
Politecnico di Torino

Master’s Degree in Electronic Engineering - Sistemi Elettronici (Electronic Systems)
Academic Year 2022/2023

October 2023

Development of a versatile on board
computer for small satellites

Supervisors:
Prof. Fabrizio Stesina (DIMEAS)
Prof. Sabrina Corpino (DIMEAS)

Candidate:
Simone Bollattino

Abstract

The present thesis is about the design of an on board computer system for the Spei Satelles
space mission. Turin Polytechnic has a rich history of CubeSat launches and on 2023 it
launched a 3 units (3U) CubeSat mission under the name of Spei Satelles, promoted by
the Dicastery for Communication of Vatican City in collaboration with the Italian Space
Agency (ASI) and Consiglio Nazionale delle Ricerche (CNR).

The system in question has the goal to collect telemetry and scientific data about the
spacecraft and space environment, store it inside non volatile memory and prepare it to
be sent back to earth, where it will be used to check the spacecraft health and verify ther-
mal and attitude models theorized during the design phase; a secondary achievement is to
demonstrate the survivability in the space environment of a low-cost system completely
built from Components Off The Shelf (COTS).

The thesis starts with a review of the state-of-the-art of CubeSat applications, focusing
on aspects about space electronics; it gives a brief overview of the spacecraft mission
and architecture; then covering all the subsystem design phases: from requirements and
interfaces definitions to system design and manufacturing, testing, integration and post-
launch operations; finally it presents the mission results and achievements.

III

Table of Contents

List of Abbreviations IX

List of Figures XIII

List of Tables XXI

1 Introduction to CubeSat 23
1.1 The CubeSat standard . 23
1.2 CubeSats evolution . 24

1.2.1 Some words on secondary payloads 25
1.2.2 2000s: CubeSats introduction . 25
1.2.3 2010s: Growing interest on CubeSats 26
1.2.4 2014: CubeSat constellations and dedicated rideshares 27
1.2.5 2018: Deep space missions . 30

1.3 Polytechnic of Turin CubeSat heritage . 31

2 CubeSat platforms 33
2.1 Spacecraft BUS . 33
2.2 CubeSat Interfaces . 34

2.2.1 PC/104 form factor . 34
2.2.2 Backplane board . 35
2.2.3 Daughter boards . 35

2.3 Electronics in space . 36
2.3.1 Radiation effects on electronics . 37

2.3.1.1 Single Event Latchup (SEL) 38

3 Spei Satelles 41
3.1 Motivations and mission . 41
3.2 Spacecraft architecture . 42

3.2.1 Spacecraft subsystems . 43
3.2.2 Spacecraft block diagram . 46

3.3 Spei Satelles team . 47

4 Sensing Suite (Singer) subsystem 49

V

4.1 SPEISAT Secondary mission . 49
4.2 System requirements and specifications . 50

4.2.1 Functional requirements . 51
4.2.2 Performance requirements . 53
4.2.3 Interface requirements . 54

4.3 Design process . 55
4.3.1 Challenges . 55

4.3.1.1 Low development time . 55
4.3.1.2 Poor system reliability . 56
4.3.1.3 Reduced impact on primary mission 56
4.3.1.4 Cost . 56

4.3.2 Design timeline . 57

5 Hardware design 59
5.1 System architecture . 59
5.2 Electrical design . 60

5.2.1 ADC block . 60
5.2.1.1 Measurement chain characterization 61

5.2.2 IMU block . 68
5.2.2.1 Gyroscope specifications 69
5.2.2.2 Magnetometer specifications 70
5.2.2.3 IMU reference plane . 70

5.2.3 Memory block . 71
5.2.4 RS422 block . 73
5.2.5 Processing unit . 73

5.2.5.1 Clock and peripherals assignment 75
5.2.6 Power block . 76

5.2.6.1 Voltage regulator . 77
5.2.6.2 Domain protection circuits 77
5.2.6.3 Domain interfaces . 84

5.2.7 Board electrical interfaces and connectors 85
5.2.8 System power estimation . 88

5.3 PCB design and production . 89
5.3.1 Schematic . 90
5.3.2 Layout . 91

5.3.2.1 Floorplan . 93
5.3.2.2 Routing . 93

5.3.3 Production . 95

6 Software design 97
6.1 Software overview . 97

6.1.1 development environment . 98
6.1.2 FreeRTOS . 98

6.2 Low level drivers . 100
6.2.1 Interfaces review . 101

VI

6.2.1.1 SPI interface . 101
6.2.1.2 UART interface . 103
6.2.1.3 SWD interface . 104

6.2.2 HAL drivers . 104
6.2.3 UART drivers . 104

6.2.3.1 Peripheral drivers . 104
6.2.4 Utility libraries . 106

6.2.4.1 Buffer utilities . 106
6.2.4.2 Packet utilities . 107

6.2.5 IMU driver . 111
6.2.5.1 Xbus protocol and IMU op-modes 111
6.2.5.2 Driver library . 113

6.2.6 Parrot communication library . 114
6.2.6.1 Parrot message frame . 114
6.2.6.2 Parrot communication library 114

6.2.7 printf() implementation . 115
6.2.8 ADC driver . 115

6.2.8.1 AD7788 interface . 115
6.2.8.2 ADC logical wiring . 116
6.2.8.3 Driver library . 117

6.2.9 MRAM driver and log system . 117
6.2.9.1 AS301604 interface . 118
6.2.9.2 Low level driver . 120
6.2.9.3 Memory organization and log system 121

6.3 High level software . 124
6.3.1 Inter-task communication . 125

6.3.1.1 Telemetry exchange . 125
6.3.1.2 Monodirectional requests 126
6.3.1.3 Mutual exclusive access 126

6.3.2 Sensors task . 127
6.3.3 Memory task . 128
6.3.4 Parrot task . 129

6.3.4.1 Available Parrot messages 129
6.3.4.2 Task code structure . 131

6.3.5 Watchdog task . 132
6.3.6 Tasks timeout management . 133
6.3.7 Firmware compile modes . 134

6.3.7.1 Access Port debug console 134
6.3.7.2 Time measurement mode 134

6.3.8 Final firmware configuration . 135

7 Test campaign, integration and launch 137
7.1 Ground Support Equipment . 139
7.2 Development tests . 140

VII

7.2.1 Breadboard model . 140
7.2.2 Debug console and GDB . 141
7.2.3 Parrot mock-up . 141
7.2.4 IMU bridge . 142

7.3 Acceptance tests . 142
7.3.1 Power test . 143
7.3.2 MRAM test . 144
7.3.3 RS422 lines test . 145
7.3.4 ADC test . 146
7.3.5 IMU test . 147

7.4 Flight preparation and integration . 148
7.4.1 Hardware corrections . 148
7.4.2 Nucleo board modifications . 149
7.4.3 Flight thermistors preparation . 150
7.4.4 Integration . 150

7.5 Functional tests . 152
7.5.1 Full functional and day-in-the-life tests. 152
7.5.2 Mechanical fit and vibrational tests 154
7.5.3 Thermal cycling test . 155

7.6 Laboratory failures . 155
7.6.1 Qualification model failure . 155
7.6.2 Flight model failure . 156

7.7 Spacecraft shipping . 159

8 Mission results 161
8.1 Launch . 161
8.2 Mission operation . 162

8.2.1 Ground station . 162
8.2.2 Analysis of data . 164

9 Conclusions 171

Bibliography 175

Technical documents 183

Acknowledgements (Italian) 187

VIII

List of Abbreviations

a.u. Arbitrary Unit
ACK Acknowledge
ACS Attitude Control System
ADC Analog to Digital Converter
ADCS Attitude Determination and Contol System
ADS Attitude Determination System
AIV Assembly, Integration and Verification
AMSAT Radio Amateur Satellite Corporation
AODCS Attitude and Orbit Determination and Control System
AP Access Port
ARI Associazione Radioamatori Italiani
ARM Advanced RISC Machine
AS Augmented Storage
ASCII American Standard Code for Information Interchange
ASI Agenzia Spaziale Italiana
BB BaseBand
BGA Ball Grid Array
BID Bus Identifier
BJT Bipolar Junction Transistor
BOM Bill Of Material
BPB Backplane Board
CAD Computer Aided Design
CDH Command and Data Handling
CDS Cubesat Design Specification
CMOS Complementary Metal-Oxide Semiconductor
CNR Centro Nazionale di Ricerche
COMMSYS Communication System
COTS Components Off The Shelf
CPHA Clock Phase
CPOL Clock Polarity
CPU Central Processing Unit
CS Chip Select
DB Database

IX

DDR Double Data Rate
DET Direct Energy Transfer
dev-board development board
DFN Dual-Flat No-Leads
DIMEAS Department of Mechanical and Aerospace Engineering
DMA Direct Memory Access
DNL Differential Non Linearity
DSP Digital Signal Processor
DSPI Double Serial Peripheral Interface
EDA Electronic Design Automation
EMI Electromagnetic Interference
EPS Electric Power System
ESA European Space Agency
ESD Electro Static Discharge
FIFO First-In-First-Out
fig. Figure
FM Frequency Modulation
FS FlatSat
FSW Flight Software
GCC GNU Compiler Collection
GDB GNU DeBugger
GEO Geostationary Earth Orbit
GMSK Gaussian Minimum Shift Keying
GND Ground
GPIO General Purpose Input Output
GS Ground Station
GSE Ground Support Equipment
GSFC Goddard Space Flight Center
GTO Geostationary Transfer Orbit
HAL Hardware Abstraction Layer
HSI High Speed Internal
HW Hardware
I/Q In-phase and Quadrature
I2C Inter Integrated Circuit
IAC International Astronautical Congress
IC Integrated Circuit
ID Identifier
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IF Intermediate Frequency
IMU Inertial Measurement Unit
INL Integral Non Linearity
IoT Internet of Things
ISR Interrupt Service Routine

X

IUSVE Istituto Universitario Salesiano Venezia
IWDG Independent Watchdog
JEDEC Joint Electron Device Engineering Council
LEO Low Earth Orbit
LET Linear Energy Transfer
LL Low Level
LSB Least Significant Bit
LSE Low Speed External
LSI Low Speed Internal
max maximum
MBU Multiple-Bit Upset
MID Message IDentifier
min minimum
MISO Master In Slave Out
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MOSI Master Out Slave In
MPPT Maximum Power Point Tracking
MRAM Magnetoresistive Random Access Memory
MSB Most Significant Bit
MSI Multi Speed Internal
MUX Multiplexer
N/A Not Applicable
N/C Not Connected
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organization
NRO National Reconnaissance Office
NTC Negative Temperature Coefficient
OBC On Board Computer
OS Operating System
P-POD Poly Picosatellite Orbital Deployer
PC Personal Computer
PCB Printed Circuit Board
PLCC Plastic Leaded Chip Carrier
PLL Phase Locked Loop
PSLV Polar Satellite Launch Vehicle
PTC Positive Temperature Coefficient
QFN Quad-Flat No-Leads
QSPI Quadruple Serial Peripheral Interface
R&D Research and Development
RAM Random Access Memory
req. Requirement
RF Radio Frequency
RMS Root Mean Square
RTC Real Time Clock

XI

RTOS Real Time Operating System
RX Receive (or Reception)
SCR Silicon Controlled Rectifier
SDR Software Defined Radio
SEB Single Event Burnout
SEE Single Event Effect
SEFI Single Event Functional Interrupt
SEGR Single Event Gate Rupture
SEL Single Event Latchup
SEU Single Event Upset
SIP System In Package
SLS Space Launch System
SMT Surface Mount Technology
SO Small Outline
SOIC Small Outline Integrated Circuit
SOM System On Module
SPEISAT Spei Satelles
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
STO Science and Technology Organization
SWD Serial Wire Debug
tab. Table
TCB Task Control Block
TCS Thermal Control System
TID Total Ionizing Dose
TLE Two Line Element set
TRP Task Repetition Period
TTL Transistor Transistor Logic
TX Transmit (or Transmission)
typ typical
UART Universal Asynchronous Receiver Transmitter
uC Microcontroller
UHF Ultra High Frequency
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
UTC Coordinated Universal Time

XII

List of Figures

1.1 Weight class of some standard and non standard CubeSats, picture from
[91]. 23

1.2 3U CubeSat (CSSWE) with P-POD dispenser, picture from [3]. 24
1.3 Cubesats evolutionary tree, picture from [117]. 24
1.4 Cubesat launches by type (1U,1.5U,2U,3U,6U,12U) from 2003 to 2023, data

from [120]. 25
1.5 CubeSats (1U,1.5U,2U,3U,6U,12U) launched by each launcher or family of

launchers (denoted with ”f.”) in the period from 2003 to 2012 (left axis),
the green trend line is the number of different launchers employed (right
axis), data from [120]. 26

1.6 Percentages of CubeSats (1U,1.5U,2U,3U,6U,12U) launched by type of in-
stitution, data from [120]. 26

1.7 Percentages of launched CubeSats types (1U,1.5U,2U,3U,6U,12U) over the
period from 2003 to 2023 (left axis), the blue trend line is the average size
in Units (U) of launched CubeSats (right axis), data from [120]. 27

1.8 Number of founded companies active in nanosats over the time period from
2003 to 2023, picture from [120]. 28

1.9 Percentage of CubeSats mission type, picture from [90], pag. 12. 28
1.10 CubeSats (1U,1.5U,2U,3U,6U,12U) launched by each launcher or family of

launchers (denoted with ”f.”) in the period from 2013 to 2023, the green
trend line is the number of different launchers employed (right axis), data
from [120]. 29

1.11 Cake graphs of mission status of all the CubeSats launched by each builder
category, excluding constellations, at the end of 2015, data from [104]. . . . 30

1.12 Pictures from NASA’s MarCO mission. 1.12a One of the twin CubeSats’
solar array being tested. 1.12b Image of Mars captured by MarCO-B 6U
CubeSat after the landing of InSight. Pictures from [60]. 31

1.13 1.13a PicPoT satellite. 1.13b e-st@r-II CubeSat. 1.13c Spei Satelles CubeSat. 32

2.1 Family of PC/104 standards, picture from [80]. 34
2.2 Example of PC/104 stack, picture from [80]. 34
2.3 Example of PC/104 ADCS board developed at Polytechnic of Turin with

mounted daughter boards (OBC and IMU), picture from [59]. 35

XIII

2.4 Challenges of spacecraft electronics, data from [53]. 36

2.5 2.5a Cross section of CMOS inverter showing the parasitic SCR. 2.5b The
equivalent circuit of the parasitic SCR. Both pictures from [49]. 38

3.1 Spei Satelles logo, designed by students of the IUSVE of Venice [87]. 41

3.2 3.2a Spei Satelles spacecraft. The access port can be seen in the middle of
the left solar panel. 3.2b The nanobook glued to the satellite structure. . . 42

3.3 Main spacecraft building blocks and reference plane, solar panels not shown. 42

3.4 Spacecraft mechanical structure. 43

3.5 3.5a Solar panels after assembling. 3.5b DET board render. 44

3.6 Backplane board during integration . 45

3.7 Project render of the Ground Station at Polytechnic. 45

3.8 Spacecraft block diagram, green arrows are RF data links, blue arrows are
wired data links, red arrows are wired power links. 46

3.9 SPEISAT Access Port, here the solar panels are not yet mounted. We can
see the AP cable of Singer (down, gray) and one CDH (up, white). 47

3.10 Spei Satelles team composition. 47

4.1 Singer board renders. 49

4.2 Singer maximum mechanical dimensions (unit of measure for all dimen-
sions: mm), all dimensions except the mounting holes diameter and spac-
ing are the maximum allowable, mounting holes diameter and spacing have
a tolerance of ± 0.1 mm. 55

4.3 4.3a Singer breadboard model. 4.3b Singer qualification model during test-
ing. 4.3c Singer flight model, modifications on the Nucleo board for flight
preparation can be spotted (components removal). 57

4.4 Spacecraft Flat Sat. 58

4.5 Singer development milestones. 58

5.1 Singer board block diagram. 59

5.2 Singer single ADC chain block diagram. 60

5.3 5.3a AD7788 Σ-∆ ADC block diagram, picture from [55]. 5.3b analog MUX
pinout, picture from [4]. 61

5.4 5.4a NTCLE203E3103FB0 thermistor characteristic curve generated by
MATLAB. 5.4b Thermistor resistance relative error. 62

5.5 Thermistor conditioning circuit. 62

5.6 Thevenin equivalent values with respect to temperature with nominal val-
ues of thermistor and pull-up. 63

5.7 Simulation pipeline for thermistor chain. 63

5.8 Conditioning circuit Thevenin equivalent and parasitic resistances of MUX
and ADC. 64

5.9 Model of thermistor circuit in LTspice. 65

5.10 Comparison between exact temperature and the one reconstructed neglect-
ing ADC input resistance (left axis). Absolute error introduced (right axis). 65

XIV

5.11 5.11a Temperature reconstructed considering tolerances(left axis). Maxi-
mum absolute error introduced (right axis). 5.11b Absolute error for each
worst-case simulation. 66

5.12 Temperature reconstruction equation (left axis) and it’s sensitivity with re-
spect to measured voltage (right axis); vertical lines represent the measure-
ment range of -40➦C to 85➦C, horizontal lines the corresponding sensitivities. 67

5.13 5.13a MTi-3 IMU compared to human finger. 5.13b MTi-3 pinout. 69
5.14 5.14a IMU plane origin and axis, modified picture from [64]. 5.14b IMU

footprint on PCB. 70
5.15 AS3016204 MRAM pinout, picture from [42]. 71
5.16 LTC2852 internal architecture, picture from [5]. 73
5.17 Example of RS422 waveforms, picture from [5]. 73
5.18 5.18a NUCLEO-L452RE pinout, picture from [96]. 5.18b Nucleo board

mounted as daughter board by the Morpho connectors. 74
5.19 System power delivery. 76
5.20 Power regulation circuit. 77
5.21 Simple type protection circuits. 78
5.22 Complex protection circuit block diagram. 79
5.23 Latch-up protection circuit. 79
5.24 5.24a INA138 high-side current measurement circuit, picture from [45].

5.24b TL431 2.495 V reference generation. 80
5.25 Slow turn-on, fast turn-off high side switch circuit. 81
5.26 Latch-up protection circuit simulation model. 82
5.27 Voltage at load during simulated latch-up event in SPICE. 83
5.28 Simulated latch-up event, red: load voltage, blue: INA138 output, green:

current through switch. 83
5.29 IC powering from I/O through ESD protection diode. 84
5.30 SN74AXC1T45 and SN74AVC4T245 used as voltage domain interface with

the MRAM. 85
5.31 Singer board connectors names and function. 86
5.32 Samtec ISDF-07-D-M cable housing (left) and TFM-107-02-S-D-WT-P con-

nector (right). 86
5.33 Nucleo header connectors pinout. 88
5.34 5.34a Voltage regulator symbol. 5.34b Voltage regulator footprint. 5.34c

Voltage regulator 3D model. 89
5.35 Main Singer schematic sheet on KiCad. 90
5.36 PCB interconnections layout. 91
5.37 PCB layers. 5.37a Top layer. 5.37b Top inner layer. 5.37c Bottom inner

layer. 5.37d Bottom layer. 92
5.38 PCB floorplan. Top view (left) and bottom view (right), areas of the same

color are part of the same block. 93
5.39 5.39a Interconnection network with single segment π model. 5.39b Simu-

lation result. 94
5.40 The four produced Singer boards. 95

XV

6.1 Singer firmware hierarchical structure. 97
6.2 FreeRTOS with static RAM allocation. 99
6.3 Example of FreeRTOS tasks scheduling. 100
6.4 Singer logical architecture. 100
6.5 Microcontroller pin assignments. 101
6.6 SPI basic concept with shift registers data swap. (Up) Shift registers con-

tent before the transaction. (Down) Shift registers content after the trans-
action. 101

6.7 Typical SPI transaction, the four possible combinations of clock polarity
an phase are shown. 102

6.8 6.8a SPI in multi-drop configuration. 6.8b SPI in daisy-chain configuration. 102
6.9 UART communication between two devices. 103
6.10 UART frame with 8 bits of data and no parity bit. 103
6.11 6.11a UART driver outline. 6.11b UART driver data flow pipeline. 105
6.12 UART driver data structure. 106
6.13 Circular buffer and plain buffer structures and functions. 107
6.14 searchPacket() and searchPacketAdvance() functions headers. 107
6.15 Packet search rules. 108
6.16 Example of possible packet formats. 108
6.17 6.17a searchPacket() function flow graph. 6.17b Example of byte properties

determination, heads are green, tails are red, partial head/tails are orange,
other packet bytes are yellow. 109

6.18 Search packet state machine and mode 2 check. 109
6.19 Example of buffer alignment. (Up) Rotation needed. (Down) Rotation not

needed. 110
6.20 Buffer advance flags and relative logic. Head bytes are in green, tail bytes

in red. 110
6.21 Real-case example of searchPacketAdvance() applied to an incoming stream

of data. Head bytes are in green, tail bytes are in red. Function calls are
represented as red squares around the circular buffer, function flags that
cause the buffer to advance on each step are shown on the left. 111

6.22 Xbus message frame, picture from [62]. 111
6.23 MTData2 message format, picture from [62]. 112
6.24 IMU operative modes, picture from [62]. 113
6.25 IMU driver outline. 113
6.26 Parrot communication protocol message format. 114
6.27 Binding of printf() to the AP UART through the definition of io putchar() 115
6.28 AD7788 single conversion mode timing diagram, picture from [55]. 116
6.29 Logical wiring of the two ADCs. 117
6.30 ADC driver outline. 117
6.31 MRAM internal architecture, picture from [42]. 118
6.32 MRAM arrays and corresponding address space. 119
6.33 MRAM interface registers, picture from [42]. 119
6.34 Timing of 1-1-1 instruction type, picture from [42]. 120

XVI

6.35 6.35a MRAM driver outline. 6.35b MRAM instruction set definition inside
the driver. 120

6.36 MRAM log system organization. 121
6.37 SingerTableEntry structure. 122
6.38 SingerTelemetry structure. 122
6.39 6.39a SingerDataPacket structure. 6.39b ParrotSensorsMemory structure. . 123
6.40 Log system library outline. 123
6.41 6.41a Firmware task general form. 6.41b Firmware tasks and data flow paths.124
6.42 TelemetryProdCons structure. 125
6.43 Sequence diagram of telemetry exchanges. 126
6.44 Sensors task state machine states. 127
6.45 Sensors task flow chart and sampling state machine. 128
6.46 Memory task flow chart. 129
6.47 Parrot protocol messages exchange. 130
6.48 SingerRequest structure. 130
6.49 ParrotSensorsSerial structure. 131
6.50 Parrot task state machine. 131
6.51 Parrot task flow chart. 132
6.52 Hierarchical timeout example. 133
6.53 Access Port debug console. 134
6.54 Time measurement mode output. 135
6.55 Firmware memory usage. 136

7.1 SPEISAT FlatSat AIV plan. 137
7.2 SPEISAT Flight Model AIV plan. 138
7.3 ST-Link programmer (still attached to the Nucleo board). 139
7.4 Breakout boards. 7.4a Access Port interface board. 7.4b Loop-back board.

7.4c Singer interface cable. 140
7.5 7.5a Singer breadboard model, first row from left: IMU, Nucleo, level

shifters; second row from left: RS422 transceiver, PC104 board with ADCs,
MRAM ICs. 7.5b SMT devices on breadboard socket. 140

7.6 Singer downlink (left) requested by the Parrot mock-up (right), which then
shows the response messages in hexadecimal format. 141

7.7 MT Manager window, showing the data graphs and the IMU orientation
view. 142

7.8 Microcontroller used as IMU bridge to connect the IMU to MT Manager. . 142
7.9 Acceptance tests reference configuration. 143
7.10 7.10a Latchup test setup. 7.10b Voltage at load during simulated latchup. . 144
7.11 Memory test AP output. 145
7.12 7.12a RS422 test data flow. 7.12b RS422 test AP output. Each number

represents an RS422 transceiver, the order of arrival between channels is
not important since the messages were sent and received at the same time. 146

7.13 ADC test AP output. The thermistors cable was connected to J7 at this
point, the last thermistor was being heated up by the operator (the code
decreased). 146

XVII

7.14 IMU test AP output. 147
7.15 PCB design error corrections on the qualification model. (Right) Correc-

tion on the MRAM. (Left) Added pull-up resistor. 148
7.16 Nucleo board modified/removed components. 149
7.17 7.17a Pre-crimped cables for thermistors. 7.17b Soldered thermistor. 7.17c

Thermistors integrated in the spacecraft, before fixing them to the mea-
surement points. 150

7.18 7.18a Nucleo board glued on Singer PCB, we can also notice the glue on
PCB mounting screws. 7.18b Backplane and thermistor array connectors
glued during integration. 151

7.19 The integrated flight model without the last two solar panels. 151
7.20 Functional tests reference configuration (only the point of view of Singer is

shown). 152
7.21 fig. 7.21a The flexible antennas after deployment. fig. 7.21b Ground

Station front-end. 153
7.22 7.22a SPEISAT inside the deployer dummy. 7.22b Vibrational test setup,

the CubeSat was placed inside the dummy deployer. 154
7.23 Spacecraft on the dummy deployer inside the thermal chamber. 155
7.24 Solder paste residues from improper manufacturing, the distance between

two legs is 0.5 mm. 156
7.25 Flight model accident scenario. 157
7.26 Garbage output after the incident. 157
7.27 Operators testing the spacecraft shipping container with the exposition

model, the flight model can be seen on the foreground. 159

8.1 8.1a View inside the Falcon 9 second stage fairing of Transporter-8 launch,
the arrow points to the position of SPEISAT, the approximate dimension
of the CubeSat is drawn as a red rectangle, Credit: SpaceX. 8.1b Falcon 9
launch with SPEISAT onboard, picture shot by the author. Credit: SpaceX 161

8.2 ARI-Bra amateur radio station. The UHF antenna can be seen in the center.162
8.3 Main Gpredict window showing SPEISAT position, trajectory and line of

sight. 163
8.4 Ground Station setup at ARI-Bra. 163
8.5 Singer downlink waterfall shown on Gqrx (right), it’s possible to spot the

Doppler shift on the received frequency; Gpredict tabs are also visible (left)
which were commanding the antenna rotator and correcting the reception
frequency on Gqrx. 164

8.6 Singer temperature measurements versus time, y axis is in [➦C]. 165
8.7 Parrot sensors temperature measurements of battery (up), and the two

CDHs (down), y axis is in [➦C] for both. 165
8.8 Parrot sensors battery voltage (up, [V]), discharge current (middle, [A])

and charge current (down, [A]) versus time. 166
8.9 Singer IMU data versus time: gyroscope (up, [rad/s]) and magnetometer

(down, normalized no unit). 167
8.10 Singer reboots over the period from 25 June 2023 - 31 July 2023. 168

XVIII

8.11 CDH 1 operative mode stored by Singer over the period from 25 June 2023
- 31 July 2023. 168

8.12 CDH 2 operative mode stored by Singer over the period from 25 June 2023
- 31 July 2023. 169

XIX

List of Tables

4.1 Singer functional requirements. 51
4.4 Singer performance requirements. 53
4.6 Singer interface requirements. 54

5.1 MRAM current estimation. 72
5.2 MRAM average power estimation. 72
5.3 Nucleo L452RE clock sources characteristics, data from [113] (pag. 135)

and [68], maximum error includes the contribution of tolerance on the fre-
quency value and drift due to VDD and temperature (and aging for the
LSE). 75

5.4 Used microcontroller blocks, associated function and clock. 76
5.5 Singer Access Port (J9) pinout. 87
5.6 Singer communication port (J8) pinout. 87
5.7 System power consumption summary . 88
5.8 PCB estimated tracks resistance and capacitance per unit length. 94

6.1 List of Parrot/Singer messages. 130
6.2 Firmware configuration. 135

7.1 Power test. 143
7.3 MRAM test. 144
7.5 RS422 test. 145
7.7 ADC test. 146
7.9 IMU test. 147
7.11 Full functional and day-in-the-life tests. 152
7.13 Mechanical fit and vibrational tests. 154
7.15 Thermal cycling test. 155

XXI

Chapter 1
Introduction to CubeSat

This chapter will introduce the reader to the CubeSat standard and give an overview of
its evolution over time.

1.1 The CubeSat standard
The CubeSat project was born in 1999 from the minds of Prof. Jordi Puig-Suari (Cal
Poly) and Prof. Bob Twiggs (Stanford) as a mean to provide students with an affordable
way to develop space missions, the idea behind CubeSat is the standardization of small
satellites’ form factor which in turn lowers the costs of spacecraft design and simplifies
launcher interfacing ([91], chapter 1,2).

Figure 1.1: Weight
class of some stan-
dard and non standard
CubeSats, picture from
[91].

”The intent of the CubeSat Project was to reduce cost and development time, increase
accessibility to space, and sustain frequent launches.” [21]

The CubeSat standard is released as the “CubeSat Design Specification” or CDS ([21])
available in the official website (https://www.cubesat.org/); CubeSat is a family of
small satellites, each one has a cuboid volume that’s a combination of (10x10x10) cm
units (U), hence the type of CubeSat derives from the number of units: today the CDS
officially defines 1U, 1.5U, 2U, 3U, 6U and 12U (see fig. 1.1), but several others have been
launched (according to [120]) like 0.25U, 4U, 8U, 16U and also different units dispositions
of the official classes (for example some 6U with the form 1Ux1Ux6U).

23

https://www.cubesat.org/

Chapter 1 - Introduction to CubeSat

Figure 1.2: 3U CubeSat (CSSWE)
with P-POD dispenser, picture from
[3].

CubeSats are deployed into orbit by a standard-
ized dispenser, the first dispenser developed was
the Poly Picosatellite Orbital Deployer, or P-
POD (fig. 1.2), that can house 3U in total and
deploys them by means of a spring system, but
today many others exist; the small and stan-
dardized form factor allows building low-cost
spacecrafts and guarantees interoperability of
all CubeSats with dispensers; another advan-
tage of this approach is containment: the dis-
penser acts as a firewall between spacecraft and
launchers so the flight qualification of CubeSats
is easier ([100]).
According to the CDS, each U can weight up to
2 kg, so they can be classified as belonging to NanoSatellites (1-10 kg, for 1U-3U range)
and MicroSatellites (10-100 kg, for 6U+) classes (see fig. 1.1), with the NanoSatellite
definition that is often used interchangeably with “CubeSat” since originally only the
1-3U range platforms were defined ([91]); the CDS also clearly states that the document
should only be considered as a guidance and that the CubeSat developers should comply
with the specific requirements of each launch provider, which usually are quite similar to
the CDS if not less restrictive.

1.2 CubeSats evolution

Figure 1.3: Cubesats evolutionary tree, picture
from [117].

This section has the purpose of
drawing an evolution timeline for
CubeSats (as seen on fig. 1.3);
the analysis came from the last
two NASA’s state-of-the-art re-
ports on small satellites ([90],
[91]) and by direct observations
on data from https://www.na

nosats.eu, an online database
that tracks small satellites mis-
sions. Other fonts include the pa-
per from Burkhard and Weston
([106]) for the NATO Science and
Technology Organization (STO) and the series of conference papers from Prof. Swartwout
([100]–[105]) about small satellites evolution.
For simplicity, on the graphs made by the author (the ones that say ”data from [120]”),
only the numbers of the official CubeSats types (the mostly launched) have been used
(1U,1.5U,2U,3U,6U,12U, where for 6U only the official 1Ux2Ux3U unit disposition has
been considered), it’s also worth mentioning that the database only tracks publicly avail-
able satellites, nevertheless this should give an idea on the evolutionary trends of this
technology which is the main goal of this section. Also consider that the numbers for

24

https://www.nanosats.eu
https://www.nanosats.eu

1.2 - CubeSats evolution

the year 2023 include planned CubeSats besides the already launched, for this reason the
numbers should be considered only as indicative.

1.2.1 Some words on secondary payloads

Figure 1.4: Cubesat launches by type
(1U,1.5U,2U,3U,6U,12U) from 2003 to 2023, data
from [120].

The history of CubeSats is closely
linked to the history of sec-
ondary payloads (rideshares or
“piggyback” missions) and rocket
launchers in general: launches
are very costly and usually the
primary mission only exploits a
part of the launcher capabilities
in terms of upmass, it was to
be expected then that the idea
of secondary payloads made it’s
way on the aerospace industry
from the very beginning, with the
first spacecraft launched as sec-
ondary payload being the 20-kg
SOLRAD-1 in 1960 ([100]).
In the period from 1960 to 2012,
only 7.5% of the spacecraft launched were secondary, then in 2012 the percentage was
30% and in 2013 53% ([105]), this trend continued growing until today (with CubeSats
becoming the major contributors in their mass category as explained in [104]), but the
original concept of secondary payload has almost lost its meaning: today it’s common
to see launches without a primary mission but with hundreds of “equally secondary”
spacecraft ([105]) and the introduction of big constellations (hundreds if not thousands of
identical satellites) has greatly skewed the numbers not only for CubeSat class ([106]).

