ω is
the frequency of the perturbation. This means that, from the small-signal
analysis, is possible to obtain the values of resistance and capacitance of the
device simulated.

2.3.2.2 Optical small-signal Quantum efficiency matrix

Solving the small-signal with respect to the optical generation rate, or the
optical power density, the resulting transfer function obtained corresponds to
the quantum efficiency matrix. Generally, the quantum efficiency is defined
as the photocurrent IL divided by the optical power density incident on the
device P opt, both normalized with respect to the elementary charge and the
photon energy respectively. This means that the quantum efficiency is the
responsivity normalized:

η =
IL/q

P opt/
(
hc
λ

) =
1

q

(
hc

λ

)
R (2.55)

For the small signal the quantum efficiency becomes complex because of the
dynamic components:

H =
1

q

(
hc

λ

)
δI

δP
(2.56)
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dividing the current into real and imaginary parts we obtain the two con-
tributions of the quantum efficiency matrix as for the admittance matrix in
the electrical small-signal case:

H =
1

q

(
hc

λ

)
Re{δI}+ i Im{δI}

δP
= η + i ωCopt (2.57)

where

η =
1

q

(
hc

λ

)
Re{δI}
δP

(2.58)

and

Copt =
1

ωq

(
hc

λ

)
Im{δI}

δP
(2.59)

are the expressions of the real and imaginary parts of the quantum efficiency
matrix (hence they are also matrices).

All calculations were done considering an optical power perturbation,
but it is possible to consider directly a perturbation of the optical generation
rate using the relation between the two (see 1.2.4.1):

Gopt(x, y, z) =
αλ

hc
P (x, y, z) (2.60)

where Gopt is the distribution of the optical generation rate inside the device
due to the distribution of the optical power density P (x, y, z), while α is the
optical absorption profile.

2.4 Finite Difference Time Domain method

The Finite Difference Time Domain (FDTD) method is a numerical ap-
proach that discretizes Maxwell’s equations in time and space to study the
propagation of electromagnetic waves. The FDTD method gives a rigor-
ous solution of Maxwell’s equations without approximations, which is useful
when other simulation methods don’t provide good quality solutions or have
problems with the structure geometry. Synopsys RSoft FullWAVE [19] tool
implements this numerical discretization method for calculating the light
propagation in the photodetector.

A general formulation can be developed starting from Maxwell’s Equa-
tions, assuming the absence of current sources (J = 0) and free charges
(ρ = 0). We also consider a non-magnetic medium (µ = µ0). With these
assumptions, Maxwell’s equations become:

∇×H =
∂D

∂t
(2.61a)

∇× E = −µ0
∂H

∂t
(2.61b)
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Where E and H are, respectively, the electric and magnetic fields. D,
instead, is the electric induction, that, together with the magnetic induction
B is related to the electric and magnetic fields by the constitutive relations:

D = ϵ0E + P (2.62a)

B = µ0H (2.62b)

where P = ϵ0χeE is the polarization vector. From here a one-dimensional
(1D), two-dimensional (2D), or three-dimensional (3D) formulation can be
developed. In this work, due to the complicated geometry of the device,
is required a fully 3D approach. Equations (2.61) are so expanded using
cartesian coordinates in six scalar equations [20]:

∂Dx

∂t
=

∂Hz

∂y
− ∂Hy

∂z
(2.63a)

−∂Dy

∂t
=

∂Hz

∂x
− ∂Hx

∂z
(2.63b)

∂Dz

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(2.63c)

−µ0
∂Hx

∂t
=

∂Ez

∂y
− ∂Ey

∂z
(2.63d)

µ0
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
(2.63e)

−µ0
∂Hz

∂t
=

∂Ey

∂x
− ∂Ex

∂y
(2.63f)

The discretization is done using the Yee algorithm. It solves both elec-
tric and magnetic fields in time and space, instead of only one of the two,
obtaining a more robust solution than solving the equations for only one
field. This makes the solution more accurate for a wider class of structures.
Figure 2.1 shows the spatial distribution of field vector components on the
cubic unit cell of the Yee discretized space.

The time is also discretized, and the E and H components are centered
in time using a leapfrog arrangement. E components are calculated for a
specific time in the Yee discretized space, then these results are used to
calculate the H components in space but for a time step in between two
time steps of the electric field, as shown in a simplified 1D case in figure 2.2.

After the discretization, Maxwell’s equation, for the mesh points denoted
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Figure 2.1: Distribution of electric and magnetic field vector components in
a cubic unit cell of the Yee discretized space. Figure taken from [21].

Figure 2.2: Space-time discretization of electric and magnetic field compo-
nents in the one-dimensional case. The space is discretized with the central
difference method, and time with the leapfrog method. Figure taken from
[20].
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by integers i,j,k and discretized time defined by the integer n, becomes:

En+1
x(i,j,k) = Hn

x(i,j,k) +
∆t

ϵ∆y

(
H

n+1/2
x(i,j+1,k) −H

n+1/2
x(i,j,k)

)
− ∆t

ϵ∆z

(
H

n+1/2
x(i,j,k+1) −H

n+1/2
x(i,j,k)

)
(2.64a)

H
n+1/2
x(i,j,k) = H

n−1/2
x(i,j,k) +

∆t

µ0∆z

(
En

x(i,j,k) − En
x(i,j,k−1)

)
− ∆t

µ0∆y

(
En

x(i,j,k) − En
x(i,j−1,k)

)
(2.64b)

where the equations (2.64b) and (2.64a), are the discretized form of two of
the six Maxwell’s equations, more specifically (2.63b) and (2.63d). All six
are solved iteratively in space and time following the Yee algorithm [21].

2.4.1 Boundary conditions

Many types of boundary conditions can be implemented for the spatial grid,
such as absorbing boundary conditions, which cancel any wave that reaches
the boundaries. One type of absorbing boundary conditions extensively
used by RSoft FullWAVE are the perfectly matched layer (PML) boundary
conditions, where the electric and magnetic conductivities are calculated
so that the wave characteristic impedance is equal inside and outside the
calculation area, to avoid reflections at the boundaries. These are also the
boundary conditions used in the simulation performed in this work. One
last type of boundary conditions used by RSoft are the periodic boundary
conditions, used for periodic structures such as distributed Bragg reflectors
(DBR).

