
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

A Fair-Generative approach for Customer
Relationship Management

Supervisors

Prof. Daniele APILETTI

Ing. Andrea BARDONE

Dott. Simone MANNI

Candidate

Alberto MORCAVALLO

Academic year 2023/2024

Abstract

The advent of generative models has emerged as a fundamental shift of perspective
in modern machine learning, with the potential to revolutionize a variety of domains.
The generation of data that closely resembles real-world events has enabled the
transformation of various businesses, increasing the possibility of building newer
and more successful ones. In this work, we demonstrate the design and implemen-
tation of a machine-learning pipeline for financial CRM (Customer Relationship
Management), specifically for predicting credit customer churning. The developed
end-to-end pipeline proposes a predictive model with a high predictive capacity of
recognizing churning behaviours that adheres to transparency and discriminant-free
paradigms. The approach combines a state-of-the-art tabular generative procedure
exploiting Generative Adversarial Network architecture to mitigate the dataset’s
lack of representative samples with major company service solutions such as IBM
DataStage and H2O AutoML for effectively assessing the data ingestion and model
creation phases.

Table of Contents

List of Tables iii

List of Figures iv

1 Introduction 1

2 The Imbalance Dataset Problem 4
2.1 Imbalance Dataset . 4

3 Imbalance Management 6
3.1 Algorithm Level Methods . 6

3.1.1 Weighted Learning . 7
3.1.2 Threshold Method . 8

3.2 Data Level Methods . 8
3.2.1 Over-sampling . 9
3.2.2 Under-sampling . 19
3.2.3 Over Sampling + Under Sampling 21

3.3 Generative Methods: . 23
3.3.1 Generative Adversarial Network: Background 23
3.3.2 GAN for Tabular Data generation: 24
3.3.3 GAN for Tabular Data Imbalance Oversampling: 25
3.3.4 c-WGANGP: . 26

4 Boosting for Tabular Data 34
4.1 Boosting: In a Nuthsell . 34
4.2 XGBoost . 35

4.2.1 Regularized Learning Objective 36
4.2.2 Gradient Tree Boosting . 37
4.2.3 Shrinkage and Columns Subsampling 38
4.2.4 Split Algorithms . 39
4.2.5 Sparsity-aware Split Finding 40

i

4.2.6 Parallel Learning . 40

5 Performance Evaluation 41
5.1 Threshold Metrics . 41
5.2 Ranking Metrics . 42
5.3 Probability Metrics . 43

6 Dataset EDA 44
6.1 Dataset Description . 44
6.2 Funtional Exploratory Data Analysis: 45
6.3 Correlation Analysis: . 47

7 Pipeline Design: 49
7.1 Data Ingestion and Pre-processing:

IBM DataStage and Feature Selection 49
7.1.1 DataStage Environment: . 49
7.1.2 Data Flow Design: . 51
7.1.3 Feature Selection: . 54

7.2 Data Oversampling . 55
7.3 Model Deployment: H2O AutoML 59
7.4 Model’s Evaluation . 61

8 Results 63
8.1 Model’s Admissibility: Fairness . 63
8.2 Model’s Explainability . 67

8.2.1 Model’s Explainability: Global 68
8.2.2 Model’s Explainability: Local 69

9 Conclusions 72

A Data Distributions 74

B Imbalance Management Comparisons: 77

Bibliography 79

ii

List of Tables

2.1 Imbalance Typologies . 4

3.1 Loss Functions comparisons in GAN and WGAN architectures . . . 28

6.1 "Credit Card Customer Attrition" Dataset Description 45

7.1 Stages functionality . 53
7.2 cWGAN hyperparameter setting . 55
7.3 H2O Cluster characteristics . 60
7.4 XGBoost Hyperparameters . 60
7.5 XGBoost chosen configuration performance over the 5-Fold Cross-

Validation and Test set . 62

B.1 ROC-AUC and PR-AUC performance comparisons of the XGBoost
classifier on the original dataset and on the imbalance management
techniques. 78

iii

List of Figures

3.1 Random Overampling [10] . 9
3.2 SMOTE [14] . 11
3.3 Borderline SMOTE clustering [16] 12
3.4 Extrapolation (a) and Interpolation (b) techniques used to generate

synthetic data [16] . 15
3.5 K-means SMOTE oversampling [18] 16
3.6 Random Undersampling [10] . 20
3.7 NearMiss-1 . 21
3.8 NearMiss-2 . 21
3.9 NearMiss-3 . 21
3.10 Tomek Links [24] . 22
3.11 Vanilla Generative Adversarial Network Learning Framework[26] . . 24
3.12 Generator (left) and Discriminator (right) structures [37] 32

4.1 Boosting Paradigm [49] . 35

6.1 Histogram of the features Total_Trans_Amt, Total_Trans_Ct
based on the response variable Attrition_Flag 46

6.2 Pearson Correlation Heatmap . 47
6.3 Spearman Correlation Heatmap . 48

7.1 IBM Cloud Pak for Data Platform: IBM DataStage service for data
ingestion [58] . 51

7.2 ETL DataStage Flow . 52
7.3 SFBS/SBBS results . 54
7.4 Generator (left) and Discriminator (right) structures 56
7.5 Univariate distribution plots comparing the real and generated dis-

tributions of the continuous numerical columns. 57
7.6 Univariate distribution plots comparing the real and generated dis-

tributions of the discrete numerical columns. 57

iv

7.7 Dimension-wise performance metrics: dimension-wise means (left),
standard deviations (middle), and prediction performance(right). . . 59

7.8 XGBoost Learning Curve: logloss vs. number of trees trained 62

8.1 XGBoost Features Importance . 64
8.2 Violin Plots of sensitive features: "Gender", "Education_Level",

"Marital_Status" . 65
8.3 Partial Dependency Plots of the features: "Customer_age" and

"Dependent_count" . 66
8.4 Shapley Summary Plot . 69
8.5 Features contribution barplot for not churning customer: Probability

of Churning ≈ 0.01 . 70
8.6 Features contribution barplot for churning customer: Probability of

Churning ≈ 0.99 . 70

v

Chapter 1

Introduction

In today’s highly competitive business landscape, customer churn has become a
significant concern for financial institutions. Being able to identify those warning
signs proper of a customer’s churning behavior is crucial for the development of cor-
rective policies able to prevent possible supplier changes. The concept of "Customer
churn" refers to the phenomenon related to customer relationship management
(CRM) where customers discontinue their relationship with a company, resulting in
a loss of revenue and market share. Identifying and predicting customer churn is of
utmost importance as it enables financial organizations to take proactive measures
to retain valuable customers and minimize the impact of customer attrition.

The managerial importance of customer churn analysis has been emphasized in
several studies. "Gupta et al. (JMR, 2004)" [1] estimates that a 1% decrease in
churn rate, on average, increases a company’s profits by 5%. Moreover, customer
loss leads to an increase in the need for attracting new customers [2] being five to
six times more expensive than customer retention [3].
It follows that reducing abandonment rates becomes a primary objective for service
providers in industries characterized by a high monthly or annual churn rate. This
kind of phenomenon despite having an immediate impact on the duration of the
company-customer relationship, is an essential determinant of customer lifetime
value (CLV), which represents the total net revenue that the company can expect
from the customer over the entire duration of their relationship.

Furthermore, it is not always possible to observe with certainty the moment
when a customer terminates their relationship with a service provider. In cases
where the relationship is contractual, explicit termination action by the customer
is required. In the case of non-contractual relationships, customer deactivation
may never occur, or it may be unilaterally decided by the company when a prede-
termined maximum threshold of waiting time since the customer’s last action is

1

Introduction

exceeded.

In the case of contractual relationships, it is important to distinguish between situ-
ations where the customer’s exit can occur at any point in the timeline (continuous-
time), highlighting voluntary abandonment by a customer without substantial exit
constraints and situations where it can only occur at predetermined points in the
timeline (discrete-time), where a standard subscription contract allows termination
of the relationship only at the end of the contract period.

The phenomenon of customer churn needs to be predicted with acceptable accuracy
if a company intends to concentrate its retention efforts on customers at the highest
risk of relationship termination. For this purpose Machine learning techniques
have emerged as powerful tools for predicting customer churn in various industries,
including the financial sector. By leveraging historical customer data and utilizing
sophisticated algorithms, machine learning models can uncover valuable insights
and patterns that aid in predicting the likelihood of customer churn. These models
help financial institutions identify the factors contributing to customer attrition,
enabling them to develop effective retention strategies and mitigate customer churn.

The financial industry, encompassing banks, insurance companies, credit card
providers, and investment firms, holds vast amounts of customer data, including
transaction history, demographics, customer interactions, and product usage. This
data, when properly analyzed and processed using machine learning techniques, can
provide valuable insights into the factors that drive customer churn. By accurately
predicting churn, financial institutions can tailor personalized interventions, such as
targeted marketing campaigns, improved customer service, or customized product
offerings, to retain at-risk customers and enhance overall customer satisfaction.

The application of machine learning in customer churn prediction involves the
utilization of various algorithms and techniques. These include logistic regression,
decision trees, random forests, support vector machines (SVM), artificial neural net-
works, and gradient boosting methods. Each of these algorithms has its strengths
and weaknesses, and the choice of the appropriate model depends on the specific
characteristics of the financial dataset and the prediction goals of the institution.

Furthermore, feature engineering plays a vital role in customer churn prediction.
By selecting and engineering relevant features from the available data, financial
institutions can enhance the predictive power of machine learning models. These
features may include customer demographics, transactional behavior, customer
lifecycle events, customer complaints, usage patterns, customer engagement met-
rics, and other various derived customer attributes. Careful feature selection and

2

Introduction

engineering are crucial in capturing the underlying dynamics that contribute to
customer churn and improving the accuracy of the prediction models.

To enforce those considerations, the feature engineering phase should also ensure
ethical and unbiased decision-making, avoiding the possibility of discriminatory
outcomes. In order to ensure fairness in customer churn prediction, it is essential
to apply fairness-aware techniques during the entire machine learning pipeline,
being able to provide a model which is aligned with ethical principles ensuring
equal treatment for all customers. In this way, the decision-making process is a
promoter of transparency, accountability, and trust through customers and regula-
tions. Therefore, by addressing model fairness, businesses can mitigate the risk of
legal challenges and potential reputational damage associated with discriminatory
practices.

Based on these considerations the following study proposed the creation of a
machine learning pipeline able to manage the phenomenon of Credit Card Cus-
tomer Churn that goes beyond the prediction accuracy, being at the same time
comprehensible and regulatory-compliant.

3

Chapter 2

The Imbalance Dataset
Problem

2.1 Imbalance Dataset
Due to the nature of the churn phenomenon, all those analysis which aim to analyze
the customer’s likelihood to cancel their subscriptions or services, fall into the
category of imbalance dataset problems.

The objective of churn prediction is to properly identify customers who are likely
to leave a product or a service, by always referring to a situation where the dis-
tribution of the classes is skewed, with one class, typically not the one of interest,
being significantly more prevalent than the other. Through the analysis of several
studies facing this kind of situation, it has been possible to derive some funda-
mental characteristics of these problems when analyzed through machine learning
techniques:

• Imbalance Class Distribution: The churned customers (minority class)
are often not well represented, having cardinality outnumbered by the non-
churned customers (majority class). Based on the proportion of minority
classes different degrees of imbalance can be identified:

Degree of Imbalance Proportion of Minority Class
Mild 20-40% of the Dataset
Moderate 1-20% of the Dataset
Extreme <1% of the Dataset

Table 2.1: Imbalance Typologies

4

The Imbalance Dataset Problem

• Model Bias: Imbalance datasets can affect the model’s training. If the model
is not trained with a representative sample of the minority class, it may not
learn enough about the churn patterns and it may struggle to make accurate
predictions for the minority class.

• Impact on Model Performance: Class imbalance can negatively impact
the performance of machine learning models. Since models are often biased
towards the majority class, they may have lower sensitivity or recall for the
minority class, resulting in a compromised model’s ability to predict churn
instances.

• Evaluation Metrics: Traditional evaluation metrics such as accuracy can
be misleading in imbalanced scenarios. For example, if a model predicts all
instances as non-churned, based on the degree of imbalance contained in the
dataset, it may achieve a high accuracy value. However, the model would fail
to capture churn events. Therefore, proper evaluation metrics able to catch
this data distribution discrepancy are often more suitable.

5

Chapter 3

Imbalance Management

Data imbalance is a significant concern in research and development, as data is
considered an asset and a crucial component of decision-making in education and
business.

The inevitable impacts of this kind of phenomenon on the algorithm’s performance
[4], and on the efficiency of the predictive model’s capability [5], have brought many
scholars and researchers over the years to develop different approaches to improve
the classification tasks involving imbalance situations.

Those methods can be divided into three categories:

• Algorithm Level Methods

• Data Level Methods

• Generative Methods

3.1 Algorithm Level Methods
Algorithm-level solutions aim to modify the classifier learning procedure, by ad-
justing the model’s parameter settings to prioritize some predictions with respect
to others. These methodologies do not cause any shifts in data distributions, being
more adaptable to various types of imbalanced datasets, at the cost of being specific
only for a given classifier type.

It is possible to differentiate this approach into:

• Weighted Learning

• Threshold Method

6

Imbalance Management

3.1.1 Weighted Learning

Weighted learning is a technique employed to tackle class imbalance in machine
learning. It entails assigning varying weights or importance to different classes
based on their imbalance within the training data. By assigning higher weights to
the minority class and lower weights to the majority class, the classifier is trained
to prioritize learning from and correctly classifying the minority class instances.

In weighted classification, the weights are typically incorporated into the training
algorithm or the loss function used for optimization. The objective is to provide
more significance to the minority class samples, enabling the classifier to concentrate
on accurately classifying these instances. The specific weight assigned to each class
depends on the severity of the class imbalance and the desired balance between
precision and recall.

There are several approaches for implementing weighted classification:

• Weighted Loss Functions: The loss function utilized in the training al-
gorithm is modified to include class weights. By assigning higher penalties
for misclassifications of the minority class, the loss function encourages the
classifier to prioritize the correct classification of minority class instances.

• Sample Weights: Each instance in the training data is assigned a weight
based on its class. During training, these weights are used to adjust the
contribution of each instance to the model’s learning process. Instances from
the minority class are assigned higher weights to increase their influence on
the model.

Depending on the typology of the model involved, each has an inherent mechanism
to handle weighted classification. For example, in support vector machines (SVM),
the C parameter can be adjusted to control the weight assigned to different classes
[6]. Similarly, decision tree algorithms often provide options to specify class weights
or cost matrices [7].

Weighted classification enables the model to consider the imbalanced nature of the
data and make more informed predictions. It can assist in enhancing performance
metrics for the minority class, such as recall or sensitivity, which are often more
crucial in imbalanced scenarios. However, it is important to carefully select ap-
propriate weights that accurately represent the class imbalance and evaluate the
model’s performance on multiple metrics to ensure balanced performance across all
classes.

7

Imbalance Management

3.1.2 Threshold Method

Some classifiers, like Random Forest and certain Neural Networks, provide a score
indicating the likelihood or degree to which an example belongs to a particu-
lar class. This score-based ranking can be utilized to create multiple classifiers
by adjusting the threshold for classifying an example as belonging to a specific class.

By varying the threshold, we can control the trade-off between precision and
recall or the balance between false positives and false negatives. A lower threshold
would result in more examples being classified as positive, potentially increasing
recall but also introducing more false positives. Conversely, a higher threshold
would lead to stricter classification, potentially improving precision but possibly
decreasing recall.

This technique allows us to generate multiple classifiers with different thresh-
olds, each catering to specific requirements or preferences. For example, if the
focus is on minimizing false negatives, we can choose a lower threshold to capture
more positive instances, even if it results in a higher false positive rate. On the
other hand, if the emphasis is on precision and minimizing false positives, a higher
threshold can be employed to ensure a more conservative classification.

By adjusting the threshold, we can obtain classifiers with varying levels of sensitivity
and specificity, providing flexibility in addressing specific needs and balancing the
desired classification outcomes [8].

3.2 Data Level Methods
Data level solutions geared towards the manipulation of data distribution in order
to achieve a more equitable balance within the training dataset. This is achieved
through various sampling methods that aim to create a more appropriate represen-
tation of data instances.

Based on the analysis of interest in managing class imbalance, it is possible to
categorize the sampling strategies in two families of technique. These strategies, if
necessary, can be used in conjunction depending on the specific characteristics of
the dataset and the problem at hand:

• Over-sampling

• Under-sampling

8

Imbalance Management

3.2.1 Over-sampling
These techniques are focused on increasing the number of instances in the minority
class, reducing the disparity ratio between classes. New generated data are ap-
pended to the primary dataset, keeping all the initial information preserved [3].

It is possible to distinguish different kinds of Oversampling techniques:
• ROS

• SMOTE

• Bordeline SMOTE

• SVM SMOTE

• Kmeans SMOTE

• ADASYN

Random Oversampling (ROS):

Random oversampling is a naïve resampling technique used to address imbalanced
datasets. It involves randomly selecting examples from the minority class with
replacements and adding them to the training dataset. This technique does not
assume any specific data distribution or employ heuristics.

Random oversampling can be effective for those machine learning algorithms
sensitive to skewed distributions, particularly when duplicated examples of a class
can influence model fitting, such as gradient-based algorithms.

However, attempting to achieve a balanced distribution in severely imbalanced
datasets can lead to overfitting the minority class. This occurs because by repli-
cating exact copies of the minority class, the algorithm reduced its generalization
capability, causing symbolic classifiers to construct seemingly accurate rules which
perform poorly on validation and test sets [9].