1.2.2 2000s: CubeSats introduction
Initially, CubeSat platforms where mainly used by universities as a precious way for stu-
dents to experience the design of a complex space project and traditionally CubeSats were
built from Components Off The Shelf (COTS). This trend continued up until ∼2010/2011,
with a relatively low number of launched CubeSats (in LEO) and the most popular mission
objectives being technology demonstrations (ADS/ADCS, radio communications, radia-
tion detection, basic earth observation and avionics validation in general), as explained
in [106]. In fig. 1.4, we can see that back then the favorite CubeSat type was 1U, with
3U starting to take the lead towards the end of the decade. The first 6 CubeSats were
launched in 2003.

25

Chapter 1 - Introduction to CubeSat

Figure 1.5: CubeSats (1U,1.5U,2U,3U,6U,12U) launched by each launcher or fam-
ily of launchers (denoted with ”f.”) in the period from 2003 to 2012 (left axis), the
green trend line is the number of different launchers employed (right axis), data
from [120].

1.2.3 2010s: Growing interest on CubeSats

Figure 1.6: Per-
centages of CubeSats
(1U,1.5U,2U,3U,6U,12U)
launched by type of
institution, data from
[120].

Around 2010, the potential of CubeSats as a low-cost platform had been seen by more
and more institutions outside of the educational context:

26

1.2 - CubeSats evolution

“it was only 7 years ago that the Director of Advanced Systems and Technology at
NRO told the audience of the Smallsat conference that his agency had no interest in
CubeSats. And, now, in 2011 the NRO Colony program is one of the largest funding
sources for CubeSat technology development” ([101]).

This trend can be seen in fig. 1.6, where the launches by type of institution are plotted.
As stated in [106], CubeSats became more capable and therefore bigger platforms started
being preferred since the 1U is quite limited in volume. It wasn’t only the size though,
because all the ecosystem of electronics and technology in general has drastically grown
and today a CubeSat can be equipped with greater data processing, communication and
navigation capabilities within the same unit of volume, so that also the smaller platforms
are more useful.
Over this period many mission were launched with a scientific payload and a secondary
technology demonstration purpose. This trend on choosing larger and larger platforms
can be clearly seen in fig. 1.7: while initially almost all satellites were 1U, on the last
decade the 3U platform has become the preferred choice, from its introduction around
2015 the 6U platform has grown steadily to around one third of the launched satellites,
while today we can see that also the 12U started rising.

Figure 1.7: Per-
centages of launched
CubeSats types
(1U,1.5U,2U,3U,6U,12U)
over the period from
2003 to 2023 (left
axis), the blue trend
line is the average
size in Units (U) of
launched CubeSats
(right axis), data from
[120].

1.2.4 2014: CubeSat constellations and dedicated rideshares
As highlighted by data, it’s clear that the period around 2014 was a turning point on the
CubeSat history: the percentage of CubeSats launched by companies passed from around
15% on 2013 to around 80% on 2014 (fig. 1.6), the total number of launched CubeSats
was already growing on 2013 and in 2014 passed from tens of satellites of the 2000s to
hundreds of them (fig. 1.4), with the number of 3U CubeSats growing from around 30%
of 2013 to an 80% of total. Furthermore, the number of founded companies abruptly
doubled with respect to the already growing number of the previous years, as in fig. 1.8.
This is representative of a fundamental step: in 2014 the first CubeSat constellation (Plan-
etLab’s earth observation “Dove”s) was launched, with almost a hundred 3U CubeSats
deployed along the year, paving the way for CubeSat constellations, as stated in [106];
in the paper is estimated that in 2017 about half of all the CubeSats/nanosats launched
were 3U constellations.

27

Chapter 1 - Introduction to CubeSat

Figure 1.8: Number
of founded companies
active in nanosats over
the time period from
2003 to 2023, picture
from [120].

CubeSat constellations greatly exploit the intrinsic advantages of this type of satellites:
the possibility to deploy a large array of identical low-cost payloads on a large area to
capture simultaneous multi-point measurements, allowing for remote sensing, weather
observation and IoT infrastructures, just to name some; another possibility with constel-
lations is to deploy different payloads that perform together an integrated and versatile
service, this is a more difficult path but is gaining attention due to its potential for appli-
cations like in-space infrastructure services, debris monitoring and other close proximity
operations ([106]).

Figure 1.9: Percentage of CubeSats mission
type, picture from [90], pag. 12.

The capability offered by multi-
ple smaller satellites can some-
how match the one of a bigger
and more expensive one ([91] pag.
207).
As already said, the growth of
CubeSats and secondary pay-
loads was coupled with a con-
temporary growth of secondaries
launched: the total number
of space launches (and space
launches that carry secondaries)
had grown steadily but limitedly
so the great increase on launched
CubeSats is due to the growth on the average and total number of secondaries carried
on each launch ([105]). Another view of this trend can be seen in fig. 1.10, where the
growing number of different launchers used for CubeSats is plotted.

28

1.2 - CubeSats evolution

Figure 1.10: CubeSats (1U,1.5U,2U,3U,6U,12U) launched by each launcher or
family of launchers (denoted with ”f.”) in the period from 2013 to 2023, the green
trend line is the number of different launchers employed (right axis), data from
[120].

Some records had been established meanwhile: in 2017, a PSLV launch set the record for
the highest number of launched CubeSats as 101 spacecrafts, it also temporary set the
record for the highest number of satellites launched (104) that was passed in 2021 by a
SpaceX Falcon-9 launch with 149 small satellites (of wich 91 CubeSats) for the SpaceX
Transporter program (data from [32], [120]).
The large availability of launch opportunities has been a major enhancer of CubeSats and
will continue to drive their evolution ([106]), this is also thanks to the standardization of
deployment systems (PODs) that allows launching CubeSats and other secondaries from
many different vehicles ([103]).
In this context is important to distinguish CubeSat missions not only in their mission
objectives but also in their acceptable risk and failure figures: until now we taught about
CubeSat missions in general but it’s important to notice that very different types of
CubeSats manufacturers exist, each one with very different performance objectives, risk
tolerances and so, cost. In [103], [104] a categorization is done on the 2000-2015 data
between four types of builders:

Hobbyst: Groups that approach CubeSat building with low cost, fast turnaround and
high risk tolerance, with lack of standard practices on integration and tests. New univer-
sities are an example of hobbysts.

Traditional Contractor: These professional groups build CubeSats the same way they

29

Chapter 1 - Introduction to CubeSat

would build any other spacecraft, with high performance objectives and low risk tolerance,
so the cost of their spacecraft is high. The examples given on the paper are Boeing or
Lockheed Martin.

SmallSat developers: This group is between the first two, they have experience in
building satellites and have developed practices and risk profiles depending on the mission.
Examples of this group are the AMSAT, experienced universities and some government
agencies.

Constellations builders: Technically they are in SmallSat category, but since they build
a big number of exact copies of a single spacecraft they are excluded from the graphs
because they will skew the statistics. The major example of this category is PlanetLab
with its 143 launched CubeSats in the end of 2015 according to the paper (555 to date,
from [120]).

In fig. 1.11, the data from each category until 2015 is presented as given on the paper,
from the graphs we can immediately notice the significant differences between the various
builder categories, with hobbysts that more than half of the times experienced at least an
early loss of the spacecraft.

Figure 1.11: Cake graphs of mission status of all the CubeSats launched by each
builder category, excluding constellations, at the end of 2015, data from [104].

1.2.5 2018: Deep space missions
In 2018, the first deep space mission (Mars Cube One or MarCO) was launched, as a
couple of 6U CubeSats headed to Mars with the InSight lander ([60], [91], pag. 74).
The employment of CubeSats for deep space missions is expected to grow on the near
future, in 2021 NASA’s DART mission carried an Italian 6U CubeSat (LICIACube) to
record the impact of the primary mission on the asteroid moon Dimorphos ([54]), other
two CubeSats (Juventas and the italian Milani) are expected to visit the same asteroid
in 2027, released by the european component (Hera) of this NASA-ESA collaboration
([110]).
In 2022 the Artemis-1 maiden flight of the new NASA’s SLS (Space Launch System)
launcher sent ten 6U CubeSats towards lunar or heliocentric orbits to collect science data

30

1.3 - Polytechnic of Turin CubeSat heritage

and demonstrate innovative technologies ([106], [120]). Deep space missions have different
requirements than LEO CubeSats, for example in terms of radiation hardening (without
the protection of earth’s magnetosphere, as explained in [90], pag. ii) and transmission
power (due to their limited size and power, CubeSats typically have low data transmission
capabilities), as explained in [106].

“The exposure to GTO, GEO, lunar, and interplanetary space will greatly broaden
CubeSat overall capability as more technology is able to be characterized.” [106]

(a) (b)

Figure 1.12: Pictures from NASA’s MarCO mission. 1.12a One of the twin Cube-
Sats’ solar array being tested. 1.12b Image of Mars captured by MarCO-B 6U Cube-
Sat after the landing of InSight. Pictures from [60].

1.3 Polytechnic of Turin CubeSat heritage
The Polytechnic of Turin has a rich history of launched CubeSats and the mission of
which this thesis is about could draw from the valuable know-how and lessons learned
from the past missions; follows a list of the Polytechnic’s CubeSats fly heritage:

PicPoT (2007): technically not a CubeSat but still having the cubic form factor with
side length of 15 cm (fig. 1.13a), this spacecraft carried various technology demonstrations
and aimed at gathering images from space, the mission failed when the Dnepr launcher
exploded 86 seconds after launch ([74]).

e-st@r (2012): this 1U CubeSat carried an ADCS demonstration experiment and was
launched on board the Vega launcher on its maiden flight ([19], [28]).

e-st@r-II (2016): this 1U CubeSat (fig. 1.13b) is an improved version of its predecessor,
it was launched onboard a Sojuz launcher as part of ESA’s “Fly Your Satellite!” program
and is still operational to date ([28], [29], [94]).

Spei Satelles (2023): the first 3U CubeSat (fig. 1.13c) of the list and last launched one;

31

Chapter 1 - Introduction to CubeSat

built in less than 5 months, this is the spacecraft that contains the subsystem analyzed on
this thesis; it hosts a telecommunication main mission and a secondary scientific one, with
the goal of gathering temperature and attitude measurements in orbit; the mission also
hosts some technology demonstration experiments, like a passive ACS system, radiation
hardening techniques and testing of a redundant architecture; it was launched onboard a
Falcon 9 launcher and is still operational to date ([47], [86]).

(a) (b) (c)

Figure 1.13: 1.13a PicPoT satellite. 1.13b e-st@r-II CubeSat. 1.13c Spei Satelles
CubeSat.

All the Polytechnic missions were built totally or partially from in-house developed COTS
hardware and were characterized by the participation of students on all phases of the
development effort, this is the context where the student team “CubeSat team” (of which
the author is part of) was in fact founded.
The CubeSat team is developing a new 3U mission with earth observation goals for the
near future ([46]), meanwhile students of this and other teams (like “team Diana”) and
researchers of the Department of Mechanical and Aerospace Engineering (DIMEAS) are
constantly working on high profile projects related to the CubeSat technology, like the
ESA µProp project ([12]), the SROC mission ([35]) or the SINAV project ([17]).

32

Chapter 2
CubeSat platforms

In this chapter we will discuss about the actual Cubesat building philosophy, by particu-
larly focusing on the components more related to this thesis (electronic components).

2.1 Spacecraft BUS
The spacecraft BUS is the set of mechanical, electronic and software components that
provide the necessary support functions to the satellite (should not be confused with the
definition of BUS as communication channel typical of electronics), providing a working
environment for the payload ([91]). Follows a list of the main elements of a CubeSat BUS,
which are analyzed in details in the NASA state-of-art reports ([90], [91]), elements are
accompanied by research contributions from the Polytechnic of Turin:

Structural subsystem [13];

Electrical Power System (EPS) [11];

Communication System (COMMSYS) [14];

On Board Computer (OBC);

Attitude determination and Control System (ADCS) / Attitude Control System (ACS)
/ Attitude and Orbit Determination and Control System (AODCS) [93], [95];

Thermal Control Subsystem (TCS) [18];

Propulsion subsystem [92].

This general structure can be arranged in various ways and a large number of different
solutions are described in the reports. The OBC in particular is a subsystem that has
seen diverse implementations and is continuously mutating following the evolution of
electronics, passing from a simple and centralized system to distributed architectures
with multiple (different) processors that perform the diverse tasks. The main task of the
OBC is to perform Command and Data Handling (CDH) operations, being the brain of
the spacecraft and running the Flight Software (FSW); this definition is somehow limited
since the moving towards distributed architectures leads to the co-existence of different
OBCs inside the spacecraft that can share the CDH task or other processing duties; every
subsystem can possess its own, more or less powerful, OBC and as stated in the reports

33

Chapter 2 - CubeSat platforms

the FSW is in general all the software running on every spacecraft subsystem ([91], pag.
220).
As stated in [90] (pag. 6), in the last decade the manufacturing of CubeSats (and small
satellites in general) has mainly bifurcated into two major options:

Turnkey BUS solutions: a vendor offers a choice of pre-designed, fully integrated and
verified spacecraft BUS solutions from which the customer can choose depending on its
requirements.

COTS BUS solutions: the customer can buy different components for their own inte-
gration, testing and operation of a custom BUS.

2.2 CubeSat Interfaces
Traditionally, universities rely on the COTS option to design CubeSats because it’s
cheaper and offers more learning opportunities, this is also made possible by the de-facto
standardization of some CubeSat interfaces ([90]).

2.2.1 PC/104 form factor

Figure 2.1: Family of PC/104 standards, picture from [80].

Figure 2.2: Exam-
ple of PC/104 stack,
picture from [80].

PC/104, together with CompactPIC, is a de-facto industry standard for CubeSats ([90]),
it defines mechanical and electrical specifications for ”stackthrough” connection modules
(fig. 2.2), the original standard is described in the ”PC/104 Specification” document
([71]) but various other versions exist (fig. 2.1) like the PCI/104 and PCIe/104 ([72],

34

2.2 - CubeSat Interfaces

[73]).
There are various levels of compliance with the standard, as explained in the specification
document:

”PC/104 ”Compliant” [...] refers to ”PC/104 form-factor” devices that conform to
all non-optional aspects of the PC/104 Specification, including both mechanical and
electrical specifications”. [71]
”PC/104 ”Bus-compatible” [...] refers to devices which are not ”PC/104 form-factor”
(i.e., do not comply with the module dimensions of the PC/104 Specification), but
provide a male or female PC/104 bus connector that meets both the mechanical and
electrical specifications” [71]

The pin assignments of PC/104 boards for CubeSats can vary between vendors ([23]) and
for this reason compatibility issues can arise during integration.

2.2.2 Backplane board
Another option is the ”plug into a backplane” approach which is described in [6], it con-
sists of a common Backplane Board (BPB) where all the subsystems are perpendicularly
connected; this allows routing inside the backplane and eliminates the problems related
to the PC/104 interface, like the big mechanical dimensions and the need to disconnect
all the top boards to access a specific one. In [81], [112] an implementation of software
reconfigurable BPB is built for the ”BIRDS” satellite program, in this case a 50 pin con-
nector is used and a programmable logic device allows software configuration of backplane
routing, this way the satellite can be reconfigured to house different modules (or module
iterations) without the need to fabricate a new backplane PCB.

2.2.3 Daughter boards

Figure 2.3: Example of PC/104
ADCS board developed at Polytech-
nic of Turin with mounted daughter
boards (OBC and IMU), picture
from [59].

As explained in [90] (pag. 206), to address
problems related to connection complexity and
speed, retro-compatibility with technology ad-
vancements but also to employ COTS that
are not developed specifically for CubeSats,
many vendors and designers adopted the idea
of daughter (or mezzanine) boards, of which an
example is shown in fig. 2.3: the subsystem
is composed of a carrier board with connec-
tors to house a daughter board (i.e., a general
purpose compute module, an RF transceiver,
...); the advantages of this approach are multi-
ple: daughter boards can be designed/bought
as general-purpose modules with a standard-
ized interface, at the same time carrier boards
will implement the application-specific aspects
and connect the whole module to the rest of
the spacecraft through classic connectors (i.e.,
PC/104). This solution is conceptually similar to how RAM banks are connected inside

35

Chapter 2 - CubeSat platforms

laptops and indeed some carrier boards have been designed to house SO-DIMM form fac-
tor (the typical laptop RAM form factor) compute modules, like for example in [79] where
an OBC was developed resorting to two Raspberry Pi CM3 as daughter boards. Another
example is given in [122] where a Software Defined Radio (SDR) module is mounted as
daughter board for the PRETTY satellite.
Another example given in [90] is the Qseven Computer-on-module standard:

”The Qseven➤ concept is an off-the-shelf, multi vendor, Computer-On-Module that
integrates all the core components of a common PC and is mounted onto an application
specific carrier board. Qseven➤ modules have a standardized form factor of 70mm x
70mm or 40mm x 70mm and have specified pinouts based on the high speed MXM
system connector” [78]

Notice that Qseven is an embedded computer-on-module standard that is not specifically
conceived for CubeSats.

2.3 Electronics in space

Figure 2.4: Challenges of spacecraft electronics, data from [53].

There’ s a number of challenges that a spacecraft and its electronic components must face
in order to fulfill their mission, in ([53]) some of them are listed (fig. 2.4):

Mechanical stress: due to the intense vibration of launch vehicles and pyrotechnic
shocks (for example during stages separations);

Outgassing: exposure to void causes plastic, glues and adhesive materials to emit vapors
that will orbit with the spacecraft, they can degrade its surfaces but also deposit on optical
elements. One solution is use ceramic materials instead of plastic where possible;

Electrostatic discharges: plasma bombardment and photoelectric effects can lead to
violent electrical discharge events that can damage the spacecraft. One solution is to
cover the spacecraft outside surfaces with conductive materials;

Corrosion by atomic oxygen: the main atmospheric component in LEO (96%) is atomic
oxygen (O) that can react with organic materials if they are not coated properly;

High temperature fluctuations: of up to 300➦C due to the alternation of sunlit (space-

36

2.3 - Electronics in space

craft illuminated by sun) and eclipse (spacecraft on earth’s shadow) phases;

Metallic whiskers: pure tin, zinc and cadmium are subject to spontaneous growth of
these thin filaments that can cause electrical shorts, this process is enhanced in vacuum so
those materials are prohibited for space applications by IEEE. Tin is common as solder
metal so the addition of lead is one way to reduce whiskers formation. The notorious
NASA’s Cassini mission in 2011-12 had to shut down its plasma spectrometer for several
months due to voltage fluctuations likely due to whiskers formation ([31]);

Space radiation: this is one of the main concerns for space level electronics, the type
and level of radiation strongly depends on the type of orbit and solar activity.

2.3.1 Radiation effects on electronics
Radiation effects are of particular relevance for electronic components because they are
not only cause of physical degradation but also of information loss. There are various
types of particles in space (protons, neutrons, electrons, alpha, heavy ions), these particles
can be trapped inside Van Allen belts, ejected from the Sun or come from outer space
(cosmic rays) ([53]). The energy of an ionizing particle that passes through a device will
be absorbed with the generation of carrier pairs (electrons and holes), those pairs can
recombine or being moved by the local electric fields and depending on the type and
energy of the particle and the place where it hits there can be different outcomes ([9],
[27]).
In [53], radiation effects are divided into two subcategories:

Total Ionizing Dose (TID) is a long-term failure mechanism due to charges accumulated
over time inside insulators: positive charges are trapped in oxides, changing the threshold
voltage of transistors and inducing leakage currents through parasitic channels. Eventually
the device may exit the nominal operating range or no longer work ([9]). TID is expressed
with the unit of measure [rad]=[0.01 J/kg], which represents the total energy absorbed
per unit of mass.

Single Event Effects (SEEs) are random events that manifest whenever a highly en-
ergetic particle strikes microelectronic circuits; there are various types of SEEs that can
have a wide variety of outcomes, from no observable effect to information corruption to
chip degradation/destruction ([27]).

In [53] the classification done by the Joint Electron Device Engineering Council (JEDEC)
on SEEs is reported:

Soft errors: non destructive errors that are typically associated with software/data
errors: Single Event Upset (SEU) happen when the energetic particle changes one bit
of information in a memory device, SEU in multiple bits are called Multiple-Bit Upsets
(MBUs) and SEU that happen in bits that cause the device functionality to be somehow
compromised (bits associated with controls/instructions) are called Single Event Func-
tional Interrupts (SEFI);

37

Chapter 2 - CubeSat platforms

Hard errors: destructive errors that cause the device to be irreversibly compromised
that are typically associated with hardware damages: Single Event Latchup (SEL) are
an example of this type of errors that will be further investigated in this thesis. Other
examples are Single Event Gate Rupture (SEGR) and Single Event Burnout (SEB).

2.3.1.1 Single Event Latchup (SEL)
Latch-up is a phenomenon in which a parasitic Silicon Controlled Rectifier (SCR) that
exists in CMOS cells (fig. 2.5) can be activated by an injected current or an overvoltage
condition, creating a low impedance path between the supply rails; once activated, the
latch-up condition is self-sustaining and the only way to stop it is to perform a power cycle
of the device. An uncontrolled Latch-up can have severe effects and led to the partial or
complete destruction of the IC due to overheating([49]).

(a) (b)

Figure 2.5: 2.5a Cross section of CMOS inverter showing the parasitic SCR. 2.5b
The equivalent circuit of the parasitic SCR. Both pictures from [49].

Normally the risk of latch-up is restricted to the application of currents or voltages to
the IC I/O pins outside the limits specified in the datasheet [49], this is not true in high
radiation environment, where the energy liberated by ionizing particles can trigger latch-
up conditions in any point of the IC. SELs are characterized by a series of dimensions
which can be used to model the event probability from the energy liberated by ionizing
particles. The Linear Energy Transfer (LET) represents the particle energy loss per
unit of path length, normalized with respect to material density, its unit of measure is
MeV*cm2/mg ([27]). The correlation between particle LET and number of SEL events is
expressed by the cross section σ, which represents the ratio between the number of LET
events and the particle fluence in [particles/cm2] ([75], pag. 26).
In [50] it’s suggested that while CMOS devices are particularly susceptible to SEL, linear
circuits build in bipolar technology are almost immune to this effects, while still suffering

38

2.3 - Electronics in space

from effects related to TID, in [16], [118], [121] is also suggested that technology scaling
reduces the effects of TID but enhances SEEs.
Finding documentation about the radiation behavior of specific COTS devices is quite
difficult and mainly depends on testing performed by researchers on similar devices using
ion beams or lasers; some examples are [51], [115], [121], where various devices were tested
resulting in the majority of cases on latch-up conditions with currents ranging from 40
mA to 1A; it’s clear that the range of possible latch-up current values is quite broad and
depends on the specific target devices.
A good source of data about radiation effects on electronic devices is the IEEE Workshop
on Radiation Effects Data ([44]), an yearly conference which gathers radiation test reports
on various devices, but various other databases exist, like for example the ESA’s and
NASA’s Radiation Test Databases ([33], [39]), in some cases the devices chosen for this
thesis were found in these databases or standalone papers, in other cases similar devices
(same technology node, same functionality) where chosen as representative.
It must be said that since the nature of the system was experimental and the development
time was really tight, there wasn’t a formal analysis on the expected figures in orbit for
this system, the author chose devices with higher scores (when this data was found)
considering also their price, both for TID and threshold SEE LET, he also implemented
techniques for mitigate the effects of SEE since these were considered somehow inevitable
with COTS devices.

39

Chapter 3
Spei Satelles

This thesis was conceived in the context of Spei Satelles mission, of which this chapter
will give an overview.

3.1 Motivations and mission
”In the midst of the pandemic, on March 27, 2020, Pope Francis, alone, in the rain,
in the dark of that evening, went up to St. Peter’s Square to pray with and for all
humanity afflicted by Covid. [...] That moment remains engraved in our minds and
hearts, forever and in history, and has become an icon of hope. [...] Starting from
that day various initiatives were promoted by the Dicastery for Communication of the
Holy See in unity with the Pope [...] so that this event would not be forgotten, but
would maintain its driving force.” [87]

Figure 3.1: Spei
Satelles logo, designed
by students of the
IUSVE of Venice [87].

Spei Satelles is a space mission that consists of a 3U Cube-
Sat, built by students and researchers of Polytechnic of Turin
with some support from external companies, involved stu-
dents were members of student teams ”CubeSat Team” and
”Team Diana”, the former being the team the author is part
of. Students from the IUSVE of Venice were also involved in
the realization of the mission logo (fig. 3.1) and other mul-
timedia material. The spacecraft can be seen in fig. 3.2a.
As described in its official website ([87]), the mission was pro-
moted by the Dicastery for Communication of Vatican City
with coordination from the Italian Space Agency (ASI), its
main goal is to carry a silicon nanobook (a little piece of sil-
icon engraved with the book of Pope Francis ”Why are you
afraid? Have you no faith?”) made by the Institute for pho-
tonics and nanotechnologies of the National Research Council
(CNR) and fixed to the satellite structure (fig. 3.2a); the satellite will also periodically
send phrases of the book in different languages, to be captured by radio amateurs all
around the globe.
The Polytechnic of Turin decided to combine the main spiritual mission with a more sci-
entific purpose, by equipping the spacecraft with a suite of sensors to collect data about
the space environment and spacecraft behavior; developing this secondary mission was

41

Chapter 3 - Spei Satelles

the task assigned to the author of this thesis.

(a) (b)

Figure 3.2: 3.2a Spei Satelles spacecraft. The access port can be seen in the mid-
dle of the left solar panel. 3.2b The nanobook glued to the satellite structure.

3.2 Spacecraft architecture

Figure 3.3: Main
spacecraft building
blocks and reference
plane, solar panels not
shown.

This wants to be a brief overview about the spacecraft architecture and subsystems,
necessary to give an insight on the context on which the subsystem treated on this thesis
(Singer subsystem) is collocated and to serve as a reference for the various spacecraft
building blocks and relative tasks, since they will often be recalled on the rest of the
thesis.
The spacecraft is a 3U CubeSat (code-named SPEISAT from now on) designed and built
by Polytechnic students and researchers with support from external companies for some
subsystems, due to the strict deadlines imposed by the project. The main building blocks

42

3.2 - Spacecraft architecture

are shown in fig. 3.3, some of them are grouped with others to form an unique spacecraft
subsystem, as subsequently described.

3.2.1 Spacecraft subsystems
The spacecraft is composed of these main subsystems:

Mechanical structure: The mechanical structure (fig 3.4) was fully developed by mem-
bers of our team: at first a dummy mass model was produced in order to test the me-
chanical interfacing with the satellite deployer and perform some preliminary vibrational
tests; then the final structure was designed, manufactured by an external company and
integrated with the satellite avionics and deployer to perform some final vibrational tests
and verify that launcher requirements were met.

Figure 3.4: Space-
craft mechanical struc-
ture.

Electric Power System (EPS) and Thermal Control System (TCS): Power genera-
tion/dissipation and thermal behavior are strictly tangled and of critical importance in
space applications, where heat exchange between the spacecraft and the external envi-
ronment only happens radiatively. The spacecraft power is generated by 24 GaAs solar
cells, sponsored by CESI ([15]), mounted on four panels of six cells each (fig 3.5a). The
panels were realized with PCBs that offer both mechanical support and interconnection
to the cells and that were realized by members of our team; each panel has a theoretical
maximum power generation of about 6W, but this figure is strongly influenced by orbital
parameters and orientation with respect to the sun. We opted for the Direct Energy
Transfer (DET) method due to the relaxed power requirements of the avionics and to
keep the subsystem as simple as possible: in this method the solar panels are directly
connected to the battery (through a reverse current blocking diode) instead of having a
Maximum Power Point Tracking (MPPT) transformer, so they only require a limiting
circuit to clamp the power bus voltage to the maximum battery voltage (as described in
[30]). The limiter circuit was another system developed by the author (fig 3.5b). but was
not treated in details in this thesis, it gets the name from the power transmission method
(DET) and is basically a parallel shunt regulator based on TL431 with a redundant BJT
power stage that dissipates the excess power to the satellite structure through shunt re-
sistors or to the board ground plane through the BJTs (depending on the actual current
to dissipate and so the transistor working region).
The battery pack was supplied by an external company and is a redundant 3S Li-Ion pack
with self heating capability, needed to keep the batteries warm and being the only active
Thermal Control System (TCS).

43

Chapter 3 - Spei Satelles

The spacecraft power bus only supplies the unregulated battery voltage to all subsystems:
each one generates the needed voltage by itself on the board. The spacecraft has an idle
power consumption of 3W, with peaks up to 8W during radio transmission; a recharge
mode has also been provided with a 1.8W consumption, automatically activated if the
battery voltage goes below a threshold, during which the spacecraft functionalities are
reduced and some subsystems are turned off to let the battery level go up again. Our
team performed simulations by integrating orbital and attitude predictions with electrical
(SPICE, numerical) and thermal models to estimate the actual power budget and thermal
profiles of the spacecraft, verification of these models are one of the purposes of Singer.

(a) (b)

Figure 3.5: 3.5a Solar panels after assembling. 3.5b DET board render.

Attitude Control System (ACS): The attitude control system is very simple and im-
plemented in passive way due to the fast development time of the mission: permanent
magnets are placed along the mechanical structure to align the satellite to the earth mag-
netic field lines, while hysteresis rods are used to damp oscillations in the low friction
space environment. Models about the attitude behavior of the spacecraft were developed
and one of the purposes of Singer is collect data to verify this models.

Command and Data Handling (Parrot subsystem): Command and Data Handling is
performed by two processing boards in redundant configuration, the processing boards
were sponsored by an external company and run an embedded Linux kernel on ARM
processors. The boards manage communication with earth through the COMMSYS,
receiving and dispatching commands to the software services and other subsystems and
sending back telemetry and scientific data, as well as performing part of the satellite
primary mission of periodically transmitting phrases of the Book, which is why they have
been grouped together in the so called Parrot subsystem.

Communication system (COMMSYS): Uplink and downlink capability is given by two
transceivers, one for each CDH board and supplied by the same company of the latter.
Communication with earth is performed in amateur UHF band, at a frequency of 437.500
MHz, with GMSK modulation at 9600 baud and AX.25 protocol for data link layer. The
antennas, that are closed during launch and are subsequently deployed using heating
elements, are two L-dipoles oriented in opposite directions with respect to each other on
the same plane, orthogonal to the spacecraft z axis as can be seen in fig. 3.2a.

44

3.2 - Spacecraft architecture

Spacecraft interconnection (Backplane board): The spacecraft adopted the backplane
board philosophy to interconnect the various subsystems, basically due to the CDH boards
being designed for this approach. The backplane board was made by an external collabo-
rator under specifications from our team, it provides interconnection and power delivery
to the spacecraft building blocks and houses the spacecraft access ports (electrical inter-
faces with the spacecraft subsystems to be used when the spacecraft has been partially
or fully integrated for testing and diagnostics). Fig. 3.6 shows the backplane board dur-
ing spacecraft integration, with the DET board, the battery pack and one CDH already
mounted on it. The spacecraft access port can be seen in fig. 3.2a and fig. 3.9.

Figure 3.6: Back-
plane board during
integration

Sensing suite (Singer): This is the system covered on this thesis, and so will be treated
exhaustively on following sections; its main goal is to gather telemetry data of scientific
interest, specifically thermal and attitude data, being at the same time a platform for
technology demonstrations and helping with the spacecraft health monitoring.

Figure 3.7: Project render of
the Ground Station at Poly-
technic.

Ground Station (GS): Even if not exactly part
of the spacecraft, the ground station is obviously
a fundamental part for mission operations and no
less complex of the spacecraft itself. It consists of
all the infrastructure needed to track an object mov-
ing in orbit, receive/transmit modulated RF signals,
code/decode them and implement all the network
stack layers and databases to store received data.
Our team is working to build a ground station at the
Polytechnic (fig. 3.7) but for SPEISAT we needed
support from external partners, specifically the ra-
dio amateur community; more details about this as-
pect are covered in section 8.2.

45

Chapter 3 - Spei Satelles

3.2.2 Spacecraft block diagram
Spacecraft subsystems are organized as shown in fig 3.8, the backplane is not shown but
is responsible of all wired power and data connections between subsystems. Mechanical
and thermal interfaces are also not shown.

Figure 3.8: Spacecraft block diagram, green arrows are RF data links, blue arrows
are wired data links, red arrows are wired power links.

Wired connection of the laboratory equipment (Ground Support Equipment or GSE) to
the spacecraft (as shown in fig. 3.8) happens through the so-called Access Port (AP), this
consists of a series of connectors (fig. 3.9) from which it’s possible to power, program and
debug the spacecraft subsystems.

46

3.3 - Spei Satelles team

Figure 3.9: SPEISAT
Access Port, here the
solar panels are not
yet mounted. We can
see the AP cable of
Singer (down, gray)
and one CDH (up,
white).

3.3 Spei Satelles team
The SPEISAT team was composed of students and researchers coming from different
courses: most of them were from Aerospace engineering but there were also members from
Electronics (like the author), Informatics, and Telecommunications. Fig. 3.10 summarizes
the Spei Satelles team composition.

Figure 3.10: Spei Satelles team composition.

