

1

POLITECNICO DI TORINO
Department of Electronics and Telecommunication (DET)

Master Degree Program in Engineering

Communication and Computer Networks
Master Degree Thesis

Dynamic frontend design for ticketing

and reservation application

Supervisor
Prof. MALNATI GIOVANNI (DAUIN)

Candidate
Niloufar Zahiri

December 2020

2

Dedication
This study is wholeheartedly dedicated to my beloved father and mother…and

my love Roham for all his kindness supports.

3

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof.

Giovanni Malnati for allowing me to do my thesis under his

supervision and providing invaluable guidance throughout this thesis.

A special thanks to my friend Ali, my great advisor, for all his pieces

of advice and inimitable supports. This never could be done without his

help and patience. I would like also to thank Ascanio Orlandini, my

technical manager, for all his supports that made this path easy for me

to achieve this goal.

4

LIST OF ACRONYMS

SDLC Software Development Life Cycle

JS JavaScript

AWS Amazon Web Services

API Application Programming Interface

App Application

OS Operating system

IDE Integrated Development Environment

UI user interface

Fb Facebook

5

Contents
LIST OF ACRONYMS ... 4
List of figures ... 7

1. Chapter 1 .. 8
1.1. Introduction ... 8
1.2. Targets ... 10
1.3. Ideas ... 10
1.4. Marketplace ... 11
1.5. Frontend Marketplace .. 12

2. Chapter 2 .. 13
2.1. Introduction: Software life cycle ... 13
2.2. Propose of SDLC ... 13

2.3. SDLC Cycle ... 14
2.4. Requirement gathering and analysis .. 15
2.5. Design .. 17
2.6. Implementation or coding .. 18
2.7. Testing ... 18
2.8. Deployment ... 19

2.9. Maintenance ... 19
3. Chapter 3 .. 20

3.1. Tools .. 20
3.1.1. JavaScript ... 20
3.1.2. XCode .. 22

3.1.2.1. Build and Run the App .. 25
3.1.3. React Native .. 26
3.1.4. AWS .. 27
3.1.5. Bash script ... 28

3.1.5.1. Switch app ... 28
3.1.5.2. version app ... 28
3.1.5.3. Factory loader .. 29
3.1.5.4. Android APK ... 29

3.1.5.5. Run Android .. 30
3.1.6. PHP .. 30

4. Chapter 4 .. 31
4.1. Implementation .. 31

6

4.2. Macro Components .. 31
4.2.1. Platform/server .. 31

4.2.2. Frontend merchants / Marketplace .. 32
4.2.2.1. Frontend website for Marketplace ... 32
4.2.2.2. End-user frontend .. 33

4.2.2.3. Help Desk support tools: ... 33
4.3. App instruction (frontend) ... 34

4.3.1. Home page ... 34

4.3.2. Around me ... 37
4.3.3. Operations .. 40
4.3.4. Search page .. 49

4.3.5. Login .. 58
4.3.5.1. Google Login ... 59
4.3.5.2. Facebook Login ... 62

4.4. Backend APIs .. 65
4.4.1. Branch .. 65
4.4.2. PHP .. 65

4.4.3. AWS .. 65
4.4.4. APIs and RestCalls .. 66

5. Chapter 5 .. 70
5.1. Conclusion ... 70
5.2. Limitation and Future works to improve application .. 71

5.2.1 Adding live chat assistance: .. 71
5.2.2 Payment methods: .. 71
5.2.3 Biometric Authentication: ... 71
5.2.4 Cloud servers: .. 72
5.2.5 Makes app simpler: .. 72

Bibliography .. 73

7

List of figures
Figure 1: SLDC cycle .. 14
Figure 2: Mypass offer .. 16
Figure 3: Marketplace launch .. 17
Figure 4: XCode setting ... 23
Figure 5: Navigation bar .. 24
Figure 6: Device selector ... 25
Figure 7: Switch App ... 28
Figure 8: App version .. 29
Figure 9: Update information .. 29
Figure 10: Build app .. 30
Figure 11: Run Android ... 30
Figure 12: Work Fellow .. 35
Figure 13: Screen navigation ... 36
Figure 14: Home page ... 37
Figure 15: Geolocation .. 38
Figure 16: Search page .. 39
Figure 17 Not found .. 40
Figure 18: Operations .. 41
Figure 19: QRCode scanner1 .. 42
Figure 20: QRCode scanner2 .. 42
Figure 21: Ready scanner .. 43
Figure 22: Manual insertion .. 44
Figure 23: Successful ... 45
Figure 24: Not valid ... 46
Figure 25: Details .. 47
Figure 26: Confirmation .. 48
Figure 27: Search page 1 ... 49
Figure 28: Search page 2 ... 50
Figure 29: Search page 3 ... 51
Figure 30: Search page 4 ... 52
Figure 31: Reservation ... 53
Figure 32: Availability ... 54
Figure 33: Reserve details ... 55
Figure 34: Payment .. 56
Figure 35: Confirm payment ... 57
Figure 36: Login screen ... 58
Figure 37: Login status .. 63
Figure 38: Response .. 63

8

1. Chapter 1

1.1. Introduction

The project is in the field of App frontend design for ticketing and

reservation application. The application will be developed using React

Native platform and build for iOS and Android OS and it features,

among other highlights, advanced payment solutions with credit card

tokenization and Apple Pay.