Figure 3.1: Random Overampling [10]

9

Imbalance Management

SMOTE:

The Synthetic Minority Over-Sampling Technique (SMOTE) [11] is a method
used to address imbalanced datasets by increasing the representation of the minority
class. It involves generating new synthetic examples in the "feature space" of the
existing data.

SMOTE is based on the concept of introducing synthetic data points that represent
the minority class. This is achieved by considering the minority samples and their
nearest neighbours. Specifically, the generated examples lie along the line segments
connecting each minority class sample with its k nearest neighbours.

The process can be divided into the following steps , which are repeated until the
desired proportion of the majority/minority class is achieved:

1. Randomly select an instance point from the minority class.

2. Calculate the Euclidean Distance between the randomly chosen data point
and one of its k nearest neighbours belonging to the same class.

3. Multiply the difference between the feature vector (sample) under consideration
and the chosen nearest neighbour by a random number between 0 and 1.

4. Add the result to the minority class as a synthetic sample.

This process helps to learn more general regions for the minority class samples, rather
than being overshadowed by the majority class samples around them. However,
despite the synthetic data generation capability, the SMOTE technique shows some
pitfalls:

• It effectively addresses between-class imbalance; however, ignoring within-class
imbalance and small disjuncts. As a matter of fact, the random selection of
minority class instances for oversampling is done with uniform probability,
leading to areas where many minority samples have a high probability of being
further inflated, while sparsely populated minority areas may remain sparse
[12].

• Minority classes that are outlying and appear within the majority class can
create a problem for SMOTE by creating a line bridge with the majority class.
The method is susceptible to noise generation because it does not distinguish
overlapping class regions from so-called safe areas. This issue becomes evident
when linear interpolation is applied to a noisy minority sample located among
majority class instances [13].

10

Imbalance Management

Figure 3.2: SMOTE [14]

Algorithm 1 SMOTE Algorithm
1: procedure SMOTE(α, k)
2: ▷ α is the proportion of minority class respect to majority after resampling
3: ▷ k is the number of nearest neighbors
4: ▷ i← 0
5: ▷ j ← 0
6: ▷ Initialization
7: M ← number of majority class samples
8: numattrs← number of features
9: ▷ Execution

10: while i ≤ α×M do ▷ Generative Procedure
11: Randomly select a point of the minority class:
12: X =

è
x(1), x(2), ...x(numattrs)

é
13: Compute its k nearest neighbours
14: Select a random number between 1 and k
15: ▷ The selected nearest neighbor Xnn =

è
x(1)

nn , x(2)
nn , ...x(numattrs)

nn

é
16: while j ≤ numattrs do
17: Select a random number gap(j) ∈ (0,1)
18: Compute x

(j)
synth = x(j) + gap(j) × (x(j)

nn − x(j))
19: end while
20: Xsynth =

è
x

(1)
synth, x

(2)
synth, ...x

(numattrs)
synth

é
21: ▷ Add the new synthetic point to the the Original Dataset
22: end while
23: end procedure

Borderline SMOTE:

Borderline SMOTE [15] varies the original SMOTE algorithm to learn the borderline
between each class during the training process. The minority class examples are
divided into different groups:

11

Imbalance Management

• NOISE: These instances are rare and likely incorrect. They are located in
areas predominantly occupied by the majority class instances.

• DANGER: These instances are situated in the vicinity of class boundaries
and often overlap with majority class instances.

• SAFE: These instances are relatively easier to recognize, and they serve as
the primary representatives of the minority class.

Figure 3.3: Borderline SMOTE clustering [16]

As reported in Algorithm2, during the training process, the resampling strategy
attempts to learn the decision boundaries separating the different classes and so
forth, the oversampling process is able to focus only on the minority class examples
that are close to the bordelines, ensuring that noisy samples are not created within
the majority class region or far from the boundary.

Therefore, after all instances of the minority class have been categorized, syn-
thetic instances are then created along the line between DANGER instances and
their nearest minority class neighbors.

Furthermore, to enhance the possibility to create new instances but leveraging also
the area separating both classes, a variation of the original algorithm has been
introduced, denoted as Borderline-SMOTE2. The new proposal generates synthetic
data by creating a line between DANGER instances and their nearest neighbors by
considering both sets P and N. However, to ensure that the newly created synthetic
instances are closer to the minority class, the random number gap ranges between
0 and 0.5.

12

Imbalance Management

Algorithm 2 Borderline-SMOTE1
1: procedure Borderline-SMOTE1(α, k, m)
2: ▷ α is the proportion of minority class respect to majority after resampling
3: ▷ m is the number of nearest neighbors for point labeling
4: ▷ k is the number of nearest neighbors
5: ▷ Initialization:
6: Q← number of minority class samples
7: M ← number of majority class samples
8: P = { p1, p1, ..., pQ } ▷ Minority class P
9: N = { n1, n1, ..., nM } ▷ Majority class N

10: ▷ Step 1:
11: For every point pi in the minority class, calculate its m nearest neighbours

in the whole dataset.
12: Set m′ the number of majority instances among m nearest neighbours
13: ▷ m′ ∈ [0, m]
14: ▷ Step 2:
15: if m′ = m then
16: pi is a NOISE point
17: end if
18: if m

2 ≤ m′ ≤ m then
19: pi is a DANGER point
20: end if
21: if 0 ≤ m′ ≤ m

2 then
22: pi is a SAFE point
23: end if
24: ▷ Step 3:
25: for all point ∈ DANGER do
26: SMOTE (α, k)
27: end for
28: end procedure

SVM SMOTE:

SVM SMOTE [17], in comparison to the previous technique, leverages the Support
Vector Machine (SVM) algorithm to detect misclassified instances along the decision
boundary.

By utilizing SVM, the algorithm identifies the decision boundary defined by sup-
port vectors. Subsequently, new instances are generated randomly along the lines
connecting each support vector from the minority class with its nearest neighbors.

13

Imbalance Management

Algorithm 3 SVM-SMOTE
1: procedure SVM-SMOTE(α, k, m)
2: ▷ α is the proportion of minority class respect to majority after resampling
3: ▷ k is the number of nearest neighbors
4: ▷ m is the number of nearest neighbor to determine if a minority sample is

in DANGER
5: ▷ Initialization:
6: SV + ← set of the minority class support vectors
7: ▷ Step 1:
8: For each sv+

i ⊆ SV + calculate the m nearest neighbours in the whole
dataset.

9: Set m′ the number of majority instances among m nearest neighbours
10: ▷ m′ ∈ [0, m]
11: ▷ Step 2:
12: if 0 ≤ m′ ≤ m

2 then
13: Apply the SMOTE Generative Procedure by considering as minority

class point just the sv+
i :

14: Xsynth = sv+
i + gap× (sv+

i − sv+
i,nn) ▷ Extrapolation

15: ▷ With sv+
i,nn one of the k nearest neighbor of sv+

i

16: end if
17: if m

2 ≤ m′ ≤ m then
18: Apply the SMOTE Generative Procedure by considering as minority

class point just the sv+
i :

19: Xsynth = sv+
i + gap× (sv+

i,nn − sv+
i) ▷ Interpolation

20: ▷ With sv+
i,nn one of the k nearest neighbor of sv+

i

21: end if
22: end procedure

In order to expand the region of the minority class, despite the already exploited
interpolation between data points, one noteworthy characteristic of this technique
stands in the utilization of extrapolation to increase the minority class area even
when surrounded by a large number of majority class points, enhancing the likeli-
hood of encountering minority class instances in proximity to the optimal boundary.
The number of neighbors used for extrapolation or interpolation depends on the
density of the majority class instances surrounding the minority class instance.

14

Imbalance Management

Figure 3.4: Extrapolation (a) and Interpolation (b) techniques used to generate
synthetic data [16]

Kmeans SMOTE:

The Kmeans-SMOTE [18] algorithm combines the K-means clustering algorithm
with SMOTE oversampling to achieve dataset rebalancing. This approach aims
to address both between-class and within-class imbalance, taking into account
both cluster’s size and density and avoids data to be generated in safe areas. The
algorithm comprises three main steps:

1. Clustering: Instances are grouped into k clusters using the K-means clustering
algorithm.

2. Filtering: The clusters to be oversampled are selected, and the number of
new instances to be generated in each cluster is determined. Cluster selection
is based on the imbalance ratio (IR), proportion of minority and majority
instances within each cluster. By default, clusters with at least 50% minority
instances are chosen for oversampling. Sampling weights are assigned to the
selected clusters to determine the number of instances to be generated.

3. Oversampling: SMOTE is applied to each selected cluster with IR ≥ 1. For
each chosen minority instance pi within a cluster, a random minority neighbor
pnn is selected, and a new instance Xsynth is generated by through interpolation.
This process is repeated until the desired number of minority instances is
reached.

The utilization of K-means clustering allows the oversampling algorithm to identify
overlapping class regions and avoid data generation in safe areas, promoting the

15

Imbalance Management

creation of new samples in sparse clusters. The filtering step plays a crucial role in
the identification of the proper clusters for oversampling and in the determination of
the number of samples to be generated in each cluster. By promoting the creation
of new data in those clusters predominantly occupied by the minority class, this
approach reduces the likelihood of noise generation, resulting in a more balanced
distribution of samples within the minority class. Indeed, the new synthethic data
are allocated primarily into sparse minority clusters rather than dense ones.

The selection of clusters for oversampling is adjusted through the imbalance ratio
threshold (IR). Its increasing makes cluster selection more stringent, requiring
a higher proportion of minority instances for a cluster to be chosen. Conversely,
lowering the threshold relaxes the selection criterion, allowing clusters with a higher
majority proportion to be selected.

To determine the distribution of generated samples, during the filtering step,
sampling weights are assigned to each selected cluster.An high sampling weight
indicates a low density of minority samples within the cluster, leading to more
generated samples. The sampling weight depends on the density of an individual
cluster relative to the average density of all selected clusters.

Figure 3.5: K-means SMOTE oversampling [18]

16

Imbalance Management

Algorithm 4 KMeans-SMOTE
1: procedure Adasyn(α, k1, k2, β)
2: ▷ α is the proportion of minority class respect to majority after resampling
3: ▷ k1 is the number of clusters to be used for K-Means
4: ▷ k2 is the number of nearest neighbors
5: ▷ β is imbalance threshold within cluster
6: ▷ Initialization:
7: Q← number of minority class samples
8: M ← number of majority class samples
9: P = { p1, p1, ..., pQ } ▷ Minority class P

10: N = { n1, n1, ..., nM } ▷ Majority class N
11: numattrs← number of features
12: ▷ Step 1:
13: Apply K-Means(k1) ▷ Clustering
14: ▷ Step 2:
15: For each cluster c ∈ [1, k1]
16: ▷ Compute IR = Qc

Mc
, with Qc and Mc respectively the number of minority

and majority class examples in each cluster c
17: ▷ Step 3: ▷ Filtering
18: Select those cluster for which IR ≥ β
19: ▷ Set of selected cluster F = {f1, f2, ..., fj}, j ≤ k1
20: ▷ Step 4:
21: For each selected cluster f ⊆ F ▷ Determine the number of generated

samples θf

22: ▷ Compute the Euclidean distance between all the minority samples in f
23: ▷ Compute averageMinorityDistance(f) , the mean distance within each

cluster’s minority samples in f
24: ▷ density(f) = Qf

averageMinorityDistance(f)(numattrs)
25: ▷ sparsity(f) = 1

density(f)

26: ▷ wf = sparsity(f)q
l∈F

sparsity(l)
27: ▷ Step 5: ▷ Oversampling
28: ▷ In each selected cluster f , the number of generated sample:
29: θf = wf × α×M
30: ▷ For each selected cluster f use the SMOTE Generative Procedure

θf -times
31: end procedure

ADASYN:

The Adaptive Synthetic (ADASYN) [19] is a sampling approach that aims to
generate minority data samples adaptively based on their distributions. It focuses

17

Imbalance Management

on generating more synthetic data for minority class samples that are harder to
learn, as opposed to those that are easier to learn. Specifically, ADASYN generates
additional synthetic data for minority class points that have a larger number of
majority class points in their neighborhood.

The main benefit of ADASYN is that it not only reduces the learning bias intro-
duced by the original imbalanced distribution but also dynamically adjusts the
decision boundary to concentrate on the challenging samples that are harder to
learn.

Differently from SMOTE, in which each minority class example has equal prob-
ability of being selected for generating a new synthetic data, ADASYN exploits
the density of majority examples around the minority class ri to determine the
number of synthethic samples required. The density distribution ri is used to assign
weights to each different minority class example, based on the level of learning
difficulty. Consequently, the resulting dataset achieves a balanced representation
of the data distribution according to the defined balance level α, prompting the
learning algorithm to focus on challenging examples.

By reducing the original imbalance dataset bias, and tuning the balance level
α the algorithm can enhance the classification model’s performance, reducing errors
and improving results.

18

Imbalance Management

Algorithm 5 ADASYN
1: procedure Adasyn(α, k)
2: ▷ α is the proportion of minority class respect to majority after resampling
3: ▷ k is the number of nearest neighbors
4: ▷ Initialization:
5: Q← number of minority class samples
6: M ← number of majority class samples
7: P = { p1, p1, ..., pQ } ▷ Minority class P
8: N = { n1, n1, ..., nM } ▷ Majority class N
9: d = Q

M
▷ Degree of class imbalance d

10: G = M × α ▷ Num synth examples to generate
11: ▷ Execution:
12: while d ≤ α do
13: For every point pi in the minority class
14: ▷ calculate its k nearest neighbours
15: ▷ Calculate the ratio ri = ∆i

k
, i = 1...Q, with ∆i the number of majority

class examples in the k nearest neighbours of pi

16: ▷ Normalize ri

17: r̂i = riqQ

i=1 ri

18: ▷ For each pi retrieve the number of synthetic example to generate
19: gi = r̂i ×G
20: For each pi generates gi synthetic examples using the SMOTE Genera-

tive Procedure
21: end while
22: end procedure

3.2.2 Under-sampling
This family of techniques focuses on reducing the number of instances in the
majority class. Data can be either randomly extracted or selected using specific
methods to balance the class distribution. One of the main benefits of this approach
stands in the reduction in training time for models, as the size of the training data
is decreased, however, impacting the initial information contained in the dataset [20].

As for Over-sampling discussion, it is possible to distinguish several kinds of
Under-Sampling methodologies:

• RUS

• NearMiss

19

Imbalance Management

• Tomek-Links (Discussed in Over Sampling + Under Sampling)

Typically, this family of methodologies by itself does not improve model’s
performances, however, their implementation in conjunction with Oversampling,
depending on the characteristic of the dataset involved, is able to present important
results, respect to the single techniques applied alone.

Random Undersampling (RUS):

Random undersampling involves randomly selecting examples from the majority
class and removing them from the training dataset. Like ROS, it is considered a
"naïve resampling" technique.

This kind of approach is suitable for datasets where a class imbalance is present, but
the minority class is sufficiently represented by a substantial number of examples.
Moreover, the main limitations of this undersampling methodology stands in the
potential loss of majority class examples that could have been valuable or crucial
for fitting robust decision boundaries. This can be problematic as it makes it more
difficult to learn the decision boundary between minority and majority instances,
leading to a decrease in classification performance [20].

Figure 3.6: Random Undersampling [10]

NearMiss:

The Near Miss [21] undersampling methods are a set of techniques based on the
KNN approach. The key idea is to increase the separation between the minority
and majority classes, particularly when instances from different classes are in close
proximity.

20

Imbalance Management

To achieve this, three different Near Miss methods can be employed:

• NearMiss-1: This method selects negative examples (majority class) that
are close to some positive examples (minority class). Specifically, it chooses
the majority class samples for which the average distances to the K closest
minority class samples are the smallest.

• NearMiss-2: This method selects negative examples that are close to all
positive examples. It identifies the majority class samples for which the
average distance to the K farthest minority class samples is the smallest.

• NearMiss-3: This method involves a two-step algorithm. First, for each
minority sample, the M nearest neighbors are retained. Then, among the
selected majority samples, the ones with the largest average distance to the
K nearest neighbors are chosen. This guarantees that every minority class
instance is surrounded by examples from the majority class.

Compared to other undersampling methods, NearMiss-3 is anticipated to have a
higher precision and lower recall. Its objective is to maintain a balance between
retaining pertinent information and diminishing the dominance of the majority
class during training.

Figure 3.7: NearMiss-1 Figure 3.8: NearMiss-2 Figure 3.9: NearMiss-3

3.2.3 Over Sampling + Under Sampling
In order to derive benefits from both approaches, different studies have proposed to
sequentially apply over and under-sampling methodologies to properly re-balance
the initial data distribution.

21

Imbalance Management

SMOTE-Tomek:

SMOTE-Tomek is a hybrid sampling technique that combines the SMOTE (Syn-
thetic Minority Over-sampling Technique) and Tomek Links methods to address
the issue of class imbalance in datasets. It aims to improve the classification
performance by simultaneously oversampling the minority class using SMOTE and
undersampling the majority class using Tomek Links [22].

Tomek Links identifies pairs of very close instances, each belonging to a dif-
ferent class, and eliminates the majority class instances from these pairs. This
process increases the separation between the two classes, which can facilitate the
classification process.

A Tomek’s link is defined as a pair of instances that are nearest neighbours
to each other. Specifically, the two samples are the closest instances among their
respective classes. By removing the majority class instances from Tomek Links
pairs, the space between the minority and majority classes is expanded, enhancing
the distinction between them.

This technique is derived from a modification of the Condensed Nearest Neighbors
(CNN) undersampling technique developed by Tomek [23]. Unlike the CNN method,
which randomly selects samples along with their K nearest neighbours from the
majority class, the Tomek Link method applies specific rules for data selection.