As can be seen, some of the personnel shown in fig. 3.10 worked on the SPEISAT system
and various subsystems, but there were others crucial roles necessary for the success of
the mission:

47

Chapter 3 - Spei Satelles

Project management: responsible of managing the whole project and also all aspects non
strictly related to engineering, like budget, personnel, public relationship and promotion;

Space segment management: specifically responsible of managing the spacecraft design
process;

Trajectory/Mission design: responsible of mission design aspects, including orbital and
environmental analysis and spacecraft operative modes;

Assembly, Integration and Verification (AIV): responsible of following the building pro-
cess by tracking the development status of the various subsystems, planning the spacecraft
integration and testing activities;

Operations: this group incorporates the designer of the Ground Station and the addi-
tional operators (some of them coming from other groups) necessary to follow the mission
after launch.

48

Chapter 4
Sensing Suite (Singer) subsystem

Figure 4.1: Singer board renders.

The Sensing Suite subsystem (fig. 4.1) implements the SPEISAT secondary mission and
was developed by the author of this thesis, following all the design phases from system
requirements definition to mission operation. The system formal name is Sensing Suite,
later nicknamed as Singer to more easily identify and refer to it, in contrast with the
Parrot subsystem which implements the primary mission.

4.1 SPEISAT Secondary mission
The main secondary mission goals are:

Acquire temperature measurements on various points of the spacecraft to characterize
the spacecraft thermal behavior and interaction with the space environment;

Acquire attitude measurements to characterize the spacecraft passive ACS system.

Secondary achievements of the system are:

Help checking the spacecraft health status by collecting an history of telemetry data
alongside the scientific one;

Verify the behavior of a low-cost electronic system built from COTS orbiting in LEO;

Verify the application of system-level techniques for the mitigation of radiation effects
in LEO;

Verify the behavior of a commercial MRAM in LEO.

49

Chapter 4 - Sensing Suite (Singer) subsystem

4.2 System requirements and specifications
Here a summary of the main Singer system requirements will be presented, divided on
functional, performance and interface requirements; the low level details of each require-
ment will then be discussed on the following chapters. Nice-to-have requirements will be
listed by labeling them accordingly.
Requirements are coded as three field strings with the format:
< type > − < scope > − < number >
requirement types are F (functional), P (performance), I (interface), the possible require-
ment scopes are the following:

T: timing;

S: sensing;

M: memory;

C: communication;

A: Access Port;

P: power;

TH: thermal;

MI: mechanical interfacing.

The verification method for each requirement is also listed, with the following options:

Design: the requirement is satisfied by design, which means that the author did an
analysis starting from the data available (for example in components’ datasheets) to
demonstrate that the requirement is satisfied, this verification is true for any requirement
but some of them were verified only this way (see chapter 5);

Test: the requirement is satisfied by rigorous testing (see chapter 7);

Inspection: the requirement is satisfied by inspection, which means that a simple ver-
ification of the requirement was performed (typically by measurement or observation)
without a rigorous testing plan, usually during the design phase (see section 7.2);

Demo: the requirement was satisfied by a simplified demonstration of a limited use case
which could not be considered a complete and rigorous test;

N/A: Not Applicable, this is used for nice-to-have requirements that were not imple-
mented;

Accident: besides the other verification methods, some unwanted failures verified the
requirement fulfillment (see section 7.6).

As can be seen, it was not always possible to test each requirement with rigorous testing,

50

4.2 - System requirements and specifications

due to lack of available time but most importantly of equipment.

4.2.1 Functional requirements

Table 4.1: Singer functional requirements.

Code Description Verification method
F-T-0 The system should be able to keep an

epoch timestamp.
Test

F-T-1 The system should be able to update
the timestamp of req. F-T-0 from the
interfaces of req. I-C-0 note 1.

Test

F-S-0 The system should be able to measure
up to 32 different temperatures.

Test

F-S-1 The system should be able to measure
3-axis gyroscope and magnetometer
data from an Xsens MTi-3 IMU note 2.

Test

F-S-2 The system should be able to receive
telemetry data from the interfaces of
req. I-C-0 note 1.

Test

F-M-0 The system should be able to store
and retrieve in non-volatile mode the
data from req. F-S-0, F-S-1, grouped
into packets containing the last re-
ceived telemetry of req. F-S-2, the
current timestamp of req. F-T-0 and
the current values from req. F-M-1
and F-M-2, labeled with an incremen-
tal packet counter.

Test

F-M-1 (NICE-TO-HAVE) The system
should be able to keep a counter with
the number of system resets in the
memory from req. F-M-0.

Test

F-M-2 (NICE-TO-HAVE) The system
should be able to keep a counter with
the number of RAM or flash single
and double bit flips in the non-volatile
memory from req. F-M-0.

N/A note 3

F-C-0 The system, under request from the
interfaces of req. I-C-0, should be able
to retrieve and send the last stored
packet from the memory of req. F-
M-0 (single telemetry mode) note 1.

Test

51

Chapter 4 - Sensing Suite (Singer) subsystem

F-C-1 The system, under request from the
interfaces of req. I-C-0, should be
able to retrieve and send multiple re-
quested packets from the memory of
req. F-M-0, starting from the last
stored and going backwards until the
number of requested packets has been
sent, no packets remain or the commu-
nication is stopped from the interface
that sent the request (downlink mode)
note 1.

Test

F-C-2 (NICE-TO-HAVE) The system, under
request from the interfaces of req. I-
C-0 should be able to reset the non-
volatile memory from req. F-M-0
note 1.

Test

F-A-0 The system should allow repro-
grammability and debug from the in-
terface of req. I-A-0.

Test

F-P-0 The system should be able to receive
power from two different supply lines
(specified on req. I-P-0), providing
isolation between the two lines in or-
der to avoid back-propagation of cur-
rent from one to the other.

Test

F-P-1 The system should isolate electrical
faults without propagating them to
the interfaces of req. I-C-0 and I-P-
0.

Demo (simulated short), Accident
(shorted components)

F-P-2 (NICE-TO-HAVE) The system should
implement techniques to reduce the ef-
fects of latch-up events and improve
the system resilience by isolating the
failure of non vital sub-elements with-
out compromising the rest of the sys-
tem.

Demo (simulated latchup)

note 1 The communication protocol is described in details in sections 6.2.6.1 and 6.3.4.1.
note 2 The IMU model was selected by the ACS team and was given to the author as a
requirement, more details are given in section 5.2.2.
note 3 This was a nice to have requirement that was implemented at non-volatile memory
level (a field in the non-volatile memory storage was inserted) but for time issues was
never implemented at functional level (the actual error detection).

52

4.2 - System requirements and specifications

4.2.2 Performance requirements

Table 4.4: Singer performance requirements.

Code Description Verification method
P-T-0 The timestamp of req. F-T-0 should

have precision of 1 second and accu-
racy of at least ± 10%.

Inspection

P-S-0 The measurement accuracy of req. F-
S-0 should be ± 2 ➦C.

Design

P-S-1 The measurement range of req. F-S-0
should be -40 ➦C to 85 ➦C.

Demo

P-S-2 The sampling of req. F-S-0, F-S-1
and consequent storage (as on req.
F-M-0) should happen every minute
with time accuracy of ± 3%.

Inspection (timing), Test (software)

P-M-0 The storage capacity of the memory
from req. F-M-0 should be enough
for at least 12 hours of data.

Test

P-M-1 The packet counter from req. F-M-
0 should not overflow in less than 10
years.

Design

P-M-2 The packet dimension from req. F-
M-0 should not exceed 150 bytes.

Design

P-C-0 The system should respond to the re-
quests of req. F-C-0, F-C-1 and F-C-
2 in less than 350 ms.

Inspection (timing), Test (software)

P-C-1 The system should send the packets
of req. F-C-1 with a period of 300 ms
(± 5 ms).

inspection (timing), Test (software)

P-P-0 The system should work with a power
supply range of 9.5V to 13V and a
nominal power consumption of less
than 300mW.

Test

P-TH-0 The system operating temperature
range should be -40➦C to +85➦C.

Demo (reduced temperature range)

P-MI-0 The system should resist the mechan-
ical stresses of the launch note 1.

Test

P-MI-1 The system should correctly operate
in vacuum.

Design

note 1 Expected mechanical stresses during launch were given by the launch providers and
the structure team guided the author on fulfilling this requirement.

53

Chapter 4 - Sensing Suite (Singer) subsystem

4.2.3 Interface requirements

Table 4.6: Singer interface requirements.

Code Description Verification method
I-MI-0 The system should provide mechan-

ical fixing points and comply with
the maximum mechanical dimensions
specification of fig. 4.2 note 1.

Inspection

I-MI-1 The system should have an overall
weight (cables included) of less than
250g.

Inspection

I-A-0 The system should provide an Access
Port (AP) interface that satisfies req.
F-A-0.

Test

I-C-0 The system should provide a commu-
nication interface to fulfill req. F-T-1,
F-S-2, F-C-0, F-C-1 and F-C-2, this
interface should provide two indepen-
dent, unterminated RS422 differential
serial lines with 3.3V nominal voltage
for each line, implementing an UART
communication protocol with speed of
115200 baud, 8 bit data and no parity
bit.

Inspection (RS422), Test

I-P-0 The system should provide two inde-
pendent supply lines as specified on
req. F-P-0, one line should be on
the same connector of the interfaces
of req. I-C-0, the other should be on
the same connector of the interfaces
of req. I-A-0.

Test

note 1 Mechanical specifications were discussed with the mechanical structure team and
also included the maximum extension and cable dimensions for all temperature sensors
and backplane connection cables, this will not be presented here.

54

4.3 - Design process

Figure 4.2: Singer maximum mechanical dimensions (unit of measure for all di-
mensions: mm), all dimensions except the mounting holes diameter and spacing are
the maximum allowable, mounting holes diameter and spacing have a tolerance of ±
0.1 mm.

4.3 Design process
This section wants to be a review of the Singer subsystem design process, here the main
challenges that were faced will be presented, followed by an overview of the applied
methodology and a timeline of the various design phases.

4.3.1 Challenges
4.3.1.1 Low development time

The design effort for SPEISAT was heavily influenced by the very short design time that
our team had available: the whole spacecraft was built from scratch in a period of around
5 months; this short amount of time had the biggest impact on many design choices that
were made for the whole project:

The possibility of carrying out only one manufacturing cycle led to choices that would
reduce the risk of improper design and fine-tuning and allow the execution of simple hard-
ware debugs and fixes. Electronic devices were selected by favoring bigger packages with
exposed leads (no DFN, QFN or BGA packages, preferring SOIC packages with 1.27 mm
pitch if available) and passive components were mainly selected with 0603 form factor
(0.6 in x 0.3 in) or higher. Already integrated building blocks were chosen whenever
possible: the processing unit is a microcontroller dev-board in daughter board configu-
ration (see last image on fig. 4.1), allowing replacement of the unit if needed, an easy
access to the microcontroller GPIOs and also improving the testability; for the power
supply regulation, a fully integrated buck-converter System In Package (SIP) was chosen;
for the attitude measurements a System On Module (SOM) Inertial Measurement Unit
(IMU) was selected; this choices also helped reducing the development time while slightly

55

Chapter 4 - Sensing Suite (Singer) subsystem

increasing the cost figure.

The procurement bottlenecks, due to the relatively long shipment and manufacturing
delays with respect to the available design time, led to the need of careful planning and
arrangement of design phases in order to exploit any available man-hour at its best.
The system requirements definition was performed in such a way as to give priority to
those that resulted in hardware selection and purchase, delaying those relating to purely
software aspects, following the timeline described in section 4.3.2.

4.3.1.2 Poor system reliability
Another important driver was the lack of precise figures about the expected system reli-
ability, both due to the relative scarcity of existing documentation about the behavior in
high radiation environment of commercial COTS not designed for this purpose and of a
solid failure analysis which would have needed these figures to be performed:

The system was designed with the assumption that any component could fail at any
time and that this should not influence the correct operation of the system but most
importantly should not propagate to the rest of the spacecraft. This led to the imple-
mentation of multiple, isolated voltage domains on the Singer board and of various power
supply protection techniques, as described more in details on section 5.2.6.2.

Latch-up protection techniques were implemented to try reducing the effects of this
events on the electronics.

Whenever possible, the most rugged components available were chosen: active de-
vices were selected with automotive grade temperature range of -40➦C/-55➦C to +125➦C
if available and passive capacitors were all selected with flexible terminations to enhance
the board resistance to mechanical stresses.

4.3.1.3 Reduced impact on primary mission
Of particular importance was the decision to impact as little as possible the primary
mission functionality (carried out by Parrot) with the secondary one (carried by Singer),
to reduce the risk of adding complexity and so possible points of failure on the former,
for this reason the functions related to the secondary mission were relegated as much as
possible to the Singer board, an example can be the storage of measurements that could
have been done by the Parrot subsystem, already equipped with non volatile memory, but
instead was completely assigned to Singer. The only thing that Parrot does is to forward
packets between Singer and the COMMSYS. This came with the advantage of being
able to exploit the Singer storage capability to also periodically record Parrot telemetry,
enriching the scientific measurements sent back to earth with an history of the spacecraft
house-keeping data.

4.3.1.4 Cost
Last but no less important is the cost figure. In this thesis the actual costs will not be
declared but they obviously played a decisive role on components choice. The use of
COTS is mainly dictated by the very high cost of space-grade electronics.

56

4.3 - Design process

4.3.2 Design timeline
The Singer design was characterized by three major phases, each corresponding to a
different model of the system:

Breadboard model: after a preliminary analysis and the definition of the main hardware
requirements a first procurement cycle was made to build this first concept model of the
system and start working on low level software (device drivers), the breadboard model
(that can be seen in fig. 4.3a) was built both from hardware specifically bought from
the project and some already available in the laboratory, it helped refining the hardware
requirements and begin to outline the high level software architecture;

Qualification model: a second procurement was made, including the Singer Printed Cir-
cuit Board (PCB) manufacturing to realize the so-called qualification model (fig. 4.3b);
this was the longest phase of the design effort because it led to the finalization of the
hardware (after acceptance tests and error corrections on the board, see chapter 7) and
of the high level firmware; the qualification model development was performed in parallel
with the realization of a Flat Sat (FS) model (fig.4.4) and an Exposition Model of the
spacecraft and was eventually integrated with them. The FS was the bench model of the
spacecraft and the main testing platform, it was composed of all the avionics and could be
reconfigured as needed. The integration of Singer with the rest of the FS gave the possi-
bility of verifying the electrical interfaces with the backplane and test the communication
channels with the CDHs, ultimately leading to the firmware completion. The exposition
model was a non-functional copy of the spacecraft that was useful to test its configuration
and integration procedures, finally leading to its use for promotional purposes.

Flight model: this was the final model of the system and the one that would be launched,
so it was treated with the greatest possible care; it faced hardware modifications aimed
at preparing the system for flight (better explained in section 7.4), was later washed and
from that point only handled inside the clean room. It faced acceptance tests before
and after flight preparation to certificate its operability and was subsequently integrated
inside the spacecraft; a final test campaign was then performed with the whole integrated
system that allowed the identification and correction of final minor bugs on the software.

(a) (b) (c)

Figure 4.3: 4.3a Singer breadboard model. 4.3b Singer qualification model during
testing. 4.3c Singer flight model, modifications on the Nucleo board for flight prepa-
ration can be spotted (components removal).

57

Chapter 4 - Sensing Suite (Singer) subsystem

Figure 4.4: Space-
craft Flat Sat.

Fig. 4.5 contains the main Singer development milestones: an approximate timeline of the
subsystem evolution was made and compared with the various spacecraft models, time is
approximated and not to scale.

Figure 4.5: Singer development milestones.

58

Chapter 5
Hardware design

The goal of this chapter is to address the aspects related to the system hardware de-
sign; the system architecture will be presented, followed by an analysis of the various
board building blocks and the rationales that guided the author in component selection
and configuration; finally, some details about the PCB design and production will be
presented.

5.1 System architecture
In fig. 5.1 the system block diagram is shown.

Figure 5.1: Singer board block diagram.

The system is composed of:

An ADC block that can measure up to 32 temperatures, consisting of 32 thermistors
and relative conditioning, two 16-bits analog multiplexers and two Analog to Digital
Converters (ADC);

59

Chapter 5 - Hardware design

An Inertial Measurement Unit (IMU) System On Board;

A control unit consisting of a microcontroller System On Board, able to be programmed
and debugged from outside the spacecraft through the Access Port;

A non volatile memory consisting of an Magnetoresistive Random Access Memory
(MRAM) chip;

An RS422 block, consisting of two different RS422 transceivers, each one implementing
a communication channel versus one Command and Data Handling (CDH) board;

A buck voltage regulator that provides 3.3V supply to the whole system from the
spacecraft power bus or the AP;

A power protection block, consisting of different types of circuits to individually protect
each system element from latch-up and isolate a faulty element from the rest;

Interface blocks to isolate faulty elements on the logical interconnections side;
In section 5.2 all the system building blocks will be individually analyzed.

5.2 Electrical design
This section will analyze each system building block at the electrical level, providing
information about the devices electrical characteristics and the design choices that were
made in their selection.

5.2.1 ADC block

Figure 5.2: Singer
single ADC chain
block diagram.

Temperature measurement is carried out on up to 32 different channels and doesn’t have
strict requirements on measurement accuracy. After trading-off between conversion speed
and PCB area usage, the choice was to use two single-channel AD7788 Σ-∆ ADCs from
Analog Devices (datasheet: [55], fig. 5.3a), each coming with a 74HC4067 16-channel
analog MUX (datasheet: [4], fig. 5.3b).
This ADC has a very low power consumption (75 µA max. with 3.3V supply, so 248
µW) and is particularly conceived for low frequency, high dynamic range measurements,
as stated in the product datasheet. A single ADC chain is shown in fig. 5.2.

60

5.2 - Electrical design

(a) (b)

Figure 5.3: 5.3a AD7788 Σ-∆ ADC block diagram, picture from [55]. 5.3b analog
MUX pinout, picture from [4].

5.2.1.1 Measurement chain characterization
The chosen temperature sensor model is NTCLE203E3103FB0 thermistor from Vishay
(datasheet: [67]), this thermistor has a nominal resistance @ 25➦C of R25 = 10 kΩ ±1%
and a B25/85 = 3977 K ±0.75%. The B25/85 (from now only called B) allows computing the
thermistor characteristic curve,as explained in Vishay application note [66], the equation
that defines this value is B = ln R1

R2
∗ 1

1
T1

− 1
T2

, where Tx and Rx represent a chosen absolute

temperature [K] x and the corresponding thermistor resistance value [Ω]. From this
equation and by knowing the thermistor resistance value @ 25➦C from the datasheet, we
can compute the thermistor resistance variation with temperature using the following

equation: R1 = R2 ∗e(
1
T1

− 1
T2

)∗B
. The B factor should be constant in a first approximation,

in reality it slightly varies with temperature, as stated in the application note, but to get
more precise results one should get a number of coefficients representing the factors of a
polynomial fitting curve that are not given for this particular component.
In fig. 5.4a we can see the computed characteristic curve, with logarithmic y-axis, it’s
difficult to see because they are very close but this graph includes various curves repre-
senting the combinations of tolerances on R25 and B, these tolerances result in the relative
error shown in fig. 5.4b; the thermistor resistance varies from a value of 412 kΩ @-40➦C
to a value of 1.07 kΩ @85➦C.

61

Chapter 5 - Hardware design

(a) (b)

Figure 5.4: 5.4a NTCLE203E3103FB0 thermistor characteristic curve generated by
MATLAB. 5.4b Thermistor resistance relative error.

The thermistor’s conditioning circuit is very simple due to the great number of channels
and only consists of a 5 kΩ pull-up resistor in series with the thermistor and a 10 nF
filtering capacitor, as shown in fig. 5.5.

Figure 5.5: Ther-
mistor conditioning
circuit.

The capacitor helps filtering out high frequency noise, for now let’s ignore it and compute
the Thevenin equivalent circuit (as can be seen in fig. 5.8), resulting in an equivalent
voltage of:

Veq = Vdd ∗
RNTC

RNTC +R
= Vdd ∗

1

1 + R
R25

∗ e(
1

(298.15K)
− 1

T
)∗B

(5.1)

and equivalent series resistance of:

Req = RNTC ||R =
RNTC ∗R
RNTC +R

=
R

1 + R
R25

∗ e(
1

(298.15K)
− 1

T
)∗B

(5.2)

62

5.2 - Electrical design

We can invert eq. 5.1 to obtain the temperature corresponding to a given Veq:

T =
(298.15K) ∗B

B − (298.15K) ∗ ln[(Vdd

Veq
− 1) ∗ R25

R
]

(5.3)

The chosen component for R is a resistor with a nominal value of 5 kΩ with tolerance
of 0.1% and a temperature derating of ±25 ppm/➦C, yielding an additional worst case
deviation in the specified working temperature range of the system of 8.1 Ω (0.17%) for
a total rounded tolerance of 0.3%. The power supply will be considered later as part of
the ADC errors.
In fig. 5.6 we can see the values from eq. 5.1 and eq. 5.2, as expected we have a maximum
of Veq and Req at low temperatures, when the thermistor resistance is higher, the value of
Veq varies from 3.26 V @-40➦C to 0.58 V @85➦C, while Req goes from 4.94 kΩ @-40➦C to
881 Ω @85➦C.

Figure 5.6: Thevenin
equivalent values with
respect to temperature
with nominal values of
thermistor and pull-
up.

The numerical simulation pipeline of fig. 5.7 was set up to perform a worst-case analysis
of the circuit, including all components tolerances.

Figure 5.7: Simula-
tion pipeline for ther-
mistor chain.

The simulation pipeline includes an LTspice (website: [56]) electrical model of the circuit
from which raw simulation data coming from multiple simulations can be exported in
text format; this data is rearranged by a Python (website: [77]) script that removes the
human readable text and reorganizes data coming from different simulation into a single
matrix-like output file; finally this data is fed to a MATLAB (website: [61]) script that

63

Chapter 5 - Hardware design

performs heavy calculation and generates graphs.
The SPICE simulation was set up to perform a worst-case analysis, testing all the possible
combinations of components tolerances and a final nominal simulation, as explained in
[57].
Now we can compute the error on Veq measured by the ADC (VADC), by considering the
ADC input resistance RADC and its effect due to the MUX parasitic resistance RON and
Req, in order to do that we need an estimation of RON and RADC .The equivalent model
can be seen in fig. 5.8.

Figure 5.8: Con-
ditioning circuit
Thevenin equivalent
and parasitic resis-
tances of MUX and
ADC.

The ADC datasheet only states an average input conductance GADC = 400 nA/V with
a temperature derating of ±50 pA/V, stating that this value is an assumption based
on design and not proven and giving no tolerance for it; since no more information is
given we will consider it a good approximation of the nominal value, resulting in an
RADC=2.5MΩ and making a reasonable assumption for its tolerance to be ± 10%; the
temperature derating adds a variation of ± 3.25 nA/V over the full working range of the
system (-40➦C to +85➦C) and we’ ll assume that this is included in the RADC tolerance
figure.
The MUX RON is instead specified as a typical value of 110 Ω @25➦C and maximum value
of 180 Ω @25➦C or 225 Ω @ 85➦C; this is in reality specified with a 4 V supply voltage,
but since its value is quite lower than the minimum Req of the conditioning circuit, it will
have a smaller impact with respect to the latter, so considering a nominal RMUX = 112.5
Ω ± 100% (so a value ranging from 0 to the maximum @85➦C) is reasonable and probably
even exaggerated. The final SPICE model of the circuit can be seen in fig. 5.9.

64

5.2 - Electrical design

Figure 5.9: Model of thermistor circuit in LTspice.

A first simulation with nominal values gives the results of fig. 5.10: in this figure eq. 5.3
is used to reconstruct the measure (neglecting the effect of the ADC input resistance)
and the absolute error introduced with respect to the true (simulated) temperature is
evaluated.

Figure 5.10: Com-
parison between exact
temperature and the
one reconstructed ne-
glecting ADC input
resistance (left axis).
Absolute error intro-
duced (right axis).

We can see that the effect of the ADC input current is particularly relevant with low
temperatures, giving an error of 2.2➦C @-40➦C; this makes sense since it’s when the equiv-
alent resistance has it’s maximum value (fig. 5.6). This effect can be compensated during
measurement reconstruction; the most precise compensation method is to analytically
resolve the network of fig. 5.8 to obtain the temperature reconstruction formula from the
voltage VADC measured by the ADC:

T =
(298.15K) ∗B

B − (298.15K) ∗ ln[(
Vdd

VADC
− R

RADC

1+
RMUX
RADC

− 1) ∗ R25

R
]

(5.4)

65

Chapter 5 - Hardware design

Applying this equation results in a perfect cancellation of the effect of ADC input impedance
in nominal conditions.
The next step is to apply the reconstruction eq. 5.4 to all the curves resulting from the
worst-case analysis and evaluate the total absolute error due to component tolerances;
a total of 32 simulations were automatically performed by spice to test all the possible
combinations of tolerances on R25, B, the R pull-up resistor, RMUX and RADC . The
result can be seen in fig. 5.11a, in this graph the temperature reconstructed from each
simulation, using equation 5.4, is plotted on the left axis; the lines are very close and
it’s difficult to distinguish them but on the right axis the maximum absolute error is also
reported, from which we can conclude that the maximum absolute error introduced by
component tolerances is Errtol=0.97➦C.

(a) (b)

Figure 5.11: 5.11a Temperature reconstructed considering tolerances(left axis).
Maximum absolute error introduced (right axis). 5.11b Absolute error for each
worst-case simulation.

In fig. 5.11b we can have a better view of the different impact of tolerances on the
simulation results: here all the 32 error lines are plotted, we can notice how at high
temperatures they are mainly bundled in four groups, corresponding to the thermistor
tolerances, that’s because in this condition the Req is very low and mainly determined
by the thermistor resistance, the effect of ADC impedance is reduced; instead at low
temperatures the effect of the ADC input current starts to become significant and the
other components tolerances have a more noticeable effect. The highest values among all
the curves of fig. 5.11b are the one reported in the right axis of fig. 5.11a.
We can now evaluate the ADC errors from the values stated in the datasheet: 16 bits
of precision corresponding to a quantization error of ± 26 µV, INL of ± 15 ppm of full
scale corresponding to a nonlinearity error of ± 50 µV, full scale linearity error of ± 10
µV (since the ADC gain and offset errors are not compensated we will use the full scale
linearity error that includes both). From these values we obtain a total ADC error of
around 86 µV, to estimate the impact of this error on temperature measurement we can
linearize eq. 5.4 with respect to VADC , obtaining the following derivative:

66

5.2 - Electrical design

∂T

∂VADC

= −(298.15K) ∗ 1

(1− (298.15K)
B

∗ ln[(
Vdd

VADC
− R

RADC

1+
RMUX
RADC

− 1) ∗ R25

R
])2

∗

∗(298.15K
B

∗ 1
Vdd

VADC
− R

RADC

1+
RMUX
RADC

− 1

∗ Vdd

1 + RMUX

RADC

∗ 1

(VADC)2
)

(5.5)

In fig. 5.12 the equation 5.4 and its derivative (eq. 5.5) have been plotted in nominal
conditions; vertical lines represent the measured voltage range in the -40➦C to +85➦C
temperature range, these correspond to a range of VADC of 3.26 V to 0.58 V. The maximum
computed sensitivity corresponds to the -40➦C extreme and was evaluated to be -384 ➦C/V,
we can then compute the measurement error introduced by ADC non-idealities ErrADC =
384 ➦C/V ∗ 86 µV = 0.033 ➦C, practically negligible with respect to the error introduced
by component tolerances.

Figure 5.12: Temper-
ature reconstruction
equation (left axis)
and it’s sensitivity
with respect to mea-
sured voltage (right
axis); vertical lines
represent the measure-
ment range of -40➦C to
85➦C, horizontal lines
the corresponding sen-
sitivities.

As explained in section 5.2.6.2, the ADC has an additional cause of error (a quite big
one) coming from the fact that the supply voltage of ADC and thermistors is different.
The ADC is powered by the same supply of the thermistors, but it has a PTC fuse in
the middle with a maximum resistance of 50 Ω, so the error introduced by this element
must be considered on the measurement error. The actual value of PTC resistance can
go from 6 Ω to 50 Ω while the ADC+MUX current (the latter evaluated interpolating
the currents stated on the datasheet @10V and @6V of supply) can reach a maximum of
80 µA; this introduces a drop on the ADC supply of 50 Ω * 80 µA = 4 mV, part of this
value can be compensated on eq. 5.4 by considering the drop as a difference between the
supplies of 2 mV ± 2 mV, so eq. 5.4 becomes:

T =
(298.15K) ∗B

B − (298.15K) ∗ ln{[(Vdd,therm∗216
(Vdd,therm−2mV)∗D − R

RADC
)/(1 + RMUX

RADC
)− 1] ∗ R25

R
}

(5.6)

67

Chapter 5 - Hardware design

where D is the digital value on the ADC output. The error introduced on the measurement
by the tolerance on this difference is ± 2 mV, corresponding to a measurement error of 2
mV * 384 ➦C/V = 0.77 ➦C, this quite large number is the price for ADC protection.
Finally we can estimate the noise figure; the ADC datasheet states a typical noise of
Vn,ADC = 1.5 µVRMS, the thermal noise introduced by the conditioning circuit is only

determined by the filtering capacitor C of fig. 5.5 and is equal to Vn,therm =
q

kb∗T
C

=

0.7 µVRMS @ 85➦C; the major source of noise in this case becomes the MUX RON , since
it has no filtering capacitor at its output, it’s bandwidth mainly depends on the ADC
input capacitance; the ADC input capacitance is not stated in the datasheet so we could
take the declared input capacitance of digital pins (10 pF), this only gives a reasonable
approximation but as we will see the noise is not a major issue in this system.; The
MUX noise effective voltage would become Vn,MUX = 22 µVRMS @ 85➦C, with a total

combined noise assuming RADC → ∞ of Vn,tot =
q
V 2
n,ADC + V 2

n,therm + V 2
n,MUX = 22.3

µVRMS @ 85➦C; this corresponds to a noise in temperature measurement with variance
σtemp = Vn,tot∗384➦C/V = 0.009 ➦C, or an added error (with 3 sigma confidence) of 0.027
➦C, this is the combination of the maximum noise @ 85➦C and the maximum sensitivity
@ -40➦C, so the real number would be smaller than that. The total measurement error if
we add all the contributions of tolerances, ADC errors and noise is Terr,tot = ± 1.80 ➦C.
From this result we can conclude that the temperature measurement chain should be
inside the specified error requirement of ± 2➦C, this is mainly dictated by the components
tolerances, the presence of an ADC protection circuit and the wide measurement range,
in fact the higher error is produced near the extremes of the measurement range and is
significantly less if we reduce the latter. The error figure was also derived by making a
certain amount of assumptions on components nominal values and tolerances and surely
can be refined with a better characterization of the sampling chain and by choosing more
precise components.
To estimate the power consumption for each ADC block (16 thermistors) we can sum the
maximum ADC supply current of 75 µA, the maximum MUX supply current of 5 µA and
the worst case current through the conditioning circuit (with thermistor resistance at 0Ω)
of 10.6mA for 16 thermistors, this results in a power consumption of 35mW.

5.2.2 IMU block
As previously stated in section 4.2, the MTi-3 Inertial Measurement Unit was chosen by
discussing the possible solutions with the ACS team and finally given as a Singer payload
requirement, analysis of three axis inertial data is a complex task which is out of the
scope of this thesis, for information about the metrological characteristics of the unit the
datasheet can be referred to ([64]). This is a very small System On Board (fig. 5.13) with
outline compatible with the 28-pins PLCC package.

68

5.2 - Electrical design

(a) (b)

Figure 5.13: 5.13a MTi-3 IMU compared to human finger. 5.13b MTi-3 pinout.

Various interfaces are available to communicate with the IMU (I2C, SPI or UART), of
these options the UART interface was chosen because it allows interfacing easily to the
IMU from the Xsens software suite running on a PC during testing, as explained in section
7.3.5; the communication interface can be selected by pins 14 and 15 (refer to fig. 5.13b).
The power consumption declared in the datasheet is 100mW, this figure is in reality stated
to be at 3V analog supply and 1.8V I/O supply so it’s unclear what the real consumption
will be in our case (3.3V for both supplies); since no more information is provided this
number will be used for power estimation.

5.2.2.1 Gyroscope specifications
The gyroscope outputs the absolute angular velocity on each axis (➦/s or rad/s) and has
a full scale of ± 2000➦/s.
The IMU datasheet states an in-run bias stability for the gyroscope of 10➦/h (2.8x10−3➦/s)
and a worst case scale factor variation of 1.5%, these numbers represent an absolute and
relative error terms, respectively; the bias instability could in theory be compensated by
calibration but the datasheet doesn’t state anything on if this is performed by the IMU
DSP. The non-linearity error is also expressed as 0.1% and so is another cause of relative
error.
Regarding stochastic causes of error, the datasheet declares a noise amplitude density of
0.007➦/s/

√
Hz, from which we can compute the expected RMS noise at the maximum

sensor bandwidth of 255 Hz, being nRMS,gyro = 0.11➦/s.
The gyroscope g-sensitivity is stated as calibrated (since the IMU is also equipped with
an accelerometer) and for this reason should be already compensated by the DSP.
Finally, the datasheet states the non orthogonality error of the gyroscope axis of 0.05➦
(0.09%) and an alignment error with respect to the module board of 0.25➦, computed
by summing the specified alignment error of the accelerometer plane with respect to the
board (0.2➦), which is the only one specified, with the alignment error of the gyroscope
with respect to the accelerometer (0.05➦); these are other causes of relative error which
require an analysis of the actual vector values measured on each axis to be evaluated.

