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Abstract

Developed over a century ago, the electrocardiogram provides invaluable informa-
tion about the state of health of the heart, aiding the diagnosis and management
of various cardiovascular conditions.
Cardiovascular diseases have significant impact on health, quality of life and eco-
nomics, being the major cause of death and disability worldwide. In Europe, CVDs
are the leading cause of death, accounting for 32% of all deceases, with an esti-
mated cost of €280 billion annually.
Addressing CVDs through monitoring and prevention is crucial to improve health
expectancy and reduce the economic burden of these diseases.

It is in this scenario that smart wearable devices fit. In fact, they let self-monitoring
of heart rate and activity. These information, together with other vital parame-
ters, provide feedback to cardiologists, allowing them to remotely monitor patients,
eventually detecting early warning signs of CVDs, and to intervene with cures be-
fore complications might occur.
There are currently several devices that allow self monitoring of heart activity,
but they are not designed to provide a comprehensive diagnosis of cardiac condi-
tions. They commonly provide just numerical information about heart activity,
and eventually report a single-lead ECG.

The aim of this thesis is thus to study and to realise an innovative wearable device
capable of overcoming these limitations acquiring a six-leads medical ECG in a
non invasive way.

While single-lead ECGs offer limited diagnostic utility as the electrical activity of
the heart comes from one direction only, a six-leads ECG records information from
six different electrodes placed on specific locations of the chest and of the limbs.
This way, it allows diagnosis of cardiac conditions such as arrhythmia, ischaemia
and heart blocks.
The device conceived in this thesis project uses an ultra-compact design with just
three electrodes, leveraging on the mathematical relationship between the six leads.

Going into the details of the signal elaboration system. The device simultaneously
acquires two differential signals from the input electrodes.
Common mode noise is reduced using an instrumentation amplifier and different
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analog filters have been tested to reduce other sources of noise. Signals are ampli-
fied and sampled with a high resolution 24-bit ADC.
Acquired data are sent to a microcontroller and transmitted via Bluetooth to a
smartphone application which displays acquisitions in real time.
Furthermore, elaboration includes processing of the signals through digital Finite
Impulse Response filters.

Practically, the development of the thesis project has gone through the following
steps:

• Pen and paper design of the different functional blocks of the circuit.

• Schematic diagram and PCB layout realization using Cadence OrCAD.

• Firmware development.

• Implementation of DSP filtering techniques.

The combination of digital and analog filtering of the acquired signals made it
possible to create a device capable of acquiring a high quality six-leads electrocar-
diogram maintaining an extremely compact design.
By offering an accessible and user-friendly solution, this device potentially simpli-
fies and changes the current conception of ECG monitoring, improving prevention
strategies, diagnosis, and treatments of cardiovascular diseases.
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Chapter 1

Introduction

1.1 Cardiovascular diseases nowadays

Despite the improvements in medical research, technology, and surgical interven-
tions, cardiovascular diseases remain a significant global health concern causing a
substantial burden on individuals, communities, and healthcare systems.
Especially in recent decades, the prevalence of cardiovascular diseases has raised.
CVDs have become the leading cause of mortality worldwide, mainly due to
changes in people’s lifestyle and to an increasingly elder population.
According to the World Health Organization, CVDs are responsible for approxi-
mately 17.7 million deaths each year, accounting for 37% of all premature deaths.
Ischemic heart diseases, strokes, and heart failures are the most common cardio-
vascular conditions [21].
Several modifiable and non-modifiable risk factors contribute to the development
of cardiovascular diseases. Non-modifiable risk factors include age, gender, and
genetics, while modifiable risk factors encompass unhealthy diets, physical inac-
tivity, tobacco use, obesity, hypertension, diabetes and high cholesterol levels.
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Introduction

Figure 1.1: Infographic about CVDs.

Early and accurate diagnosis of cardiovascular diseases is essential for effective
prevention and for the management of potential complications. Traditional diag-
nostic methods such as electrocardiography (ECG), echocardiography and stress
tests continue to play a fundamental role. In addition, technological advancements
have introduced innovative diagnostic features for cardiac imaging processing, just
as computed tomography and magnetic resonance. And wearable devices, together
with smartphone apps, have gained popularity as well.
Clearly, the management of cardiovascular diseases includes several aspects span-
ning from lifestyle modifications to pharmacological aid and invasive procedures.
In any case, lifestyle behaviours including a heart-healthy diet, regular exercise,
smoking cessation and stress reduction are essential to prevent and manage CVDs.

1.2 Prevention and technology
Technological development continues to revolutionize cardiovascular medicine.
Wearable devices, such as smartwatches and fitness trackers, provide real-time
monitoring of heart rate, activity, intensity and other data, enabling early detec-
tion of abnormalities.
Telemedicine and remote patient monitoring have gained popularity, facilitating
access to specialized cares and improving patient outcomes in rural or underserved
areas.
Despite these progresses, several challenges persist. Access to quality healthcare,
especially in remote areas, remains a concern. Additionally, the rising prevalence
of risk factors such as obesity and aging, focuses the attention on disease preven-
tion. Identifying and addressing risk factors early on, the incidence and severity
of CVDs can be significantly reduced.

12



1.2 – Prevention and technology

Prevention includes both population-wide strategies and individual-level actions.
Public health campaigns and education aim to promote healthier lifestyles, while
personalized risk assessments and targeted interventions provide tailored approaches
to higher-risk individuals.

Figure 1.2: Infographic about telemedicine.

There are many fields in which technology is having an enormous impact, pro-
foundly affecting the treatment for cardiovascular diseases:

a. Risk Prevention. Algorithms and machine learning techniques can ana-
lyze large amounts of data just as genetic information, medical history, and
lifestyle factors, to predict an individual’s risk of developing CVDs. This cus-
tomized risk assessment enables early interventions and targeted prevention
strategies.

b. Wearable Devices. Smartwatches, fitness trackers, and other wearable de-
vices allow continuous monitoring of heart rate activity and intensity, sleep
patterns, and other valuable data. These devices provide insights into an indi-
vidual’s cardiovascular health, encouraging informed decisions and proactive
measures.

c. Telemedicine and Remote Monitoring. Telemedicine platforms allow
remote monitoring, letting healthcare providers the monitor of a patient’s
health, and providing guidance for adjusting treatment plans without the
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Introduction

need for in-person visits. Remote patient monitoring further enhances this
approach by continuously collecting and transmitting vital parameters and
other relevant data, ensuring timely interventions and reducing the risk of
complications [14].

d. Mobile Applications. Smartphone applications offer various functionali-
ties, such as exercise tracking, medication reminders, and disease management
insights. These apps suggest lifestyle modifications, facilitate self-monitoring
and provide educational resources promoting cardiovascular health.

e. Digital Health Platforms. Integrated digital health platforms merge to-
gether various technologies, including wearable devices, mobile apps, and elec-
tronic health records. These platforms streamline data collection, analysis,
and communication between patients and healthcare providers, facilitating
customized prevention plans and enhancing care coordination.

In such a scenario the wearable device studied in this thesis project fits well. It
allows instantaneous monitoring of the health status of a subject’s heart through
the real-time acquisition of six cardiac signals. Acquired data are managed by a
smartphone application so that the subject’s state of health can be immediately vi-
sualized and shared with doctors, paving the way for a new method of telemedicine.

The development of the product has been divided into different phases, each of
which involved a specific set of operations and choices. Below, a list of the steps
taken during the device development:
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1.2 – Prevention and technology

1. Definition of project name and scope.

2. Definition of project specifications.

3. Market analysis of potential competitors.

4. Signal conditioning design.

5. Digital section design.

6. Selection of components.

7. Schematic diagram realization with OrCAD Capture.

8. BOM-Based evaluation of costs.

9. PCB design using OrCAD PCB Editor.

10. Development of firmware for the STM32WB55RG evaluation board.

11. Processing of the signals acquired with the evaluation board.

12. Prototype development.

13. Electrical test of interconnections.

14. Mock-up development.

15. Communication with the Android App.
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Chapter 2

Electrocardiography: an
overview

Electrocardiography has a long history that begins two centuries ago. It was at
the end of the 19th century that the first studies concerning the electrical activity
of the heart were conducted. In 1887, the British physiologist Augustus Waller
recorded the first human electrocardiogram using a capillary electrometer1. He
observed that the heartbeat produced an electrical signal measurable as a poten-
tial difference on the skin.
Those results were approximate, but the development of new techniques increased
considerably, and only fourteen years later, in 1901, the Dutch physiologist Willem
Einthoven developed an ECG machine which produced extremely accurate results.
Einthoven’s machine was based on a galvanometer capable of amplifying electrical
signals and returning them on paper. This new technology allowed the clinical
study of the electrical activity of the heart, and brought a new method to classify
heart diseases such as arrhythmia and heart blocks.
Einthoven also worked on a solution to standardize the electrocardiogram, and
realized what has then become the universally adopted ECG representation.
Throughout the following decades, the electrocardiogram has been further devel-
oped and improved. Still today, it is an essential tool for identifying and studying
heart diseases.

1A capillary electrometer uses changes in the surface tension of an electrolyte inside a capillary
to detect small variations of electric potential.
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Electrocardiography: an overview

2.1 The ECG signal
The electrocardiogram is a graphical representation of the heart’s electrical activ-
ity over time. It represents variations of electrical potential difference between two
points of the human body.
The ECG waveform consists of various segments, each of which represents a dif-
ferent aspect of the heart’s electrical activity. The main segments of an ECG
are:

• The P wave, which represents depolarization of the atria.
Typical duration < 80ms.

• The QRS complex, which represents depolarization of the ventricles.
Typical duration 80ms − 100ms.

• The T wave, which represents repolarization of the ventricles.
Typical duration ≈ 160ms.

• The U wave, which represents papillary muscle repolarization.
Typical duration < 60ms.

Note that the U wave is hard to be appreciated and it is typically ignored.

Figure 2.1: ECG waveform.

In addition to the segments mentioned above, there might be other contributions
symptomatic of abnormal activity of the heart.
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2.1 – The ECG signal

To better appreciate the information carried out by the ECG signal, it is useful to
exploit the Fourier transform. Such transform transposes the time-domain signal
into its frequency-domain counterpart. This way, it is possible to determine the
extension of the frequency spectrum of the ECG signal.
Typically, the frequency range of the ECG signal goes from 0.05Hz up to 100Hz,
with most of the energy concentrated in the range from 0.5Hz to 40Hz.
The lower-frequency contributions, below 0.5Hz, are associated with respiratory
or other physiological movements, while the higher-frequency contributions, above
40Hz, are mostly noise and interference [32].

(a) Full frequency range1.

(b) Useful frequency range.

Figure 2.2: Frequency spectrum of the ECG signal.

1The spike at 50Hz is an example of powerline interference.
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Electrocardiography: an overview

From a practical point of view, the ECG signal is displayed on a grid, with time
along the horizontal axis and voltage on the vertical axis.
The standard time reference for this grid is 1 second every 25 millimeters, that is
25mm

s
. The grid is interpreted as follows:

• A small box of 1mm×1mm represents 0.1mV ×0.04s.

• A large box of 5mm×5mm represents 0.5mV ×0.20s.

Figure 2.3: ECG Paper.

Interpreting the information with the right scale is crucial to identify abnormal
changes in the cardiac rhythm or other conditions such as ventricular hypertrophy.
However, multiple conditions can be identified by just observing the signal profile.
Pathological variations in the signal profile might show an absence of the P wave,
a sinusoidal signal pattern, or even a "saw tooth" profile.

The classical representation of the ECG shows the variation of electric potential
between right and left arms, but different waveforms can be appreciated depending
on the angle of observation of the cardiac activity. These different waveforms are
obtained by simply placing the electrodes on different points of the body.
Notice that the complete electrocardiogram analysis makes use of ten electrodes
and is known as 12-leads ECG. In this setup, the subject lies supine, and the ten
adhesive electrodes are placed on his chest and on his limbs. The changes in the
heart’s electrical potential are thus measured from twelve different angles, and
recorded for a certain period of time, usually ten seconds. In this way, a complete
overview of the heart’s activity is captured during each phase of the cardiac cycle.

20



2.1 – The ECG signal

2.1.1 Limb & Precordial Leads
A difference in the electrical potential between two points of the human body is
called derivation, or lead in the medical field. Clearly, using 2 electrodes only, a
single derivation can be obtained. And a single waveform can be displayed.
As anticipated in the previous section, combining together 10 electrodes it is pos-
sible to obtain 12 different derivations. These derivations are divided into two
groups: limb leads and precordial leads.
The main difference between this two categories stands in the angle from which the
heart is inspected. Supposing to divide the human body into two planes, as shown
in fig. 2.4, limb leads observe cardiac activity in the vertical (or frontal) plane,
while precordial leads, also known as chest leads as they are located anteriorly to
the chest, detect signals traveling in the horizontal (or transverse) plane. Notice
that the horizontal plane is perpendicular to the vertical one [5].

Figure 2.4: Cardiac planes.

While the limb leads provide a general overview of the cardiac condition, the pre-
cordial leads are particularly useful for assessing the status of the left ventricle,
which is in charge of pumping oxygenated blood to the body.
Moreover, precordial leads can be used to detect changes in the ST segment and
in the T wave, which are indicative of a variety of cardiac conditions including
myocardial infarction, left ventricular hypertrophy and cardiomyopathies.
However, considering again the limb leads, it is necessary to make a further dis-
tinction between Einthoven’s and Goldberger’s leads.

2.1.2 Einthoven and Goldberger’s leads
The limb leads are made up of six different signals located in the frontal plane,
namely I, II, III, aVF, aVR and aVL.

21



Electrocardiography: an overview

The first three leads, I, II and III, are Einthoven’s original leads, and can be dis-
played using the Einthoven’s triangle. The remaining leads, aVR, aVL and aVF,
introduced by the American cardiologist Lewis Goldberger, are called unipolar
leads, as they refer to the average value between two electrodes.
With respect to the unipolar leads, the letter "a" stands for augmented, while "V"
stands for voltage. "R" stands for right arm and "L" for left arm. Instead, "F"
stands for foot. Notice that usually, lead aVR is converted into lead -aVR, as this
conversion may facilitate the interpretation.

Leads I, II and III compare electrical potential differences between two electrodes.
Lead I compares the electrode on the left arm with the electrode on the right arm,
where the former, observing from 0◦, is at a lower potential.
Lead II compares the left leg with the right arm, with the leg electrode being at a
higher potential. Lead II observes the heart from an angle of 60◦.
Lead III compares the left leg with the left arm, with the leg electrode being the
exploring one. It observes the heart from an angle of 120◦.
The spatial organization of these leads forms a triangle known as Einthoven’s
triangle (fig. 2.5).

Figure 2.5: Einthoven’s triangle.
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2.2 – Implementation of the theory

To better understand the relationships between Einthoven’s and Goldberger’s
leads, the six limb leads are usually represented in a circular Hexaxial coordi-
nate system, as shown in figure 2.6b.
In this coordinate system, it is assumed that Lead I defines 0◦ in the frontal plane.
This also means that lead I “views” the heart from an angle of 0◦. Accordingly,
leads II and III observe the heart from 60◦ and 120◦ respectively.
However, it should be noted that, in this model, the reference is provided by the
Goldberger’s central terminal, conceptually located at the center of the heart.
Looking at the representation of fig.2.6a, it is possible to interpret the Goldberger’s
leads. They are vectors starting from the barycentre of Einthoven’s triangle. Con-
ceptually, they are bisectors of its angles, even if with a greater amplitude. They
divide the angles of the Einthoven’s triangle into equal parts, splitting the frontal
plane into areas of 30◦ each [4].
At this point, it is evident that there must be a relationship between the different
limb leads.

(a) Limb vectors. (b) Hexaxial coordinate system.

Figure 2.6: Circular Hexaxial coordinate system representation.

2.2 Implementation of the theory
The goal of the thesis project is to realize a portable device able to get the 6 limb
leads out of three electrodes. Therefore, this section analyzes the mathematical
relationship between the six limb leads. Instead, the study of the precordial leads
is out of the scope of the project.
As anticipated, using two electrodes only, it is possible to obtain a single derivation.
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Electrocardiography: an overview

However, exploiting the mathematical relationship between the limbic signals, all
limb leads can be derived using just three electrodes placed on the right arm, the
left arm and the left leg.
The Einthoven’s leads (leads I, II and III) are derived using only two derivations.
The remaining 3 leads use a reference given by the average of the other three
derivations, which is called the Goldberger’s central terminal.
With reference to the Einthoven’s triangle (fig.2.5), it is possible to define two vec-
tors, derivations I and II, measuring the potential difference between the electrode
placed on the right hand (RA), used as reference, and the electrodes of the left
hand (LA) and the left leg (LL).

As the electrocardiogram measures variations of the electrical signals as they prop-
agate in the human body, the Einthoven’s triangle can be viewed as an electrical
circuit.
According to Kirchhoff’s current law, the sum of all currents in a closed circuit
must be zero. Thus:

I + III = II (2.1)
This means that the sum of the vectors I and III equals the potential difference
of lead II. In clinical electrocardiography, this means that the amplitude of, for
example, the R-wave in lead II, is equal to the sum of the R-wave amplitudes in
leads I and III.
It follows that we only need the information of two leads in order to obtain the
remaining one, and thus there is no need to directly measure the potential differ-
ence between LA and LL.