Specifically, the App will develop a dynamic graphics frontend for

home page and search pages of the application, involving geolocation.

Below the specific activities planned.

1. Interface with REST web services to acquire data;

2. Dynamic home page design with real-time resizing of each element

according to user screen size;

2.1 Places selection area (ordered by distance from user position among

places available obtained from server);

2.2 Category selection area (providing all categories available

dynamically obtained from server);

3. Search result pages design with real-time resizing of each element

based on user screen size;

9

3.1 Search by position (around me) and by place selection, with the list

of available; tickets/location/product store grouped by category;

3.2 Search by category with a list of available tickets/location/product

store grouped by places in order of distance from the user.

3.3 Each store icon displays information of places availability, distance

from the user, description, and have specific order based on these

values.

This thesis also includes two mockup graphics produced by the UI team

of the company as an indicator of expected final work.

We believe this is not just implementation work but there is also some

degree higher-level coding techniques to make the user experience

fluent and engaging for the purchase experience, such as a smart way

to load graphical icons progressively following user's browsing

experience without requiring storing all graphics in the app which will

make it heavy while at the same time not stressing the network

connection that will make the application overall slow.

Aspects of dynamically sized graphics elements based on screen size,

handling real-time data from a centralized server and peculiarities of

the different operating systems (iOS and Android) combined with the

hybrid framework of React Native will be a reasonable challenge.

10

1.2. Targets

• Rapid implementation to respond to the imminent question

raised by the emergencyCOVID-19.

• Oriented to solve simple problems simplistically.

• Create new assets which integrate the long-term MyPass

offer.

• Reuse the tools already built as much as possible.

1.3. Ideas

MyPass believes that it can meet the demands of managing queues and

conveniently accessing limited resources for both end-users and

merchants, providing a modern B2B booking app, easy to use for

merchants and easy to use for end-users.

There is no question that many other businesses have understood this

desire, from sites that already deal with reservations and interactive

files (like youfirst) to other concepts that are adapting themselves to

exist in these deep and stormy seas.

MyPass is motivated to undertake this activity because:

• Some of the necessary components and skills have already been

developed and can be re-used.

• The new components to be developed form part of the MyPass

Roadmap and the Overview and strengthen other products and

services already provided on the Ski and Tourism Platforms

(Venice).

11

• it is an opportunity to activate a new, highly scalable B2B

channel that will, again, in this case, complement the existing

B2C activities on the Ski and Tourism Platforms (Venice).

• is an incentive to develop and produce the Marketplace System

intended for merchants.

• provides us for the scalability and reproduction of the Venice

Project in other tourist cities such as Florence.

1.4. Marketplace

The term "MyPass Marketplace" refers to a B2B platform that allows

merchants to register independently and become part of the MyPass

offer on different future operating platforms, currently Ski and Venice,

and probably the booking portal. For example, a ski resort restaurant

could register to receive payments with the MyPass Ski Card, while a

tour operator could provide concert tickets in Venice, another

bathhouse operator could book/sell "umbrellas" regularly or a caterer

to handle reservations and waiting lists.

Registration should be easy and can be done separately and must

require a collection of text and graphic details to be compiled

individually.

Subject to content verification by the MyPass operator, live publication

by the merchant must be almost automatic for several predefined

operating modes.

12

1.5. Frontend Marketplace

The Marketplace Frontend must be fast, intuitive and simple.

The most important point is the geolocation system (and the respective

map), the possibility of identifying activities or services through well-

defined filters both by product sector (e.g. transport, culture), and by

place (city, region, state), and budget (e.g. price ranges), both of

services offered (e.g. suitable for families, suitable for people with

mobility difficulties), and for other needs (e.g. immediate confirmation,

cancellation policy).

Filters make it possible to respond promptly to the requests of the final

consumer.

The Marketplace home will focus on the most requested or popular

cities, businesses or services. An in-depth study will be carried out by

the Marketing and Sales department to guide the consumer to purchase.

It should be clear what the service includes and what does not, such as

general conditions and important information.

13

2. Chapter 2

2.1. Introduction: Software life cycle

SDLC is a cycle which characterizes the different stages engaged with

the advancement of programming for conveying a top-notch item.