69

Chapter 5 - Hardware design

5.2.2.2 Magnetometer specifications
The magnetometer output is normalized with respect to the factory calibration values
and so has no unit of measurement (arbitrary unit or a.u.), so it acts as a 3-dimensional
compass; its full scale is stated to be 8 G.
The datasheet states a non-linearity error of 0.2% (relative error) and a resolution of 0.25
mG; the resolution introduces an absolute error which is difficult to evaluate without
knowing the magnetic field intensity the IMU is calibrated on, by assuming a calibration
magnetic field of 0.40 G (as stated in the datasheet of another line of IMUs from Xsens:
[65]) we end up with a resolution of 6.25x10−4 a.u. .
The RMS noise is also stated as 0.5 mG, by applying the same logic of the resolution we
came up with an RMS noise of 1.25x10−3 a.u. .
Finally, the non orthogonality error of the magnetometer axis is stated to be 0.05➦ (0.09%),
like the gyroscope, and the alignment error with respect to the module board can be
evaluated from the datasheet to be 0.3➦ by summing the contribution of misalignment
of magnetometer plane with respect to accelerometer plane and the misalignment of the
latter with the board.

5.2.2.3 IMU reference plane
The IMU has the measurement origin and reference axis shown in fig. 5.14a, the mechan-
ical structure team provided precise information about the Singer positioning inside the
spacecraft and from these the IMU origin (fig. 5.14b) was placed to be aligned with the
spacecraft X-Y plane origin.

(a) (b)

Figure 5.14: 5.14a IMU plane origin and axis, modified picture from [64]. 5.14b
IMU footprint on PCB.

The IMU reference plane is rotated with respect to the Singer (spacecraft) reference plane

70

5.2 - Electrical design

(that can be seen in fig. 3.3) as follows:

x̂Singer

ŷSinger
ẑSinger

 =

1 0 0
0 −1 0
0 0 −1

 ∗

x̂IMU

ŷIMU

ẑIMU

 ⇒


x̂Singer = x̂IMU

ŷSinger = −ŷIMU

ẑSinger = −ẑIMU

(5.7)

This corresponds to a 180➦ rotation around the X-axis.

5.2.3 Memory block

Figure 5.15:
AS3016204 MRAM
pinout, picture from
[42].

The choice for non volatile storage of measured samples was
oriented towards Magnetoresistive Random Access Memory
(MRAM) technology, this technology is particularly adapt to
space applications because it’s practically immune to SEE, as
explained in NASA’s MRAM technology status report ([48]),
it must be said that this applies to the memory bank itself
and that the surrounding CMOS circuitry is still susceptible
to these events.
While the first integrated MRAMs exploited the same Mag-
netoresistance mechanism that is commonly used in hard
disks, today MRAMs resort to the more sophisticated Tun-
nelling Magnetoresistance, by which the tunnel current
through an insulator separating tho ferromagnetic elements has different intensities de-
pending on the polarization of these elements, it’s then possible to program this basic cell
by changing the polarization of one side with an external magnetic field and reading the
cell basically becomes a current measurement.
This type of memory also has practically infinite endurance, simplifying the usage of the
memory bank than doesn’t require block-level erasing and wear-leveling techniques like
the common NAND Flash. The main disadvantage of this technology is the reduced
density and high cost per bit, with commercial components available with densities of
some MB, in any case more than enough for our specific application.
The chosen device is the AS3016204 from Avalanche Technology (datasheet: [42]); this
40nm Tunnel Magnetoresistive MRAM is provided with an high pitch SOIC-8 package,
SPI (single, dual or quadruple) interface with frequency up to 108MHz and 2MB of
storage. The device pinout can be seen in fig. 5.15. The power supply voltage is 3.3V
and the maximum current consumption declared (during write operation in single data
rate, single SPI mode) @108MHz is 28mA, in our case we will use the device with a
much lower frequency (4MHz). We can extrapolate an estimating formula for power
consumption with respect to frequency, since the datasheet states current consumptions
@54MHz and @108MHz. The dynamic current consumption (due to gates switching) is
linearly proportional to switching frequency, and so even the current Idyn ∝ fsw, we can
estimate current consumption given a switching frequency with the formula:

71

Chapter 5 - Hardware design

Idd(fsw) = (I54MHz −
I108MHz − I54MHz

108MHz − 54MHz
∗ 54MHz) +

I108MHz − I54MHz

108MHz − 54MHz
∗ fsw

⇒ Idd(fsw) = (2 ∗ I54MHz − I108MHz) +
I108MHz − I54MHz

54MHz
∗ fsw

(5.8)

Since the memory will be in write/read mode only for a brief time, a better estimation of
the power consumption must consider the relative time (duty cycle, τDC) of each mode,
tab. 5.1 summarizes the values declared on the datasheet and applies equation 5.8 to esti-
mate the current consumption on each mode @4MHz, tab. 5.2 summarizes the estimated
average memory power consumption Pav.

Table 5.1: MRAM current estimation.

Mode I108MHz I54MHz Idd(fsw) [mA] I4MHz

Read 15mA 9mA 3mA+ 0.111 ∗ fsw[MHz] 3.44 mA
Write 28mA 16mA 4mA+ 0.222 ∗ fsw[MHz] 4.89 mA
Standby - - - 400 µA note1

note1 Standby current is written on I4MHz field but obviously doesn’t depend on frequency,
this is the value from datasheet

Table 5.2: MRAM average power estimation.

Mode I4MHz τDC Iav Pav

Read 3.44 mA 8.53x10−4 note1 2.9 µA 10 µW
Write 4.89 mA 4.26x10−6 note2 21 nA 69 nW
Standby 400 µA ∼ 1 400 µA 1.32 mW
Total 403 µA 1.33 mW

note1 Read will happen twice every 300ms in the worst case to read a maximum of 128
bytes (256 µs @ 4MHz)
note2 Write will happen once a minute to write a maximum of 128 bytes (256 µs @ 4MHz)

From tab. 5.2 is clear that, as could be foreseen, the extremely rare memory accesses result
in a very low power consumption of around 1.33mW, and even using higher frequencies
the number would be nearly the same due to the low duty cycle of read and write modes.

72

5.2 - Electrical design

5.2.4 RS422 block

Figure 5.16:
LTC2852 internal
architecture, picture
from [5].

For the RS422 interfaces, two LTC2852 transceivers
(datasheet: [5]) were chosen, of which the internal architec-
ture and pinout can be seen in fig 5.16; those have a maxi-
mum supply current of 1mA in transmission mode without
load on the line, and provide a receiver high impedance of at
least 96kΩ even when the device is unpowered, ideal for our
application in which the device voltage domain can be shut
off (see section 5.2.6).
RS422 is a physical layer standard, meaning that it only de-
fines the electrical characteristics of the interconnection, in
our system it will be the medium for UART interfaces; it
implements balanced (differential) signals and so is immune
to common mode noise injected on the line. It any case it
was given as requirement since the CDH boards already came
with this interface option due to its high immunity to noise,
ideal for space applications. In fig. 5.17 an example of RS422
waveforms is given, in this example DI is the transmitter in-
put and A/B is the differential output, the line is terminated with a 54 Ω resistance and
that’s why the VA − VB difference is only around 2 V, in our case the line will not be
loaded and so the difference will be near 3.3 V.

Figure 5.17: Exam-
ple of RS422 wave-
forms, picture from [5].

The datasheet declares a maximum supported line length of around 1.2km at 115200 bps,
this number is declared with a cable compliant with the RS422 standard, in our case
the maximum interconnection distance is around 30cm; for long distances a termination
resistor is needed to avoid reflection on the transmission line, but for our short signal path
we don’t need it and can avoid this additional source of power consumption.
Since the declared static current in receive mode is similar to the one in transmission
(0.9mA) we can consider the latter as a good estimation of the device supply current,
corresponding to a power consumption of 3.3 mW.

5.2.5 Processing unit
The processing unit is the logical brain of the system, it’s responsible of gathering data
coming from different sources, organize this data for storage and retrieval and interface
with the other spacecraft subsystems. Among its duties there is also the timekeeping
task and in general the management of the entire secondary mission. The choice for this
important job was an STM32 microcontroller, specifically the L452RE model (datasheet:
[113]); this 32-bit ARM microcontroller is part of the low power line (L) of ST, it can work
with a clock frequency of up to 80MHz, has 512KB of code memory (flash) and 160KB
of SRAM. This microcontroller was also chosen because the code memory (and part of

73

Chapter 5 - Hardware design

the RAM) of the L line embeds an error correction algorithm that can correct single error
bit-flips and detect (but not correct) double bit-flips, this happens while reading each
memory region and for this reason the software includes a routine reset of the system to
increase the number of reads of each memory region in order to correct eventual SEUs on
the flash.
This microcontroller also has the needed number of four UART peripherals (a number
that is not quite common among STM32 microcontrollers) and three SPI interfaces (of
which two were needed). As a last point there’s the fact that ST microcontrollers are the
usual choice for electronics courses at Turin Polytechnic and for this reason the author
was familiar with them, saving precious design time.
This microcontroller comes with an integrated 12 bit ADC peripheral, so an option could
have been to use this peripheral instead of the two separate ADCs for temperature mea-
surements; this was avoided since the internal ADC can reach a total unadjusted error of
5.4 LSB in our configuration, corresponding to a measurement error of 4.35mV, meaning
that at the maximum sensitivity of the temperature measurement chain of 384 ➦C/V this
would have introduced an additional absolute error of 1.67➦C, too high to fulfill the spec-
ified error requirement by also counting the error from component tolerances of the ADC
chain.
As previously mentioned, the design philosophy was towards the adoption of already
integrated units in order to reduce the design effort and the replacement difficulty; for
this reason the choice has been to adopt the ST Nucleo-64 dev-board (user manual: [96])
carrying the microcontroller, mounted on top of the Singer PCB as daughter-board, as in
fig. 5.18b; differently from the image, the board was prepared to flight by removing the
unnecessary components (like the buttons), as explained in section 7.4.2.

(a) (b)

Figure 5.18: 5.18a NUCLEO-L452RE pinout, picture from [96]. 5.18b Nucleo
board mounted as daughter board by the Morpho connectors.

The nucleo was connected to the PCB by the ”Morpho” connectors (fig. 5.18a).

74

5.2 - Electrical design

It’s difficult to evaluate the power consumption of a microcontroller this complex, because
it depends on a large number of factors, like for example the clock frequency and the
number of used peripherals; for this task the STM32CubeMX software suite (website:
[98], used to generate the microcontroller configuration) comes to help by providing an
estimation of the board power consumption based on the applied configuration. The
power estimation given by the tool is 8.6mA (28.4 mW).

5.2.5.1 Clock and peripherals assignment
STM32 microcontrollers have a number of internal oscillators and the possibility to con-
nect external ones to generate the various clocks for the core and peripherals. Four
oscillators are available inside the microcontroller (see [113], pag. 135): a 32 kHz Low
Speed Internal (LSI) clock, two High Speed Internal (HSI) clocks of 48 MHz (HSI48) and
16 MHz (HSI16) and a Multi Speed Internal (MSI) clock with selectable frequency from
100 kHz to 48 MHz. The Nucleo L452RE board (schematic: [68]) instead comes with
an already soldered Low Speed External (LSE) of 32.768 kHz. Tab. 5.3 summarizes the
possible clock sources and their characteristics.

Table 5.3: Nucleo L452RE clock sources characteristics, data from [113] (pag. 135)
and [68], maximum error includes the contribution of tolerance on the frequency
value and drift due to VDD and temperature (and aging for the LSE).

Clock Type Frequency Maximum error
LSI RC 32 kHz 6.25 %
HSI16 RC 16 MHz 2.85 %
HSI48 RC 48 MHz 4.6 %
MSI RC 100 kHz to 48 MHz 14.31 %
LSE crystal 32.768 kHz 25.3 ppm

From the table is clear that the MSI has bad characteristics and the best choice for
time keeping is the crystal LSE, this oscillator can only be used for the RTC and some
interfaces (UART, I2C). Nevertheless at the end the decision was to avoid using the
external oscillator because it introduces an additional point of failure to the system, in
favor of the LSI, also because the RTC gets continuously updated from Parrot and the
sampling period is not computed by the RTC, as explained below.
Tab. 5.4 summarizes the used microcontroller peripherals and functional blocks, their
associated function and clock source/frequency, the clock frequency is the final one and
can be different from the oscillator frequency because it passes through a tree of Phase
Locked Loops (PLLs) and prescalers that increase or decrease its value.

75

Chapter 5 - Hardware design

Table 5.4: Used microcontroller blocks, associated function and clock.

Peripheral Function Clock source Final clock frequecy
SPI1 MRAM HSI16 32 MHz
SPI2 ADC HSI16 32 MHz
UART4 RS422 to CDH 1 HSI16 32 MHz
USART1 Access Port HSI16 32 MHz
USART2 IMU HSI16 32 MHz
USART3 RS422 to CDH 2 HSI16 32 MHz
RTC Keep timestamp LSI 32 kHz
GPIO MRAM CS/ADC CS and MUX HSI16 64 MHz
IWDG Watchdog timer LSI 32 kHz
Core (CPU) Processing HSI16 64 MHz

From the table we can compute the expected time precision of the system: the timestamp
(from RTC) gets the tolerance from the LSI oscillator and thus has a precision of ± 6.25
% (the requirement was 10 %), while the sampling time (computed from the system tick
and not the RTC since the timestamp is considered unreliable) gets the precision from
the HSI16 and thus has a precision of ± 2.85 % (the requirement was 3%).

5.2.6 Power block
The system power delivery was implemented subdividing the architecture into different
power domains, as can be seen in fig. 5.19. Each domain is powered at 3.3V, generated
by a voltage regulator from the spacecraft power bus or from the access port power bus.

Figure 5.19: System power delivery.

Each component resides into a different individually protected domain, logical interfacing
blocks are placed between each domain and the processing unit. This way in case of
failure of one component inside a power domain, the protection circuit and the domain
interface will insulate the failure from the power bus and the processing unit, the whole
domain is lost but the system can continue to work (with limited functionality). The
protection circuit will in any case try to reactivate the domain after a certain amount

76

5.2 - Electrical design

of time, depending on the type of protection circuit, to restore operation in case of a
temporary latch-up event. It’s clear that if the voltage regulator or the processing unit is
the one to fail permanently, the system cannot continue to operate.

5.2.6.1 Voltage regulator
Designing a switching voltage regulator takes time and effort and must take into consid-
eration a substantial amount of factors; for this reason the choice was to select an already
integrated System In Package regulator. The TMR3-2410WIR DC/DC from Traco Power
(component web page: [111]) was chosen for this purpose; it has an input voltage range
of 9V to 36V, a maximum output current of 700mA and a typical efficiency of 76%; the
efficiency is quite low, this is due to the fact that the regulator is an insulated type, specifi-
cally chosen because the insulation avoids propagating the unregulated spacecraft voltage
to the board in case the regulator stops working, with the risk of producing fumes inside
the spacecraft or propagate the high unregulated voltage to Parrot through the RS422
transceivers. This DC/DC was also chosen because it has railway certification, meaning
that it was designed to be particularly robust and withstand mechanical shocks and vibra-
tion, temperature excursions and electrical surges. The manufacturer also suggests EMI
filtering networks to reduce the noise on the power bus and PCB layout guidelines; the
final power regulation circuit can be seen in fig. 5.20, we can also see the power selection
block implemented with diodes and the voltage regulator protection circuit, which is a
self-resetting PTC fuse with nominal tripping current in the 30mA to 90mA range that
will isolate a global fault on the Singer board from the spacecraft power bus.

Figure 5.20: Power regulation circuit.

5.2.6.2 Domain protection circuits
There are mainly two types of domain protection circuits, depending on the expected
device peak current consumption. The simplest type of protection circuit is applied to
devices with low peak current (ADC and RS422 transceiver, provided that no termination
resistance is present on the TX line) and can be seen in fig. 5.21.

77

Chapter 5 - Hardware design

Figure 5.21: Simple
type protection cir-
cuits.

It consists of a series of PTC fuse and/or latch-up protection resistor, the latch-up protec-
tion resistor, together with the PTC fuse intrinsic resistance will drop the supply voltage
in case of current surge due to a latch-up event; this drop should stop the latch-up if the
holding voltage is reached and corresponds to the full 3.3 V supply in a range of 66 mA
to 550 mA for the ADC protection (15-50 Ω PTC resistance range) and 27 mA to 95 mA
for the RS422 transceiver (15-100 Ω PTC resistance range + 20 Ωresistor), but the drop
needed to reach the latch-up holding voltage should be less.
Even if the ADC draws very low current, an higher value PTC and no resistor was
placed because they would have reduced too much the ADC supply with respect to the
thermistor supply (directly coming from the regulator output), resulting in a measurement
error outside specifications. In this configuration the ADC power domain can draw up to
80 µA (75 µA for the ADC and around 5 µA for the MUX) , corresponding to a worst
case drop of 4 mV through this specific PTC maximum resistance of 50 Ω). The PTC
will also trip in case of permanent short circuit failure of one component. It must also be
noticed that since the thermistors are outside the ADC voltage domain, if the PTC has
tripped the ADC and MUX can be powered anyway through the GPIO ESD diodes of the
MUX (as explained in section 5.2.6.3) from the conditioning circuit, this doesn’t represent
a problem for the latchup protection since in the worst case the combined resistance to
VDD (parallel of pull-up resistors) is 312.5 Ω but the domain working in this state would
output completely wrong values until the PTC is restored.
Actually it’s unclear if the PTC can restore while the power is still on, since this infor-
mation is not given in the products datasheet, it probably should be able to restore if
the current remains below the hold current (the lower one), in any case these devices are
very slow to trip and should do it only in case of permanent short circuit on the domain
supply line.
For devices with higher peak power consumption, like the MRAM, IMU and microcon-
troller, a more complex latch-up protection circuit was developed. The circuit block
diagram can be seen in fig. 5.22

78

5.2 - Electrical design

Figure 5.22: Com-
plex protection circuit
block diagram.

The circuit was partially inspired by solutions from [89], it uses the same INA138 high-
side current measurement IC (datasheet: [45]) to measure the current going to the load, a
TL431 (datasheet: [109]) precision programmable reference to generate a given threshold
voltage and a TL331 comparator (datasheet: [108]) that compares the INA138 output
with the reference generated by the TL431, whenever the threshold is reached (current
surge on the load) the comparator will interrupt the supply of the power domain through
an high-side switch; the switch is designed to provide a fast turn-off delay and a slow turn-
on delay, this way after some time from the surge event the circuit will try to power again
the domain, repeating the cycle if an high current is still measured. All these components
are built with bipolar technology (or single power MOSFETs) and for this reason should
not suffer from latch-up; in any case the power supply to the protection circuit, directly
coming from the unregulated spacecraft bus, is protected with a PTC fuse. The overall
circuit schematic can be seen in fig. 5.23, a jumper (J11) to bypass the whole circuit was
provided in case of incorrect functioning of the latter but was not soldered on the board
at the end, there was also a PTC fuse on the 3.3V line before the switch but its intrinsic
resistance was too high and it was later removed (substituted with a 0 Ω jumper).

Figure 5.23: Latch-up protection circuit.

The INA138 measures current with a shunt resistor in series with the power line, mea-
surement gain can be set by choosing the shunt resistor value and a second gain setting
resistor at its output, as can be seen in fig. 5.24a, the output voltage follows the equa-

79

Chapter 5 - Hardware design

tion Vout =
Ishunt∗Rshunt∗Rout

5kΩ
, for our application the shunt resistor value was chosen to be

Rshunt = 1 Ω while for the output resistor a value of Rout = 120 kΩ was chosen, resulting
in a transresistance gain of G = 24V/A, the gain tolerance is the combination of tolerance
on external resistors (chosen to be 1%) and the INA138 maximum output error, declared
to be ± 2.5%; the total error on the gain figure happens to be ± 4.5%.
The threshold voltage is generated by the TL431 circuit of fig. 5.24b, in this configuration
the output reference is 2.495 V, the TL431LIB variant was chosen, having a tolerance on
the voltage reference of ± 12 mV. By comparing the output of these two ICs, we get a
nominal threshold current of Ith = 104 mA, the tolerance can be computed by adding the
absolute error of the TL431 to the absolute error on the INA138 output at the threshold
condition, resulting in a threshold voltage absolute error of ± 124 mV, or an absolute
error on the threshold current of ± 5.2 mA (about 5%). From the value of the shunt
resistor we can conclude that the maximum voltage drop on the power lines due to the
latter is 104mV.

(a) (b)

Figure 5.24: 5.24a INA138 high-side current measurement circuit, picture from
[45]. 5.24b TL431 2.495 V reference generation.

An additional capacitor in series with the INA138 output resistor can set the device
bandwidth, in this case a 100 pF capacitor was chosen that gives a bandwidth of around
20 kHz, this capacitor will actually slightly increase the intervention time but it was placed
to filter out the voltage regulator output ripple and avoid false triggering of the circuit.
A slow turn-on, fast turn-off high side switch circuit was then needed in order to interrupt
a latch-up event as fast as possible and then slowly turn on again the power domain, the
slow turn-on time will also reduce power consumption in case of irreversible loss of the
power domain due to a device supply pin shorted to ground. The switch circuit was
designed as shown in fig. 5.25.

80

5.2 - Electrical design

Figure 5.25: Slow
turn-on, fast turn-off
high side switch cir-
cuit.

Two p-type power MOSFETs are used, one will act as the actual switch (U1 in fig. 5.25)
while the other (U5) is used to control it and provide the fast turn-off capability. The
IRF7342 IC (datasheet: [41]) was chosen for the purpose, this chip provides two identical
p-type MOSFETs in a single SO-8 package. The switch MOSFET has a 1 µF capacitor
(C5) in parallel to its gate capacitance, this will provide the slow turn-on when the control
MOSFET is turned off and C5 is charged through the R10 100 kΩ resistor. The time for
the gate voltage to reach the declared MOSFET threshold of -1V can be computed as
tth = −τ ∗ ln(2.2

3.3
) = 36 ms, this number is only indicative since the MOSFET will take

some more time to reach the triode zone, also depending on the applied load, but it gives
an idea of the rather slow gate charging time.
Whenever the measured current reaches the threshold condition, the INA138 output will
go up with a time constant determined by the RC filter at its output τINA138= 12 µs,
the actual time to reach the threshold depends on the current surge value, if we assume
a current step going from 0 to 110% of the threshold level, the threshold will be reached
in 29 µs; at this point the comparator open collector output will go to GND; the control
MOSFET will turn on, discharging the C5 capacitor and turning off the switch MOSFET.
A LTSPICE numerical simulation was set up to predict the time behavior of the system
and the switch delay, the circuit can be seen in fig. 5.26.

81

Chapter 5 - Hardware design

Figure 5.26: Latch-up protection circuit simulation model.

In this simulation, the load is modeled with a 165 Ω resistance (R2 in fig. 5.26), drawing
a current of 20 mA, the load capacitance is also modeled with a 5 µF capacitor; the latch-
up low resistance path is modeled with another low value resistor (R9 in fig. 5.26) with
a switch in series, the switch gets closed to simulate the latch-up event; the resistance
value in this case was chosen to a E12 normalized value of 33 Ω, in order to reach the
previously mentioned value of around 110% of the threshold current (120 mA in this
case). In fig. 5.27 we can see the simulated behavior of the load voltage when the resistor
gets connected: at first the switch closes and the voltage goes down, then after more or
less 120 ms the circuit tries to turn on again, since in this case the latch-up simulation
resistance is still present it turns off again, repeating the cycle approximately every 150
ms.

82

5.2 - Electrical design

Figure 5.27: Voltage
at load during simu-
lated latch-up event in
SPICE.

From the simulation we can also get an estimation of the circuit behavior during turn-off:
from fig. 5.28 we can see that the intervention delay is approximately 55 us, meaning that
this is the delay from the beginning of the event and the MOSFET switch turn-off.

Figure 5.28: Simu-
lated latch-up event,
red: load voltage,
blue: INA138 output,
green: current through
switch.

On the other end we can see that the load voltage will not be shorted to ground immedi-
ately, since the load capacitance needs to discharge through the load itself; this behavior
can be problematic since the load capacitance continues to provide charges to power the
latch-up for some time, it could be solved by adding a second n-type MOSFET that
quickly discharges the load capacitance during turn-off but since the latch-up protection
was a nice-to-have requirement this implementation was considered satisfactory enough.
The INA138 has a declared supply current of 60 µA, the TL331 consumes a maximum of

83

Chapter 5 - Hardware design

0.43 mA and the TL431 reference circuit in that configuration drains 2.1 mA in the worst
case (13 V Vdd); the estimated power consumption for each complex protection circuit
is 34 mW; this number is mainly dictated by the reference voltage generation and is a
big fraction of the overall system power budget. An estimation of the maximum power
consumption in case of irreversible fault can be done from the waveforms of fig. 5.27: if
we approximate the waveform with triangular shapes of base 50 ms and height 104 mA,
we get an average current of 52 mA during the repeated startup ramp, if we multiply this
for the startup duty cycle (50ms/125ms = 0.4) we get an average current of 21 mA, or a
power of 69 mW.

5.2.6.3 Domain interfaces
The domain interfaces are needed to interrupt logical interconnections between power
domains in case one gets shut down by the corresponding protection circuit. This is
needed because a powered down IC can be supplied anyway by its I/O pins through the
ESD protection diodes, as seen in fig. 5.29: normally the ESD protection diodes are
inversely polarized and only turn on in case of an ESD event, this is true if the IC is
correctly supplied and the voltage levels on its I/O pins are inside the supply rails; if
instead a voltage higher than the positive supply (or lower than GND) is applied, and
this voltage is also high (or low) enough to overcome the diode threshold voltage, current
will flow directly to the supply rails from the I/O pin. This represents a problem in
systems like the one under analysis in which different power domains are present that can
be individually powered off. The effect is even more problematic if the turned off domain
has the positive supply shorted to ground due for example to a destructive latch-up: in
this case any device that is connected to the broken IC gets its outputs shorted too, hence
an interface block is needed to avoid this unwanted behavior.

Figure 5.29: IC
powering from I/O
through ESD protec-
tion diode.

The solution was to use the SN74AXC1T45 (datasheet: [83]) and SN74AVC4T245 (datasheet:
[82]) bus transceivers, these ICs are designed to interface circuits with different sup-
ply voltages and deal with this type of problem by implementing a Partial-Power-Down
mode: whenever either of the two supply lines is turned off, all the IC pins go to an
high impedance state, delivering a maximum current (from datasheet) Ioff of 5 µA. Two
different models were chosen to optimize the circuit area usage, since one of them has a
single logical line while the other has four of them, with direction configurable in groups
of two. The variant with four lines also has Output Enable pins that allow using them in
an SPI bus shared between multiple functional blocks, as is the case for the ADCs. Fig.
5.30 shows the usage of both ICs to interface the MRAM domain with the processing unit,

84

5.2 - Electrical design

notice that in the image an error on the PCB can be spotted: the MRAM chip select pin
CS# is left floating when the bus transceiver output goes to high impedance, this was
later corrected by applying pull-up resistors to all the ICs that presented this problem.

Figure 5.30: SN74AXC1T45 and SN74AVC4T245 used as voltage domain interface
with the MRAM.

The ICs have a declared maximum supply current (both rails combined) of 16 µA (53
µW).

5.2.7 Board electrical interfaces and connectors
The system has two wired interfaces towards the outside: one is the communication
interface through which the two RS422 lines and the spacecraft power bus are routed,
the other is the Access Port interface through which the system can be programmed and
externally powered.
Other connectors are present to interface elements of the system itself: five connectors for
thermistors and two header connectors for the Nucleo. In fig. 5.31 the connectors names
and relative functionalities are shown.
For all connectors except the Nucleo header, Samtec’s TFM-107-02-S-D-WT-P was chosen
(datasheet: [1]), to be coupled with the ISDF-07-D-M cable housing (datasheet: [2]). This
polarized connector has 2 rows of 7 gold-plated pins with 1.27 mm pitch, it comes with the
-WT (Weld Tab) ordering option, having metal tabs that couple with hooks on the cable
housing (as can be seen in fig. 5.32) and on the other end have through hole soldering
terminations (only for metal tabs, electric pins are surface-mount), this improves the
connection robustness to the heavy stresses during launch (in any case the connections
were glued during integration by the mechanical structure team).

85

Chapter 5 - Hardware design

Figure 5.31: Singer board connectors names and function.

Figure 5.32: Samtec
ISDF-07-D-M cable
housing (left) and
TFM-107-02-S-D-WT-
P connector (right).

The Access Port connector (J9) pinout can be seen in tab. 5.5

86

5.2 - Electrical design

Table 5.5: Singer Access Port (J9) pinout.

1 GND VDD TARGET 2
3 VDD AP SWCLK 4
5 N/C GND 6
7 UART AP TX VDD AP 8
9 UART AP RX SWDIO 10
11 GND nRST 12
13 VDD AP SWO 14

Legend:
GND - Ground reference
VDD AP - Access port positive supply line

nRST - SWD interface reset pin
VDD TARGET - SWD interface target supply voltage
SWCLK - SWD interface clock pin
SWDIO - SWD interface data pin
SWO - SWD interface debug output interface (note: this is a placeholder and is not
wired to the Nucleo)

UART AP TX - Access port service UART TX line
UART AP RX - Access port service UART RX line

N/C - Not connected pin

The communication port connector (J8) pinout can be seen in tab. 5.6

Table 5.6: Singer communication port (J8) pinout.

1 RSS422 1 TX P GND 2
3 RSS422 1 TX N RSS422 2 TX P 4
5 VDD SYS RSS422 2 TX N 6
7 GND VDD SYS 8
9 RSS422 1 RX P GND 10
11 RSS422 1 RX N RSS422 2 RX P 12
13 VDD SYS RSS422 2 RX N 14

Legend:
GND - Ground reference
VDD SYS - Communication port positive supply line

RS422 x TX P - Positive TX polarity for RS422 port n
RS422 x TX N - Negative TX polarity for RS422 port n
RS422 x RX P - Positive RX polarity for RS422 port n
RS422 x RX N - Negative RX polarity for RS422 port n

For all the thermistors’ connectors (J3, J4, J5, J6, J7) the following configuration holds:

87

Chapter 5 - Hardware design

all the even pins are connected to GND; any odd pin is wired to a different ADC channel,
so that every thermistor is wired from an odd pin to the even pin in front of it; connector
J5 only has 4 thermistors, all the other have 7.
The nucleo headers pinout can be seen in fig. 5.33.

Figure 5.33: Nucleo header connectors pinout.

5.2.8 System power estimation
In tab. 5.7 a summary of the worst case power consumption for each system building
block has been made.

Table 5.7: System power consumption summary

Block Power consumption Number of blocks Total
ADC 35 mW 2 70 mW
Memory 1.33 mW 1 1.33 mW
IMU 100 mW 1 100 mW
RS422 3.3 mW 2 6.6 mW
Control unit 28.4 mW 1 28.4 mW
Domain interfaces 53 µW 9 477 µW
Regulator 65 mW note1 1 65 mW
Latch-up protection 34 mW 3 102 mW
Total 374 mW

note1 The regulator consumption was estimated from the 3.3V components consumption
with an efficiency of 76%

As can be seen in tab. 5.7, the power consumption requirement of 300 mW was not
reached. While some blocks’ consumption cannot be further improved, three errors from

88

5.3 - PCB design and production

the author can be identified that could have been implemented in a more efficient way: the
first is the thermistors block, where higher pullup resistors values would have reduced the
worst case power consumption (for example using 10 kΩ instead of 5 kΩ would practically
reduce the worst case power of this block to half its value, by increasing on the other end
the equivalent resistance of the conditioning circuit and so the effect of the ADC input
current), on the other end it must be recognized that this worst case power consumption of
thermistors is reached if all 32 are at very high temperature (low thermistor resistance),
while in normal operation the majority of them are at temperatures lower than 10➦C
and so the actual power is way lower than that. The second error is on the TL431
reference voltage generators of the protection circuits, these circuits consume 2.1 mA
from the spacecraft bus, while the minimum current needed by the TL431 is 1 mA; the
maximum resistance value that could have been applied instead of 5 kΩ is determined by
the minimum bus voltage of 9.2V (the minimum 9.5V minus the drop on input diode of
around 0.3V) and is 6.7 kΩ (so not much higher than the actual), another possibility would
have been to place only one reference circuit shared by all protection circuit, lowering the
system redundancy. The third error, that was more a conscious choice than a mistake,
was to choose a voltage regulator that is not particularly efficient; a more efficient, less
rugged regulator could have been selected instead.
In any case measurements done on the physical system, performed at room temperature,
revealed a power consumption of the whole system of 286 mW.
Keep in mind that this figure is the nominal one and that if the system faults the maximum
power that can be drained from the spacecraft supply is determined by the PTC fuse before
the voltage regulator, this type of fuse has a very broad range of trip current that can go
from 30mA to 90mA, corresponding to a power consumption range of 390mW to 1.17W,
so the spacecraft should provide a way of shutting off the board in this case.