2.4.2 Simulation stability

There is a condition that must be satisfied to have a stable simulation using
the FDTD method called the Courant condition, relating the temporal step
size and the dimension of a unit cell of Yee’s lattice (spatial grid), which can
also be not cubic. The condition can be expressed as:

c∆t <
1√

1/∆x2 + 1/∆y2 + 1/∆z2
(2.65)

where c is the light velocity and the spatial step sizes considered are the
smallest ones in the simulation domain. This condition comes from the
physical limitation of the maximum phase velocity for an electromagnetic
wave, which is the light velocity.
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2.4.3 Stop criteria

The simulation start from time t = 0 to a predefined stop time ts. The
choice of the stop time defines the total simulation time and the accuracy of
the results obtained. The stop criteria can be defined as a tolerance value
that must be reached to have convergence. A stop time is defined anyway
in case of divergence of the simulation.

2.4.4 Optical generation rate

The FDTD method calculates the electric and magnetic fields, but the ob-
jective of the optical simulation is to calculate the spatial profile of the
absorbed light that generates carriers in the device. The first step is to
obtain an explicit expression for the conductivity of the material. The dis-
persion relation for a non-magnetic medium (µ = µ0) in absence of free
charges (ρ = 0) can be obtained starting from Maxwell’s equations:

∇×H =
∂D

∂t
+ J (2.66a)

∇× E = −µ0
∂H

∂t
(2.66b)

which are the same as (2.61) but with the addition of the current term,
which takes into account the losses. Applying the curl operator to (2.66b)
we have:

∇×∇× E = −µ0
∂

∂t
(∇×H) (2.67)

Considering the vector identity ∇×∇×E = ∇ · (∇ ·E)−∇2E for the left
hand side, and substituting (2.66a) in the right hand side, we have:

∇ · (∇ · E)︸ ︷︷ ︸
= 0

−∇2E = −µ0
∂

∂t

(
∂D

∂t
+ J

)
(2.68)

where ∇·E = ρ = 0. Now, considering a harmonic field of the type E(r, t) =
E0 exp(kr − ωt) and substituting, we have:

−(ik)2E = −µ0ϵ(−iω)2E − µ0
∂J

∂t
(2.69)

considering that the current density has the same harmonic behavior of the
field, we have J = E0 exp(−ωt), that substituting, gives:

−(ik)2E = −µ0ϵ(−iω)2E − (−iω)µ0J (2.70a)

k2E = µ0ϵω
2E + iωµ0σE (2.70b)

k2 = µ0ϵω
2 + iωµ0σ (2.70c)
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where, between the first and second step, the microscopic Ohm’s law
J = σE was used, in which σ represents the electrical conductivity. The
definition of the dispersion relation is then:

k2 = ω2ϵµ0

(
1 + i

σ

ωϵ0

)
= k20

(
ϵr + i

σ

ωϵ0

)
, with k0 =

2π

λ
(2.71)

the term between parenthesis is the complex electrical permittivity of the
material, which can be also defined as ϵ = ϵ′ + iϵ′′, so compared to the
expression obtained from Maxwell’s equations:

ϵ = ϵ′ + iϵ′′ =

(
ϵr + i

σ

ωϵ0

)
(2.72)

so we have:

ϵ′ = ϵr (2.73a)

ϵ′′ =
σ

ωϵ0
(2.73b)

from (2.73b) we can find the expression for the conductivity in function of
the imaginary component ϵ′′, since the complex refractive index is an input
dataset for the simulation.

σ = ωϵ0ϵ
′′ =

2πc

λ
ϵ0ϵ

′′ (2.74)

Now, to calculate the spatial distribution of the absorbed power density we
can use the continuity equation of the Poynting’s vector [22].

P opt =
∂u

∂t
= −∇ · Sav (2.75)

where P opt is the optical power density, u is the energy density, and Sav is
the Poynting’s vector averaged in time:

Sav =
1

2
Re{E ×H} (2.76)

Substituting (2.76) in (2.75) we have:

P opt = −∇ ·
(
1

2
Re{E ×H}

)
(2.77a)

= −1

2
Re{∇ · (E ×H)} (2.77b)

To calculate the section ∇·(E ×H) we can exploit the starting point of the
Poynting’s theorem’s demonstration [23]. Multiplying both sides of (2.66b)
for H, (2.66a) for E and subtracting the first to the second we obtain:

H · (∇× E)− E · (∇×H) = −H
∂B

∂t
− E

∂D

∂t
− E · J (2.78)
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the left-hand side can be rewritten using the vector identity H · (∇× E)−
E · (∇×H) = ∇ · (E ×H), obtaining:

∇ · (E ×H) = −H
∂B

∂t
− E

∂D

∂t
− E · J (2.79)

considering a harmonic field we substitute ∂/∂t with −iω

∇ · (E ×H) = iω(HB + ED)− EJ (2.80)

taking only the real part:

Re{∇ · (E ×H)} = −EJ = −σ|E|2 (2.81)

and substituting in (2.77):

P opt =
1

2
σ|E|2 (2.82)

this expression of the optical power density absorbed can be used to calculate
the consequent optical absorption rate Gopt as:

Gopt(x, y, z) =
ηQ
Eph

P opt(x, y, z) =
ηQλ

hc
P opt(x, y, z) (2.83)

where ηQ is the internal quantum efficiency, and Eph is the photon energy. In
the final expression, the spatial dependence is made explicit to highlight that
the simulation calculates a spatial distribution of the optical power density
and the optical generation rate. The difference between (2.60) and (2.83)
comes from the fact that, in the former, consider a simpler one-dimensional
case in a homogeneous material, where the optical power density can be
directly calculated from the differential equation (1.5), whose solution was
presented immediately before in (1.4), therefore the presence of the absorp-
tion coefficient α is given by the derivation of the optical power. This case,
instead, presents a generalized approach, where the optical power is given
from the electric field distribution calculated directly from Maxwell’s equa-
tions in three dimensions. The only remaining difference is the presence of
the internal quantum efficiency in (2.83), which, however, is assumed to be
equal to one.
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Chapter 3

Results

This chapter presents the results of the simulations performed. It starts
by presenting the device geometry, followed by an analysis of the principal
figures of merit, such as the dark current, photocurrent, electro-optic fre-
quency response, and responsivity. Their dependence on geometry, material
properties, and applied bias is also investigated.