For what concerns Godlberger’s leads, it is not surprising that these derivations
have a mathematical relation with the Einthoven’s one. Indeed, the augmented
voltages are obtained from a simple vector sum.
Considering, by definition, the reference potential at the center of the heart, we
can derive the Goldberger’s leads: the vectors of leads I, II and III are 60◦ out of
phase and at half amplitude compared to the heart center.
With these considerations, graphically shown in fig.2.6a, it is possible to derive
aVR, aVL and aVF.

aV L = I − III

2
aV R = −I + II

2
aV F = II − III

2

(2.2)
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2.3 – Common ECG noise sources

This shows that leads aVR, aVL and aVF can be calculated using just leads I,
II and III. Therefore, these leads (aVF, aVR/–aVR, aVL) do not offer any new
information, but view the same information from different angles [5].
For the sake of completeness, defining the vectors from the origin to the electrodes
as EA, EB, EC, the derivations are expressed as:

I = EB − EA

II = EC − EA

III = EC − EB

(2.3)

It can be shown that the Goldberger’s leads are called augmented because they can-
not be inscribed in the circular triaxial diagram formed by the leads of Einthoven,
as they have a greater amplitude. In fact:

aV L = I − III

2 = 1
2[(EB − EA) − (EC − EB)] =

= EB − 1
2(EA + EC) = 3

2EB
(2.4)

Thus, their amplitude is 0.5 higher with respect to the vector referred to the elec-
trode.

Anyway, it has been proved that with only 3 electrodes it is possible to obtain all
six limb leads.

2.3 Common ECG noise sources
So far, only noise-free ideal signals have been analyzed. In practice, a variety of
noise sources impact ECG recordings, affecting the reliability of the interpretation
of the ECG signal itself. In order to provide accurate cardiac disease diagnosis
and therapy, it is essential to understand the typical sources of ECG noise. There
are mainly four types of artifacts that can affect ECG signals:

1. Baseline Wander.

2. Powerline Interference.

3. Electromyography Noise.

4. Electrode motion artifacts.

The following sections briefly describe these undesired contributions for the pur-
pose of understanding how to eliminate them.
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Electrocardiography: an overview

2.3.1 Baseline Wander (BW)

Baseline Wander is the effect due to the which the base reference seems to oscillate
up and down with a very slow period rather than being straight. This makes the
entire signal shifting from its baseline.
The Baseline Wander might be caused by improper electrodes (electrode-skin
impedance), subject’s movements and breaths (respiration) [12].
Figure 2.7 shows a typical ECG signal affected by Baseline Wander.

Figure 2.7: ECG signal affected by Baseline Wander.

The frequency content of the Baseline Wander is normally concentrated around
0.5Hz. However, it increases together with greater body movements as during
exercise or stress tests.
Since the baseline signal is a low frequency signal, digital FIR filters and high-pass
filters with a cut-off frequency of 0.5Hz can be used to estimate and remove the
Baseline Wander from the ECG signal.

2.3.2 Powerline Interference (PLI)

Electromagnetic fields produced by powerlines represent a common noise source in
ECG, as well as in any other electrical signal recorded from the body surface. Such
noise consists in a 50Hz or 60Hz sinusoidal interference, eventually accompanied
by a number of harmonics as shown in fig. 2.8.
It is necessary to remove powerline interference from ECG signals as it completely
superimposes the low frequency ECG waves, especially the P and T waves.
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2.3 – Common ECG noise sources

Figure 2.8: ECG with Powerline Interference at 50/60Hz.

A very simple approach to reduce Powerline Interference is to implement a notch
filter characterized by a complex-conjugated pair of zeros that lie on the unit circle
at the interfering frequency [12].
This type of filter highly rejects disturbances in a very selective way but, due to
its response, it also introduces a ringing artifact in the output signal that is visible
after the transient. This is a further source of distortion as it introduces a new
contribution that overlaps to the QRS complex and the to T wave of the ECG
signal.
For this reason, in practice, it has been preferred to opt for a cascade of low-pass
filters with a cut-off frequency below 50Hz.

2.3.3 Electromyography Noise (EMG)

Muscle noise is a significant issue in many ECG applications, especially in record-
ings taken during physical activity, where low amplitude waveforms may entirely
disappear.
Unlike Baseline Wander and Powerline Interference, muscle noise is not removed
by narrowband filtering. Indeed, it provides a harder filtering challenge as the
spectral content of muscle activity significantly overlaps to that of the PQRST
complex.
Numerical techniques can be used to reduce muscle noise by taking advantage of
the fact that the ECG is a repeating signal. However, the amount of effective noise
reduction is insufficient. Hence, there is the need for signal processing techniques
that can effectively reduce the influence of muscle noise [12].
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Electrocardiography: an overview

Figure 2.9: Electromyographic (EMG) noise.

2.3.4 Electrode motion artifacts
Electrode motion artifacts are mainly caused by skin stretching altering the impedance
of the skin around the electrode.
The spectral content of motion artifacts significantly overlaps to that of the PQRST
complex. This makes them particularly difficult to be removed.
Electrode motion artifacts show a large-amplitude waveform and are mostly promi-
nent in the frequency range from 1Hz up to 10Hz. The following figure represents
an example of such artifact [12].

Figure 2.10: ECG affected by electrode motion artifacts.
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Chapter 3

Analog Signal Conditioning

To acquire significant limb leads, it has been necessary to develop an analog front
end capable of filtering and amplifying input signals, attenuating noise sources and
improving quantization. An optimal front end cleans up the ECG signal without
removing its useful portion.
Firstly, a modular front end, made up of independent low-pass filters, has been
developed. This setup, shown in figure 3.1, allowed the testing of different filtering
configurations.
This first solution was single-lead. It took a single differential signal between two
electrodes. Such signal supplied an instrumentation amplifier in charge of reducing
unintended common-mode contributions, thus attenuating any disturbance acting
on both input connections. In addition, the high input impedance of the amplifier
prevented the unknown impedance of the electrodes from creating a partition at-
tenuating the signal strength.
The instrumentation amplifier used the voltage supplied by an integrator as a
reference. This choice realized a high-pass filter with a cutoff frequency of approx-
imately 0.5Hz, eliminating the Baseline Wander noise contribution.
The amplified signal passed through the modular network of low-pass filters.
Among these filters, there were two first-order RC filters and two second-order
Sallen-Key configurations. They could have been bypassed, if required.
The purpose of the filter network was to find a valid alternative to the use of a
notch filter to eliminate the Powerline Interference noise.
As mentioned before, a notch filter would have eliminated the power supply noise,
but its high selectivity, represented by a high quality factor, would have implied a
low damping which would have made signals oscillating in the step response. And
these oscillations would have represented an additional error contribution that,
superimposed to the ECG signal, might have mislead the interpretation of the
U-wave.
At the output of the low-pass filter network, an RC low-pass filter followed by a
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gain stage has been introduced. It provided an amplified signal at the input of the
ADC in order to increase its signal-to-noise ratio.

Figure 3.1: Modular testing front end.

3.1 Filters Analysis

This section studies the design of the hardware filters making up the analog front-
end. Each filter transfer function has been simulated with MATLAB to determine
the correct size of the actual electrical components. The study relies on the typical
ECG’s power spectral density and noise level covered in the previous chapter.

3.1.1 High Pass Filter

The high pass filter is in charge of removing all disturbances at very low frequen-
cies around the continuous. These distortions might be caused by little muscle
movement occurring during the respiration phase.
As it can be seen in figure 3.2, HP filtering is accomplished using a first order
integrator fed back to the instrumentation amplifier [18].
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3.1 – Filters Analysis

Figure 3.2: High Pass Filter.

The transfer function of this high-pass filter is:

Hin = K

1 + 1
(s·RHP ·CHP )

(3.1)

Where K is the gain factor of the instrumentation amplifier, set to 10 to provide
a higher CMRR. But notice that its actual value depends on the final device that
is used. Instead, the cut-off frequency is given by:

fHP = 1
2π · RHP · CHP

(3.2)

Targeting a cut-off frequency of 0.5Hz, the components turn out to be:

RHP = 68kW
CHP = 4.7µF

(3.3)

The following figures display the results of a simulation performed reporting the
formulas in a MATLAB script. Real component values from the E24 series have
been used. In this way, the real cut-off frequency has been evaluated.

3.1.2 Low Pass Filter Network
Power supply noise is an electromagnetic disturbance that, in case of very weak
signals just as the ECG, might be comparable to the signal itself. To reduce, or
better, to eliminate this noise contribution, LP filters can be used.
There are various types of low pass filters, each characterized by different features
and performances. This section analyzes the nine different low pass filter configu-
rations allowed by the low pass filter network. The analysis of these setups is useful
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(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.3: High pass filter simulation results.

for the design of the final device, as it suggests the best way to reduce the noise
of the 50Hz power supply. With respect to the low pass filter network, reported
again in figure 3.4, it can be seen that a configuration can be built starting from
three alternative paths:

1. Stage Bypass via 0W resistor.

2. Fourth order Sallen Key Butterworth-Bessel filter.

3. Second order RC filter.
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3.1 – Filters Analysis

Figure 3.4: Low Pass Filter Network.

At this point, it is worth revising the main characteristics of the different available
low pass filter responses:

• Butterworth Filters. These filters show maximally flat magnitude response
and gain flatness in pass-band. However, the transient response to a pulse
input may generate overshoot and ringing.

• Chebyshev Filters. These filters have ripple in pass-band. For this reason,
their cut-off frequency is defined as the frequency in which the response falls
below this ripple band. Their response to a pulse input is worse than the one
of Butterworth filters.

• Bessel Filters. These filters are designed to have a maximally flat time delay
so that they have a linear phase and a good transient response to a pulse
input. Attenuation is -3dB at the cutting frequency.
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Figure 3.5: Filters behaviours.

In the following, the 4th-order low-pass-active filter based on two cascaded Sallen
Key cells, and the 2nd-order low-pass-passive RC filter are designed. Specifically,
the second order filter consists of two cascaded first order filters.
In addition, the transfer functions of the nine possible combinations are imple-
mented and analyzed. Having decoupled each filter with an operational amplifier,
the transfer function of the series of interconnected filters is given by the product
of the individual transfer functions.

1. Sallen Key Filter design

To realize a higher-order filter, it is possible to combine a suitable number of first
and second order filters. Generally, the order of the overall filter is equal to the sum
of the orders of the individual filters, unless their connection results in zero-pole
cancellation or it places, in series or in parallel, two or more reactive components
of the same nature, making them non-independent.
It should be noted that in low pass filters of order n, the slope of the attenuated
band asymptote is −n · 20 dB

dec
. Thus, higher orders allow a better discrimination

between passband and attenuated band.
The 4th-order Sallen Key filter has been designed with reference to the values
reported in the following table.

34



3.1 – Filters Analysis

Figure 3.6: Filters behaviours.

In general, to size a low pass filter of order higher than the second, it is possible
to proceed as follows [17]:

1. Choose the filter response (Butterworth, Chebyshevor Bessel), the filter order
(n), the cut-off pulsation (ωt) and the centre-band gain (A).

2. Based on the type of response and the filter order, identify, for each stage,
the values for the normalized frequency fci and the damping ξ according to
table 3.6.

3. For each stage,

• Derive the cut-off frequency of the filter.
• Choose Ci so that it is possible to fix Ci+1 = n · Ci.
• Fix Ri+1 = m · Ri obtaining Ri = 1

(ω·
√

n·m·C2
i )

.

• Derive the gain: A = 3 − 2ξ.
• The values for the remaining gain resistors are determined fixing one of

them.

In this specific case, to achieve unity gain and a good attenuation at the power
supply noise frequency, a cut-off frequency of 30Hz and a roll-off factor of 80 dB

dec

have been chosen.
The filter has been designed with an intermediate behaviour between Butterworth
and Bessel responses because the Bessel filter is suitable for applications where
minimal distortion over the entire bandwidth is required, but it does not provide
a roll-off as fast as the Butterworth one.
In the end, a 0.5 Butterworth-Bessel filter of order 4 is designed averaging the
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behaviour of the two types. Referring to table 3.6, intermediate values for the
pulsations of the two stages are:

ω1 = 1 + 1.43
2 = 1.22rad/s

ω2 = 1 + 1.61
2 = 1.31rad/s

(3.4)

For the first stage, it has been chosen:

C1 = 36nF and n = 10. So C2 = 360nF (3.5)

Being,
fc1 = 1.22 · fc = 1

2π
ñ

nC2
1mR2

1

(3.6)

and having set m=17, it turns out that the value for R1 is:

R1 = 1
2πfc1

ñ
nC2

1m
= 9.2kW (3.7)

Finally, R1 = 9.2kW, R2 = 157.5kW and the gain of the stage is one (A = 1).
For the second stage, a similar procedure is followed:

C3 = 43nF and n = 10. C2 = 430nF (3.8)

Keeping m=17,
R3 = 7.2kW and R4 = 122kW (3.9)

This stage is chosen with unity gain as well.
At this point, the values for resistors and capacitors are set on the basis of the
ones commercially available:

36



3.1 – Filters Analysis

R1 = 8.67kW R2 = 154kW
C1 = 390nF C2 = 39nF

R3 = 6.98kW R4 = 110kW
C3 = 470nF C4 = 47nF

(3.10)

With these values, the actual cut-off frequency of the filter can be evaluated. The
overall transfer function is given by the product of the transfer function of the two
individuals Sallen Key cells:

H = 1
[s2(R1R2C1C2) + s((R1 + R2)C2) + 1] ·

· 1
[(s2(R3R4C3C4) + s((R3 + R4)C4) + 1]

(3.11)

It shows four complex denominator roots which, on the Bode diagram, result in two
distinct poles at frequencies f1=36Hz and f2=39Hz. The actual cutoff frequency
at -3dB is fc=29.5Hz.

(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.7: Sallen Key filter simulation results.
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The individual transfer functions of the two cells are presented below.

1.1 First Sallen Key

The transfer function of the first Sallen Key filter is:

HSK1 = 1
s2 · (R1 · R2 · C1 · C2) + s · ((R1 + R2) · C2) + 1 (3.12)

The cut-off frequency is fSK1 =36Hz. The attenuation at 50Hz is 6.5dB. It results
in a factor of 2.1

(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.8: First Sallen filter simulation results.

1.2 Second Sallen Key

The transfer function of the second Sallen Key filter is:

HSK2 = 1
s2 · (R3 · R4 · C3 · C4) + s · ((R3 + R4) · C4) + 1 (3.13)

The cut-off frequency is fSK2 =39Hz. The attenuation at 50Hz is 6.1dB. It results
in a factor of 2.
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3.1 – Filters Analysis

(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.9: Second Sallen filter simulation results.

2. RC Filter design

The second type of filter which has been designed is a second-order-passive RC
filter. For this type of filter, a higher order filter can be obtained simply combining
in series a suitable number of first order RC filters. However, as the number
of concatenated stages increases, the actual cut-off frequency deviates from the
theoretical one. For this reason, it is better to make the impedance of each stage
10 times that of the previous one, thus, R2=10·R1 and C2= 1

10 ·C1. Alternatively,
it is possible to use op-amps to decouple the various stages.
To design the second order RC filter, it is sufficient to define the desired cut-
off frequency. The transfer function of the filter is given by the product of the
individual transfer functions of the two stages:

HRCs = HRC1 · HRC2 = 1
s2(R1C1R2C2) + s(R1C1 + R2C2) + 1 (3.14)

The cut-off frequency of a 2nd-order passive low pass filter is:

fc = 1
2π

√
R1 · C1 · R2 · C2

(3.15)
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Also in this case, a trade-off between attenuation at 50Hz and cut-off frequency is
desired. Considering that there is an attenuation of 40dB per decade, it has been
decided to cut at 30Hz.
Having set the cut-off frequency, equation 3.15 gives three degrees of freedom for
the values of resistors and capacitors. These values have been chosen according to
the E24 series to obtain two balanced RC stages. The chosen values are:

R1 = 3.92kW
C1 = 1µF

R2 = 3.6kW
C2 = 1µF

(3.16)

In this way, the cut off frequency is fRCs =30Hz. The attenuation at 50Hz is 8dB.
It results in a factor of 2.5.

(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.10: RC filter simulation results.
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3.1 – Filters Analysis

The individual transfer functions of the two first order low pass cells are presented
below.

2.1 First RC

The transfer function of the first RC filter is:

HRC1 = 1
s · R5 · C5 + 1 (3.17)

The cut-off frequency is fRC1 =41Hz. The attenuation at 50Hz is 3.8dB. It results
in a factor of 1.6.t

(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.11: First RC filter simulation results.

2.2 Second RC

The transfer function of the second RC filter is:

HRC2 = 1
s · R6 · C6 + 1 (3.18)

The cut-off frequency is fRC1 =44.5Hz, the attenuation at 50Hz is 3.5dB. It results
in a factor of 1.5. Having decoupled the two RC filters with inverting stages, it
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(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.12: Second RC filter simulation results.

is possible to combine them with the two Sallen Key filters to achieve alternative
solutions.

3. Further combinations

Further combinations can be achieved either connecting in series RC and Sallen
Key filters or bypassing stages, increasing or decreasing the order of the overall
filter. Also in these cases, it is possible to evaluate the responses multiplying the
single transfer functions, obtaining a transfer function whose poles are given by
those of the individual filters. Numerous different combinations have been tested,
and the results are reported in section 3.2.

3.1.3 Output stage
The output stage consists of an additional low pass RC filter together with a gain
factor. The cut-off frequency of the filter is set to 50Hz to further attenuate any
unwanted signal contribution outside of the band of interest. Notice that this stage
could also be excluded if necessary.
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3.1 – Filters Analysis

Figure 3.13: Output stage.