5.3 PCB design and production
Singer PCB design was carried out with KiCad EDA ([52]), an open-source yet powerful
PCB CAD software that allows following the complete design of a board, from schematic
drawing to layout and 3D rendering. The software comes with a default set of symbols (fig.
5.34a), footprints (fig. 5.34b) and relative 3D models (fig. 5.34c) of common packages.

(a) (b) (c)

Figure 5.34: 5.34a Voltage regulator symbol. 5.34b Voltage regulator footprint.
5.34c Voltage regulator 3D model.

89

Chapter 5 - Hardware design

It was often necessary to manually create some of them (especially the symbols, containing
the pinout of specific devices) or all of them for specific components (like the voltage
regulator shown in fig. 5.34). For 3D modeling the SOLIDWORKS 3D CAD software
was used (website: [85]).

5.3.1 Schematic
The schematic is organized by using KiCad hierarchical sheet tool, the main sheet can
be seen in fig. 5.35; it approximately follows the blocks subdivision of fig. 5.1 and the
connections to the microcontroller headers of each block are defined as multi-wire buses.
The complete schematic will not be treated to not overfill this document with images
(and because connections are somehow trivial) but a glimpse on some of the hierarchical
sheets’ content has been given on section 5.2.

Figure 5.35: Main Singer schematic sheet on KiCad.

Each functional block that represents a power domain has the same basic structure (of
which a good example could be seen in fig. 5.30), containing:

The main devices implementing the block functionality, as discussed on section 5.2;

Power supply decoupling capacitors, usually a 4.7 µF capacitor for each domain and 100
nF capacitors on each individual supply pin (unless otherwise specified on the datasheet),
to be placed as close as possible to the package; for devices with analog supply (ADC
and IMU) a ferrite bead has been placed in series to the power line to clean it from high

90

5.3 - PCB design and production

frequency noise;

Domain interface devices for that specific block;

A bus wire, grouping all the logical connections towards the microcontroller and con-
nected to the hierarchical sheet pin (which can be seen exiting each sheet in fig. 5.35);

5.3.2 Layout
Since the circuit has a fair amount of interconnections a 4-layers PCB was adopted for
the system, with a standard copper density per unit area of 1 oz/ft2, corresponding to a
thickness of 34 µm; the interconnections layout can be seen in fig. 5.36

Figure 5.36: PCB in-
terconnections layout.

Each layer has a certain number of interconnections and the remaining area is filled with
copper planes connected to either the microcontroller VDD or GND, as follows:

Top layer: Microcontroller VDD;

Top inner layer: GND;

Bottom inner layer: Microcontroller VDD;

Bottom layer: GND;
The presence of copper planes at a constant voltage helps shielding the interconnections
and reducing the resistance of power lines, especially the GND. The choice of connecting
copper planes to the microcontroller VDD was made because this supply needs to be
distributed to an high number of devices (the voltage domain interfaces). In fig. 5.37
the layout of each PCB layer is shown; we can notice that no copper was placed at the
center, beneath the IMU, that’s a specific guideline given on the IMU hardware integration
manual ([40]).

91

Chapter 5 - Hardware design

(a) (b)

(c) (d)

Figure 5.37: PCB layers. 5.37a Top layer. 5.37b Top inner layer. 5.37c Bottom
inner layer. 5.37d Bottom layer.

92

5.3 - PCB design and production

5.3.2.1 Floorplan
Fig. 5.38 shows the placement of system blocks inside the PCB.

Figure 5.38: PCB floorplan. Top view (left) and bottom view (right), areas of the
same color are part of the same block.

As can be seen, the block that consumes more PCB area is the ADC block, followed by
the power protection block; these two occupy more than 50% of the total area. The blocks
were placed by trying to minimize interconnections lengths, especially the ones towards
the Nucleo header.

5.3.2.2 Routing
Routing has been done utilizing two track widths: 0.25 mm for logical interconnections
and 0.8mm for power lines. Tab. 5.8 summarizes the estimated track resistance and
capacitance per unit length; the resistance has been evaluated with a copper resistivity
σ of 1.7x10−8 Ωm and the capacitance with an FR4 dielectric with ϵr=4.3, neglecting
the effect of neighboring tracks and considering the parallel plane capacitance of an inner
layer track (having two copper planes on the two sides, neglecting fringing fields). As
previously said the copper thickness is 34 µm, the PCB thickness is assumed to be 1.5
mm, with layers equally spaced (0.75 mm distance).

93

Chapter 5 - Hardware design

Table 5.8: PCB estimated tracks resistance and capacitance per unit length.

Track width Resistance p.u.l. Capacitance p.u.l.
0.25 mm 20 mΩ/cm 0.25 pF/cm
0.8 mm 6.3 mΩ/cm 0.81 pF/cm

From these values we can easily guess that there will be no problem for our <10MHz
frequency circuit, but we can anyway try to estimate the interconnection delay and rise
time introduced on logical interconnections. We’ll assume a 10 cm track length (the
longest track on the PCB), from which we obtain an interconnection resistance of 200 mΩ
and stray capacitance of 2.5 pF; we also need to estimate the driver equivalent output
resistance and the receiver capacitance of our integrated circuit, so we’ll assume a 30 Ω
output resistance and a 10 pF load capacitance, the equivalent circuit adopting a single
segment π model for the interconnection can be seen in fig. 5.39a. A SPICE model was
set up to quickly simulate the network and evaluate the 50%-50% propagation delay and
the 10%-90% rise time, whose result can be seen in fig. 5.39b.

(a) (b)

Figure 5.39: 5.39a Interconnection network with single segment π model. 5.39b
Simulation result.

The simulation gave a 50%-50% propagation delay td = 0.27 ns, it can be interesting to
compare this value with the one given by the Elmore delay approximation tpd,elmore =
RD ∗ CI1 + (RD + RI) ∗ (CI2 + CL) = 0.38 ns. The 10%-90% rise time given by the
simulation is tr = 0.83 ns; it’s clear than this doesn’t pose a problem for our maximum
clock period of T4MHz = 250 ns.

94

5.3 - PCB design and production

5.3.3 Production
The PCB was manufactured and assembled by an external company, this required the
author to provide a number of documents:

Gerber files, containing masks for copper layers, PCB edge cuts, silkscreens (the writings
on the PCB), solder paste and components placement (.gbr extension);

Drill files, containing masks for PCB holes drilling: vias, through hole pads, mounting
holes (.drl extension);

Bill Of Material (BOM): a list of all components, the relative number and name on the
circuit to be correlated with the placement gerber file (.csv extension);

3D models/Renders of the board, not strictly necessary but useful to give the manu-
facturer the expected PCB appearance and eventually help solving doubts;

All these files were easily generated by KiCad with the exception of the BOM, the latter is
generated by python scripts and the default one outputs a file that is quite difficult to read,
fortunately KiCad is completely open-source and allows deep customization including the
possibility of adding custom BOM scripts. The entire fabrication process took less than
3 weeks to complete, a total of four boards (fig. 5.40) were produced: 2 boards without
a soldered IMU (qualification models), 2 boards with the IMU soldered (flight model
and spare); the choice of not soldering the IMU on the qualification models was made to
reduce the cost, since the IMU had a cost higher than the overall system without it. In
any case we had a IMU to be used for testing that was wired to the boards when needed.

Figure 5.40: The
four produced Singer
boards.

95

Chapter 6
Software design

This chapter addresses the development of the board firmware. At first, an overview of
the software structure and development environment is made, follows a description of the
software building blocks divided i two major sections: the low level software (drivers and
utilities) and the high level part (tasks).

6.1 Software overview
The hierarchical organization of the firmware can be seen in fig. 6.1.

Figure 6.1: Singer firmware hierarchical structure.

As can be seen, the firmware is organized in hierarchical layers, starting from the bottom:

board hardware: consisting on the PCB hardware that was already presented in chapter
5;

uC hardware: the microcontroller peripherals used to interface with the board hardware
or to implement other firmware functionalities, the image doesn’t show the peripherals
not directly involved in functionalities related with the mission but vital for the micro-
controller operation (like the reset and clock controller and the interrupt controller);

uC drivers: the drivers for the microcontroller peripherals, which include the ones
provided by ST (Hardware Abstraction Layer, or HAL libraries) but also developed for

97

Chapter 6 - Software design

the purpose (like the second level UART driver);

driver utilities and board drivers: consisting of drivers developed for the board hardware
and utility libraries they rely on;

tasks: the upper layer of the firmware, consisting of the actual tasks that implement
the various system functionalities as state machines.

An important constraint during design of all the firmware was to never use dynamic
memory allocation, dynamic allocation can be unpredictable and for this reason its usage
is discouraged, NASA’s list of programming best-practices explicitly says that on [43].

6.1.1 development environment
The microcontroller configuration was generated by STM32CubeMX graphical configura-
tion tool (from now called CubeMX) that is provided by ST (site: [98]), with this powerful
utility it’s possible to configure all the microcontroller peripherals and even include and
setup the microcontroller Real Time Operating System (RTOS). Various Integrated De-
velopment Environments (IDEs) were used for firmware programming and compiling, ST
provides the STM32CubeIDE (site: [97]) IDE that is already integrated with CubeMX
and provides all the needed tools for compiling (GCC compiler for ARM) and debugging
(GDB), this was used not only for the complete firmware but also for the hardware test
programs (see section 7.3). Visual Studio Code (site: [116]) was another IDE used for the
most intensive coding phases because it offers a better user experience than CubeIDE, in-
creasing the productivity, it comes with the disadvantage of not being natively integrated
with the ST development pipeline and ARM utilities.

6.1.2 FreeRTOS
The firmware is based on FreeRTOS (website: [34], manuals: [10], [107]), an open-source
Real Time Operating System (RTOS) distributed under MIT license that basically al-
lows the generation and scheduling of threads (here called tasks) and provides inter-task
communication primitives; this simple but complete set of capabilities is ideal for embed-
ded projects and in fact CubeMX directly provides FreeRTOS as a configuration option
and assists on its setup. Tasks are represented by a structure called Task Control Block
(TCB), where all the variables to control the task an keep track of its state are located.
Since the scheduler swaps the tasks context in any moment of their execution, each task
owns a separate stack. FreeRTOS can allocate tasks in memory dynamically or statically,
since in our application we prohibited the former the static mechanism is used, in this case
the memory arrays to store the TCBs and stacks are given to the OS by the programmer
and typically are declared as global variables.
FreeRTOS implements various inter-task communication mechanisms, the ones that are
used in the firmware are queues and mutexes; FreeRTOS queues are First-In-First-Out
(FIFO) primitives that allow buffering data in thread-safe manner between tasks and/or
Interrupt Service Routines (ISR), while mutexes are the well known resource locking ob-
jects that are used to access data in mutual exclusive manner and in FreeRTOS their
implementation is based on queues. Like tasks, also these objects can be allocated dy-
namically or statically, the latter being the adopted option. Fig. 6.2 shows the resulting

98

6.1 - Software overview

RAM allocation of FreeRTOS.

Figure 6.2: FreeR-
TOS with static RAM
allocation.

FreeRTOS tasks are characterized by a priority and one of four states: ready, running,
blocked, suspended; the suspended state can be set do temporarily disable a task from
running and is never used in our application, tasks will always change state between
ready (the task can be executed as soon as possible), running (the task is in execution)
and blocked (the task is waiting to become ready due to some events). The FreeRTOS
scheduler is called periodically by a timer interrupt with configurable period (in our case 1
ms) or when a task calls a blocking function that changes its state to blocked (for example
waiting for a mutex to become available); when the scheduler is called it will change the
running task with the following logic:

if a ready task has higher priority than all the others, it will run;

if there are multiple ready tasks with the same priority and higher than all the others,
a round-robin logic executes the tasks in turn (time slicing).

From that, it’s clear that higher priority tasks need to spontaneously pass in blocked state
in order for the lower priority tasks to have some CPU time, this is usually done with the
vTaskDelayUntil() function which blocks the task for a predefined amount of time, we
will call this time the Task Repetition Period (TRP). The task with the lowest possible
priority can never spontaneously block and it will be executed when no other task is ready,
in fact FreeRTOS automatically starts an hidden idle task with lowest possible priority in
order to guarantee that there’s always a task running. An example of scheduling is shown
in fig. 6.3

99

Chapter 6 - Software design

Figure 6.3: Example of FreeRTOS tasks scheduling.

6.2 Low level drivers
This section will overview all the firmware layers except the task level (refer to fig. 6.1).
In fig. 6.4 the system logical interconnections are shown.

Figure 6.4: Singer logical architecture.

As can be seen, the system makes mainly use of two types of logical interconnections:
UART and SPI; there is also the SWD interface that is the standard program and debug
interface for ST microcontrollers. Some GPIOs were needed as chip select lines for the
SPI interfaces and for setting the ADC MUX address. Fig 6.5 shows the microcontroller
pin assignments in the CubeMX pinout configuration tab; for unused pins, the CubeMX
function was used that automatically sets the pin mode to analog input, this solution
reduces the power consumption of floating input pins.

100

6.2 - Low level drivers

Figure 6.5: Micro-
controller pin assign-
ments.

6.2.1 Interfaces review
Before entering in the details of the driver implementations, it can be useful to have a
brief review of the mentioned interfaces to serve as reference.

6.2.1.1 SPI interface
Introduced by Motorola/Freescale ([114]), the Serial Peripheral Interface (SPI) is a well
known serial interface for board level transmission, it’s a synchronous interface and so
has both data and clock lines, it allows exchanging data between multiple slave devices
and an unique master device (but also a multi-master configuration is possible); the basic
idea behind SPI implementation (like for our microcontroller: [99] pag. 1306) is to swap
the content of two or more shift registers during the exchange of data, as in fig. 6.6;

Figure 6.6: SPI basic concept with shift registers data swap. (Up) Shift registers
content before the transaction. (Down) Shift registers content after the transaction.

Data exchange can happen by sending the data starting from the Most Significant Bit

101

Chapter 6 - Software design

(MSB) or the Least Significant Bit (LSB), typically data exchange happens with units of
8 bits but other variants exist (the microcontroller that we used can be set to exchange
from 4 to 16 bits). The line that goes towards the master is called the Master In Slave
Out (MISO) line, the other is called the Master Out Slave In (MISO).
The master device is the one that starts the SPI transaction with a specific slave by
changing the state of a chip select (CS) line (typically but not always, the chip select line
is active low), the remaining slaves will keep their output drivers to an high-impedance
state; the master then sends the clock and the two devices exchange their data one bit per
clock period. The clock can have low or high value at rest (usually called clock polarity
or CPOL) and the data can be valid at the first or second clock edge (usually called clock
phase or CPHA), fig. 6.7 represents the timing diagram of a typical SPI transaction.

Figure 6.7: Typical
SPI transaction, the
four possible combina-
tions of clock polarity
an phase are shown.

SPI allows multiple configurations of slaves, the two most notorious configurations are
shown in fig. 6.8.

(a) (b)

Figure 6.8: 6.8a SPI in multi-drop configuration. 6.8b SPI in daisy-chain configu-
ration.

Multi-drop: in this configuration all the slaves share the MISO and MOSI lines, the
master selects one slave at a time and performs one or multiple transactions with the
latter, this configuration is the one that was adopted for all SPI buses on Singer; of
particular concern for this configuration is that one and only one slave must be active at
any time, otherwise there’s the risk of causing short circuits due to multiple strong drivers
trying to set the line state.

Daisy-chain ([25]): in this configuration the MISO and MOSI lines are arranged to form

102

6.2 - Low level drivers

a continuous ring, the master selects all the slaves at the same time and then sends the
data for some or all the slaves, this data needs to be aligned accordingly to obtain at the
end that each slave has the properly aligned data on its shift register. This configuration
completely eliminates the problem of multiple drivers on the same line because there’s no
more a common bus and also reduces the number of chip select lines (that with multi-drop
can become significant); the main problem is that if one of the slaves breaks, the whole
bus is lost. Daisy chain also needs the slave to consider the data as valid only when the
chip select is disabled at the end, ignoring everything that is received in the meantime;
this could not be the case with complex devices and in fact it wasn’t the case neither with
the ADC nor the MRAM of Singer, which actively read the received data for commands
and then immediately respond inside the same chip select window.

6.2.1.2 UART interface
UART (Universal Asynchronous Receiver Transmitter) interface implements an asyn-
chronous communication protocol between two devices (fig. 6.9) and as the name suggests
doesn’t provide a clock line together with the data, the communication speed (baud rate)
needs to be agreed between sender and receiver for the communication to correctly take
place and usually the UART peripheral allows choosing from a wide range of standard
values; the typical UART frame is shown in fig. 6.10. An UART communication channel
is bidirectional and full duplex but the two lines are identical and nothing prevents using
only one direction for simplex communication.

Figure 6.9: UART communication between two devices.

Figure 6.10: UART frame with 8 bits of data and no parity bit.

While in idle state, the UART line will have an high logic level, to start sending a frame
the logic level of the line is set to low for one bit period (start bit), at this point the
receiver will synchronize with the incoming frame and start sampling the line (a typical
implementation, like in our microcontroller, is to sample the line at a rate much higher
that the transmission baud rate and apply a voting policy to determine the bit values),
synchronization is necessary because the transmitter and receiver clocks will always have
some difference and drift with time one respect to the other; the transmitter sends a
configurable number of data bits (8 in our application) and optionally a parity bit (not
used in our application), then the line state is set to high (stop bit) for at least one bit
period before a new start bit can be sent. UART is the name of the interface peripheral
that implements the UART frame and outputs the data with TTL/CMOS logic levels
through the device I/O pins, this levels are commonly translated to different physical layer

103

Chapter 6 - Software design

protocols like for example RS232 (like in [84]) or RS422 (like in Singer for communication
with the CDHs); for short distances the bare CMOS output from integrated circuits can
also be used (like in Singer for the IMU and Access Port).

6.2.1.3 SWD interface
The Serial Wire Debug (SWD) interface is the program and debug interface for ARM
based devices and consists of a bidirectional interface by which data is read or written
on the microcontroller. The data TX/RX line is called SWDIO and the corresponding
clock line is called SWCLK. The STM32 microcontrollers also need two more lines to be
correctly programmed: the VDD target line, which is used by the programmer to identify
the target supply voltage and the microcontroller reset pin nRST that is used to reset the
microcontroller and execute the boot sequence for programming. Entering in the details of
this interface is out of the scope of this thesis, for more information see the specifications
on [8].

6.2.2 HAL drivers
The Hardware Abstraction Layer (HAL) libraries, provided by ST (documentation: [26])
and generated by CubeMX, are the base on which the entire firmware is coded. These
libraries, as the name suggests, provide an abstracted interface to interact with the micro-
controller hardware and save the designer from building the basic drivers to manage the
numerous peripherals; the downside of this approach is that these libraries are intended
to be as portable as possible on different microcontrollers and for this reason are often
over-complicated and somehow cryptic; especially while debugging it’s often difficult to
understand what’s going on at the low level and surely in situations in which development
time is not an issue it should be better to code the firmware resorting to the LL (Low
Layer) libraries or develop the drivers from scratch.

6.2.3 UART drivers
The UART peripheral is the most used in the system with four instances being involved:
one for each RS422 communication interface, one for the IMU and one for the Access Port
debug console. In all these cases it’s used with a speed of 115200 baud, 8 bit of data and
no parity bit. The UART is also the interface with the highest number of library layers
due to its asynchronous nature and the fact that is often used to frame more complex
packet structures, as we will later see in this section.

6.2.3.1 Peripheral drivers
Using the UART peripheral in polling mode makes it practically sure that an high number
of frames gets lost, especially when running a RTOS with multiple running tasks and a
preemption period of 1 ms (even with 9600 baud we would receive a byte every 1.04 ms,
for 115200 baud it becomes 86.8 µs) . For this reason the only feasible options were to use
it in interrupt mode or Direct Memory Access (DMA), the first one was chosen because
it’s the most deterministic one and our relatively low speed and CPU usage allowed
that: assuming a 100 instructions Interrupt Service Routine (ISR) and 50 clock cycles for
context change we get an ISR execution time of 2.3 µs @ 64MHz of CPU clock frequency,
if we multiply this number for the worst case scenario of all four UARTs transmitting and
receiving at the same time we get 18.8 µs, that with a frame period of 86.6 µs yields 22 %

104

6.2 - Low level drivers

of CPU usage for UART interrupts; this number is surely not ideal but in our context is
good enough for choosing this handling method, it also has to be noticed that the Access
Port UART is not used in orbit and this reduces the percentage to around 16 %.
The UART driver is then based on the HAL interrupt functions but these are limited in
functionality (especially in reception) for the following reasons:

the philosophy behind HAL interrupt drivers is that the user should assign a buffer of
chosen dimension and a callback function to be called when the buffer has been filled (or
emptied in transmission) with the requested number of bytes, this is obviously impractical
in a real life scenario because the number of expected bytes is rarely known a-priori and
even in that case the loss of one RX frame due to channel errors would potentially lead
to the callback never being called. The solution is to call the interrupt reception and
transmission functions with a single byte buffer, leading to the next problem;

the HAL libraries don’t provide a proper method of executing mutually exclusive code
(if we exclude interrupt disabling) nor some primitives for queuing data between ISR and
loop code, it could be easily implemented in a first approximation with monodirectional
flags (load and store operations are atomic) but this solution would have basically re-
duced the UART management back to polling mode. The simplest alternative would be
to implement a monodirectional ring buffer exploiting the atomic load and store of 32 bit
variables, an approach that is surely feasible if an RTOS is not used but in our case the
simplest way was to exploit the FreeRTOS queue primitive.

The UARTDriver.c library implements just that: it provides an interface that resembles
the read() and write() functions of an UNIX character driver, here called receiveDriver UART()
and sendDriver UART(); these functions will mask the user from the underlying mecha-
nisms of transmission and reception in interrupt mode, the driver outline and data flow
pipeline can be seen in fig. 6.11.

(a) (b)

Figure 6.11: 6.11a UART driver outline. 6.11b UART driver data flow pipeline.

The receiveDriver UART() and sendDriver UART() functions will basically read/write a
character from/into FreeRTOS queues, the HAL interrupt mode functions will be called
by passing a single character buffer at a time, the RX callback logic is quite simple: it
just inserts the newly received character into the queue and then call the HAL receive

105

Chapter 6 - Software design

function again; the TX logic is a bit more complicated because it must address two pos-
sible conditions: transmission ongoing (queue not empty), in this case the HAL transmit
function will be automatically called in the next callback and the sendDriver just inserts
the new character in the queue; transmission not ongoing (queue empty): in this case the
sendDriver function must call the HAL TX function after inserting the new byte, it also
must handle the problematic condition in which the byte was removed from the queue by
the ISR just before the sendDriver was called (and so the next callback has not been yet
executed).
The library provides two possible policies to apply if the reception queue is full: the
keep old policy will discard new bytes until there is again space in the queue; keep new
policy will shift out the older bytes to make space for the newly arrived ones. Multiple
UART peripherals can be managed by the library, which provides a function to add new
UART handlers and places them in a proper data structure (fig. 6.12). It also provides
functions to flush the RX or TX queues.

Figure 6.12: UART driver data structure.

6.2.4 Utility libraries
These utility libraries were developed to address the common problem of buffering and
packet searching inside a serial stream of bytes, for this reason they are mainly used inside
drivers that involve the UART but they could be potentially applied to any steam.

6.2.4.1 Buffer utilities
The buffUtils.c library was developed to provide two types of buffer implementations and
relative utility functions: plain and circular. Its goal is to offer a more comfortable way
of handling buffers, especially considering the amount of metadata that usually needs to
be carried with them, like for example the current number of contained elements; this
metadata is packed together with the buffer pointer inside an handle structure and a set
of functions have been developed to easily insert/remove elements from the begin or the
end, shift or rotate the buffers, convert one type to the other.
The plain buffer is basically a normal buffer (consecutive portion of memory starting
at index 0) that is packed with information about the buffer size and current number
of elements; the circular buffer instead is a ring buffer implementation that needs an
additional metadata about the index of the first element inside the memory region; the

106

6.2 - Low level drivers

two buffer structures and relative functions can be seen in fig. 6.13.

Figure 6.13: Circular buffer and plain buffer structures and functions.

Of particular interest for our application is the function that converts a circular buffer to
a plain one, circBuffToPlain(), this operation involves a rotation of the circular buffer to
align it back with the memory (make the starting index 0) and is heavily used because
it links the context in which circular buffers are most suited (receiving and buffering a
stream of characters from the UART driver) to the one in which plain buffers are the best
option (packet searching), leading to the next library in the list: the packetUtils library.

6.2.4.2 Packet utilities
The packetUtils.c library is the core library of all packet-searching jobs of the firmware
and is used both for the IMU driver and for Parrot communication, it’s a quite complex
but flexible library which provides two function, covering two main objectives:

search packets inside a stream of data: by identifying them with a set of rules defined by
the user; the rules include the definition of a packet head sequence and/or a tail sequence,
a minimum packet length and a policy to apply when bytes that are part of the head/tail
sequences are found inside the packet, this is implemented by the searchPacket() function
of the library;

ensure a continuous flow of data: by implementing rules to automatically shift out bytes
from the search buffer whenever a packet is found or the buffer is full, so that the user
doesn’t need to care about this aspect and only needs to continuously call the function
to search for new packets and fill the buffer whether some space is available, this is im-
plemented by the searchPacketAdvance() function (that wraps searchPacket()).

Figure 6.14: searchPacket() and searchPacketAdvance() functions headers.

The searchPacket() function (header in fig. 6.14) is applied to a plain buffer from the
buffUtils.c library, other function arguments are another plain buffer where the eventually

107

Chapter 6 - Software design

found packet is placed and the search rules structure, the rules can be set up to search
various types of packets and are passed to the function by a rule structure (fig. 6.15), this
struct contains the head and/or tail patterns as arrays, the minimum allowable packet
length and a policy to apply if partial head/tail patterns are found inside the packet; fig.
6.16 shows some of the possible packet formats that the function is capable to find.

Figure 6.15: Packet search rules.

Figure 6.16: Example of possible packet formats.

To do so, the function implements the flow graph of fig. 6.17a: the plain buffer is analyzed
byte by byte starting from the beginning, then a routine is executed on each byte that
determines the byte properties; byte properties (fig. 6.17b) are flags and variables that
will signal the subsequent code that a given byte is part of a complete or partial head/tail
pattern and its positional index inside the pattern. This data is then fed to a state
machine that implements the core logic of the function and that can be seen in fig. 6.18;
the function is told to work in mode 1 if the search rule includes both an head and a
tail, if only an head is given the function is told to work on mode 2 and it will search an
occurrence of the given head followed by a number of bytes equal to the given minimum
packet length, the mode 2 check logic is also shown in fig. 6.18.

108

6.2 - Low level drivers

(a) (b)

Figure 6.17: 6.17a searchPacket() function flow graph. 6.17b Example of byte
properties determination, heads are green, tails are red, partial head/tails are or-
ange, other packet bytes are yellow.

Figure 6.18: Search packet state machine and mode 2 check.

The second main job of the library (the automatic flow of data in the buffer) is instead

109

Chapter 6 - Software design

performed by the searchPacketAdvance() function (header in fig. 6.14), it’s core is always
the searchPacket() function around which this extra layer of functionalities is added; the
searchPacketAdvance() function works on a circular buffer instead of plain, that’s because
as already anticipated the best option to store bytes arriving from the UART (or a generic
serial) stream is a circular buffer, in fact a plain buffer would need continuous shift
operations that become computationally intensive with large dimensions. The circular
buffer needs anyway to be rotated to convert it to a plain one before the search operation
can take place (buffer alignment) but this is done with a buffer rotation algorithm that
has a complexity of O(N) with N being the number of buffer elements, instead of the
complexity of O(N2) of the basic shift algorithm, the rotation is also performed only if
really needed (so if the circular buffer indexes overflows in memory), as shown in fig. 6.19.

Figure 6.19: Example of buffer alignment. (Up) Rotation needed. (Down) Rota-
tion not needed.

A series of flags can be passed to the searchPacketAdvance() function to set the data
advancement logic, the possible flags are shown in fig. 6.20 where the logic applied to
each one is also explained.

Figure 6.20: Buffer advance flags and relative logic. Head bytes are in green, tail
bytes in red.

Finally, a step-by-step example is given in fig. 6.21 to show the overall working of the
searchPacketAdvance() function in a real-case scenario.

110

6.2 - Low level drivers

Figure 6.21: Real-case example of searchPacketAdvance() applied to an incom-
ing stream of data. Head bytes are in green, tail bytes are in red. Function calls are
represented as red squares around the circular buffer, function flags that cause the
buffer to advance on each step are shown on the left.

6.2.5 IMU driver
6.2.5.1 Xbus protocol and IMU op-modes

All Xsens products of the MT line, including our MTi-3 IMU, implement a low level com-
munication protocol (Xbus) that is specified in [62]; this protocol consists of an exchange
of packets (messages) with the format shown in fig. 6.22.

Figure 6.22: Xbus
message frame, picture
from [62].

The message starts with a 4 bytes header composed of the following fields:

a preamble of value 0xFA;

a Bus Identifier (BID), identifying the device that sent the message, in our case will
always be 0xFF;

a Message Identifier (MID), identifying the type of data that is sent;

111

Chapter 6 - Software design

a message length field (LEN), identifying the number of message data bytes.

The header is followed by:

a number of LEN bytes of data;

a 1 byte checksum, the checksum is the 2’s complement of the 1 byte-wide sum of all
data bytes and basically the message should be considered valid if the 1 byte-wide sum
of all data fields including the checksum is equal to zero.

The protocol also specifies an extended length message which is of no interest for our
application.
There are various MID values available (for commands or relative Acknowledge messages,
or ACK), but for our application we were only interested in the following ones:

GoToConfig (0x30) and relative ACK (0x31): sends the IMU to configuration state;

SetOutputConfiguration (0xC0) and relative ACK (0xC1): sets the desired IMU output
configuration;

GoToMeasurement (0x10) and relative ACK (0x11): sends the IMU to measurement
state;

MTData2 (0x36): the message containing sampled values, this message is continuously
sent in measurement state and has the format shown in fig. 6.23

Figure 6.23: MT-
Data2 message format,
picture from [62].

Each category of measure (magnetometer, accelerometer, gyroscope, quaternions, ...) is
formatted on a sub-field of the message data, starting with a data identifier and a length
field; the frequency of arrival (sample rate) of the MTData2 message, as well as the desired
types of measures, are set by the already mentioned SetOutputConfiguration message.
The IMU has two main operative modes, shown in fig. 6.24: Measurement state, where
the IMU will continuously send measured samples on the UART at a rate that can be set
by the user (in our case we set the minimum possible, 100 sample/s); Config state, where
the IMU will not send samples and the SetOutputConfiguration message can set the type
of data that we want it to output in measurement state, together with the output sample
rate.

112

6.2 - Low level drivers

Figure 6.24: IMU
operative modes, pic-
ture from [62].

6.2.5.2 Driver library

Figure 6.25: IMU driver out-
line.

The MTi1.c library implements the minimal IMU
functionality that we needed for the system, its out-
line can be seen in fig. 6.25, as can be seen the
driver is built on top of the UART driver and uses
the buffer and packet utility libraries for analizing
the incoming stream of data and search for valid
protocol messages.
A series of private functions were defined to execute
elementary operations like send and receive mes-
sages, perform command-acknowledge transactions,
compute the checksum and extract the sampled val-
ues from the packet.
The high level interface is composed of two public
functions that perform all the necessary operations
in a compact way:

the initIMUConfig() function initializes the IMU
after reset by sending the GoToConfig message fol-
lowed by the SetOutputConfiguration command by which the desired output values are
set (gyroscope and magnetometer), follows the GoToMeasurement command that sends
the IMU to measurement state; the function checks for the reception of ACK messages
after each command and otherwise can retry the sequence a predefined number of times
before declaring the initialization as failed;

the readIMUPacket() function will be called to read the last received values an place
them in arrays of uint16 t, this function searches for the next complete packet with MID
of MTData2 (0x36) and extracts the values from their predefined position inside the
message; the function works in blocking (polling) mode and so a timeout is needed to
return if no valid packet was found after an amount of time.

113

Chapter 6 - Software design

6.2.6 Parrot communication library
6.2.6.1 Parrot message frame

The packet level communication protocol with parrot consists of an exchange of messages
with the format shown in fig. 6.26

Figure 6.26: Parrot
communication proto-
col message format.

The message fields are:

a message head byte with value 0x7E;

a protocol version field (1 byte), in our application this field will have value 0x01;

a source address field (2 bytes);

a destination address field (2 bytes);

a message identifier (2 bytes);

an arbitrary number of data bytes (payload);

a Cyclic Redundancy Check field (2 bytes);

a message tail byte with the same value of the head byte (0x7E).