3.1 Simulation

To correctly simulate the device, a 3D multiphysics electro-optical simulation
has been performed. The simulation is based on two commercial tools from
Synopsys, TCAD Sentaurus and RSoft FullWAVE. TCAD Sentaurus is used
to perform the electrical study of the device under equilibrium and bias,
by using a Drift-Diffusion model (see ch.2.2), to analyze the main figure of
merit of the device, such as the electric field, the carrier densities, the energy
band diagram, and the dark current. RSoft FullWAVE, instead, performs a
simulation of the light propagation on the device from the waveguide, using
a Finite Difference Time Domain method (see ch.2.4). The 3D geometry
of the photodetector is reproduced from the data extracted from figure 1.6
and the geometrical description of the device from the paper. The resulting
structure is presented in figure 3.1. Two different devices are simulated,
named in the reference paper Ge 100 10 and Ge 150 10, and renamed Device
1 and Device 2 in the corresponding simulations. Figure 3.1 represents
Device 1. The device is composed of a short input silicon waveguide with
equal height and width of 0.2 µm. It is connected to a silicon substrate of
the same height and width of 2.1 µm. Over the substrate, there are the
two doped silicon regions p (blue region) and n (red region) with the same
level of doping of 1× 1020 cm−3. The green color is assigned to the intrinsic
semiconductive regions, which are the silicon waveguide, substrate, and the
germanium region between the two doped silicon regions. The germanium
heigh is 400 nm with a base width of 149 nm. The minimum width is around
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(b) 2D schematics

Figure 3.1: The left figure shows the 3D geometry of the photodetector.
The right figure, instead, is a 2D schematic of a cross-section of the device
in the xy-plane in a generic point in the z-axis (the structure is invariant in
this direction).

the center of the germanium and corresponds to 60 nm. The Device 2 has
the same geometry parameters as Device 1 aside from the germanium region
that is 50 nm thicker, with a minimum width of 110 nm.

Details about the materials, the heterojuction between germanium and
silicon, and the simulation mesh of the device are presented in the Appendix.

3.1.1 Optical power propagation

The input optical power reaches the photodiode passing through the waveg-
uide. The only mode propagating in the waveguide is the fundamental mode
which focuses the optical power on the center of the waveguide. The light
reaches the silicon substrate of the photodiode where it is not more confined,
starting to irradiate power in a cone-shape. Part of the power is irradiated
directly into the germanium region, while most continue to travel straight.
Since there is no more confinement the light traveling in the substrate is
absorbed by the germanium as an evanescent field for the entire length of
the device. The absorbed light generates photons in the device with a dis-
tribution defined by the optical generation rate. Figure 3.2 represents the
optical generation rate for the C-Band and 3.3 for the O-Band. The ab-
sorption coefficient is higher for germanium in the O-Band, so it presents
a higher optical generation rate. The periodic peaks of the generation rate
in the absorber are due to the destructive interference caused by the light
reflecting back from the upper interface between germanium and silicon ox-
ide, which can be considered beneficial since it helps to better distribute the
optical power inside the absorber, avoiding peaks with too high intensity,
which would cause screening at higher optical power.
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Figure 3.2: Optical generation rate distribution on Device 1, considering a
Popt = 200 µW and λ = 1.55 µm, in a yz-plane cross-section at x = 0 (view
from above, upper figure) and in an xz-plane cross-section at y = 0 (lateral
view, lower figure).
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Figure 3.3: Optical generation rate distribution on Device 1, considering a
Popt = 200 µW and λ = 1.31 µm, in a yz-plane cross-section at x = 0 (view
from above, upper figure) and in an xz-plane cross-section at y = 0 (lateral
view, lower figure).
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Figure 3.4: Dark current comparison between Device 1 and Device 2.

3.2 Dark current

The first figure of merit analyzed in the simulation is the current generated
by the device in dark conditions (i.e. in the absence of a light source) under
bias. The current is due to the pin junction and can be classified as a noise
contribution since it is not caused by an input signal. Fortunately, this type
of photodetector has a very low dark current compared to the photocurrent
generated, while other classes of optical sensors need specific solutions to
reduce this noise source which could be even higher than the photocurrent.
As shown in figure 3.4, the dark current simulated in Device 2 is bigger than
the one of Device 1 by almost half an order of magnitude, with a value of
1.17× 10−13A and 8× 10−14A respectively.

The reason for this difference can be found in generation processes in the
absorber that give a bigger contribution due to the bigger volume, increasing
the dark current. In figure 3.5 all the generation and recombination terms
meaningful in dark conditions are represented. The germanium region is
depleted from carriers because of the pin junction and the applied reverse
bias, causing the net SRH recombination rate to become negative, generating
new carriers that are then removed from the depletion region by the electric
field. A small contribution of generation is given also by Auger processes,
but it can be considered negligible since it is proportional to the number of
carriers in the material. Increasing the width of the germanium region also
increases the volume that generates carriers, giving more space to electrons
and holes to gain kinetic energy from the acceleration given by the high
electric field in the depletion region to the point where it overcomes the
threshold limit causing avalanche generation.

However, the measured values for Ge 150 10 and Ge 100 10, as previ-
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Figure 3.5: Recombination and generation processes represented in absolute
value along the x-axis in a cross-section of the device with respect to the
z-axis and at 15 nm over the silicon substrate in dark conditions and applied
bias of −2V.

ously presented in table 1.1 are six orders of magnitude higher, even if they
display a similar relative difference in value between the two devices. To
correctly model the currents would be necessary to know the quantity and
distribution of defects on the absorber caused by doping diffused from the
silicon regions, impurities, mechanical stress on the interface between sili-
con and germanium, and other types of defects caused by the production
process. This is, however, very difficult to simulate and there are very few
measurements and studies about it in literature. Fortunately, as already
stated, in this class of photodetectors, the dark current is negligible com-
pared to the photocurrent, so there is no need or interest to further analyze
the phenomenon.