The transfer function of the output stage is:

Hout = Rf/Rn

s · Rout · Cout + 1 (3.19)

The values for resistors and capacitors, chosen from the E48 series, are:

Rout = 3.16kW
Cout = 1µF

Rf = 30kW
Rn = 1kW

(3.20)

The real pole is located at 50Hz and a gain of 30 is introduced.
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(a) Bode Diagram (b) Step Response

(c) Impulse Response

Figure 3.14: Output stage filter simulation results.

3.2 Preliminary results
The modular front end served as a prototype useful to test the different filter con-
figurations. Different setups could have been made simply soldering 0W resistors.
Together with the analog front end, the prototype included a 24-bit Delta Sigma
ADC and a development board. Acquired samples, converted into digital streams,
were transferred to the development kit via SPI and, from there, they were printed
on standard console using UART. Figure 3.15 shows the top view of prototype lay-
out
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3.2 – Preliminary results

Figure 3.15: Front end testing board top layout.

Instead, the following images report the results of the acquisitions performed with
six different configurations of low pass filters.
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(a) Only output RC filter. (b) First and output RC filters.

(c) Second SK and output RC filters.
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3.3 – Final configuration

(a) First SK, second RC and out RC filters. (b) First SK, second SK and out RC filters.

(c) First RC, second RC and out RC filters.

3.3 Final configuration
Experimental results showed that the best configuration consisted in a cascade of
2 RC filters followed by the RC filter of the gain stage. This configuration, paired
with DSP filtering techniques, brought results that were almost comparable to
those of a professional electrocardiograph.

3.3.1 Full front end transfer function
The transfer function of the complete front end, given again by the product of the
transfer functions of the individual blocks, is:

H = Hin · HRCs · Hout (3.21)

Figure ?? shows the theoretical responses of the transfer function. Instead, figure
?? compares the experimental ECG acquired with the best configuration for the
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prototype to a professional electrocardiogram registered with a medical electrocar-
diograph. Experimental results are presented with and without filtering.

(a) Bode Diagram. (b) Step Response.

(c) Impulse Response.

Figure 3.18: Full front end simulation results.

The best configuration shows a gain of 50dB in pass-band and an optimal rejection
of power interferences. However, the cutoff frequency is very low, about 30Hz.
A low cutoff frequency may remove portions of useful signal in ECG waveforms
acquired from subjects with larger spectral contents with respect to those subjected
to the preliminary tests.
For this reason, it is necessary to tune the values of resistors and capacitors in the
low-pass filters to increase the cutoff frequency, leaving the rejection of powerline
noise to digital filtering.
Another mandatory modification is the duplication of the test front end, as the
final device needs to simultaneously acquire two differential signals between right
arm, left arm and left leg. In this case, there are two input paths flowing from the
input electrodes to the ADC, as shown in the following scheme.
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3.3 – Final configuration

(a) No digital filtering. (b) Ddigital filtering.

(c) Reference electrocardiograph.

Figure 3.20: Schematic of the final front end implementation.
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Chapter 4

Board design

The aim of the project is to acquire a 6-leads electrocardiogram by means of a
low-power, ultra small, portable, wireless device. It has been decided to shape the
device as a wearable wrist watch.
One electrode lays at the bottom of the device, making contact with the left wrist.
Another electrode is located on the top side of the device, so that the right index
finger can be placed on it. The third electrode is embedded in the strap to be
comfortably rested on the left ankle when needed.

4.1 Device overview
The first step of the development consists in the definition of the specifications.
The following list reports the requirements and the main features of the device:

• Deliver of a 6-leads ECG.

• Ultra small design (Radius=2 cm, Thickness=0.6cm).

• Portable and wearable on the wrist.

• Low power.

• Rechargeable through separate type-C USB charger.

• Low energy Bluetooth 5.3.

• Four layer PCB.

• Double side SMT.
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Figure 4.1 shows a sketch of the device, together with its main functional blocks.
Functional blocks are partitioned between bottom and top sides. This way, it is
possible to have a visual understanding of the device structure.

Figure 4.1: Board Sketch and main functional blocks.

4.1.1 Block Diagram
To better understand how the various functional blocks work in relation to each
other, it is useful to take a look at figure 4.2, which represents the block diagram
of the device. Each block of the figure is a hardware unit devoted to a specific
function. It is possible to identify five main functional blocks:
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4.1 – Device overview

1. Analog Front End. It makes use of three electrodes (LA, RA and LL) to
acquire the ECG signal in a differential way. Common mode noise is reduced
using an instrumentation amplifier on each signal. Signals are then band-
pass filtered through the serial combination of a HP filter at 0.5Hz and a LP
filter with a cut-off frequency of 30Hz. Finally, they are amplified (GAIN) to
optimize SNR due to quantization.

2. ADC section. It discretizes the analog signals feeding digital data to the
Microprocessor. It uses an 8MHz clock (CLK) to reach 24-bit resolution.

3. Microcontroller. It manages the delivery of control signals to the different
functional blocks and communicates with slave peripherals using SPI and
I2C interfaces. It monitors battery level and sends data to the smartphone
through the Bluetooth antenna.

4. Peripherals. They consists in the interface between the user and the hard-
ware circuit.

5. Power Management. It provides the 3.3V supply voltage to the whole
system, as well as the bias (2.5V ) and reference (1.25V ) voltages. It drives
the turn on and shutdown of the integrated circuits to optimize power savings.
It turns off the device during charging, as required by law.
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Figure 4.2: Block Diagram.

4.2 Schematic diagram
Schematic diagram has been realized using Cadence OrCAD Capture. Again, the
diagram is organized in five sections:

• Analog Front End.

• ADC Section.

• Microcontroller.

• Peripherals.

• Power Management.
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4.2 – Schematic diagram

4.2.1 Analog Front End

Figure 4.3: 1st Derivation of analog front end section.
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Figure 4.4: 2nd Derivation of analog front end section.
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4.2 – Schematic diagram

Figures 4.3 and 4.4 show the analog path followed by the differential signals ac-
quired from the input electrodes. The first derivation represents lead I while the
second derivation represents lead II. It can be seen that the signals go through:

• An EMI filter.

• An instrument amplifier with a gain of 50.

• An integrator acting as a high pass filter.

• A chain of 3 RC low-pass filters with an overall cut-off frequency of 30Hz.

• A gain stage amplifying of a factor 8.

The overall gain has been set to optimize the sampling SNR without making signals
too much wide than exceeding the dynamics of the ADC.

4.2.2 ADC Section
This section contains the 24-bit Sigma Delta ADC and its clock. Using an 8MHz
clock, the ADC is capable of simultaneously sampling the two differential channels
with a sampling rate of 1300sps. With 24 bits and the reference voltage set to
2.5V , it offers a resolution of:

Q = Vref

2N
= 2.5V

224bit
= 149nV (4.1)

As the CMOS clock has a high power consumption, it embeds an enable pin.
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Figure 4.5: ADC Section.

4.2.3 Microcontroller

Figure 4.6: Microcontroller Section.
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4.2 – Schematic diagram

It follows a resume of the main pins of the microcontroller section:

• The ANT_MATCH pin is connected to the matching circuit of the patch
antenna.

• Pins 13 to 17 are used for SPI communication with the ADC.

• Pin 11 is connected to the internal ADC to sample the battery level and
obtain the battery percentage.

• Pins 5 and 6 are used to change the duty cycle of the LEDs reducing their
power consumption according to the requirements.

• Pin 18 is used to execute an interrupt to exit from low power states.

• Pin 12 is used to enable or disable ICs when necessary. It is useful to turn off
the high-power-consumption 8MHz clock of the ADC.

• SWDIO, SWDCLK and RESET_n are used to connect the microcontroller
to the SWD connector.

Several capacitors are used to decouple the pins of the microcontroller and two
external clock sources are used. Specifically, a 32MHz and a 32.768kHz crystals
are required.
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4.2.4 Peripherals

Figure 4.7: Peripherals Section.

This section includes all the communication elements:

• A push button to wake-up the microcontroller from low power states.

• A SWD connector to program and debug the circuit.

• An RF matching path and a patch antenna.

• Different electrodes connectors.

• Three LEDs.

LEDs values have been calculated with the following formula:

RLED = Vmax − Vnominal

Inominal

(4.2)
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4.2.5 Power Management Section

Figure 4.8: Power management section.
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This last section consists of different components:

• The MAX1555 battery charger connected to the power connectors.

• The MAX1759 voltage regulator to provide a stable voltage to the circuit.

• A reference generator to provide stable 2.5V and 1.25V to the analog sub-
part.

• An High Side MOS to disable the analog sub-part to save energy.

• A connector to attach the power source to recharge the battery.

• A slide button to detach the battery.

• A green LED.

The green Led is connected between the voltage provided by the USB charger and
the CHG pin of the MAX1555 to signal the user that the battery is charging.

4.3 Components selection

4.3.1 Microcontroller
The µC is the core of the system. It is in charge of:

• Reading ADC data through SPI.

• Monitoring battery status via I2C.

• Communicating with the smartphone using the Bluetooth antenna.

• Managing power savings driving sleep and shutdown modes of the various
ICs.

• Interfacing the user by means of light indicators (LEDs), push-buttons and
the SWD interface.

The project initially relied on the nRF52833 µC from Nordic Semiconductor. How-
ever, it has been replaced with the ST Microelectronic’s STM32WB30RG, as this
microcontroller offers equivalent features with a more user-friendly and flexible
IDE that supports the integration of an Artificial Neural Network developed with
TensorFlow.

62



4.3 – Components selection

STM32WB30RG

The STM32WB30RG multiprotocol, wireless device embeds a powerful and ultra-
low power radio compliant with Bluetooth® LE 5.3 specifications. It is designed
to be extremely low power, and it relies on the high-performance 32-bit Arm®
Cortex®-M4 RISC processor operating at a frequency up to 64MHz. The device
embeds a high-speed 512KB Flash and a 96KB SRAM memory. Direct data trans-
fers memory-peripherals and memory-to-memory are supported by fourteen DMA
channels.
Compared to the nRF52833 SoC, the STM32WB30RG offers a lower power con-
sumption and a more user-friendly IDE that allows the firmware integration of
an ANN developed with TensorFlow. All this at the expense of a slightly larger
occupied area on the PCB layout [30].

Main features

• 64MHz Arm Cortex-M4.

• 512KB Flash, 96KB SRAM.

• 6 different Low Power Modes.

• Bluetooth Low Energy 5.3.

• 32MHz SPI, I2C, UART, DMA, NFC.

• 12-bit ADCs.

• 6x timers (1x RTC, 3x General Purpose, 2x Low Power).

• 7x7 mm QFN48 Package.

Electrical characteristics (T @ 25◦C)

• Supply Voltage: 1.7V to 3.6V .

• Shutdown mode current: 13nA.

• Standby mode current: 600nA.

• Stop mode current: 2.1µA.

• Active mode current: up to 53µA/MHz.

• RF current: Rx 4.5mA / Tx (@0dBm) 5.2mA.
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• Up to 64MHz from a 32 MHz external crystal oscillator.

• External 32.768 kHz crystal oscillator.

• Working Temperature: −40 to +105◦C.

Pinout and Package Outline

Figure 4.9: STM32WB55RG UFQFPN pinout.

Reference Layout

Figure 4.10: STM32WB30RG reference layout.
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4.3.2 Analog front end
Instrumentation Amplifier - INA826AIDRGT

The Texas Instruments INA826AIDRGT is a single rail instrumentation amplifier
suitable for medical applications. The gain is set by means of a single feedback
resistor [7]. It is in charge of:

• Reducing the common mode noise coming from the input electrodes.

• Amplifying the ECG signal.

Main features

• Low Power Consumption.

• High Common-Mode Rejection.

• Single-Supply Operation.

• Reverse Current Protection when Power Switch Off.

• 8-pin SOP package.

Electrical characteristics (T @ 25◦C)

• Supply Voltage: 2.7V to 7.5V .

• Supply Current: 150µA.

• CMRR: 110dB (G = 10V/V , 50Hz).

• GBW: 34KHz (G = 10V/V ).

• Output swing: Vcc − 1.1V .
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Pinout and Package Outline

Figure 4.11: INA826AIDRGT SOP pinout.

Operational Amplifier - OPA4330

The OPA4330 from Texas Instruments is a low power, rail-to-rail output swing
amplifier. As it is a four parts-per-package operational amplifier, it compacts 4
different ICs in a single 8 pin VQFN package [9]. It is in charge of:

• Taking part in active filters (integrators).

• Amplifying the signals.

• Buffering different stages.

Main features

• Low Power Consumption.

• Low Quiescent Current.

• Single-Supply Operation.

• 8-pin VQFN package.

Electrical characteristics (T @ 25◦C)
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• Supply Voltage: 1.8V to 5.5V .

• Quiescent Current for amplifier: 35µA.

• CMRR: 110dB (10Hz).

• GBW: 350KHz (G = 1V/V ).

• Output swing: Vcc − 0.1V .

Pinout and Package Outline

Figure 4.12: OPA4330 VQFN pinout.

Electrodes connectors

Different alternatives have been taken into account for electrodes connectors. Elec-
trodes are hard to be soldered, that’s why it has been chosen to fix them on the
device and to create a contact with a spring connector.
The alternatives are listed below, but in the end, the choice felt on the shield finger
electrode.
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Main features

• Harwin S1791-42R Finger Gold Plated [6].

• Wurth 31161452070 Gold.

Pinout and Package Outline

Figure 4.13: Harwin S1791-42R and Wurth 331161452070 layout.

4.3.3 ADC Section
ADC - MCP3564

The Microhip MCP3564 is an 8 channels, 24-bit, delta-sigma analog-to-digital
converter with a programmable data rate up to 153ksps. Its acquisitions can be
performed either in single-ended (8 channels) or differential (4 differential channels)
mode. Acquisitions might be looped over a user-defined channel sequence. This
ADC is available in an ultra-small 3mm x 3mm UQFN-20 package and can operate
over an extended temperature range, from −40◦C to +125◦C. The MCP3564 is
in charge of acquiring signals coming from the two input derivations with a µV
resolution and a sampling frequency of 1300sps. Acquired data are then sent to
the µC via SPI [15].
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Main features

• Four Differential or eight SE input channels.

• 24-bit resolution.

• Programmable Data Rate up to 153.6ksps.

• Programmable Gain: 0.33x to 64x.

• Ultra-low Full Shutdown Current consumption.

• Internal Conversions Sequencer (SCAN mode) for automatic multiplexing of
input channels.

• Dedicated IRQ pin for easy synchronization.

• 20MHz SPI interface.

• 3mm x 3mm 20-Lead UQFN package.

Electrical characteristics (T ∈ [−40,125]◦C, CLK Frequency = 4.9152MHz )

• Operating Voltage (AVDD, DVD) up to 3.6V .

• Differential input Voltage range: ± Vref

Gain
V .

• Reference Voltage range: V +
ref − V −

ref up to AVDD.

• Operating Current,

– Analog: 1.3mA.
– Digital: 0.37mA.

• Full Shutdown Current,

– Analog: 0.83µA

– Digital: 2.4µA.

• Maximum Data Rate at full resolution: 4800Hz.

Pinout and Package Outline
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Figure 4.14: MCP3564 UQFN pinout.

Clock generator - 625L3I008M

The CTS 625L3I008M is a low cost, ultra-low voltage clock oscillator supporting
CMOS output. It is in charge of providing a stable reference clock for the MCP
ADC. When active, the clock generator sinks a lot of current. It is important to
keep it shut-down if not used [3].

Main features

• Fundamental and 3rd overtone crystal designs.

• Operating temperature between -40◦C and +85◦C

• Output-Enable pin.

Electrical characteristics (T @ 25◦C)

• Maximum operating Voltage: 4V .

• Maximum supply current,

– Active: 15mA.
– Standby: 10µA

• Quality factor: 10000 - 50000.
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Pinout and Package Outline

Figure 4.15: 625L3I008M pinout.

4.3.4 Peripherals
SWD connector - TC2030

The SWD Connector is used to program the microcontroller. To keep the layout as
compact as possible, the SWD connector consists in six simple conductive contact
pads. This way, it covers an area of only 5x5mm2. The programmer cable is known
as PLUG-OF-NAILS cable.

Pinout and Package Outline

Figure 4.16: TC2030 pinout.
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Antenna layout

In order to avoid matching problems related to the use of delicate chip antennas,
it has been chosen to implement a patch antenna. Such antenna ensures reliable
Bluetooth communication maintaining a compact layout [31].

Main features

• Compact design.

• Single feed.

Electrical characteristics

• Operating Frequency: 2.4-2.5GHz.

• Impedance: 50W.

• Averange Gain: 1.95dBi.

Reference Layout

Figure 4.17: Antenna Reference layout
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Push button - EVQPUK02K

The push button is in charge of waking up the controller from the deep sleep mode
[22].

Pinout and Package Outline

Figure 4.18: Push button pinout.

RGB LED - EAST1616RGBA4

The RGB LED highlights the charge status and operating conditions of the µC.
Its anodes are directly managed by the µC to control the power consumption by
varying the duty cycle.
Even if the RGB LEDs have different forward operating voltages and currents, it
has been assumed as maximum continuous current the lowest value of 6mA. Con-
sequently, the series resistors have been chosen considering the different forward
voltages of each colour and the different supply voltages applied to them [13]. The
mappings colour-status are:

• BLUE: is ON when the device is active.

