
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Position Stabilization of Drones in Indoor
Environments: Evaluation of Sensors and
Techniques and Integration into the PX4

Flight Control Software.

Supervisors

Prof. Alessandro RIZZO

Candidate

Dario CATANIA

OCTOBER 2023

Abstract

In the last years, unmanned vehicles are gaining a lot of interests all over the
world, due to their capability of adapting functionalities to always different and
various applications. For example, just think that, in some countries, drones deliver
food directly at your home. So, the application of drones is mainly intended to
optimize already existing processes, to reduce the risk of injuries or even save lives
(like search and rescue applications), covering a wide range of scenarios, such as
smart agriculture, emergency situations and safety inspections. This master’s thesis
investigates the critical aspects of indoor drones, focusing on the development
and enhancement of position stabilization techniques, sensor evaluation, and the
integration of these advancements into the PX4 flight control software. As most of
the standard solutions implemented in drone navigation rely on GNSS positioning,
indoor navigation represents one of the main challenges to be managed. The UAV
uses a camera to give the pilot an overview of the drones surroundings, and a set of
IMUs and Barometers to give the drone a reliable reference system. This thesis was
born in order to improve the already existing positioning system for simplifying
the inspection of the UAV in endangered situations. A way to do that is the use
of range sensors to regulate the distance of the drone from a wall or from certain
objects.

Table of Contents

List of Figures iv

Acronyms vii

1 Introduction 1
1.1 Objective of the Thesis . 1
1.2 Organization of the thesis . 1

2 PX4 Autopilot, Architecture and Control System 3
2.1 PX4 System Architecture . 3

2.1.1 Flight Stack . 4
2.1.2 Middleware . 5
2.1.3 Runtime Environment . 6
2.1.4 uORB . 7
2.1.5 MAVLink . 13
2.1.6 QGroundControl . 15

2.2 PX4 Control Architecture . 18
2.2.1 Position Control . 19
2.2.2 Velocity Control . 19
2.2.3 Attitude Control . 20
2.2.4 Angular Rate Control . 21

3 Configuration, Model of the Drone and Sensors 23
3.1 Gazebo . 27
3.2 SDF File . 31
3.3 Gazebo and PX4 connection . 34

4 Custom Control Algorithm, "Horizontal-Lock" 37
4.1 Definition of the Orientation Angle 39
4.2 Angle_correction Topic . 45
4.3 Creation of the Flight Task Modules 45

ii

4.4 The Altitude Algorithm . 49
4.5 The Angle Algorithm . 56
4.6 The Position Algorithm . 58

5 Testing: Results and Troubleshooting 61
5.1 Problems in the Position Mode . 61
5.2 Problems in the Angle Measurement 62
5.3 Measurements and Results . 64

6 Conclusions 68

A Codes 70
A.1 AngleCorrector.cpp . 70
A.2 AngleCorrector.hpp . 74
A.3 FlightTaskDistanceAltitude.cpp . 76
A.4 FlightTaskDistanceAltitude.hpp . 85
A.5 FlightTaskDistancePosition.cpp . 89
A.6 FlightTaskDistancePosition.hpp . 92

Bibliography 94

iii

List of Figures

2.1 PX4 system that includes both a flight controller and a companion
computer . 4

2.2 Building blocks of the flight stack 5
2.3 uORB Publication/Subscription Graph. For full graph see the reference 8
2.4 Over-the-wire format for a MAVLink 2 packet 14
2.5 Example of a paramenters list on QGC 16
2.6 Output of the QGC console of the command ls/obj 17
2.7 Output of the QGC console of the command uorb status 17
2.8 Multicopter Control Architecture 18
2.9 Position controller block scheme . 19
2.10 Velocity controller block scheme . 20
2.11 Attitude controller block scheme . 21
2.12 Angular rate controller block scheme 22

3.1 STM32h7x board . 24
3.2 ST-Link . 24
3.3 Block scheme of a HITL simulation environment 26
3.4 Model of the iris_hitl on Gazebo 28
3.5 Gazebo empty world . 29
3.6 Gazebo world modified for simulation purposes 31
3.7 Model of the iris_hitl after the integration of the 2 distance sensors 34
3.8 Chart of the communication lines in the Gazebo SITL simulation . 34

4.1 Handwritten scheme to understand a possible configuration drone-wall 40
4.2 A possible sensors-wall configuration used to calculate the generic

formula for the angle of inclination 42
4.3 From above, physical scheme of the sensors placed on top of the drone 43
4.4 Flow chart of the angle correction algorithm 44
4.5 Operating scheme of the altitude algorithm 50
4.6 Where the angle algorithm is added in the altitude operating scheme 56
4.7 Operating scheme of the angle algorithm 57

iv

5.1 Manual control inputs for X/Pitch (in green) and Y/Roll (in red)
over time . 63

5.2 Diagrams of the local position of the drone in the X and Y axis over
time . 63

5.3 Diagram of the yaw_setpoint over time for a wrong algorithm . . . 64
5.4 Yaw input from the joystick over time 65
5.5 Yaw_setpoint over time, in red the drone is flying in manual, in

yellow in altitude . 65
5.6 Yaw angle over time. This refers to current heading of he drone and

it is due yaw inputs from joystick 66
5.7 Yaw angle over time . 66
5.8 Yaw_setpoint over time . 67

v

Acronyms

GPS
Global Positioning System

HITL
Hardware In The Loop

HW
Hardware

IMU
Inertial Measurement Unit

INT
Integer

MAVLink
Micro Air Vehicle Link

NAN
Not A Number

PID
Proportional Integral Derivative

QGC
QGroundControl

RC
Radio Control

vii

SDF
(Simulation Description Format

SITL
Software In The Loop

SW
Software

UAV
Unmanned Aerial Vehicle

uORB
Micro Object Request Broker

viii

Chapter 1

Introduction

1.1 Objective of the Thesis
In this thesis, I will evaluate the effectiveness of a position stabilization technique
for drones in indoor environments, such as industrial buildings or covered structures.
Lidar sensors will be mostly used, and their performance in terms of accuracy
and stability will be assessed. These sensors will be analysed and modified to
suits the aim of the control system. Another crucial aspect of this thesis will be
the integration of this position stabilization technique into the PX4 flight control
software. I will examine how the flight control system can utilize signals from
the sensors to stabilize the drone’s position and execute inspection missions safely
and efficiently. Additionally, the performance of the flight control system will be
evaluated concerning the stability of the drone’s position.

1.2 Organization of the Thesis
• Chapter 1 - PX4 Autopilot, Architecture and Control System: in

this chapter will be held a description of the PX4 environment, including the
architecture of the hardware and of the Control system.

• Chapter 2 - Configuration, Model of the Drone and Sensors: in this
chapter will be held a description of the simulation environment and on how
to customize it.

• Chapter 3 - Custom Control Algorithm, "Horizontal-Lock": in this
chapter will be held an analysis of the parts that compose the custom control
algorithm.

• Chapter 4 - Testing: Results and Troubleshooting: in this chapter

1

Introduction

will be presented all the issues encountered during the development and the
obtained results.

• Chapter 5 - Conclusions.

2

Chapter 2

PX4 Autopilot, Architecture
and Control System

PX4 is a platform-independent autopilot software, or firmware, that can drive
drones or unmanned vehicles. It can be programmed on some hardware (such
as Pixhawk), and together with the ground control station to form a completely
independent autopilot system. It is Developed by world-class developers from
industry and academia and supported by an active world-wide community.
One of the key strengths of PX4 is its hardware extensibility. This means that it
can be seamlessly integrated with a wide range of devices, including cameras and
sensors, to enable the development of diverse functionalities. By interacting with
the firmware, these integrated devices can enhance the capabilities of the autopilot
system and provide valuable data for advanced features and applications.
PX4 also offers different types of application programming interfaces (APIs) to
facilitate interaction with the system, like ROS (Robot Operating System) or
MAVSDK (MAVLink Software Development Kit). The one used in this work was
MAVSDK, a collection of libraries available for various programming languages to
interface with MAVLink systems. [1]

2.1 PX4 System Architecture

The PX4 organization of hardware (HW) and software (SW) is typically divided
into two high-level system configurations. The first configuration consists of a
standalone flight controller, while the second configuration includes both a flight
controller and a companion computer. The project at hand utilizes the latter

3

PX4 Autopilot, Architecture and Control System

configuration, which offers increased capabilities and flexibility.
At its core, PX4 is composed of two main layers: the flight stack and the middleware.
These layers provide distinct functionalities within the overall system architecture
The flight stack serves as the estimation and flight control layer of PX4. The
middleware is a general robotics layer of PX4 and it focuses on hardware integration
and internal/external communications.
By organizing PX4 into distinct layers, the system achieves modularity, extensibility,
and reusability. This architecture allows for customization and adaptation to
specific requirements, making PX4 a versatile platform for various unmanned
systems applications. [2]

Figure 2.1: PX4 system that includes both a flight controller and a companion
computer

2.1.1 Flight Stack

"The flight stack is a collection of guidance, navigation and control algorithms for
autonomous drones. It includes controllers for fixed wing, multirotor and VTOL
airframes as well as estimators for attitude and position.
The following diagram shows an overview of the building blocks of the flight stack.
It contains the full pipeline from sensors, RC input and autonomous flight control

4

PX4 Autopilot, Architecture and Control System

(Navigator), down to the motor or servo control (Actuators).
An estimator takes one or more sensor inputs, combines them, and computes a
vehicle state (for example the attitude from IMU sensor data).
A controller is a component that takes a setpoint and a measurement or estimated
state (process variable) as input. Its goal is to adjust the value of the process
variable such that it matches the setpoint. The output is a correction to eventually
reach that setpoint. For example, the position controller takes position setpoints as
inputs, the process variable is the currently estimated position, and the output is
an attitude and thrust setpoint that move the vehicle towards the desired position.
A mixer takes force commands (such as "turn right") and translates them into
individual motor commands, while ensuring that some limits are not exceeded.
This translation is specific for a vehicle type and depends on various factors, such
as the motor arrangements with respect to the centre of gravity, or the vehicle’s
rotational inertia" [3]

Figure 2.2: Building blocks of the flight stack

2.1.2 Middleware

"The middleware consists primarily of device drivers for embedded sensors, commu-
nication with the external world (companion computer, GCS, etc.) and the uORB
publish-subscribe message bus. In addition, the middleware includes a simulation
layer that allows PX4 flight code to run on a desktop operating system and control
a computer modelled vehicle in a simulated world." [3]
So, the device drivers within the middleware are responsible for managing embedded
sensors, allowing the autopilot system to gather data from various sensors such as
accelerometers, gyroscopes, magnetometers, and other peripheral devices. These
drivers provide a standardized interface for accessing and interpreting sensor data.
Moreover, the middleware facilitates communication between the autopilot system
and external entities, including companion computers and Ground Control Stations

5

PX4 Autopilot, Architecture and Control System

(GCS) which is essential for exchanging mission plans, telemetry data, and control
commands. Also, the uORB publish-subscribe message bus is a key component of
the middleware, providing a lightweight and efficient communication mechanism
within the PX4 system. It enables different modules and components to exchange
information by publishing messages to specific topics and subscribing to relevant
topics of interest. This publish-subscribe model ensures loose coupling between
components and allows for efficient data sharing and inter-module communication.
For the first part of the work, modifications will be made to the middleware to
incorporate the required sensors and establish the communication protocol with
the flight controller. This entails adding device drivers for the relative sensors
and implementing the necessary protocols to ensure seamless data exchange and
integration with the autopilot system. Instead, in the second part of the work,
modifications will be made to the flight stack itself. Specifically, a control system
for position stabilization techniques will be added. This involves enhancing the
existing flight stack with algorithms and modules that enable precise control of
the vehicle’s position, ensuring stability and accurate positioning during flight
operations.

2.1.3 Runtime Environment

"PX4 runs on various operating systems that provide a POSIX-API (such as Linux,
macOS, NuttX or QuRT). For our application NuttX will be used. It should also
have some form of real-time scheduling. The inter-module communication (using
uORB) is based on shared memory. The whole PX4 middleware runs in a single
address space and memory is shared between all modules. The system is designed
such that with minimal effort it would be possible to run each module in separate
address space. There are 2 different ways that a module can be executed:

• Tasks: The module runs in its own task with its own stack and process
priority. All the tasks must behave co-operatively as they cannot interrupt
each other.

• Work queue tasks: The module runs on a shared work queue, sharing the
same stack and work queue thread priority as other modules on the queue.
Multiple work queue tasks can run on a queue, and there can be multiple
queues

The advantage of running modules on a work queue is that it uses less RAM, and
potentially results in fewer task switches. The disadvantages are that work queue
tasks are not allowed to sleep or poll on a message." [3]

6

PX4 Autopilot, Architecture and Control System

NuttX

NuttX is a real-time operating system (RTOS) designed for embedded systems and
IoT devices. It provides a range of features, including pre-emptive multitasking,
inter-process communication, file systems, device drivers, and networking. Nuttx
has a modular architecture, allowing developers to choose which features to include
in their application and to build custom configurations to meet specific requirements.
The most relevant features are:

• NuttX supports pre-emptive multitasking, which allows multiple tasks to run
simultaneously and provides fast context switching.

• NuttX is designed to be lightweight and portable, with a small memory
footprint, making it suitable for use in systems with limited resources.

• NuttX is POSIX-compliant

• NuttX supports multiple file systems, including FAT, ROMFS, and NFS,
which makes it easier to work with data and store files.

• Support for a wide range of microcontrollers and SoCs including ARM, MIPS,
and AVR architectures. [4]

2.1.4 uORB

uORB is an asynchronous publish-subscribe messaging framework used in the PX4
flight control software stack, which is a popular open-source autopilot system for
unmanned aerial vehicles (UAVs). [5] uORB is designed to provide a lightweight
and efficient mechanism for inter-process communication (IPC) between modules
within the PX4 system. Before going ahead, here is an overview of the terminology
used to work with uORB in PX4:

• Message: defines the basic information format with a name and internal
values, like a language grammar. That information is stored into a struct.

• Topic: is a communication funnel where the message gets sent and received

• Publish / Subscribe: Sending out messages on a topic is called publishing,
and listening to a topic is called subscribing. Every topic therefore has at least
one publisher and one subscriber.

The publish-subscribe model of uORB allows modules to publish messages to specific
topics, and other modules to subscribe to those topics to receive messages. This

7

PX4 Autopilot, Architecture and Control System

asynchronous communication approach reduces the need for modules to explicitly
communicate with each other, which can improve system responsiveness and reduce
latency.