3.3 Photocurrent

The simulation of the photocurrent requires also the simulation of the light
propagation through the waveguide and the device. For this reason, a 3D
simulation is essential, especially to simulate the evanescent coupling of the
light between the silicon substrate and the germanium absorber. The light
propagation problem is solved by RSoft, first calculating the mode in the
waveguide and then using FDTD to solve Maxwell’s equations and to cal-
culate the optical power distribution inside the device (see 2.4). From the
optical power is possible to obtain the optical generation rate of carriers due
to the absorption of the photons. The optical generation profile is then used
in the 3D TCAD simulation performed with Sentaurus to solve another time
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the DD model, obtaining the total current, which is the sum of the dark cur-
rent and the photocurrent. Since the photocurrent is on the order of mA,
while the dark current is only, in the worst case on the order of hundreds of
nA, we can consider the latter negligible under illumination.

The photocurrent is generated by the absorption of photons in the ger-
manium absorber, which depends on the optical parameters of the material,
more precisely by the absorption coefficient α. The absorption coefficient is,
in turn, related to the extinction coefficient k, which is the imaginary part
of the refractive index:

n(λ) = n+ ik (3.1a)

α(λ) =
4πk(λ)

λ
(3.1b)

The absorption coefficient is directly related to the absorption process of a
photon in a material. To absorb a photon it must have at least an energy
equal to the band gap of the material. The transition probability is also
influenced by the type of bandgap, direct or indirect, and by the presence of
trap states generated by impurities, which could increase the probability of
absorption for photons with energy lower than the bandgap since they are
placed inside. If the material presents strain, it modifies the energy bands’
shape and position, which also can change dramatically the absorption prob-
ability. In the device studied in this work, the germanium absorber is grown
epitaxially in the silicon substrate, which, because of the lattice mismatch
of 4.2%, is affected by strain. The literature contains much data about
bulk germanium but lacks studies and measurements on thin layers, and
the effect of strain due to the material where they are grown on. In one of
these studies, done by Sorianello et al. [24], high variability in the absorp-
tion coefficient between bulk and thin film can be observed. From this, it is
possible to deduce that the absorption coefficient is strongly dependent on
the production process of the material and possible sources of strain such
as interfaces with different materials with different lattice constants, and
that also the dimension of the material must be considered. This generates
a high variability of the absorption coefficient, which increases even more
if we consider pathological cases like the C-Band wavelength (1.55 µm) in
the germanium, which is positioned in the absorption threshold, the region
with the higher variation, and is also the one used in the measurement of
Lischke et al. In literature is possible to find multiple sets of data for the
complex refractive index of the germanium. Still, they are almost all from
bulk material and they show high variability in the threshold region as can
be seen in figure 3.6. All the presented results, if not differently stated, are
simulated for an applied voltage of −2V, as in the reference paper from
Lischke et al.

The resulting photocurrent simulated using these sets of data is shown
in figure 3.7.
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Figure 3.7: Photocurrent of Device 1 and Device 2 for the three sets of data
of absorption coefficient presented in figure 3.6 (λ = 1.55 µm). The higher
volume of the germanium region in Device 2 results in a higher value of
photocurrent and thus of responsivity with respect to Device 1.
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Data Responsivity Quantum efficiency
(A/W)

Sentaurus 0.597 0.478
F. Schäffler 0.054 0.043
T. N. Nunley et al. 0.216 0.173

S. Lischke et al. 0.3 0.24

Table 3.1: Responsivity and Quantum efficiency calculated from the pho-
tocurrents in figure 3.7 for Device 1 and λ = 1.55 µm.

Data Responsivity Quantum efficiency
(A/W)

Sentaurus 0.672 0.538
F. Schäffler 0.111 0.089
T. N. Nunley et al. 0.340 0.272

S. Lischke et al. 0.45 0.36

Table 3.2: Responsivity and Quantum efficiency calculated from the pho-
tocurrents in figure 3.7 for Device 2 and λ = 1.55 µm.

As can be observed from the figure, there is high variability in the results
depending on the set of data used in the simulation. This can be seen also
in table 3.1 and 3.2 which show the calculated responsivity and quantum
efficiency in the three cases. It can be concluded that to have a precise
prediction of the photocurrent and responsivity it would be necessary to
have a dataset for the absorption coefficient specific for the considered case,
especially for thin layers of material like in the case described in this work,
where the material cannot be considered bulk and the strain is not negligible.

More reliable results could be obtained for the O-Band, where the depen-
dence from strain and dimension is lower. There is no data for comparison
from the reference paper to validate the results, but it is still useful to analyze
the difference with the C-Band case presented until now. The photocurrent
in the O-Band is shown in figure 3.8. As expected, it presents a lower vari-
ability between the three sets of data for the absorption coefficient. Table
3.3 and 3.4 show the calculated responsivity and internal quantum efficiency,
which are higher than the C-Band case due to the higher absorption.

3.4 Electro-optic frequency response

The electro-optic frequency response is obtained by calculating the small-
signal of the current with respect to the optical power density in input (see
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Figure 3.8: Photocurrent of Device 1 and Device 2 for the three sets of data
of absorption coefficient presented in figure 3.6 (λ = 1.31 µm).

Data Responsivity Quantum efficiency
(A/W)

Sentaurus 0.850 0.680
F. Schäffler 0.704 0.563
T. N. Nunley et al. 0.723 0.583

Table 3.3: Responsivity and Quantum efficiency calculated from the pho-
tocurrents in figure 3.8 for Device 1 and λ = 1.31 µm.

Data Responsivity Quantum efficiency
(A/W)

Sentaurus 0.862 0.690
F. Schäffler 0.762 0.610
T. N. Nunley et al. 0.771 0.617

Table 3.4: Responsivity and Quantum efficiency calculated from the pho-
tocurrents in figure 3.8 for Device 2 and λ = 1.31 µm.
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Figure 3.9: Electro-optic frequency response of Device 1 and Device 2.

f−3dB (GHz)
Device 1 Device 2

simulation 257.2 208.1
S. Lischke et al. 265 240

Table 3.5: Comparison simulated and measured cut-off frequency from figure
3.9.