• GREEN: is ON when the battery is charging.

• RED: is ON when the battery has low charge.
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Main features

• Small 6 pin package

• Individual anodes and cathodes

Electrical characteristics (T @ 25◦C)

• Maximum forward Voltage,

– R 2.4V .
– G 3.8V .
– B 3.8V .

• Maximum forward Current,

– R 6mA.
– G 10mA.
– B 10mA.

- - -

• Dominant Wavelength,

– R 624nm.
– G 525nm.
– B470nm.

Pinout and Package Outline

Figure 4.19: RGB LED pinout.
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4.3.5 Power Management Section
LiPo battery - HPL402323-2c-190mAh

The MikroE HPL402323 is a Li-Polymer Battery for low power portable devices
providing 3.7V and 190mA [16].

Electrical characteristics (T @ 25◦C)

• Connector: JST-SHR-02V-S.

• Nominal Voltage: 3.7V .

• Voltage at the end of discharge: 3.0V .

• Charging voltage: 4.2±0.03V .

• Capacity: 190mAH.

• Standard charge 0.5CA.

• Fast charge 1CA.

• Standard discharge 0.2CA.

Pinout and Package Outline

Figure 4.20: Li-Po Battery pinout.
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Battery Charger - MAX1555

The Maxim MAX1555 is in charge of charging the single-cell LiPo battery through
the USB source. It operates with input voltages up to 7V and it embeds the
CHG pin used to detach the supply when in charge. When CHG goes to a high-
impedance state, the battery is fully charged and the charge current falls below
50mA [10].

Main features

• Charge from USB and/or AC Adapter.

• Automatic switch over when AC Adapter is plugged IN.

• On-Chip thermal limiting simplifying board design.

• Charge status indicator.

• 5-pin Thin SOT23 package.

Electrical characteristics (T ∈ [0,85]◦C)

• DC Voltage range: 3.7V to 7.0V .

• USB Voltage range: 3.7V to 6.0V .

• DC to BAT Voltage range: 0.1V to 6.0V .

• BAT regulation Voltage: 4.158V to 4.242V .

• Max DC supply Current: 3mA.

• Max DC charging Current: 340mA.
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Pinout and Package Outline

Figure 4.21: MAX1555 SOT23 pinout.

Reference Layout

Figure 4.22: MAX1555 reference layout

Voltage Regulator - MAX1759

The Maxim MAX1759 generates a regulated output voltage from a single cell
LiPo battery. It provides a fixed voltage (3.3V ) to all the circuit, accepting an
input voltage up to 5.5V . It embeds a shutdown pin to turn off the device during
charging [11].
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Main features

• Regulated output Voltage,

– Fixed 3.3V
– Adjustable 2.5V to 5.5V).

• Shutdown mode.

• Load disconnected from input in shutdown.

• Short-Circuit protection and thermal shutdown.

• Small 10-Pin µMAX package.

Electrical characteristics (T ∈ [0,85]◦C)

• Input Voltage Range: 1.6V to 5.5V .

• Output Voltage: 3.17V to 3.43V .

• Minimum Output Current: 100mA.

• Quiescent Supply Current (Vin > 4V ): 90µA.

• Shutdown Supply Current: 5µA.

• Efficiency: 90%.

• Switching Frequency: 1.2-1.8MHz.
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Pinout and Package Outline

Figure 4.23: MAX1759 µMAX pinout.

Reference Layout

Figure 4.24: MAX1759 Reference layout

Voltage Reference - REF2025

The Texas Instruments REF2025 is in charge of providing two different voltage
references, 1.25V and 2.5V , to the analog circuitry. Since it is used as unipolar
supply voltage, it is useful to translate the signals around 1.25V. It also provides
the Reference voltage to the ADC. It embeds a shutdown pin [8].
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Main features

• Two outputs, V REF and V REF
2 , for convenient use in single-supply systems.

• High initial accuracy: ±0.05% (maximum).

• V REF and V BIAS tracking overtemperature .

• Microsize SOT23-5 package.

Electrical characteristics (T @ 25◦C)

• Supply Voltage: -0.6V to 6V .

• Low dropout voltage: 10mV .

• High output current: ±20mA.

• Low quiescent current,

– Active mode: 360µA.
– Shutdown mode: 5µA.

Pinout and Package Outline

Figure 4.25: REF2025 SOT23-5 pinout.
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Reference Layout

Figure 4.26: REF2025 Reference layout

High side MOSFET switch - BD2242G

The BD2242G is a low on-resistance high-side power switch MOSFET. It embeds
over-current detection, thermal shutdown and soft-start. The range of Current
limit threshold can be adjusted up to 1.7A [27]. It is in charge of reducing power
consumption during µC hibernation. An high side switch has been chosen as it
must deliver power to all the analog devices.

Main features

• Adjustable Current Limit Threshold: 0.2A to 1.7A.

• Output Discharge Function.

• Thermal Shutdown.

• Reverse Current Protection when Power Switch Off.

• Small 6-pin SSOP package.
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Electrical characteristics (T @ 25◦C)

• IN Operating Voltage: 2.8V to 5.5V .

• On Resistance: (VIN=5V ) 89mΩ(Typ).

• Adjustable Current Limit Threshold: 0.2A to 1.7A.

• Standby Current: 0.01µA (Typ).

Pinout and Package Outline

Figure 4.27: BD2242G SSOP pinout.
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Reference Layout

Figure 4.28: BD2242G Reference layout

Mechanical switch - TE Connectivity 1825232-1

The TE is a slide Switch in charge of turning on and off the device. It is a SPDT
Through Hole, Right Angle switch [2].

Pinout and Package Outline

Figure 4.29: Slide Switch pinout.
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4.3.6 Bill of Materials
Schematic parts have been characterized with custom properties in order to speed
up BOM generation. Specifically, the following properties have been added:

• Description;

• Distributor and Distributor Part Number;

• Manufacturer and Manufacturer Part Number;

• Unit Price;

The resulting total price of the bill of material is 70€ including tax.

4.4 Printed Circuit Board design
The PCB is very small as it must fit inside a wristwatch. They layout consists in
a circle with a radius of 2cm. Considering that the battery is placed under the
PCB, the thickness is 6mm.
Component’s density is high, and the analog part is cumbersome. Future devel-
opments may rely on a completely digital filtering.
The implementation of a double layer PCB would have been difficult. A tradi-
tional four layer design with ground and supply planes in the middle has not been
possible as well, as there is a high number of ground vias. In addition, the analog
part references to a different supply net, AVDD.
For these reasons, it has decided to make the PCB according to the following
stackup:

• Top Layer: analog front end and power unit.

• Layer 1: analog GND.

• Layer 2: digital GND.

• Bottom Layer: digital part (µC, ADC and peripherals)

Note that in practice the top layer actually faces down, right above the battery.

The antenna has been put on the upper part of the circuit, as close as possible to
the microcontroller to avoid any parasitics. Below the antenna, there is no ground
plane.
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The microcontroller has been placed at the center of the circuit to facilitate inter-
connections to other components.
The number of traces in the GND planes has been kept at minimum to avoid high
current density points. The two GND planes are elettrically connected.
The charger connector and the buttons have been positioned at the outline of the
layout to facilitate their use.
A large housing has been dedicated in front of the LiPo connector to ease the
connection.
The following pages show:

• Top layer: complete view and routing only.

• Layer 1: analog GND.

• Layer 2: digital GND.

• Bottom Layer: complete view and routing only.

• PCB renders Top and Bottom.

Figure 4.30: Top layer: complete view - routing only.
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Figure 4.31: Layer 1: GND.

Figure 4.32: Layer 2: GND.
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4.5 – Mockup

Figure 4.33: Bottom Layer: complete view - routing only

Figure 4.34: Renders: Top - Bottom

4.5 Mockup
This six-leads wearable device represents a breakthrough in ECG monitoring, rev-
olutionizing the way cardiovascular health is assessed outside of traditional clinical
settings. Its ergonomic design prioritizes user comfort and ease of use, ensuring
optimal adherence and long-term wearability.
After the PCB design, the mock-up is going to be realized. As anticipated, an
electrode will be placed in contact with the wrist, another one on the upper shell
and the last one under the strap, to be placed on the left leg for a complete six-
leads ECG.
Below is the final device concept made using Autodesk’s fusion360 CAD.
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Figure 4.35: Mock-up: smart wristband

Figure 4.36: Mock-up: smart wristband with charger
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Chapter 5

Firmware

This chapter focuses on firmware, written for the STM32WB30 microcontroller in
the C programming language.
The primary objective of this firmware is to facilitate the acquisition of high-quality
ECG signals, and to establish a reliable communication link with the smartphone.
To accomplish this, the firmware must effectively manage the communication be-
tween the analog front end, and the digital components of the device.

One of the key components is the 24-bit analog-to-digital converter (ADC), which
is responsible for the conversion of the analog ECG signal into a digital one. The
communication between the ADC and the µC occurs via Serial Peripheral Interface
protocol (SPI). The firmware must implement the necessary SPI functionalities to
enable efficient data transfer, ensuring accurate and reliable signal acquisitions.

Furthermore, the firmware plays a critical role in establishing and managing the
Bluetooth connection with the smartphone. This involves implementing the Blue-
tooth Low Energy protocol stack (BLE), which enables energy-efficient commu-
nication over short distances. In addition, the firmware must handle tasks such
as device discovery, connection establishment, and data transmission/reception,
adhering to the relevant Bluetooth profiles and specifications.
The development of firmware for a Bluetooth medical wearable device presents var-
ious challenges, from limited resources (memory and processing power), through
support for real-time data visualization on the smartphone, to data storage and
retrieval.

This chapter aims to dig into the technical aspects of firmware development, em-
phasizing the integration of Bluetooth communication, the management of the
analog front end via SPI, and the insurance of accurate and reliable acquisition of
ECG signals.
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It is through the development of efficient firmware that it is possible to advance
in the field of wearable healthcare technology, ultimately improving subject mon-
itoring and healthcare outcomes.

5.1 Code overview

As the device relies on the ST’s STM32WB30 microcontroller, a large part of the
initialization of hardware peripherals is performed using the STMCubeIDE, an
integrated development environment (IDE) provided by ST Microelectronics that
offers a wide range of features and tools to simplify the initialization of hardware
components.
STMCubeIDE provides a graphical interface and a toolchain (compiler and linker)
for the cross-compilation of embedded systems. It provides support to write the
code, compile, program and debug/run the target application.
This development environment also offers a device configuration tool called MX,
which takes care of generating the project (Makefile), the libraries, and the hard-
ware initialization procedures.
The source files of the generated project are then available in the environment,
and the resulting firmware is compatible with bare metal systems.
In these systems, the application is the only software on board. Therefore, a series
of start-up procedures are linked with the user application to initialize the hard-
ware.
In the FLASH, there are the interrupt vectors, the application code, and the con-
stants. In the RAM, there are the stack and the variables.
As there is no bootloader, all hardware initialization tasks must be performed by
the application itself, which performs the initialization of GPIO, SPI, Timer, and
of the internal ADC. In addition, the application is in charge of generating the
code for handling interrupts and microcontroller resources, and for configuring the
Bluetooth stack by means of special APIs enabling a fast management of Blue-
tooth connections, services, characteristics, and data exchange between the board
and connected devices.

90



5.1 – Code overview

Figure 5.1: STMCubeMX configuration and peripherals.

The chapter focuses more on the description of the functions and application-
dependent modules, implemented to obtain an harmonious operation of the sys-
tem’s various sub-parts.
It is important to understand that the user code is managed via a scheduler, called
SEQ (sequencer), which takes care of sequentially executing the tasks set by the
user according to different priorities [28].

The core modules that make up the firmware deal with 3 main aspects:

1. Management of the core operations and events.

2. Management of the ADC via SPI.

3. Management of the Bluetooth.
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Figure 5.2: Modules hierarchy.

5.2 Application core
While enabling of peripheral is performed by the STMCubeIDE development tool,
peripheral initialization takes places in the main.c file. The following figure lists
the init procedures making up the main file.

Figure 5.3: Main file functions.
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At power-up, the firmware takes care of setting up the hardware and the basic
functionalities. Variables are initialized, and tasks that will be executed are fed
into the scheduler. It is at this time that the init_PulsECG_core function is exe-
cuted.

The PulsECG_core module contains the body of the application. This module
takes care of orchestrating the operation of the device. There are basically two
tasks to be performed:

• Monitoring of the battery charge state.

• Starting and stopping the acquisition of ECG signals.

Upon reception of an operation from the central device via Bluetooth, just as a
write or a read, the module drives the sequencer to execute the correct function.
If the request is a battery read, the sequencer executes the send_BLevel function
once. This function sends via Bluetooth the battery charge percentage.
Notice that this value is periodically updated by initiating a battery voltage sam-
pling through the microcontroller’s internal ADC, as defined in the update_BLevel
function.
If the request is a read of the ECG signal, then a sequence of functions is executed:
start_stop_acquisition receives as input the time frame for which the acquisition
lasts. It enables the ADC’s clock and analog power supply, it adjusts the status
LED and it starts the acquisition of ECG signals by sending the appropriate op-
code to the ADC. This causes the acquire and sendSample functions to repeatedly
enter the scheduler for the entire duration of the acquisition.
As the name suggests, acquire receives the converted sample from the ADC via
SPI, while sendSample sends the samples, almost in real time, to the Central de-
vice.
Functions to be executed by the sequencer must be declared in the app_conf.h
file. In this way, an ID that maps the function in the scheduler can be defined.
There are two lists of IDs, one for tasks that require bluetooth and one for those
that do not communicate with it.
IDs allow to use the API provided by the scheduler to insert or remove functions
from the list of tasks to be executed.
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Figure 5.4: PulsECG_core file functions.

This module handles the operations that are performed by the device, but to obtain
the desired operations from the peripherals, it is necessary to format the requests
correctly. This is why the different operations pass through different modules:
SPI_communication, ADC_command, MCP3562 and custom_stm.

5.3 SPI interface
The Serial Peripheral Interface is one of the most common communication proto-
cols. It is widely adopted due to its simplicity, versatility, and high-speed capa-
bilities. It allows for the exchange of data between a master device (typically a
microcontroller or a microprocessor) and one or multiple slave devices (peripheral
devices such as sensors, displays, ADCs, DACs, memory chips, etc.).
SPI operates then in a master-slave architecture, where the master device initiates
and controls the communication. The master device generates clock pulses and
selects the slave device with which it wishes to communicate. The data transfer
occurs simultaneously in both directions (full-duplex), meaning that the master
can send data to the slave while receiving data from it, or vice versa.
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The SPI interface consists of four main lines:

• SCLK (Serial Clock). This line provides the clock signal generated by the
master device. The clock rate is configurable, and it determines the speed of
data transfer.

• MOSI (Master Out Slave In). This line is used by the master to send data
to the selected slave device. It carries the data bits serially, with each bit
synchronized with the clock signal.

• MISO (Master In Slave Out). This line is used by the master to receive data
from the slave device. Again, the slave sends data bits serially on this line,
synchronized with the clock signal.

• SS/CS (Slave Select/Chip Select). This line is used by the master to select
a specific slave device with which it wants to communicate. By activating
the SS/CS line for a particular slave, the master establishes a communication
channel with that device, deactivating all other slave devices.

SPI supports different configurations and settings, which can be tailored according
to the specific requirements of the embedded application. Some of the commonly
configurable parameters include:

• Clock Polarity (CPOL). It determines the idle state of the clock line. It can
be set either high or low, indicating whether the clock is idle when high or
low respectively.

• Clock Phase (CPHA). It determines the timing and shifting of data sampling.
It can be set either to the first or the second edge of the clock cycle.

• Bit Order. SPI supports two modes of data transmission: MSB (Most Signif-
icant Bit) first or LSB (Least Significant Bit) first. The selection depends on
the specific device data format.

• Data Frame Size. The frame size specifies the number of bits of each data
frame. Usually, 8 bits are transmitted, but it depends on the capabilities of
the devices which are involved in the communication.
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The following figure reports the settings used for the the SPI communication.

Figure 5.5: SPI configuration and timing diagram.

The module in charge of managing the SPI communication with the ADC is the
SPI_communication module. It implements the functions needed to send bit
sequences, read the bits received as a response or acknowledge and, if necessary,
convert them into a format understandable to the developer.

Figure 5.6: SPI_communication file functions.
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5.3.1 ADC configuration

Correct communication with the ADC is essential, but it is necessary to know
how to format the bit sequences sent via SPI, and the meaning of the sequences
of 1s and 0s sent. This information can be found on the device datasheet. By
carefully reading the specifications, it is possible to know which registers to write
and what to write into them. It follows an overview of the MCP registers and
their configuration.

• Configuration Registers (CONFIGx). They are used to configure various
settings of the ADC. The microcontroller uses them to set parameters such
as gain selection, operating mode, clock source, conversion mode, and filter
options. There are 4 configuration registers, each of which is 8 bits wide.

• Scan Register (SCAN). In SCAN mode, the device sequentially and automat-
ically converts a list of predefined differential inputs in a defined order. This
mode is useful for applications that require constant monitoring of defined
channels. This register is 24-bit.

• Data Register (ADCDATA). The Data Register holds the converted digital
sample. After a conversion is completed, the microcontroller can read the
Data Register to retrieve the acquired measurement for further processing
and analysis. Data can be formatted in 24 or 32 bits modes depending on the
DATA_FORMAT.