As a matter of fact, a pair of observations is considered a Tomek Link if they satisfy
two properties:

• Both observations are neighbours of each other

• The observations belong to different classes.

Figure 3.10: Tomek Links [24]

The objective of using Smote together with Tomek Links is to improve the minority
class representation while removing majority class instances that are in close

22

Imbalance Management

proximity to the minority class. By eliminating these samples, which represent
potential borderline or overlapping instances, the resulting dataset aims to have a
greater emphasis on the minority class and achieve a clearer separation between
the targets.

3.3 Generative Methods:
Recently, generative methods have been proposed as a class of deep learning models
able to learn the sample data distribution and exploit it to generate complex,
high-dimensional data. Basically, they can be divided into two typologies:

• Explicit Likelihood Models: Being trained using a maximum likelihood
approach, they are able to learn the data distribution from the sample and gen-
erate new types of data (Mixture Models, WaveNet, Autoregressive Language
Models, Variational autoencoders, etc).

• Implicit Likelihood Models: Follow a more generalized approach able to
generate new samples of data without depending on the probability distribution,
but rather learn the data’s statistical properties.

Based on the idea that traditional data-level re-sampling techniques rely on concepts
that might fare poorly on high-dimensional datasets like nearest neighbours and
simple linear interpolations. Recently, Generative Adversarial Networks have been
proposed to generate complex, high-dimensional data and could, in principle, be
used to generate additional minority examples.

3.3.1 Generative Adversarial Network: Background
Initially described in a 2014 paper by Ian Goodfellow [25] and mainly based on the
computer vision domain, GANs are implicit likelihood models that generate data
samples from the statistical distribution of the data. They are used to resemble varia-
tions within the dataset, combining two networks, Generator and Discriminator.

The Generator G(z) takes random noise vector z as input and produces new
data. The Discriminator D, on the other side, is a classifier that has to determine
if the sample is real data x or generated by G(z).

The two models are trained together in a zero-sum game (adversarial) until
the generator model generates plausible examples able to fool the discriminator.
Based on the Discriminator’s capability of recognizing real and synthetic images,
the weights of the two neural networks are updated, and the process continues itera-
tively to the point where the zero-sum game reaches the so-called Nash equilibrium

23

Imbalance Management

in which the Generator produces images with such fidelity that the Discriminator
cannot tell the difference between a forgery and a true copy.

Both Generator and Discriminator have their own loss function, but differently one
from the other, their aim lies in quite opposite objectives:

• Discriminator: Maximize the chance of recognizing real data with respect
to generated ones

max
D

V (D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

• Generator: Generates data with the highest possible value of D(G(z)) to
fool the Discriminator

min
G

V (G) = Ez∼pz(z)[log(1−D(G(z)))] (3.2)

Figure 3.11: Vanilla Generative Adversarial Network Learning Framework[26]

Despite the initial idea, over the years, the GAN basic structure has been re-
engineered to adapt to different domains’ specific tasks and to overcome many
initial limitations, including vanishing gradients, mode collapse, and failure con-
vergence. The modifications applied tend to come in two forms: loss variants and
architecture variants.

In the following is presented a short description of the related works which have
involved the development of generative adversarial networks in different domain
settings regarding the generation of synthetic tabular data addressing also the class
imbalance.

3.3.2 GAN for Tabular Data generation:
The heterogeneity characteristics of most structured data representations have
made the development of a general-purpose GAN able to reliably work on tabular

24

Imbalance Management

data a non-trivial job. Over the years, several approaches have been proposed with
the aim of generating realistic privacy-preserving synthetic structured data:

• table-GAN [27] has been one of the first approaches highlighting the need for
a design architecture specifically for tabular data. It consists of a readaptation
of the synthetic Deep Convolutional GAN [28] architecture designed for
synthetic image generations to structured data. The approach is based on
transforming each row from the structured data into a square two-dimensional
matrix which can be processed by a 2D-convolutional layer. To manage
categorical features, a simple label encoding pre-processing is applied, and
the generated output is just rounded to the nearest integer. However, due to
its instrinsic nature of adaptability in those data domains in which relevant
patterns can appear anywhere in an image, the arbitrary features order of
structured data and their heterogeneous information content fully discourage
the proposal.

• Many synthetic data generation approaches have been exploited inside the
medical field generating different GAN architectures, among which major ideas
have been developed in the medGAN [29] model, considered as a baseline in
literature. Initially focused on the generation of discrete medical records adopt-
ing of a pretrained autoencoder structure , study involving the replacement of
the vanilla GAN loss function with the Wasserstein GAN Gradient Penalty
loss has been able to show improvements in the data generation process[30].

• TGAN[31] and CTGAN[32] proposed synthetic data generation providing
differentiation between attribute typologies. The former uses LST-Cells with
learned attention-weights in the generator to generate columns one-by-one,
while the latter abandons the LSTM-Cells architecture in favour of fully-
connected layers, which use a one-hot encodings representation and SoftMax
activation function with added uniform noise to the output for categorical
columns and a gaussian mixture model-based approach for numerical columns.

3.3.3 GAN for Tabular Data Imbalance Oversampling:
Despite the recognized importance of GAN architectures for data augmentation
exploited in the context of unstructured data, such as images. During those
years, a small literature on using GANs for generating minority class instances by
oversampling structured data has also emerged:

• Fiore et all [33] proposed to exploit the basic GAN framework to train the
model only in the minority samples. By doubling the number of minority
instances it has been able to outperform the SMOTE methodology results,
however, without providing a proper model evaluation criteria.

25

Imbalance Management

• Yu-Jun Zheng et all [34] proposed a complex classification framework which
used a denoising autoencoder in conjunction with a GAN and a Gaussian
Mixture Model as discriminator and classifier. Moreover, to convert categorical
variables to numerical format it uses a weight-of-evidence transformation, but
without exploiting GAN categorical variables generation capacity.

• Georgios Douzas and Fernando Bacão [35] have been the first to adapt the
Conditional GAN(cGAN) to manage class imbalance. However, the bench-
marking dataset exploited just numerical features.

• TabGAN [36] proposed a resampling behaviour coordinating the CTGAN
application together with adversarial training evaluating both training and test
sets. The approach consists of the generation of synthetic data from the initial
training dataset exploiting the CTGAN . Those new data are concatenated
together with the training dataset and developed an adversarial boosting to
obtain data resembling the test set, without taking into consideration the
original ground truth. The final resampled dataset is composed of the top
rows from the training set and the synthetic dataset sorted by correspondence
to the test set.

• c-WGANGP [37] adapts GAN concepts of synthetic data generation to the
oversampling task. Having estimated the data distribution through a pre-
trained Auxiliary Classifier, the GAN architecture is conditioned on generating
minority class samples. To optimally solve the GAN’s min-max game, the
Wasserstein GAN Gradient Penalty loss function is provided enabling both
Discriminator and Generator to train to optimality, ensuring that the generated
data resemble the original data distribution by improving training stability,
providing more gradient info to train the Generator, which leads to the creation
of samples that are more spread out across the data distribution, rather than
focusing on just a few modes. Moreover, some proposed adjustments are found
in the introduction of the Gambel-softmax activation function in combination
with embedding layers to model categorical columns while adding noise to the
numerical data to avoid the Discriminator detection of trivial patterns.

3.3.4 c-WGANGP:
Among the presented approaches for managing class imbalance in a structure data
scenario using a generative adversarial network framework, the interesting results
achieved by cWGAN in managing tabular data oversampling on non-linear datasets
[37] have brought us to analyze the general model’s structure and readapt the
model into our work.

26

Imbalance Management

However, despite the Vanilla GAN composition, to shift the model’s goal into
the generation of new tabular data constrained to the minority class, the selected
architecture presents many modifications of the original generative adversarial
network structure from both architectural and objective points of view.

Wassertein Gradient Penalty Loss:

The architecture proposed by Ian Goodfellow was driven by an optimization re-
quirement only achievable through minimization of the Jensen-Shannon Divergence
(JSD) between real and synthetic data, possible only in a situation in which pg,
the generator’s distribution over the data space X , corresponds to the real data
distribution pdata.

However, as suggested by the same author, the approach did not ensure con-
vergence to equilibrium, with the losses of both Generator and Discriminator not
necessarily correlated with sample quality, allowing for mode collapse [25]. This
phenomenon is a quite common issue in generative modelling, meaning that the
Generator fails to capture the full diversity of the data distribution, by focusing
on a limited subset of samples it often produces very similar or even identical
outputs for different inputs, which results in solving the max-min game. Therefore,
the Generator only learns to generate a few specific patterns or modes from the
data distribution, bringing a lack of diversity in the created samples, resulting in
poor-quality output and limited variability in the data.

In order to provide the generative network with sufficient guidance to explore
diverse modes in the data distribution, the WGAN [38] architecture proposed the
optimization of the Wasserstein-1 distance (Earth-Mover’s distance). Defined as
the “minimum cost” of the optimal transport plan to move the probability mass
of one distribution until it matches another distribution. The adoption of such a
strategy smooths the generative process to not completely mimic the original data
distribution, but instead, find something close to it, providing:

• Improved Gradient Flow: Smoother gradients compared to traditional
GAN loss functions

• Mode Diversity: Encourages the Generator to capture a wider range of
modes in the data distribution, focusing on sample quality.

• Training Stability: Improved training stability compared to traditional
GANs, being less susceptible to vanishing gradients, while contributing to
avoiding mode collapse.

27

Imbalance Management

The achievement of such distance metrics is approximated by changing the GAN
objective to:

m
G

inm
D

ax Ex∼pdata
[D(x)]− Ez∼pz [D(G(z))] (3.3)

To measure the quality of the generated samples and real data, the Discriminator
is constrained to be 1-Lipschitz continuous. This is achieved by:

• Clipping the Discriminator’s weights within a range [-c,c], avoiding exploding
gradients.

• Elimination from the Discriminator final layer of Sigmoid Activation function.

In this way, the predictions no longer fall in the range [0,1], but instead, the network
outputs a scalar score between (−∞,∞), interpreted as how much the input data
resembles reality. For this reason, the Discriminator in a WGAN is usually referred
to as a Critic [38].

Discriminator/Critic Generator
GAN ∇θd

1
m

qm
i=1

è
log D(x(i)) + log(1−D(G(z(i))))

é
∇θd

1
m

qm
i=1 log(D(G(z(i))))

WGAN ∇θw

1
m

qm
i=1

è
f(x(i))− f(G(z(i)))

é
∇θw

1
m

qm
i=1 f(G(z(i)))

Table 3.1: Loss Functions comparisons in GAN and WGAN architectures

Since weight clipping constraints the discriminator’s capacity [38], being able to
provide a good performance of the critic is fundamental for the WGAN. Without
accurate gradients flow, the Generator cannot learn how to update the weights to
create better samples over time. To overcome the weight clipping, in the WGAN-
GP [39] architecture, the 1-Lipschitz constraint is enforced directly during the
training with the adoption of a gradient penalty term.

A differential function f is 1-Lipschitz if it has gradients with a magnitude of
at most 1 everywhere in the input space. To enforce such constraint, the gradient
penalty method introduces a regularization term into the Discriminator’s loss func-
tion. The idea is to use linear interpolation to create a smooth path between real
and synthetic data points, and then calculate the gradient of the discriminator’s
output along this path, obtaining information on how the discriminator’s response
changes as we move from real to synthetic data. By penalizing the norm of the
gradient, the Discriminator is encouraged to have smooth gradients and be Lipschitz
continuous:

m
G

inm
D

ax Ex∼pdata
[D(x)]− Ez∼pz [D(G(z))]− λEx̂∼px̂

è
(∥∇x̂D(x̂)∥2 − 1)2

é
(3.4)

With:

28

Imbalance Management

• λ = Penalty Coeffiecient

• x̂ = tx̃ + (1− t)x = Interpolated point, 0 ≤ t ≤ 1

Moreover, to ensure consistent gradient magnitudes, batch normalization is avoided
for the Critic, since it can introduce scaling factors that vary across layers and
mini-batches, making it challenging to ensure the Lipschitz constraint, impacting
the effectiveness of the gradient penalty.

Being employed together with the Wasserstein GAN framework, the gradient
penalty prevents mode collapse and vanishing gradients, by promoting the genera-
tion of samples that are more spread out across the data distribution, rather than
focusing on just a few modes [40].

Conditional GAN with Auxiliary Classifier:

To further improve the training stability and specifically generate data belonging to
the interesting class label, the GAN structure is ulteriorly modified by combining
the idea proposed in two major works, cGAN and AC-GAN [[41],[42]].

Conditional GAN (cGAN) is a simple variation of the GAN objective by con-
ditioning both Generator and Discriminator on the class labels, achieved by ap-
pending the class label y to both the networks’ inputs. By letting the Genera-
tor to estimate the distribution pX|y and the Discriminator to learn to estimate
D(X, y) = P (fake|X, y), the Vanilla framework objective function can be reformu-
lated:

m
G

inmax
D

V (D, G) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.5)

Conditioning makes it possible for the Generator to sample only outputs belonging
to a specific class while the Discriminator checks if the generated output is real or
fake while conditioning the data generation process on matching the class label.

The Auxiliary Classifier GAN (AC-GAN) is a further extension of the GAN
architecture based on ideas exploited in the cGAN configuration. Like conditional
GAN, the generator model is provided with a point in the latent space and the class
label as input, while differently the Discriminator is not conditioned, but instead
is able to discern the difference between real and fake data while also predicting
the class label of the given sample D(X) = P (y|X), working as an "Auxiliary
Classifier".

29

Imbalance Management

c-WGANGP objective:

Having synthesized the different approaches exploited in the designing of the
GAN architecture objective function, the proposed configuration tries to properly
combine all of them. The c-WGANGP architecture departs from the original
AC-GAN formulation, presenting two separate network for both Auxiliary Classifier
and Discriminator facilitating the independent utilization of the AC loss while
simultaneously conditioning the Discriminator on the class label:

m
G

inm
D

axEx∼pdata
[D(x|y)]− Ez∼pz [D(G(z|y))]− λGPEx̂∼px̂

[(∥∇x̂D(x̂|y)∥2 − 1)2] + λACEz∼pz [AC(G(z|y)))]

(3.6)
With:

• AC = The Binary Cross Entropy of the Auxiliary Classifier between the True
class label and the Predicted class probability ypred.

Differently from the Vanilla framework in which the Generator’s ability of creating
new data is dependent only the Discriminator performances, the adoption of
the Wassertein Gradient Penalty loss together with the adoption of an Auxiliary
Classifier enforces the generative process by constraining the Generator’s to provide
synthetic data affine to real ones both in distribution and relative class.

Categorical Data Management:

To optimize the Generative Adversarial Network objective function through gradient
learning, both the Generator and Discriminator need to be fully differentiable.
Therefore, discrete outputs generation can be a bottleneck for neural network
training. To backpropagate the gradients through discrete random variables,
approximating the sampling from a discrete categorical distribution, the Generative
model leverages the Gumbel-Softmax [43] function. Such activation function allows
the model to sample from a discrete distribution during the forward pass, respecting
at the same time the differentiality constraint:

Gumbel-softmax(xi) = e(xi+gi)τqk
j=1 e(xj+gj)τ for i = 1, ...k

The Gumbel-Softmax is a variation of the Softmax function, in which noise sampled
independently from a Gumbel Distribution (0,1) is added to the logits, with the
entire process parametrized by a temperature parameter τ controlling how closely
the Gumbel-Softmax distribution approximates the categorical distribution. If τ is
very small, we get very close to a quantized categorical sample, and conversely, the
Gumbel-Softmax distribution becomes more uniformly distributed as τ increases.

30

Imbalance Management

Discriminator’s categorical inputs are are encoded through an one-hot repre-
sentation, which strongly differs from the "soft" one-hot encoding provided by
the Gumbel-Softmax Generator’s activation function. To make this distinction
harder to recognize and to reduce the high-dimensional feature space representation
achieved by one-hot encoding large feature levels, Embedding layers are employed
to convert sparse data into a dense vector of real values:

xembed,i = Wembed,i xi

Where:

• xembed,i is the embedding vector.

• xi is the binary input of the i-th feature.

• Wembed,i ∈ Rne×nv is the embedding matrix optimized with the network with
ne and nv respectively the embedding and feature vocabulary sizes.

Numerical Data Management:

In order to represent numerical values, a slight amount of Gaussian noise (0, 0.01)
is introduced to the numerical columns after being rescaled through min-max
normalization. Independent Gaussian noise is applied to both real and generated
samples, preventing the Discriminator from simply rejecting values that don’t
exactly match frequent modes in the real data, meanwhile, incentivizing the Gen-
erator to produce values that align with frequently occurring modes in the real data.

Moreover, to manage possible correlations within numerical and categorical columns,
the author proposes a “self-conditioning” approach allowing the generator to cap-
ture relationships between columns more easily. By concatenating the categorical
outputs to the numerical output layer, the numerical variables generation process
is constrained to be dependent on the sampled categorical output.

Cross Layers:

To better model the relationships between variables, both Generator and Discrimi-
nator architectures present Cross layers [44]. Particularly used when dealing with
complex relationships or dependencies between features in different parts of the
input data, Cross Layers/Cross Network, are architectural pattern designs exploited
in neural networks to explicitly capture feature interactions between different parts
of the network, facilitating the information flow. The cross network is composed of
cross layers, with each layer addressing the following formulation:

xl+1 = x0x
T
l wl + bl + xl = f(xl, wlbl) + xl

31

Imbalance Management

Where:

• xl, xl+1 ∈ Rd are column vectors denoting the outputs from the l-th and l+1-th
cross layers.