2.3). In figure 3.9 the simulation results for Device 1 and Device 2 are com-
pared to the measurements from the paper. The curves of the measurements
have a particularly noisy behavior, different from the single pole low-pass
filter expected from a photodetector, and also reproduced from the simula-
tion. This is probably due to external effects caused by the measurement
instruments. Table 3.5 compares the cut-off frequencies measured and sim-
ulated, showing a difference of around 7.8GHz between the two for Device
1, which correspond in a relative error of only around 3%. For Device 2 the
difference is greater, of 31.9GHz, corresponding to a relative error of 12%.
The reason for which the model predicts with less accuracy the results for
Device 2 is because the device geometry for the simulation was created using
as a reference the section shown in 1.6 with belongs to Ge 100 10 (Device
1 ). In fact, the geometry for Device 2 is simply the one of Device 1 with an
offset of 50 nm in the germanium absorber width. The complete lack of de-
tails about the geometry could be the main reason for this inaccuracy in the
results since both the RC limit and the transit time limit of the bandwidth
are strongly affected by the geometry.

The results shown in figure 3.9 are calculated using the absorption coeffi-
cient dataset from T.N. Nunley et al. However, the dataset chosen does not
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Figure 3.10: Comparison electro-optic frequency response of Device 1 and
Device 2 for the three dataset of the absorption coefficient. It can be easily
seen that there is almost no dependence of the curves on the dataset chosen
for the simulation.

have a great impact on the productivity of the simulation, since, as shown
in figure 3.10, the difference between two different datasets for the Device 1
is less than 4GHz in the worst case, and for Device 2 is so small that can
be considered negligible.

3.5 Simulation in O-Band

Until now, all the results presented were simulated in C-Band to be com-
parable with the experimental results. However, given all the peculiarities
and problems of this specific wavelength in the simulation, in this section,
where are presented simulation results with no experimental counterpart,
the wavelength used will be 1.31 µm (O-Band), while the dataset used for
the absorption coefficient will be the one from F. Schäffler which is plenty
validated for this wavelength [25, 26, 27].

Figure 3.11 compares the electro-optical bandwidth calculated for the
two wavelengths. The two results are almost equal, with a slightly higher
value for the O-Band. More precisely, the O-band presents a cut-off fre-
quency of 261.1GHz for Device 1 and 210.2GHz for Device 2, while in
C-Band they are equal to 254GHz and 208GHz (the values are different
from the values in table 3.5 because they are calculated with the absorption
coefficient dataset from F. Schäffler).
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Figure 3.11: Comparison electro-optic frequency response of Device 1 and
Device 2 between O-Band and C-Band.

3.5.1 Waveguide optimization

To maximize the performance of the device, it is necessary to have good
confinement of the optical power inside the input waveguide. If the light
is not well confined part of the optical power is lost in the oxide before
reaching the photodiode. The waveguide must also be monomodal since the
fundamental mode has the best shape to concentrate the light toward the
active region. If the waveguide is too large it would not focus the light into
the germanium region. Instead, if it is too thin it would not confine the field
correctly. An electromagnetic field is confined if the effective index of the
propagating mode is contained between the cladding’s refractive index and
the core’s refractive index. An effective index over the core value would mean
that the mode cannot propagate, while if it is under the cladding value it is
not confined, and the light irradiates outside the core. Figure 3.12a shows
the variation of the effective index with respect to the optical waveguide
width for the O-Band and C-Band, while figure 3.12b compares the values
with the refractive index of the core (silicon), and cladding (silicon oxide),
showing that the light is better confined in the O-Band for the same value
of thickness since the relative curve is more distant from the refractive index
of the cladding.

Only the optical power that reaches the germanium region contributes to
the photocurrent, so good confinement of the field is essential to maximize
the responsivity of the device. The variation of the responsivity as a function
of the optical waveguide width is presented in figure 3.13. The case in O-
Band shows a maximum at 220 nm of thickness, and 350 nm for the C-Band.
The effective index, however, continues to rise in value even after the peak
of responsivity for both cases, which means that there is also another effect
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Figure 3.12: Figure (a) shows the variation of the effective index for the
O-Band and C-Band with respect to the optical waveguide width for the
fundamental mode. Figure (b) compares the curves to the values of the
refractive index of the core and cladding to determine is the field is confined
or not.

at play, which is supposedly the evanescent coupling with the germanium
region, meaning that there is an optimal value of coupling determined by
the ratio between the geometrical size of the waveguide and the base of the
germanium depending on the wavelength of the light. A more thorough
investigation would be however necessary to validate this assumption.

There is no information about the waveguide dimensions in the paper of
Lischke et al. Therefore, in the simulations, an arbitrary value of 200 nm is
used in both height and width.

Regarding the electro-optical frequency response, as can be expected,
there is no particular dependence with respect to the optical waveguide
geometry.

3.5.2 Effects of the applied voltage bias

Varying the applied voltage bias to the detector it is possible to observe an
increase in responsivity (fig.3.14), especially in the case of Device 1.

Normally a photodiode should show almost no dependence on the respon-
sivity with respect to the applied bias, which should be only high enough to
ensure that all carriers are collected from the active region before recombin-
ing and that the saturation velocity is reached, to maximize the bandwidth.
The presence of an increase in responsivity for higher voltages means that
the reverse current of the pin diode is no more in saturation, but it reached
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Figure 3.13: Dependence of responsivity with respect to the optical waveg-
uide thickness in Device 1 for O-Band and C-Band.
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Figure 3.14: Dependence of responsivity with respect to the applied reverse
bias.
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(b) Avalanche generation

Figure 3.15: The left figure shows the electric field and avalanche genera-
tion along x-direction for a cross-section of the device (Device 1 ) positioned
0.5 µm after the point of connection between the waveguide and the detector
(z-direction) at the height for which the germanium absorber thickness is
minimum (y-direction).

breakdown. The breakdown is caused by the avalanche generation that hap-
pens when the electric field is high enough to accelerate carriers enough to
cause impact ionization. Figure 3.15 shows the profile along the x-direction
in a cross-section of the device for multiple values of voltage bias in Device
1. Figure 3.16, instead, shows the avalanche generation value at the center
of the germanium region with respect to the voltage for both devices.

The avalanche generation is much higher in Device 1 with respect to
Device 2 because the same voltage is applied in a smaller intrinsic region,
resulting in a higher value for the electric field, meaning that the thinner de-
vice goes in breakdown before the larger one. The presence of the avalanche
effect, however, is not positive for the device because, even if it increases
the responsivity, it also causes a decrease of the bandwidth due to the time
necessary for the avalanche build-up [10] as shown in figure 3.17. In both
cases, the bandwidth shows a maximum around 1V, right before the build-
up effect starts to be prevalent.