• Calibration Registers. The MCP3564 includes calibration registers that store
calibration values for various parameters just as offset and gain. These regis-
ters can be accessed and updated by the microcontroller during the calibration
process to ensure accurate and reliable measurements. There are 2 calibration
registers of 24 bits each [15].

The ADC_command module takes care of properly formatting the commands
to be sent and of arranging them in the correct sequence to achieve the desired
operation. In addition, the declaration file MCP3564.h includes all the opcodes
needed for the correct setting of the ADC registers.
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Figure 5.7: ADC_command file functions.

Figure 5.8: MCP3562 opcode.
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The following lines report an example of the command structure used to request
a write operation to the CONFIG0 register:

#d e f i n e MCP_ADDR_M ( uint8_t )64
#d e f i n e MCP_REG_CONFIG0 ( uint8_t ) (0 x1 << 2)
#d e f i n e MCP_TYPE_IW ( uint8_t )2
uint8_t cmd=0;
cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG0 | MCP_TYPE_IW) ;

5.4 Bluetooth LE

The last implemented communication protocol is the Bluetooth low energy. BLE
has emerged as a key wireless communication protocol for low-power, short-range
applications. It is particularly suited for battery-operated devices, such as wear-
able medical devices and IoT devices, where energy efficiency and data transmis-
sion with smartphones or other compatible devices are essential, offering a seamless
connectivity and data rate up to 2 Mbps.
The protocol operates in the 2.4 GHz ISM band, providing low-power connectivity,
and it uses frequency-hopping spread spectrum technology to mitigate interference
and ensure reliable communication.
The STM32WB architecture separates the BLE profiles and application, running
on the CPU1, from the real-time aspects residing in the BLE peripheral.
The BLE peripheral incorporates a CPU2 processor containing the stack which
handles the link layers up to the Generic Access Profile (GAP) layer. It also in-
corporates the physical 2.4 GHz radio. Instead, the application CPU1 collects and
computes the data to be transferred to the BLE [29].
BLE devices operate in two primary roles: the central role and the peripheral role.
The protocol supports short-range communication, typically up to 10 meters, de-
pending on the environment.
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Figure 5.9: Generic Attribute Profile.

Generic Attribute Profile (GATT)

The Generic Attribute Profile (GATT) in BLE manages the communication
between a client and a server device. GATT defines a hierarchical structure con-
sisting of services, characteristics, and descriptors to organize and exchange data.
The GATT client initiates requests to read or write data or subscribe to notifica-
tions/indications, and the GATT server responds accordingly.

Services and Characteristics

Services. Services in GATT represent a collection of related data and behaviors.
They define a specific functionality or feature of a device. Services can be prede-
fined by the Bluetooth or custom-defined by developers. Examples of predefined
services include the Heart Rate Service, Battery Service, and Device Information
Service. Each service has a unique 128-bit Universally Unique Identifier (UUID)
that identifies it.

Characteristics. Characteristics are the fundamental data elements within a
service. They represent a specific piece of data or a control point for the device.
Characteristics have properties, such as read, write, notify, and indicate, which
define how they can be accessed or modified. They also have a UUID to uniquely
identify them within a service.

Attribute Protocol (ATT). GATT uses the Attribute Protocol to manage the
exchange of data between the client and server devices. ATT defines the format
and rules for accessing and manipulating characteristics and other attributes. It
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uses Attribute Handles and Attribute Types (UUIDs) to identify and differentiate
attributes.

Descriptors. Descriptors provide additional information or configuration op-
tions for characteristics. They provide metadata about characteristics, such as
user-friendly descriptions, measurement units, or client configuration settings. De-
scriptors are optional and can be associated with a characteristic to enhance its
functionality or to provide contextual information.

In this specific case, the device is set up with a Server profile offering a customised
experience set as follows.

Figure 5.10: Generic Attribute Profile.

As it can be seen from the picture above, there are two services: Battery and ECG.

• The Battery service offers only one characteristic, charB, which is responsible
for receiving requests to read the battery status.

• The ECG service offers two characteristic:.

1. charSS takes care of receiving a write request with the time frame for
which the ECG signal is to be acquired.

2. charECG notifies the acquired samples to the central device and is char-
acterised by a much larger payload than the usual 20 bytes transmitted
as notification.

The management of requests from the Bluetooth central device and the exchange
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of information is managed by the custom_stm module, whose main functions
are shown below.

Figure 5.11: custom_stm file functions.

When an event is received, the Custom_STM_Event_Handler function is exe-
cuted. An ID is associated with the event. It maps the service and characteristic
to which the event belongs.
The ID is then compared with a switch against the possible verifiable events and,
depending on which characteristic generated it, certain functions are executed.
In the firmware, upon reception of a write to the charSS characteristic, the
start_stop_acquisition function of the PulsECG_core module is executed to
start or stop the acquisition of ECG signals.
In addition, an opcode is set to generate longer payloads, up to 247bytes. This is
done via the following lines of code:

This reduces the overhead transmitted with each packet and provides 10 times
more datarate to be able to send the sampled data in realtime without the need
to store it on the device. Moreover, the central device must be alerted to the new
payload size with the function:
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On the other hand, if a read request is received on the charB characteristic, the
send_BLevel handler of the PulsECG_core module is triggered, which calls the
Custom_STM_App_Update_Char function and passes it the updated battery
value.
This function takes care of updating the characteristic related to a certain service.
In fact, it is the same function that updates the characteristic charECG of the
service ECG.
The following lines show how the characteristics related to charB (20 bytes) and
charECG (200 bytes) are updated in the function Custom_STM_App_Update_Char.
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Chapter 6

Digital signal processing

In the realm of Electrocardiography, Digital Signal Processing techniques have be-
come essential in extracting meaningful information from raw ECG data, aiding
the detection and characterization of cardiac abnormalities.
This chapter focuses on the application of DSP techniques for ECG signal recon-
struction, starting from data retrieval from the peripheral device, via Bluetooth
using Python scripts, to digital filtering algorithms, with a special emphasis on
their implementation and effectiveness.
Leveraging on the versatility of the Bash command "bluetoothctl", it is possible to
establish a connection with the peripheral, retrieve the ECG data, and store that
data for further processing. This initial step of data retrieval sets the basis for the
subsequent DSP operations, enabling the reconstruction of the six different ECG
signals from the two acquired from the peripheral.
The reconstruction process involves DSP algorithms that employ mathematical
techniques to recreate signals, eliminate noise and highlight relevant features for
accurate interpretation. In addition, special attention is paid to the aspect of dig-
ital filtering, which is crucial for noise reduction and signal enhancement.
Digital filtering techniques serve as key tools for improving the accuracy and re-
liability of ECG signal reconstruction. By selectively attenuating or eliminating
unwanted noise components, while preserving the essential features of the ECG
waveform, digital filters contribute significantly to the improvement of diagnostic
capabilities. The chapter explores various types of digital filters, including low-
pass, high-pass, notch filters, FIR and convolution, discussing their principles and
implementation in Python. The effectiveness of these filters in reducing noise arti-
facts and enhancing the fidelity of the reconstructed ECG signals is demonstrated.
From the retrieval of ECG data via BLE to the digital signal filtering techniques,
this chapter aims to provide readers with a comprehensive understanding of the
DSP pipeline for ECG signal reconstruction.
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6.1 Signals retrieval

To display and process data on the central device, it is necessary to communicate
via Bluetooth with the wristband.
At the moment, communication is established via a python program. This pro-
gram uses the linux shell to call the "bluetoothctl" command and obtain data from
the device.
Python has several libraries for Bluetooth communication, but not all of them sup-
port BLE, and none of them support notifications reception with payloads greater
than 20bytes. For this reason, the bluetoothctl command has been used to obtain
the data via pipe and then process it.
The bluetoothctl command scans for nearby devices and, if there is a wristband,
a connection is estabilished. Notifications are enabled for the charECG feature of
the ECG service and a write command is sent, with payload equal to the desired
acquisition time, to the charSS feature of the same service. Afterwards, the pro-
gram listens and receives the sampled signals from lead I and II.
Of course, it is also possible to request a read to the Battery service to obtain
information on the charge state of the battery.
Once the samples have been retrieved, it is possible to proceed as introduced in
chapter 2.1.2. Having divided the samples into two distinct signals, lead I and lead
II, it is possible to apply a mathematical equation to obtain the remaining signals:
lead III, aVL, aVR and aVF.
As shown in the code snippet below, once all six signals have been obtained, fil-
tering can be applied to improve their representation.
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6.2 Digital filters

As for analog filtering, the primary objective of digital filtering in ECG processing
is to remove unwanted noise and artifact contributions while preserving the essen-
tial features of the ECG waveform. Various noise sources contribute to ECG signal
distortion: Powerline Interference, muscle activity, electrode movement, and mo-
tion artifacts, as comprehensively reported in chapter 2.3. These disturbances can
significantly degrade the signal quality and hinder accurate interpretation. Digital
filtering algorithms offer the ability to selectively attenuate or eliminate unwanted
noise components, offering a cleaner and more reliable ECG data.

It follows a detailed discussion of the different types of applied digital filters and
their contributions to the raw data of the six different derivations.
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6.2.1 Notch filter

The first type of filter which has been applied is a notch filter operating at a
frequency of 50Hz. Being a band-elimination filter operating over a very narrow
range of frequencies, a quality factor of 5 has been chosen.
This filter is introduced to eliminate residual contributions of interference from the
power supply in a frequency range already attenuated by analog filtering.

The snippet uses the iirnotch1 function from the scipy.signal module to design a
notch filter operating in the digital domain. The resulting numerator coefficients
are assigned to b_notch, and the denominator coefficients are assigned to a_notch.
These coefficients define the transfer function of the notch filter [25].
The filtfilt function applies the designed notch filter to the noisySignal. The filtfilt
function performs zero-phase digital filtering by applying the filter in both the
forward and reverse directions, canceling out phase distortion [24]. The resulting
filtered signal is returned as output.

6.2.2 Low pass filter

The second type of filter applied is a third order low pass filter operating at a
frequency of 30Hz. This filter has been introduced to reinforce the attenuation of
noise outside of the band of interest.

1It implements an Infinite Impulse Response, a type of digital filter that has feedback, resulting
in an impulse response that extends indefinitely. The output depends not only on the current
input but also on past inputs and outputs.
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The Butter function is called to design a Butterworth low pass digital filter. The
Butterworth filter is characterized by a maximally flat magnitude response in the
passband and a gradual roll-off in the stopband [23].
The filtfilt function is used to apply the filter to the input signal [24].

6.2.3 High pass filter
Similarly, a high-pass filter is applied to accentuate the work done by the analog
front end. The cut-off frequency is 0.5Hz, the order is 3 and it is a Butterworth
filter.

The butter function is called to design a high-pass Butterworth digital filter [23].
The filtfilt function is used to apply the designed filter to the input signal [24].
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6.2.4 Hanning convolution
The Hanning window acts as a weighting function that applies a smooth tapering
to the input signal. The window coefficients gradually increase from zero at the
edges to one in the center, forming a bell-shaped curve. This tapering minimizes
the abrupt changes at the edges of the input signal, reducing spectral leakage in
frequency analysis and mitigating artifacts caused by edge effects in convolution.
The convolution operation combines each element of the Hanning window with
the corresponding elements of the input signal, emphasizing the central portion of
the window where the coefficients are higher. This procedure mitigates the effect
of sudden, low-amplitude variations, such as noise, and contributes to obtain a
cleaner, smoother signal.

The ‘windowSize’ parameter of the ‘Hanning_convolution’ function’s sizes the
Hanning window, which determines the length of the filter.
The Hanning window is generated using the ‘np.hanning(windowSize)’ function.
The Hanning window is a symmetric windowing function that tapers the edges of
the input signal to reduce artifacts in the frequency domain.
The window coefficients are then normalized to ensures that the overall gain of
the filter remains approximately unitary.
The ‘np.convolve’ function is used to perform a linear convolution between the nor-
malized Hanning window and the input signal [19]. The ‘mode=’valid” parameter
ensures that the output size matches the valid region of the convolution, excluding
any edge effects.

6.2.5 Moving average
A moving average filter is a simple yet effective technique used for smoothing
signals, removing high-frequency noise and emphasize the underlying trends, useful
to extract the ECG signals features.
The moving average filter works by averaging a set of adjacent samples in the
input signal to produce the filtered output. This filter also smooths out the signal
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by reducing the impact of rapid fluctuations or high-frequency components.
The cumulative sum operation accumulates the values of the input signal, where
each element in the resulting array represents the sum of all preceding samples.
This cumulative sum is used to efficiently calculate the moving average by taking
the difference between cumulative sums of shifted vectors.
Dividing the calculated sum by ‘n’ provides the average value for the window,
effectively smoothing the input signal.

The ‘np.cumsum’ function calculates the cumulative sum of the input signal. The
resulting array contains the cumulative sum values at each index [20].
The second line calculates the difference between the cumulative sums of the vec-
tor shifted by ‘n’ positions. This operation effectively computes the sum of ‘n’
consecutive samples starting from the ‘n’th position.
The last line divides the calculated sum by ‘n’ to obtain the moving average for
each corresponding window.

6.2.6 Savitzky-golay filter

The Savitzky-Golay filter performs a sort of local polynomial regression for smooth-
ing the input signal. It estimates the local trend of the data within each window
by fitting a polynomial of the specified order to the data points.
By using least-squares regression, the filter determines the polynomial coefficients
that provide the best fit to the local data points. The polynomial coefficients are
then used to compute the smoothed output values.
The Savitzky-Golay filter is particularly useful for smoothing signals while preserv-
ing important features, such as peaks or edges, within the data. It can effectively
reduce noise and remove high-frequency variations while maintaining the overall
shape and characteristics of the signal.
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The code first checks if the window length is specified, then, if the length is zero or
an even number, the length is incremented by 1 to ensure an odd window length
is used, as the Savitzky-Golay filter requires an odd window length.
Next, the savgol_filter function applies the Savitzky-Golay filtering algorithm to
the input signal, fitting a polynomial of the specified order to the data within
each window. In this way, the polynomial coefficients are determined, using least-
squares regression, and then the smoothed output signal is returned [26].
Its contribution is very influential so it will not be implemented definitively but
rather can be thought of as a beautification filter.

6.3 Final results
This section presents the acquisitions of the six ECG signals for five different sub-
jects. The acquisitions were carried out with the device studied so far on internal
volunteer members of the research team.
The plots show the signals filtered through the analog front end, sampled with
the 24-bit ADC, and transmitted real time to the central device via BLE. Signals
are then processed in order to obtain all six leads and improve their readability
through additional digital filtering.
Signals acquired with the prototype come from different subjects. As it can be ob-
served, some waveforms show electrodes motion artifacts, but the overall achieved
results are acceptable.
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6.3.1 Subject 1
Male, age 25, good health.

Figure 6.1: Subject 1 ECG.
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6.3.2 Subject 2
Female, age 23, good health, suspected extrasystole detected on lead II and III.

Figure 6.2: Subject 2 ECG.
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6.3.3 Subject 3
Male, age 33, good health.

Figure 6.3: Subject 3 ECG.
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6.3.4 Subject 4
Female, age 30, good health.

Figure 6.4: Subject 4 ECG.
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6.3.5 Subject 5
Female, age 62, good health.

Figure 6.5: Subject 5 ECG.
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Chapter 7

Validation and Conclusion

The development of the thesis project went through several aspects, from the study
of the hidden mathematical relationships among the different derivations, to the
electronic design of a device capable of acquiring and reconstructing these rela-
tions.
An important step in the design has been the realization of a prototype to test
the front-end, allowing to study the impact of the different filters on the acquired
signal. This made it possible to become acquainted with the Cadence OrCAD
design tools, and to develop skills to optimize and speed up subsequent designs.
The prototype board has been used extensively. Having determined the best setup,
it has been possible to interconnect two identical front ends to acquire two leads
in parallel. This way, it has been possible to test a setup similar to that of the
final device, allowing the firmware to be set in advance. Such firmware correctly
configured the operation of the ADC to obtain a preview of the six leads, starting
from the two acquired by the front-end.
All this has been achieved connecting the front-end to the NUCLEO-WB55RG
development board by means of jumpers. The dev kit offered the possibility of
testing the Bluetooth connectivity of the STM32WB55 microcontroller, very sim-
ilar to the one included in the final design of the project.
It has been also possible to test the sending procedure of acquired data to the
client, via Bluetooth. This further phase involved the implementation and opti-
mization of the bluetooth firmware code to send the acquired samples in real time,
via notifications, with a payload extended to 200 bytes.
Following this phase, it has been necessary to implement a solution for retrieving
and displaying the acquired data. Not having an up-to-date application for the
visualization of six leads, it has been decided to write a Pyhon script to establish
a Bluetooth connection with the device and retrieve the transmitted data. This
step posed further difficulties, as the Python libraries do not offer the possibility
of handling Maximum Transfer Units (MTUs) larger than 20bytes. But, as stated
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earlier, this has been overcome using the Bash ’bluetoothctl’ command to obtain
and display the complete packets.
At the end of this process, it has been possible to retrieve the data and process
and filter it digitally to display the six acquired leads.

7.1 Testing
The testing phase implied the acquisition of cardiac signals from different subjects,
volunteer members of the research team. The acquired signals were then compared
with those reported by other devices on the market.
Specifically, the signals were compared with a medical electrocardiograph, and
with the only device, currently on the market, that can offer a six leads ECG
reading, the KardiaMobile [1].
The results shown below were acquired with the provisional test setup. Further
improvement in performance are to be expected from the implementation of the
final device.
It must kept in mind that the acquisitions were made simultaneously1 with the
medical electrocardiograph, but deferred with Kardia.