SDLC stages spread the total life pattern of a product for example from

origin to retirement of the item.

Clinging to the SDLC cycle prompts the improvement of the product

in an orderly and taught way.1

2.2. Propose of SDLC

The inspiration behind SDLC is to produce an outstanding item that

meets the customer's requirements.

SDLC has described its phases as the selection, design, coding, testing,

and maintenance of specifications. The steps to consistently

manufacture the commodity should be adhered to.

Examples involve the development of software and the division of a

team to work on a specification of the product and the work they are

allowed to do. One developer decides to design first, while the other

14

decides to code the documentation component first and the other

component.

This can lead to project failure, which allows the team members to have

a reasonable level of knowledge and insight2.

2.3. SDLC Cycle

SDLC cycle is a software development process as it is shown below.

Figure 1: SLDC cycle3

15

2.4. Requirement gathering and analysis

During this phase, business needs are collected. This step is the project

managers 'and stakeholders' main priority. Meetings are being

conducted with administrators, stakeholders and users to decide the

specifications, such as; who will use the system? How are they going

to use the system? What data are to be inserted into the system?

What input should the process output? There are many general

questions which are addressed during the meeting process of

requirements. These criteria will be analyzed for their relevance after

the specifications have been obtained and the possibility of integrating

them into the production framework is also explored.

Finally, a design specification document is created to guide the next

step of the plan. After the review of the criteria, the development team

follows the software test life cycle and begins the test planning.4

16

Figure 2: Mypass offer

17

Figure 3: Marketplace launch

2.5. Design

The application design, network design, databases, user interfaces or

system interfaces are included.

Transform the SRS text into a logical framework containing the

extensive and thorough collection of programming language

specifications.

Establish an emergency, preparation, maintenance and organizational

plan.

18

Check the concept suggested. Ensure that the final design must satisfy

the SRS document specifications.

Finally, write a specification report for use in the following processes.5

2.6. Implementation or coding

The project team generates the final product during implementation.

The development of the product can be an exciting process for

customers, as their concept is something concrete for the project.

Software creation and coding begins with project developers.

If a customer, for instance, needs a new software application, the

project developers need to design the application to satisfy the product

requirements of the customer. The team must meet unique coding

criteria when designing the code. Customer needs can require complex

computer programs or enhancements and developers must execute the

applications to be able to operate correctly.6

2.7. Testing

You are focused on study and exploration at the test phase of the SDLC

software development cycle. During the testing process, developers

will decide if their code and programming are customer-specific. There

was a mistake. The project team creates a test plan before construction

can proceed.7

19

2.8. Deployment

The aim at this point is to deploy the program in the production

environment to enable users to start using the product. However, many

companies, such as a research or a stage setting, prefer to transfer the

product across various deployed environments.

This makes it possible for any stakeholder to play with the product

safely before it is published. Furthermore, before the product is

released, it allows any final errors to be identified.8

2.9. Maintenance

The start of the SDLC maintenance process marks as soon as the

software product is released. This involves post-production procedures

such as system changes and modifications. In this section, the team may

also begin preparing the future software-added functionalities and

features.

Furthermore, if a problem occurs that needs to be resolved, developers

need to be told to make corrections according to the seriousness of the

problem. A hot-fix might be required for the product, meaning to repair

high-priority features which should be performed as quickly as

possible.9

20

3. Chapter 3

3.1. Tools

3.1.1. JavaScript

In our app, we use Js in the react-native framework for the frontend

part. Initially, JavaScript was built to "live web pages."
The programs are called scripts in this language. You can enter it right

in the HTML of a web page and run as the page loads automatically.

As plain text, the scripts are supplied and executed. No special planning

or compilation is required to run.

JavaScript is very different in this regard from another Java language.

JavaScript nowadays runs on any computer that has a special program

named the JavaScript engine, not just in a browser, but also on its

server.

The "simple" programming language is Modern Java-Script. It does not

have low-level memory or CPU access since it was originally built for

browsers that do not need it.

The capabilities of JavaScript depend heavily on the context in which

it operates. Node.js supports functionality for reading / writing arbitrary

files, network queries etc.

for example:

JavaScript in the browser will do all about the handling, the user and

the webserver of the website.

JavaScript can:

• Add new HTML to the tab, change the text, change styles.

21

• Click on a mouse, respond to user actions, shift pointers and

press keys.

• Requests to remote servers via the network, download and

upload files (so-called technology AJAX and COMET)

• Get cookies, ask visitors questions, show messages.

• Remember customer-side data ("local storage").

To protect the user, JavaScript's browser capabilities are limited. The

goal is to avoid the access of private information to an unethical web

site or to harm the user's information.