Figure 2.3: uORB Publication/Subscription Graph. For full graph see the
reference

In the PX4 ecosystem, numerous topics are already defined and connected with
their respective publishers and subscribers. A comprehensive list of these topics

8

PX4 Autopilot, Architecture and Control System

can be found on the PX4-Autopilot GitHub repository [6]. However, there may be
situations where a new topic needs to be created from scratch. To add a new topic,
one must create a new .msg file in the msg/ directory and add the file name to the
msg/CMakeLists.txt list. This triggers the automatic generation of the necessary
C/C++ code. Each generated C/C++ struct includes a uint64_t timestamp field,
which is used by the logger. It is important to ensure that this field is properly filled
in when publishing a message since that variable plays a crucial role in maintaining
temporal information and synchronization within the PX4 system. To use a topic
in the code, it is sufficient to include the corresponding header using the format:
#include <uORB/topics/topic_name.h>
The entirety of the connections between modules and topics can be seen here:
https://docs.px4.io/main/en/middleware/uorb_graph.html
where in colour we see the topics and in grey the modules. If a module is subscribed
to a topic the connecting line will be a solid line. Instead, if a module is publishing
in a topic, the line will be dashed.(see figure 2.3)
ORB stands for “Object Request Broker” and that explains very well the role of this
system. But since PX4 is running on an embedded system like a micro-controller
on a flight control board, the ORB needs to be small and lightweight. That’s
why it’s named u-ORB, since it’s a micro (symbolized as u) sized Object Request
Broker. We can generalize it saying that “uORB works like a librarian who keeps
track of information, while communicating with people. Customers have a notion
of ‘Topic’ as the book they are writing / reading from. But only the librarian can
actually touch, write, and read the book. Therefore, customers never actually get
to interact with the physical book itself.” [7] For identifying and differentiating
between different topics within the system, uORB uses the ORB_ID(topic_name)
macro. A macro is a programming construct that allows for the definition of
reusable code snippets or statements. In reality, it’s just a pointer to the topic’s
metadata instance. This is a struct which includes information about the specific
topic:

/**
* Object metadata.
*/
struct orb_metadata{

const char *o_name; /**< unique object name */
const uint16_t o_size; /**< object size */
const uint16_t o_size_no_padding; /**< object size
w/o padding at the end (for logger) */
const char *o_fields; /**< semicolon separated list
of fields (with type) */

9

PX4 Autopilot, Architecture and Control System

uint8_t o_id; /**< ORB_ID enum */
}; }

Full code: Link
When we build PX4, all the uORB topic headers (.h) and source files (.cpp)
are generated in the build folder in ‘uORB/topics/’ and ‘msg/topics_sources/’
respectively.

uORB Publishing

To publish messages, we use the uORB::Publication class. In the code we develop
a struct and fill it, then we publish it with the .publish() function.

bool publish(const T &data)
{

if (!advertised()){
advertise(); // Advertise publishing of the topic

}

return (Manager::orb_publish(get_topic(), _handle, &data) ==
PX4_OK);

}

Full code: Link
In the function there is a line where the advertised() function is called. If it
returns false, then advertise() is called. Basically the advertise() function calls
the ‘orb_advertise_queue()’ function to get the ORB topic advertiser handle. The
advertised() function simply checks if we have a valid ‘handle’ for advertising.
There the concept of queue is used. To keep a queue of data instead of overwriting
the data every time there’s a new publish event ensures that published messages
won’t be lost so easily since we have some buffer to preserve past publications.
However, having a queue takes more memory. Then, the publish() functions calls
the orb_publish() function through the return.

int uORB::Manager::orb_publish(const struct orb_metadata *meta,
orb_advert_t handle, const void *data)
{

// ...
return uORB::DeviceNode::publish(meta, handle, data);

}

10

https://github.com/PX4/PX4-Autopilot/blob/main/platforms/common/uORB/uORB.h
https://github.com/PX4/PX4-Autopilot/blob/main/platforms/common/uORB/Publication.hpp

PX4 Autopilot, Architecture and Control System

Full code: Link
The orb_publish takes three arguments: the topic’s metadata, the advertiser handle
and the pointer to the data itself. And this information gets passed straight to the
DeviceNode class, which is the ‘instance’ of the device file. This basically controls
the read/write of the data to the uORB topic in the memory. The orb_advert_t
handle is actually a pointer to the DeviceNode object tied to the specific topic’s
device file. So, every time publish() is called, a specific node will be created ad
stored into the /obj folder.

uORB Subscribing

To subscribe to a message, we use the uORB::Subscription class. In our code we
generate a struct and fill it through the .update() function

bool update(void *dst)
{

if (!valid()){
subscribe();

}

return valid() ? Manager::orb_data_copy(_node, dst,
_last_generation, true) : false;

}

Full code: Link
It is very similar to the Publication class. The _node object is the DeviceNode
pointer for the topic instance, just like the advertisement handle. It has a similar
check logic to verify if the _node is a valid pointer, and if not it subscribes to the
topic. Let’s figure out what the subscribe() function does.

// Subscribes to the topic
bool Subscription::subscribe()
{

// check if already subscribed
if (_node != nullptr) {

return true;
}

if (_orb_id != ORB_ID::INVALID && uORB::Manager::get_instance()){
unsigned initial_generation;

11

https://github.com/PX4/PX4Autopilot/blob/main/platforms/common/uORB/uORBManager.cpp
https://github.com/PX4/PX4-Autopilot/blob/main/platforms/common/uORB/Subscription.hpp

PX4 Autopilot, Architecture and Control System

void *node = uORB::Manager::orb_add_internal_subscriber(
_orb_id, _instance, &initial_generation);

if (node){
_node = node;
_last_generation = initial_generation;

return true;
}

}

return false;
}

Full code: Link
Basically the ‘uORB::Manager::orb_add_internal_subscriber’ gets called and
_node gets updated to the DeviceNode pointer returned from the function.

void *uORB::Manager::orb_add_internal_subscriber(ORB_ID orb_id,
uint8_t instance, unsigned *initial_generation)
{

uORB::DeviceNode *node = nullptr;
DeviceMaster *device_master =
uORB::Manager::get_instance()->get_device_master();

if (device_master != nullptr){
node = device_master->getDeviceNode(get_orb_meta(orb_id),
instance);

if (node){
node->add_internal_subscriber();
*initial_generation = node->get_initial_generation();

}
}

return node;
}

Full code: Link
The function ‘add_internal_subscriber’ of the DeviceNode updates the subscriber
count inside the DeviceNode object, to keep track of how many subscribers it has

12

https://github.com/PX4/PX4-Autopilot/blob/main/platforms/common/uORB/Subscription.cpp
https://github.com/PX4/PX4Autopilot/blob/main/platforms/common/uORB/uORBManager.cpp

PX4 Autopilot, Architecture and Control System

for the topic. Then it fetches the ‘generation’ number. This is an internally tracked
number inside DeviceNode, and it increases whenever new data is published on the
topic. By keeping track of this number internally on Subscriber’s side, it is possible
to detect whether new data is available or not. This is how uORB knows whether
new data is available to the Subscriber or not. This is why it needs to internally
store the value.[8, 7, 9]

2.1.5 MAVLink

MAVLink is a communication protocol used in the PX4 autopilot system for
unmanned aerial vehicles (UAVs) and other robotic applications. It is a lightweight
messaging protocol that enables communication between different components in
the system. In fact, PX4 uses MAVLink to communicate with QGroundControl,
and as the integration mechanism for connecting to drone components outside of
the flight controller: companion computers, MAVLink enabled cameras etc. So,
the main difference from uORB is that it is used as a communication method
for internal component of the drone. MAVLink, instead, is responsible for the
communication of the entire ecosystem. In the PX4 system, MAVLink is used
to send and receive messages between different modules or components. These
messages can contain information such as sensor data, GPS coordinates, or control
commands.[10]
The advantage of the MAVLink protocol is that it supports different types of
transport layers. It can be transmitted through serial telemetry low bandwidth
channels. Another alternative is to use a network interface, which is typically Wi-Fi
or Ethernet, and stream the MAVLink messages through IP Networks. In this case,
the autopilot running the MAVLink protocol typically supports both UDP and
also TCP connections at the transport layer between the ground station and the
drone, depending on the reliability level required by the application.
UDP is a datagram protocol that requires no connection between the client and the
server, and it has no mechanism to ensure that messages are reliably delivered but
provides a fast lighter weight alternative for real-time and loss-tolerant message
streaming.
TCP is a reliable connection-oriented protocol that provides better reliability of
transfer thanks to its acknowledgment mechanism but could be subject to congestion
and heavy management of the connection.
The messages used to communicate are binary serialized. That means that the
parts of the messages are packed into bytes and then transmitted. There are 2
main versions: v1 and v2. The first one was released in 2009, the second one in
2017 and it is backward compatible with the previous one. By default, MAVLink

13

PX4 Autopilot, Architecture and Control System

v2 is used, but the version can be switched to v1 according to the needs. The
message structure for v2 is proposed:

Figure 2.4: Over-the-wire format for a MAVLink 2 packet

• STX: it describes start of frame and will always be 0xFE as in official
documentation of MAVLink 1.0.

• LEN: it represents the message length in bytes and is encoded into 1 Byte.

• INC FLAGS: incompatibility flags that indicate whether the packet contains
some features that must be considered when parsing the packet. For example,
an Incompatibility flag equal to 0x01 means that the packet is signed and
that a signature is appended at the end of the packet. Those flags affect the
message structure.

• CMP FLAGS: compatibility flags that indicates flags that can be ignored if
not understood and it does not prevent the parser from processing the message
even if the flag cannot be interpreted. For example, this may refer to flags that
indicate the priority of the packet as it does not affect the packet structure.
Those flags don’t affect the message structure.

• SEQ: it denotes the sequence number of the message. It is encoded into 1
Byte and takes values from 0 to 255. The sequence number of message enabled
to detect message losses in the receive.

• SYS ID: it represents the System ID. Every unmanned system should have
its System ID, in particular, if they are managed by one ground station.

• COMP ID: it identifies the component of the system that is sending the
message. If there is no subsystem or component, then it is not used

• MSG ID: it refers to the type of the message embedded in the payload. For
example, the message ID equal to 0 refers to a message of type HEARTBEAT,
which indicates that the system is alive and is sent every one second. The
message ID is the essential information that allows to parse the payload and
extract the information from it. It differs between the two versions. It is
encoded into 24 bits instead of 8 bits in the previous version, which allows a
much higher number of message types, reaching up to 16777215 different ones.

14

PX4 Autopilot, Architecture and Control System

• PAYLOAD: this carries out the real data of the message, which depends on
the message type. It contains up to 255 bytes.

• CHECKSUM: it is formed by CKA and CKB giving one byte each. These
represent the Cyclic Redundancy Check (CRC) calculated with seed values A
and B, respectively. The CRC ensures that the message has not been changed
during its transmission and that both the sender and the receiver have the
same message.

• SIGNATURE: optional field used to ensure that the link is tamper-proof.
It allows the authentication of the message and verifies that it originates
from a trusted source. The signature of the message is appended if the
incompatibility flags are set to 0x01. The 13 bytes of the message signature
contain the following fields: LinkID (1 byte that represents the ID of the
link/channel used to send the packet), timestamp (encoded with 6 bytes in
10-microsecond units, it is used to avoid replay attacks) and signature (encoded
in 6 bytes for the message and is calculated based on the complete message,
timestamp, and the secret key, which is a shared symmetric key of 32 bytes
stored on both ends, namely the autopilot, and the ground station or the
MAVLink AP).[11, 12]

2.1.6 QGroundControl

QGroundControl is a versatile open-source software application used for the compre-
hensive control of unmanned aerial vehicles (UAVs) and other unmanned systems.
Its primary purpose is to interface with various autopilot systems, including PX4.
This software offers a user-friendly interface that enables users to configure, cali-
brate, and govern UAVs efficiently and provides extensive customization options for
a wide range of flight parameters, such as altitude, speed, and mission waypoints.
Additionally, QGroundControl facilitates real-time telemetry data transmission,
empowering users to monitor their UAVs’ flight status and make necessary adjust-
ments when required. QGC also stands out for its compatibility with a wide array
of hardware components and systems. This adaptability enables users to seamlessly
integrate the control station with different UAV platforms, autopilot systems, and
payloads and supports multiple communication protocols, such as MAVLink.
One of the notable capabilities of QGroundControl is its support for advanced
features, including autonomous flight modes. These autonomous modes enable
UAVs to execute pre-planned missions without direct intervention from the user,
being particularly valuable for tasks like mapping, surveying, and inspections.[13]
Furthermore, QGC empowers users to personalize nearly all aspects of their drones,

15

PX4 Autopilot, Architecture and Control System

encompassing the airframe, radio, sensors, flight modes, power tuning, camera
settings, and various other parameters. Through QGC we can access the list of
topic nodes maintained by the publishing/subscribing system of uORB and stored
into the /obj directory. We can do that by typing the command: ls /obj (see figure
2.6).
To have a better overview of the topics, you can use the command uorb status (see
figure 2.7).

Figure 2.5: Example of a paramenters list on QGC

16

PX4 Autopilot, Architecture and Control System

Figure 2.6: Output of the QGC console of the command ls/obj

Figure 2.7: Output of the QGC console of the command uorb status

17

PX4 Autopilot, Architecture and Control System

2.2 PX4 Control Architecture

Figure 2.8: Multicopter Control Architecture

PX4 controller is formed by 2 main parts. The first, the position controller,
controls the inertial frame, taking as input the position setpoint and as output
the acceleration setpoint. The second one, the attitude controller, controls the
body frame, taking as an input the quaternion generated by the previous part and
giving as outputs the Aerodynamic control surface angular deflection setpoints.
The two are connected by the Acceleration and yaw to attitude block, which takes
acceleration and yaw setpoint to generate the quaternion. This is a standard
cascaded control architecture. Depending on the mode, the outer (position) loop
is bypassed (shown as a multiplexer after the outer loop). The position loop is
only used when holding position or when the requested velocity in an axis is null.
The acceleration setpoints generated by the velocity controller will be converted to
thrust and attitude setpoints.
The controllers are a mix of P and PID controllers and the estimates come from
EKF2:

• PROPORTIONAL GAIN (P): The P gain is used to minimize the tracking
error and it is responsible for a quick response and thus should be set as high
as possible, but without introducing oscillations. If the P gain is too high, you
will see high-frequency oscillations while if the P gain is too low, the vehicle
will react slowly to input changes.

• DERIVATIVE GAIN (D): The D gain is used for rate damping. It is
required but should be set only as high as needed to avoid overshoots. If the
D gain is too high, the motors become twitchy (and maybe hot), because the
D term amplifies noise. If the D gain is too low, overshoot is seen after a
step-input.

18

PX4 Autopilot, Architecture and Control System

• INTEGRAL GAIN (I): The I gain keeps a memory of the error. The I term
increases when the desired rate is not reached over some time. It is important,
but it should not be set too high since we would see slow oscillations.

Here is a detailed description of how each block is made and which is its role.

2.2.1 Position control

The position control sub-controller aims to control the vehicle’s position in three-
dimensional space. Based on the position error, the position control generates
a velocity command that aims to drive the vehicle towards the desired position.
This error is the difference of desired and actual distance setpoints. The latter is
obtained from the vehicle’s sensors (e.g., GPS).
The commanded velocity is saturated to keep the velocity in certain limits, to
prevent excessive or unsafe velocity commands that the vehicle may not be able to
achieve or that could compromise its stability.
This system is implemented as a proportional (P) controller. The gain of the
P determines the strength of the control response. Higher gain values result in
stronger corrective velocity commands for larger position errors.