1With a possible time shift of few second.
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•Comparison of professional electrocadiograph with thesis proto-
type:

Figure 7.1: Professional electrocadiograph (left) vs thesis prototype (right).
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•Comparison of KardiaMobile with thesis prototype:

Figure 7.2: KardiaMobile (left) vs thesis prototype (right).
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As it can be seen from a qualitative point of view, results look very similar to
those reported by the professional electrocardiograph.

It is possible to proceed with a numerical analysis of the reported results, consid-
ering the parameters of primary importance.
The morphology of the QRS in both cases is narrow, lasting less than 100 ms,
indicating normal ventricular conduction.
The peak-to-peak amplitude of the QRS complex is consistent, with values re-
ported by the prototype being approximately 5% greater than those of the profes-
sional device, on both leads acquired.
The morphology of the T wave is coherent, with QT duration around 360 ms,
while the amplitude reported by the prototype is 10% greater than the reference
values.
Measuring the distance between two R waves, the medical device reports a heart
rate of 67 bpm while the prototype reports 75 bpm, an unusual discrepancy, but
the reported window is too short for an accurate definition of heart rate.

Comparison with Kardia yields comparable results, but there are differences.
The graph shows the comparison between Kardia and the prototype while the
numerical analysis refers to the signals reported by the professional electrocardio-
graph.
The morphology of the QRS is narrow in both cases, extremely narrow in the
Kardia which shows a duration close to 40 ms.
The peak-to-peak amplitude of the QRS complex is inconsistent, with values re-
ported by Kardia being approximately 100% greater than those of the professional
device, on all leads except aVL.
T wave morphology is coherent, with QT duration around 360 ms, while the am-
plitude reported by Kardia is about 20% greater.
Measuring the distance between two R waves, the medical device reports a heart
rate of 67 bpm while Kardia reports 77 bpm, again the discrepancy is insignificant
and the reported window is too short for an accurate definition of heart rate.

From this comparison it can be supposed that KardiaMobile introduces a strong
signal beautification that can lead to variations in the displayed signal.
Having said this, further comparison among the three instruments need to be
carried out in order to draw reliable conclusions. And it should be remembered
that the acquisitions with KardiaMobile were made in a later moment.

123



Validation and Conclusion

7.2 Future Perspectives
At this point, not having practically realized the designed device, there is ample
room for future improvements.
It is possible to identify at least three main areas in which improvements can be
brought into the project:

• Future Hardware developments: leaving aside the realisation of the device
itself, other sensors can be implemented to make it more comprehensive.
Examples are PPG, temperature or motion sensors.

• Future Firmware developments: firmware can be improved introducing ef-
fective management of low power states of the device, and also leveraging
on signal processing techniques via AI for advanced diagnosis methodologies,
thus establishing the device in the edge AI sector.

• Future App developments: it will be necessary to develop an application
capable of handling the reception of two and/or six ECG signals in parallel
(depending on whether the reconstruction of the signals is done by the app
or the device itself).

Furthermore, it will be possible to implement the calculation of blood pressure
with a non-invasive method thanks to other sensors integrated on the device.

7.3 Conclusions
The aim of this thesis has been to create a novel device capable of providing a
six-lead medical ECG in a non-invasive way.
During the development board testing phase, the design of the final device has
been carried out: it integrates what has been already implemented on the test
board, that is the ST microcontroller and the entire I/O and power management
subsystem, in a very small area.
Although it has been possible to develop the code, design the board and retrieve
the components required for assembly, the development has been halted and it has
not been possible to obtain the PCB in time.
However, the results obtained with an extemporaneous setup are no less valid.
On the contrary, the results obtained in this way are satisfactory. This allows to
assume that they can only improve if obtained by means of a more robust and
structured solution.
In conclusion, there are all the prerequisites for the future development and real-
ization of the device.
Such device would offer a new way of monitoring subjects, reducing the pressure
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on the hospital system, decreasing the need for hospital visits and enabling con-
tinuous remote monitoring by caregivers.
It would represent a new starting point for the optimization and integration of ever
more comprehensive and accurate diagnostic technologies in the new and vibrant
field of edge AI.
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Appendix A

Firmware code

A.1 main.c
main.c mercoledì 31 maggio 2023, 14:56

1 /* USER CODE BEGIN Header */
2 /* USER CODE END Header */
3 /* Includes ------------------------------------------------------------------*/
4 #include "main.h"
5
6 /* Private includes ----------------------------------------------------------*/
7 /* USER CODE BEGIN Includes */
8 #include "custom_app.h"
9 #include "app_conf.h"

10 #include "PulsECG_core.h"
11
12 ADC_HandleTypeDef hadc1;
13
14 IPCC_HandleTypeDef hipcc;
15
16 RTC_HandleTypeDef hrtc;
17
18 SPI_HandleTypeDef hspi1;
19
20 UART_HandleTypeDef huart1;
21
22 /* USER CODE BEGIN PV */
23
24 /* USER CODE END PV */
25
26 /* Private function prototypes -----------------------------------------------*/
27 void SystemClock_Config(void);
28 void PeriphCommonClock_Config(void);
29 static void MX_GPIO_Init(void);
30 static void MX_IPCC_Init(void);
31 static void MX_RF_Init(void);
32 static void MX_RTC_Init(void);
33 static void MX_ADC1_Init(void);
34 static void MX_SPI1_Init(void);
35 static void MX_USART1_UART_Init(void);
36
37
38 int main(void)
39 {
40  
41   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
42   HAL_Init();
43   /* Config code for STM32_WPAN (HSE Tuning must be done before system clock 

configuration) */
44   MX_APPE_Config();
45
46   /* Configure the system clock */
47   SystemClock_Config();
48
49 /* Configure the peripherals common clocks */
50   PeriphCommonClock_Config();
51
52   /* IPCC initialisation */
53    MX_IPCC_Init();
54
55   /* Initialize all configured peripherals */
56   MX_GPIO_Init();
57   MX_RF_Init();
58   MX_RTC_Init();
59   MX_ADC1_Init();
60   MX_SPI1_Init();
61   MX_USART1_UART_Init();
62   /* USER CODE BEGIN 2 */
63   /* USER CODE END 2 */
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64
65   /* Init code for STM32_WPAN */
66   MX_APPE_Init();
67
68   /* Infinite loop */
69   /* USER CODE BEGIN WHILE */
70
71   uint32_t tempo=HAL_GetTick();
72   uint8_t tmp=1;
73   char uart_buf[30];
74   int uart_buf_len;
75   uart_buf_len =sprintf(uart_buf, "\tHello_v3\t\r\n");
76   HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len,1000);
77
78   //All'accensione eseguire lampeggio led di benvenuto es 10 lampeggi veloci per 

notificare accensione
79   HAL_Delay(1);
80
81   init_PulsECG_core();
82
83   while (1)
84   {
85     /* USER CODE END WHILE */
86     MX_APPE_Process();
87
88     /* USER CODE BEGIN 3 */
89
90   }
91   /* USER CODE END 3 */
92 }
93
94
95 /**
96   * @brief ADC1 Initialization Function
97   * @param None
98   * @retval None
99   */

100 static void MX_ADC1_Init(void)
101 {
102
103   ADC_ChannelConfTypeDef sConfig = {0};
104
105   /** Common config
106   */
107   hadc1.Instance = ADC1;
108   hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
109   hadc1.Init.Resolution = ADC_RESOLUTION_8B;
110   hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
111   hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
112   hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
113   hadc1.Init.LowPowerAutoWait = DISABLE;
114   hadc1.Init.ContinuousConvMode = DISABLE;
115   hadc1.Init.NbrOfConversion = 1;
116   hadc1.Init.DiscontinuousConvMode = DISABLE;
117   hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
118   hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
119   hadc1.Init.DMAContinuousRequests = DISABLE;
120   hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
121   hadc1.Init.OversamplingMode = DISABLE;
122   if (HAL_ADC_Init(&hadc1) != HAL_OK)
123   {
124     Error_Handler();
125   }
126
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127   /** Configure Regular Channel
128   */
129   sConfig.Channel = ADC_CHANNEL_7;
130   sConfig.Rank = ADC_REGULAR_RANK_1;
131   sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
132   sConfig.SingleDiff = ADC_SINGLE_ENDED;
133   sConfig.OffsetNumber = ADC_OFFSET_NONE;
134   sConfig.Offset = 0;
135   if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
136   {
137     Error_Handler();
138   }
139   /* USER CODE BEGIN ADC1_Init 2 */
140
141   /* USER CODE END ADC1_Init 2 */
142
143 }
144
145
146 /**
147   * @brief SPI1 Initialization Function
148   * @param None
149   * @retval None
150   */
151 static void MX_SPI1_Init(void)
152 {
153
154   hspi1.Instance = SPI1;
155   hspi1.Init.Mode = SPI_MODE_MASTER;
156   hspi1.Init.Direction = SPI_DIRECTION_2LINES;
157   hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
158   hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
159   hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
160   hspi1.Init.NSS = SPI_NSS_SOFT;
161   hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
162   hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
163   hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
164   hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
165   hspi1.Init.CRCPolynomial = 7;
166   hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
167   hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
168   if (HAL_SPI_Init(&hspi1) != HAL_OK)
169   {
170     Error_Handler();
171   }
172
173 }
174
175 /**
176   * @brief GPIO Initialization Function
177   * @param None
178   * @retval None
179   */
180 static void MX_GPIO_Init(void)
181 {
182   GPIO_InitTypeDef GPIO_InitStruct = {0};
183
184   /* GPIO Ports Clock Enable */
185   __HAL_RCC_GPIOC_CLK_ENABLE();
186   __HAL_RCC_GPIOB_CLK_ENABLE();
187   __HAL_RCC_GPIOA_CLK_ENABLE();
188   __HAL_RCC_GPIOD_CLK_ENABLE();
189
190   /*Configure GPIO pin Output Level */
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191   HAL_GPIO_WritePin(GPIOB, LED_B_Pin|LED_R_Pin|LD2_Pin|LD3_Pin
192                           |LD1_Pin, GPIO_PIN_RESET);
193
194   /*Configure GPIO pin Output Level */
195   HAL_GPIO_WritePin(GPIOA, EN_ANAL_Pin|CS_ADC_n_Pin, GPIO_PIN_RESET);
196
197   /*Configure GPIO pins : LED_B_Pin LED_R_Pin LD2_Pin LD3_Pin
198                            LD1_Pin */
199   GPIO_InitStruct.Pin = LED_B_Pin|LED_R_Pin|LD2_Pin|LD3_Pin
200                           |LD1_Pin;
201   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
202   GPIO_InitStruct.Pull = GPIO_NOPULL;
203   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
204   HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
205
206   /*Configure GPIO pins : EN_ANAL_Pin CS_ADC_n_Pin */
207   GPIO_InitStruct.Pin = EN_ANAL_Pin|CS_ADC_n_Pin;
208   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
209   GPIO_InitStruct.Pull = GPIO_NOPULL;
210   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
211   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
212
213   /*Configure GPIO pin : DRY_n_Pin */
214   GPIO_InitStruct.Pin = DRY_n_Pin;
215   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
216   GPIO_InitStruct.Pull = GPIO_PULLUP;
217   HAL_GPIO_Init(DRY_n_GPIO_Port, &GPIO_InitStruct);
218
219   /*Configure GPIO pin : WKUP_BTN_Pin */
220   GPIO_InitStruct.Pin = WKUP_BTN_Pin;
221   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
222   GPIO_InitStruct.Pull = GPIO_NOPULL;
223   HAL_GPIO_Init(WKUP_BTN_GPIO_Port, &GPIO_InitStruct);
224
225   /*Configure GPIO pin : B1_Pin */
226   GPIO_InitStruct.Pin = B1_Pin;
227   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
228   GPIO_InitStruct.Pull = GPIO_PULLUP;
229   HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
230
231   /*Configure GPIO pins : PA11 PA12 */
232   GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12;
233   GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
234   GPIO_InitStruct.Pull = GPIO_NOPULL;
235   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
236   GPIO_InitStruct.Alternate = GPIO_AF10_USB;
237   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
238
239   /*Configure GPIO pins : B2_Pin B3_Pin */
240   GPIO_InitStruct.Pin = B2_Pin|B3_Pin;
241   GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
242   GPIO_InitStruct.Pull = GPIO_NOPULL;
243   HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
244
245 }
246
247
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PulsECG_core.h mercoledì 31 maggio 2023, 12:12

1 /*
2  * PulsECG_core.h
3  *
4  *  Created on: Apr 27, 2023
5  *      Author: marco
6  */
7
8 #ifndef APP_PULSECG_CORE_H_
9 #define APP_PULSECG_CORE_H_

10
11 #include <ADC_command.h>
12 #include <SPI_communication.h>
13 #include "CallBack.h"
14 #include "custom_stm.h"
15 #include "custom_app.h"
16 #include "stm32_seq.h"
17
18
19 #define ADC_BYTES 1000
20 #define NOTIFY_PAYLOAD 200
21
22 static uint32_t duration, t_start, BTime; 
23 static uint8_t BLevel, overflow;
24 static uint8_t bool_ECGreading, bool_BATreading, bool_already_read;
25 static uint8_t ADCDATA[ADC_BYTES]; 
26 static uint16_t index_1, index_2, tot_sample;
27 extern uint16_t tmp_BT;
28 static uint32_t NotifyECGval;
29
30
31 void init_PulsECG_core(void);
32 void update_BLevel(void);
33 void send_BLevel(void);
34 void start_stop_acquisition(uint8_t tempo);
35 void arm_board(void);
36 void disarm_board(void);
37 void acquire(void);
38 void sendSample(void);
39
40 void BT_config(void);
41
42
43 #endif /* APP_PULSECG_CORE_H_ */
44
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PulsECG_core.c mercoledì 31 maggio 2023, 12:07

1 /*
2  * PulsECG_core.c
3  *
4  *  Created on: Apr 27, 2023
5  *      Author: marco
6  */
7 #include "PulsECG_core.h"
8
9

10
11 void init_PulsECG_core(void){
12
13 BLevel=0;
14 BTime=0;
15 NotifyECGval=0;
16 bool_BATreading=0;
17 bool_ECGreading=0;
18 bool_already_read=0;
19 index_1=0, index_2=0, overflow=0, tot_sample=0;
20 duration=0;
21 t_start=0;
22 for(int i=0; i<ADC_BYTES;i++) ADCDATA[i]=0;
23
24 //Register and start GET_BLEVEL task
25 UTIL_SEQ_RegTask(1<<CFG_TASK_GET_BLEVEL, CFG_SCH_PRIO_0, get_BLevel);
26 UTIL_SEQ_SetTask(1<<CFG_TASK_GET_BLEVEL, CFG_SCH_PRIO_0);
27
28 //Register ACQUIRE task
29 UTIL_SEQ_RegTask(1<<CFG_TASK_ACQUIRE, CFG_SCH_PRIO_0, acquire);
30
31 //Register SENDSAMPLE task
32 UTIL_SEQ_RegTask(1<<CFG_TASK_SENDSAMPLE, CFG_SCH_PRIO_0, sendSample);
33 }
34
35 /*
36  * Va inserita e attivata subito nello scheduler
37  */
38 void get_BLevel(void){
39
40 if(BTime==0 || HAL_GetTick() - BTime > 60000){
41 bool_BATreading=1;
42 BTime = HAL_GetTick();
43 HAL_ADC_Start(&hadc1);
44
45 }
46 if(bool_BATreading && HAL_ADC_PollForConversion(&hadc1,1)==HAL_OK){
47 bool_BATreading =0;
48 BLevel=(uint8_t)HAL_ADC_GetValue(&hadc1);
49 }
50 UTIL_SEQ_SetTask(1<<CFG_TASK_GET_BLEVEL, CFG_SCH_PRIO_0);
51 }
52
53
54 /*
55  * L'acquisizione viene fatta periodicamente nel SEQUENCER con get_BLevel
56  * Es: all'avvio, all'uscita da sleep mode, ogni minuto se non in sleep ecc..
57  * Quando invece, asincronamente, si riceve una richiesta di lettura della 

batteria,
58  * viene richiamata la funzione send_BLevel e si invia il valore.
59  */
60 void send_BLevel(void){
61 //Per inviare valore batteria
62 Custom_STM_App_Update_Char(CUSTOM_STM_CHARB, &BLevel);
63 }
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64
65
66 /*
67  * AVVIO:
68  * -Abilitare alimentazione analogica e clock ADC
69  * -Regolare LED stato
70  * -Avviare acquisizione ADC
71  * -Solo all'avvio resetto l'index (Allo stop no perchè il BT deve ancora inviare 

ultimi dati)
72  * STOP:
73  * -Disabilitare alimentazione analogica e clock ADC
74  * -Regolare LED stato
75  * -Terminare ADC
76  *
77  * La funzione è eseguita alla ricezione di una richiesta di acquisizione da BT.
78 */
79 void start_stop_acquisition(uint8_t tempo){
80
81 //Se ricevo scrittura mentre non sto acquisendo avvio acquisizione
82 //Se ricevo scrittura mentre sto acquisendo, stoppo
83
84 if(!bool_ECGreading){
85 //BT_config();
86
87 //Avvio acquisizione
88 //Inserisco task nel scheduler
89 duration=tempo*1000;
90 arm_board();
91 t_start=HAL_GetTick();
92 adc_continous_read();
93
94 }else{
95
96 //Stoppo acquisizione
97 //Rimuovo task dal scheduler
98 disarm_board();
99