Examples of Js restrictions:

• On a web page, Js cannot read/write arbitrary files, copy them or

run programs on a hard disk. It doesn't have direct OS access.

Modern browsers allow files to be used, but there is restricted

access and only accessible if the user performs certain actions,

such as "dropping" a file in the browser window and/or selecting

it via a < input > tag.

• Various tabs/windows do not normally know each other. Often,

for instance, if one window uses JavaScript to open the other

window. But even if they are from different pages (from a

different region, protocol, or port), JavaScript on one page cannot

access the other.

22

• JavaScript will connect to the server from which the current page

was originated through the network. However, it is limited in its

ability to collect data from others. If possible, explicit (expressed

in HTTP headers) consent from the remote side is required.

Again, this is a restriction of protection10.

3.1.2. XCode

our app supports two OS, android and IOS, for the IOS part we will use

XCode in order to build the IOS projects, do the TF and debugging for

IOS part, the more details will be explained in the next following part.

XCode is the Integrated Development Environment (IDE) of Apple.

XCode allows you to build apps, including iPad, iPhone, Apple Watch,

Apple TV and Mac, for Apple product. XCode offers tools to handle

the whole process of your production – from formation to testing,

optimization and submission to the App Store.

A project manages the files and resources required to build your app.

Start with one of the templates to create a project, and change it as you

want. For each platform (iOS, watchOS, tvOS and macOS) as well as

for popular application, frameworks and library forms, templates are

available. Both templates have default settings pre-configured and are

ready to create and execute. To display an interactive preview, pick

Swift as the language of programming, and SwiftUI as the user

interface when setting the interface and editing code.

The main window appears after you build a project. This window is

your primary interface to access, edit and control all your project

23

components. It is scalable and configurable and adapts to the needs of

the task and allows you to customize it according to your style of

work.11

Figure 4: XCode setting

To quickly access various parts of your project, use the navigator

field). To view the appropriate pieces in the content section below the

navigator bar, press a button in the navigator bar.

24

Figure 5: navigation bar

25

3.1.2.1. Build and Run the App

It is possible to run the app on the simulator or the real device.

The debugging part will be open automatically, as far as the app runs

on XCode.

In the following steps, I will explain how to run the app step by step:

• Select a schema in the toolbar from the schema popup menu

• Choose a simulator from the menu of devices

Figure 6: Device selector

26

• The next step is to click on the run button in order to build, run

and debug the app.

in case of a successful build, the app launches and the debugging

part opens in the debug area.

• if any error or warning happens, we can check them in the activity

area, it shows us the line of error.

3.1.3. React Native

react-native is a framework which combines the best part of native

programming language with react, we will use the Js and its library

inside the react-native framework for building the user interfaces.

The export of building an app with react native is one app with two

different OS, android and IOS.

React Native helps you to create fully native apps which do not affect

the experience of your users. It offers a core set of native platform

components, such as view, text and image which map the platform's

native user interface components directly.

All the components of react-native wrap the native code and

interconnect with APIs through React’s declarative UI pattern and JS.

Fast Refresh: while we change some part of code, as soon as saving

the change, we can see our changes, no need more time to builds only

can save, see and repeat.12

27

3.1.4. AWS

Amazon Web Services (AWS) is a branch of Amazon that offers on-

demand cloud computing systems and APIs on a robust pay-as-you-go

basis to individuals, businesses and governments. These cloud

computing web services provide a selection of simple abstract technical

infrastructures and computing frameworks and tools distributed.

Amazon Elastic Computing Cloud (EC2), one of them, enables users

to access a virtual machine cluster that is accessible on the internet all

the time. The Virtual Machine version of AWS emulates most of the

characteristics of a real computer, including processing central

hardware (CPUs) and graphics processing units (GPUs), local / RAM,

hard-disk / SSD storage, operating system range, networking, and

preloaded applications such as web servers, databases, and client

relationship management (CRM).

In our application, our backend operation is done in two separated part

based on the cloud on AWS and also the other part was programmed

with PHP.

The cloud part on AWS was coding with node.js and also python and

JS, we used amazon lambda for monitoring and controlling our app

process which programmed with python.13

28

3.1.5. Bash script

In Mypass reservation app during the process, for building the app,

increasing the version of the app, switch from test to production, build

the APK for android we use bash scripts, which I indicate these parts:

3.1.5.1. Switch app

Our app has two parts, test version and also production one.

The test part is for the internal user to test the application performance

and if there are some errors also for debugging, the production one is

the finalized version which the company tester approves that all parts

of the application work well.

Figure 7: switch App

3.1.5.2. version app

each time we debugged, fixed some errors or we add some new

features to our app we will increase the app version, which is not

manually and we do this in bash script.

29

Figure 8: App version

3.1.5.3. Factory loader

when the app is switched to test or production mode, the data which

are retrieved from the server is different in test and production, so

each time the app is switched we should use factory loader to update

the correct information according to the test or production.