Figure 2.9: Position controller block scheme

2.2.2 Velocity Control

It receives the velocity setpoint generated in the previous controller and uses the dif-
ference between the desired and actual velocities to calculate the control commands.
Uses a PID controller to stabilise velocity and commands an acceleration.
To prevent integral wind-up, the integrator of the PID controller incorporates
an anti-reset windup mechanism using a clamping method. This restricts the

19

PX4 Autopilot, Architecture and Control System

integrator output within specified bounds, limiting the impact of integration when
the system is saturated or unable to actuate the desired control commands.
The output of the PID controller is a commanded acceleration that is used to
control the vehicle’s motion. This acceleration represents the desired rate of change
of velocity to achieve the desired velocity setpoints. Although the commanded
acceleration is not saturated, saturation is applied to the converted thrust setpoints.
This saturation, in combination with the maximum tilt angle, ensures that the
thrust commands and tilt angles remain within safe and feasible limits for the
vehicle.

Figure 2.10: Velocity controller block scheme

2.2.3 Attitude Control

The attitude control typically works with a quaternion representation of attitude.
Quaternions provide a concise and computationally efficient way to represent
rotations in three-dimensional space. For that reason, the desired attitude setpoint
and the current attitude measurements from the vehicle’s sensors (e.g., IMU) are
represented as quaternions.
The first step in attitude control is to compute the error between the desired
attitude setpoint and the current attitude measurement. This error is usually
obtained by taking the quaternion multiplication of the conjugate of the current
attitude quaternion and the desired attitude quaternion. The resulting quaternion
error represents the angular difference between the desired and current attitudes.
When tuning this controller, the only parameter of concern is the P gain. The P
gain determines the strength of the control response based on the quaternion error.
Careful tuning of the P gain is crucial to achieve desired performance and stability
in attitude control. Once the desired control torques or angles are computed, they

20

PX4 Autopilot, Architecture and Control System

need to be mapped to motor commands or control surface deflections to actuate
the vehicle.
The rate command can be saturated. This occurs when the desired angular rate
exceeds the maximum limit that the vehicle’s actuators or control surfaces can
achieve. Saturation mechanisms are in place to limit the rate command and ensure
it remains within the capabilities of the actuators or control surfaces.

Figure 2.11: Attitude controller block scheme

2.2.4 Angular Rate Control

The angular rate control subcontroller plays a crucial role in maintaining the
desired rotational speed of the vehicle. This is a K-PID controller, and it is part of
the attitude controller. The angular rate control sub-controller typically receives
angular rate measurements from the vehicle’s sensors, such as gyroscopes. These
sensors provide information about the current rotational speed around each axis of
the vehicle. It then calculates an error signal based on the difference between the
desired and actual rates.
The integral authority is limited to prevent wind up, also the outputs are limited
around -1 and +1. A low pass filter is used in the derivative path to reduce the
noise so that the gyro driver provides a filtered derivative to the controller.
Once the desired motor commands or control surface deflections are computed,
they need to be mapped to the specific hardware configuration of the vehicle. This
mapping depends on the number and arrangement of motors or control surfaces.
[14]

21

PX4 Autopilot, Architecture and Control System

Figure 2.12: Angular rate controller block scheme

22

Chapter 3

Configuration, Model of the
Drone and Sensors

This chapter’s aim is to describe and explain all the used devices and all the
operations made to develop a good environment for the drone to fly in.
The first action performed was to create a partition of my hard disk, where I
installed ubuntu 22.04. Then I downloaded from GitHub the source code of
PX4-autopilot. To access and modify that code I used VS Code, a code editor
redefined and optimized for building and debugging. Then I flashed the code into
an STM32h7x board through an ST-Link. This is a debugging and programming
interface commonly used to flash and debug microcontrollers and development
boards manufactured by STMicroelectronics. It provides a bridge between the
development host (usually a computer) and the target device (such as an STM32
microcontroller). I followed a sequence of action to flash the board. First I built the
default code and the bootloader through the make command. I took the generated
.elf files and put them into a specific folder into the Build directory. To flash,
OpenOCD has been used, which is an Open On-Chip Debugger. Then I connected
the board to the ST-Link and flashed it using the command:

~/openocd/bin/openocd -f ~/openocd/scripts/interface/stlink.cfg -f
~/openocd/scripts/target/stm32h7x_dual_bank.cfg -c "init; reset
halt; flash erase_sector 0 0 last; flash erase_sector 1 0 last;
program fc-v3_bootloader.elf verify; program fc-v3_default.elf
verify; reset; exit"

23

Configuration, Model of the Drone and Sensors

Figure 3.1: STM32h7x board

Figure 3.2: ST-Link

24

Configuration, Model of the Drone and Sensors

Here’s a breakdown of what each part of the command does:

• /openocd/bin/openocd: this specifies the path to the OpenOCD binary
executable that will be executed.

• -f /openocd/scripts/interface/stlink.cfg: this option specifies the path
to the configuration file for the ST-Link interface. It provides the necessary
settings to establish a connection between the debugger and the target device.

• -f /openocd/scripts/target/stm32h7x_dual_bank.cfg: This option
specifies the path to the configuration file for the STM32H7x dual bank target.
It provides the necessary settings specific to the target device, in this case, an
STM32H7x microcontroller with dual bank memory.

• -c "init; reset halt; flash erase_sector 0 0 last; flash erase_sector 1
0 last; program skypersonic_fc-v3_bootloader.elf verify; program
skypersonic_fc-v3_default.elf verify; reset; exit": this part of the
command specifies a series of OpenOCD commands to be executed: .

– init: this command initializes the connection to the target device.

– reset halt: this command halts the target device, bringing it to a halted
state.

– flash erase_sector 0 0 last: this command erases the flash memory
sector 0 of the target device. The "0 0 last" specifies the range of sectors
to erase.

– flash erase_sector 1 0 last: this command erases the flash memory
sector 1 of the target device.

– program fc-v3_bootloader.elf verify: this command programs the
"fc-v3_bootloader.elf" file onto the target device’s flash memory. The
"verify" option ensures the verification of the programming process.

– program fc-v3_default.elf verify: this command programs the "fc-
v3_default.elf" file onto the target device’s flash memory, similar to the
previous command.

– reset: this command resets the target device, allowing it to start executing
the newly flashed program.

– exit: this command exits the OpenOCD tool

25

Configuration, Model of the Drone and Sensors

Figure 3.3: Block scheme of a HITL simulation environment

The next step was to modulate the system in order to test it through Hardware-in-
the-loop (HITL) simulation. “With Hardware-in-the-Loop (HITL) simulation the
normal PX4 firmware is run on real hardware. Gazebo (running on a development
computer) is connected to the flight controller hardware via USB/UART. The sim-
ulator acts as gateway to share MAVLink data between PX4 and QGroundControl.
To enable HITL a few passages need to be followed:

1. Connect the autopilot directly to QGroundControl via USB.

2. Enable HITL inside QGC (setup/safety).

3. Select Airframe (I chose HIL Quadcopter).

4. Calibrate the Joystick.

5. Setup UDP

6. Configure Joystick and Failsafe. Set the following parameters in order to use
a joystick instead of an RC remote control transmitter:

• COM_RC_IN_MODE to "Joystick/No RC Checks". This allows joystick
input and disables RC input checks.

• NAV_RCL_ACT to "Disabled". This ensures that no RC failsafe actions
interfere when not running HITL with a radio control.“ [15]

To start the QGroundControl station and the gazebo environment you need to use
a few lines of code. First connect the board through USB to the computer . Notice
that, while PX4 is ran into an HITL simulation, gazebo will instead perform a
SITL simulation, since it is a simulated environment. To run gazebo, move into

26

Configuration, Model of the Drone and Sensors

the source code folder through the terminal and launch, separately, this sequence
of lines:

DONT_RUN=1 make px4_sitl_default gazebo

• DONT_RUN=1: this tells the system not to start the simulation automat-
ically after the build, giving the possibility to set up additional features after
that command.

• make px4_sitl_default gazebo: it builds the gazebo SITL simulation
using the default settings.

source Tools/simulation/gazebo/setup_gazebo.bash $(pwd)
$(pwd)/build/px4_sitl_default

• source Tools/simulation/gazebo/setup_gazebo.bash: is used to execute
the setup_gazebo.bash script within the current shell environment. The second
contains the path of the .bash.

• $(pwd): used to refer to the current working directory.

• $(pwd)/build/px4_sitl_default: this refers to the path of the SITL gazebo
simulation build with default configuration.

gazebo Tools/simulation/gazebo/sitl_gazebo/worlds/hitl_iris.world

This is used to run the gazebo environment with a specific world file (in this case
hitl_iris.world) in HITL mode. As for the other lines, it is necessary to specify the
path of the world file.

3.1 Gazebo

"Simulators have played a critical role in robotics research as tools for quick and
efficient testing of new concepts, strategies, and algorithms. Gazebo is designed to
create a 3D dynamic multi-robot environment capable of recreating the complex
worlds that would be encountered by the next generation of mobile robots. Its
open source status, fine grained control, and high fidelity place Gazebo in a unique

27

Configuration, Model of the Drone and Sensors

position to become more than just a stepping stone between the drawing board and
real hardware: data visualization, simulation of remote environments, and even
reverse engineering of blackbox systems are all possible applications." [16]
To generalize, the drone and the environment are not physical, but are generated
by gazebo. Instead, the way they behave is developed by the px4 firmware, which
takes the values generated in the simulation and uses them to sustain and activate
the control operations. Gazebo can provide both SITL (Software-in-the-loop) and
HITL (Hardware-in-the-loop). In my work the version of gazebo used is Gazebo
Classic, due to incompatibility issues encountered with other versions and ubuntu
22.04 (Jammy Jellyfish).
In order to create a simulation in Gazebo, developers typically start by defining
the world and the objects within it using a file format such as SDF (Simulation
Description Format). This file describes the physical properties of the objects in
the simulation, such as their size, shape and mass.
The world of the simulation is defined by a .world file. In this file can be included
different models, which implement the objects of major interest, like the drone, or
some environment objects, like walls or blocks. These models are also defined in
an SDF file. Then we can apply some small changes to the objects, like the pose or
the colour.

Figure 3.4: Model of the iris_hitl on Gazebo

In the PX4 original folder, a lot of premade worlds and models are present, like
the world of a warehouse, or many implementations of the iris drone, different

28

Configuration, Model of the Drone and Sensors

from each other by means of integrated sensors/devices. In this thesis, the already
made iris_hitl.sdf has been used, but 2 more distance sensors had been added for
development purposes. This has been tested into a new generated world, where
only some walls had been added. This due to the necessity of testing the drone
control behaviour with respect to a wall.

Figure 3.5: Gazebo empty world

The custom implementation of the ‘warehouse_wall.world’ file is:

<?xml version="1.0" ?>
<sdf version="1.5">

<world name="default">
<!-- A global light source -->
<include>

<uri>model://sun</uri>
</include>
<!-- A ground plane -->
<include>

<uri>model://ground_plane</uri>
</include>
<include>

<uri>model://asphalt_plane</uri>
</include>

<include>

29

Configuration, Model of the Drone and Sensors

<uri>model://iris_hitl</uri>
</include>
<physics name=’default_physics’ default=’0’ type=’ode’>

<gravity>0 0 -9.8066</gravity>
<ode>

<solver>
<type>quick</type>
<iters>10</iters>
<sor>1.3</sor>
<use_dynamic_moi_rescaling>0</use_dynamic_moi_rescaling>

</solver>
<constraints>

<cfm>0</cfm>
<erp>0.2</erp>
<contact_max_correcting_vel>100</contact_max_correcting_vel>
<contact_surface_layer>0.001</contact_surface_layer>

</constraints>
</ode>
<max_step_size>0.004</max_step_size>
<real_time_factor>1</real_time_factor>
<real_time_update_rate>250</real_time_update_rate>
<magnetic_field>6.0e-6 2.3e-5 -4.2e-5</magnetic_field>

</physics>

<include>
<name>grey_wall</name>
<uri>model://grey_wall</uri>
<pose>-8.34545 0 0 0 0 -1.57</pose>

</include>

<include>
<name>grey_wall2</name>
<uri>model://grey_wall</uri>
<pose>-3.5 9 0 0 0 0</pose>

</include>

</world>
</sdf>

30

Configuration, Model of the Drone and Sensors

Figure 3.6: Gazebo world modified for simulation purposes

3.2 SDF File

"The Simulation Description Format (SDF) is a representation formats for robots
employed by the Gazebo Simulator. SDF is also designed for more general purpose
use with support for environment entities such as lighting, scene-objects, and
sensors. SDF use XML language."[17] There are several recursive elements that
allow for hierarchical structuring and composition of models:

• <model>: it represents a complete model within the SDF file. It contains
all the element listed below and more. Models can be nested within other
models, allowing for complex model hierarchies.

• <link>: it represents a rigid body within a model. It defines the visual and
physical properties of the body, such as mass, inertia and collision properties.
Additionally, <link> can contain child elements recursively, such as:

– <visual>: it defines the visual representation of the object.
– <collision>: it defines the physical properties and collision behaviour.
– <sensor>: it is used to define a sensor attached to a link within a model.

Gazebo supports a variety of sensors such as cameras, depth sensors,
lidars, contact sensors and more.

31

Configuration, Model of the Drone and Sensors

– <frame>: it represents a coordinate frame that can be attached to a
link or another frame. It defines the relative position and orientation with
respect to the parent frame.

• <joint>: it describes the connections between links in a model (e.g., revolute,
prismatic, fixed)

• <plugin>: it allows for the addition of custom functionality to models and
are often used to integrate external software components or implement specific
behaviours.