The bandwidth-efficiency product summarizes the effect of avalanche
generation on the device (figure 3.18), showing, for Device 1 an increase in
the overall performance until around 1V, before increasing again. However,
the second increase is due to the avalanche effect that increases the respon-
sivity more than it reduces the bandwidth, causing an overall increase in the
band-efficiency product. In the case of Device 2, the curve remains flat after
the initial increase because there is no significant avalanche in the simulated
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Figure 3.16: Variation of the avalanche generation with respect to the ap-
plied voltage for the same cross-section as figure 3.15 at the center of the
germanium region (x = 0).
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Figure 3.17: Dependence of the cut-off frequency from the applied reverse
bias voltage for Device 1 and Device 2.
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Figure 3.18: Dependence of the Bandwidth-efficiency trade-off from the ap-
plied reverse bias.

range of voltages.
Since this device focuses on reaching the highest bandwidth possible, is

better to avoid the avalanche effect. This simulation shows that an optimal
value to maximize the bandwidth is around 1V. However, it would not be
the same for the measured device, since the simulation applies the voltage
directly to the pin junction without considering the voltage drop on the
contacts, which can be significant. In any case, a slightly lower applied
voltage of at least a few tenths of a volt would probably slightly increase
the bandwidth in the real device (only for the thinner device equivalent to
Device 1 ).

3.5.3 Effects of the Ge width

Variating the germanium region width, the active region of the device, the
number of photogenerated carriers changes, causing a consequent variation
in the responsivity as shown in figure 3.19. The effective width used in the
graph is calculated as a mean value with respect to the concave shape of the
germanium. The responsivity shows a noisy and slightly parabolic behavior
(the curvature is emphasized by the figure scale), which presents a minimum
for a width around 100 nm.

The behavior of the responsivity can be explained by considering the
single contributions to the responsivity. From figure 3.20a can be observed
that, increasing the thickness of the germanium, the total generation in the
volume increases. The blue curve represents the contribution to the gen-
eration rate of the germanium only, while the red curve is an integration
of the generation rate on the entire device, taking also into consideration
the generation in the silicon. The optical generation alone explains only the
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Figure 3.19: Dependence of the responsivity from the effective width of the
germanium region.

increase of responsivity at the increase of the absorber volume. The high
values of responsivity for low values of germanium width can be explained by
the avalanche effect (yellow curve) which is particularly high when the ger-
manium is thin due to the consequent increase in the electric field. Adding
up both the optical generation and the avalanche generation we obtain a to-
tal generation rate represented by the violet curve. Figure 3.20b shows the
optical generation rate integrated on the volume of the germanium region
and divided by the same volume. It represents an evaluation of the efficiency
of the device to generate photons with the same optical power in input. The
decrease in efficiency for higher values of width is due to the lower uniformity
of the generation rate compared to smaller germanium regions.

From the sum of the optical and avalanche generation rates is possible to
calculate a responsivity and quantum efficiency that take into consideration
only these contributions (figure 3.21). In figure 3.22 they are compared with
the results obtained by the complete simulation. The difference between the
curves is given by the fact that considering only the optical and avalanche
generation for the calculation is equivalent to considering the device ideal.
That difference is given by the recombination processes that recombine part
of the carriers before they are collected by the contacts.

The variation of the germanium width affects also the bandwidth since
a wider absorber means a higher transit time (lower transit time limit),
but also a smaller capacitance (higher RC limit). Figure 3.19 shows the
dependence of the cut-off frequency in function of the germanium width. The
behavior is the one expected from the pin detector theory (chapter 1.2.4).
The only difference is that from the analysis on the responsivity we now know
that under around 50 nm of thickness the avalanche generation overcomes
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Figure 3.20: (a) Generation rates in Device 1 in function of the germanium
region thickness. (b) Optical generation rate in the germanium region of
Device 1 mediated on the volume for different values of the absorber thick-
ness.
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Figure 3.21: Responsivity (a) and quantum efficiency (b) in Device 1 due
to the optical and avalanche generation rates.
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Figure 3.22: Responsivity (a) and quantum efficiency (b) in Device 1 due
to the optical and avalanche generation rates compared to the total one.

the optical one, meaning that the decrease in bandwidth for smaller values
of germanium width is due not only to the capacitive effects but also to the
avalanche build-up time.

3.5.4 Effects of the carrier saturation velocity

The saturation velocity is an important parameter of the carriers defined by
the transport properties of the material, more specifically the mobility. To
have the maximum bandwidth possible it is important that the electric field
in the absorber is high enough to permit electrons and holes to reach the
saturation velocity. This is one of the reasons for which the device must be
in low power injection condition, so that there is no screening of the electric
field in the germanium, avoiding a reduction of the electric field, which
would also cause the PI characteristic to be no more linear. The value of
saturation velocity used for all previous simulations was 0.743× 107 cm s−1.
The dependence of the bandwidth with respect to the saturation velocity
is shown in figure 3.24 displaying an almost linear behavior. The difference
in cut-off frequency between Device 1 and Device 2 is due mainly to the
transit time, which increases with the increase in the germanium width. The
figure makes clear that a precise value of saturation velocity is needed for
a correct simulation of the bandwidth, which is however difficult to obtain
given the scarcity of information on electrical properties for the germanium
in literature. The saturation velocity depends also on the production process
of the germanium since it depends on the mobility, which is related to the
band structure of the material which, in turn, is affected by material strain
and the presence of defects. In devices like the one studied in this work the
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Figure 3.23: Dependence of the cut-off frequency from the effective width
of the germanium region.

active region is thin enough that the overshoot in velocity of photogenerated
carriers could make up even half of the total path inside the absorber before
scattering enough to reach a stable value (saturation velocity). This permits
the carriers to travel faster than what would be expected by considering
only a constant velocity profile, which would make the saturation velocity
an inadequate estimation of the mean velocity of carriers inside the absorber
and consequently of the transit time [28].