• wl, bl ∈ Rd are the weight and bias parameters of the l-th layer.

Due to the limited model’s capacity provided by the small parameters number
of the Cross Networks, to capture high non-linear interactions and improve the
representational capacity of the model, all the networks are composed of Cross
Layers in parallel with a fully connected feed-forward neural network. Enforcing
the Generator’s noise variation while improving the discriminative power of both
AC and Critic.

Network Architecture:

(a) Generator (b) Discriminator

Figure 3.12: Generator (left) and Discriminator (right) structures [37]

Described the improvements provided by the c-WGANGP, the general architecture
provides the following network structures:

• Discriminator: Received a sample of data provided with the corresponding
class labels, the Discriminator adds gaussian noise to the numerical columns
while embedding the encoded categorical features. The embedding vector

32

Imbalance Management

along with the dense numerical feature and the class label are stacked into one
vector and passed through both hidden layers, provided of layer normalization,
and crosslayers in parallel. Both outputs are passed through a final layer
providing a final scalar value Dout representing a score of data reality.

• Auxiliary Classifier: Similar Discriminator’s structure but with some modi-
fications:

– No gaussian noise is added to numerical features.
– AC not conditioned on the class labels.
– Last layer present a Sigmoid Activation function for estimating the given

data class probability.

• Generator: Received as input a sample of latent noise z and the minority
class label, both passed through hidden layers and cross layers. The output
of both networks are stacked becoming the input of the final output layers.
Each categorical output layer Cati outputs a vector of length ki equal to the
number of levels of the i-th categorical column, while the numerical output
layer outputs a vector lenght equal to the number of numerical columns. The
categorical outputs Xcat are embedded and passed through a further hidden
layer Hnum reducing the embeddings of all the categorical columns to a single
16-dimension dense vector and furtherly concatenated to the input of the
numerical output layer allowing for numerical feature conditioning.

33

Chapter 4

Boosting for Tabular Data

In recent years, within the field of machine learning, boosting algorithms have
gained prominence as state-of-the-art models for efficiently handling tabular data.
Several studies have compared the performances of Deep Learning approaches
to Boosting frameworks across various tasks, dataset sizes [45],[46] and solutions
proposed in Kaggle competitions [47], and according to them it has been observed
that gradient-boosting algorithms, particularly XGBoost, consistently outperform
deep learning techniques, delivering superior performances in these scenarios.

4.1 Boosting: In a Nuthsell
Boosting is an ensemble learning method that involves creating subsequent clas-
sifiers that are increasingly focused on instances misclassified by the previously
generated classifiers. The fundamental concept behind boosting is to correct pre-
diction errors. The models are fit and added to the ensemble sequentially in such
a way that the next model aims to correct the predictions of the previous model,
sequentially refining the ensemble.

Boosting often utilizes very simple decision trees that make only a single or a
few decisions, often referred to as stumps. The predictions of these weak learners
are combined using simple voting or averaging methods, although their contribu-
tions are weighted proportionally to their performance or capability. The objective
is to construct a Strong Learner by leveraging the collective knowledge of many
Weak Learners, resulting in an ensemble model that demonstrates improved predic-
tive power and generalization. Typically, the training dataset is left unchanged,
while the learning algorithm is adjusted to give more or less attention to specific
examples based on their correct or incorrect predictions by previously added en-
semble members. The concept of combining weak learners into strong learners was

34

Boosting for Tabular Data

initially proposed theoretically, but early algorithms showed limited success. How-
ever, with the development of the Adaptive Boosting algorithm (AdaBoost) [48],
boosting was demonstrated as an effective ensemble method. Since the introduction
of AdaBoost, numerous boosting methods have been developed, among which
Stochastic Gradient Boosting stands out as one of the most effective techniques for
classification and regression tasks on structured data.

Figure 4.1: Boosting Paradigm [49]

4.2 XGBoost
Extreme Gradient Boosting (XGBoost) is a scalable stochastic gradient boosting
algorithm for regression and classification tasks, introduced by Tianqi Chen [50]. It
is an ensemble learning method that uses gradient-boosting concepts to combine the
predictions of multiple weak learners (usually classification and regression decision
trees [51]) into a strong learner.

XGBoost is based on solid statistical models and a scalable learning system that can
capture complex data dependencies, making it effective for a wide range of applica-
tions. For instance, it has produced state-of-the-art results on many classification
benchmarks and real-world challenges involving structured data, such as store sales

35

Boosting for Tabular Data

prediction, high customer behaviour prediction, and product categorization [45],
[47].

One of the most important factors behind the success of XGBoost is its scal-
ability. The system runs more than ten times faster than other popular solutions
on a single machine and can scale to billions of examples in distributed or memory-
limited settings. This scalability is due to several optimizations applied on both
the algorithm and hardware sides.

Algorithm Optimizations:

• Regularized Learning Objective: Prevent Overfitting enhancing model’s
generalization capability.

• Tree learning algorithm for handling sparse data: During the Tree
building process, missing values are handled.

• Approximated Learning: Improved algorithm computational efficiency by
finding optimal points during the tree construction process.

Hardware Optimizations:

• Parallel and Distributed computing: Make advantage of multiple CPU
cores to speed up the training process.

• Cache Aware Access and Out-of-core computations: Optimized access
to processing and memory units.

All these improvements are combined into an end-to-end system able to scale into
big data settings with the least amount of cluster resources.

4.2.1 Regularized Learning Objective
Considering a training dataset {X, Y }, with:

• n: Training Examples

• m: Number of Feature

Such that: D = {xi, yi} (|D| = n, xi ∈ Rm, yi ∈ R).

To predict the response variable, the tree ensemble model uses K additive functions:

ŷi =
KØ

k=1
fk(xi) , fk ∈ F =

î
f(x) = wq(x)

ï
(q : Rm → T, w ∈ RT) (4.1)

36

Boosting for Tabular Data

With F being the space of regression trees, with each tree q mapping an example
to the corresponding leaf index T. Each fk corresponds to an independent tree
structure q with leaf weights w, where the single component wi represents the
continuous score relative to the i-th leaf.

Therefore, given a new example, the decision rules learned by each tree q, are used
to classify it. The final prediction is obtained as the sum of the scores produced by
the corresponding leaves of each tree.

In order to achieve the set of functions learnt by the XGBoost model is necessary
to minimize the following regularized loss function:

L(ϕ) =
Ø

i

l(yi, ŷi) +
Ø

k

Ω(fk) (4.2)

where Ω(f) = γT + 1
2λ ∥w∥2

with:

• l(yi, ŷi): Differentiable and Convex Loss function measuring the difference
between the target yi and the prediction ŷi

• Ω: Regularization term, penalizing each single tree complexity, achieved
through the smoothing of leaf weights values.

The achieved final model consists of a combination of simple predictive functions
in order to avoid overfitting. Moreover, by setting the regularization parameter to
zero, the objective function corresponds to the one provided in the Gradient Tree
Boosting learning.

4.2.2 Gradient Tree Boosting
In order to optimize the regularized loss reduction, the model is trained in an
additive manner.

Letting ŷi
(t) being the prediction of the i-th instance at the t-th iteration, the final

prediction will be generated by greedily adding the ft able to minimize at each
iteration the following objective:

L(t) =
nØ

i=1
l(yi, ŷ(t−1)) + ft(xi) + Ω(ft) (4.3)

=⇒ L(t) ≃
nØ

i=1

5
l(yi, ŷ(t−1)) + gift(xi) + 1

2hif
2
t (xi)

6
+ Ω(ft) (4.4)

37

Boosting for Tabular Data

Where, gi = ∂ŷi
(t−1)l(yi, ŷi

(t−1)) and hi = ∂2
ŷi

(t−1)l(yi, ŷi
(t−1)) are respectively first

and second order gradient statistics on the loss function by applying the Friedman
second-order approximation [52] on (4.3).

Defined as Ij = {i|q(xi) = j} the instance set available at the corresponding
leaf j. By applying, the proposed approximation, the optimal leaf weight wj of leaf
j in a fixed tree q(x) is:

w∗
j = −

q
i∈Ij

giq
i∈Ij

hi + λ
(4.5)

And assuming IL and IR respectively the instances of the left and right nodes after
the split, such that IL + IR = I, then gain amount corresponding to the splitting,
therefore, the loss reduction achieved through the split is:

GAINsplit = 1
2

C
(q

i∈IL
gi)2q

i∈IL
hi + λ

+ (q
i∈IR

gi)2q
i∈IR

hi + λ
− (q

i∈I gi)2q
i∈I hi + λ

D
(4.6)

Where, given a split in right and left nodes:

•
(
q

i∈IL
gi)2q

i∈IL
hi+λ

is the impurity measure for the right node.

•
(
q

i∈IR
gi)2q

i∈IR
hi+λ

is the impurity measure of the left node.

• (
q

i∈I
gi)2q

i∈I
hi+λ

is the impurity measure of the root node.

Moreover, each tree presents an intrinsic pruning strategy possible to be applied
during or after the tree’s construction and prevent the branches’ full development.
Based on a user pre-defined regularization parameter γ, the split is evaluated:

• If GAINsplit ≤ γ → Prune the Branch

• If GAINsplit ≥ γ → do not Prune the Branch

4.2.3 Shrinkage and Columns Subsampling
Besides the regularized objective, to further prevent the overfitting behaviour of
the algorithm, two additional techniques are used:

• Shrinkage [53]: Newly added weights are scaled by a factor α after each step
of tree boosting. Similar to learning rates applied in stochastic optimization,
the influence of each individual tree is reduced, leaving space for future trees
to further improve the model’s prediction.

ŷi = α
KØ

k=1
fk(xi) , fk ∈ F (4.7)

38

Boosting for Tabular Data

• Column Subsampling/Feature Bagging [54]: Already exploited in Random
Forest models, the method consists of randomly selecting a subset of columns
from the set of columns chosen for the current tree, in order to prevent over-
fitting and speed up parallel algorithm computations. The random sampling
of feature subsets promotes the training of decorrelated trees, giving the
possibility to different features to be selected as best attributes for the split.

4.2.4 Split Algorithms
Exact Greedy Algorithm:

The exact Greedy algorithm consists of enumerating all the possible splits according
to the data distribution and finding at each step the one able to maximize the
split gain over all the features. To do so, the algorithm must first sort the data
according to the feature values and visit the database in sorted order to accumulate
the gradient statistics for evaluating the split gain.

Since it is computationally demanding to enumerate all the possible splits when
dealing with continuous features, the technique is strongly discouraged in those
settings where the data do not fit entirely into memory.

Approximated Algorithm:

The approximate framework is divided into three categories:

• Histogram-based Approximate Greedy Algorithm [55]: During the
training phase, for each feature, the XGBoost constructs a histogram rep-
resenting the data points distribution for that feature. The algorithm bins
the feature values into discrete bins, each having a similar number of points
inside. For each bin boundary, gradient statistics are computed to evaluate the
potential splits. The bin boundary that results in the highest gain is selected
as the best split for that feature.

• Quantile Sketch: During the training phase, for each continuous feature
quantiles are used as an approximated summary of the data distributions.
Inside each quantile gradient statistics are computed, and the quantile bin
that results in the highest gain is selected as the best split for that feature.

• Weighted Quantile Sketch: Similar to quantile sketch, feature values are
bucket in quantiles, but in this case containing a similar amount of sum of
squared gradients, evaluated for each data point as a weight. The newly
defined quantiles are evaluated as potential candidate split and the best-split
point able to greedily maximize the split gain is selected.

39

Boosting for Tabular Data

Moreover, for all the approximated algorithms the splitting proposal can be evalu-
ated in two modalities:

• Global Variant: Propose the candidate split during the initial phase of tree
construction and uses the same proposals for split findings at all levels.

• Local Variant: At each split the approximated algorithm is computed and a
new proposal split is evaluated at each new level of the tree.

4.2.5 Sparsity-aware Split Finding
The model is able to handle sparse datasets by identifying a default direction for
those instances presenting missing values. During the tree construction, when
a candidate split feature contains missing values for some data points, for each
candidate threshold the data points are assigned to both left and right child nodes
and the gain for both possibilities is computed. The default direction is chosen as
the one able to bring a major decrease in the loss function.

4.2.6 Parallel Learning
The most time-consuming part of tree learning is to get the data into sorted order.
To reduce the cost of sorting, data are stored in a compressed format, called block
(suggested 216 examples per block to balance both cache and parallelization). This
technique allows XGBoost to handle datasets that are too large to be loaded entirely
in memory and distribute the workload across multiple CPU cores, exploiting both
Feature-Level and Thread-Level Parallelism.

• Feature-Level Parallelism: Different dataset features are processed paral-
lelly and independently by the different computational units available, takings
advantage of the multi-core CPUs and speeding up the tree construction
process.

• Thread-Level Parallelism: When evaluating potential split points for a
single feature. XGBoost can divide the work among multiple threads running
on the same core. Each single thread processes each block independently, and
results are aggregated to construct the final decision tree model.

40

Chapter 5

Performance Evaluation

As already introduced, being able to choose the proper evaluation metric is cru-
cial, especially when dealing with machine learning models applied to imbalanced
datasets. In this scenario, proper identification of the right set of evaluation metrics
helps to ensure that the model’s performance is accurately assessed and avoids
misleading conclusions.

Since the presented study is a binary classification problem, by mapping the
minority and majority instances respectively to positive and negative outcomes,
two-class metrics are evaluated. Indicating as TP and TN the number of positive
and negative examples that are correctly classified, while FN and FP respectively
the number of misclassified positive and negative examples, according to a taxon-
omy proposed by Cesar Ferri [56] is possible to divide the evaluation metrics into
three groups:

• Threshold Metrics

• Ranking Metrics

• Probability Metrics

5.1 Threshold Metrics
Those family of metrics quantify the classification prediction error:

• Accuracy: Measures the percentage of correct predictions throughout the
whole dataset.

Accuracy = TP + TN

TP + TN + FP + FN

41

Performance Evaluation

• Sensitivity/True Positive Rate/Recall:

Recall = TP

TP + FN

• Specificity/ True Negative Rate:

Specificity = TN

TN + FP

• Precision:
Precision = TP

TP + FP

• Fβ-Score:

Fβ − score = (1 + β2) Precision×Recall

(β2 × Precision) + Recall

5.2 Ranking Metrics
Those family of metrics evaluates classifiers based on how effectively they can
separate classes, without making assumptions on the class distributions, computing
diagnostic plots to test the model’s performance.

For design purposes, the classifier is required to predict for the different instances
a class probability membership to which different threshold metrics are evaluated,
identifying as good class separators those models able to maintain a good score
across a range of thresholds. Typically, overall ranking information is evaluated
considering the created plot’s Area Under the Curve (AUC).

The literature presents different ranking metrics defined by evaluating different
threshold metrics for different probability class levels, however, the most used are:

• AUC-ROC: Evaluates the area under the receiving operator characteristic
curve, obtained by calculating the FPR and the TPR for a set of predictions by
the model under different thresholds. Each threshold is a point on the plot and
the points are connected to form a curve expressing the overall performances.
A classifier that has no skill (e.g. always predicts the majority class under
all thresholds) will be represented by a diagonal line from the bottom left to
the top right. The AUC-ROC is always in the range [0,1], with an unskilled
classifier having a score of 0.5.

42

Performance Evaluation

• AUC-PR: Represents a summary of the precision-recall curve providing an
estimate for all the evaluated thresholds a trade-off between precision and
recall. Also, in this case, the generated curve expresses the overall performances
of the classifier, with an unskilled classifier identified by a horizontal line,
proportional to the number of positive examples in the dataset.

5.3 Probability Metrics
Those family of metrics quantify the classifier reliability based on the uncertainty
the model has in predictions, penalizing those mistakes with high confidence.

Evaluating a model based on the estimated probabilities requires a calibration
assessment of the classifier. While some classifiers are trained using a probabilistic
framework (e.g. Logistic Regression and Naïve Bayes), many nonlinear classifiers
require their probabilities to be calibrated via probabilistic metric.

The most common metrics for evaluating predicted probabilities are:

• Binary Cross-Entropy: Summarize the average difference between the
empirical and actual probability distribution

Cross-Entropy = − 1
N

NØ
i=1

yi × log(ŷi) + (1− yi)× log(1− ŷi)

• Brier Score: Mean squared error between the expected probabilities and the
model’s predicted probabilities of belonging to the positive class.

Brier-Score = 1
N

NØ
i=1

(ŷi − yi)2

where N is the number of observations, yi is the true class label of the i-th
instance and ŷi is the predicted probability of belonging to the positive class
for the i-th instance.

43

Chapter 6

Dataset EDA

6.1 Dataset Description

The dataset exploited for the pipeline development is the "Credit Card Customer
Attrition” [57], collected by the platform Leaps by Analyttica and containing
different information relative to the banking customers. Those features on which
the identification of the possibility of customer churning has been built describe
each instance highlighting two important customer characteristics shared with the
credit company touching both demographical and financial domains.

The former aspect is identified by all those attributes falling in the category
of sensitive information or personally identifiable information (PII), which refers
to data that, if disclosed, can lead to an individual’s identification and possible
discriminatory behaviour if not well managed during the model’s training phase.
Those features describe a customer by its age, gender, family size, marital status,
and education level. While the latter refers to all the remaining details involved
in the individual’s financial account; for example credit card category, customer’s
revolving balance and open-to-buy credit line.