100 }
101 }
102
103
104 void arm_board(){
105
106 tmp_BT=0, tot_sample=0;
107
108 bool_ECGreading=1;
109 index_1=0, index_2=0, overflow=0;
110 HAL_GPIO_WritePin(EN_ANAL_GPIO_Port, EN_ANAL_Pin, GPIO_PIN_SET);
111 HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
112
113 adc_setup();
114
115 UTIL_SEQ_SetTask(1 << CFG_TASK_ACQUIRE, CFG_SCH_PRIO_0);
116 UTIL_SEQ_ResumeTask(1 << CFG_TASK_ACQUIRE);
117 UTIL_SEQ_SetTask(1 << CFG_TASK_SENDSAMPLE, CFG_SCH_PRIO_0);
118
119 char uart_buf[30];
120 int uart_buf_len;
121 uart_buf_len =sprintf(uart_buf, "\tBoard armed.\t\r\n");
122 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len,1000);
123
124 }
125
126
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127 void disarm_board(){
128 bool_ECGreading=0;
129 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
130 HAL_GPIO_WritePin(EN_ANAL_GPIO_Port, EN_ANAL_Pin, GPIO_PIN_RESET);
131 HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
132
133 UTIL_SEQ_PauseTask( 1 << CFG_TASK_ACQUIRE );
134
135 char uart_buf[50];
136 int uart_buf_len;
137
138 // CFG_TASK_SENDSAMPLE is stopped automatically when has finished the buffer
139
140 }
141
142
143
144 // This function doesn't use the HCI
145 void acquire(void){
146
147
148 if(HAL_GetTick() - t_start < duration){
149
150 //Controllo se ci sono dati pronti da essere acquisiti (e inviati via BT)
151
152 if(HAL_GPIO_ReadPin(DRY_n_GPIO_Port, DRY_n_Pin)==0 && bool_already_read==0)

{
153
154 if(index_1>=ADC_BYTES){
155 overflow++;
156 index_1=0;
157 HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);
158 }
159
160 tot_sample++;
161 HAL_SPI_Receive(&hspi1, (uint8_t *)&ADCDATA[index_1], 4, 100);
162 index_1 +=4;
163 bool_already_read=1;
164 }
165
166 if(HAL_GPIO_ReadPin(DRY_n_GPIO_Port, DRY_n_Pin)==1 && bool_already_read==1 

) bool_already_read=0;
167
168 }
169 else disarm_board();
170
171 UTIL_SEQ_SetTask(1<<CFG_TASK_ACQUIRE, CFG_SCH_PRIO_0);
172 }
173
174
175 // This function uses the HCI
176 // CFG_TASK_SENDSAMPLE is stopped automatically when has finished to send the 

buffer
177 void sendSample(void){
178
179 //Ad ogni iterazione invio un dato via BT e incremento index_2
180
181 if (index_1!=0 && index_1%NOTIFY_PAYLOAD==0){
182 (uint8_t)Custom_STM_App_Update_Char( CUSTOM_STM_CHARECG, (uint8_t 

*)&ADCDATA[(index_1/NOTIFY_PAYLOAD-1)*NOTIFY_PAYLOAD] ); //UPDATE CHAR IS USED 
TO NOTIFY

183
184 }
185
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186 if( bool_ECGreading==1) UTIL_SEQ_SetTask(1 << CFG_TASK_SENDSAMPLE, 
CFG_SCH_PRIO_0);

187
188 }
189
190
191
192
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ADC_command.h mercoledì 31 maggio 2023, 12:12

1 /*
2  * ADC.h
3  *
4  *  Created on: Nov 19, 2022
5  *      Author: marco
6  */
7
8 #ifndef INC_ADC_COMMAND_H_
9 #define INC_ADC_COMMAND_H_

10
11 #include <MCP3562.h>
12 #include <SPI_communication.h>
13 #include "CallBack.h"
14
15 void adc_setup(void);
16
17 void adc_reset();
18
19 void adc_set_CONFIG0(int w_val);
20
21 void adc_set_CONFIG3(int w_val);
22
23 void adc_read_CONFIG1();
24
25 void adc_set_CONFIG1(int w_val);
26
27 void adc_set_MUX();
28
29 void adc_set_SCAN();
30
31 void adc_get_value(int mode, int seconds);
32
33 void adc_start_restart();
34
35 void adc_get_calibration_offset();
36
37 #endif /* INC_ADC_COMMAND_H_ */
38
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ADC_command.c mercoledì 31 maggio 2023, 12:05

1 /*
2  * ADC.c
3  *
4  *  Created on: Nov 19, 2022
5  *      Author: marco
6  */
7
8 #ifndef SRC_ADC_C_
9 #define SRC_ADC_C_

10
11 #include <ADC_command.h>
12
13 static uint8_t cmd=0, write_val=0;
14
15
16 void adc_continous_read(void){
17
18 uint8_t cmd = (cmd | MCP_ADDR_M | MCP_REG_ADCDATA | MCP_TYPE_SR );
19
20 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
21 HAL_SPI_Transmit(&hspi1, (uint8_t *)&cmd, 1, 100);
22
23 }
24
25
26 void adc_setup(void){
27 adc_reset();
28 //adc_start_restart();
29
30 adc_set_CONFIG0(-1);
31 adc_set_CONFIG1(-1); // OSR = 1024 = 0x14
32 //adc_read_CONFIG1();
33
34 adc_set_CONFIG3(0xD0); //0xD2 for continous read
35 //adc_set_MUX();
36 adc_set_SCAN();
37 adc_start_restart();
38 }
39
40
41 void adc_reset(){
42     char cmdName[32]="RESET"; 
43
44     cmd=0;
45 cmd = (cmd | MCP_ADDR_M | MCP_RESET); // COMMAND 01.111000
46
47     send_command(cmdName,32,cmd);
48 }
49
50
51
52 void adc_set_CONFIG0(int w_val){
53
54     char cmdName[32]="CONFIG0"; 
55     cmd=0; write_val=0;
56
57     //write the register
58 cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG0 | MCP_TYPE_IW );
59
60     if (w_val!=-1) write_val= (write_val | (uint8_t) w_val );
61     else write_val= (write_val | (uint8_t) 0xC3 ); //default value
62
63     write_content(cmdName,32,cmd, write_val);
64
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65     //verify the new content
66     cmd=0;
67     cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG0 | MCP_TYPE_SR );
68     read_content(cmdName,32,cmd);
69
70 }
71
72
73
74 void adc_set_CONFIG3(int w_val){
75
76     char cmdName[32]="CONFIG3"; 
77     cmd=0; write_val=0;
78
79     //write the register
80 cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG3 | MCP_TYPE_IW );
81
82     if (w_val!=-1) write_val= (write_val | (uint8_t) w_val );
83     else write_val= (write_val | (uint8_t) 0x90  ); //default value (single read)
84     // aka 10 01 0 0 0 0
85
86     write_content(cmdName,32,cmd, write_val);
87
88     //verify the new content
89     cmd=0;
90     cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG3 | MCP_TYPE_SR );
91     read_content(cmdName,32,cmd);
92
93 }
94
95 void adc_read_CONFIG1(){
96
97
98 char cmdName[32]="CONFIG1";
99 cmd=0; write_val=0;

100
101 cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG1 | MCP_TYPE_SR );
102 read_content(cmdName,32,cmd);
103
104
105
106 }
107
108 //If OSR = -1 is 256 (default)
109 void adc_set_CONFIG1(int w_val){
110
111
112     char cmdName[32]="CONFIG1";
113     cmd=0; write_val=0;
114
115     //write the register
116 cmd = (cmd | MCP_ADDR_M | MCP_REG_CONFIG1 | MCP_TYPE_IW );
117
118     if (w_val!=-1) write_val= (write_val | (uint8_t) w_val );
119     else write_val= (write_val | (uint8_t) 0xC  ); //default value (MCLK=ACLK e 

OSR=256)
120
121     write_content(cmdName,32,cmd, write_val);
122
123 }
124
125
126
127
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128 void adc_set_MUX(){
129     
130     char cmdName[32]="MUX"; 
131     cmd=0; write_val=0;
132
133     //write the register
134 cmd = (cmd | MCP_ADDR_M | MCP_REG_MUX | MCP_TYPE_IW ); 
135
136 write_val= (write_val | MUX_CH0 <<4 | MUX_CH1 );    
137
138     write_content(cmdName,32,cmd, write_val);
139
140     //verify the new content
141     cmd=0;
142     cmd = (cmd | MCP_ADDR_M | MCP_REG_MUX | MCP_TYPE_SR );
143     read_content(cmdName,32,cmd);
144
145 }
146
147 void adc_start_restart(){
148
149 char cmdName[32]="Start acquisition";
150     cmd=0; write_val=0;
151
152     //start the acquisition the register
153 cmd = (cmd | MCP_ADDR_M | MCP_CONV_START );
154
155     send_command(cmdName,32,cmd);
156
157 }
158
159
160
161 //The stream of data (single/continous) depends on the 7-8 bit in the CONFIG3 reg
162 void adc_get_value(int mode, int seconds){
163
164 adc_start_restart();
165
166     //read the acquired data stored in ADCDATA
167     char cmdName[32]="ADCDATA";
168     cmd=0;
169     cmd = (cmd | MCP_ADDR_M | MCP_REG_ADCDATA | MCP_TYPE_SR );
170
171     if (mode==0) read_content(cmdName,32,cmd);
172     else if(mode==1) continous_read(seconds, cmd);
173     else if(mode==2) {
174     int t_start = HAL_GetTick();
175     while(HAL_GetTick() - t_start < 5000)  read_content_32(cmdName, 32, cmd);
176     }
177
178
179 }
180
181 void adc_get_calibration_offset(){
182
183     char cmdName[32]="OFFSETCAL";
184     cmd=0; write_val=0;
185
186     //verify the offset
187     cmd=0;
188     cmd = (cmd | MCP_ADDR_M | MCP_REG_OFFSETCAL | MCP_TYPE_SR );
189     read_content(cmdName,32,cmd);
190
191 }

Page 3



ADC_command.c mercoledì 31 maggio 2023, 12:05

192
193
194
195 void adc_set_SCAN(){
196
197     char cmdName[32]="SCAN";
198     cmd=0;
199     uint8_t write_val[3]={0};
200
201     //write the register
202 cmd = (cmd | MCP_ADDR_M | MCP_REG_SCAN | MCP_TYPE_IW );
203
204 //write_val[1]= (write_val[1] | (uint8_t) 6 );
205 write_val[1]= (write_val[1] | (uint8_t) 5 );
206 //write_val[1]= (write_val[1] | (uint8_t) 2 );
207
208 write_24_bit(cmdName,32,cmd, write_val);
209
210     //verify the new content
211     cmd=0;
212 cmd = (cmd | MCP_ADDR_M | MCP_REG_SCAN | MCP_TYPE_SR );
213
214 read_24_bit(cmdName, 32, cmd);
215
216     cmd=0;
217
218 }
219
220
221
222 #endif /* SRC_ADC_C_ */
223
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SPI_communication.h mercoledì 31 maggio 2023, 12:12

1 /*
2  * communication.h
3  *
4  *  Created on: Nov 19, 2022
5  *      Author: marco
6  */
7
8 #ifndef INC_SPI_COMMUNICATION_H_
9 #define INC_SPI_COMMUNICATION_H_

10
11
12 #include <MCP3562.h>
13 #include "CallBack.h"
14
15 void toBinary(int num, char binary[]);
16
17 void print_content(int num, int type);
18
19 //utility function: send the command and read the ack
20 void u_send_command(uint8_t *cmd, uint8_t *bin_send);
21
22 void send_command(char *cmdName, size_t lengthCmdName, uint8_t cmd);
23
24 //Get the content of a register
25 void read_content(char *cmdName, size_t lengthCmdName, uint8_t cmd);
26
27 void read_content_32(char *cmdName, size_t lengthCmdName, uint8_t cmd);
28
29 void write_24_bit(char *cmdName, size_t lengthCmdName, uint8_t cmd, uint8_t reg_val

[]);
30
31 void read_24_bit(char *cmdName, size_t lengthCmdName, uint8_t cmd);
32
33 //Write something to a register
34 void write_content(char *cmdName, size_t lengthCmdName, uint8_t cmd, uint8_t new_val 

);
35
36
37 #endif /* INC_SPI_COMMUNICATION_H_ */
38
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SPI_communication.c mercoledì 31 maggio 2023, 12:04

1 /*
2  * communication.c
3  *
4  *  Created on: Nov 19, 2022
5  *      Author: marco
6  */
7
8
9 #ifndef INC_COMMUNICATION_C_

10 #define INC_COMMUNICATION_C_
11
12 #include <SPI_communication.h>
13
14 static char uart_buf[90];
15 static int uart_buf_len;
16
17
18 void toBinary(int num, char binary[])
19 {
20     for (int i=0; i<8; i++) {
21
22         binary[7-i] = (char)((num >> i & 1) + '0'); 
23         binary[8]='\0';
24     }
25 }
26
27
28 //type: 1 = ack | 2 = read value | 3 = wrote value
29 void print_content(int num, int type){
30     char binary[34]={'\0'};
31     toBinary(num, binary);
32
33     if(type==1)      uart_buf_len = sprintf(uart_buf, "\tACK received:\t %s aka %u

\r\n", binary, num);
34     else if(type==2) uart_buf_len = sprintf(uart_buf, "\tContent read:\t %s aka %u

\r\n", binary, num);
35     else if(type==3) uart_buf_len = sprintf(uart_buf, "\tContent wrote:\t %s aka %u

\r\n", binary, num);
36
37     HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
38 }
39
40
41
42 //Utility function: send the command and return the ack
43 //First function called for every communication 
44 void u_send_command(uint8_t *cmd, uint8_t *recev){
45
46     char bin_send[32]={'\0'};
47     HAL_Delay(1);
48
49 toBinary(*cmd, bin_send);
50
51 uart_buf_len = sprintf(uart_buf, "\tbyte sent:\t %s aka %u \r\n", bin_send, 

*cmd);
52 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
53
54 HAL_SPI_TransmitReceive(&hspi1, (uint8_t *)cmd, (uint8_t *)recev, 1, 100);
55
56 }
57
58
59
60 //For commands that don't require additional read or write
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61 void send_command(char *cmdName, size_t lengthCmdName, uint8_t cmd){
62
63     uint8_t ack_num=0;
64
65     uart_buf_len = sprintf(uart_buf, "\nSending cmd %s.\r\n", cmdName);
66 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
67
68     //turn on the communication 
69 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
70
71     //send the command and receive the ack
72     u_send_command(&cmd, &ack_num);
73
74     //turn off the communication 
75     HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
76
77     //print the received bits
78     print_content(ack_num, 1);
79
80 }
81
82
83 //For commands that receive also one bytes other than the ack
84 void read_content(char *cmdName, size_t lengthCmdName, uint8_t cmd){
85
86     uint8_t ack_num=0, content=0;
87
88     uart_buf_len = sprintf(uart_buf, "\nReading %s.\r\n", cmdName);
89 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
90
91     //turn on the communication 
92 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
93
94     //send the command and receive the ack
95     u_send_command(&cmd, &ack_num);
96
97     //read the returned content
98     HAL_SPI_Receive(&hspi1, (uint8_t *)&content, 1, 100);
99

100     //turn off the communication 
101     HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
102
103     //print the received bits
104     print_content(ack_num, 1);
105     print_content(content, 2);
106     
107
108 }
109
110
111
112 void write_content(char *cmdName, size_t lengthCmdName, uint8_t cmd, uint8_t 

new_val ){
113
114     uint8_t ack_num=0;
115
116     uart_buf_len = sprintf(uart_buf, "\nWriting %s.\r\n", cmdName);
117 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
118
119     //turn on the communication 
120 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
121
122     //send the command and receive the ack
123     u_send_command(&cmd, &ack_num);
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124
125     //write the new content
126     HAL_SPI_Transmit(&hspi1, (uint8_t *)&new_val, 1, 100);
127
128     //turn off the communication 
129     HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
130
131     //print the ack received
132     print_content(ack_num, 1);
133
134     //print the wrote bits
135     print_content(new_val, 3);
136
137 }
138
139
140
141 void read_content_32(char *cmdName, size_t lengthCmdName, uint8_t cmd){
142
143     uint8_t ack_num=0;
144     uint32_t content=0;
145
146
147     //turn on the communication
148 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
149
150     //send the command and receive the ack
151     //u_send_command(&cmd, &ack_num);
152 HAL_SPI_TransmitReceive(&hspi1, (uint8_t *)&cmd, (uint8_t *)&ack_num, 1, 

100);
153     //read the returned content
154     HAL_SPI_Receive(&hspi1, (uint8_t *)&content, 4, 100);
155
156     //turn off the communication
157     HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
158
159     //print the received bits
160     //print_content(ack_num, 1);
161     uart_buf_len = sprintf(uart_buf, "\t%lu\r\n", content);
162     HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
163
164 }
165
166
167
168 void write_24_bit(char *cmdName, size_t lengthCmdName, uint8_t cmd, uint8_t reg_val