3.5.5 Germanium shape

The particular biconcave shape of the photodetector’s active region was
chosen by Liscke et al. because, as they stated in their paper, thanks to
its smaller thickness in the center, where there is supposedly the maximum
optical power density, it improves the transit time limit by decreasing the
travel distance in the germanium for these photogenerated carriers. To
verify if this statement is valid, or at least reproducible in the simulation,
two different geometries for the germanium absorber are compared. One is
the already discussed biconcave shape in Device 1 and Device 2 and the
other is a rectangular shape with an effective width calculated as a mean
value of the curvature in the biconcave germanium. The calculated values
are 88 nm for Device 1 and 139 nm for Device 2. A comparison between the
two geometries is shown in figure 3.25.

The simulation results for the photocurrent are shown in figure 3.26a.
Device 1 shows a slightly higher photocurrent for the rectangular shape,
while for Device 2 is the opposite. For the electro-optical frequency re-
sponse, presented in figure 3.26b, the rectangular shape has better band-
width in both devices, especially in Device 1, while for Device 2 it is almost
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Figure 3.24: Dependence of the cut-off frequency from the saturation veloc-
ity of electrons and holes. The same value of saturation velocity was used
for both carriers.

(a) Biconcave (b) Rectangular

Figure 3.25: Comparison between the biconcave and rectangular geometries
for the germanium absorber. The left figure is taken from the simulation of
Device 1, while the figure on the right is obtained with effective width from
the same device.
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Figure 3.26: Photocurrent and Electro-optical frequency response compari-
son between the rectangular and biconcave shape for the germanium region.

Device Responsivity Cut-off frequency
(A/W) (GHz)

1, biconcave 0.704 261.1
1, rectangular 0.752 270.9
2, biconcave 0.762 210.2
2, rectangular 0.729 211.8

Table 3.6: Responsivity and cut-off frequency comparison between the rect-
angular and biconcave shape for the germanium region.

equal. A numerical comparison is presented in table 3.6 in the form of re-
sponsivity and cut-off frequency. The reason why the rectangular-shaped
germanium has a better responsivity in Device 1 with respect to Device 2
is probably because of the presence of avalanche generation which starts to
give a little increment in the photocurrent without impacting particularly
the bandwidth that remains higher than the biconcave counterpart for De-
vice 1. This is probably due to the transit time limit contributions of the top
and bottom sections in the biconcave case that have more weight in limiting
the bandwidth than the avalanche effect in the rectangular case.

From the simulations, there appears to be no particular advantage in
the biconcave shape with respect to the rectangular one. Apparently, it
is also slightly detrimental. Moreover, the mention of the optical power
density being more concentrated in the thinner region of the biconcave shape
seems to be not completely true. In figure 3.27 the distribution of the
optical generation rate along the z-direction in the center of the absorber is
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Figure 3.27: Distribution of the optical generation rate in Device 1 in the
yz-plane for x = 0. a) case with the biconcave germanium. b) case with the
rectangular germanium.

presented and shows that, for both geometries, in the initial few micrometers
where the majority of the photogeneration happens, there is no specific
preferential position in the vertical (y) direction of the absorber. Figure
3.28 shows the distribution in the xy-plane cross-section of the device for
z = 0.6 µm which is the position showing the higher concentration of optical
generation in the center of the device, which is still relatively limited to
the lower section of the germanium, especially for the biconcave shape that
seems to limit the propagation of the light over the geometric bottleneck in
the center.

Even if none of the simulation results seems to be in favor of the novel
shape proposed by Lischke et al., it is also true that the effective width
used for the comparison could be not adequate since it is possibly more
complicated to produce a thinner rectangular germanium region than using
the equivalent biconcave germanium. Therefore, further studies with more
information about the real samples would be necessary to determine if this
shape can improve or not the device’s performance.
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(a) Biconcave (b) Rectangular

Figure 3.28: Distribution of the optical generation rate in Device 1 in the
xy-plane for z = 0.6 µm. a) case with the biconcave germanium. b) case
with the rectangular germanium.
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Chapter 4

Conclusions

In conclusion, this work presented a 3D multiphysics simulation framework
based on Drift-Diffusion and Finite-Difference-Time-Domain methods for
lateral waveguide pin photodetectors (LWPD) capable of predicting accu-
rately the device bandwidth even in sophisticated devices and bandwidth
higher than 200GHz, with a mean error of 8%. This demonstrated the
simulation framework’s capability to simulate LWPD devices with complex
geometries and high bandwidth with good reliability.

A simulation gives also much more versatility in studying the device
performance with respect to direct measurements on a produced sample, as
shown in the results section (chapter 3), permitting analysis and optimiza-
tion of the device by modifying both the geometry and material’s electrical
and optical properties. Many critical points were highlighted in this work,
such as the need for exhaustive and precise data on the material’s properties
to correctly simulate the device’s dark current and photocurrent (responsiv-
ity). The dark current is particularly affected by the presence of defects
and strain caused by the heterojunction with silicon, the diffusion of doping
on the germanium, and the production process. The photocurrent depends
mainly on the absorption coefficient, which lacks precise data in the liter-
ature for the C-Band (λ = 1.55microm), and on the avalanche effect that
gives a not negligible contribution in devices with a thin absorption region
such as the one studied in this work. The electro-optical bandwidth, instead,
is mainly affected by the geometry and the carrier saturation velocity, but
thanks to the smaller number of not controllable parameters, it is much
more reliable in simulation results as has been demonstrated in this work.

Many aspects were investigated, such as the effects on the device of the
applied voltage bias, the variation of the germanium region geometry, dif-
ferences in the responsivity for different sets of data for the absorption coef-
ficient of the germanium, and variation in the carrier transport parameters,
such as the saturation velocity.