The analysed dataset collects the information of 10,127 customers, without the pres-
ence of missing values, and of which 1627 of the instances are identified as churned
customers. Each customer instance is represented by 21 features, summarized in
the following Table 6.1:

44

Dataset EDA

Feature Description
CLIENTNUM Customer ID

Attrition_Flag - 0: The customer did not churn
- 1: The customer did churn

Customer_Age Customer age

Gender - M: Male
- F: Female

Dependent_count Customer’s family size
Education_Level Customer’s educational level
Marital_Status Customer’s marital status
Income_Category Customer’s income category
Card_Category Customer’s card type

Months_on_book Number of months on the bank’s books
in the preceding 12 months

Total_Relationship_Count Total accounts the customer has with the bank
Months_Inactive_12_mon Number of months of credit card inactivity

Contact_Count_12_mon Amount of times a customer has contacted
the bank in the preceding 12 months

Credit_Limit Customer’s credit limit on the card
Total_Revolving_Bal Customer’s total revolving balance

Avg_Open_To_Buy Customer’s open-to-buy credit line averaged on the last
12 months

Total_Amt_Chng_Q4_Q1 Change in transaction amount (Q4 over Q1)
Total_Trans_Amt Total amount of transactions in the preceding 12 months
Total_Trans_Ct Total count of transactions in the preceding 12 months
Total_Ct_Chng_Q4_Q1 Change in transaction count (Q4 over Q1)
Avg_Utilization_Ratio Average Utilization Ratio

Table 6.1: "Credit Card Customer Attrition" Dataset Description

6.2 Funtional Exploratory Data Analysis:
The heterogeneous characteristic of the input dataset requires to evaluate properly
the different feature distributions based on their respective data typology.

While reporting the different univariate feature distributions in Appendix A, the
following exploratory data analysis focused on highlighting which features could be
prematurely predicted as the main driver of our final classification task, based on
how well they individually distinguish between attrited or existing customers.

45

Dataset EDA

By analysing the feature distributions with respect to the target variable (At-
trition_Flag), it is possible to observe how those attributes able to differentiate the
customer’s churn possibility are the ones involved mainly in the financial domain
(Fig 6.1)

0 2500 5000 7500 10000 12500 15000 17500
Total_Trans_Amt

0

200

400

600

800

1000

1200

1400 Attrition_Flag
Existing Customer
Attrited Customer

20 40 60 80 100 120 140
Total_Trans_Ct

0

100

200

300

400

500

600

700 Attrition_Flag
Existing Customer
Attrited Customer

Figure 6.1: Histogram of the features Total_Trans_Amt, Total_Trans_Ct based
on the response variable Attrition_Flag

46

Dataset EDA

As the images suggest, due to the strong class imbalance present in our dataset,
most continuous feature value ranges are able to identify a customer as maintaining
its credit card (existing customer). While, due to dataset class imbalance, just
a few ranges express an expected reduction in customer engagement. Moreover,
by analysing the different attributes’ distributions it is possible to state how the
ability to discern customer behaviour appears relevant in those features which
characterised the individual credit card adoption exploiting different metrics such
as total/variational amount/count of transactions.

6.3 Correlation Analysis:
In order to uncover relationships and patterns between the numerical variables
in the dataset, and inspecting possible data multicollinearity, both linear and
monotonic pairwise correspondences are exploited through Pearson and Spearman’s
correlation coefficients (Fig 6.2 and Fig 6.3).

C
us
to
m
er
_A

ge

D
ep

en
de

nt
_c
ou

nt

M
on

th
s_
on

_b
oo

k

To
ta
l_
R
el
at
io
ns
hi
p_

C
ou

nt

M
on

th
s_
In
ac
tiv
e_

12
_m

on

C
on

ta
ct
s_
C
ou

nt
_1

2_
m
on

C
re
di
t_
Li
m
it

To
ta
l_
R
ev
ol
vi
ng

_B
al

Av
g_

O
pe

n_
To
_B

uy

To
ta
l_
A
m
t_
C
hn

g_
Q
4_

Q
1

To
ta
l_
Tr
an

s_
A
m
t

To
ta
l_
Tr
an

s_
C
t

To
ta
l_
C
t_
C
hn

g_
Q
4_

Q
1

Av
g_

U
til
iz
at
io
n_

R
at
io

Customer_Age
Dependent_count
Months_on_book

Total_Relationship_Count
Months_Inactive_12_mon
Contacts_Count_12_mon

Credit_Limit
Total_Revolving_Bal
Avg_Open_To_Buy

Total_Amt_Chng_Q4_Q1
Total_Trans_Amt
Total_Trans_Ct

Total_Ct_Chng_Q4_Q1
Avg_Utilization_Ratio

-0.12

0.79 -0.1

-0.011 -0.039 -0.0092

0.054 -0.011 0.074 -0.0037

-0.018 -0.041 -0.011 0.055 0.029

0.0025 0.068 0.0075 -0.071 -0.02 0.021

0.015 -0.0027 0.0086 0.014 -0.042 -0.054 0.043

0.0012 0.068 0.0067 -0.073 -0.017 0.026 1 -0.047

-0.062 -0.035 -0.049 0.05 -0.032 -0.024 0.013 0.058 0.0076

-0.046 0.025 -0.039 -0.35 -0.037 -0.11 0.17 0.064 0.17 0.04

-0.067 0.05 -0.05 -0.24 -0.043 -0.15 0.076 0.056 0.071 0.0055 0.81

-0.012 0.011 -0.014 0.041 -0.039 -0.095 -0.002 0.09 -0.01 0.38 0.086 0.11

0.0071 -0.037 -0.0075 0.068 -0.0075 -0.056 -0.48 0.62 -0.54 0.035 -0.083 0.0028 0.074

Figure 6.2: Pearson Correlation Heatmap

The obtained correlation’s heatmaps highlight strong positive relationships
between many numerical features. Especially, they suggest how practically both
Avg_Open_To_Buy and Credit_Limit exploit the same information, whereas a
monotonic relationship is found between Total_Trans_Amt and Total_Trans_Ct,

47

Dataset EDA

which could be expected by the strong proportionality expressed by the fact that
an increase in the number of transactions often leads to an improvement of the
economical amount spent by the customer through its credit card. In addition,
also a quite strong linearity is presented between the features Month_on_book
and Customer_Age, also in this case mainly intuitively their relationship could be
explained by the fact the older customer may posses their credit card from along
time and thank to their accumulated experience and positive interaction with the
bank they provide a longer credit card history, while younger people just due to
their inner inclination to switch services they might have open their bank account
recently.

C
us
to
m
er
_A

ge

D
ep

en
de

nt
_c
ou

nt

M
on

th
s_
on

_b
oo

k

To
ta
l_
R
el
at
io
ns
hi
p_

C
ou

nt

M
on

th
s_
In
ac
tiv
e_

12
_m

on

C
on

ta
ct
s_
C
ou

nt
_1

2_
m
on

C
re
di
t_
Li
m
it

To
ta
l_
R
ev
ol
vi
ng

_B
al

Av
g_

O
pe

n_
To
_B

uy

To
ta
l_
A
m
t_
C
hn

g_
Q
4_

Q
1

To
ta
l_
Tr
an

s_
A
m
t

To
ta
l_
Tr
an

s_
C
t

To
ta
l_
C
t_
C
hn

g_
Q
4_

Q
1

Av
g_

U
til
iz
at
io
n_

R
at
io

Customer_Age
Dependent_count
Months_on_book

Total_Relationship_Count
Months_Inactive_12_mon
Contacts_Count_12_mon

Credit_Limit
Total_Revolving_Bal
Avg_Open_To_Buy

Total_Amt_Chng_Q4_Q1
Total_Trans_Amt
Total_Trans_Ct

Total_Ct_Chng_Q4_Q1
Avg_Utilization_Ratio

-0.14

0.77 -0.11

-0.015 -0.036 -0.014

0.044 -0.0092 0.057 -0.0066

-0.014 -0.041 -0.0083 0.061 0.03

0.0024 0.051 0.0069 -0.059 -0.028 0.023

0.014 -0.0036 0.0063 0.012 -0.043 -0.045 0.13

-0.0021 0.054 0.0077 -0.071 -0.016 0.033 0.93 -0.15

-0.07 -0.026 -0.054 0.026 -0.019 -0.021 0.021 0.036 0.007

-0.039 0.058 -0.029 -0.28 -0.032 -0.17 0.028 0.018 0.022 0.13

-0.054 0.053 -0.039 -0.23 -0.051 -0.17 0.034 0.04 0.022 0.085 0.88

-0.04 0.0094 -0.034 0.024 -0.046 -0.093 -0.011 0.078 -0.04 0.3 0.22 0.23

0.011 -0.035 -0.0036 0.066 -0.027 -0.059 -0.42 0.71 -0.69 0.033 0.019 0.04 0.094

Figure 6.3: Spearman Correlation Heatmap

The exploratory data analysis (EDA) is an essential and indispensable step to
get some domain-specific knowledge and develop hyphothesis through the dataset.
Through the following analysis has been possible to obtain some valuable insights
into the relationships between various features describing customers. Moreover, the
reasoning effort behind the discussed major data distinction, related to fairness
compliance, and they way in which different features are related will be helpful in
the design and generation of the following machine-learning pipeline.

48

Chapter 7

Pipeline Design:

Being able to properly access churning behaviour becomes fundamental in the
dynamic landscape of financial services. The ability to predict which customers are
at risk of churning, in the realm of credit card services, allows businesses to take
proactive measures towards smoothing such phenomenon. To give a specific tool
to access credit customer churn, in this chapter, we try to leverage the discussed
theoretical backgrounds and improve them with the creation of a robust machine-
learning pipeline.

This process employs a series of specifically designed steps, each contributing
to the development of an efficient data-driven predictive model.

7.1 Data Ingestion and Pre-processing:
IBM DataStage and Feature Selection

In order to properly develop our machine learning pipeline, it has been necessary to
find a way to collect, import and prepare the input data from the data sources to
be used as input for training, validation and testing of machine learning models. To
access the initial stage of the pipeline it has been exploited the technology provided
by IBM DataStage, an industry-leading data integration tool that helps in designing,
developing and running jobs that move and transform data, by supporting both
ETL and ELT patterns.

7.1.1 DataStage Environment:
Despite the on-premises deployment, DataStage is also integrated into the Cloud
Pak for Data as a Service (CPDaaS), a fully managed cloud and data fabric

49

Pipeline Design:

solution offered by the IBM Cloud Pak for Data Platform; a modular platform run-
ning integration data and AI services in a hosted environment containing different
microservices running on a multi-node Red Hat OpenShift cluster.

CPDaaS provides all the capabilities and features of the on-premises version
of IBM Cloud Pak for Data, but in a cloud-native and fully hosted environment,
without the need for infrastructure provisioning, maintenance, and management.
As a matter of fact, IBM takes care of the underlying infrastructure, ensuring
scalability, availability, and security, while leaving the users to focus on utilizing
the platform for their data and analytics needs.

DataStage on Saas provides a graphical framework for developing the jobs that
move data from source systems to target systems. The transformed data can be
delivered to data warehouses, data marts, operational data stores, real-time web
services and messaging systems. Moreover, DataStage exploits parallel processing,
the parallel engine (PX), to run jobs on multiple nodes in the IBM Cloud and uses
enterprise connectivity to provide a fully scalable platform.

The DataStage graphical interface for designing and building data integration
and ETL process workflows is the DataStage Flow. The DataStage flow consists of
a set of interconnected stages, each representing a specific action or transformation
to be performed on the data. The basic building blocks of the flow are:

• Jobs: The overall data integration workflow, consisting of one or more stages
connected to define the data flow and transformations.

• Stages: Divided into Stages and QualityStage, they are specific operating
modules used during the DataStage job regarding functions like extraction,
transformation, filtering, aggregation or conflict and ambiguities resolutions
and data standardization. Moreover, they also supported customizable stage
development.

• Connectors: Allow to connect DataStage with different data sources and
targets, facilitating reading data from and writing data to various external
data sources (both structured and dynamic), providing data connectivity and
metadata integration, or files (Lookup file set, Flat file, Data set, File set or
Sequential File).

• Transformations: Enable to apply transformations to the data within the
data flow, including cleansing, mapping, aggregating, and enrichment.

• Control Element: Manage the execution of the job within the data flows,
providing conditional statements, loops, branching and error-handling mecha-
nisms.

50

Pipeline Design:

• Parallel Processing: The parallel processing supports, allowing the job’s
execution to be distributed across multiple processing units. DataStage offers
six PX environments with prefixed computing and memory capacity (default
1cCPU and 4GB RAM) to choose to run your ETL job based on dataset size
and number of stages involved.

• Partitioning Stage: Data are divided into smaller partitions allowing for
data-parallel processing and distributing the workload across multiple process-
ing resources to achieve better performance and scalability.

• Collection Stage: Reverse of the partitioning process, which involves consol-
idating data from multiple partitions into a single dataset, typically performed
after a parallel processing operation to merge the results from different parti-
tions into a final output or for further processing.

Figure 7.1: IBM Cloud Pak for Data Platform: IBM DataStage service for data
ingestion [58]

7.1.2 Data Flow Design:
The original dataset is split into training and test sets, following a structured 80:20
ratio. The stratified split ensures that both subsets maintain the same distribution
of classes of the original dataset, minimizing any bias in the training and evaluation
process.

Through DataStage has been possible to design a data flow (Fig 7.2) able to
shepherd the data through a series of crucial transformations, ultimately enhancing
the model’s predictive capabilities while prioritizing ethical considerations.

51

Pipeline Design:

The designed flow collects the inputs and processed data into the IBM-optimized
cloud storage solution, IBM Cloud Object Storage. Being highly scalable and
distributed across multiple geographic locations, the storage architecture provides
global accessibility and strong security measures like, encryption at rest and in
transit and IAM (Identity and Access Management) services making it optimized
for storing and retrieving data objects over the internet.

The initial phase of this flow revolves around a preliminary feature selection,
focused on eliminating variables which has been shown carrying on the same infor-
mation and those demographical features that could potentially lead the machine
learning model to make discriminatory decisions , ensuring the model’s fairness
and equitable outcomes.

The subsequent phase delves into encoding and feature scaling, essential steps that
enable the data to seamlessly integrate with both the generative architecture and
classification model. The categorical feature ordinal encoding and target variable
binary encoding are harnessed to transform the categorical attributes into a format
that the model can comprehend and process effectively. The former exploits the
inherent hierarchy of the different data levels of the categorical variables, while the
latter labels the minority class as 1 ad the majority class as 0, to drive attention to
the identification of the churning event.

Furthermore, min-max scaling ensures that each feature is compliant with the way
in which the proposed GAN manages numerical data while mitigating the risk of
biased outcomes during the classification model’s training.

Figure 7.2: ETL DataStage Flow

To provide proper guidance on comprehension of the designed DataStage flow
the following table summarizes the different stages and their relative functionality

52

Pipeline Design:

during the ETL process:

Stage Function
Copy

Copy_1 Generate a copy of the Train set, not considering the features:
Avg_Open_To_Buy, Education_Level, Marital_Status, Gender

Copy_3 Generate a copy of the Test set, not considering the features:
Avg_Open_To_Buy, Education_Level, Marital_Status, Gender

Copy_2 Generate a copy of the Train set passed to both Aggregator and Join stages

Copy_4 Generate a copy of the min-max statistics of the Train set to both Train and Test sets

Column Generator

Column_Generator_Train Add a column of 1s to the Train set

Column_Generator_Test Add a column of 1s to the Test set

Transformer

Encoding_Train Ordinal encoding for categorical features and Binary encoding on the response variable
of the Train set

Encoding_Test Ordinal encoding for categorical features and Binary encoding on the response variable
of the Test set

Min_Max_Train Compute the min-max normalization on Train set features

Min_Max_Test Compute the min-max normalization on Test set features

Aggregator

Aggregator Compute min-max summary functions for each Training set feature

Join

Join_Train Join the min-max statistics to the Train set

Join_Test Join the min-max statistics to the Test set

Table 7.1: Stages functionality

53

Pipeline Design:

7.1.3 Feature Selection:
After retrieving the transformed data from the developed ETL process, the next
crucial step involves performing feature selection to extract the most salient features
that aptly describe our dataset’s characteristics. To accomplish this, two distinct
yet complementary wrapping feature selection methodologies were employed: the
sequential floating forward (SFFS) and floating backward (SFBS) feature selection
techniques. The primary objective of the adoption of such methodology was to
discern and retain the most impactful attributes, being sure of their contribution
to the model’s decision-making process.

Both methodologies, were employed to explore the dataset’s dimensions com-
prehensively. These techniques iteratively find the best subset of features by
considering how each individual feature affects the model’s performance. Their key
difference lies in the starting points and the direction of iterations. SFFS starts
with a small set of features and adds features iteratively, while SFBS starts with
all features and removes them iteratively. These methods strike a balance between
exhaustively exploring all possible feature combinations (which is computationally
expensive given the feature set size) and quickly reaching an acceptable subset of
features.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Features

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce
 -

F1
 sc

or
e

Sequential Float Backward/Forward Selection (w. StdDev)

Figure 7.3: SFBS/SBBS results

The feature selection approaches converge to the same results. Therefore,

54

Pipeline Design:

Figure 7.3 represents just the sequential backward feature selection. The F1-score
performance evolution of a default XGBoost classifier configuration showcases a
commendable consistency in identifying the optimal features set. However, there is a
relatively marginal performance variation when using a number of features over the
plot’s knee points. According to this, and since the default classifier configuration
performance presents variability related to the feature order, leveraging both the
obtained results and domain knowledge, a customized feature selection is exploited.
This personalized variable section contributes as a contextual layer to the model’s
decision process, aligning the model’s data interpretation more cohesively with
real-world implications.