The protocol also requires that the head/tail byte (also called frame byte or FRM BYTE)
of value 0x7E never appears inside the message if not for the head and tail, this requires
the presence of a byte stuffing algorithm that is applied to the message during encod-
ing/decoding, following this logic:

if a FRM BYTE (0x7E) is found, it’s replaced by an ESC BYTE (0x7D) followed by an
ESC FRAME (0x5E), this ensures that no FRM BYTEs are present inside the message;

if an ESC BYTE (0x7D) is found, an ESC ESCAP (0x5D) byte is inserted after it in
the message, this allows having a normal ESC BYTE+ESC FRAME sequence as data
inside packet and not wrongly interpret it as stuffing of FRM BYTE.

6.2.6.2 Parrot communication library
Not exactly a board device driver but placed at the same level, the SerialComm.c library
implements the packet level communication protocol with the CDHs over the RS422 line,
this library was not developed by the author but instead was provided by the team that
worked on Parrot and for this reason the implementation details will not be disclosed on
this thesis. The library only implements the Parrot message encoding for transmission
and reception and it needs to be called on an already aligned and valid Parrot frame,
the job of searching the packet on the RX stream is still performed by the packetUtils.c
library. The higher level implementation of Parrot communication (so the definition of
the various message IDs, the relative payload structure and the addresses of the CDHs
and Singer) is directly done on the Parrot Task and for this reason the details will be

114

6.2 - Low level drivers

disclosed on section 6.3.4.1.

6.2.7 printf() implementation
The last building block that makes use of the UART regards the binding of the latter
with the standard C library printf() function; this allows exploiting the powerful format-
ting capabilities of this function to create a debug console on the Access Port UART.
Biding the printf() to the UART is quite easy and happens through the definition of the
io putchar() function that is used by printf() to send characters on the serial line (stdio.h
standard library needs to be included in the project), fig. 6.27 shows the code that does
just that, as can be seen the character is sent to the UART through the UARTdriver.c
sendDriver UART() function.

Figure 6.27: Bind-
ing of printf() to the
AP UART through
the definition of
io putchar()

6.2.8 ADC driver
Communication with both AD7788 ADCs happens through a shared SPI interface with
a data rate of 500 kbit/s.

6.2.8.1 AD7788 interface
This ADC needs an high clock polarity and a second edge clock phase (CPOL=1, CPHA=1,
refer to fig. 6.7). The chip has four interface registers:

Communications register (write only), address ‘00’: each communication must start
with a write operation on this register, it contains the 2-bits address of the register that
the user wants to read/write, one bit to identify if the operation is a read/write and some
other mode flags (write enable bit, measurement channel selection, continuous/single read
mode selection); while in idle (after startup or a conversion), the ADC expects a write
operation on this register at the next SPI transaction (so the first write-mode byte sent on
the SPI is automatically written here). The ADC can be reset by sending 32 consecutive
‘1’s.

Status register (read only), address ‘00’: this contains status bits like the ADC data
ready bit, the ADC error bit, an identifier bit to distinguish between an AD7788 and
an AD7789 model and a currently selected channel bit. It shares its address with the
communication register but the read/write bit of the latter is used as additional address
bit to select between the two (since one is read only and the other write only).

Mode register, address ‘01’: this register is used to set the ADC to work in single
conversion mode, continuous conversion mode or standby mode; it’s also used to select
the desired coding of the output (unipolar or bipolar, depending on whether the ADC is
used in single ended or differential mode).

Data register, address ‘11’: this register is the only 16-bits wide register and contains

115

Chapter 6 - Software design

the conversion output.

Exactly describing the bit-by-bit content of these registers is out of the scope of this thesis,
the complete description can be found in the ADC datasheet: [55]. In our application the
ADC is used in single conversion mode, with the timing shown in fig. 6.28.

Figure 6.28: AD7788 single conversion mode timing diagram, picture from [55].

At first, 0x10 is written on the communications register to command a write operation on
the mode register, then 0x86 is written on the mode register to set the conversion mode
to single and the output coding to unipolar (in fig. 6.28 a value of 0x82 is shown but this
would instead set the output coding to bipolar); the conversion starts and the chip select
pin can go high again, in fig. 6.28 the chip select is left low because the DOUT(MISO)
line can be used as conversion completed flag since it goes from high to low when the
conversion is completed, in our case we needed to send the conversion start command
to the other ADC over the same SPI line and for this reason the chip select is disabled
during conversion and the conversion is considered as completed by keeping track of the
elapsed time; at the end of conversion the 0x38 command will instruct the communications
register that a read operation needs to be performed on the data register, whose content
is subsequently shifted out by the ADC.

6.2.8.2 ADC logical wiring
The detailed ADC logical wiring is shown in fig. 6.29, as can be seen the ADCs share an
SPI bus in multi-drop configuration and the address lines of MUXes are shared so that
the same channel is selected on both by a single set of four GPIOs.

116

6.2 - Low level drivers

Figure 6.29: Logi-
cal wiring of the two
ADCs.

6.2.8.3 Driver library

Figure 6.30:
ADC driver out-
line.

The ADC driver is implemented by the ADCsinger.c library, the
driver outline can be seen in fig. 6.30. This library manages
the MUX address and the presence of two ADCs transparently
to the user, the conversion happens in parallel on both ADCs
on the same MUX channel (as said the two MUXes share the
address line). Three high level public functions are provided to
the user: the adcInit() function resets both ADCs by sending the
32 ‘1’ sequences; the adcRequestSample() sets the MUX channel
to the one requested as function argument and then orders a single
mode conversion to both ADCs; the adcReadSample() reads the
conversion result from both ADCs and places them in a uint16 t
array passed as argument. The user (task) needs to wait for the
right amount of time for the conversion to complete (at least 60
ms) before reading the result from the ADC. The library could
potentially be reconfigured to manage an arbitrary number of
ADC chains.

6.2.9 MRAM driver and log system
The MRAM management is performed on two separate library layers: the lower layer is
the device driver that implements the basic transactions like read and write operations and
so is application-independent; the upper layer is the log system, consisting of a memory
organization for logging purposes and a mechanism to keep track of the write position in
memory (last written log packet), which is application-specific. SPI communication with
the MRAM happens with a data rate of 4 Mbit/s.

117

Chapter 6 - Software design

6.2.9.1 AS301604 interface
This device’s SPI interface doesn’t have a requirement on the clock polarity, in any case
the bit sampling happens at the rising edge (CPOL=0 and CPHA=0 or CPOL=1 and
CPHA=1 are both valid options, refer to fig. 6.7). It supports single/double/quadruple
SPI modes, of which the single is the one that we used; it also supports Single Data Rate
(SDR) or Double Data Rate (DDR) output modes, of which the single is the one that we
used. The memory internal architecture can be seen in fig. 6.31

Figure 6.31: MRAM
internal architecture,
picture from [42].

The memory contains two arrays that are addressed with 24 bits of parallelism:

the Main array having 2MB of storage, it doesn’t have a specific alignment and
read/write operations can be performed from any address and for any number of bytes;
various write protection options are available that can cover fractions of the memory (neg-
ative powers of 2) or the entire array; it covers the address space 0x000000 - 0x1FFFFF;

the Augmented Storage (AS) array having 256 bytes of storage, organized in 8 rows
of 32 bytes each; each region can be individually write protected but beside that there
is again no specific alignment for read/write operations; it can be addressed in the range
0x000000 to 0x0000FF.

The two arrays have superimposed address ranges, but these address spaces are indepen-
dent and the array that gets accessed depends on the specific instruction used. Fig. 6.32
shows the two memory arrays and their address space.

118

6.2 - Low level drivers

Figure 6.32: MRAM arrays and corresponding address space.

The device has a total of 8 interface registers, 7 of them are shown in fig. 6.33.

Figure 6.33: MRAM
interface registers, pic-
ture from [42].

Again the registers’ address space is independent from the ones of main array and AS
array and it’s the specific instruction used to determine which address space is in use.
The 8th register, the AS Array Protection Register, is not shown in fig. 6.33 because it
cannot be accessed by address but only with a specific instruction; in general all registers
have an instruction to access them directly besides the one to access them by address,
using the latter is not convenient because it requires 8 clock cycles of latency before the
register can be read, versus the 0 latency of reading them directly by instruction.
The memory registers can be written to set every aspect of its functionalities: SPI mode,
memory and registers write protection, output drivers strength, memory read latency,
memory write address wrapping and so on... describing each register with the associated
bits would be of no use for the scope of this thesis, for a complete description the device
datasheet can be consulted: [42].
Data transactions with the memory are always initiated with an instruction being sent,
then depending on the specific instruction an address and/or data could be sent; the
instructions are categorized resorting to a nomenclature with the form:
< instruction > − < address > − < data >
where the three fields are replaced with 0 if the field doesn’t need to be present on the
transaction and 1 otherwise (actually the 1 can also be 2 or 4 to represent the number of
SPI lines used to transfer it in double or quadruple SPI modes, but in our case it can only
be 0 or 1). In our application we only used 1-0-0, 1-0-1 and 1-1-1 (shown in fig. 6.34)
instruction types, see fig. 6.35b for the list of used instructions.

119

Chapter 6 - Software design

Figure 6.34: Timing of 1-1-1 instruction type, picture from [42].

6.2.9.2 Low level driver
The MRAM.c low level driver provides a basic set of functions to init the memory, en-
able/disable the write protection on the main or AS array and read/write them, the driver
outline can be seen in fig. 6.35a

(a) (b)

Figure 6.35: 6.35a MRAM driver outline. 6.35b MRAM instruction set definition
inside the driver.

The driver has a complete definition of the memory instruction set (fig. 6.35b) and of bit
masks for every interface register. It’s built on two distinct layers: the first implements
the basic SPI transactions (1-0-0, 1-0-1 and 1-1-1 both for read and write) by means of
the HAL SPI libraries, the second layer makes use of these basic transactions to provide

120

6.2 - Low level drivers

the upper layers with:

an init function to be called after system reset, which writes the default value on every
register and locks the memory afterwards;

lock and unlock functions, for both the main and AS arrays, with effect on the entire
main array or selectively for the AS array (every row can be locked independently, for
security reasons unlocking one row will first lock all the others);

write and read functions, for both the main and AS array; the main array can be writ-
ten from any valid address and for any number of bytes, the AS array can be written on
any row, starting from the first byte and for a maximum of 32 bytes (this is ensured by
the already mentioned security lock of all the other rows).

This basic set of functions gives the user the possibility of using the memory easily and
without caring on low level details, the default registers’ values can eventually be redefined
since they are declared as macros in an user-configurable portion of the code.

6.2.9.3 Memory organization and log system
The memory organization is defined on the MRAMsinger.c library, it consists of a very
simple log system that is appointed to store every minute the samples coming from the
various Singer data sources and allow their retrieval; the log system makes use of both
the main array and the Augmented Storage array, as shown in fig. 6.36.

Figure 6.36: MRAM log system organization.

The AS array contains the log system table, which consists of the SingerTableEntry
structure (fig. 6.37):

121

Chapter 6 - Software design

Figure 6.37:
SingerTableEntry
structure.

this contains three fields, the reboot counter that is updated after every system reboot,
the memory error counter that is updated after every detected flash or RAM error (not
implemented) and the packet counter, which is the most important one because it keeps
track of the last written packet and is updated every time a packet is written on the
main array, this field acts as pointer of the log system head and is everything the system
needs in our use case (a data read session from memory will always start from the last
written packet and proceed backwards for 1 or more packets); the table is written in eight
redundant copies inside the AS, one per each row, a voting algorithms is applied while
reading the table (since the number of copies is even, in case of tie the ‘0’ wins the voting)
to determine its value. Some space per each row of the AS will obviously remain empty.
The 32 bit packetCounter will overflow in more than 8000 years with a sampling period
of 1 minute.

The Main array contains the sample packets, defined in the SingerTelemetry structure
(fig. 6.38):

Figure 6.38:
SingerTelemetry struc-
ture.

as can be seen, this structure contains again the SingerTableEntry structure, in this case
the stored table values represent the table content at the time the packet is written on
memory, so the main array will contain a log of packets with an increasing packetCounter
and an history of the other two table values, as can be seen in fig. 6.36; the total size of
a SingerTelemetry packet is 110B. the packet counter uniquely identifies the position of a
packet in memory by the formula ADDRESS = packetCounter*size(packet row) %
size(main array), for this formula to be true the packet row size needs to be a divisor
of the main array size to guarantee the memory alignment after an address overflow,
in this case a 128 byte row was chosen (the lowest divisor of the main array size that
could contain the SingerTelemetry structure) so even in this case some space per each
row remains empty, the packetCounter on the AS table will be incremented after each
packet is written and consequently the value on the table will always have a value that
is one unit greater than the last packet (basically the packetCounter stored in the main
array corresponds to the index on an array while the one stored on the table corresponds
to the array size).
The other field in the SingerTelemetry structure is the SingerDataPacket structure, which

122

6.3 - Low level drivers

actually contains the sampled values and has the format seen in fig. 6.39a

(a) (b)

Figure 6.39: 6.39a SingerDataPacket structure. 6.39b ParrotSensorsMemory struc-
ture.

Figure 6.40: Log sys-
tem library outline.

The data packet structure contains a timestamp, the gyro-
scope and magnetometer data from IMU, the 32 temper-
atures from the ADC and an additional field that stores
the temperature measured internally by the microcontroller
embedded temperature sensor (as a placeholder, not imple-
mented), it also contains the values from sensors of the Parrot
subsystem, which are listed in fig. 6.39b; the Parrot sensors
include temperature sensors of the CDHs, battery tempera-
ture, charge/discharge current and voltage, vehicle mode and
operative mode; as can be seen, the parrot sensors structure
is asymmetrical (battery telemetry is only gathered by the
CDH 1).
The log system is implemented by the MRAMsinger.c library
(of which the outline can be seen in fig. 6.40), this library
implements the basic set of functions needed to manage the
memory log system, like to read the table and increment
single table fields (excluding the packetCounter that is only
incremented in the writePacket() function to grant consis-
tency), write new data and read the last packet or one cor-
responding to a given counter, it also implements functions to initialize the log system
and format it: formatMemory() will reset the whole table, while clearMemory() will only
reset the packetCounter without touching the other fields.

123

Chapter 6 - Software design

6.3 High level software
The high level software is composed of four tasks:

Sensors task: gathers data coming from board sensors and parrot sensors, packing them
in a SingerDataPacket struct (fig. 6.39a) and sending the packet to the memory task for
writing.

Memory task: manages the memory, dispatching write and read requests coming from
the other tasks.

Parrot task: manages communication with the CDHs, encoding and decoding the
messages and implementing the communication state machines.

Watchdog task: manages the microcontroller hardware watchdog, gathering watchdog
flags coming from the other tasks or by checking hardware peripherals state and resetting
the watchdog counter if everything is correctly working, it also performs a routine self-
reset of the microcontroller.

(a) (b)

Figure 6.41: 6.41a Firmware task general form. 6.41b Firmware tasks and data
flow paths.

All tasks have the general setup-loop format that is seen in fig. 6.41a, the task loop
is executed entirely on each task repetition period, this could potentially be a problem
because usually there’s the need to wait for an event to take place an this would starve the
other tasks; for this reason all tasks (except the watchdog one) are implemented as state
machines, which preserve the state between repetitions and only check in non-blocking

124

6.3 - High level software

manner (with a given timeout) if the waited event took place at each repetition. Fig.
6.41b shows the data flow paths between tasks, inter-task communication is explained
more in details in section 6.3.1.

6.3.1 Inter-task communication
The high level software analysis will start by the inter-task communication mechanisms
because it could help better understanding the following sections about each specific task
by defining their I/O interfacing with the rest of the firmware, also these communication
mechanisms involve multiple tasks and it would be counterproductive and dispersive to
present them in the description of single tasks.

6.3.1.1 Telemetry exchange
Telemetry exchange is done resorting to the TelemetryProdCons structure (fig. 6.42).

Figure 6.42: TelemetryProdCons structure.

This structure contains the SingerTelemetry structure that holds the telemetry packet (fig.
6.38), together with an handshake flag; the usage of this structure for telemetry exchange
follows a quite simple handshake mechanism and can only be done monodirectionally:

the task that requests the exchange sets the handshake flag, this task is the only one
that can set the flag and can never reset it;

the task that serves the request waits until the flag is set, at this point it serves the
request (by reading or writing the data from/to the structure) and resets the flag, this
task is the only one that can reset the flag and can never set it.

Since on STM32 the load/store operations on 32 bit variables (like the handshake flag) are
atomic, this simple mechanism allows exchanging data monodirectionally in thread-safe
manner; it’s also evident that this mechanism is risky as it can cause a deadlock if not
properly handled by the two tasks and so needs caution on its implementation on both
involved parts. This structure is the type of the memWrites (used to write sensors data on
memory) and memReads[] (used to read data from memory to send it to Parrot) variables
of fig. 6.41b, the memReads is actually a two-elements array because the two CDHs can
be served independently, also in read mode the drdy flag can assume two possible values:
a value of 1 stands for single telemetry request (a single packet needs to be read) while a
value of 2 stands for a downlink request (the Memory task must start reading from the
last written packet going backwards, so it must remember the downlink session position
in memory); fig. 6.43 shows the sequence diagram of the data exchange between Sensors,
Memory and Parrot Tasks.

125

Chapter 6 - Software design

Figure 6.43: Sequence diagram of telemetry exchanges.

6.3.1.2 Monodirectional requests
The same exact concept of the handshake flags of telemetry exchange applies to simple
requests without exchange of data, referring to fig. 6.41:

wdgParrot, wdgMemory and wdgSensors are three 32 bits flags that are used by the
corresponding tasks to signal the Watchdog task that they are alive an running, the
latter waits until all the flags have been set (together with other conditions) to reload the
watchdog counter and reset the flags;

formatMem is also a 32 bit flag that the Parrot task uses to request a memory format
to the Memory task, which will serve the request and reset the flag.

Also in this case the caveat is that the requesting tasks can only set the flag and the
serving task can only reset it, the difference between these flags and the ones for teleme-
try exchange is that in this case the flow of information is truly monodirectional: the
requesting tasks have no intereset of checking that the request has been served and so
that the flag was reset, they can potentially set again the flag even when the request has
not been yet served (and this for example happens continuously for the watchdog flags).

6.3.1.3 Mutual exclusive access
There are some resources that need to be accessed on mutual exclusive manner, in this
case a mutex was used to lock the resource by the task that wants to access it, referring
to fig. 6.41:

rtcMutex is used to share access to the microcontroller Real Time Clock (RTC) between
Parrot task (who updates the time coming from the CDH) and Sensors task (who reads
the timestamp to packet it with data);

parrotSensorsMutex is used to share access to a ParrotSensorsMemory structure (fig.

126

6.3 - High level software

6.39b) where Parrot sensors values are stored by Parrot task and accessed by Sensors task
during sampling.

6.3.2 Sensors task
The Sensors task is responsible of gathering data from ADC, IMU, RTC and Parrot
sensors, this data is packed in a SingerDataPacket struct (inside the memWrites struct
already mentioned in section 6.3.1.1) and sent to the memory task, which will store it (ac-
tually only the SingerDataPacket member of the SingerTelemetry structure of memWrites
is used in this case).
The sensors task needs to get access to the RTC in order to get the current timestamp,
the timestamp is seen as another scientific information that can be useful for data inter-
pretation and has no functional purpose: the task sampling period is computed by the
system tick counter (through HAL GetTick() function) because the RTC timestamp is
considered as unreliable (the latter is updated from Parrot at every received message).
The access to the RTC, that is shared with the Parrot task, is done in mutual exclusive
manner resorting to a mutex (as explained in section 6.3.1.3).
The Sensors task implements a state machine, the possible states can be seen in fig. 6.44;

Figure 6.44: Sensors task state machine states.

The task is normally in IDLE state, as soon as the sampling is triggered (every 1 minute)
the sampling loop starts by taking the timestamp from the RTC, then waiting for the
next IMU data (WAITING IMU state), then the 32 ADC channels (SAMPLING ADC
and WAITING ADC), finally the Parrot sensors are read and all this data is packed and
sent to the Memory task for storage, a new sampling can be always triggered in any state,
even if the current sampling has not been completed (but this should never happen), in
that case the ongoing sampling is aborted; fig. 6.45 shows the overall Sensors task flow
chart and the sampling state machine.

127

Chapter 6 - Software design

Figure 6.45: Sensors task flow chart and sampling state machine.

6.3.3 Memory task
The Memory task is responsible of serving write/read memory requests coming from the
Sensors task or Parrot task, following the sequence diagram of fig. 6.43; in this case the
task state machine is not explicit and consists of a series of flag variables that the task
uses to remember the type of session during read (single telemetry or downlink); a write
request is performed through the memWrites structure as explained in section 6.3.1.1 by
setting the drdy flag with a value of 1, when this flag instead is set to 2 a downlink
session starts, in this case the Memory task will remember its position in memory until
the downlink session ends; a downlink session consists on sending a number of packets
starting from the last written and going backwards, it ends whenever a single telemetry
request is issued or the whole memory has been read.
Fig. 6.46 shows the flow chart of the Memory task. As can be seen in the flow chart,
during a single telemetry request the packet is not read from MRAM but from a buffer in
RAM, this buffer is written every time a new sample is stored in MRAM and ensures that
at least the single telemetry can be provided in case the MRAM fails; actually a similar
buffer (maybe with a reduced number of packets) could have been implemented also for
downlink but was not done for design time and complexity issues.

128

6.3 - High level software

Figure 6.46: Memory task flow chart.

6.3.4 Parrot task
The Parrot task is responsible of managing the communication with Parrot based on
messages with the format described in section 6.2.6.1.

6.3.4.1 Available Parrot messages
While the SerialComm.c library implements the lower layer of communication with Parrot,
by providing the functions to encode and decode the parrot message format explained in
section 6.2.6.1, the available message IDs and the communication logic state machine is
implemented at task level. Tab. 6.1 summarizes the possible Parrot message IDs and
corresponding response from Singer; the source and destination fields can contain the two
CDHs identifiers (ASCII “P1”=0x5031 or “P2”=0x5032) or the Singer identifier (ASCII
“SG”=0x5347), the same logic applies to message identifiers (the table contains the ASCII
representation).

129

Chapter 6 - Software design

Table 6.1: List of Parrot/Singer messages.

Parrot to Singer.

src. dest. m. ID payload meaning
“P1”/”P2” “SG” “FM” - Format memory.
“P1”/”P2” “SG” “ST” <SingerRequest> Single telemetry request.
“P1”/”P2” “SG” “DT” <SingerRequest> Downlink telemetry request.
“P1”/”P2” “SG” “SU” - Downlink shut-up message.

Singer to Parrot.

src. dest. m. ID payload meaning
“SG” “P1”/”P2” “SR” <SingerTelemetry> Single telemetry response.
“SG” “P1”/”P2” “DR” <SingerTelemetry> Downlink telemetry response.

Fig. 6.47 shows possible sequence diagrams of messages exchange between Parrot and
Singer.

Figure 6.47: Parrot protocol messages exchange.

The SingerRequest struct that Parrot sends as payload can be seen in fig. 6.48;

Figure 6.48: Singer-
Request structure.

this structure contains the current timestamp under the name of “date”, the data from

130

6.3 - High level software

Parrot sensors and the requested number of packets (which is used only for downlink
requests); the Parrot sensors data is inside the ParrotSensorsSerial struct (fig. 6.49).

Figure 6.49: Parrot-
SensorsSerial struc-
ture.

The ParrotSensorsSerial structure has a different format with respect to the ParrotSen-
sorsMemory which is stored on memory (fig. 6.39b) and is identical for both CDHs; the
Parrot task will then take the useful sensors fields from both CDHs and store them in the
mutex protected ParrotSensorsMemory structure that was already presented in section
6.3.1.3, from which the Sensors task will sample the values every minute.

6.3.4.2 Task code structure

Figure 6.50: Parrot task state machine.

The Parrot task is the most complex one:

it implements the reception of the bytes stream from the UARTdriver.c driver and
buffering of the latter resorting to the buffUtils.c buffer library, it then makes use of the
packetUtils.c library with its searchPacketAdvance() function that allows searching for a
candidate Parrot message (from the message header to the closer) inside the reception
buffer; finally it decodes the candidate messages with the SerialComm.c library;

it implements the state machine that tracks the current communication state (fig. 6.50),
the state machine takes as input the received messages and implements the exchange of
requests with the Memory task as described in section 6.3.1.1; it also encodes the mes-
sages to each CDH with the SerialComm.c library and sends them.

131

Chapter 6 - Software design

The task executes two separate and (almost) identical state machines, one per each CDH;
the only difference between the two state machines is the code that collects Parrot sensors
and places them in the mutex protected structure to be exchanged with Sensors task, since
one CDH sends battery telemetry and the other doesn’t.
The high level task flow chart can be seen in fig. 6.51

Figure 6.51: Parrot task flow chart.

6.3.5 Watchdog task
The watchdog task is responsible of managing the microcontroller hardware watchdog, its
structure is very simple and can be easily explained as a list of performed checks:

the task checks that none of the UART peripherals is in error state by calling the
HAL UART GetError() function on all of them;

the task checks that none of the SPI peripherals is in error state by calling the
HAL SPI GetError() function on all of them;

the task checks that the RTC peripheral is not in error by calling the HAL RTC Getstate()
on it and verifying that the return is different from HAL RTC STATE ERROR;

the task checks that all the watchdog reset flags explained in section 6.3.1.2 have been
set by the corresponding task;

If all these conditions are verified, the task resets the watchdog counter and then resets
all the watchdog reset flags, otherwise the counter is not reset and it will expire in around
4 seconds.

132

6.3 - High level software

The Watchdog task will also periodically reset the system every 12 hours to refresh the cor-
rect firmware states and frequently scan the boot portion of the code in memory to allow
its correction through the error correction algorithm embedded in the microcontroller.

6.3.6 Tasks timeout management
The whole firmware implements a hierarchical task timeout management system which is
based on the concept of “remaining time”; each task has an assigned timeout which limits
the loop execution time at each repetition, this is used to compute the timeout of each
call to low level functions, which apply the same logic at all levels down to HAL drivers
timeouts, as seen in fig. 6.52

Figure 6.52: Hierarchical timeout example.

Each function saves the execution start tick by calling HAL GetTick() at the beginning,
then if a call to a lower level function is needed, it computes the timeout for the lower
level function by subtracting the time elapsed from the start to the timeout given to it
by the higher level function. This way an hard upper bound is given to the task whose
loop execution time cannot span over its given timeout. If the bound is reached any low
level function from that point gets a 0 ms timeout and the task quickly terminates its
execution.
This mechanism can be exploited in various ways: one way is to give an infinite time-
out to the task (HAL MAX DELAY) and define a second soft timeout which in case it
gets passed will perform some error routine (that can also be a direct reset of the mi-
crocontroller), this ensures that even if the task spans over its bound it will complete all
operations (under the limits given by the hardware watchdog) and thus is the safer option;
a second options, the one that we adopted, is simpler and could be applied because the
system doesn’t perform vital duties on the spacecraft: the defined task execution bound
is directly given as task timeout and that means that the loop execution is abruptly in-
terrupted if the timeout is reached, nothing is done in that case and the timeout has the
only purpose of avoid the task blocking and guarantee that the others can continue to be
executed normally; it’s necessary to give enough margin to the task to ensure that this
bound is practically never reached.
A library was set up which defines these timeout management functions and which in
debug mode can output a message on the console if a bound is broken.

133

Chapter 6 - Software design

6.3.7 Firmware compile modes
The firmware has a global configuration file which contains macro definitions that can be
commented/uncommented in order to change the firmware compile configuration. Some
examples of these macros could be spotted in fig. 6.39a, fig. 6.44 and fig. 6.48, which
in that case could disable the code associated to IMU (which is not soldered on some
boards) or Parrot sensors.

6.3.7.1 Access Port debug console
The Access Port serial console is a quite simple output-only serial line that was useful
during testing and debug phases, an example of output is shown in fig. 6.53.

Figure 6.53: Access Port debug console.

Each task and some drivers write output messages through the printf() function imple-
mented as described in section 6.2.7, the code associated with debug messages can be
completely or selectively eliminated for some files or the whole firmware through the
already mentioned global configuration file.

6.3.7.2 Time measurement mode
Another configuration macro can enable time measurement mode, in this mode all the
output from tasks is disabled and the maximum task loop execution time is computed
(with granularity of 1 ms). Fig. 6.54 shows the output of time measurement mode.

134

6.3 - High level software

Figure 6.54: Time
measurement mode
output.

In this mode, a table is printed with each column corresponding to a different tasks, each
task is compiled with an additional little piece of code that measures the time to execute
the loop at every repetition, if a new maximum time is measured it gets printed and so
the last value written on the bottom of the column is the maximum measured execution
time; the code is left running for a reasonable amount of time while trying to heavy load
it with Parrot requests to test a worst case scenario. The results are used to define the
task repetition timeouts discussed in section 6.3.6 and 6.3.8.

6.3.8 Final firmware configuration
Tab. 6.2 summarized the configuration for each task in terms of stack size, priority, timing
configuration (task repetition period, loop timeout and corresponding CPU usage) and
execution time measured in time measurement mode.

Table 6.2: Firmware configuration.

Task Stack Priority TRP Timeout CPU use Max. execution
time

Memory 1024 B High 50 ms 10 ms 20% 2 ms
Sensors 1024 B AboveNormal 100 ms 10 ms 10% 2 ms
Parrot 2048 B Normal 300 ms 10 ms 3.3% 2 ms
Watchdog 256 B BelowNormal 500 ms 10 ms 2% 2 ms

From the table the maximum allocated CPU for tasks is 35.3%, at this percentage we must
add the worst case CPU time allocated to UART ISR that, as computed in section 6.2.3.1,
is around 22%, yielding a worst case total CPU usage of 57.3% with the remaining 42.7%
that can be used by the OS. The results from time measurement mode instead highlight
that the actual CPU usage of task is way lower than the maximum, around 7%.
The firmware memory usage can be seen in fig. 6.55, the flash is filled with 61036 bytes
(text+data) which means around 12% of the available, the RAM usage for variables is
44024 (data+bss) which means 27% of the available and 117 KB remaining for the stack;
it’s clear that the memory footprint is quite low and this despite the fact that the firmware
memory usage is not optimized at all and so it could potentially be further reduced by a
fair amount.

135

Chapter 6 - Software design

Figure 6.55:
Firmware memory us-
age.

136

Chapter 7
Test campaign, integration and launch

This chapter will give an overview of the test campaign performed on Singer, alone or
integrated inside the spacecraft. The operations that were performed for flight preparation
and integration on the spacecraft will be presented which finally lead to the launch of
SPEISAT.
The testing of Singer and in general of the whole spacecraft required a rigorous planning
by the AIV team, whose job was to track the development status of each spacecraft
subsystem and planning the integration and testing activities both for the FlatSat and
the Flight Model. A view of the AIV plan for the FlatSat can be seen in fig. 7.1, while the
same plan for the Flight Model is shown in fig. 7.2, in these pictures each subsystem is
represented by a blue parallelogram, each test by a yellow rectangle and each integration
activity by a gray rhombus.

Figure 7.1: SPEISAT
FlatSat AIV plan.

137

Chapter 7 - Test campaign, integration and launch

Figure 7.2: SPEISAT Flight Model AIV plan.

Any test and integration activity aimed at verifying one or more system requirements and
had an associated procedure document, which described the activity step by step in order
to be executed by an operator that could technically ignore everything about the specific
system involved, the operators for each test were in fact chosen “randomly” by the AIV
team from all the group members in order to avoid biases during testing; the operators
would perform the test following the procedures and generating a test report document
afterwards.
As previously explained in section 4.3.2, the evolution of Singer was characterized by three
major phases: the breadboard model, the qualification model and the flight model.
The tests executed on Singer can be mainly divided in three categories:

Development tests: these tests were informal and not associated with the AIV plan,
they can be defined as all the trials which were performed during development to check
the correct operation of parts of the system and software (and to verify requirements by
Inspection or Demo, see section section 4.2) and that sometimes requested the presence
of specific test platforms;

Acceptance tests: mainly associated with hardware and low level drivers, in these tests
any building block was tested individually on the system disconnected by the rest of the
spacecraft, to verify its correct operation and hardware requirements;

Functional tests: mainly associated with firmware, in these tests the overall system was
tested to verify the high level functional requirements and the system correct operation
under the real use cases, integrated inside the FlatSat or Flight Model spacecraft.

138

7.1 - Ground Support Equipment

7.1 Ground Support Equipment
GSE was necessary to program, debug and test the board, here’s a list of the main Singer
equipment:

Laptop: the most obvious equipment is a laptop computer to code, compile, program,
debug and test the system; a number of different laptops were used depending on the
actual Singer model and if it was necessary to leave it inside the clean room; a remote
access was enabled in order to use the laptops remotely from outside the clean room or
from home.

ST-Link: used to interface the laptop with the microcontroller and allow programming
and watchpoint debugging; this cheap and versatile programmer (fig. 7.3) comes as a
detachable part of any Nucleo board and also features as USB to UART converter that
was used to receive debug messages from the Access Port UART.

Figure 7.3: ST-Link
programmer (still at-
tached to the Nucleo
board).

Power supply: which was used to power the system or the whole FlatSat/Spacecraft.

Multimeter: to measure supply lines voltages and lines continuity.

Oscilloscope: to visualize signal analog waveforms and timing.