• <include>: it allows for the inclusion of external SDF files within the current
SDF file.

the SDF file I generated to build the two lidar sensor is (only representing one of
the two):

<model name=’lidar0’>
<link name=’base’>

<pose>0 0.01 0.06 0 0 0.033</pose>
<inertial>
<mass>0.000002</mass>
<inertia>
<ixx>0.001087473</ixx>
<iyy>0.001087473</iyy>
<izz>0.001092437</izz>
<ixy>0</ixy>
<ixz>0</ixz>
<iyz>0</iyz>

</inertia>
</inertial>
<collision name=’base_collision’>

<geometry>
<cylinder>

<radius>.004267</radius>
<length>.005867</length>

</cylinder>
</geometry>

</collision>
<visual name=’base_visual’>

<geometry>
<cylinder>

32

Configuration, Model of the Drone and Sensors

<radius>.004267</radius>
<length>.005867</length>

</cylinder>
</geometry>

</visual>
<sensor type=’ray’ name=’lidar0’>

<pose>0 0 0 1.5707 0 0</pose>
<visualize>true</visualize>
<update_rate>30</update_rate>
<ray>

<scan>
<horizontal>

<samples>1</samples>
<resolution>1</resolution>
<min_angle>0.01</min_angle>
<max_angle>0.01</max_angle>

</horizontal>
</scan>
<range>

<min>0.06</min>
<max>35</max>
<resolution>0.02</resolution>

</range>
</ray>

<plugin
name=’lidar_plugin’ filename=’libgazebo_lidar_plugin.so’>

<robotNamespace></robotNamespace>
<customSubTopic>lidar0</customSubTopic>
<min_distance>0.2</min_distance>
<max_distance>15</max_distance>

</plugin>
</sensor>

</link>
</model>
<joint name=’lidar0_joint’ type=’fixed’>

<pose>0 0 -0.036785 0 0 0</pose>
<parent>base_link</parent>
<child>lidar0::base</child>

</joint>

33

Configuration, Model of the Drone and Sensors

Figure 3.7: Model of the iris_hitl after the integration of the 2 distance sensors

3.3 Gazebo and PX4 connection

Figure 3.8: Chart of the communication lines in the Gazebo SITL simulation

To let the data pass from gazebo to the PX4 firmware, some specific actions need
to be performed. First, the data of interest are defined in the plugins on the SDF
files. In fact, plugins are software components that extend the functionality of the
simulator by adding custom features, behaviours or interactions. So, they interact
with the simulation environment, models, sensors or other components of Gazebo
to provide additional capabilities. Plugins can be used in Gazebo to establish
communication with the PX4 firmware using the MAVLink protocol, a feature that
is used in this thesis. These enable the exchange of sensor data, control commands
and system status between Gazebo and PX4.
When the simulation starts, each .sdf is analysed by the respective gazebo plugin,
which is a c file inside the PX4 firmware, i.e., if we have a gps sensor, the gazebo
plugin will be called ‘gazebo_gps_plugin’. In each of these files all the data of
interest are extracted with the same procedure. The compiler will search for a

34

Configuration, Model of the Drone and Sensors

certain sequence of word in the .sdf and, if it finds it, it will save the data after that
sequence trough the c file. For example, under the plugin line inside the gps.sdf we
can find a sequence like:

<gpsNoise>1</gpsNoise>

To extract this ‘1’ and generate the respective variable, a code like the one below will
be implemented inside the c file of the corresponding plugin (gazebo_gps_plugin
in the case of this example):

// Get noise param
if (_sdf->HasElement("gpsNoise")) {

getSdfParam<bool>(_sdf, "gpsNoise", gps_noise_,
gps_noise_);

} else {
gps_noise_ = false;

}

This match will be done for each line inside <plugin> into the .sdf. Then a
structure will be created and published as a topic. For every sensor declared inside
the iris model, this procedure will be followed.
The ‘gazebo_mavlink_interface’ module plays a vital role in subscribing to these
topics. It uses specific SensorSubscription functions to establish connections with
matching published topics. The matching process employs a recursive text pattern
of the type:
" /" + model name + "/link/" + nested sensor name
Every time a topic is published, or a subscription is attempted, a text like that
is created. If the pattern of the subscribed topic matches the published one, the
connection is established, and call-back functions associated with the subscribed
topics are invoked. These call-backs generate messages with specific structures
representing the structure of the specific sensor data. The messages are then sent
to MAVLink, which facilitates the transfer of data to the PX4 firmware. In cases
where multiple sensors of the same type are used, differentiation can be achieved
through an ID assigned by the developer. This ID helps distinguish between
different instances of the same sensor type.
Upon receiving the data structure from Gazebo, the ‘mavlink_receiver’ module
comes into play. It processes the received structure and fills the relative Uorb topic.
The data is transformed into a new structure that aligns with the PX4 firmware’s
requirements. This transformed structure is then published to the relevant UORB

35

Configuration, Model of the Drone and Sensors

topic through the publish() function, enabling other modules within the firmware
to subscribe to and utilize the sensor readings.
Now, considering what has been done for this project, all the previous passages
will be analysed for the publication of two lidar sensors on the iris_hitl.sdf model.
After the generation of the two lidar sensors .sdf files, I added a line to both the
plugins, to distinguishing between the two sensor used:

<customSubTopic>lidar0</customSubTopic>
<customSubTopic>lidar1</customSubTopic>

To let the data pass, a few lines of code had been added to the ‘gazebo_lidar_plugin’:

// get lidar topic name
if(_sdf->HasElement("topic")) {

lidar_topic_ = parentSensor_->Topic();
}else if (_sdf->HasElement("customSubTopic")) {

lidar_topic_= _sdf->GetElement("customSubTopic")->Get<std::
string>();

}else {
// if not set by parameter, get the topic name from
the model name
lidar_topic_ = parentSensorModelName;

}

The match of the topic name is now done also for a different line called "custom-
SubTopic". This means that a new subscription method has been added to the
predefined ones, to understand more in depth the mechanism of the communication
protochol and how it behaves when using two sensors of the same type. So, I did
not use the already implemented ‘Lidar_callback’ but I generated a new callback
from scratch, very similar to the lidar one, called ‘Custom_callback’. This function
needs to be called twice to pass both the sensor’s current values.
The custom_callback publishes then these structures for the MAVLink receiver,
that builds automatically the relative uORB topic. In this case, two uORB topic
of the same message are created: distance_sensor0 and distance_sensor1. That
means that, when a subscription to the distance sensor topic is made, I need to
specify which one of the two topics I am going to use.

36

Chapter 4

Custom Control Algorithm,
"Horizontal-Lock"

The final object of this project is to develop a control system that aligns the drone
with a wall and locks its position vertically and horizontally. To do that a deep
understanding of the PX4 autopilot system and its communication protochol is
needed and this is explained in the previous chapters. The aim of this chapter
is to explain and analyze the code sections that implements the control. Before
doing that, an overview of the entirety of the modules and how they interact with
each other is needed to understand better the passages done to reach the final
conclusion.
The various modules already present in the original code implement all the various
functionalities of the drone. These are primarily written in the C/C++ program-
ming languages which are a common choice for embedded systems and real-time
applications like drone autopilots because of their efficiency and low-level control
over hardware. As already seen in the previous chapters, they communicate with
each other using a publish/subscribe mechanism, messages, function calls or pa-
rameters. The modules that will be mostly used are the ones which implement the
flight modes, like altitude or position and a custom driver.
Before beginning explaining the code in all its parts, a little overview of the
environment is necessary to have a better understanding of the system. The flow
chart below illustrates the various phases of the control algorithm, neglecting the
parts not related to that due to problems of dimensions and difficulty. in fact, the
processes represented in the graph are ran in parallel with many other ones, which
carry out the most diverse operations for maintaining the system.

37

Custom Control Algorithm, "Horizontal-Lock"

ORB ID:
Distance
Sensor

ANGLE
COR-

RECTOR

ORB ID:
Angle

Correction
ALTITUDE

altitude
param. is on

position
param. is on

FLIGHT

POSITION

the pilot is
asking to fly

GAZEBO

START

STOP

publishes data from sensor

subscribe

publish subscribe

yes

yes

yes

no

no

no

38

Custom Control Algorithm, "Horizontal-Lock"

As can be seen from the chart, there are three main processes/modules that
I developed and modified: angle corrector, flight task altitude and flight task
position. Those will be fully explained in the next sections. The last two modules
are represented on the right part of the chart. Going down from "FLIGHT",
the modules are dependent on the previous ones. So, "POSITION" is dependent
from "ALTITUDE" and "FLIGHT" since those generate outputs needed for the
module to maintain itself. These implement the algorithm to let the drone fly
in different modes, respectively manual, altitude and position modes. Instead,
"ANGLE CORRECTOR" is an independent module that generates a value called
angle correction that represents an orientation angle. It runs in parallel to the
other three and publishes this value in the Angle_correction topic, a topic that as
been created for the purpose of this thesis. The subscription to the distance_sensor
topic (see chapter 3) and the generation of angle correction could have been done
directly on the module of the altitude mode. However, having a process that runs
in parallel is better in terms of computing time and availability of the data. As
a matter of fact, putting this series of operations directly into this module could
cause a slowdown due to those additional operations and the arrival of an outdated
data to the output, thus dephasing the drone.
In this project, I will use a kind of variable called “setpoint”. This encapsulate a
desired value/state that the flight controller should strive to reach. The control
system then will adjust the actuators to maintain these states. So, this is a very
advantageous variable, since it manages in a very simple way abstract complex
control commands into user-friendly references for the vehicle’s behavior, simplifying
the interaction pilot-drone. To confirm this, many flight modes are based on the use
of setpoints to define certain types of behavior. There are various type of setpoints
that can refer to position, velocity and many other relevant control variables. The
most important and the more used ones in the project are:

• Position setpoints: defines the coordinates, with respect to a global reference
system, that the UAV should maintain. It is a three-element vector in which
each element represents, in order, the x, y and z axes.

• Yaw setpoints: typically expressed as an angle in radians, defines the
direction that the drone should point at.

4.1 Definition of the Orientation Angle

As said in the previous paragraph, the purpose of this algorithm is to control the
drone and to lock it accordingly to predefined criteria. Those are the alignment of
the UAV to the wall, meaning that the drone’s head has to point perpendicularly

39

Custom Control Algorithm, "Horizontal-Lock"

to the wall, and the lock of the distance from the wall. A setpoint in the z axis
will also be generated, but the current height can always be modified through RC
inputs. That means that the drone has only two degrees of freedom. The z and
the y axis, that lead the drone to move vertically, and sideways through roll angle
modification.
The first choice for the type of sensor was a UWB. That would have scanned the
whole area in front of the drone and calculate a distance from any object through
the returning waves. However, the generation of the sdf file of the UWB was
unclear and difficult to interpret. The choice of the two lidar sensor come up to
simplify the process of data acquisition. As can be seen in the chapter 3, lidar
sensors are very easy to implement and generate an output of linear distance from
an object without the need to implement a conversion algorithm, like for the UWB.
The only disadvantage is that the lidar sensors used for this scope are linear, so
the acquisition of the distance can happen only with respect to one object/wall.
However, this was a forced choice, since the linearity of the sensors makes much
more easier the acquisition of the orientation angle with respect to the object/wall.
The first thing to do was to analyse the measures of the two sensor and generate
a yaw angle using the difference of the current distances. This is one of the most
important parts of the algorithm. In fact, when the drone requests a distance lock,
it first needs to be correctly aligned with the wall/obstacle. If not, when the lock
happens, the drone can crash on the wall while moving sideways.

Figure 4.1: Handwritten scheme to understand a possible configuration drone-wall

40

Custom Control Algorithm, "Horizontal-Lock"

So, the first action that the algorithm has to perform is the definition of a yaw
angle correction. To do that a new module has been created and added to the PX4
source code. This is called "AngleCorrector" and is located in the ‘drivers’ folder
of the firmware. The structure of the module is very simple. It has a constructor
and a destructor for the class. We’ll put in the constructor any possible advertise()
function, necessary when publishing a topic. The main functions are:

• Init(): initializes the module and sets it to run at a scheduled interval of 10
milliseconds.

• Run(): is the main execution loop of the module. It checks for the program
exit condition, updates sensor data from subscribers and performs file I/O
operations.

• Task_spawn(): creates an instance of the class, initializes it and returns the
result.

• SensorCheck(): it generates the angle of the misalignment.

The remaining functions handle the printing of the module status, the custom
commands and the usage information, and serve as entry point for the module.
In the .h file, the subscriptions to the two distance sensors are made:

uORB::Subscription
_distance_sensor_left_sub{ORB_ID(distance_sensor),0};
uORB::Subscription
_distance_sensor_right_sub{ORB_ID(distance_sensor),1};

The two new generated structures are called, respectively, _distance_sensor_left_struct
and _distance_sensor_right_struct. A distance sensor struct is composed of the
following components:

struct distance_sensor_s {

uint64_t timestamp;
uint32_t device_id;
float min_distance;
float max_distance;
float current_distance;
float variance;
float h_fov;

41

Custom Control Algorithm, "Horizontal-Lock"

float v_fov;
float q[4];
int8_t signal_quality;
uint8_t type;
uint8_t orientation;
uint8_t _padding0[1];

}

The variable of interest is current_distance, that gives the actual distance from
the corresponding sensor to the first point detected (in this case the wall). The
angle is generated by the SensorCheck() function, that is called inside the run()
loop. This will take as inputs the 2 distance sensors structs. The calculation of the
angle is relatively simple. I drew a possible configuration of the system drone-wall
and, through trigonometry, I obtained a general formula.

Figure 4.2: A possible sensors-wall configuration used to calculate the generic
formula for the angle of inclination

angle_correction = arctan

(
a

b

)
(4.1)

42

Custom Control Algorithm, "Horizontal-Lock"

Where:

• ‘a’ is the difference between the two current distances. It is negative if the
right beam is longer then the left one, meaning that the drone is oriented with
an angle opposite to the one of the figures.

• ‘b’ is a fixed value. It indicates the distance between the centers of the two
laser beams. Its value is 4cm. It has been calculated following the scheme in
the figure below.

Figure 4.3: From above, physical scheme of the sensors placed on top of the drone

After the description of the parts of the code, how they work and the results they
obtain, here is a flow chart that explain how the algorithm of the angle corrector
module works in terms of flow of operations.

43

Custom Control Algorithm, "Horizontal-Lock"

Figure 4.4: Flow chart of the angle correction algorithm

44

Custom Control Algorithm, "Horizontal-Lock"

4.2 Angle_correction Topic

Since the control algorithm is implemented in a different module, I created a new
topic called angle_correction in order to make that measure available for any
module. To do that I followed the guidelines on the PX4 user guide. First, I created
an angle_correction.msg file in the msg/ directory. The file is composed of the
following lines:

uint64 timestamp # time since system start
(microseconds)

float32 yaw_correction # yaw value to be used to correct
the setpoint (rad)

Those are all the variables that are going to form the structure of this new topic.
Then I added the file name to ’msg/CMakeLists.txt’ that contains the list of all the
topics’ messages. Recompiling the project will trigger the creation of the C/C++
files needed for the topic. Then I included the new topic in the module I was
developing and published it inside the SensorCheck() function.

angle_correction.timestamp = hrt_absolute_time();
angle_correction.yaw_correction = angle_inclination;
_angle_corr_pub.publish(angle_correction);

4.3 Creation of the Flight Task Modules

This control algorithm works in altitude and position mode. When the altitude
flight task is enabled, the drone will maintain the height it was flying at, without
maintaining the throttle input in the RC. This mechanism works using a position
setpoint for the z axis. Every time the altitude task is triggered, the module of
the task will save the actual height inside this setpoint, and the drone will move
maintaining this value until a new throttle input is received. In that case, the
setpoint will be updated with respect to how much throttle is given by the pilot,
both positive and negative ones.
The position task, instead, will generate setpoints in the x directions, so that the
drone remains still with respect to the wall without inputs from the joystick.
The angle algorithm I made is implemented inside the altitude flight task. Since
I did not want to modify the original code for the two modules and having so a

45

Custom Control Algorithm, "Horizontal-Lock"

backup in case of inappropriate modifications, I created a copy of these and called
them DistanceHoldAltitudeAltitude and DistanceHoldAltitudePosition. However,
these new modules need to be inserted inside the flight mode manager in order to
be activated.
To do that, a parameter needs to be modified inside the ‘mc_pos_control_params.c’
file, where all the parameters used by the PX4 source code are present. The one
relative to my objective is ‘MPC_POS_MODE’. This is defined as an ’int’ and
contains a maximum of 5 different values (it counts also the value 0). Each value is
associated to a specific sub-mode which is a combination of altitude and position
tasks with different behaviours. For example, for the value 3, the altitude and the
position modes will be smooth. The new flight mode I added is activated with the
value 2 and is called DistanceHold.