7.2 Data Oversampling

Hyperparameter Value
Optimizer Adam(α = 5× 104, β1 = 0, β2 = 0.9)
Epochs 300
Batch size 50
Gradient Penalty factor λGP 15
AC loss factor λAC 10% of generator Wasserstein loss on current batch
AC loss cut-off 0.3
Discriminator updates per generator update 3
Generator layer sizes (128,64)
Number Generator crosslayers 1
Discriminator Layer sizes (128,64,32)
Number of Discriminator crosslayers 2
AC layer sizes (64,64)
Number of AC crosslayers 2
Activation function in hidden layers Leaky ReLU
Numerical Activation None
Noise Distribution U30 [0,1]

Table 7.2: cWGAN hyperparameter setting

Based on the promising outcomes in the realm of strong non-linearity datasets
of enhancing classification performances and accurately estimating complex data
distribution achieved by the joint adoption of c-WGANGP architecture with
gradient-boosting techniques [cWGAN], we have decided to exploit such generative
methods in our pipeline.

Incorporating the cWGANGP architecture within the machine learning pipeline
introduces a multi-faceted approach to tackle the challenges of imbalanced datasets.
It combines the strength of accurate data distribution modelling from cWGAN
with the robustness of Gradient Boosting’s ensemble learning. This integration not
only boosts the model’s capacity to address class imbalance but also results in im-
proved classification performance on both majority and minority classes. Moreover,

55

Pipeline Design:

facilitating generalization by allowing the model to recognize and adapt to complex
non-linear relationships present in the data.

However, despite the original work, the architecture needs to be suited to be
able to work the data types of the different features involved in the dataset after the
feature selection step. Since the resulting dataset presents just numerical features,
the generative adversarial network architecture has been modified to adapt to such
data typologies. Despite the original structure, all the network layers involved in
the management of categorical variables are not exploited leaving room for the new
structure presented in Fig 7.4.

z y

H1 Cross1

Hn Crossn

Xnum

Xnum

Add noise

Xnum-noisy y

H1

Final layer

CrossnHn

Cross1

Dout

Figure 7.4: Generator (left) and Discriminator (right) structures

The cWGAN model has many hyperparameters that can be chosen. However,
proper tuning for the selected structure has been guided by the recommendations
laid out in the original paper and the specific context of the dataset under consid-
eration. The suggested hyperparameter values that yield optimal performance on
the UCI adult dataset have been utilized as a foundational basis for tuning the
GAN within the context of the dataset interest.

Grounded by the extensive experiment and tests on the different hyperparam-
eter combinations that brought to effectively balance the adversarial training
process, stabilize convergence, and yield high-quality synthetic samples, the hyper-
parameters setting of Table 7.2 is obtained by leveraging the expertise and insights
of the architecture’s developers, while also accounting for the unique characteristics

56

Pipeline Design:

of the dataset used.

Figure 7.5: Univariate distribution plots comparing the real and generated
distributions of the continuous numerical columns.

Figure 7.6: Univariate distribution plots comparing the real and generated
distributions of the discrete numerical columns.

57

Pipeline Design:

Furthermore, in order to assess the extent to which the generative architecture
effectively learns to produce authentic synthetic data, we have conducted an evalu-
ation of the model’s generative performance on the input dataset.

Comparing the univariate distributions of each variable between the synthetic
and real data, using a kernel density estimate (KDE) plot with Gaussian kernels
and bandwidth of 0.02, some noteworthy observations have surfaced. For continu-
ous numerical variables, the architecture generally succeeds in approximating the
distribution of individual variables and demonstrates an ability to capture multiple
modes within the distribution, however, encountering challenges in distinguishing
between closely neighbouring modes variations (Fig 7.5). While, when it comes
to discrete numerical variables, the architecture adeptly emulates distributions
exhibiting high cardinality, presenting some difficulty for those quantitative discrete
variables with lower cardinality (Fig 7.6). However, generating data that emulates
an empirical Gaussian-shaped continuous distribution properly approximates the
mean and standard deviation of these variables. To quantitatively assess the gener-
ative performance concerning univariate distributions, a scatterplot representation
that reported the dimension-wise mean and standard deviation comparisons of
synthetic data against real data is used (Fig 7.7 left and middle). The deviation
from the ideal identity line is measured using the root mean squared error and
reinforced through the Pearson correlation coefficient. Our findings indicate that
generative learning closely aligns with both the means and standard deviations of
the original dataset, avoiding the mode collapse phenomenon.

Moreover, the evaluation also extends to assess whether the generator adequately
models the relationships between variables. We visualize a dimension-wise predic-
tion performance (Fig 7.7, right), which determines how predictable a column is
based on the remaining columns—a measure of the strength of association between
variables. Ideally, this performance should be consistent between real and synthetic
data. Also in this case, the presented scatterplot comparison between real and
generated values is summarized by the root mean squared error and the Pearson
correlation coefficient with reference to the identity line.

Despite the challenges faced in predicting performances for discrete numerical
variables, the architecture effectively estimates the distribution of a complex, tabu-
lar dataset by generating synthetic data that is both realistic and coherent. This
evaluation underscores the architecture’s capacity to handle intricate relationships
and produce synthetic data that mirrors the complexities of the original dataset.

58

Pipeline Design:

Figure 7.7: Dimension-wise performance metrics: dimension-wise means (left),
standard deviations (middle), and prediction performance(right).

7.3 Model Deployment: H2O AutoML
Having highlighted XGBoost remarkable ability to handle complex data relation-
ships and deliver outstanding predictive performance. The exploitation of its true
prowess can only be fully harnessed with a proper hyperparameter optimization
able to match the unique characteristics of the provided input dataset, composed
of both real and synthetic tabular data.

In the landscape of machine learning, the pursuit of correct settings configuration
plays a pivotal role in the achievement of optimal model performance. However,
tuning hyperparameters manually is a formidable challenge that demands extensive
experimentation and expertise. In the last few years, automation has emerged
as a game-changing paradigm. Designed to simplify and automate the process
of building and deploying high-performing machine-learning models, it has been
able to make complex and time-consuming typical tasks of the ML pipeline like
data preparation and ingestion, feature engineering, hyperparameter optimization
and model selection accessible to data scientists and analyst with varying levels of
expertise.

Following those ideas, the technology-specialized company H2O.ai provides an
open-source and commercial platform composed of a suite of tools for machine
learning, data analysis and predictive modelling. To automate the model’s deploy-
ment workflow one of its key features is the AutoML framework [59].

Being accessible through a user-friendly interface, H2O Flow web UI, or R and
Python H20 libraries, the H20 AutoML interface is designed to have as few pa-
rameters as possible, in which the user just needs to point the dataset of interest

59

Pipeline Design:

(schema structure guesses by the H20 data parser), identify the response columns
and optionally specify a time constraint or limit on the number of total models to
train. Its accessibility, combined with the provided cutting-edge and distributed
implementation of many predictive algorithms and its automation capabilities,
democratizes machine learning by allowing both newcomers and experienced prac-
titioners to build high-quality models without being experts in every facet of the
ML pipeline.

Identified the algorithm of interest or leveraging the full set of algorithms available
in H20, the AutoML performs a hyperparameter search in order to deliver the best
model. In the case of XGBoost, H2O implements the algorithm communicating
with native XGBoost libraries via JNI API, providing all the necessary REST
API definitions to expose the XGBoost model builder to the client. Based on
the environment in which the H20 cluster is initialized, the AutoML framework
trains and performs the model’s hyperparameter grid search exploiting the provided
resources.

H2O Cluster characteristics Values
H20_cluster_uptime: 2 secs
H2O_cluster_version: 3.42.0.3
H20_cluster_name: H2O_from_python_unknownUser_j2ueyl
H2O_cluster_total_nodes: 2
H2O_cluster_free_memory: 12.75 Gb
H2O_cluster_total_cores: 8
H2O_connection_url: http://127.0.0.1:54321
Python_version: 3.10.12 final

Table 7.3: H2O Cluster characteristics

In our setting, based on the resources allocated to the Google Colab environment,
the H2O cluster provides the characteristics summarized in Table 7.3, while the
obtained XGBoost hyperparameter’s best configuration is presented in Table 7.4.

XGBoost Parameters Description Values
Booster Typology of base model used in the boosting process gbtree
Col_sample_rate Feature sampling rate for each split in each level 1.0
Col_sample_rate_per_tree Features subsampling rate per tree 0.7
Max_depth Maximum tree depth 6
Min_rows Minimum number of observations for a leaf 1.0
Ntrees Number of trees to build the additive model 30
Reg_alpha Value for L1 regularization on feature weights 0.5
Reg_lambda Value for L2 regularization on feature weights 0.01
Sample_rate Row sampling ratio (without replacement) of the training instance 1.0

Table 7.4: XGBoost Hyperparameters

60

Pipeline Design:

7.4 Model’s Evaluation

Having examined the possible model’s evaluation metric, the ability to translate
the problem’s assessment and estimate the classification algorithm’s performance
into mathematic formulation becomes of paramount importance.

Given that our endeavour revolves around providing each customer with a score
that indicates the likelihood of churning, while simultaneously assessing the per-
missible level of error reduction that the model can exhibit for the minority class,
a multifaceted approach to evaluate the model’s performance becomes fundamental.

Consequently, the translation of these requisites into mathematical expressions
is accomplished by opting for the following classification performance evaluation
metrics the Area Under the Receiving Operator Curve (AUC-ROC), the Area
Under the Precision Recall Curve (AUC-PR) and the Brier score.

While traditional threshold-based metrics such as accuracy and f1-score neces-
sitate of a binary decision threshold, being not able to capture the complete
performance spectrum of the classifier, AUC-ROC and AUC-PR provide a more
holistic understanding, particularly well-suited for scenarios involving imbalanced
datasets. AUC-ROC showcases the model’s proficiency in distinguishing between
classes across a range of thresholds, addressing the model’s overall discriminative
capacity. Conversely, AUC-PR accentuates the trade-off between precision and
recall for the minority class. This combined evaluation approach sidesteps the need
for arbitrarily selecting a threshold point, enabling an equitable comparison of
overall classification performance.

Moreover, in order to gauge the suitability of the model’s predicted churning
probabilities as a viable scoring metric, a calibration assessment of the model
becomes necessary. Poor calibration can lead to misleading probability estimates,
thereby influencing the consistency behind the decision-making process and there-
fore impacting the reliability of the model’s predictions. For these purposes, the
Brier score serves as a metric to quantify calibration quality, effectively measuring
how accurately predicted probabilities align with the actual outcomes.

Having tuned different XGBoost algorithms through the H20 AutoML frame-
work, our best configuration (Table 7.4) provides the results presented in Table
7.5. Moreover, Appendix B provides a comparison of the extreme gradient boost-
ing with respect to the different data imbalance management techniques and the
baseline performance on the original dataset.

61

Pipeline Design:

Model:
XGBoost_grid1_model_377

Cross-Validation
(5 folds) Test set

AUC-ROC 0.9970± 0.0002 0.9922
AUC-PR 0.9971± 0.0125 0.9703

Brier Score 0.0192± 0.0027 0.0221

Table 7.5: XGBoost chosen configuration performance over the 5-Fold Cross-
Validation and Test set

Upon reviewing Table 7.5, it becomes evident that there is a major decline
in the performance of the ROC-PR metric from the results obtained through
Cross-validation to those from the Test phase. Such a trend may raise concerns
about potential model overfitting to the training data. To delve deeper into this
pattern, we can inspect the model’s learning curve (Fig 7.8).

0 5 10 15 20 25 30
number_of_trees

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
gl
os
s

Training
Validation
Cross-validation
Selected
number_of_trees

Figure 7.8: XGBoost Learning Curve: logloss vs. number of trees trained

By analyzing the learning curves, which depict the logloss dependence on the
number of trained regression trees, particularly across the "Training" (the complete
oversampled dataset), "Cross-Validation" (employing 5-fold Cross-Validation), and
"Validation" (Test set) scenarios, we gain insight into this phenomenon. Interestingly,
the performance degradation, while not statistically significant, cannot be attributed
to an overfitting tendency of the model to the training data. Indeed, all the curves
follow a consistent trajectory as the model’s complexity increases, without any
signs of divergence in behavior.

62

Chapter 8

Results

In the pursuit of addressing the model’s effectivity and reliability, the analysis of
performance is undoubtedly a critical phase. It provides insights into the model’s
predictive capabilities and areas that warrant improvement. However, beyond the
performance metric lies the imperative to manage the model’s fairness and explain-
ability. This chapter delves into the significance of this crucial post-evaluation
stage, elucidating the model’s training and results in such a way as to prevent the
possibility of biased decisions, enhancing transparency and accountability.

8.1 Model’s Admissibility: Fairness
After having examined the performances of the developed model, ensuring that the
algorithm’s decisions are free from bias and discrimination is not merely a technical
concern, but an ethical imperative. This aspect gains even greater importance
within the specific domain of analysis. In this case, the act of treating an individual
unfairly due to characteristics like gender, race or age can lead to legal liabilities
and societal biases.

To effectively tackle this aspect of analysis, we have directed our attention towards
demographical variables. Those variables are some of the information collected in
the ingested dataset giving insight into the churn behavior of the customers under
analysis. Therefore, our study unfolds two main ideas of study on these “sensible”
features:

• Exploring the significance of excluded predictors: Considering those
demographical features excluded during the Data ingestion phase, we aim to
understand the existence of a possible significant correlation between these
attributes and the feature identified by the model as the main driver of its
decision-making process.

63

Results

• Understand their impact on the response variable: Examine the
demographic feature upon which the model was trained, quantifying their
contribution to the response variability.

Our initial examination seeks to determine whether pertinent information from the
excluded sensitive features is effectively carried on within the prominent feature
guiding the selected model’s customer churning identification. To achieve this, we
leverage the model’s feature importance metrics (Fig 8.1). Due to the qualitative
and quantitative nature of the respectively sensitive and most relevant features, we
employ a violin plot (Fig 8.2) representation to showcase the distribution of the
continuous variables across diverse categories.

0.0 0.2 0.4 0.6 0.8 1.0
Variable Importance

Months_Inactive_12_mon
Total_Trans_Amt

Total_Trans_Ct
Total_Revolving_Bal

Contacts_Count_12_mon
Avg_Utilization_Ratio

Credit_Limit
Total_Relationship_Count

Total_Ct_Chng_Q4_Q1
Total_Amt_Chng_Q4_Q1

Months_on_book
Customer_Age

Dependent_count

Figure 8.1: XGBoost Features Importance

0 1 2 3 4 5 6

Months_Inactive_12_mon

M

F

G
en

de
r

0 5000 10000 15000

Total_Trans_Amt
25 50 75 100 125

Total_Trans_Ct
0 500 1000 1500 2000 2500

Total_Revolving_Bal

64

Results

0 1 2 3 4 5 6

Months_Inactive_12_mon

High School

Graduate

Uneducated

Unknown

College

Post-Graduate

Doctorate

E
du

ca
tio

n_
Le

ve
l

0 5000 10000 15000

Total_Trans_Amt
25 50 75 100 125

Total_Trans_Ct
0 500 1000 1500 2000 2500

Total_Revolving_Bal

0 1 2 3 4 5 6

Months_Inactive_12_mon

Married

Single

Unknown

Divorced

M
ar
ita
l_
S
ta
tu
s

0 5000 10000 15000

Total_Trans_Amt
25 50 75 100 125

Total_Trans_Ct
0 500 1000 1500 2000 2500

Total_Revolving_Bal

Figure 8.2: Violin Plots of sensitive features: "Gender", "Education_Level",
"Marital_Status"

By evaluating the divergences in data distribution across the different categorical
variables, it is evident how different shapes have a minimal difference as the
sensitive feature level shifts. However, it is important to note that those superficial
differences, since within the sensitive feature levels the continuous variables’ essential
characteristic is preserved, can be attributed to the inherent imbalance present
inside the dataset, which is not only with respect to the class labels but also in the
representation of the diverse categorical feature levels.

65

Results

30 40 50 60 70
Customer_Age

0.1

0.0

0.1

0.2

0.3

0.4

0.5
M

ea
n

Re
sp

on
se

Partial Dependence plot for "Customer_Age"

0 1 2 3 4 5
Dependent_count

0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Re

sp
on

se

Partial Dependence plot for "Dependent_count"

Figure 8.3: Partial Dependency Plots of the features: "Customer_age" and
"Dependent_count"

Furthermore, by closely examining the developed model’s feature importance
metrics, it becomes evident that the demographic features “Dependent_count”
and “Customer_Age” do not significantly contribute to the prediction of customer

66

Results

churning behaviours. To enforce this observation, we conducted a more in-depth
analysis using partial dependency plots for these two variables. These plots reveal
the feature influences, both linear and non-linear, of these variables on the model’s
predictions while holding other features constant. Carefully looking at Fig 8.3,
it is possible to observe a slight mean response variation identified by decreasing
customer ages, however not able to identify a discriminatory algorithm behaviour
by itself. Therefore it is possible to confirm how both sensitive predictors involved
in the model’s training do not have a substantial impact on the response variable,
suggesting that the chosen classification algorithm remains unbiased in relation to
these specific features’ value variations.

By embracing a comprehensive approach that not only examines isolated fea-
ture importance but also delves into the complex interactions among features, we
are able to demonstrate robustness and trustworthiness in the developed analytical
framework.