Logic analyzer: to visualize signal digital waveforms/data and timing.

Parrot mock-up: realized with a second Nucleo board, this implemented the Parrot
message protocol and was used to verify communication with parrot, it wasn’t used for
the “official” test campaign but only during code development and debug.

Break-out boards and cables: used to interface the Singer connectors (see section 5.2.7)
or the backplane Access Port connector to the ST-Link/Power supply/Parrot mock-up;
various adapter boards were built and some were reconfigurable to execute different types
of tests, fig. 7.4 shows two examples of breakout boards, fig. 7.4a was used to interface
the Access Port/Communication Port of Singer/backplane to the ST-Link and Parrot
mock-up, fig. 7.4b was used to implement a loop-back connection of the RS422 lines, fig.
7.4c is the cable model that connects Singer to the backplane or the break-out board, the
spacecraft access port (from the backplane) instead had a different connector.

139

Chapter 7 - Test campaign, integration and launch

(a) (b) (c)

Figure 7.4: Breakout boards. 7.4a Access Port interface board. 7.4b Loop-back
board. 7.4c Singer interface cable.

Anti-static pad and grounding bracelets: these were ubiquitous on any stage of devel-
opment, they eliminate the risk of electrostatic discharges on the electronics.

7.2 Development tests
During all system development phases there was the need to perform informal tests to
check the correct operation of parts of the system/software and aid during coding/debug,
these usually required setting up different development platforms and utilities of which
the most relevant will be presented on this section.

7.2.1 Breadboard model
The breadboard model (fig. 7.5a) was the platform for development and testing in the
early stages of design, it allowed connecting the microcontroller with the final or candi-
date/available devices, usually mounted on sockets (fig. 7.5b), to test the interfaces and
start developing device drivers.

(a) (b)

Figure 7.5: 7.5a Singer breadboard model, first row from left: IMU, Nucleo, level
shifters; second row from left: RS422 transceiver, PC104 board with ADCs, MRAM
ICs. 7.5b SMT devices on breadboard socket.

140

7.2 - Development tests

7.2.2 Debug console and GDB
The most important utilities for debug, they served different purposes: the console is a
serial monitor (see fig. 6.53) which prints the characters sent on the AP UART, in our case
we mainly used PuTTY (website: [76]); the GDB debugger is instead configured inside
the IDE and makes use of the SWD interface of the microcontroller, it allows inserting
whatchpoints on specific code instructions and analyze the order of execution or registers
and variables content.
The two debug methods have both pro and cons: the GDB debugger is the most powerful
and completely freezes the program when a whatchpoint is reached while peripherals are
still running, for this reason it can break the natural flow of the firmware and was mainly
used for low level cases in which was necessary to see the memory content, verify specific
conditional execution paths or debug the ISRs and drivers; the debug console on the other
end is more limited since it can only show data printed from the firmware but preserves its
time behavior and in some cases can also be used to mimic a fraction of the functionality
of the GDB by printing the content of variables of interest on the monitor, it was mainly
used for high level debug and timing verification.

7.2.3 Parrot mock-up
The Parrot mock-up was developed as a platform to test the communication protocol, it
was simply realized with a second Nucleo board and interfaced with the microcontroller
directly (for the breadboard model) or through a breakout board (for the Qualification
model). The Parrot mock-up implemented all possible commands which could be sent by
hand with specific sequences of clicks on the Nucleo user button, the response message
frames from Singer were fully printed in hexadecimal format (fig. 7.6) and this allowed
analyzing in details that each message was correctly formatted before connecting the
system to the actual CDHs on the FlatSat.

Figure 7.6: Singer downlink (left) requested by the Parrot mock-up (right), which
then shows the response messages in hexadecimal format.

141

Chapter 7 - Test campaign, integration and launch

7.2.4 IMU bridge
Xsens provides a PC software suite for all its products (MT Software Suite, website: [63])
which contains a software utility called MT Manager (fig. 7.7); this software provides
real time packets visualization, data graphs, calibration utilities and a lot more features
that can be useful to test and configure the IMU; MT Manager communicates with the
IMU through a serial USB port (COM port on Windows) by means of the Xbus protocol;
as already anticipated this is one of the reasons that led to the adoption of the UART
interface of the IMU: SPI and I2C interfaces implement a synchronous communication
which is different from the Xbus or needs additional layers besides it.

Figure 7.7: MT
Manager window,
showing the data
graphs and the IMU
orientation view.

By using the UART, the IMU can be directly connected to the PC with an UART to USB
converter (already provided by the ST-Link), it’s then possible to perform this connection
even to the IMU soldered on Singer by using the microcontroller as UART bridge (fig.
7.8), in this configuration a test firmware is loaded on the microcontroller which simply
forwards the data between the IMU UART and the AP UART, allowing a simple way to
directly connect MT Manager to the device, even when integrated inside the spacecraft.

Figure 7.8: Micro-
controller used as IMU
bridge to connect the
IMU to MT Manager.

7.3 Acceptance tests
As already anticipated, the acceptance tests were made to basically verify each hardware
block and the relative device drivers, the reference configuration can be seen in fig. 7.9,
with some variations depending on each specific test.
These tests were performed both on the qualification model and the flight model, with
minor variations. Acceptance on the qualification model was also helpful to identify errors
on the PCB design or production which required some manual corrections.

142

7.3 - Acceptance tests

Figure 7.9: Acceptance tests reference configuration.

For the majority of tests the microcontroller was programmed with a sketch which would
test a specific hardware block, printing the results on the Access Port, this way program-
ming and communication through the AP was also indirectly tested.

7.3.1 Power test

Table 7.1: Power test.

AIV test (refer to fig. 7.1 and fig. 7.2) part of T-FS-004, part of T-PFM-005
Main requirements the test was conceived
for (refer to section 4.2)

F-P-0, F-P-1 (demo), F-P-2 (demo), P-P-
0, I-P-0

Other requirements that were
fully/partially verified (refer to section
4.2)

-

For this test the Nucleo was initially not present on Singer, the board was powered and
each voltage domain line was measured with the multimeter to verify its value, the test was
repeated by powering the board from both power lines (Access Port and Communication
Port) and with different values in the specified range of supply voltage. The Nucleo board
was then inserted on the powered off PCB and the current consumption was evaluated
by powering the board from both power lines on the specified range extremes. The board
power consumption was evaluated from the current measured by the power supply, with
a maximum value of 286 mW (at room temperature).
The second part of this test (only performed on the Qualification Model) consisted on
simulating a latchup condition on the microcontroller domain, for this purpose the setup
was similar to the simulated one (section 5.2.6.2) and can be seen in fig. 7.10a, in this
case there was only a single resistor to simulate the low resistance path which is connected
as load by an npn transistor turned on as switch by a trigger button, various resistors

143

Chapter 7 - Test campaign, integration and launch

values were used to verify the correct activation of the protection circuit; fig. 7.10b shows
the voltage at the load using an 8 Ω resistor; differently from the simulated one, the real
circuit has a shorter turn-on cycle since it repeats the cycle every approximately 125 ms
(while the simulated one was 150 ms).

(a) (b)

Figure 7.10: 7.10a Latchup test setup. 7.10b Voltage at load during simulated
latchup.

During the test the power lines of all the other domains were observed with the oscilloscope
to verify that they were unaffected.

7.3.2 MRAM test

Table 7.3: MRAM test.

AIV test (refer to fig. 7.1 and fig. 7.2) part of T-FS-004, part of T-PFM-005
Main requirements the test was conceived
for (refer to section 4.2)

F-M-0 (only HW), P-M-0

Other requirements that were
fully/partially verified (refer to section
4.2)

F-A-0, F-P-0, P-P-0, I-A-0, I-P-0

The purpose was to test the most important memory functionalities, for this test the
Nucleo was inserted on the PCB, a sketch was loaded on the microcontroller which would
perform a complete test of the memory and output on the Access Port the results:

initialization of the memory registers with the default values;

total erase of the memory, followed by a complete read to verify the correct erasing;

trying to write the entire array with the write lock enabled, follower by a complete read
to verify that nothing was written on it;

writing the entire unlocked array with increasing numbers, followed by a complete read
to verify the correct execution;

144

7.3 - Acceptance tests

(before this step a power cycle on the board was performed, with a minute of cool-
down before powering the board again) verifying the memory non-volatility, by reading
the entire array looking for the numbers written on the previous step;

repeating the memory erase test (the first time the memory content at startup was
unknown and so the actual erase was not really verified, this time we were sure that it
was written by the write test).

The test output on the Access Port can be seen in fig. 7.11.

Figure 7.11: Memory
test AP output.

7.3.3 RS422 lines test

Table 7.5: RS422 test.

AIV test (refer to fig. 7.1 and fig. 7.2) part of T-FS-004, part of T-PFM-005
Main requirements the test was conceived
for (refer to section 4.2)

I-C-0

Other requirements that were
fully/partially verified (refer to section
4.2)

F-A-0, F-P-0, P-P-0, I-A-0, I-P-0

The purpose was to test the RS422 lines and all the layers of UART driver, for this test
the Nucleo was inserted on the PCB; this was also the only test that needed the loop-back
board connected, which would close the TX and RX lines of each transceiver in a crossed
loop (fig. 7.12a); a test sketch was loaded on the microcontroller, the operator needed to
write a string on the Access Port (to also test the transmission of data through it), the
inserted string was sent on both RS422 lines and the received data was printed back on
the AP (fig. 7.12b), the operator would verify that all bytes were correctly received in
the right order.

145

Chapter 7 - Test campaign, integration and launch

(a) (b)

Figure 7.12: 7.12a RS422 test data flow. 7.12b RS422 test AP output. Each num-
ber represents an RS422 transceiver, the order of arrival between channels is not im-
portant since the messages were sent and received at the same time.

This test was also accompanied by an observation of the waveforms with the oscilloscope
to verify the correct implementation of the RS422 standard by inspection.

7.3.4 ADC test

Table 7.7: ADC test.

AIV test (refer to fig. 7.1 and fig. 7.2) part of T-FS-004, part of T-PFM-005
Main requirements the test was conceived
for (refer to section 4.2)

F-S-0

Other requirements that were
fully/partially verified (refer to section
4.2)

F-A-0, F-P-0, P-P-0, I-A-0, I-P-0

The purpose was to test the correct operation of the ADC chain and the channel assign-
ments, for this test the Nucleo was inserted on the PCB, a test sketch was loaded on the
microcontroller which would perform continuous measurements of all the channels and
output on the AP the results (fig. 7.13).

Figure 7.13: ADC
test AP output. The
thermistors cable was
connected to J7 at this
point, the last thermis-
tor was being heated
up by the operator
(the code decreased).

146

7.4 - Acceptance tests

This test required some manual work by the test operator: for the qualification model
acceptance only one thermistor array was prepared, the operator would move it on every
connector and then heat each thermistor with the fingers to verify that the tempera-
ture would increase on the right channel. The reconstruction function of the thermistor
channel was also applied to the ADC output codes to verify that the measured tempera-
ture corresponded to room temperature. The acceptance of the flight model was instead
performed with the complete set of flight thermistors in order to also test them.

7.3.5 IMU test

Table 7.9: IMU test.

Main requirements the test was conceived
for (refer to section 4.2)

F-S-1

Other requirements that were
fully/partially verified (refer to section
4.2)

F-A-0, F-P-0, P-P-0, I-A-0, I-P-0

The purpose was to test the interfacing with the IMU, for this test the Nucleo was
inserted on the PCB, a test sketch was loaded on the microcontroller which would perform
continuous sampling of the IMU output and print on the AP the results (fig. 7.14), when
the acceptance test was performed on the qualification model, the IMU was externally
connected to the PCB (as previously explained the qualification model didn’t have it
soldered). The board was slightly rotated in all axis by the operator to verify the sign of
the output value (the sign was a good indicator of the correct alignment of the sampled
values extracted by the IMU message frame).

Figure 7.14: IMU
test AP output.

147

Chapter 7 - Test campaign, integration and launch

7.4 Flight preparation and integration
Preparing the flight model required a number of hardware modifications to clean, strengthen
and remove possible points of failures from the board.

7.4.1 Hardware corrections
Acceptance tests executed on the qualification model highlighted some errors on the PCB
that needed to be corrected, this necessity had been considered during design due to
the restricted time available and the possibility to produce only one board iteration (as
explained in section 4.3.1.1).
As an example some missing pull-up resistors were needed on SPI chip select lines, their
absence would have been problematic during power-up or in case of latch-up event on the
microcontroller and power cycling performed by the protection circuit, especially for the
ADCs that share the SPI bus; these resistors were added externally on the IC packages of
domain interfaces. Another corrected error was on the MRAM chip: some QSPI output
lines were left unconnected since not needed but these pins had alternative functions in
single SPI mode that were found out only after acceptance, one of these functions was a
pin that locks writing on registers and for this reason it was connected to the supply rail
through a little piece of wire. Fig 7.15 shows both these corrections as performed on the
qualification model, the same were done on the flight model but with much more caution
and with a better overall quality of the reparations. All these modifications were then
secured with glue during flight preparation. Other minor modifications consisted on the
substitution of resistors or other passive components.
Some hardware corrections have been necessary to repair mistakes made by the board
manufacturer: especially with packages with small pin step (0.5 mm) the manufacturer
often caused short circuits (or risk of short circuits) between IC pins due to an improper
melting of solder paste under the package legs (as explained in section 7.6.1, this required
a reflow process on the paste and in some cases a complete desoldering and replacement
of the component.

Figure 7.15: PCB
design error correc-
tions on the qualifica-
tion model. (Right)
Correction on the
MRAM. (Left) Added
pull-up resistor.

148

7.4 - Flight preparation and integration

7.4.2 Nucleo board modifications
The component that has undergone the highest number of modifications was the Nucleo
board (refer to the board schematic [68] and to fig. 7.16):

Figure 7.16: Nu-
cleo board modi-
fied/removed compo-
nents.

The ST-Link was detached from the Nucleo board;

The unnecessary voltage regulators (U3 and U4) and all the associated circuitry was
removed from the board, as well as the user and reset buttons (B1 and B2, but leaving
the reset button pull-up network);

The JP6 jumper, which connects the 3.3V line to the microcontroller VDD was shorted
with solder instead of relying on the mechanical jumper, this has to be considered another
error on the Singer PCB because the microcontroller supply is connected on the 3.3V pin
while it could have been connected directly on the VDD pin, eliminating the jumper
necessity;

The UART2 was connected to the corresponding Morpho header pins (PA2 and PA3),
this UART is usually connected to the ST-Link attached to the board and when the latter
is detached it can be connected to the header by two jumpers (SB62 and SB63);

All the remaining capacitors were substituted with automotive grade capacitors with
flexible termination (the type used on all the Singer PCB) to reduce the possibility for
them to break apart or being shorted during launch;

The CN7 Morpho header pins on the upper side of the board were cut away since
cables would need to pass near it inside the spacecraft and we wanted to avoid the risk
of piercing through them during launch.

149

Chapter 7 - Test campaign, integration and launch

7.4.3 Flight thermistors preparation
The complete set of flight thermistors was prepared starting from pre-crimped cables (fig.
7.17a), under instructions from the structure team which provided the necessary length
of each thermistor wire. Thermistors’ terminations were wrapped around the cables and
then soldered (fig. 7.17b), isolation was provided with Kapton tape (fig. 7.17c) to avoid
the outgassing of classical heat shrinkable sheaths.

(a) (b) (c)

Figure 7.17: 7.17a Pre-crimped cables for thermistors. 7.17b Soldered thermistor.
7.17c Thermistors integrated in the spacecraft, before fixing them to the measure-
ment points.

7.4.4 Integration
The AIV team, together with the structure team, created a precise plan and step-by-
step procedures for integration, these procedures were developed and tested with the
realization of a first exposition model of the spacecraft which was useful to verify the
mechanical dimension requirement (I-MI-0). Before proceeding with integration all the
flight boards were washed in an ultrasound bath, a specific glue was applied afterwards
on all parts to secure the most heavy packages and connectors, glue drops were applied on
all Singer’s connectors as well as the IMU, the power regulator, the biggest packages on
the PCB and the modification described in section 7.4.1. The Nucleo board was inserted
on the PCB and glued as well (fig. 7.18a), the same was done on the backplane and
thermistor arrays’ connectors after insertion (fig. 7.18b).

150

7.5 - Flight preparation and integration

(a) (b)

Figure 7.18: 7.18a Nucleo board glued on Singer PCB, we can also notice the glue
on PCB mounting screws. 7.18b Backplane and thermistor array connectors glued
during integration.

The integration took several days and consisted on a series of delicate operations, each
part was placed and secured with glue and Kapton, the result can be seen in fig. 7.19.

Figure 7.19: The integrated flight model without the last two solar panels.

151

Chapter 7 - Test campaign, integration and launch

7.5 Functional tests
Functional tests were performed both on the qualification model and flight model after
integration with the FlatSat or the spacecraft.
Fig. 7.20 shows the reference configuration of functional tests, the picture only shows the
point of view of Singer and so only blocks that are directly connected to it while in reality
functional tests were usually performed with the FlatSat/Flight Model fully integrated
and complete of every subsystem; also in some cases the power supply was still used to
power the whole system (and so connected to the battery).

Figure 7.20: Functional tests reference configuration (only the point of view of
Singer is shown).

In this section the functional tests performed on Singer will be listed.

7.5.1 Full functional and day-in-the-life tests.

Table 7.11: Full functional and day-in-the-life tests.

AIV test (refer to fig. 7.1 and fig. 7.2) T-FS-005, T-PFM-006, T-PFM-008, T-
PFM-012

Main requirements the test was conceived
for (refer to section 4.2)

F-T-0, F-T-1, F-S-2, F-M-0, F-M-1, F-C-
0, F-C-1, F-C-2, P-S-2, P-C-0, P-C-1, I-C-
0

Other requirements that were
fully/partially verified (refer to section
4.2)

F-S-0, F-S-1, F-A-0, F-P-0, P-M-0, P-P-0,
I-A-0, I-P-0

152

7.5 - Functional tests

(a) (b)

Figure 7.21: fig. 7.21a The flexible antennas after deployment. fig. 7.21b Ground
Station front-end.

The purpose of the full functional test was to verify all the spacecraft operative mode and
functionalities, including deployment of the real flexible antennas (fig. 7.21a) and commu-
nication through them (until that point communication with the radios was tested with
other temporary antennas on a secondary connector, since the real ones are quite fragile
and deploying them requires a lot of work to fold them back into flight configuration)
thus involving also the ground station chain (fig. 7.21b).
As said, the full functional test aimed at verifying every functionality and command that
the satellite could receive and the automatic transition between operative modes, these
transitions were verified with fictitious delays since the actual mission has delays on the
order of days for the automatic transition. The satellite Access Port interfaces were
connected during the full functional test and the operators could see the output messages
on the various debug consoles of Parrot and Singer.
The day-in-the-life was a similar, reduced version of the full functional and was performed
as a last test before the satellite got prepared for shipping to the launch base and consisted
on the simulation of the first hours after deployment into orbit to test the automatic
operation of the spacecraft and the first communications with it, the aim was not to
test the spacecraft completely but more as a last trial of the satellite and ground station
operation in nominal conditions and for an extended period of time to check the system
stability, the Access Ports were all disconnected during this test and communication with
the satellite could be performed only by the radio link and so the ground station chain,
simulating the real mission scenario.
From the point of view of Singer, the day-in-the-life did not verify additional requirements
with respect to the full functional, on both tests the spacecraft activation procedure was
verified which involved requesting a memory reset to Singer, then the automatic transition
to commissioning mode and then payload mode was verified, in payload mode the single
telemetry request and the downlink request to Singer were both tested (and so also the
time word synchronization), finally the satellite was sent into decommissioning mode. The

153

Chapter 7 - Test campaign, integration and launch

full functional was also a formal verification of some Singer requirements that until that
point were only informally verified during development tests, like the correct timing of
sampling and the timing (from the software perspective) of commands with Parrot.

7.5.2 Mechanical fit and vibrational tests

Table 7.13: Mechanical fit and vibrational tests.

AIV test (refer to fig. 7.1 and fig. 7.2) T-PFM-009, T-PFM-010
Main requirements the test was conceived
for (refer to section 4.2)

P-MI-0

Other requirements that were
fully/partially verified (refer to section
4.2)

-

Technically not functional tests but mechanical interface ones, the purpose was to verify
the mechanical integration of the spacecraft inside the CubeSat deployer (fig. 7.22a)
and perform vibrational tests (fig. 7.22b) to verify the compliance with the launcher
requirements (and that the spacecraft could sustain the the launch stresses), comparing
the results with the previous vibrational test performed on the dummy mass model. The
test was performed in the facility of an external company.

(a) (b)

Figure 7.22: 7.22a SPEISAT inside the deployer dummy. 7.22b Vibrational test
setup, the CubeSat was placed inside the dummy deployer.

154

7.6 - Laboratory failures

7.5.3 Thermal cycling test

Table 7.15: Thermal cycling test.

AIV test (refer to fig. 7.1 and fig. 7.2) T-PFM-011
Main requirements the test was conceived
for (refer to section 4.2)

P-S-1 (demo), P-TH-0 (demo)

Other requirements that were
fully/partially verified (refer to section
4.2)

F-T-0, F-T-1, F-S-0, F-S-1, F-S-2, F-M-0,
F-M-1,F-C-0, F-P-0, P-S-2, P-P-0, I-C-0,
I-P-0

The purpose was to verify the thermal behavior of the spacecraft, the test was performed
in the facility of an external partner and consisted on the exposure of the spacecraft to
the expected temperature variations in orbit inside a thermal chamber (fig. 7.23). The
Singer thermistors network was very useful in this phase because it allowed to gather a
significative number of temperatures on various points inside and outside the spacecraft.

Figure 7.23: Space-
craft on the dummy
deployer inside the
thermal chamber.

7.6 Laboratory failures
Some accidental hardware failures occurred during the testing and integration phases
which halted the development effort for some time, this section will present the two main
problems that were encountered with a brief explanation of the causes and the lessons
learned.

7.6.1 Qualification model failure
The qualification model boards were visually inspected after production to ensure that
the soldering process was correctly performed before powering them for the first time;
this visual inspection did not highlight visible process errors and the author proceeded to
power the first board to perform the power acceptance test.
During the acceptance test, one of the two ADCs’ power domain resulted unpowered,

155

Chapter 7 - Test campaign, integration and launch

suggesting that a short circuit on the domain had triggered the PTC fuse, this suspect
was confirmed after measuring the PTC resistance and the board was again inspected
more in details, revealing that hidden under the device package legs, some tiny solder
paste grains were present that shorted the power supply pin to ground (as can be seen in
fig. 7.24).

Figure 7.24: Solder
paste residues from
improper manufac-
turing, the distance
between two legs is 0.5
mm.

This error was almost invisible to the naked eye, highlighting the necessity of a better
visual/electrical inspection of the boards; other similar errors were found on the other
boards, requiring some manual work to remove them, as explained in section 7.4.1.
This incident allowed verifying the correct functioning of the domain separation and
protection that was specifically designed to deal with this type of event (requirements
F-P-1 and F-P-2), since the other domains were unaffected by the short circuit on this
device; it also highlighted the correctness of the design driver of trying to select big
packages for devices and choosing to resort on the Nucleo board instead of soldering the
microcontroller directly on the PCB (STM32 have the same pin step of the ADCs and
desoldering its bigger package would have been much more challenging).

7.6.2 Flight model failure
This was the most serious accident which nearly led to the cancellation of the Singer
mission. It happened with the spacecraft already integrated and ready for the functional
tests; fig. 7.25 shows a reconstruction of the scenario during the accident:

Two operators were inside the clean room, executing software updates on Parrot and
preparing to turn off the satellite supply in view of some final integration activities;

The singer AP breakout board was connected to the satellite and another operator (the
author) was outside the clean room, remotely monitoring the Singer console output;

Without anybody knowing, the grounding plug of the anti-static pad was poorly inserted
on the socket due to a loose mechanical connection, and so the satellite and the operators
on the clean room were not grounded to earth;

The Singer breakout board was not correctly coated and in general the board (made
with perfboard due to the short time available) was not up to the important task it had

156

7.6 - Laboratory failures

to perform.

Figure 7.25: Flight model accident scenario.

At some time, the author noticed that the console printed some garbage characters and
then no more output was getting printed (fig. 7.26), he thought that this was due to the
supply being turned off since the garbage output on the UART is common in this case.

Figure 7.26: Garbage
output after the inci-
dent.

After some minutes of no output from Singer, the author approached the clean room and
noticed that the power was still turned on and everything was still connected, at that
point it was clear that something had happened. An inspection of the supply voltage
of Singer from the Access Port “VDD target” pin revealed the waveform of the latch-up
circuit (fig. 7.10b) and so that the voltage domain of the microcontroller was somehow
shorted.
The impossibility to investigate the problem from the spacecraft outside was the topic of
discussion for the whole day, two options were on the table:

completely disconnect Singer from the supply, a possibility that was specifically con-
sidered for a case like that and that led to the predisposition of an exposed trace on the
access port to be cut;

open again the satellite and perform a very complex operation to unglue and remove
the system and substitute it with the spare, with the risk of damaging part of the primary
mission.

157

Chapter 7 - Test campaign, integration and launch

After some discussions, the second option was performed and the structure team was
involved on this extremely delicate operation that lasted for 48 hours.
The damaged system was later inspected by the author and multiple shorted devices were
found:

the microcontroller supply, along with some GPIOs resulted being shorted to GND;

the domain interface IC with one RS422 UART had one supply pin shorted (the one
on the RS422 transceiver domain, not the one on the microcontroller domain).

Since multiple ICs were shorted on different voltage domains, considering the accident
scenario (grounding plug disconnected) and the peculiar fact that in the laboratory there
is an unusual high level of static in the air, the most probable cause was determined to
be an ESD event that propagated to Singer from the unproperly coated breakout board,
maybe from an operator that, unaware of not being grounded, touched the board to move
it in preparation of the integration activities.
A second possibility was instead a short circuit of a microcontroller GPIO that reached
the inside through the access port, still caused by the unproperly coated and designed
breakout board, this was considered less probable for two reasons: it doesn’t explain the
second IC shorted on a different power domain and it should not produce this catastrophic
results on the microcontroller since the latchup protection circuit would activate to dis-
connect the supply; in any case the author was surely guilty of improperly designing the
breakout board, among other unfortunate coincidences.
It’s worth noticing that even if two Singer ICs were shorted (one protected by the complex
latchup protection and the other with the PTC fuse), this did not affect the rest of
the spacecraft in no way, as another confirmation of the correct implementation and
functioning of the protection circuits (requirements F-P-1 and F-P-2).
This incident made us learn some valuable lessons:

the importance of always verifying any grounding connection before operating;

the importance of properly designing and coating the access port interfacing boards,
possibly producing them as PCBs and avoiding the use of perfboards, especially for flight
models;

the importance of reducing as much as possible the time the spacecraft access port is
wired, diverting the software testing and monitoring activities to the FlatSat instead;

the importance of always turning off the power supply before touching in any way the
spacecraft or the equipment connected to it.

158

7.7 - Spacecraft shipping

7.7 Spacecraft shipping
The spacecraft was packed (fig. 7.27) and shipped to the launch base in California, a
delegation of members of our team was sent to the base to proceed with the integration
of the satellite inside the deployer.

Figure 7.27: Opera-
tors testing the space-
craft shipping con-
tainer with the exposi-
tion model, the flight
model can be seen on
the foreground.

159

Chapter 8
Mission results

8.1 Launch

(a) (b)

Figure 8.1: 8.1a View inside the Falcon 9 second stage fairing of Transporter-8
launch, the arrow points to the position of SPEISAT, the approximate dimension
of the CubeSat is drawn as a red rectangle, Credit: SpaceX. 8.1b Falcon 9 launch
with SPEISAT onboard, picture shot by the author. Credit: SpaceX

SPEISAT was launched onboard a Falcon 9 as part of the SpaceX’s “Transporter-8”
mission; Transporter is a dedicated rideshare program in which dozens of small satellites
builders share the launch price (see fig. 8.1a), SPEISAT was technically a tertiary payload,

161

Chapter 8 - Mission results

since it was contained inside a bigger satellite carrier (D-Orbit’s ION-SCV) spacecraft and
released some days later from it.
The launch took place on June 12, 2023 at 21:35 UTC from Vandenberg Space Force
Base (fig. 8.1b), the author and some other team members had the pleasure to be invited
to assist the launch in person while a press event was held at the Polytechnic. The ION
satellite carrier containing SPEISAT was released at T+01:20:18, the CubeSat was instead
released 11 days after, on June 23.

8.2 Mission operation
Although the ground station was set up with the effort of a specific sub-group, the op-
erations were also performed by volunteer members from all groups of SPEISAT team
(including the author) since they required a significative workforce to follow the satellite
passages (some in the middle of the night), decode the received packets and format them
to be inserted on the database.

8.2.1 Ground station

Figure 8.2: ARI-Bra
amateur radio station.
The UHF antenna can
be seen in the center.

Our team was working from well before SPEISAT to develop
a ground station at Turin Polytechnic, the mission led to an
acceleration of the effort but unfortunately it wasn’t ready
in time. This possibility had already been considered and
that’s one of the reasons why the spacecraft communicates
on a common amateur radio frequency band (UHF) and pro-
tocol (AX.25), it was then possible to get support from the
community for operations. The precious help from the am-
ateur community came with the downside of not being able
to fully exploit the ground station infrastructure that was
designed for the Polytechnic station, for this reason a good
amount of manual work needed to be performed, especially
at the first stages of the mission.
The main partner supporting the operations was the ama-
teur station of ARI-Bra (website: [7]), having an history of
collaborations with the Polytechnic for its preceding missions
e-st@r and e-st@r-II, this station is equipped with a direc-
tional antenna mounted on a rotator (fig. 8.2) which can follow the satellite on its orbit;
the relative satellite position in the sky (azimuth and elevation) is computed by an orbital
propagation software, in our case Gpredict (website: [37]) which propagates the satellite
position and trajectory (fig. 8.3) from a Two Line Element set (TLE); the TLE is a string
of two lines (as the name suggests) which identifies the position and orbital parameters
of an object at a precise time instant and can be used to predict the trajectory with a
growing error from the TLE timestamp, it must be continuously updated by agencies that
perform radar observations. SPEISAT has been assigned with catalog number 56991 and
international designator 23084BT (as can be seen on its SatNOGS DB page: [88]).

162

8.2 - Mission operation

Figure 8.3: Main
Gpredict window
showing SPEISAT po-
sition, trajectory and
line of sight.

Gpredict also computes the expected Doppler shift from the relative satellite speed, this
is used to correct the radio frequency for uplink/downlink.
Fig. 8.4 shows the high level architecture of the Ground Station.

Figure 8.4: Ground Station setup at ARI-Bra.

Reception is performed in heterodyne configuration: a Software Defined Radio (SDR) im-
plements the RF filter and Low Noise Amplifier, it mixes and samples in I/Q the received
signal on an Intermediate Frequency (IF), a digital FM demodulator is then applied (us-
ing Gqrx SDR software, website: [38]) which outputs the demodulated Baseband (BB)
signal, the latter is sent to a digital decoder (a flow graph on GNURadio, website: [36])

163

Chapter 8 - Mission results

which finally outputs the digital packet to be stored on the database; the same happens
on transmission, with some differences depending on the station that we used (on Poly-
technic station there should have been the same chain in transmission but on ARI-Bra
station, transmission was performed by a separate UHF radio which was getting the BB
signal as audio input, since the SDR didn’t have a powerful enough Power Amplifier).

8.2.2 Analysis of data
The mission was a success and Singer allowed downlinking days of data (fig. 8.5) from
orbit, here an analysis from the sensors data of a single downlink will be presented, this
downlink covered a time of around 9 hours or about 5.5 orbits.

Figure 8.5: Singer downlink waterfall shown on Gqrx (right), it’s possible to spot
the Doppler shift on the received frequency; Gpredict tabs are also visible (left)
which were commanding the antenna rotator and correcting the reception frequency
on Gqrx.

Fig. 8.6 shows all the temperatures measured by Singer, the temperature fluctuation
due to the alternating sunlit/eclipse is clearly visible, the highest temperature (red in
the image) corresponds to the Direct Energy Transfer (DET) board introduced in section
3.2.1 which dissipates the excess power from the solar panels to limit the voltage, reach-
ing a peak temperature of around 50➦C; the lowest temperatures correspond to points on
the spacecraft outer faces which reach temperatures as low as around -20➦C; a curious
phenomenon can be observed when the spacecraft exits the eclipse and starts to be il-
luminated (highly noticeable at around 13:30 or 16:30 on the plot), the -X skins of the
spacecraft experience an abrupt temperature rise which reaches a peak in around 15 min-
utes and then oscillates back to lower values, this is probably due to the orientation of the

164

8.2 - Mission operation

spacecraft at the poles and is a demonstration of the fact that the spacecraft temperatures
could potentially be used to estimate the satellite attitude beside the data from the IMU.
We can also notice a line in the center with way lower oscillations, actually these are two
different superimposed lines representing the temperatures of the two CDHs’ aluminum
cases, highlighting the fact that the satellite thermal insulation is doing its job.

Figure 8.6: Singer temperature measurements versus time, y axis is in [➦C].