/**
* Manual-Position control sub-mode
*
* @value 0 Simple position control
* @value 2 DistanceHold position control
* @value 3 Smooth position control (Jerk optimized)
* @value 4 Acceleration based input
* @group Multicopter Position Control
*/

PARAM_DEFINE_INT32(MPC_POS_MODE, 4);

‘Mpc_pos_mode’ is changed directly inside QGC. Go to ’Vehicle Setup/Parameters’,
search for the corresponding parameter and select DistanceHold. In that way, every
time the altitude mode is active, it will always refer to the DistanceHold sub-mode.
Now, I will show the procedure first for the Altitude mode, then I will present the
Position one, but in less details, since the procedure is the same. In the directory
that contains all the various flight modes, I made a new folder called Distance-
HoldAltitude, and inserted there the copied ’FlightTaskManualAltitude.cpp’ and
.h (renamed as the folder). Then I created a new ’CMakeFile.txt’ to define where
this task is placed and interconnected with the others. The file contains this text:

px4_add_library(FlightTaskDistanceHoldAltitude
FlightTaskDistanceHoldAltitude.cpp

)
target_link_libraries(FlightTaskDistanceHoldAltitude

PUBLIC
FlightTask FlightTaskUtility)

46

Custom Control Algorithm, "Horizontal-Lock"

target_include_directories(FlightTaskDistanceHoldAltitude
PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

The first 3 lines add a library target named FlightTaskDistanceHoldAltitude and
specify the source file ’FlightTaskDistanceHoldAltitude.cpp’ that will be compiled
to create the library. The other two functions do link the FlightTaskDistance-
HoldAltitude library with the FlightTask and FlightTaskUtility libraries (first
function) and add the current source directory to the include directories for the
FlightTaskDistanceHoldAltitude target (second function).
In the flight task mode manager are expressed all the criteria for the various tasks to
activate. In my case, the altitude and the position tasks, as seen above, change their
behaviour with respect to the number held by the ‘mpc_pos_mode’ parameter.
Inside the function ‘start_flight_task()’ in the ‘FlightModeManager.cpp’ I added a
new case for the parameter equal to 2 that will enable the distance hold as altitude
mode.

if(_vehicle_status_sub.get().nav_state==vehicle_status_s::
NAVIGATION_STATE_ALTCTL || task_failure){

should_disable_task = false;
FlightTaskError error = FlightTaskError::NoError;

switch (_param_mpc_pos_mode.get()) {
case 0:

error = switchTask(FlightTaskIndex::ManualAltitude);
break;

case 2:
error =
switchTask(FlightTaskIndex::DistanceHoldAltitude);

break;

case 3:
default:

error =
switchTask(FlightTaskIndex::ManualAltitudeSmoothVel;

break;
}

For the position mode we can repeat the same procedure, but a few small modifi-
cations need to be applied. When creating the new folder, the name now will be

47

Custom Control Algorithm, "Horizontal-Lock"

DistanceHoldPosition. The CMakeFile.txt will have the following structure:

px4_add_library(FlightTask DistanceHoldPosition
FlightTask DistanceHoldPosition.cpp
FlightTask DistanceHoldPosition.hpp

)

target_link_libraries(FlightTask DistanceHoldPosition
PUBLIC
FlightTask DistanceHoldAltitude

)

target_include_directories(FlightTask DistanceHoldPosition
PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

Instead, in the flight mode manager, I added another case as did for the altitude
task:

if (_vehicle_status_sub.get().nav_state ==
vehicle_status_s::NAVIGATION_STATE_POSCTL || task_failure) {

should_disable_task = false;
FlightTaskError error = FlightTaskError::NoError;

switch (_param_mpc_pos_mode.get()) {
case 0:

error = switchTask(FlightTaskIndex::ManualPosition);
break;

case 2:
error =
switchTask(FlightTaskIndex::DistanceHoldPosition);

break;

case 3:
error =
switchTask(FlightTaskIndex::ManualPositionSmoothVel);

break;

case 4:
default:

if (_param_mpc_pos_mode.get() != 4) {

48

Custom Control Algorithm, "Horizontal-Lock"

PX4_ERR("MPC_POS_MODE %" PRId32 " invalid,
resetting", _param_mpc_pos_mode.get());

_param_mpc_pos_mode.set(4);
_param_mpc_pos_mode.commit();

}
error =
switchTask(FlightTaskIndex::ManualAcceleration);

break;

That means that when the ‘mpc_pos_mode’ parameter is equal to 2, both the
altitude and position tasks of the DistanceHold sub-mode will be activated.

4.4 The Altitude Algorithm

The aim of this module is to control the vehicle’s altitude above ground level by
generating and maintaining the z setpoint, relying on sensors such as barometers
to determine the altitude. This is a very useful mode since it simplifies the piloting
process, allowing operators to focus on horizontal navigation and mission-specific
tasks without constantly adjusting the drone’s altitude.
The behaviour of this algorithm will now be described. To give a quick description
of it, can be said that, when the module is activated, it will get the current height
the drone is flying at and save it inside the _position_setpoint(2) variable. Then
this variable will be subjected to few functions that will analyse the correctness
and operability of this value. Below there is a flow chart to have an overview of all
the component functions and how they interact each other.

49

Custom Control Algorithm, "Horizontal-Lock"

Figure 4.5: Operating scheme of the altitude algorithm

As can be seen from the chart, the module is a loop that updates certain values
and controls the height through designed functions. When the altitude task is
enabled, through command or parameters, a preliminary initialization of all the
variables and the check of the validity of local position needs to be done. Then,
the first function to be called is activate(). This sets to default all the setpoints
(position, velocity, yaw, and acceleration), the constrains (speed up/down, max/min
distance to ground) and the sticks inputs. These steps are very important for the
maintenance of the system, since initializing variables to a known state before any
processing occurs is critical to prevent undefined behavior, unexpected results, or
errors caused by unexpected data. In other words, generates a null initial state
which will be the basis for the generation of subsequent states. Having uninitialized
values as the first state, and therefore not containing any value, would cause
problems in the calculations of the subsequent ones and the crash of the system.
The main function of the loop is the _update() which is likely responsible for
updating the state of the altitude control performing recursive function-calls. Here
are, in order, the functions that are called going through update():

50

Custom Control Algorithm, "Horizontal-Lock"

_updateConstraintsFromEstimator(): it updates the constraints of mini-
mum and maximum distance to ground.

Algorithm 1 _updateConstraintsFromEstimator()
if hagl_min (minimum height above ground level) exist then

_min_distance_to_ground = hagl_min;
else

_min_distance_to_ground = - infinity;
if hagl_max (maximum height above ground level) exist then

_max_distance_to_ground = hagl_max;
else

_max_distance_to_ground = + infinity;
// these are useful constraints to set how much higher and lower the drone can

move during the flight

_scaleSticks(): This function scales the stick inputs to determine the desired
yaw speed and vertical velocity setpoints. The yaw speed is low-pass filtered helping
to smooth out rapid changes and provides a more stable control output.

Algorithm 2 _scaleSticks()
// filters stick yaw and throttle inputs to avoid deadzone

1 yawspeed_target = yaw stick position;
2 _yawspeed_setpoint = filtered yawspeed_target;
3 _velocity_setpoint(2) = bounded throttle stick position;

_updateSetpoints(): This function is responsible of calling all the needed updates.
Before, a new vector object called ’sp’ is defined:

Vector2f sp(_sticks.getPosition().slice<2, 1>(0, 0));
_man_input_filter.setParameters(_deltatime,

_param_mc_man_tilt_tau.get());
_man_input_filter.update(sp);
sp = _man_input_filter.getState

Sp contains two variables. Those are extracted from the stick object, which is a
vector of 4 variables that contains the inputs from sticks of pitch, roll, throttle and
yaw. getPosition() will get all the 4, while .slice<2, 1>(0, 0) will extract only the
first two, roll and pitch. So the ’sp’ vector will contain the two input variables of
pitch and roll. The next lines of code defines an object, man_input_filter, through

51

Custom Control Algorithm, "Horizontal-Lock"

the parameters DELTATIME and MC_MAN_TILT_TAU and update its state
through sp. The vector sp updates using the state of the filter. This represents
the filtered output of the joystick sticks. This is an important procedure, in fact
joysticks and other input devices can produce noisy signals due to imperfections in
the totality of the system. Also, unfiltered joystick inputs can lead to oscillations or
instability in the vehicle’s response. Filtering helps smooth out these noisy signals,
providing more stable system and reliable control inputs.
Inside the _updateSetpoints() all these functions will be called:

_rotateIntoHeadingFrame(): takes as input the 2D vector sp, and it is
responsible of aligning the vector with the vehicle’s current heading.

Algorithm 3 _rotateIntoHeadingFrame()
// this function uses the yaw or the yaw setpoint if available to modify the

sp vector (which point only in x and y) with respect to the current heading of
the drone

4 INPUT: V[2] // this is the sp vector
5 if _yaw_setpoint is finite then
6 yaw_rotate = _yaw_setpoint;
7 else
8 yaw_rotate = _yaw;

// the vector v_r is a 3D vector while the V only 2D
9 Vector v_r[3] = [0 , 0 , yaw_rotate] * [V(0), V(1), 0.0f];

10 V(0) = v_r(0);
11 V(1) = v_r(1);

_updateAltitudeLock(): in this function will be implemented the core of the
control algorithm. To reach the final objective, the funtion will use two variables
called ‘apply_brake’ and ‘stopped’ to check the drone movement status. Those are
calculated in that way:

- const bool apply_brake =
fabsf(_sticks.getPositionExpo()(2)) <= FLT_EPSILON;

This variable is used to check if the user wants to brake. The code
returns a boolean value on ’apply_brake’ comparing two quantities:
_sticks.getPositionExpo()(2) and FLT_EPSILON. The former represent
the input thrust from the joystick, the later is instead a fixed value. If
the input given by the stick to move along the z-axis is less or equal to a
certain small value FLT_EPSILON, it means that the pilot is asking to
brake and the variable will be set to true.

52

Custom Control Algorithm, "Horizontal-Lock"

- const bool stopped=(_param_mpc_hold_max_z.get()
< FLT_EPSILON || fabsf(_velocity(2)
< _param_mpc_hold_max_z.get())

This variable is used to check if the vehicle stopped through a double
condition. The functions uses 3 main data: The parameter
MPC_HOLD_MAX_Z, that defines the maximum vertical velocity
for which position hold is enabled, the actual velocity in z direction
(_velocity(2)) and FLT_EPSILON, which is the same parameter as
before. It checks whether the parameter MPC_HOLD_MAX_Z is
lower than FLT_EPSILON or the actual vertical velocity is lower than
MPC_HOLD_MAX_Z. If one of these condition is true it means the
vehicle has a vertical velocity so low that the vehicle can be considered
stopped.

The algorithm has 3 different behaviours depending on which value the parameter
MPC_ALT_MODE is set to. The one used in this project is equal to ‘0’ corre-
sponding to the ‘Altitude following’ mode, that controls the height with respect
to the earth frame origin. For simplicity, only this behaviour will be analyzed.
However, in the appendix A the full code will be provided.
This part of the code is composed of an if structure with 3 different conditions (one
excludes the others). In the algorithm 5 is provided the structure and the outcome
of each condition.
This algorithm works checking the physical status of the drone and sets the setpoints
accordingly. Each condition, in fact, corresponds to a different operative situation
of the UAV. It sets the z position setpoint to the actual height if it has not been
set yet and if the vehicle is stopped. Practically this happens when we release the
throttle stick for the first time after the activation. Then it checks if the distance
to the bottom is valid comparing it to the min_distance_to_ground constraint. If
true, the function _terrainFollowing() will be called.
Here is an overview of how this function works.

53

Custom Control Algorithm, "Horizontal-Lock"

Algorithm 4 _TerrainFollowing()
// This function is responsible of maintaining the altitude lock to

the minimum distance to the ground (constraint). It will use a varible called
_dist_to_ground_lock that contains the height to ground at which the UAV will
be locked

12 if apply_brake = 1 && stopped = 1 && _dist_to_ground_lock is not defined then
// User wants to break and vehicle reached zero velocity. Lock height to

ground
13 z_position_setpoint = z_actual_position;
14 if _dist_to_bottom is finite && (_dist_to_bottom <

_min_distance_to_ground) then
15 z_position_setpoint = z_actual_position - (_min_distance_to_ground -

_dist_to_bottom);
// lock distance to ground but adjust first for minimum altitude

16 _dist_to_ground_lock = _dist_to_bottom - (z_position_setpoint -
z_actual_position);

17 else if apply_brake = 1 && _dist_to_ground_lock is already defined then
// in this case the vehicle needs to follow terrain. It calculates

difference between the current distance to ground and the desired distance
to ground and adjust position setpoint for the delta

18 delta_distance_to_ground = _dist_to_ground_lock - _dist_to_bottom;
19 z_position_setpoint = z_actual_position - delta_distance_to_ground;
20 else
21 do not lock in altitude;

This function will maintain the minimum altitude constraints while the drone is
flying. So, if we fly below that threshold, the algorithm will set this contraint as
a setpoint, forcing the drone to return at that height. This is a useful constraint
since it prevent the drone from running into obstacles while flying very close to the
ground in uneven terrain. It’s basically as if we set a safe distance from ground.
The other condition, instead, checks if the setpoint is already set and if the user is
demanding to brake. The algorithm will check if a reset event happened, if true,
the z setpoint will be updated.
The last condition actives when the user is demanding a velocity change. The z
setpoint will be set to Nan. A check on the altitude will also be done, ensuring
it does not overcome the maximum achievable height. This is done through the
_respectMaxAltitude() function, which works very similarly to _terrainFollowing(),
with the only exception that the used constraint will be now referring to the

54

Custom Control Algorithm, "Horizontal-Lock"

maximum height above the ground.