8.2 Model’s Explainability
Explainability, together with fairness, is vital for users who require insights into
why a model arrived at a particular decision. Especially in the financial contest,
and precisely in the tracking of customer churning from their credit card usage, it
offers a clear window into the decision-making process of the model, shedding light
on why a particular customer is predicted to churn. This transparency is essential
for financial institutions to comprehend the factors influencing churn predictions,
enabling them to take informed actions to retain customers Moreover, in a domain
as sensitive as finance, being able to provide explainability behind the model’s
decisions instils trust, helping avoid biases and to facilitate the alignment of model
predictions with business strategies. By providing insights into the “why” behind
predictions, explainability empowers stakeholders to make strategic decisions, im-
prove customer retention efforts, and ensure ethical and equitable treatment of all
customers.

Typically, most high-performing machine learning models are exploited due to
their ability to capture intricate relationships and interactions within data. Indeed,
extreme gradient boosting falls into the so-called complex/black-box model cate-
gory, presenting extremely good predictive behaviour but at the same time a not
easy-to-decode decision-making process.

In order to make this process transparent, Shapley values, a concept from co-
operative game theory is used. When applied to machine learning models, they

67

Results

help to provide a comprehensive understanding of how each feature contributes
to a particular prediction [60]. Despite, feature importance scores, indicating the
magnitude of a feature’s influence on predictions, Shapley values fill the gap left
on the lack of perspective on feature interactions, considering the average marginal
contribution of a specific feature value across all possible predictors coalitions.
While feature importance typically ranks features based on their individual contri-
butions to the model’s predictive power, Shapley values consider the collaborative
impact of features in different combinations.
Shapley value can provide the model’s interpretability under two different aspects:

• Global Interpretability: The collective SHAP values describe the expected
behaviour of a machine learning model with respect to the whole distribution
of values for its input variables. In this way, it can be shown how much each
predictor contributes, positively or negatively, to the target variable prediction.

• Local Interpretability: It provides a tailored insight into the decision-
making process by examining individual predictions, especially required in
applications like the finance domain where singular decisions have high stakes.
It sheds light on the model’s reasoning behind a particular prediction based on
how additively each feature contributes to that specific outcome. This provides
a way to understand unexpected or counterintuitive model outputs, but also to
establish clear lines of accountability on the final prediction. Furthermore, it
provides a way for the model’s validation, being analysed by the stakeholders
it can be assessed where the model’s decisions align with domain knowledge
and expectations.

8.2.1 Model’s Explainability: Global
To enhance the global interpretability of a model using Shapley values, we employ
a summary plot that illustrates the relationship between feature values and their
influence on the model’s final prediction.

In Fig 8.4, each data point represents a Shapley value associated with a par-
ticular feature and instance. The vertical positioning order along the y-axis is
determined by the feature’s importance. The horizontal x-axis reflects the direc-
tion of the relative impact of the Shapley value, indicating each feature’s value
contribution to the model’s prediction. Additionally, the colour of the data points
represents the normalized magnitude of the features, from low (in blue) to high (in
red). To prevent overlap, the feature’s points presenting the same Shapley values
are jittered, offering insight into the distribution of the Shapley values for each
feature. Through the figure, it becomes evident that the model’s ability in the
identification of potential churning behaviour is primarily influenced by factors

68

Results

such as a decreasing number of transactions in relation to the total amount spent,
the duration of inactivity registered over the year and the revolving balance amount
on the credit card. Conversely, most of the other features exhibit a lower impact,
as evidenced by a narrower range of Shapley values registered.

4 2 0 2 4
SHAP value

Dependent_count
Months_on_book

Customer_Age
Avg_Utilization_Ratio

Credit_Limit
Total_Amt_Chng_Q4_Q1

Total_Ct_Chng_Q4_Q1
Contacts_Count_12_mon
Total_Relationship_Count

Total_Revolving_Bal
Months_Inactive_12_mon

Total_Trans_Amt
Total_Trans_Ct

SHAP Summary plot

0.0

0.2

0.4

0.6

0.8

1.0

Norm
alized feature value

Figure 8.4: Shapley Summary Plot

8.2.2 Model’s Explainability: Local
To enhance our understanding of why the developed model generates specific predic-
tions and gain insights into the contributions of individual features to the model’s
classification, we have employed a horizontal barplot, providing a comprehensible
visual representation of the feature contributions. Rather than providing complex
mathematical equations, stakeholders can intuitively grasp the reasoning behind
a specific prediction. This transparency not only improves trust in the model’s
decision-making process but also empowers businesses with the ability to implement
tailored strategies for each individual customer, reducing churning behaviour and
maximising the customer’s lifetime value.

By examining the influence of feature values on the model’s predictions for cus-
tomers with significantly high and low churn rates (approximately 0.99 and 0.001,
respectively), we can precisely identify those attributes that have a substantial

69

Results

customer-specific impact on increasing or decreasing the churning probability.

1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.25
SHAP value

Total_Trans_Ct=71.0

Months_Inactive_12_mon=2.0

Total_Trans_Amt=4651.0

Total_Revolving_Bal=1697.0

Total_Relationship_Count=6.000000000000001

Total_Ct_Chng_Q4_Q1=1.029

Avg_Utilization_Ratio=0.226

Credit_Limit=7507.0

Months_on_book=41.0

Contacts_Count_12_mon=3.0

Customer_Age=50.0

Total_Amt_Chng_Q4_Q1=1.098

SHAP explanation on row 74
prediction: 0

Figure 8.5: Features contribution barplot for not churning customer: Probability
of Churning ≈ 0.01

0.0 0.5 1.0 1.5 2.0
SHAP value

Avg_Utilization_Ratio=0.0

Months_Inactive_12_mon=3.0

Dependent_count=2.0

Credit_Limit=1491.9999999999995

Months_on_book=33.0

Contacts_Count_12_mon=4.0

Customer_Age=45.0

Total_Amt_Chng_Q4_Q1=0.5019999999999998

Total_Revolving_Bal=0.0

Total_Ct_Chng_Q4_Q1=0.267

Total_Trans_Amt=2468.999999999998

Total_Relationship_Count=1.0

Total_Trans_Ct=37.999999999999986

SHAP explanation on row 1131
prediction: 1

Figure 8.6: Features contribution barplot for churning customer: Probability of
Churning ≈ 0.99

Fig 8.5 provides an explanation of the model’s prediction of a particular non-
churning customer. We can observe that a high transaction count, coupled with a
low number of inactive moths and a relatively high total revolving balance, can

70

Results

help the model to classify a specific person as not likely to churn.

Conversely, in Fig 8.6, a reduced number of transactions and total amount spent,
followed by zero debts on the credit card are indicative of the model of a customer
who may be prone to churning, even in the presence of a low number of inactive
months.

71

Chapter 9

Conclusions

The provided work tries to propose a possible way of addressing credit card customer
churn but in a way that could be properly replicated, previous to a correct data
analysis and goals identification, to different customer relationship management
domains.

Our research underscores the significance of establishing a comprehensive end-
to-end pipeline to address all the main aspects regarding data processing within
an organization committed to the delivery of data-driven solutions. Beginning
with a suited exploration of the relevant domain, it has been possible to leverage
cloud solutions like IBM DataStage to design a well-suited data ingestion process.
This flow has been able to provide a data schema structure appropriate for the
pre-processing phase which has involved the generation of synthetic minority class
data to balance the initial class distribution exploiting a literature generative
approach, cWGANGP. Furthermore, leveraging industry state-of-the-art solutions
like H2O AutoML to develop our final predictive model, we have ensured a robust
and efficient model development process.

Despite the high performances achieved, our focus stands also towards the of-
fering of a practical guideline for handling sensitive information about individuals,
from both technical and ethical points of view, that can be shared in many other
domains. This is a consequence of the awareness that data-driven business solutions
are for most built upon personal information that should be treated with utmost
care.

Hypothetically, in our work, we could have just eliminated personal users’ in-
formation and provided a classification model. However, this straightforward
approach hides a preliminary and fundamental inspection of the input dataset,
in which possible correlated factors are not taken into consideration, providing a

72

Conclusions

prediction framework concealing strong biases towards the decisions taken.

In our case, through a proper exploratory analysis, we have been able to provide
insights into the way to navigate and uncover patterns with sensitive information,
safeguarding individual’s privacy. This is also enforced through a provided per-
spective on the decision-making model’s interpretation, which has ensured good
performances shedding light on both ethical and legal requirement assessment.

In essence, our machine-learning pipeline tries to set a standard for how data
should be handled and interpreted in the nowadays data world, in which privacy
and ethics are paramount, being not only design-specific for the analyzed dataset
but also suitable for other domains.

73

Appendix A

Data Distributions

Differently from the "Functional Exploratory Data Analysis" provided, the fol-
lowing section enriches the analysis by showing the different features’ univariate
distribution.

However, since the exploited dataset provides both numerical and categorical
attributes, two different plots’ typologies are used:

• Target variable "Attrition Flag" count plot:

Existing Customer Attrited Customer
0

2000

4000

6000

8000

Count Plot: Attrition_Flag

74

Data Distributions

• Discrete numerical variables histograms:

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

Histogram: Contacts_Count_12_mon

Attrition_Flag
Existing Customer
Attrited Customer

0 1 2 3 4 5
0

500

1000

1500

2000

Histogram: Dependent_count

Attrition_Flag
Existing Customer
Attrited Customer

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000
Histogram: Months_Inactive_12_mon

Attrition_Flag
Existing Customer
Attrited Customer

1 2 3 4 5 6
0

500

1000

1500

2000 Histogram: Total_Relationship_Count

Attrition_Flag
Existing Customer
Attrited Customer

• Categorical variables count plots:

Blue Silver Gold Platinum
0

2000

4000

6000

8000
Count Plot: Card_Category

Attrition_Flag
Existing Customer
Attrited Customer

High School Graduate Uneducated Unknown College Post-GraduateDoctorate
0

500

1000

1500

2000

2500

Count Plot: Education_Level

Attrition_Flag
Existing Customer
Attrited Customer

M F
0

1000

2000

3000

4000

Count Plot: Gender

Attrition_Flag
Existing Customer
Attrited Customer

Less than $40K 40K 60K 60K 80K 80K 120K $120K + Unknown
0

500

1000

1500

2000

2500

3000
Count Plot: Income_Category

Attrition_Flag
Existing Customer
Attrited Customer

Single Married Divorced Unknown
0

1000

2000

3000

4000
Count Plot: Marital_Status

Attrition_Flag
Existing Customer
Attrited Customer

75

Data Distributions

• Continuous numerical variables histograms:

20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

Histogram: Total_Trans_Ct

Attrition_Flag
Existing Customer
Attrited Customer

0 2500 5000 7500 10000 12500 15000 17500
0

200

400

600

800

1000

1200

1400

Histogram: Total_Trans_Amt

Attrition_Flag
Existing Customer
Attrited Customer

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

500

1000

1500

2000
Histogram: Total_Ct_Chng_Q4_Q1

Attrition_Flag
Existing Customer
Attrited Customer

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

250

500

750

1000

1250

1500

1750

Histogram: Total_Amt_Chng_Q4_Q1

Attrition_Flag
Existing Customer
Attrited Customer

0 500 1000 1500 2000 2500
0

250

500

750

1000

1250

1500

Histogram: Total_Revolving_Bal

Attrition_Flag
Existing Customer
Attrited Customer

0 5000 10000 15000 20000 25000 30000 35000
0

200

400

600

800

1000

1200

1400

Histogram: Credit_Limit

Attrition_Flag
Existing Customer
Attrited Customer

0 5000 10000 15000 20000 25000 30000 35000
0

250

500

750

1000

1250

1500

Histogram: Avg_Open_To_Buy

Attrition_Flag
Existing Customer
Attrited Customer

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

1250

1500

Histogram: Avg_Utilization_Ratio

Attrition_Flag
Existing Customer
Attrited Customer

30 40 50 60 70
0

200

400

600

800
Histogram: Customer_Age

Attrition_Flag
Existing Customer
Attrited Customer

20 30 40 50
0

500

1000

1500

2000

Histogram: Months_on_book

Attrition_Flag
Existing Customer
Attrited Customer

76

Appendix B

Imbalance Management
Comparisons:

To provide a comparative assessment, the following section conducts an analysis
of the data imbalance management techniques performance on the "Credit Card
Customer Attrition" dataset.

To ensure a meticulous evaluation of performance, we fine-tuned the XGBoost al-
gorithm for each dataset, employing the H2O AutoML Framework. We maintained
consistent configurations that were leveraged throughout the development of the
pipeline.

Furthermore, to provide a comprehensive evaluation of the impact of both algorithm-
level and data-level methodologies, we explored different scenarios. In one scenario,
the baseline, the classification algorithm was trained on the unprocessed original
dataset (Imbalance Management Method: None). While, for the imbalance man-
agement methodologies is considered the dataset provided by the ETL process on
which the customized feature selection is applied.

The reported results are expressed in terms of ROC-AUC (Receiver Operating
Characteristic - Area Under the Curve) and PR-AUC (Precision-Recall - Area
Under the Curve) scores, all computed on the same test dataset that was used to
evaluate the overall pipeline performance.

77

Imbalance Management Comparisons:

Imbalance Management
Method: ROC-AUC PR-AUC

None 0.9917 0.9678
Sample Weight 0.9915 0.9687
ROS 0.9917 0.9678
SMOTE 0.9919 0.9654
Borderline-SMOTE 0.9914 0.9621
SVM-SMOTE 0.9912 0.9662
KMeans-SMOTE 0.9915 0.9604
ADASYN 0.9899 0.9580
RUS 0.9894 0.9486
NEAR-MISS 0.9886 0.9565
SMOTE Tomek 0.9922 0.9649

Table B.1: ROC-AUC and PR-AUC performance comparisons of the XGBoost
classifier on the original dataset and on the imbalance management techniques.

78

Bibliography

[1] Sunil Gupta, Donald R. Lehmann, and Jennifer Ames Stuart. «Valuing
Customers». In: Journal of Marketing Research 41.1 (2004), pp. 7–18. doi:
10.1509/jmkr.41.1.7.25084. eprint: https://doi.org/10.1509/jmkr.
41.1.7.25084. url: https://doi.org/10.1509/jmkr.41.1.7.25084
(cit. on p. 1).

[2] Antreas Athanassopoulos. «Customer Satisfaction Cues To Support Market
Segmentation and Explain Switching Behavior». In: Journal of Business
Research 47 (Mar. 2000), pp. 191–207. doi: 10.1016/S0148-2963(98)00060-
5 (cit. on p. 1).

[3] Mark R. Colgate and Peter J. Danaher. «Implementing a Customer Relation-
ship Strategy: The Asymmetric Impact of Poor versus Excellent Execution».
In: Journal of the Academy of Marketing Science 28.3 (2000), pp. 375–387.
doi: 10.1177/0092070300283006. eprint: https://doi.org/10.1177/
0092070300283006. url: https://doi.org/10.1177/0092070300283006
(cit. on p. 1).

[4] Arpit Singh and Anuradha Purohit. «A Survey on Methods for Solving Data
Imbalance Problem for Classification». In: International Journal of Computer
Applications 127 (2015), pp. 37–41. url: https://api.semanticscholar.
org/CorpusID:356390 (cit. on p. 6).

[5] Joffrey Leevy, Taghi Khoshgoftaar, Richard Bauder, and Naeem Seliya. «A
survey on addressing high-class imbalance in big data». In: Journal of Big
Data 5 (Nov. 2018). doi: 10.1186/s40537-018-0151-6 (cit. on p. 6).

[6] K Veropoulos, ICG Campbell, and N Cristianini. «Controlling the Sensitivity
of Support Vector Machines». English. In: Proceedings of the International
Joint Conference on Artificial Intelligence, Stockholm, Sweden (IJCAI99).
Other: Workshop ML3. 1999, pp. 55–60 (cit. on p. 7).

[7] Chris Drummond and Robert Holte. «C4.5, Class Imbalance, and Cost Sen-
sitivity: Why Under-Sampling beats OverSampling». In: Proceedings of the
ICML’03 Workshop on Learning from Imbalanced Datasets (Jan. 2003) (cit. on
p. 7).

79

https://doi.org/10.1509/jmkr.41.1.7.25084
https://doi.org/10.1509/jmkr.41.1.7.25084
https://doi.org/10.1509/jmkr.41.1.7.25084
https://doi.org/10.1509/jmkr.41.1.7.25084
https://doi.org/10.1016/S0148-2963(98)00060-5
https://doi.org/10.1016/S0148-2963(98)00060-5
https://doi.org/10.1177/0092070300283006
https://doi.org/10.1177/0092070300283006
https://doi.org/10.1177/0092070300283006
https://doi.org/10.1177/0092070300283006
https://api.semanticscholar.org/CorpusID:356390
https://api.semanticscholar.org/CorpusID:356390
https://doi.org/10.1186/s40537-018-0151-6

BIBLIOGRAPHY

[8] Gary M. Weiss. «Mining with Rarity: A Unifying Framework». In: SIGKDD
Explor. Newsl. 6.1 (June 2004), pp. 7–19. issn: 1931-0145. doi: 10.1145/
1007730.1007734. url: https://doi.org/10.1145/1007730.1007734
(cit. on p. 8).

[9] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo Cristiano Prati,
B. Krawczyk, and Francisco Herrera. «Learning from Imbalanced Data Sets».
In: Cambridge International Law Journal. 2018, pp. 7–9. url: https://api.
semanticscholar.org/CorpusID:53046396 (cit. on p. 9).

[10] Analytics Vidhya Undersampling and oversampling: An old and a new ap-
proach. https://medium.com/analytics-vidhya/undersampling-and-oversampling-
an-old-and-a-new-approach-4f984a0e8392. Accessed: 2023-03-20 (cit. on pp. 9,
20).

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. «SMOTE:
Synthetic Minority Over-sampling Technique». In: Journal of Artificial Intel-
ligence Research 16 (June 2002), pp. 321–357. doi: 10.1613/jair.953. url:
https://doi.org/10.1613%2Fjair.953 (cit. on p. 10).