[]){
169
170     uint8_t ack_num=0;
171     uint32_t content=0;
172
173 uart_buf_len = sprintf(uart_buf, "\nWriting %s.\r\n", cmdName);
174 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
175
176 //turn on the communication
177 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
178
179     //send the command and receive the ack
180     u_send_command(&cmd, &ack_num);
181
182     //write the 24 bit content
183     HAL_SPI_Transmit(&hspi1, (uint8_t *)&reg_val[0], 3, 100);
184
185     //turn off the communication
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186     HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
187
188     //print the ack received
189     print_content(ack_num, 1);
190
191
192 }
193
194
195 void read_24_bit(char *cmdName, size_t lengthCmdName, uint8_t cmd){
196
197 uint8_t ack_num=0;
198 uint8_t content[3]={0};
199
200 uart_buf_len = sprintf(uart_buf, "\nReading %s.\r\n", cmdName);
201 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
202
203 //turn on the communication
204 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_RESET);
205
206 //send the command and receive the ack
207 u_send_command(&cmd, &ack_num);
208
209 //read the returned content
210 HAL_SPI_Receive(&hspi1, (uint8_t *)&content[0], 3, 100);
211
212 //turn off the communication
213 HAL_GPIO_WritePin(CS_ADC_n_GPIO_Port, CS_ADC_n_Pin, GPIO_PIN_SET);
214
215 //print the received bits
216 //print_content(ack_num, 1);
217 uart_buf_len = sprintf(uart_buf, "\t24 byte content: %u | %u | %u\r\n", content

[2], content[1], content[0]);
218 HAL_UART_Transmit(&huart1, (uint8_t *)uart_buf, uart_buf_len, 100);
219 }
220
221
222
223
224 #endif
225
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1 // command structure: 2 bit device addr + 4 bit command/reg address + 2 command type
2
3 // Example 1: MCP_ADDR + MCP_REG + MCP_TYPE
4 // Example 2: MCP_ADDR + MCP_FAST_CMD
5
6 //######### UNIQUE INDIVIDUAL ADDRESS 2 bit ###############
7
8 #define MCP_ADDR_M (uint8_t)64 
9

10
11 //######### FAST COMMANDS 6 bit ############################
12
13 // The following are fast commands [ 4 command + 2 type bits, all together ]
14
15 #define MCP_NOPE (uint8_t)0
16
17 #define MCP_CONV_START (uint8_t)40  
18
19 #define MCP_STANDBY (uint8_t)44
20
21 #define MCP_SHUTDOWN (uint8_t)48
22
23 #define MCP_FULL_DOWN (uint8_t)52
24
25 #define MCP_RESET (uint8_t)56
26
27
28 //######### GENERAL COMMANDS 4 bit addr + 2 bit type ######
29
30 // --> TYPE 2 bit #########################################
31
32 #define MCP_TYPE_SR (uint8_t)1  //Static Read of Register Address
33
34 #define MCP_TYPE_IW (uint8_t)2  //Incremental Write Starting at Register Address
35
36 #define MCP_TYPE_IR (uint8_t)3  //Incremental Read Starting at Register Address
37
38 // --> ADDRESSES 4 bit #####################################
39
40 //8 bit, IRQ Status bits and IRQ mode settings;
41 //enable for Fast commands andfor conversion start pulse
42 #define MCP_REG_IRQ (uint8_t)(0x5 << 2)
43
44 #define MCP_REG_CONFIG3 (uint8_t)(0x4 << 2) //8 bit
45
46 #define MCP_REG_CONFIG1 (uint8_t)(0x2 << 2)
47
48 #define MCP_REG_CONFIG0 (uint8_t)(0x1 << 2)
49
50 #define MCP_REG_MUX (uint8_t)(0x6 << 2)
51
52 #define MCP_REG_ADCDATA (uint8_t)(0x0 << 2)
53
54 #define MCP_REG_OFFSETCAL (uint8_t)(0x9 << 2)
55
56 #define MCP_REG_SCAN (uint8_t)(0x7 << 2)
57
58
59 // SCAN REGISTER CHANNEL SELECTION  
60
61 #define SCAN_CH_B (uint8_t)9   
62 #define SCAN_CH_C (uint8_t)10 
63
64
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1
2 /* Define to prevent recursive inclusion -------------------------------------*/
3 #ifndef __CUSTOM_STM_H
4 #define __CUSTOM_STM_H
5
6 #ifdef __cplusplus
7 extern "C" {
8 #endif
9

10 /* Includes ------------------------------------------------------------------*/
11 /* USER CODE BEGIN Includes */
12
13 /* USER CODE END Includes */
14
15 /* Exported types ------------------------------------------------------------*/
16 typedef enum
17 {
18   /* Battery */
19   CUSTOM_STM_CHARB,
20   /* ECG */
21   CUSTOM_STM_CHARSS,
22   CUSTOM_STM_CHARECG,
23 } Custom_STM_Char_Opcode_t;
24
25 typedef enum
26 {
27   /* charB */
28   CUSTOM_STM_CHARB_READ_EVT,
29   /* charSS */
30   CUSTOM_STM_CHARSS_WRITE_EVT,
31   /* charECG */
32   CUSTOM_STM_CHARECG_READ_EVT,
33   CUSTOM_STM_CHARECG_NOTIFY_ENABLED_EVT,
34   CUSTOM_STM_CHARECG_NOTIFY_DISABLED_EVT,
35
36   CUSTOM_STM_BOOT_REQUEST_EVT
37 } Custom_STM_Opcode_evt_t;
38
39 typedef struct
40 {
41   uint8_t * pPayload;
42   uint8_t   Length;
43 } Custom_STM_Data_t;
44
45 typedef struct
46 {
47   Custom_STM_Opcode_evt_t       Custom_Evt_Opcode;
48   Custom_STM_Data_t             DataTransfered;
49   uint16_t                      ConnectionHandle;
50   uint8_t                       ServiceInstance;
51 } Custom_STM_App_Notification_evt_t;
52
53 /* USER CODE BEGIN ET */
54
55 /* USER CODE END ET */
56
57 /* Exported constants --------------------------------------------------------*/
58 extern uint8_t SizeCharb;
59 extern uint8_t SizeCharss;
60 extern uint8_t SizeCharecg;
61
62 /* USER CODE BEGIN EC */
63
64 /* USER CODE END EC */
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1
2 /* Includes ------------------------------------------------------------------*/
3 #include "common_blesvc.h"
4 #include "custom_stm.h"
5
6 /* USER CODE BEGIN Includes */
7 #include "main.h"
8 #include "PulsECG_core.h"
9 /* USER CODE END Includes */

10
11 /* Private typedef -----------------------------------------------------------*/
12 typedef struct{
13   uint16_t  CustomBatteryHdle;                    /**< Battery handle */
14   uint16_t  CustomCharbHdle;                  /**< charB handle */
15   uint16_t  CustomEcgHdle;                    /**< ECG handle */
16   uint16_t  CustomCharssHdle;                  /**< charSS handle */
17   uint16_t  CustomCharecgHdle;                  /**< charECG handle */
18 }CustomContext_t;
19
20
21 /* Private macros ------------------------------------------------------------*/
22 #define CHARACTERISTIC_DESCRIPTOR_ATTRIBUTE_OFFSET         2
23 #define CHARACTERISTIC_VALUE_ATTRIBUTE_OFFSET              1
24 /* USER CODE BEGIN PM */
25
26 /* USER CODE END PM */
27
28 /* Private variables ---------------------------------------------------------*/
29 uint8_t SizeCharb = 1;
30 uint8_t SizeCharss = 2;
31 uint8_t SizeCharecg = 247;
32
33 /**
34  * START of Section BLE_DRIVER_CONTEXT
35  */
36 PLACE_IN_SECTION("BLE_DRIVER_CONTEXT") static CustomContext_t CustomContext;
37
38 /**
39  * END of Section BLE_DRIVER_CONTEXT
40  */
41
42 /* USER CODE BEGIN PV */
43 uint16_t tmp_BT=0;
44 /* USER CODE END PV */
45
46 /* Private function prototypes -----------------------------------------------*/
47 static SVCCTL_EvtAckStatus_t Custom_STM_Event_Handler(void *pckt);
48
49 static SVCCTL_EvtAckStatus_t Custom_STM_Event_Handler(void *Event)
50 {
51   SVCCTL_EvtAckStatus_t return_value;
52   hci_event_pckt *event_pckt;
53   evt_blecore_aci *blecore_evt;
54   aci_gatt_attribute_modified_event_rp0 *attribute_modified;
55   aci_gatt_read_permit_req_event_rp0    *read_req;
56   Custom_STM_App_Notification_evt_t     Notification;
57   /* USER CODE BEGIN Custom_STM_Event_Handler_1 */
58
59   /* USER CODE END Custom_STM_Event_Handler_1 */
60
61   return_value = SVCCTL_EvtNotAck;
62   event_pckt = (hci_event_pckt *)(((hci_uart_pckt*)Event)->data);
63
64   switch (event_pckt->evt)

Page 1



custom_stm.c mercoledì 31 maggio 2023, 15:55

65   {
66     case HCI_VENDOR_SPECIFIC_DEBUG_EVT_CODE:
67       blecore_evt = (evt_blecore_aci*)event_pckt->data;
68       switch (blecore_evt->ecode)
69       {
70         case ACI_GATT_ATTRIBUTE_MODIFIED_VSEVT_CODE:
71           /* USER CODE BEGIN EVT_BLUE_GATT_ATTRIBUTE_MODIFIED_BEGIN */
72
73           /* USER CODE END EVT_BLUE_GATT_ATTRIBUTE_MODIFIED_BEGIN */
74           attribute_modified = (aci_gatt_attribute_modified_event_rp0*)blecore_evt-

>data;
75           if (attribute_modified->Attr_Handle == (CustomContext.CustomCharecgHdle + 

CHARACTERISTIC_DESCRIPTOR_ATTRIBUTE_OFFSET))
76           {
77             return_value = SVCCTL_EvtAckFlowEnable;
78             /* USER CODE BEGIN CUSTOM_STM_Service_2_Char_2 */
79
80             /* USER CODE END CUSTOM_STM_Service_2_Char_2 */
81             switch (attribute_modified->Attr_Data[0])
82             {
83
84               case (!(COMSVC_Notification)):
85                 /* USER CODE BEGIN CUSTOM_STM_Service_2_Char_2_Disabled_BEGIN */
86
87                 /* USER CODE END CUSTOM_STM_Service_2_Char_2_Disabled_BEGIN */
88                 Notification.Custom_Evt_Opcode = 

CUSTOM_STM_CHARECG_NOTIFY_DISABLED_EVT;
89                 Custom_STM_App_Notification(&Notification);
90                 /* USER CODE BEGIN CUSTOM_STM_Service_2_Char_2_Disabled_END */
91
92                 /* USER CODE END CUSTOM_STM_Service_2_Char_2_Disabled_END */
93                 break;
94
95               /* Enabled Notification management */
96               case COMSVC_Notification:
97                 /* USER CODE BEGIN 

CUSTOM_STM_Service_2_Char_2_COMSVC_Notification_BEGIN */
98
99                 /* USER CODE END 

CUSTOM_STM_Service_2_Char_2_COMSVC_Notification_BEGIN */
100                 Notification.Custom_Evt_Opcode = 

CUSTOM_STM_CHARECG_NOTIFY_ENABLED_EVT;
101                 Custom_STM_App_Notification(&Notification);
102                 break;
103
104               default:
105               break;
106             }
107           }  /* if (attribute_modified->Attr_Handle == 

(CustomContext.CustomCharecgHdle + CHARACTERISTIC_DESCRIPTOR_ATTRIBUTE_OFFSET))*/
108
109           else if (attribute_modified->Attr_Handle == 

(CustomContext.CustomCharssHdle + CHARACTERISTIC_VALUE_ATTRIBUTE_OFFSET))
110           {
111             return_value = SVCCTL_EvtAckFlowEnable;
112             /* USER CODE BEGIN 

CUSTOM_STM_Service_2_Char_1_ACI_GATT_ATTRIBUTE_MODIFIED_VSEVT_CODE */
113
114 uint8_t *ptr = attribute_modified->Attr_Data;
115 uint8_t duration=0;
116
117 duration = (ptr[0]-'0')*10 + (ptr[1]-'0');
118
119     uint32_t ACI_GATT_NOTIFICATION_EXT_EVENT = 0x00400000;
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120     aci_gatt_set_event_mask(ACI_GATT_NOTIFICATION_EXT_EVENT);
121 aci_gatt_exchange_config(attribute_modified->Connection_Handle);
122 hci_le_set_data_length(attribute_modified->Connection_Handle, 200, 

(200+14)*8);
123 hci_le_write_suggested_default_data_length(200, (200+14)*8);
124
125 start_stop_acquisition(duration);
126
127           } /* if (attribute_modified->Attr_Handle == 

(CustomContext.CustomCharssHdle + CHARACTERISTIC_VALUE_ATTRIBUTE_OFFSET))*/
128
129           break;
130
131         case ACI_GATT_READ_PERMIT_REQ_VSEVT_CODE :
132           /* USER CODE BEGIN EVT_BLUE_GATT_READ_PERMIT_REQ_BEGIN */
133
134           /* USER CODE END EVT_BLUE_GATT_READ_PERMIT_REQ_BEGIN */
135           read_req = (aci_gatt_read_permit_req_event_rp0*)blecore_evt->data;
136           if (read_req->Attribute_Handle == (CustomContext.CustomCharbHdle + 

CHARACTERISTIC_VALUE_ATTRIBUTE_OFFSET))
137           {
138             return_value = SVCCTL_EvtAckFlowEnable;
139             /*USER CODE BEGIN 

CUSTOM_STM_Service_1_Char_1_ACI_GATT_READ_PERMIT_REQ_VSEVT_CODE_1 */
140
141      send_BLevel();
142
143             /*USER CODE END 

CUSTOM_STM_Service_1_Char_1_ACI_GATT_READ_PERMIT_REQ_VSEVT_CODE_1*/
144             aci_gatt_allow_read(read_req->Connection_Handle);
145           } 
146           break;
147
148         case ACI_GATT_WRITE_PERMIT_REQ_VSEVT_CODE:
149           break;
150         default:
151           break;
152       }
153       break; /* HCI_VENDOR_SPECIFIC_DEBUG_EVT_CODE */
154
155
156     default:
157       break;
158   }
159
160   return(return_value);
161 }/* end Custom_STM_Event_Handler */
162
163 /**
164  * @brief  Characteristic update
165  * @param  CharOpcode: Characteristic identifier
166  * @param  Service_Instance: Instance of the service to which the characteristic 

belongs
167  *
168  */
169 tBleStatus Custom_STM_App_Update_Char(Custom_STM_Char_Opcode_t CharOpcode, uint8_t 

*pPayload)
170 {
171   tBleStatus ret = BLE_STATUS_INVALID_PARAMS;
172   /* USER CODE BEGIN Custom_STM_App_Update_Char_1 */
173
174   int ret2=0;
175
176   /* USER CODE END Custom_STM_App_Update_Char_1 */
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177
178   switch (CharOpcode)
179   {
180
181     case CUSTOM_STM_CHARB:
182       ret = aci_gatt_update_char_value(CustomContext.CustomBatteryHdle,
183                                        CustomContext.CustomCharbHdle,
184                                        0, /* charValOffset */
185                                        SizeCharb, /* charValueLen */
186                                        (uint8_t *)  pPayload);
187       if (ret != BLE_STATUS_SUCCESS)
188       {
189         APP_DBG_MSG("  Fail   : aci_gatt_update_char_value CHARB command, result : 

0x%x \n\r", ret);
190       }
191       else
192       {
193         APP_DBG_MSG("  Success: aci_gatt_update_char_value CHARB command\n\r");
194       }
195       /* USER CODE BEGIN CUSTOM_STM_App_Update_Service_1_Char_1*/
196
197       /* USER CODE END CUSTOM_STM_App_Update_Service_1_Char_1*/
198       break;
199
200     case CUSTOM_STM_CHARSS:
201       ret = aci_gatt_update_char_value(CustomContext.CustomEcgHdle,
202                                        CustomContext.CustomCharssHdle,
203                                        0, /* charValOffset */
204                                        SizeCharss, /* charValueLen */
205                                        (uint8_t *)  pPayload);
206       if (ret != BLE_STATUS_SUCCESS)
207       {
208         APP_DBG_MSG("  Fail   : aci_gatt_update_char_value CHARSS command, result : 

0x%x \n\r", ret);
209       }
210       else
211       {
212         APP_DBG_MSG("  Success: aci_gatt_update_char_value CHARSS command\n\r");
213       }
214
215       break;
216
217     case CUSTOM_STM_CHARECG:
218
219       ret = aci_gatt_update_char_value_ext( 0x0000, CustomContext.CustomEcgHdle, 

CustomContext.CustomCharecgHdle,
220             0x00,
221         200,
222          0,
223         20,
224         (uint8_t *)  pPayload);
225       ret2= aci_gatt_update_char_value_ext( 0x0000, CustomContext.CustomEcgHdle, 

CustomContext.CustomCharecgHdle,
226             0x01,
227   200,
228         20,
229         180,
230   (uint8_t *)(pPayload + 20));
231
232             if (ret != BLE_STATUS_SUCCESS || ret2 != BLE_STATUS_SUCCESS)
233             {
234               APP_DBG_MSG("  Fail   : aci_gatt_update_char_value CHARECG command, 

result : 0x%x \n\r", ret);
235             }
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236             else
237             {
238               APP_DBG_MSG("  Success: aci_gatt_update_char_value CHARECG command\n

\r");
239             }
240       if (ret == BLE_STATUS_SUCCESS && ret2 == BLE_STATUS_SUCCESS) tmp_BT++;
241
242       break;
243
244     default:
245       break;
246   }
247
248   return ret;
249 }
250
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