Algorithm 5 _updateAltitudeLock()
// this is the main algorithm of the altitude module, the one that evaluates

the distance to ground and sets the relative z setpoint
22 if apply_brake = 1 && stopped = 1 && z setpoint is not defined then
23 z_position_setpoint = z_actual_position;
24 if distance to bottom < _min_distance_to_ground then
25 _terrainFollowing(...);
26 else
27 do not lock in altitude;

28 else if apply_brake = 1 && z setpoint is already defined then
29 _reset_counter = vehicle_local_position → z_reset_counter;

// checks if a reset event has happened
30 if vehicle_local_position.z_reset_counter != _reset_counter then
31 z_position_setpoint = z_actual_position;
32 _reset_counter = vehicle_local_position.z_reset_counter;

/* updates the value of _reset_counter to the most recent one
z_reset_counter in order to avoid a reset also on the next states */

33 else
34 do not lock in altitude;
35 _respectMaxAltitude();

_respectGroundSlowdown():This function is responsible for adjusting the
vertical velocity setpoint based on the distance to the ground (_dist_to_ground)
and specific altitude parameters. It first calculates an ascend rate limit_up and
a descent rate limit_down and then, trough the function below, ensures that the
vertical velocity stays within the specified limits based on the distance to the
ground:

velocity_setpoint(2) = math::constrain(_velocity_setpoint(2),
-limit_up, limit_down)

The last action performed is the update of another constraint called ’want_takeoff’
through the _checkTakeoff() function, that will do a check on the throttle stick
input. If the input throttle is over a certain value, then the user is asking to take
off.

55

Custom Control Algorithm, "Horizontal-Lock"

4.5 The Angle Algorithm

Since the algorithm to obtain the physical angle has already been described, in this
paragraph will be held a description on how those measures are used inside the
firmware. The code will always be implemented inside the DistanceHoldAltitude
module, so that when the altitude mode is selected, the drone will automatically
align to the wall. To do that I deleted the previous yaw control implemented inside
the original altitude module and substituted it with my custom one, but still the
two are very similar one another. Here is how it insert in the altitude flow chart:

Figure 4.6: Where the angle algorithm is added in the altitude operating scheme

56

Custom Control Algorithm, "Horizontal-Lock"

In the flow chart are represented the main processes that compose the algorithm.

Figure 4.7: Operating scheme of the angle algorithm

First, the angle correction is defined. We do that through the subscription to the
angle_correction topic:

uORB::Subscription _angle_corr_sub{ORB_ID(angle_correction)};

All the data will be stored inside the dedicated structure angle_correction_struct.
The core of this algorithm is the _updateHeadingSetpoints() function. This
is called inside the _updateSetpoints() function, right after the update of the
angle_correction structure which is also passed as an argument of the function.
The body of the function is:

Algorithm 6 _updateHeadingSetpoints()
INPUT: yaw_correction
if _yaw_setpoint is not set yet then

yaw_setpoint = _yaw + _yaw_correction;

That says that if the yaw setpoint has not been set yet, the new setpoint will be
given by the sum of the actual yaw the drone is heading at and the yaw needed for

57

Custom Control Algorithm, "Horizontal-Lock"

the correction. Since the yaw is referring to a fixed and global reference of system,
the actual yaw can be interpreted as the difference between the initial position
(yaw = 0 rad.) and the actual position. For example, if the actual yaw is π rad.
(or 180◦ degrees) the UAV points in the reverse direction of the initial one.
Every time the module is activated for the first time, the setpoint of the yaw is
set to Nan. After entering the loop, the new setpoint will be given updating the
old one. However, due to the "if condition", this update will be done only once,
increasing the chances of error in the calculations.

4.6 The Position Algorithm

As has been done for the altitude task, it is developed inside a new copied Position
task module, which is directly connected to the altitude one. If the drone is flying
in altitude and a change of mode in position is requested, the altitude will not be
turned off, but it will continue to be active, independently from the position mode.
This maintenance of the altitude mode is done through recursive functions that call
the activate and the update of the task. The former is called inside the activate()
function of the position mode:

bool ret = FlightTaskDistanceHoldAltitude::activate(last_setpoint);

Since the altitude setpoints need to be updated too, inside the update of the
position a function similar to the one above will be called to update the yaw and
the z-direction setpoints:

FlightTaskDistanceHoldAltitude::_updateSetpoints();

The aim of the position mode is to set the setpoints for the x and y axis too. In
that way, if the drone is flying and the sticks of the RC are released, the drone
will save the position in which this event happened and put the measures into the
relative setpoints, so that the drone will stay still in this position. This module can
be easily modified to work only in the x direction, leaving the y setpoint always
set to NAN. In that way the drone will be free to move sideways, but it will be
controlled in the x and z directions.
How the module works, and its parts will now be described. When we start the
module for the first time, some preliminary operations will be done. The first
operation that the algorithm does is to check if the actual position is valid or
not. This is done inside the updateInitialize() function, that will also update the
setpoints of the altitude mode for the first time:

58

Custom Control Algorithm, "Horizontal-Lock"

bool ret = FlightTaskDistanceHoldAltitude::updateInitialize();

If everything is verified, the next function to be enabled is the activate(). It will
turn on the DistanceHoldAltitude task for the altitude, as shown above, and then
update the x-axis position and velocity setpoints respectively to the actual position
and to zero.
The core of the module is the _updateSetpoints() function. This is the respon-
sible of the updating of the altitude task and of the horizontal lock through the
_updateXlock(). This is structured in this way:

const float vel_xy_norm = Vector2f(_velocity).length();
const bool apply_brake = _velocity_setpoint (0) < FLT_EPSILON;
const bool stopped =

(_param_mpc_hold_max_xy.get() < FLT_EPSILON || vel_xy_norm
< _param_mpc_hold_max_xy.get());

This part defines three variables. The first one is called ’vel_xy_norm’ and it gives
a norm between x and y velocities. The other two variables are called ’apply_brake’
and ’stopped’ and their meaning is equal to those used in the altitude task. However,
the first one is defined in a different way, not using the sticks input, but the velocity
setpoint in x.

Algorithm 7 _updateXLock()
// this is the main algorithm of the position module, the one that evaluates

the distance to the wall and sets the relative x setpoint
36 if apply_brake = 1 && stopped = 1 && x setpoint is not defined then
37 x_position_setpoint = x_actual_position;
38 else if apply_brake = 1 && x setpoint is already defined then

// checks if a reset event has happened
39 if vehicle_local_position.x_reset_counter != _reset_counter then
40 x_position_setpoint = x_actual_position;
41 _reset_counter = vehicle_local_position.x_reset_counter;

/* updates the value of _reset_counter to the most recent one
x_reset_counter in order to avoid a reset also on the next states */

42 else
43 do not lock in x;

It is visible that this algorithm is very similar to the one implemented inside the
altitude module(_updateAltitudeLock()). The first condition is activated when

59

Custom Control Algorithm, "Horizontal-Lock"

the vehicle is stopped and the setpoint hasn’t been set yet. It sets the position
setpoint equal to the actual position of the drone. Instead, if the setpoint has been
already defined and the user is asking to apply brake, the setpoint will be updated
if there is a reset condition verified. If none of the other is active, the setpoint will
be set to NAN, since the user is asking to move the drone in another position.

60

Chapter 5

Testing: Results and
Troubleshooting

In this chapter I will list the main problems I encountered during the development
of the algorithm and the results I achieved.

5.1 Problems in the Position Mode

The main issue I encountered during my work regards the position task. Even
though the code for the horizontal position lock has been developed, I did not
have any way to test it in the gazebo-QGroundControl environment. For the task
to be activated, some mandatory conditions need to be verified. The main one
regards the GPS positioning system, which the drone I am using does not have.
In fact, to enable the position mode the system requires a detailed information
about the actual position of the drone. This information is not provided in the
configuration of the drone I used, which uses a combination o IMUs and Barometers
to estimate the current position. This problem does not involve only my sub-mode
“DistanceHold”, but it is extended to all the sub-modes of the MPC_POS_MODE
parameter of the original source code.
A solution could have been to develop the horizontal lock in the same module where
the altitude task is developed: ’FlightTaskDistanceHoldAltitude.cpp’. However,
during the test phase, the drone was not able to start flying in altitude mode
and, when switching from manual to altitude mode in flight, the drone would stop
working too, falling to the ground. The problem regarding this is the same as the
previous one. When an xy-plane setpoint is being defined, the system requires a

61

Testing: Results and Troubleshooting

valid actual position of the drone.

5.2 Problems in the Angle Measurement

The major issue of this part of the control is the measurement error on the
computation of the angle correction. As seen, this value is computed starting from
the lidar sensors placed on the top of the drone. So, it depends on the accuracy of
the .sdf file. However, when we simulate a flight and we activate the altitude, the
angle is not very precise. This depends on various factors.
First, the conversion of the distance into an angle does not give a specific angle
value, but always rounds the results to a finite set of values. For example, 12.5◦

and 15.3◦ degrees will be rounded into 0◦ and 19◦ degrees each. The precision of
the angle can be enhanced by acting directly on the gazebo_lidar_plugin module,
where the data from the .sdf are extracted. In this file, the order of magnitude
of the measurements of the sensors can be modified, by multiplying x10,x100 or
x1000 the extracted values. This leads to a current distance expressed on mm,
0.1mm or 0.01mm, depending on the multiplication factor. Doing that, the angle
will have a wider and more precise range of values. However, decreasing the order
of magnitude leads to an increase of the computational time making the simulation
slower. A good compromise is obtained by using the data in mm, leading to a bit
larger set of values and to a good simulation environment.
Another issue is the instability of the drone in the altitude mode. This may be
caused by the use of the joystick instead of the RC. Below, a picture shows this
wrong behaviour. In the first picture, the inputs from the joystick are represented,
but only for the x/y axis. When the sticks are released, there will be an offset. The
other one shows the physical result of this offset, leading to a movement in both x
and y directions, making the drone move indefinitely when it should be still in its
position. This will cause an error in the computation of the angle since the sensor
can take a wrong measurement due to these continuous movement of the drone.
Also, this makes it more difficult to control the drone in simulation and for the
algorithm testing.
When the altitude task is activated, the angle control will be done only once,
increasing the chances of moving with a wrong angle correction. However, this
is the most performant solution that I obtained. In fact, rapidly disabling and
enabling the altitude mode, will recalculate the angle leading to a better measure.
Doing this for 2 or 3 times will almost ensure a correct alignment with the wall.

62

Testing: Results and Troubleshooting

Figure 5.1: Manual control inputs for X/Pitch (in green) and Y/Roll (in red)
over time

Figure 5.2: Diagrams of the local position of the drone in the X and Y axis over
time

63

Testing: Results and Troubleshooting

5.3 Measurements and Results

Due to the problems listed above, the control was almost always receiving wrong
measurements, correcting the yaw in a wrong way, or started rotating indefinitely.
A lot of different solutions had been implemented during the development phase.
An example was a solution in which the control remains active, always adjusting
the angle accordingly, if no yaw input from the joystick is provided. Instead, if
input is provided the control is locked, and the drone can move the angle smoothly.
The developed code is provided below:

if(!PX4_ISFINITE(_yaw_setpoint) || !isYawInput()){
_yaw_setpoint = _yaw + angle_correction_handle.yaw_correction;

}

This leads to a completely wrong behaviour, where the drone starts rotating
indefinitely. This may be caused by the same problem analyzed before of the
joystick inputs offset. As can be seen from the picture, the input is never zero, and
this conflicts with the isYawinput() function, that will be always active, leading
the algorithm to set another setpoint everytime.

Figure 5.3: Diagram of the yaw_setpoint over time for a wrong algorithm

64

Testing: Results and Troubleshooting

Figure 5.4: Yaw input from the joystick over time

Using the solution proposed in chapter 4, leads to a good, but not perfect, angle
control. As can be seen in the picture, when calling for the first time the altitude
(yellow zone) the drone does not align perfectly but has some degrees of error.
Disabling and re-enabling the mode leads to a better angle, almost perfectly aligned
with the target wall. The advantage of using the setpoint is that even though we
apply a high yaw as input, the system will autonomously return to the setpoint.
This is shown in the picture below, where the red line shows the actual heading of
the drone.

Figure 5.5: Yaw_setpoint over time, in red the drone is flying in manual, in
yellow in altitude

65

Testing: Results and Troubleshooting

Figure 5.6: Yaw angle over time. This refers to current heading of he drone and
it is due yaw inputs from joystick

Some issues arise when changing the actual setpoint. The environment where
the drone is moving is formed of 4 perpendicular walls, as said in the previous
chapters. To change the target to a near wall, the drone should perform a 90◦

degrees rotation and set the setpoint again taking this into account. During the
simulation, I started from a 0◦ degrees setpoint, then entered in manual and rapidly
changed the orientation of the drone. As can be seen from the picture, when
I activate the altitude again, heading to the new wall, the setpoint is not very
precise, but has an error of at least 5/6◦ degrees. As stated before, doing a quick
re-calibration leads to an improved angle, which is almost 90◦ degrees.

Figure 5.7: Yaw angle over time

66

Testing: Results and Troubleshooting

Figure 5.8: Yaw_setpoint over time

67

Chapter 6

Conclusions

This thesis has been developed to test and verify the effectiveness of a custom
positioning algorithm inside the original PX4 autopilot firmware. The controller
that has been created is good for what concern the orientation of the drone with an
accuracy of about 5 degrees. However, to reach this accuracy, the drone should be
calibrated from 2 to 3 times. This of course is a less autonomous system, but it can
be enhanced adding some new features. One thing that I think could have been
useful was the use of a direct button from the joystick to enable the calibration,
to avoid the continuous enable/disable of the altitude to get a new calibration.
Nonetheless, after the setpoint has been set, the drone moves in very smooth and
controllable way.
Also, the algorithm is not fully tested, due to some problems regarding the position
mode. So, the part about the distance lock has been implemented through code,
but I didn’t have the resources and knowledge to enable this task in flight. In fact,
the position mode requires strict information of the actual position of the drone.
This could have been achieved effortlessly by using a GPS device, but the drone I
used was supposed to fly in GPS-denied environment, so it uses a combination of
barometers and IMUs to get the position information. Those are less precise than
the GPS ones, leading to a mismatch of the position activation conditions.
Despite those difficulties encountered during the end phase of the development,
this project’s contributions extend beyond the domain of positioning algorithms,
dealing with the understanding and use of the PX4 system and of many internal
functionalities of it. As a matter of fact, a deep analysis of the architecture and of
the control system has been provided, with a particular focus on the mechanism of
the communication system.
Also, the creation of custom environments and sensors had a great importance for

68

Conclusions

the development of my work. Indeed, the design and integration of the .sdf files
into the original PX4 source code had a significant role to build and modify the
world environment and equip the drone with different sensors for simulation and
testing purposes.