[12] Ronaldo Prati, Gustavo Batista, and Maria-Carolina Monard. «Learning
with Class Skews and Small Disjuncts». In: Sept. 2004, pp. 296–306. isbn:
978-3-540-23237-7. doi: 10.1007/978-3-540-28645-5_30 (cit. on p. 10).

[13] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursin-
sap. «Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEch-
nique for Handling the Class Imbalanced Problem». In: vol. 5476. Apr. 2009,
pp. 475–482. isbn: 978-3-642-01306-5. doi: 10.1007/978-3-642-01307-2_43
(cit. on p. 10).

[14] M. Aldraimli, Daniele Soria, Jim Parkinson, Elizabeth Thomas, Jimmy Bell,
Miriam Dwek, and Thierry Chaussalet. «Machine learning prediction of
susceptibility to visceral fat associated diseases». In: Health and Technology
10 (July 2020), pp. 925–944. doi: 10.1007/s12553-020-00446-1 (cit. on
p. 11).

[15] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. «Borderline-SMOTE: A
New Over-Sampling Method in Imbalanced Data Sets Learning». In: vol. 3644.
Sept. 2005, pp. 878–887. isbn: 978-3-540-28226-6. doi: 10.1007/11538059_91
(cit. on p. 11).

[16] X. Zheng. SMOTE Variants for Imbalanced Binary Classification: Heart
Disease Prediction. University of California, Los Angeles, 2020. url: https:
//books.google.it/books?id=0SQTzgEACAAJ (cit. on pp. 12, 15).

80

https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1145/1007730.1007734
https://api.semanticscholar.org/CorpusID:53046396
https://api.semanticscholar.org/CorpusID:53046396
https://doi.org/10.1613/jair.953
https://doi.org/10.1613%2Fjair.953
https://doi.org/10.1007/978-3-540-28645-5_30
https://doi.org/10.1007/978-3-642-01307-2_43
https://doi.org/10.1007/s12553-020-00446-1
https://doi.org/10.1007/11538059_91
https://books.google.it/books?id=0SQTzgEACAAJ
https://books.google.it/books?id=0SQTzgEACAAJ

BIBLIOGRAPHY

[17] Hien Nguyen, Eric Cooper, and Katsuari Kamei. «Borderline over-sampling
for imbalanced data classification». In: International Journal of Knowledge
Engineering and Soft Data Paradigms 3 (Apr. 2011), pp. 4–21. doi: 10.1504/
IJKESDP.2011.039875 (cit. on p. 13).

[18] Georgios Douzas, Fernando Bacao, and Felix Last. «Improving imbalanced
learning through a heuristic oversampling method based on k-means and
SMOTE». In: Information Sciences 465 (Oct. 2018), pp. 1–20. doi: 10.1016/
j.ins.2018.06.056. url: https://doi.org/10.1016%2Fj.ins.2018.06.
056 (cit. on pp. 15, 16).

[19] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. «ADASYN: Adap-
tive synthetic sampling approach for imbalanced learning». In: 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence). 2008, pp. 1322–1328. doi: 10.1109/IJCNN.
2008.4633969 (cit. on p. 17).

[20] Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano.
«RUSBoost: A Hybrid Approach to Alleviating Class Imbalance». In: IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans 40.1 (2010), pp. 185–197. doi: 10.1109/TSMCA.2009.2029559 (cit.
on pp. 19, 20).

[21] J. Zhang and I. Mani. «KNN Approach to Unbalanced Data Distributions:
A Case Study Involving Information Extraction». In: Proceedings of the
ICML’2003 Workshop on Learning from Imbalanced Datasets. 2003 (cit. on
p. 20).

[22] Gustavo Batista, Ronaldo Prati, and Maria-Carolina Monard. «A Study of
the Behavior of Several Methods for Balancing machine Learning Training
Data». In: SIGKDD Explorations 6 (June 2004), pp. 20–29. doi: 10.1145/
1007730.1007735 (cit. on p. 22).

[23] «Two Modifications of CNN». In: IEEE Transactions on Systems, Man,
and Cybernetics SMC-6.11 (1976), pp. 769–772. doi: 10.1109/TSMC.1976.
4309452 (cit. on p. 22).

[24] Kaggle Resampling strategies for imbalanced datasets. https://www.kaggle.com/code/rafjaa/resampling-
strategies-for-imbalanced-datasets. Accessed: 2023-03-27 (cit. on p. 22).

[25] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Networks. 2014. arXiv: 1406.2661 [stat.ML] (cit. on pp. 23, 27).

[26] Jonathan Hui GAN — Wasserstein GAN WGAN-GP. https://jonathan-
hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490. Accessed: 2023-
04-10 (cit. on p. 24).

81

https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.1504/IJKESDP.2011.039875
https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.1016%2Fj.ins.2018.06.056
https://doi.org/10.1016%2Fj.ins.2018.06.056
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1109/TSMCA.2009.2029559
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1109/TSMC.1976.4309452
https://arxiv.org/abs/1406.2661

BIBLIOGRAPHY

[27] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, and Sushil. In: 11.10
(June 2018), pp. 1071–1083. doi: 10.14778/3231751.3231757. url: https:
//doi.org/10.14778%2F3231751.3231757 (cit. on p. 25).

[28] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks. 2016.
arXiv: 1511.06434 [cs.LG] (cit. on p. 25).

[29] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stew-
art, and Jimeng Sun. Generating Multi-label Discrete Patient Records using
Generative Adversarial Networks. 2018. arXiv: 1703.06490 [cs.LG] (cit. on
p. 25).

[30] Mrinal Kanti Baowaly, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen.
«Synthesizing electronic health records using improved generative adversarial
networks». In: Journal of the American Medical Informatics Association 26
(2018), pp. 228–241. url: https://api.semanticscholar.org/CorpusID:
54479855 (cit. on p. 25).

[31] Lei Xu and Kalyan Veeramachaneni. Synthesizing Tabular Data using Gen-
erative Adversarial Networks. 2018. arXiv: 1811.11264 [cs.LG] (cit. on
p. 25).

[32] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramacha-
neni. Modeling Tabular data using Conditional GAN. 2019. arXiv: 1907.00503
[cs.LG] (cit. on p. 25).

[33] Ugo Fiore, Alfredo De Santis, Francesca Perla, Paolo Zanetti, and Francesco
Palmieri. «Using generative adversarial networks for improving classification
effectiveness in credit card fraud detection». In: Information Sciences 479
(2019), pp. 448–455. issn: 0020-0255. doi: https://doi.org/10.1016/
j.ins.2017.12.030. url: https://www.sciencedirect.com/science/
article/pii/S0020025517311519 (cit. on p. 25).

[34] Yu-Jun Zheng, Xiao-Han Zhou, Wei-Guo Sheng, Yu Xue, and Sheng-Yong
Chen. «Generative adversarial network based telecom fraud detection at the
receiving bank». In: Neural Networks 102 (2018), pp. 78–86. issn: 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2018.02.015. url: https:
//www.sciencedirect.com/science/article/pii/S0893608018300698
(cit. on p. 26).

[35] Georgios Douzas and Fernando Bacao. «Effective data generation for im-
balanced learning using conditional generative adversarial networks». In:
Expert Systems with Applications 91 (2018), pp. 464–471. issn: 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2017.09.030. url: https:
//www.sciencedirect.com/science/article/pii/S0957417417306346
(cit. on p. 26).

82

https://doi.org/10.14778/3231751.3231757
https://doi.org/10.14778%2F3231751.3231757
https://doi.org/10.14778%2F3231751.3231757
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1703.06490
https://api.semanticscholar.org/CorpusID:54479855
https://api.semanticscholar.org/CorpusID:54479855
https://arxiv.org/abs/1811.11264
https://arxiv.org/abs/1907.00503
https://arxiv.org/abs/1907.00503
https://doi.org/https://doi.org/10.1016/j.ins.2017.12.030
https://doi.org/https://doi.org/10.1016/j.ins.2017.12.030
https://www.sciencedirect.com/science/article/pii/S0020025517311519
https://www.sciencedirect.com/science/article/pii/S0020025517311519
https://doi.org/https://doi.org/10.1016/j.neunet.2018.02.015
https://www.sciencedirect.com/science/article/pii/S0893608018300698
https://www.sciencedirect.com/science/article/pii/S0893608018300698
https://doi.org/https://doi.org/10.1016/j.eswa.2017.09.030
https://www.sciencedirect.com/science/article/pii/S0957417417306346
https://www.sciencedirect.com/science/article/pii/S0957417417306346

BIBLIOGRAPHY

[36] Insaf Ashrapov. Tabular GANs for uneven distribution. 2020. arXiv: 2010.
00638 [cs.LG] (cit. on p. 26).

[37] Justin Engelmann and Stefan Lessmann. Conditional Wasserstein GAN-
based Oversampling of Tabular Data for Imbalanced Learning. 2020. arXiv:
2008.09202 [cs.LG] (cit. on pp. 26, 32).

[38] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
2017. arXiv: 1701.07875 [stat.ML] (cit. on pp. 27, 28).

[39] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. Improved Training of Wasserstein GANs. 2017. arXiv: 1704.
00028 [cs.LG] (cit. on p. 28).

[40] Lilian Weng. From GAN to WGAN. 2019. arXiv: 1904.08994 [cs.LG] (cit.
on p. 29).

[41] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
2014. arXiv: 1411.1784 [cs.LG] (cit. on p. 29).

[42] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Im-
age Synthesis With Auxiliary Classifier GANs. 2017. arXiv: 1610.09585
[stat.ML] (cit. on p. 29).

[43] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
Gumbel-Softmax. 2017. arXiv: 1611.01144 [stat.ML] (cit. on p. 30).

[44] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep Cross Network
for Ad Click Predictions. 2017. arXiv: 1708.05123 [cs.LG] (cit. on p. 31).

[45] Vadim Borisov, Tobias Leemann, Kathrin Sessler, Johannes Haug, Martin
Pawelczyk, and Gjergji Kasneci. «Deep Neural Networks and Tabular Data:
A Survey». In: IEEE Transactions on Neural Networks and Learning Systems
(2022), pp. 1–21. doi: 10.1109/tnnls.2022.3229161. url: https://doi.
org/10.1109%2Ftnnls.2022.3229161 (cit. on pp. 34, 36).

[46] Sheikh Amir Fayaz, Majid Zaman, Sameer Kaul, and Muheet Ahmed Butt. «Is
Deep Learning on Tabular Data Enough? An Assessment». In: International
Journal of Advanced Computer Science and Applications 13.4 (2022). doi:
10.14569/IJACSA.2022.0130454. url: http://dx.doi.org/10.14569/
IJACSA.2022.0130454 (cit. on p. 34).

[47] Casper Solheim Bojer and Jens Peder Meldgaard. «Kaggle forecasting com-
petitions: An overlooked learning opportunity». In: International Journal of
Forecasting 37.2 (Apr. 2021), pp. 587–603. doi: 10.1016/j.ijforecast.2020.
07.007. url: https://doi.org/10.1016%2Fj.ijforecast.2020.07.007
(cit. on pp. 34, 36).

83

https://arxiv.org/abs/2010.00638
https://arxiv.org/abs/2010.00638
https://arxiv.org/abs/2008.09202
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1904.08994
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1610.09585
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1708.05123
https://doi.org/10.1109/tnnls.2022.3229161
https://doi.org/10.1109%2Ftnnls.2022.3229161
https://doi.org/10.1109%2Ftnnls.2022.3229161
https://doi.org/10.14569/IJACSA.2022.0130454
http://dx.doi.org/10.14569/IJACSA.2022.0130454
http://dx.doi.org/10.14569/IJACSA.2022.0130454
https://doi.org/10.1016/j.ijforecast.2020.07.007
https://doi.org/10.1016/j.ijforecast.2020.07.007
https://doi.org/10.1016%2Fj.ijforecast.2020.07.007

BIBLIOGRAPHY

[48] Yoav Freund and Robert E. Schapire. «A Short Introduction to Boosting».
In: 1999. url: https://api.semanticscholar.org/CorpusID:9621074
(cit. on p. 35).

[49] Lien Rodríguez-López, David Bustos Usta, Lisandra Bravo Alvarez, Iongel
Duran-Llacer, Andrea Lami, Rebeca Martínez-Retureta, and Roberto Urrutia.
«Machine Learning Algorithms for the Estimation of Water Quality Param-
eters in Lake Llanquihue in Southern Chile». In: Water 15.11 (2023). issn:
2073-4441. doi: 10.3390/w15111994. url: https://www.mdpi.com/2073-
4441/15/11/1994 (cit. on p. 35).

[50] Tianqi Chen and Carlos Guestrin. «XGBoost». In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, Aug. 2016. doi: 10.1145/2939672.2939785. url: https:
//doi.org/10.1145%2F2939672.2939785 (cit. on p. 35).

[51] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. CRC Press, 2017. isbn: 9781138469525. url: https:
//books.google.it/books?id=CmK4tAEACAAJ (cit. on p. 35).

[52] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. «Additive logistic
regression: a statistical view of boosting (With discussion and a rejoinder by
the authors)». In: The Annals of Statistics 28.2 (2000), pp. 337–407. doi: 10.
1214/aos/1016218223. url: https://doi.org/10.1214/aos/1016218223
(cit. on p. 38).

[53] Jerome Friedman. «Stochastic Gradient Boosting». In: Computational Statis-
tics Data Analysis 38 (Feb. 2002), pp. 367–378. doi: 10 .1016 / S0167-
9473(01)00065-2 (cit. on p. 38).

[54] L Breiman. «Random Forests». In: Machine Learning 45 (Oct. 2001), pp. 5–32.
doi: 10.1023/A:1010950718922 (cit. on p. 39).

[55] Stephen Tyree, Kilian Weinberger, Kunal Agrawal, and Jennifer Paykin.
«Parallel Boosted Regression Trees for Web Search Ranking». In: Mar. 2011.
doi: 10.1145/1963405.1963461 (cit. on p. 39).

[56] C. Ferri, J. Hernández-Orallo, and R. Modroiu. «An experimental comparison
of performance measures for classification». In: Pattern Recognition Letters
30.1 (2009), pp. 27–38. issn: 0167-8655. doi: https://doi.org/10.1016/j.
patrec.2008.08.010. url: https://www.sciencedirect.com/science/
article/pii/S0167865508002687 (cit. on p. 41).

[57] LEAPS by Analyttica. Predict Credit Card Customer Attrition - Application
of Logistic Regression. https://enterprise.1leaps.com/cases/9574
[Accessed: (20-02-2023)]. 2022 (cit. on p. 44).

84

https://api.semanticscholar.org/CorpusID:9621074
https://doi.org/10.3390/w15111994
https://www.mdpi.com/2073-4441/15/11/1994
https://www.mdpi.com/2073-4441/15/11/1994
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://books.google.it/books?id=CmK4tAEACAAJ
https://books.google.it/books?id=CmK4tAEACAAJ
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1023/A:1010950718922
https://doi.org/10.1145/1963405.1963461
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/https://doi.org/10.1016/j.patrec.2008.08.010
https://www.sciencedirect.com/science/article/pii/S0167865508002687
https://www.sciencedirect.com/science/article/pii/S0167865508002687
https://enterprise.1leaps.com/cases/9574

BIBLIOGRAPHY

[58] IBM Cloud Pak for Data Overview of Cloud Pak for Data as a Service.
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-
started/overview-cpdaas.html?context=cpdaas&locale=en. Accessed:
2023-05-15 (cit. on p. 51).

[59] Erin LeDell and Sebastien Poirier. «H2O AutoML: Scalable Automatic Ma-
chine Learning». In: 7th ICML Workshop on Automated Machine Learning
(AutoML) (July 2020). url: https : / / www . automl . org / wp - content /
uploads/2020/07/AutoML_2020_paper_61.pdf (cit. on p. 59).

[60] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. 2017. arXiv: 1705.07874 [cs.AI] (cit. on p. 68).

85

https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/overview-cpdaas.html?context=cpdaas&locale=en
https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/overview-cpdaas.html?context=cpdaas&locale=en
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://arxiv.org/abs/1705.07874

	List of Tables
	List of Figures
	Introduction
	The Imbalance Dataset Problem
	Imbalance Dataset

	Imbalance Management
	Algorithm Level Methods
	Weighted Learning
	Threshold Method

	Data Level Methods
	Over-sampling
	Under-sampling
	Over Sampling + Under Sampling

	Generative Methods:
	Generative Adversarial Network: Background
	GAN for Tabular Data generation:
	GAN for Tabular Data Imbalance Oversampling:
	c-WGANGP:

	Boosting for Tabular Data
	Boosting: In a Nuthsell
	XGBoost
	Regularized Learning Objective
	Gradient Tree Boosting
	Shrinkage and Columns Subsampling
	Split Algorithms
	Sparsity-aware Split Finding
	Parallel Learning

	Performance Evaluation
	Threshold Metrics
	Ranking Metrics
	Probability Metrics

	Dataset EDA
	Dataset Description
	Funtional Exploratory Data Analysis:
	Correlation Analysis:

	Pipeline Design:
	Data Ingestion and Pre-processing: IBM DataStage and Feature Selection
	DataStage Environment:
	Data Flow Design:
	Feature Selection:

	Data Oversampling
	Model Deployment: H2O AutoML
	Model's Evaluation

	Results
	Model's Admissibility: Fairness
	Model's Explainability
	Model's Explainability: Global
	Model's Explainability: Local

	Conclusions
	Data Distributions
	Imbalance Management Comparisons:
	Bibliography