Figure 9: update information

3.1.5.4. Android APK

since the application is completed, we should build iOS and android, I

did a script which automated build the apk for android, to run that

script I use the below code.

30

Figure 10: build app

3.1.5.5. Run Android

In the first step, if we want to run the app on the Android simulator or

android device to understand how the app works and also to

understand the errors, we will use the mentioned code to run scripts

on android.

Figure 11: run Android

3.1.6. PHP

All the services which are done in the backend

31

4. Chapter 4

4.1. Implementation

MyPass provides a series of standard booking models, which can be

extended over time according to needs and opportunities. The first

implemented would be:

● book a series of services/resources available daily or at certain times

(umbrellas, rooms, tennis courts, tables, bicycles, ...)

● manned waiting lists (catering model)

● unattended waiting lists (food counter model)

To discourage empty bookings and for the convenience of the operator,

a booking "fee" of the value set by the user and predefined cancellation

policies may be required. These amounts can be equal to the price of

the purchased product (e.g. cost of the day for umbrella), a deposit (e.g.

10 € discounted from the dinner price) or even just a deposit (e.g. 5 €

returned if the user arrives within a certain time).

4.2. Macro Components

The main components of the booking platform are listed below:

4.2.1. Platform/server

• Authentication, registration, login.

• Payments, credit card tokenization, Apple Pay.

32

• Ticket sale with credit card booking mechanism and subsequent

automatic accounting, access obliteration.

• Seat/resource booking logics, waiting in the queue.

• Support services for the registration of merchants (marketplace).

• Support services for merchant portal.

• Disposition of payments with automatic issuance of bank

transfers.

• High reliability/redundancy server architecture.

4.2.2. Frontend merchants / Marketplace
4.2.2.1. Frontend website for Marketplace

o Merchant registration.

o Operator operating parameters configuration:

§ general configuration.

§ loading information and graphics content.

§ entering booking/availability data.

o Status of payments due to MyPass.

o Reporting/account statement.

o Sending tickets and assistance.

o Application for validation / access.

o Application for checking / changing availability.

o API / Web Service to enable integration.

33

4.2.2.2. End-user frontend

● iOS / Android application infrastructure with login/registration

functions, dynamic loading of contents/merchants, ticket wallet, credit

card tokenization, Apple Pay, social login, ticket sales

 ● Application of new graphics to the application

 ● Application specialization with operational booking functions,

identification of bookable points nearby

 ● Responsive website for information only or (possibly,

subsequently) also device.

4.2.2.3. Help Desk support tools:

● User and merchant registration.

● Back office support functions for merchants.

● Back office support functions for end-users.

● Support functions for MyPass operators (back office).

 ● B2B CRM functions for quick management of contacts, contracts,

deadlines.

34

4.3. App instruction (frontend)

4.3.1. Home page

The home page is entire dynamic, according to the user choice like the

destination or events all the parameters such as images, text and all the

explanations come from the server, each time a service is called to

retrieve all the information, from the frontend point of view all parts

are made as a component so they are completely responsive.

the home page composed of:

• Destinations which includes about 20 cities in Italy.

• Events and activities which includes restaurants, concerts,

beaches, etc.

• Operations which are used for ticket obliteration, control and

verify tickets. only the privileged users can have access to this

part.

35

/

Figure 12: work Fellow

The home page is designed according to the user requirements, the user

can search based on destination or events or all the places around him.

All the contents of the home page are retrieved through a call to the

server so the pieces of information are dynamic and whenever the

company decides to add or remove some events or cities or change the

contents it is very easy to do just by adding or removing the JSON

pieces of information.

36

In our application we use lots of libraries, and also, we need to use state

and props in react-native to update each time our information according

to the part that we are.

As demonstrated in the below picture, components are built and then

all the parameters passed to them as props or states so all the

Information can be navigated through different screens.

Figure 13: screen navigation

37

Figure 14: Home page

4.3.2. Around me

Mypass reserve app has a feature that the user can find all the closest

events, restaurants, concerts around him.

Thanks to the “Geolocation” API which helps the developer to get the

user coordinate and then shows all the nearest events.

The library should be imported as:

import Geolocation from '@react-native-community/geolocation';

38

Figure 15:geolocation

Then this function will be called to get user coordinates:
this.getUserLocation();

The result of searching around me can be some events or nothing:

39

Figure 16: Search page

40

Figure 17not found

4.3.3. Operations

In this part, there are three sections, that only the privilege user can

access to each service, which is for controlling the bought ticket that

the controller can check to see if the ticket is valid or not (controlla

prenotazione), the other one is for ticket obliteration in the entrance of

each event.