69

Appendix A

Codes

A.1 AngleCorrector.cpp

#include "AngleCorrector.hpp"

#include <fcntl.h>
#include <unistd.h>
#include <px4_platform_common/getopt.h>
#include <px4_platform_common/log.h>
#include <px4_platform_common/posix.h>

AMode::AMode() :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::test1)
{
_angle_corr_pub.advertise();
}

AMode::~AMode()
{
}

bool AMode::init()
{
PX4_INFO("INITIALIZATION");
ScheduleOnInterval(10000);

70

Codes

return true;
}

void AMode::Sensorcheck(
distance_sensor_s distance_sensor_left_handle,
distance_sensor_s distance_sensor_right_handle)

{
float distance_diff = distance_sensor_left_handle.current_distance
- distance_sensor_right_handle.current_distance;

float angle_inclination = atan2f(distance_diff, sensor_spacing);

angle_correction.timestamp = hrt_absolute_time();
angle_correction.yaw_correction = angle_inclination;
_angle_corr_pub.publish(angle_correction);

}

void AMode::Run()
{

if (should_exit()) {
ScheduleClear();
exit_and_cleanup();
return;

}

_distance_sensor_left_sub.update(&_distance_sensor_left_struct);
_distance_sensor_right_sub.update(&_distance_sensor_right_struct);

int AMode::task_spawn(int argc, char *argv[])
{

AMode *instance = new AMode();

if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;

if (instance->init()) {
return PX4_OK;

}

} else {

71

Codes

PX4_ERR("alloc failed");
}

delete instance;
_object.store(nullptr);
_task_id = -1;

return PX4_ERROR;
}

int AMode::print_status()
{

PX4_INFO("Running");

return 0;
}

int AMode::custom_command(int argc, char *argv[])
{

return 0;
}

int AMode::print_usage(const char *reason)
{

if (reason) {
PX4_WARN("%s\n", reason);

}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
Description
Angle Mode!
)DESCR_STR");

PRINT_MODULE_USAGE_NAME("AngleCorrector_main", "driver");
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();

return 0;
}

extern "C" __EXPORT int AngleCorrector_main(int argc, char *argv[])
{

72

Codes

return AMode::main(argc, argv);
}

73

Codes

A.2 AngleCorrector.hpp

#pragma once

#include <commander/px4_custom_mode.h>
#include <drivers/drv_hrt.h>
#include <mathlib/mathlib.h>
#include <matrix/matrix/math.hpp>
#include <px4_platform_common/module_params.h>
#include <systemlib/mavlink_log.h>
#include <uORB/topics/distance_sensor.h>
#include <uORB/topics/angle_correction.h>
#include <uORB/SubscriptionMultiArray.hpp>
#include <uORB/Publication.hpp>
#include <uORB/PublicationMulti.hpp>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionCallback.hpp>
#include <px4_platform_common/defines.h>
#include <px4_platform_common/module.h>
#include <px4_platform_common/module_params.h>
#include <px4_platform_common/posix.h>
#include <px4_platform_common/events.h>
#include <px4_platform_common/px4_work_queue/ScheduledWorkItem.hpp>

class AMode : public ModuleBase<AMode>, public ModuleParams,
public px4::ScheduledWorkItem

{

public:
AMode();
~AMode() override;

/** @see ModuleBase */
static int task_spawn(int argc, char *argv[]);

/** @see ModuleBase */
static int custom_command(int argc, char *argv[]);

/** @see ModuleBase */

74

Codes

static int print_usage(const char *reason = nullptr);

bool init();

double b;
float sensor_spacing = 40f; // Distance between the

two sensor rays in mms

/** @see ModuleBase::print_status() */
int print_status() override;

private:
uORB::Publication<angle_correction_s>

_angle_corr_pub{ORB_ID(angle_correction)};

angle_correction_s angle_correction{};

uORB::Subscription
_distance_sensor_left_sub{ORB_ID(distance_sensor),0};

uORB::Subscription
_distance_sensor_right_sub{ORB_ID(distance_sensor),1};

struct distance_sensor_s _distance_sensor_left_struct;
struct distance_sensor_s _distance_sensor_right_struct;

void Sensorcheck(distance_sensor_s,distance_sensor_s);
void Run() override;

};

75

Codes

A.3 FlightTaskDistanceAltitude.cpp

/**
* @file FlightTaskDistanceAltitude.cpp
*/

#include "FlightTaskDistanceAltitude.hpp"
#include <float.h>
#include <mathlib/mathlib.h>
#include <geo/geo.h>

using namespace matrix;

FlightTaskDistanceAltitude::FlightTaskDistanceAltitude() :
_sticks(this)

{}

bool FlightTaskDistanceAltitude::updateInitialize()
{

bool ret = FlightTask::updateInitialize();
_sticks.checkAndUpdateStickInputs();

if (_sticks_data_required) {
ret = ret && _sticks.isAvailable();

}

return ret && PX4_ISFINITE(_position(2)) &&
PX4_ISFINITE(_velocity(2)) && PX4_ISFINITE(_yaw);

}

bool FlightTaskDistanceAltitude::activate(const
trajectory_setpoint_s &last_setpoint)

{
bool ret = FlightTask::activate(last_setpoint);
_yaw_setpoint = NAN;
_yawspeed_setpoint = 0.f;
_acceleration_setpoint = Vector3f(0.f, 0.f, NAN);
_position_setpoint(2) = _position(2);
_velocity_setpoint(2) = 0.f;
_setDefaultConstraints();

76

Codes

_updateConstraintsFromEstimator();

return ret;
}

void FlightTaskDistanceAltitude::_updateConstraintsFromEstimator()
{

if (PX4_ISFINITE(_sub_vehicle_local_position.get().hagl_min)) {
_min_distance_to_ground =

_sub_vehicle_local_position.get().hagl_min;
} else {

_min_distance_to_ground = -INFINITY;
}

if (PX4_ISFINITE(_sub_vehicle_local_position.get().hagl_max)) {
_max_distance_to_ground =

_sub_vehicle_local_position.get().hagl_max;
} else {

_max_distance_to_ground = INFINITY;
}

}

void FlightTaskDistanceAltitude::_scaleSticks()
{

const float yawspeed_target = _sticks.getPositionExpo()(3) *
math::radians(_param_mpc_man_y_max.get());

_yawspeed_setpoint = _applyYawspeedFilter(yawspeed_target);

const float vel_max_z = (_sticks.getPosition()(2) > 0.0f) ?
_param_mpc_z_vel_max_dn.get() :

_param_mpc_z_vel_max_up.get();
_velocity_setpoint(2)= vel_max_z * _sticks.getPositionExpo()(2);

}

float FlightTaskDistanceAltitude::_applyYawspeedFilter(
float yawspeed_target)

{
const float den = math::max(_param_mpc_man_y_tau.get() +

_deltatime, 0.001f);
const float alpha = _deltatime / den;
_yawspeed_filter_state = (1.f - alpha) * _yawspeed_filter_state

77

Codes

+ alpha * yawspeed_target;
return _yawspeed_filter_state;

}

void FlightTaskDistanceAltitude::_updateAltitudeLock()
{

const bool apply_brake = fabsf(_sticks.getPositionExpo()(2))
<= FLT_EPSILON;

const bool stopped = (_param_mpc_hold_max_z.get() < FLT_EPSILON
|| fabsf(_velocity(2)) < _param_mpc_hold_max_z.get());

if (_param_mpc_alt_mode.get() == 2) {

float spd_xy = Vector2f(_velocity).length();

float stick_xy = Vector2f(_sticks.getPositionExpo().slice<2,
1>(0, 0)).length();

bool stick_input = stick_xy > 0.001f;

if (_terrain_hold) {
bool too_fast = spd_xy > _param_mpc_hold_max_xy.get();

if (stick_input || too_fast ||
!PX4_ISFINITE(_dist_to_bottom)) {

_terrain_hold = false;
_terrain_follow = false;

if (PX4_ISFINITE(_dist_to_ground_lock) &&
PX4_ISFINITE(_dist_to_bottom)) {

_position_setpoint(2) = _position(2) -
(_dist_to_ground_lock - _dist_to_bottom);

} else {
_position_setpoint(2) = _position(2);

}
}

} else {
bool not_moving = spd_xy < 0.5f *

_param_mpc_hold_max_xy.get();

78

Codes

if (!stick_input && not_moving &&
PX4_ISFINITE(_dist_to_bottom)) {

_terrain_hold = true;
_terrain_follow = true;

if (PX4_ISFINITE(_position_setpoint(2))) {
_dist_to_ground_lock = _dist_to_bottom -

(_position_setpoint(2) - _position(2));
}

}
}

}

if ((_param_mpc_alt_mode.get() == 1 || _terrain_follow) &&
PX4_ISFINITE(_dist_to_bottom)) {

_terrainFollowing(apply_brake, stopped);
_respectMaxAltitude();

} else {

if (apply_brake && stopped &&
!PX4_ISFINITE(_position_setpoint(2))) {

_position_setpoint(2) = _position(2);

if (PX4_ISFINITE(_dist_to_bottom) && _dist_to_bottom <
_min_distance_to_ground) {

_terrainFollowing(apply_brake, stopped);

} else {
_dist_to_ground_lock = NAN;

}

} else if (PX4_ISFINITE(_position_setpoint(2)) &&
apply_brake) {

if (_sub_vehicle_local_position.get().z_reset_counter
!= _reset_counter) {

79

Codes

_position_setpoint(2) = _position(2);
_reset_counter =

_sub_vehicle_local_position.get().z_reset_counter;
}

} else {
_position_setpoint(2) = NAN;

_respectMaxAltitude();
}

}
}

void FlightTaskDistanceAltitude::_respectMinAltitude()
{

if (PX4_ISFINITE(_dist_to_bottom) && (_dist_to_bottom <
_min_distance_to_ground)) {

_position_setpoint(2) = _position(2) -
(_min_distance_to_ground - _dist_to_bottom);

}
}

void FlightTaskDistanceAltitude::_terrainFollowing(bool apply_brake,
bool stopped)

{
if (apply_brake && stopped &&

!PX4_ISFINITE(_dist_to_ground_lock)) {

_position_setpoint(2) = _position(2);
_respectMinAltitude();
_dist_to_ground_lock = _dist_to_bottom -

(_position_setpoint(2) - _position(2));

} else if (apply_brake && PX4_ISFINITE(_dist_to_ground_lock)) {

const float delta_distance_to_ground = _dist_to_ground_lock
- _dist_to_bottom;

_position_setpoint(2) = _position(2) -
delta_distance_to_ground;

80

Codes

} else {

_dist_to_ground_lock = _position_setpoint(2) = NAN;
}

}

void FlightTaskDistanceAltitude::_respectMaxAltitude()
{

if (PX4_ISFINITE(_dist_to_bottom)) {

if (PX4_ISFINITE(_max_distance_to_ground)) {
_constraints.speed_up =

math::constrain(_param_mpc_z_p.get() *
(_max_distance_to_ground - _dist_to_bottom),
-_param_mpc_z_vel_max_dn.get(),
_param_mpc_z_vel_max_up.get());

} else {
_constraints.speed_up = _param_mpc_z_vel_max_up.get();

}

if (_dist_to_bottom > _max_distance_to_ground) {

const float delta_distance_to_max = _dist_to_bottom
- _max_distance_to_ground;

_position_setpoint(2) = _position(2) +
delta_distance_to_max;

// limit speed downwards to 0.7m/s
_constraints.speed_down =

math::min(_param_mpc_z_vel_max_dn.get(), 0.7f);

} else {
_constraints.speed_down =

_param_mpc_z_vel_max_dn.get();
}

}
}

void FlightTaskDistanceAltitude::_respectGroundSlowdown()

81

Codes

{
// Interpolate descent rate between the altitudes MPC_LAND_ALT1

and MPC_LAND_ALT2
if (PX4_ISFINITE(_dist_to_ground)) {

const float limit_down = math::interpolate(
_dist_to_ground, _param_mpc_land_alt2.get(),
_param_mpc_land_alt1.get(),
_param_mpc_land_speed.get(),
_constraints.speed_down);

const float limit_up = math::interpolate(_dist_to_ground,
_param_mpc_land_alt2.get(),
_param_mpc_land_alt1.get(),
_param_mpc_tko_speed.get(),
_constraints.speed_up);

_velocity_setpoint(2) =
math::constrain(_velocity_setpoint(2), -limit_up,
limit_down);

}
}

void FlightTaskDistanceAltitude::_rotateIntoHeadingFrame(Vector2f &v)
{

const float yaw_rotate = PX4_ISFINITE(_yaw_setpoint) ?
_yaw_setpoint : _yaw;

Vector3f v_r = Vector3f(Dcmf(Eulerf(0.0f, 0.0f, yaw_rotate)) *
Vector3f(v(0), v(1), 0.0f));

v(0) = v_r(0);
v(1) = v_r(1);

}

bool FlightTaskDistanceAltitude::_isYawInput()
{
/*
* A threshold larger than FLT_EPSILON is required because the
* _yawspeed_setpoint comes from an IIR filter and takes too much
* time to reach zero.
*/

return fabsf(_yawspeed_setpoint) > 0.001f;
}

void FlightTaskDistanceAltitude::_ekfResetHandlerHeading(float

82

Codes

delta_psi)
{

if (PX4_ISFINITE(_yaw_setpoint)) {
_yaw_setpoint += delta_psi;

}
}

void FlightTaskDistanceAltitude::_updateSetpoints()
{

_angle_corr_sub.update(&angle_correction_struct);
_updateHeadingSetpoints(angle_correction_struct);

// Thrust in xy are extracted directly from stick inputs. A
magnitude of 1 means that maximum thrust along xy is demanded. A
magnitude of 0 means no thrust along xy is demanded. The maximum
thrust along xy depends on the thrust setpoint along z-direction,
which is computed in PositionControl.cpp.