A more extensive study on the saturation velocity effects in the LWPD’s
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electro-optical bandwidth was presented in the 23rd International Confer-
ence on Numerical Simulation of Optoelectronic Devices (NUSOD) based
on the same simulation framework developed in this thesis work [28].
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Appendix A

Electronic band structure
and effective mass
approximation

The electronic band structure of a material is defined by its atomic struc-
ture and composition. A semiconductor is a crystalline material, implying
a periodicity in its atomic structure and the consequent definition of a unit
cell in the direct space1. The periodic arrangement of atoms also implies a
periodicity in the total Coulomb potential obtained from the superposition
of all contributions from the single atoms. The motion of electrons and holes
in the material is ruled by quantum mechanics and Schrödinger’s equation
where the periodic potential is considered. From the solution of the equa-
tion, it is possible to obtain the energy dispersion relation E(k) that defines
the allowed energy states for the carriers in the function of the wavevector
k, a term related to the linear momentum p from the relation k = ℏp. The
band structure of the semiconductor is so obtained by representing the dis-
persion relation in the reciprocal space2. Thanks to the periodicity, the band
structure can be limited to the Brillouin First Zone, which is the equivalent
in the reciprocal space of the unit cell. The band structure is composed of
multiple bands subdivided into two groups, the conduction bands and the
valence bands, divided by a region with no allowed energy states, called band
gap. This region is specifically defined as the distance between the minimum
of the conduction band and the maximum of the valence band. The com-
plete band structure of a material is very complicated and often it is not
necessary to consider it in its entirety to study the electron transport of a
semiconductor. In fact, the higher contribution to the transport is given

1Direct space, or direct lattice, is the real coordinate space Rn where the dimensions
of the material’s lattice structure are defined.

2Reciprocal space, or reciprocal lattice, is the Kn space generated using as a base the
wavevector k components.
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by the energy states near the band gap, which are positioned in the mini-
mum and maximum of the conduction and valence band respectively. This
means that it is possible to approximate the entire band structure consid-
ering only a fitting in these two regions. The maximum and minimum are
approximated with a parable using a second-order Taylor expansion. This
approximation is known as effective mass approximation. The two parables
are used to define a parameter that represents the transport properties of
the material, and that will characterize the motion of the respective carriers,
called effective mass. The effective mass can be defined starting from the
definition of momentum for a free electron p = mnvn, where vn is the speed
of the electron, and mn is the rest mass. The energy of a free electron is
defined as:

E(k) =
ℏ2k2

2mn
(A.1)

The idea behind the effective mass approximation is to treat electrons and
holes as if they were in free space (free electron gas), but with a corrected
value of rest mass that accounts for the properties of the material and its
periodic potential. This is possible using the definition of electron velocity
in a crystal lattice periodic potential (whose demonstration can be found in
[29]):

vn(k) =
1

ℏ
∇kEc(k) (A.2)

so, putting together the definition of crystal momentum with the definition
of linear momentum p = ℏk = mnvn, and considering the new definition for
electron velocity written above:

ℏk = mnvn (A.3a)

ℏk =
m∗

n

ℏ
∇kEc(k) (A.3b)

(m∗
n)

−1 =
1

ℏ2
∇kEc(k) (A.3c)

where mn becomes m∗
n since now we are considering no more a free electron

but an electron interacting with the periodic potential. The equation (A.3c)
is the definition of electron effective mass. An equivalent reasoning can be
applied to find the hole effective mass, so the definitions for the electron and
hole effective masses are:

(m∗
n)

−1 =
1

ℏ2
∇kEc(k) (m∗

p)
−1 =

1

ℏ2
∇kEv(k) (A.4)

where Ec(k) and Ev(k) are the parabolic approximations of the dispersion
relation for the conduction band and the valence band respectively:

En − Ec ≈
ℏ2k2

2m∗
n

Ev − Ep ≈
ℏ2k2

2m∗
p

(A.5)

where En is the electron energy and Ep the hole energy.
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Appendix B

Heterojunction between Ge
and Si

Given the difference in band gap between germanium and silicon, a discon-
tinuity is generated in the interface for both the conduction and valence
bands (Type II heterojunction). However, while the discontinuity in the
conduction bands gives no problems, the one in the valence band generates
a barrier hindering the convergence of the simulation out of equilibrium (fig-
ure B.1a). Fortunately, due to the multiple heating processes needed during
the production, there is a bit of diffusion of atoms between the two mate-
rials that relaxes slightly this discontinuity, removing at least partially the
barrier. In the simulation, the doped silicon regions and germanium region
are simulated as a silicon-germanium alloy with a molar fraction profile set
to zero in the silicon and to one on the germanium. The transition in the
interface behaves like an Error function to have a smooth variation between
the two materials as can be observed in figure B.2. This removes completely
the barriers in the valence band solving the convergence problems for the
Drift-Diffusion simulation (figure B.1b).
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Figure B.1: Band diagram of the device considering a germanium width of
100 nm centered in x = 0. The left figure shows the case with an abrupt
junction and the consequent discontinuity. In the right figure, the graded
junction solves the problem, removing the barrier in the valence band.
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Figure B.2: Molar fraction profile in the interface between silicon and ger-
manium.
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Appendix C

Simulation mesh

A simulation mesh is a spatial map of points in which the simulation is
performed. every point is associated with a spatial domain. In one dimen-
sion the associated domains are segments, in two dimensions are triangles,
and in three dimensions are tetrahedra. Not all regions of the device need
to be mapped with the same density of points, but instead, it is better to
have a non-uniform mesh to reduce the computational weight and to fo-
calize the simulation only where there are strong variations in the various
physical quantities. This is also required to make the simulation converge.
Moreover, these are also often the regions where the phenomena we are in-
terested in observing happen. For this project, the complicated shape of
the germanium region and the presence of a mole fraction profile add an
ulterior complication to the mesh definition. A cross-section of the device
(figure C.1) shows the distribution of the mesh points that increase in den-
sity near the junction to reproduce correctly the molar fraction profile. A
denser mesh is maintained for the entire region of germanium since it is
the focal part of the photodiode. A particularly dense mesh can be seen as
well in the small silicon region over the germanium. It is implemented to
represent correctly the small Error function profiles of both p and n doping
introduced to simulate the slight diffusion of doping in the intrinsic silicon
due to the thermal processes used during the production. The optical sili-
con waveguide, the silicon substrate, and the metal contacts have a constant
rough mesh to decrease the simulation weight since they are not the focus
point of the simulation. In the z-direction, the mesh is even more lax since
there is no variation in the electrical properties.

The FDTD method, used to simulate the optical propagation of light,
uses a different mesh with respect to the electrical simulation. The Yee’s
algorithm used in FDTD discretizes the electric and magnetic fields in space
in a cubic grid, which means that the most natural choice is a mesh that is
also cubic. Differently from the mesh for the electrical problem, the optical
mesh cannot be easily refined in the different regions of the device, so it
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remains equal in size in the entire simulation domain.
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