41

Figure 18:operations

In all these sections for reading the tickets, it is needed uses different

API, for access to the camera to read the barcode, also there is a library

which is used for reading QRCode.

react-native-QRcode-scanner

react-native-camera

the package is installed and imported in the code:

42

import {RNCamera} from "react-native-camera";

import QRCodeScanner from 'react-native-QRcode-scanner';

Figure 19:QRCode scanner1

Figure 20: QRCode scanner2

43

Figure 21: ready scanner

44

Figure 22: manual insertion

45

Figure 23: successful

46

Figure 24: not valid

47

Figure 25: details

48

Figure 26: confirmation

49

4.3.4. Search page

As soon as the user searches according to his requirements based on

destination or event, he will be redirected to the search page to see all

the results, if the user searches according to the destination, for

example, the Venezia is chosen as a destination so all the events based

on Venezia will be indicated, also all the details of each event will be

shown such as the number of availability, the working hour and all the

details and information, so the user can choose what he wants and then

continue reserving and shopping tickets by completing the registration

in-app.

Figure 27: search page 1

50

Figure 28: search page 2

51

Figure 29:search page 3

52

Figure 30: search page 4

53

The reservation flow is indicated as below:

Figure 31: reservation

54

Figure 32: availability

55

Figure 33: reserve details

56

Figure 34: payment

57

Figure 35: Confirm payment

58

4.3.5. Login

it is implemented three login ways to the app, google login, Facebook

login, and log in with email.

Figure 36: Login screen

59

 Why it is useful to have third parties login in the app?

1) You can make your authentication process simple and

friendly with Google or other third parties. The registration

process doesn't have to waste time, which will greatly

increase the registration and retention rates.

2) It's safe and secure.

3) Users rely more than an unknown website or app on Google

or Facebook on the Internet.

4) It offers a good experience for users. We as users have little

patience for any acts or function, particularly in a relatively

unknown app, we first try.

4.3.5.1. Google Login

Google login is an incredible feature which makes the app easier for

the user to create an account and sign in.

also, it has some benefits for the developer that firebase makes it super

easy for them to add support for google sign in.

react-native and firebase make the implementation of google login

simple and without any difficulty.

Here the process of Google login implementation is described as below:

First, we should install the react-native-google-sign in the package for

implementing the google auth functions in react native then we should

import all the required modules and components from this package as

shown below:

60

import {

GoogleSignin,

GoogleSigninButton,

status codes,

} from 'react-native-google-sign in';

Next, we need to create some states for handling the auth state and

user info:

const [loggedIn, setloggedIn] = useState(false);

const [userInfo, setuserInfo] = useState([]);

Then, the sign-in function should be created in order of handling the

authentication:

_signIn = async () => {

 try {

 await GoogleSignin.hasPlayServices();

 const {accessToken, idToken} = await GoogleSignin.signIn();

 setloggedIn(true);

 } catch (error) {

 if (error.code === statusCodes.SIGN_IN_CANCELLED) {

 // user cancelled the login flow

 alert('Cancel');

 } else if (error.code === statusCodes.IN_PROGRESS) {

 alert('Signin in progress');

 // operation (f.e. sign in) is in progress already

 } else if (error.code === statusCodes.PLAY_SERVICES_NOT_AVAILABLE) {

 alert('PLAY_SERVICES_NOT_AVAILABLE');

 // play services not available or outdated

 } else {

 // some other error happened

61

 }

 }

};

In this step we should initialize the setup of google login object with

taking advantage of the useEffect function:

useEffect(() => {

 GoogleSignin.configure({

 scopes: ['email'], // what API you want to access on behalf of the user, default is email and profile

 webClientId:

 '418977770929-g9ou7r9eva1u78a3anassxxxxxxx.apps.googleusercontent.com', // client ID of type

WEB for your server (needed to verify user ID and offline access)

 offlineAccess: true, // if you want to access Google API on behalf of the user FROM YOUR SERVER

 });

 }, []);

Last but not least, we need a function for controlling the logout

action, so the signOut method will be used for this purpose:

signOut = async () => {

 try {

 await GoogleSignin.revokeAccess();

 await GoogleSignin.signOut();

 setloggedIn(false);

 setuserInfo([]);

 } catch (error) {

 console. error(error);

 }

 };14

62

4.3.5.2. Facebook Login

A) Check login status of the user

First, we should check the login status of the user to see if he is

already logged-in with Facebook or no, for this purpose we should

have a call to FB.getLoginStatus , then Facebook calls back with the results:

Sample Call :

FB.getLoginStatus(function(response) {

 statusChangeCallback(response);

});

Sample JSON Response :

{

 status: 'connected',

 authResponse: {

 accessToken: '{access-token}',

 expiresIn:'{unix-timestamp}',

 reauthorize_required_in:'{seconds-until-token-expires}',

 signedRequest:'{signed-parameter}',

 userID:'{user-id}'

 }

63

}

The status describes the login status of the user, which can be:

Figure 37: login status

IF the status is connected, the following authoresponse parameters are
included in the response:

Figure 38: response

64

B) Log a user in

If the user opens the app and he is not logged in or not logged in

to Facebook, we should use the login dialog to force them to login

into both. If they are not logged into Fb, they will first be asked

to log in, then asked to log in to the app.