Vector2f sp(_sticks.getPosition().slice<2, 1>(0, 0));

_man_input_filter.setParameters(_deltatime,
_param_mc_man_tilt_tau.get());

_man_input_filter.update(sp);
sp = _man_input_filter.getState();
_rotateIntoHeadingFrame(sp);

if (sp.longerThan(1.0f)) {
sp.normalize();

}

_acceleration_setpoint.xy() = sp *
tanf(math::radians(_param_mpc_man_tilt_max.get())) *
CONSTANTS_ONE_G;

_updateAltitudeLock();
_respectGroundSlowdown();

}

bool FlightTaskDistanceAltitude::_checkTakeoff()
{

83

Codes

// stick is deflected above 65% throttle (throttle stick is in
the range [-1,1])

return _sticks.getPosition()(2) < -0.3f;
}

bool FlightTaskDistanceAltitude::update()
{

bool ret = FlightTask::update();
_updateConstraintsFromEstimator();
_scaleSticks();
_updateSetpoints();
_constraints.want_takeoff = _checkTakeoff();

return ret;
}

void FlightTaskDistanceAltitude::_updateHeadingSetpoints(
angle_correction_s angle_correction_handle)

{
if(!PX4_ISFINITE(_yaw_setpoint)){

_yaw_setpoint = _yaw +
angle_correction_handle.yaw_correction;

}
}

84

Codes

A.4 FlightTaskDistanceAltitude.hpp

/**
* @file FlightTaskDistancePosition.cpp
*/

#pragma once

#include "FlightTask.hpp"
#include "Sticks.hpp"
#include <lib/mathlib/math/filter/AlphaFilter.hpp>
#include <uORB/topics/angle_correction.h>
#include <uORB/Subscription.hpp>
#include <uORB/SubscriptionCallback.hpp>

class FlightTaskDistanceAltitude : public FlightTask
{

public:
FlightTaskDistanceAltitude();
virtual ~FlightTaskDistanceAltitude() = default;
bool activate(const trajectory_setpoint_s &last_setpoint)

override;
bool updateInitialize() override;
bool update() override;

protected:
void _updateHeadingSetpoints(angle_correction_s); /**< sets

yaw or yaw speed */
void _ekfResetHandlerHeading(float delta_psi) override; /**<

adjust heading setpoint in case of EKF reset event */
virtual void _updateSetpoints(); /**< updates all setpoints */
virtual void _scaleSticks(); /**< scales sticks to velocity

in z */
bool _checkTakeoff() override;
void _updateConstraintsFromEstimator();

/**
* rotates vector into local frame
*/

void _rotateIntoHeadingFrame(matrix::Vector2f &vec);

85

Codes

/**
* Check and sets for position lock.
* If sticks are at center position, the vehicle
* will exit velocity control and enter position control.
*/

void _updateAltitudeLock();

Sticks _sticks;
bool _sticks_data_required = true;

DEFINE_PARAMETERS_CUSTOM_PARENT(FlightTask,
(ParamFloat<px4::params::MPC_HOLD_MAX_Z>) _param_mpc_hold_max_z,
(ParamInt<px4::params::MPC_ALT_MODE>) _param_mpc_alt_mode,
(ParamFloat<px4::params::MPC_HOLD_MAX_XY>)

_param_mpc_hold_max_xy,
(ParamFloat<px4::params::MPC_Z_P>) _param_mpc_z_p, /**<

position controller altitude propotional gain */
(ParamFloat<px4::params::MPC_MAN_Y_MAX>) _param_mpc_man_y_max,

/**< scaling factor from stick to yaw rate */
(ParamFloat<px4::params::MPC_MAN_Y_TAU>) _param_mpc_man_y_tau,
(ParamFloat<px4::params::MPC_MAN_TILT_MAX>)

_param_mpc_man_tilt_max, /**< maximum tilt allowed for
manual flight */

(ParamFloat<px4::params::MPC_LAND_ALT1>) _param_mpc_land_alt1,
/**< altitude at which to start downwards slowdown */

(ParamFloat<px4::params::MPC_LAND_ALT2>) _param_mpc_land_alt2,
/**< altitude below which to land with land speed */

(ParamFloat<px4::params::MPC_LAND_SPEED>)
_param_mpc_land_speed, /**< desired downwards speed when

approaching the ground */
(ParamFloat<px4::params::MPC_TKO_SPEED>)
_param_mpc_tko_speed, /**< desired upwards speed when still

close to the ground */
(ParamFloat<px4::params::MC_MAN_TILT_TAU>) _param_mc_man_tilt_tau

)

private:
bool _isYawInput();

/**

86

Codes

* Filter between stick input and yaw setpoint
*
* @param yawspeed_target yaw setpoint desired by the stick
* @return filtered value from independent filter state
*/

float _applyYawspeedFilter(float yawspeed_target);

/**
* Terrain following.
* During terrain following, the position setpoint is adjusted
* such that the distance to ground is kept constant.
* @param apply_brake is true if user wants to break
* @param stopped is true if vehicle has stopped moving in D-direction
*/

void _terrainFollowing(bool apply_brake, bool stopped);

/**
* Minimum Altitude during range sensor operation.
* If a range sensor is used for altitude estimates, for
* best operation a minimum altitude is required. The minimum
* altitude is only enforced during altitude lock.
*/

void _respectMinAltitude();

void _respectMaxAltitude();

/**
* Sets downwards velocity constraint based on the distance to ground.
* To ensure a slowdown to land speed before hitting the ground.
*/

void _respectGroundSlowdown();

void setGearAccordingToSwitch();

float _yawspeed_filter_state{}; /**< state of low-pass filter
in rad/s */

uint8_t _reset_counter = 0; /**< counter for estimator resets
in z-direction */

bool _terrain_follow{false}; /**< true when the vehicle is
following the terrain height */

bool _terrain_hold{false}; /**< true when vehicle is

87

Codes

controlling height above a static ground position */

float _min_distance_to_ground{(float)(-INFINITY)}; /**< min
distance to ground constraint */

float _max_distance_to_ground{(float)INFINITY}; /**< max
distance to ground constraint */

/**
* Distance to ground during terrain following.
* If user does not demand velocity change in D-direction and the
*vehcile is in terrain-following mode, then height to ground will
*be locked to _dist_to_ground_lock.
*/

float _dist_to_ground_lock = NAN;

AlphaFilter<matrix::Vector2f> _man_input_filter;

uORB::Subscription
_angle_corr_sub{ORB_ID(angle_correction)};

struct angle_correction_s angle_correction_struct= {0} ;
};

88

Codes

A.5 FlightTaskDistancePosition.cpp

/**
* @file FlightTaskDistancePosition.cpp
*/

#include "FlightTaskDistancePosition.hpp"
#include <mathlib/mathlib.h>
#include <float.h>

using namespace matrix;

bool FlightTaskDistancePosition::updateInitialize()
{

bool ret = FlightTaskDistanceAltitudede::updateInitialize();

return ret && PX4_ISFINITE(_position(0))
&& PX4_ISFINITE(_velocity(0));

}

bool FlightTaskDistancePosition::activate(const trajectory_setpoint_s
&last_setpoint)

{

bool ret = FlightTaskDistanceAltitudede::activate(last_setpoint);

_position_setpoint(0) = _position(0);
_velocity_setpoint(0) = 0.0f;

return ret;
}

void FlightTaskDistancePosition::_scaleSticks()
{
/* Use same scaling as for FlightTaskDistanceAltitudede */

FlightTaskDistanceAltitudede::_scaleSticks();

Vector2f stick_xy = _sticks.getPositionExpo().slice<2, 1>(0, 0);

Sticks::limitStickUnitLengthXY(stick_xy);

89

Codes

if (_param_mpc_vel_man_side.get() >= 0.f) {
stick_xy(1) *= _param_mpc_vel_man_side.get() /

_param_mpc_vel_manual.get();
}

if ((_param_mpc_vel_man_back.get() >= 0.f) && (stick_xy(0) < 0.f)) {
stick_xy(0) *= _param_mpc_vel_man_back.get() /

_param_mpc_vel_manual.get();
}

const float max_speed_from_estimator =
_sub_vehicle_local_position.get().vxy_max;

float velocity_scale = _param_mpc_vel_manual.get();

if (PX4_ISFINITE(max_speed_from_estimator)) {
// Constrain with optical flow limit but leave 0.3 m/s for repositioning

velocity_scale = math::constrain(velocity_scale, 0.3f,
max_speed_from_estimator);

}

Vector2f vel_sp_xy = stick_xy * velocity_scale;

/* Rotate setpoint into local frame. */
_rotateIntoHeadingFrame(vel_sp_xy);

if (_collision_prevention.is_active()) {
_collision_prevention.modifySetpoint(vel_sp_xy, velocity_scale,

_position.xy(), _velocity.xy());
}

_velocity_setpoint.xy() = vel_sp_xy;
}

void FlightTaskDistancePosition::_updateXlock()
{
/* If position lock is not active, position setpoint is set to NAN.*/

const float vel_xy_norm = Vector2f(_velocity).length();
const bool apply_brake = Vector2f(_velocity_setpoint).length() <

FLT_EPSILON;
const bool stopped = (_param_mpc_hold_max_xy.get() < FLT_EPSILON ||

90

Codes

vel_xy_norm < _param_mpc_hold_max_xy.get());

if (apply_brake && stopped && !PX4_ISFINITE(_position_setpoint(0))) {
_position_setpoint(0) = _position(0);

} else if (PX4_ISFINITE(_position_setpoint(0)) && apply_brake) {

if (_sub_vehicle_local_position.get().xy_reset_counter !=
_reset_counter) {

_position_setpoint(0) = _position(0);
_reset_counter =

_sub_vehicle_local_position.get().xy_reset_counter;
}

} else {
/* don’t lock*/

_position_setpoint(0) = NAN;
}

}

void FlightTaskDistancePosition::_updateSetpoints()
{

FlightTaskDistanceAltitudede::_updateSetpoints();
_acceleration_setpoint.setNaN();

_updateXlock();

_weathervane.update();

if (_weathervane.isActive()) {
_yaw_setpoint = NAN;

if (PX4_ISFINITE(_position_setpoint(0))) {
_yawspeed_setpoint += _weathervane.getWeathervaneYawrate();

}
}

}

91

Codes

A.6 FlightTaskDistancePosition.hpp

/**
* @file FlightTaskDistancePosition.hpp
*
* Flight task for manual position controlled mode.
*
*/

#pragma once

#include <lib/collision_prevention/CollisionPrevention.hpp>
#include <lib/weather_vane/WeatherVane.hpp>
#include "FlightTaskDistanceAltitudede.hpp"

class FlightTaskDistancePosition : public FlightTaskDistanceAltitudede
{
public:
FlightTaskDistancePosition() = default;
virtual ~FlightTaskDistancePosition() = default;
bool activate(const trajectory_setpoint_s &last_setpoint) override;
bool updateInitialize() override;

protected:
void _updateXlock(); /**< applies position lock based on stick and

velocity */
void _updateSetpoints() override;
void _scaleSticks() override;

DEFINE_PARAMETERS_CUSTOM_PARENT(FlightTaskDistanceAltitudede,
(ParamFloat<px4::params::MPC_VEL_MANUAL>) _param_mpc_vel_manual,
(ParamFloat<px4::params::MPC_VEL_MAN_SIDE>) _param_mpc_vel_man_side,
(ParamFloat<px4::params::MPC_VEL_MAN_BACK>) _param_mpc_vel_man_back,
(ParamFloat<px4::params::MPC_ACC_HOR_MAX>) _param_mpc_acc_hor_max,
(ParamFloat<px4::params::MPC_HOLD_MAX_XY>) _param_mpc_hold_max_xy)

private:
uint8_t _reset_counter{0}; /**< counter for estimator resets in

xy-direction */

WeatherVane _weathervane{this}; /**< weathervane library, used to implement

92

Codes

a yaw control law that turns the vehicle nose into the wind */
CollisionPrevention _collision_prevention{this}; /**< collision

avoidance setpoint amendment */
};

93

Bibliography

[1] url: https://px4.io/software/software-overview/ (cit. on p. 3).
[2] url: https://docs.px4.io/main/en/concept/px4_systems_architectu

re.html (cit. on p. 4).
[3] url: https://docs.px4.io/main/en/concept/architecture.html (cit.

on pp. 5, 6).
[4] url: https://nuttx.apache.org/docs/latest/introduction/about.

html (cit. on p. 7).
[5] url: https://docs.px4.io/main/en/middleware/uorb.html (cit. on

p. 7).
[6] url: https://docs.px4.io/main/en/middleware/uorb_graph.html

(cit. on p. 9).
[7] url: https://px4.io/px4-uorb-explained-part-2/ (cit. on pp. 9, 13).
[8] url: https://px4.io/px4-uorb-explained-part-1/ (cit. on p. 13).
[9] url: https://px4.io/px4-uorb-explained-part-3-the-deep-stuff/

(cit. on p. 13).
[10] url: https://mavlink.io/en/ (cit. on p. 13).
[11] Francesco Malacarne. «PX4 autopilot customization for non-standard gimbal

and UWB peripherals». MA thesis. Polytechnic of Turin, 2019-2020. url:
https://webthesis.biblio.polito.it/15919/1/tesi.pdf (cit. on p. 15).

[12] Anis Koubâa, Azza Allouch, Maram Alajlan, Yasir Javed, Abdelfettah Bel-
ghith, and Mohamed Khalgui. «Micro Air Vehicle Link (MAVlink) in a
Nutshell: A Survey». In: IEEE Access 7 (2019), pp. 87658–87680. url: https:
//ieeexplore.ieee.org/document/8743355 (cit. on p. 15).

[13] url: https://docs.qgroundcontrol.com/master/en/index.html (cit. on
p. 15).

[14] url: https://docs.px4.io/main/en/flight_stack/controller_diagra
ms.html (cit. on p. 21).

94

https://px4.io/software/software-overview/
https://docs.px4.io/main/en/concept/px4_systems_architecture.html
https://docs.px4.io/main/en/concept/px4_systems_architecture.html
https://docs.px4.io/main/en/concept/architecture.html
https://nuttx.apache.org/docs/latest/introduction/about.html
https://nuttx.apache.org/docs/latest/introduction/about.html
https://docs.px4.io/main/en/middleware/uorb.html
https://docs.px4.io/main/en/middleware/uorb_graph.html
https://px4.io/px4-uorb-explained-part-2/
https://px4.io/px4-uorb-explained-part-1/
https://px4.io/px4-uorb-explained-part-3-the-deep-stuff/
https://mavlink.io/en/
https://webthesis.biblio.polito.it/15919/1/tesi.pdf
https://ieeexplore.ieee.org/document/8743355
https://ieeexplore.ieee.org/document/8743355
https://docs.qgroundcontrol.com/master/en/index.html
https://docs.px4.io/main/en/flight_stack/controller_diagrams.html
https://docs.px4.io/main/en/flight_stack/controller_diagrams.html

BIBLIOGRAPHY

[15] url: https://docs.px4.io/v1.12/en/simulation/hitl.html (cit. on
p. 26).

[16] N. Koenig and A. Howard. «Design and use paradigms for Gazebo, an open-
source multi-robot simulator». In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3.
2004, pp. 2149–2154. url: https://ieeexplore.ieee.org/abstract/
document/1389727 (cit. on p. 28).

[17] Adnan Munawar, Yan Wang, Radian Gondokaryono, and Gregory S. Fis-
cher. «A Real-Time Dynamic Simulator and an Associated Front-End Rep-
resentation Format for Simulating Complex Robots and Environments». In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2019, pp. 1875–1882. url: https://ieeexplore.ieee.org/
abstract/document/8968568 (cit. on p. 31).

95

https://docs.px4.io/v1.12/en/simulation/hitl.html
https://ieeexplore.ieee.org/abstract/document/1389727
https://ieeexplore.ieee.org/abstract/document/1389727
https://ieeexplore.ieee.org/abstract/document/8968568
https://ieeexplore.ieee.org/abstract/document/8968568

	List of Figures
	Acronyms
	Introduction
	Objective of the Thesis
	Organization of the thesis

	PX4 Autopilot, Architecture and Control System
	PX4 System Architecture
	Flight Stack
	Middleware
	Runtime Environment
	uORB
	MAVLink
	QGroundControl

	PX4 Control Architecture
	Position Control
	Velocity Control
	Attitude Control
	Angular Rate Control

	Configuration, Model of the Drone and Sensors
	Gazebo
	SDF File
	Gazebo and PX4 connection

	Custom Control Algorithm, "Horizontal-Lock"
	Definition of the Orientation Angle
	Angle_correction Topic
	Creation of the Flight Task Modules
	The Altitude Algorithm
	The Angle Algorithm
	The Position Algorithm

	Testing: Results and Troubleshooting
	Problems in the Position Mode
	Problems in the Angle Measurement
	Measurements and Results

	Conclusions
	Codes
	AngleCorrector.cpp
	AngleCorrector.hpp
	FlightTaskDistanceAltitude.cpp
	FlightTaskDistanceAltitude.hpp
	FlightTaskDistancePosition.cpp
	FlightTaskDistancePosition.hpp

	Bibliography