C) Log a user out

when the user wants to log out we should attach JavaScript SDK
function FB.logout() to a button or a link.15

FB.logout(function(response) {

 // Person is now logged out

});

65

4.4. Backend APIs

In this project, we use 2 different kinds of server, one of them is a physical server which is in
Italy and the other one is a virtual server which is implemented on AWS.
The responsibilities of our backend team are writing APIs, writing code to interact with the
database, creating libraries, working on data architecture.
Backend development enables the app to process the actions that users on the frontend take
and deliver the correct information to retrieve.
The backend team collect all our APIs in a swagger that every member of the team can access
to it and know what is the functionality of each API.

4.4.1. Branch

We have two main branches:
TEST branch: we use it for our internal development, while we are developing our
app for testing all the APIs functionality.

PRODUCTION branch: this branch is used in case of releasing the app and we have
RestCall to retrieve the information and show it in the app.

4.4.2. PHP

PHP is the second server-side programming language we know.
for creating the server backend, we always use PHP, we use PHP to provide data, and
some times in the frontend reads some user data from a database and returns it in
JSON format, also, we can collect form data, generate our home page application
dynamically.

4.4.3. AWS

The company’s goal is to accelerate the response of the server, so the backend team is
going to use AWS Lambda for serverless computing, so they only write codes that
serve user, so they do not care about infrastructure management task like capacity
provisioning because it will handle with AWS.

66

4.4.4. APIs and RestCalls

All our APIs which are provided from the backend team will be organized in swagger
so we can have access to it and use them according to our need, I will explain some
principal RestCalls.

userInfo
in the homepage of the application, once the user enters the app, we need a POST call
to the server to retrieve all the user information, like name, surname, profile photos
and more other information.

 export function userInfoFetch(that, access_token) {
 var params = {};
 params.portal = Config.portal;
 params.platform = Config.platform;
 params.language = Config.language;
 params.version = Config.version;
 let url = Config.hostUrlV1 + 'users/info'

 console.log('calling rest @', url, access_token);
 that.setState({ isLoading: true });
 return fetch(
 url,
 {
 method: 'POST',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Bearer ' + access_token,

 },
 body: JSON.stringify(params),
 }
)

67

 .then((response) => checkStatus(that, response))
 .then((response) => {
 console.log('response info:', response);
 that.setState({ isLoading: false });
 // console.log("[response] userInfoFetch", response);
 if (response.name) {
 var name = response.name;
 name = name.charAt(0).toUpperCase() + name.slice(1);
 var surname = response.surname;
 surname = surname.charAt(0).toUpperCase() + surname.slice(1);

 Storage.saveItems({
 logged: true,
 user_id: response.id_ut,
 name: name,
 surname: surname,
 phone: response.tel_cell,
 email: response.email,
 birthday: response.data_nasc,
 photo: response.photo,
 });
 }

 return response;
 })
 .catch(e => {
 that.setState({ isLoading: false });
 //console.log('Network exception: ', e);

 if (e.message.indexOf("Network request failed") >= 0) {
 DataManager.getInstance().setConnectionState(false);
 DataManager.getInstance().getUser();
 }
 return false;
 });
}

The Bearer Token is used for authorization, so with calling the server all the user information
is returned and we will save it in the local storage in order to use them in offline mode, or in
other parts of apps.

68

jsonEvents
 we have a very long JSON which returns data and will display in the given portal, it means
that some parts of the app will be filled dynamically with all the information in JSON.

 export function jsonEvents(that, params) {
 params.portal = Config.portal;
 params.platform = Config.platform;
 params.language = Config.language;
 params.version = Config.version;
 let url = Config.hostUrlV1 + 'event/jsonEvents' + objectToURIParams(params);

 console.log('calling rest @', url, params);
 that.setState({ isLoading: true });
 return fetch(
 url,
 {
 method: 'GET',
 headers: {
 'Accept': 'application/json',
 'Content-Type': 'application/json',
 'Authorization': 'Basic ' + Config.hostBasicAuth,
 },
 // body: JSON.stringify(params),

 }
)
 .then((response) => checkStatus(that, response))
 .then((response) => {
 ///console.log('✓ ' + arguments.callee.toString().match(/function
([^\(]+)/)[1], 'response:', response);
 that.setState({ isLoading: false });
 return response;
 })
 .catch(e => {

69

 that.setState({ isLoading: false });
 //console.log('Network exception: ', e);

 if (e.message.indexOf("Network request failed") >= 0) {
 DataManager.getInstance().setConnectionState(false);
 return null;
 }
 });
}

getCreditCardInfo

returns all the pieces of information related to the user credit card.
let url = Config.hostUrlV1 + 'payment/getCreditCardInfo' + objectToURIParams(params);

checkAppVersionExt

Function check if the version is fine according to app_locks table.
let url = Config.hostUrlV1 + 'users/checkAppVersionExt' + objectToURIParams(params);

70

5. Chapter 5

5.1. Conclusion

Nowadays using the new technologies and the different apps is a trend,

and people all over the world will do at least one purchase with their

mobile phone, and as it is obvious using desktop purchase will be

replaced with mobile commerce, because of accessibility and

acceleration in operations.

People are more willing toward mobile using, apart from reviewing,

giving feedback, and price comparison they also have started to analyze

the overall user experience of any mobile app.

So, all the people trying to have experiences with different kind of apps,

especially those kinds of apps which save the people time, and

enjoyable to work with them.

since covid-19 pandemic is all over the world, people prefer to use the

reserve app in every place, in order to skip the line and have less contact

with each other.

So MyPass App is the best practice for this purpose, which helps people

to check all the available places, the working time and they can decide

to choose destination so the ticket can be reserved and bought.

Mypass app is one of the robust apps in Italy which covers all the user

requirements.

71

5.2. Limitation and Future works to improve application

5.2.1 Adding live chat assistance:

Currently, in Mypass App we have a phone number and also
email address so customers can call us in case of any problem.
 we have customer service in our office who cares about client
issues, but the company has a goal to add a new part in the app
which is live chat assistance so the users can communicate with
customer service in real-time and without waiting in queue for
calling.

5.2.2 Payment methods:

We have apple pay in our application to make payment easy, but
still, need to improve the payment method so in the future we
will also add PayPal and satisfy payment, which is so popular
nowadays.

5.2.3 Biometric Authentication:

Mobile application biometric authentication is a multi-factor
authentication (MFA) approach to verify the identity of a person
who uses possession of a mobile device as a first factor and uses
that application to verify a unique biometric identifier as a
second factor.
Passwords are not as safe as they were once. As cybersecurity is
becoming an increasingly hot problem with infractions now
happening regularly, new ways to secure data can be used to log
in to mobile apps. One of these approaches is the use of mobile
biometric authentication.
Biometric authentication is fast, safe and easy to use. Users love
fingerprint or facial authentication because these authentication
mechanisms allow them to access their devices safely and with
minimal effort.16
So, we want to add fingerprint and face recognition in the future
to make our app more user friendly.

72

5.2.4 Cloud servers:

Most of the company’s servers are physical and they are in Italy,
we do not have any problem now because our app only is used
inside Italy, but as I mentioned the goal of the company is to
expand the app all over the world and can be used for different
events around the world, but as our servers are in Italy if a user
wants to use our app in the united states so he faced with a
problem because the app will be very slow in response to user
due to server delay, so to improve this problem and in order to
accelerate the response to the user we will integrate our server in
the cloud and uses cloud services like Aws.

5.2.5 Makes app simpler:

Since people using mobile devices in busy environments, and
they push their patience and focus down. many people are still
so annoyed by the difficulty of mobile apps and they only leave
and uninstall the app without ever giving a second thought, so to
have the best user experience, we should simplify our app from
product discovery to payment. I mention some tips for
improvement:
• we should use easy navigation.
• engage app experience with more photos and fewer texts.

73

Bibliography

1 https://www.techopedia.com/definition/22193/software-development-life-cycle-sdlc
2 https://www.sciencedirect.com/topics/computer-science/system-development-life-cycle
3 https://www.softwaretestinghelp.com/software-development-life-cycle-sdlc/
4 https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
5 https://www.softwaretestinghelp.com/software-development-life-cycle-sdlc/
6 https://www.softwaretestinghelp.com/software-development-life-cycle-sdlc/
7 https://performancelabus.com/software-testing-importance-sdlc/
8 https://textexpander.com/blog/7-stages-of-the-system-development-life-cycle/
9 https://www.thedigitalmentor.com/what-is-maintenance-in-sdlc/
10 https://javascript.info/intro
11 https://help.apple.com/xcode/mac/current/#/devc8c2a6be1
12 https://reactnative.dev/
13 https://en.wikipedia.org/wiki/Amazon_Web_Services
14 https://www.freecodecamp.org/news/google-login-with-react-native-and-firebase/
15 https://developers.facebook.com/docs/facebook-login/web
16 https://medium.com/@berina.omerasevic97