Another source of temperature measurements comes from Parrot sensors (fig. 8.7), which
are sent to Singer from the CDHs and contain the temperatures measured internally by
the CDHs and of the battery. This values helped producing two theses up to date, in
which the measurements are analyzed in detail and compared against the values predicted
by the spacecraft thermal model by team members Davide and Francesco ([20], [58]).

Figure 8.7: Parrot sensors temperature measurements of battery (up), and the two
CDHs (down), y axis is in [➦C] for both.

Remaining on Parrot sensors, Singer also receives and stores telemetry about the battery
voltage and charge/discharge currents (fig. 8.8); as can be seen, the battery voltage
remains always above 12.2 V, with a discharge current remaining stable at around 220
mA and peaks due to radio transmission or battery heaters activating, the charge current
obviously follows the sunlit/eclipse cycle and so has a trend similar to temperatures (fig.
8.6 and fig. 8.7) with peaks of up to 800 mA. Performing numerical computations on this
sets of data, the author obtained an average power consumption of 3 W, with an average
charge power of 3.2 W, resulting in a battery efficiency of 93 %.

165

Chapter 8 - Mission results

Figure 8.8: Parrot sensors battery voltage (up, [V]), discharge current (middle,
[A]) and charge current (down, [A]) versus time.

In fig. 8.7 and fig. 8.8 we can also notice that there’s a glitch on data at around 11:15, it’s
unclear what caused it and actually the CDH temperature shows two different glitches on
two separate time instants, a SEU event in the MRAM can be excluded because the glitch
only appears in Parrot sensors data and as said the MRAM should not suffer from upsets,
according to the downlink data neither CDH nor Singer was rebooted but the time of 6
minutes between these glitches suggests that it can be related with Parrot (it was never
addressed on this thesis but the Parrot system was designed in such a way as to turn on
the CDH 2 after 6 minutes from the CDH 1 post deployment, so any time-driven event
on the two CDHs should retain this delay) but the motivation remains unknown.
The magnetometer and gyroscope data can be seen in fig. 8.9, the magnetometer from
MTi-3 outputs a vector with no unit normalized with respect to the magnetic field used
for calibration, so the absolute value information is not given but only the field direction
and a relative intensity.

166

8.2 - Mission operation

Figure 8.9: Singer IMU data versus time: gyroscope (up, [rad/s]) and magnetome-
ter (down, normalized no unit).

Some things are quickly visible from the data: the passive ACS is doing its job of aligning
the Z axis of the spacecraft to the magnetic field lines and in fact the Z component of
the magnetic field is way higher than the other components, from the Z component we
can also notice the difference in intensity with peaks near the poles and valleys near the
equator, we can also see that the minimum at the equator has a slightly lower value
in eclipse than in sunlit, probably due to the magnetic field deformation by the solar
wind; at the same time the gyroscope (and also the magnetometer) data highlights that
the attitude stabilization is not perfect and the spacecraft continuously oscillates with a
period of around 7 minutes, not a problem for our application but surely impractical in
cases in which an higher stability is needed, the gyroscope data is somehow chaotic and
needs a deeper analysis to extract information about the spacecraft attitude behavior,
what could be said is that (and this is true also for the other downlinks performed with
weeks of distance) the angular velocities reach peaks of around 0.01 rad/s, or about
0.6 ➦/s (10:30 minutes per revolution), the gyroscope and magnetometer data follow low
frequency trends on the X and Y components that could be somehow correlated with
the orbits, with higher frequency oscillations superimposed, what’s interesting to notice
is that the average rotation around the Z axis changed direction over time. For a detailed
analysis on the data from these sensors, the paper from the ACS team can be consulted:
[24].
Lastly, many other data was retrieved which is useful to monitor the satellite health status,
like the Parrot operative mode evolution over time and telemetry regarding Singer. Fig.
8.10 shows the Singer reboot counter over a period of around 1 month, this counter is
increased after every reset, including the periodical automatic reboot performed every
12 hours, this revealed itself as a bad decision by the author, since the counting of the

167

Chapter 8 - Mission results

automatic reboots makes it difficult to quickly find anomalous resets due to latchup events
without analyzing the data in details, a better approach would have been to decrease
the counter before every automatic reset or even better reserving a flag field on the
memory table to signal the firmware that it was booting after an automatic reset, it
wasn’t implemented for design time constraints.

Figure 8.10: Singer reboots over the period from 25 June 2023 - 31 July 2023.

The data shows the reset counter going back to zero many times, this was due to the
performed operations, which required setting Parrot operative mode to activation mode a
number of times and each time it sent the memory reset command to Singer, it was then
a proof of the correct working of this command, another view of this can be seen in fig.
8.11 and fig. 8.12, which show the CDH 1 and CDH 2 operative modes stored by Singer
over the same time period.

Figure 8.11: CDH 1 operative mode stored by Singer over the period from 25 June
2023 - 31 July 2023.

168

8.2 - Mission operation

Figure 8.12: CDH 2 operative mode stored by Singer over the period from 25 June
2023 - 31 July 2023.

We can see how the opmode changed various times between 0 (activation, with consequent
reset request to Singer) and 1 (commissioning); we can also notice that one time the Singer
reset command failed (around 22 July on fig. 8.11), since the reboot counter was not reset;
this can be related to an unfortunate reset of Singer during the message transmission from
the CDH 1 or an error on the transmission channel, in any case the memory reset was
just a nice-to-have to clear the memory after the first boot in orbit and for this reason we
did not implement an acknowledge / resend mechanism that would be needed otherwise.
Also in this case there are some corrupted data points, these have a decimal value and
for this reason it’s impossible for them to be a valid operative mode; again it’s unclear
if this is due to a SEU on memory, a sampling of Parrot data after a Singer or Parrot
reboot or an error on the communication channel, in any case it’s easy to recognize them
as outsider points.
This was just an example of the useful support that Singer can provide to the mission
management.

169

Chapter 9
Conclusions

The work of this thesis reached the objectives of designing and validating in space a
low-cost system built entirely from COTS with the application of techniques for external
radiation hardening and system resilience improvement, the system allowed collecting
scientific data about the space environment and supported the satellite health monitoring.
The system also demonstrated the usage of COTS MRAM in orbit for non-volatile storage
of data, a memory technology which is promising for space applications due to its inherent
resistance to radiation induced effects.
The mission demonstrated the feasibility of fast development of a CubeSat mission, con-
firming the Polytechnic of Turin as one of the leading italian universities on this front.
Up to date the project produced two papers ([24], [47]) for the International Astronautic
Congress (IAC) and some theses have already been written which made use of the data
collected by Singer ([20], [58] from the thermal team students) with more to come in the
near future.
At the same time this work has to be intended as a starting point for future development,
the author identified some aspects that should be further developed:

While the work did validate the developed On Board Computer in orbit, there was a
lack of precise figures about the expected reliability of the system which requires a deeper
research about the behavior in high radiation environment of each specific device; in this
case that aspect was not a major concern due to the secondary nature of the system and
the short development time but it would become so in case of future missions that plan
to use this technology and know-how for vital elements of the spacecraft.

Due to the strict time constraints, the system missed some opportunities to better
exploit the hardware capabilities in favor of software and interface simplicity: the simple
method for retrieval of packets, which can only be read backwards from the last measured,
left out the possibility to address specific time instants of interest, like the post-deployment
window; the in-orbit performance of MRAM banks could have been better investigated by
running some dedicated experiments on portions of the memory, like for example a basic
periodical scan to identify bit flips and derive the upset probability, a similar experiment
was planned for the microcontroller memories but not implemented due to insufficient
development time.

There are some possible improvements of the board that could increase its reliability

171

Chapter 9 - Conclusions

starting from the existing hardware:

The first improvement could be to store the microcontroller code on the MRAM and so
run the firmware from it, the MRAM should reduce the risk of Single Events Functional
Interrupts (SEFI) due to its intrinsic higher resistance to SEU, again this should come
with a deeper analysis on the risk of latch-up of the CMOS part of the memory and the
feasibility of such configuration for the microcontroller, alternatively the MRAM could be
used to store only a copy of the code to correct eventual upsets on the flash, exploiting
the error detection capability of the STM32L4 series.

Another big room for improvements is offered by the latch-up protection circuit, the
actual implementation is quite basic and can be largely improved by: implementing a
better load switch with a second n-type MOSFET for fast discharge of the supply capaci-
tance, this could shorten by at least one order of magnitude the turn-off time and reduce
the damage from a latch-up event by quickly starving the parasitic SCR; implementing a
latching mechanism on the circuit to keep the domain powered off indefinitely in case of
latch-up, signaling it to the microcontroller, this would allow a better control of voltage
domains and gathering of data about latch-up events, as well as reduce the power con-
sumption of latched-up or shorted domains; another improvement offered by a latching
mechanism on the protection circuit would be to allow turning off some blocks voluntarily
while not needed (like for example the MRAM, IMU and ADC that are basically needed
for some seconds every minute), this would completely eliminate the possibility of latch-up
on these blocks while turned off, greatly increasing their life expectancy (this was inves-
tigated during design and in fact at a point there were npn BJTs controlled by the micro
in parallel with the open collector output of the comparators, but this solution was later
discarded since there wasn’t a latching mechanism and every reset of the microcontroller
would have turned on again the domains).

The design discussed on this thesis used an external dev-board for the microcontroller,
basically doubling the board height; in our specific case space was not a major concern and
we enjoyed the flexibility offered by this solution, in other cases this could be a problem
and the natural evolution of the board would be to embed the microcontroller directly on
the PCB, increasing the system compactness.

On the other end, some important lessons were learned from the negative events that
happened during design:

Failures most likely related with ESD events highlighted the importance of handling
flight hardware with the maximum possible caution, especially with the integrated space-
craft, redundantly checking safety measures before every activity.

The necessity to manually correct PCB errors highlighted the importance of resorting
to multiple prototyping cycles before coming up with a clean final product.

The bad experience with some manufacturers and component providers, which occurred
not only for the Singer system, highlighted the importance of careful inspection of the
hardware and avoid blindly trusting hardware provided by third parts.

172

9.0 -

In general, all this points highlight the necessity of a continuous R&D effort in order to
be prepared for an eventual future mission without suffering the low development time
problem.

Lastly, this mission had high educational implications and was an incredible opportunity
for students to experience a real space mission, which is the important objective that was
initially set at the birth of the CubeSat standard.
Personally speaking, the author was really enriched by this design experience and felt
privileged of getting involved on a project of this relevance, he hopes that this thesis will
help and encourage future students on their pursuit of space.

173

Bibliography

[3] (Picture) The CSSWE CubeSat and PPOD just prior to integration, CSSWE
at English Wikipedia, Accessed on 16 October 2023. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:CSSWE_CubeSat_and_PPOD_prior_to_

integration.png.

[6] E. Areda, M. Cho, J. R. Cordova Alarcon, and H. Masui, “Development of Innova-
tive CubeSat Platform for Mass Production,” Applied Sciences, vol. 12, Sep. 2022.
doi: {10.3390/app12189087}.

[7] ARI-Bra website, Accessed on 16 October 2023. [Online]. Available: https://www.
aribra.it/.

[9] H. J. Barnaby, M. L. Mclain, I. S. Esqueda, and X. J. Chen, “Modeling ionizing
radiation effects in solid state materials and CMOS devices,” in 2008 IEEE Custom
Integrated Circuits Conference, 2008. doi: {10.1109/CICC.2008.4672075}.

[10] R. Barry, Mastering the FreeRTOS➋ Real Time Kernel - A Hands-On Tutorial
Guide. 2016. [Online]. Available: https://www.freertos.org/fr- content-
src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-

A_Hands-On_Tutorial_Guide.pdf.

[11] E. L. Bella, “Development of an Electrical Power System for a 3U educa-
tional CubeSat,” Politecnico di Torino, Dec. 2022. [Online]. Available: http://
webthesis.biblio.polito.it/25150/.

[12] N. Bianco, “Design, development and verification of the Electric Propulsion In-
terface System for the CubeSat Test Platform,” Politecnico di Torino, Apr. 2022.
[Online]. Available: http://webthesis.biblio.polito.it/22718/.

[13] L. Bottini, A. Boschetto, F. Veniali, and P. Gaudenzi, “Next Generation CubeSats
and SmallSats,” in Jan. 2023, ch. Additive manufacturing for CubeSat structure
fabrication, pp. 153–180, isbn: 9780128245415. doi: {10 . 1016 / B978 - 0 - 12 -
824541-5.00025-X}.

[14] A. Busso, M. Mascarello, S. Corpino, F. Stesina, and R. Mozzillo, “The communi-
cation module on-board E-ST@R-II cubesat,” in 7th ESA International Workshop
on Tracking, Telemetry and Command Systems for Space Applications, TTC 2016,
2016. [Online]. Available: https://hdl.handle.net/11583/2704674.

175

https://commons.wikimedia.org/wiki/File:CSSWE_CubeSat_and_PPOD_prior_to_integration.png
https://commons.wikimedia.org/wiki/File:CSSWE_CubeSat_and_PPOD_prior_to_integration.png
https://commons.wikimedia.org/wiki/File:CSSWE_CubeSat_and_PPOD_prior_to_integration.png
https://doi.org/{10.3390/app12189087}
https://www.aribra.it/
https://www.aribra.it/
https://doi.org/{10.1109/CICC.2008.4672075}
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
http://webthesis.biblio.polito.it/25150/
http://webthesis.biblio.polito.it/25150/
http://webthesis.biblio.polito.it/22718/
https://doi.org/{10.1016/B978-0-12-824541-5.00025-X}
https://doi.org/{10.1016/B978-0-12-824541-5.00025-X}
https://hdl.handle.net/11583/2704674

[15] CESI involved in the Vatican’s first satellite, Accessed on 16 October 2023. [On-
line]. Available: https://www.cesi.it/news/2023/cesi-involved-in-the-
vaticans-first-satellite/.

[16] C. Z. Chen, D. Y. Hu, and H. Wu, “Analysis of ESD Effect and Ionizing Radiation
Particles in Gate Oxide,” in 2020 China Semiconductor Technology International
Conference (CSTIC), 2020. doi: {10.1109/CSTIC49141.2020.9282445}.

[17] F. C. Ciccotti, “Design and development of the optical navigation system for Cube-
sat in support of the Martian rover mission,” Dec. 2022. [Online]. Available: http:
//webthesis.biblio.polito.it/25147/.

[18] C. Conigliaro, D. Calvi, L. Franchi, F. Stesina, and S. Corpino, “DESIGN AND
ANALYSIS OF AN INNOVATIVE CUBESAT THERMAL CONTROL SYSTEM
FOR BIOLOGICAL EXPERIMENT IN LUNAR ENVIRONMENT,” in Interna-
tional Astronautical Congress, 2018. [Online]. Available: https://hdl.handle.
net/11583/2765530.

[19] S. Corpino, S. Chiesa, F. Stesina, and N. Viola, “CubeSats development at Politec-
nico di Torino: The e-st@r program,” in 61st International Astronautical Congress
2010, 2010, pp. 8321–8328. [Online]. Available: https://hdl.handle.net/11583/
2885392.

[20] D. Cosenza, “Development of a Tool for the Design and Verification of Thermal
Control Systems of Small Sats,” Politecnico di Torino, Jul. 2023. [Online]. Avail-
able: http://webthesis.biblio.polito.it/27928/.

[22] CubeSat official website, Accessed on 16 October 2023. [Online]. Available: https:
//www.cubesat.org/.

[23] CubeSatShop FAQs page, Accessed on 16 October 2023. [Online]. Available:
https://www.cubesatshop.com/frequently-asked-questions/.

[24] A. D’Ortona, F. Manconi, F. Stesina, and S. Corpino, “Passive attitude stabiliza-
tion strategy for a 3U student CubeSat,” IAC-23,E2,4,12,x79994, 74th Interna-
tional Astronautical Congress 2023, Oct. 2023.

[25] Daisy-Chaining SPI Devices, AN3947, Maxim Integrated, Dec. 2006. [Online].
Available: https://www.analog.com/media/en/technical-documentation/
tech-articles/daisychaining-spi-devices.pdf.

[27] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event upset
in digital microelectronics,” IEEE Transactions on Nuclear Science, 2003. doi:
{10.1109/TNS.2003.813129}.

[28] e-st@r Gunter’s Space page, Accessed on 16 October 2023. [Online]. Available:
https://space.skyrocket.de/doc_sdat/e-star.htm.

[29] e-st@r-II SatNOGS DB page, Accessed on 16 October 2023. [Online]. Available:
https://db.satnogs.org/satellite/41459.

176

https://www.cesi.it/news/2023/cesi-involved-in-the-vaticans-first-satellite/
https://www.cesi.it/news/2023/cesi-involved-in-the-vaticans-first-satellite/
https://doi.org/{10.1109/CSTIC49141.2020.9282445}
http://webthesis.biblio.polito.it/25147/
http://webthesis.biblio.polito.it/25147/
https://hdl.handle.net/11583/2765530
https://hdl.handle.net/11583/2765530
https://hdl.handle.net/11583/2885392
https://hdl.handle.net/11583/2885392
http://webthesis.biblio.polito.it/27928/
https://www.cubesat.org/
https://www.cubesat.org/
https://www.cubesatshop.com/frequently-asked-questions/
https://www.analog.com/media/en/technical-documentation/tech-articles/daisychaining-spi-devices.pdf
https://www.analog.com/media/en/technical-documentation/tech-articles/daisychaining-spi-devices.pdf
https://doi.org/{10.1109/TNS.2003.813129}
https://space.skyrocket.de/doc_sdat/e-star.htm
https://db.satnogs.org/satellite/41459

[30] D. Eakman, R. Lambeck, M. Mackowski, and J. Slifer L., “Small spacecraft power
and thermal subsystems,” National Aeronautics and Space Administration, Tech.
Rep., 1994. [Online]. Available: https://core.ac.uk/download/pdf/42781666.
pdf.

[31] Electrical Short Circuits due to Tin Whiskers, NASA Lessons Learned system,
lesson 6956, 2013. [Online]. Available: https://llis.nasa.gov/lesson/6956.

[32] Encyclopedia Astronautica, Accessed on 16 October 2023. [Online]. Available:
http://www.astronautix.com/.

[33] ESA Radiation Test Database, Accessed on 16 October 2023. [Online]. Available:
https://esarad.esa.int/.

[34] FreeRTOS website, Accessed on 16 October 2023. [Online]. Available: https://
www.freertos.org/index.html.

[35] A. Gili, “Mission Analysis and Trajectory Design for Space Rider Observer Cube,”
Politecnico di Torino, Jul. 2023. [Online]. Available: http://webthesis.biblio.
polito.it/27930/.

[36] GNURadio website, Accessed on 16 October 2023. [Online]. Available: https:
//www.gnuradio.org/.

[37] Gpredict website, Accessed on 16 October 2023. [Online]. Available: http : / /
gpredict.oz9aec.net/.

[38] Gqrx website, Accessed on 16 October 2023. [Online]. Available: https://gqrx.
dk/.

[39] GSFC Radiation Data Base, Accessed on 16 October 2023. [Online]. Available:
https://radhome.gsfc.nasa.gov/radhome/raddatabase/raddatabase.html.

[43] G. Holzmann, “The power of 10: rules for developing safety-critical code,” Com-
puter, vol. 39, no. 6, pp. 95–99, 2006. doi: {10.1109/MC.2006.212}.

[44] IEEE Workshop on Radiation Effects Data, Accessed on 16 October 2023. [Online].
Available: https://ieeexplore.ieee.org/xpl/conhome/8086/proceeding.

[46] L. Iossa, A. Gili, D. Parrinello, et al., “3U CubeSat mission to assess vegetation
hydration status and hydrological instability risk,” IAC-22,E2,3-GTS.4,1,x72036,
73rd International Astronautical Congress 2022, 2022.

[47] L. Iossa, T. Giovara, V. Calabretta, et al., “From design to delivery in three months:
the fast development of a 3U CubeSat,” IAC-23,D1,4B,10,x79829, 74th Interna-
tional Astronautical Congress 2023, Oct. 2023.

[48] H. Jason, MRAM Technology Status, JPL-Publ-13-3, NASA Jet Propulsion Lab-
oratory, Feb. 2013.

[49] M. Johnson, R. Cline, S. Ward, and J. Schichl, Latch-Up, SCAA124, Texas Instru-
ments, Apr. 2015. [Online]. Available: https://www.ti.com/lit/wp/scaa124/
scaa124.pdf.

177

https://core.ac.uk/download/pdf/42781666.pdf
https://core.ac.uk/download/pdf/42781666.pdf
https://llis.nasa.gov/lesson/6956
http://www.astronautix.com/
https://esarad.esa.int/
https://www.freertos.org/index.html
https://www.freertos.org/index.html
http://webthesis.biblio.polito.it/27930/
http://webthesis.biblio.polito.it/27930/
https://www.gnuradio.org/
https://www.gnuradio.org/
http://gpredict.oz9aec.net/
http://gpredict.oz9aec.net/
https://gqrx.dk/
https://gqrx.dk/
https://radhome.gsfc.nasa.gov/radhome/raddatabase/raddatabase.html
https://doi.org/{10.1109/MC.2006.212}
https://ieeexplore.ieee.org/xpl/conhome/8086/proceeding
https://www.ti.com/lit/wp/scaa124/scaa124.pdf
https://www.ti.com/lit/wp/scaa124/scaa124.pdf

[50] A. Johnston and S. Guertin, “The effects of space radiation on linear integrated
circuits,” in 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484),
2000. doi: {10.1109/AERO.2000.878509}.

[51] A. Ju, H. Guo, L. Ding, et al., “Analysis of Ion-Induced SEFI and SEL Phenomena
in 90 nm NOR Flash Memory,” IEEE Transactions on Nuclear Science, 2021. doi:
{10.1109/TNS.2021.3105998}.

[52] KiCad EDA website, Accessed on 16 October 2023. [Online]. Available: https:
//www.kicad.org/.

[53] C. Leonard, Challenges for Electronic Circuits in Space Applications, Ana-
log Devices, 2017. [Online]. Available: https : / / www . analog . com / media /

en / technical - documentation / tech - articles / thought - leadership /

challenges-for-electronic-circuits-in-space-applications.pdf.

[54] LICIACube mission ASI webpage, Accessed on 16 October 2023. [Online]. Avail-
able: https://www.asi.it/en/planets-stars-universe/solar-system-and-
beyond/liciacube/.

[56] LTspice website, Accessed on 16 October 2023. [Online]. Available: https://www.
analog.com/en/design-center/design-tools-and-calculators/ltspice-

simulator.html.

[57] LTspice: Worst-Case Circuit Analisys with Minimal Simulations Runs, Accessed
on 16 October 2023. [Online]. Available: https : / / www . analog . com / en /

technical - articles / ltspice - worst - case - circuit - analysis - with -

minimal-simulations-runs.html.

[58] F. Lucia, “Development of a tool for thermal analysis of small spacecrafts.,” Po-
litecnico di Torino, Jul. 2023. [Online]. Available: http://webthesis.biblio.
polito.it/27931/.

[59] C. Lughi, “Development and validation of a test bench for Attitude Determination
and Control System for small satellite,” Politecnico di Torino, Apr. 2023. [Online].
Available: http://webthesis.biblio.polito.it/26470/.

[60] MarCO (Mars Cube One) website, Accessed on 16 October 2023. [Online]. Avail-
able: https://science.nasa.gov/mission/marco.

[61] MATLAB website, Accessed on 16 October 2023. [Online]. Available: https://
ch.mathworks.com/products/matlab.html.

[63] MT Software Suite website, Accessed on 16 October 2023. [Online]. Available:
https://www.movella.com/support/software-documentation.

[66] NTC Thermistors, 29053, Revision: 27-Jan-2021, Vishay BCcomponents, Jan.
2021. [Online]. Available: https://www.vishay.com/docs/29053/ntcappnote.
pdf.

[69] G. Obiols Rabasa, S. Corpino, R. Mozzillo, and F. Stesina, “Lessons learned of a
systematic approach for the e-st@r-II CubeSat environmental test campaign,” in
66th IAC International Astronautical Congress, 2015. [Online]. Available: https:
//hdl.handle.net/11583/2625714.

178

https://doi.org/{10.1109/AERO.2000.878509}
https://doi.org/{10.1109/TNS.2021.3105998}
https://www.kicad.org/
https://www.kicad.org/
https://www.analog.com/media/en/technical-documentation/tech-articles/thought-leadership/challenges-for-electronic-circuits-in-space-applications.pdf
https://www.analog.com/media/en/technical-documentation/tech-articles/thought-leadership/challenges-for-electronic-circuits-in-space-applications.pdf
https://www.analog.com/media/en/technical-documentation/tech-articles/thought-leadership/challenges-for-electronic-circuits-in-space-applications.pdf
https://www.asi.it/en/planets-stars-universe/solar-system-and-beyond/liciacube/
https://www.asi.it/en/planets-stars-universe/solar-system-and-beyond/liciacube/
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://www.analog.com/en/technical-articles/ltspice-worst-case-circuit-analysis-with-minimal-simulations-runs.html
https://www.analog.com/en/technical-articles/ltspice-worst-case-circuit-analysis-with-minimal-simulations-runs.html
https://www.analog.com/en/technical-articles/ltspice-worst-case-circuit-analysis-with-minimal-simulations-runs.html
http://webthesis.biblio.polito.it/27931/
http://webthesis.biblio.polito.it/27931/
http://webthesis.biblio.polito.it/26470/
https://science.nasa.gov/mission/marco
https://ch.mathworks.com/products/matlab.html
https://ch.mathworks.com/products/matlab.html
https://www.movella.com/support/software-documentation
https://www.vishay.com/docs/29053/ntcappnote.pdf
https://www.vishay.com/docs/29053/ntcappnote.pdf
https://hdl.handle.net/11583/2625714
https://hdl.handle.net/11583/2625714

[70] PC/104 Consortium website, Accessed on 16 October 2023. [Online]. Available:
https://pc104.org/.

[74] PicPoT Gunter’s Space page, Accessed on 16 October 2023. [Online]. Available:
https://space.skyrocket.de/doc_sdat/picpot.htm.

[75] C. Poivey, Radiation Hardness Assurance for Space System, NASA GSFC,
Jul. 2002. [Online]. Available: https : / / ntrs . nasa . gov / api / citations /

20020080842/downloads/20020080842.pdf.

[76] PuTTY website, Accessed on 16 October 2023. [Online]. Available: https://www.
putty.org/.

[77] Python web page, Accessed on 16 October 2023. [Online]. Available: https://
www.python.org/.

[78] Qseven standard webpage, Accessed on 16 October 2023. [Online]. Available:
https://sget.org/standards/qseven/.

[79] Raspberry Pi onboard computer for AAReST mission (Raspberry Pi website),
Accessed on 16 October 2023. [Online]. Available: https://www.raspberrypi.
com/news/compute-module-cubesats/.

[80] RTD embedded technologies website, PC/104 page, Accessed on 16 October 2023.
[Online]. Available: https://www.rtd.com/PC104/.

[81] M. Sejera, T. Yamauchi, N. C. Orger, Y. Otani, and M. Cho, “Scalable and Config-
urable Electrical Interface Board for Bus System Development of Different CubeSat
Platforms,” Applied Sciences, vol. 12, no. 18, 2022. doi: {10.3390/app12188964}.

[84] Software UART using ST7LITE0 12-bit autoreload timer, AN1753, STMicro-
electronics, Mar. 2013. [Online]. Available: https://www.st.com/resource/
en / application _ note / an1753 - software - uart - using - st7lite0 - 12bit -

autoreload-timer-stmicroelectronics.pdf.

[85] SOLIDWORKS website, Accessed on 16 October 2023. [Online]. Available: https:
//www.solidworks.com/.

[86] Spei Satelles Gunter’s Space page, Accessed on 16 October 2023. [Online]. Avail-
able: https://space.skyrocket.de/doc_sdat/spei-satelles.htm.

[87] Spei Satelles mission website, Accessed on 16 October 2023. [Online]. Available:
https://www.speisatelles.org/.

[88] SPEISAT SatNOGS DB page, Accessed on 16 October 2023. [Online]. Available:
https://db.satnogs.org/satellite/RINJ-3108-9789-8075-5047.

[89] S. Speretta, “Project solutions for low-cost space missions,” PhD thesis, Politecnico
Di Torino, 2010. [Online]. Available: https://zerorobotics.polito.it/app/
uploads/2019/04/thesis-1.pdf.

[90] State-Of-The-Art Small Spacecraft Technology, NASA/TP-2021-0021263, NASA
Ames Research Center, Small Spacecraft Systems Virtual Institute, Oct. 2021.

179

https://pc104.org/
https://space.skyrocket.de/doc_sdat/picpot.htm
https://ntrs.nasa.gov/api/citations/20020080842/downloads/20020080842.pdf
https://ntrs.nasa.gov/api/citations/20020080842/downloads/20020080842.pdf
https://www.putty.org/
https://www.putty.org/
https://www.python.org/
https://www.python.org/
https://sget.org/standards/qseven/
https://www.raspberrypi.com/news/compute-module-cubesats/
https://www.raspberrypi.com/news/compute-module-cubesats/
https://www.rtd.com/PC104/
https://doi.org/{10.3390/app12188964}
https://www.st.com/resource/en/application_note/an1753-software-uart-using-st7lite0-12bit-autoreload-timer-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an1753-software-uart-using-st7lite0-12bit-autoreload-timer-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an1753-software-uart-using-st7lite0-12bit-autoreload-timer-stmicroelectronics.pdf
https://www.solidworks.com/
https://www.solidworks.com/
https://space.skyrocket.de/doc_sdat/spei-satelles.htm
https://www.speisatelles.org/
https://db.satnogs.org/satellite/RINJ-3108-9789-8075-5047
https://zerorobotics.polito.it/app/uploads/2019/04/thesis-1.pdf
https://zerorobotics.polito.it/app/uploads/2019/04/thesis-1.pdf

[91] State-Of-The-Art Small Spacecraft Technology, NASA/TP-2022-0018058, NASA
Ames Research Center, Small Spacecraft Systems Virtual Institute, Jan. 2023.

[92] F. Stesina, “Validation of a Test Platform to Qualify Miniaturized Electric Propul-
sion Systems,” Aerospace, vol. 6, p. 99, 9 2019. doi: https://doi.org/10.3390/
aerospace6090099.

[93] F. Stesina, “Tracking Model Predictive Control for Docking Maneuvers of a Cube-
Sat with a Big Spacecraft,” Aerospace, vol. 8, p. 197, 2021. doi: https://doi.
org/10.3390/aerospace8080197.

[94] F. Stesina and S. Corpino, “In Orbit Operations of an Educational Cubesat:
the e-st@r-II Experience,” International Review of Aerospace Engineering, no. 13,
pp. 40–50, 2020. doi: https://dx.doi.org/10.15866/irease.v13i2.18317.
[Online]. Available: https://hdl.handle.net/11583/2837831.

[95] F. Stesina, S. Corpino, R. Mozzillo, and G. Obiols Rabasa, “Design of the Active
Attitude Determination and Control System for the e-st@r cubesat,” in 63rd Inter-
national Astronautical Congress, 2012. [Online]. Available: https://hdl.handle.
net/11583/2503388.

[97] STM32CubeIDE website, Accessed on 16 October 2023. [Online]. Available:
https://www.st.com/en/development-tools/stm32cubeide.html.

[98] STM32CubeMX website, Accessed on 16 October 2023. [Online]. Available: https:
//www.st.com/en/development-tools/stm32cubemx.html.

[100] M. A. Swartwout, “A brief history of rideshares (and attack of the CubeSats),” in
2011 Aerospace Conference, 2011. doi: {10.1109/AERO.2011.5747233}.

[101] M. A. Swartwout, “A statistical survey of rideshares (and attack of the CubeSats,
part deux),” in 2012 IEEE Aerospace Conference, 2012. doi: {10.1109/AERO.
2012.6187008}.

[102] M. A. Swartwout, “Cheaper by the dozen: The avalanche of rideshares in the 21st
century,” in 2013 IEEE Aerospace Conference, 2013. doi: {10.1109/AERO.2013.
6497182}.

[103] M. A. Swartwout, “Secondary spacecraft in 2016: Why some succeed (And too
many do not),” in 2016 IEEE Aerospace Conference, 2016. doi: {10.1109/AERO.
2016.7500791}.

[104] M. A. Swartwout, “You say “Picosat”, I say “’CubeSat”: Developing a better
taxonomy for secondary spacecraft,” in 2018 IEEE Aerospace Conference, 2018.
doi: {10.1109/AERO.2018.8396755}.

[105] M. A. Swartwout, “Cubesats/Smallsats/Nanosats/Picosats/Rideshare(sats) in
2022: Making Sense of the Numbers,” in 2022 IEEE Aerospace Conference
(AERO), 2022. doi: {10.1109/AERO53065.2022.9843832}.

[106] “The evolution of cubesat spacecraft platforms,” NATO S&T organization.

180

https://doi.org/https://doi.org/10.3390/aerospace6090099
https://doi.org/https://doi.org/10.3390/aerospace6090099
https://doi.org/https://doi.org/10.3390/aerospace8080197
https://doi.org/https://doi.org/10.3390/aerospace8080197
https://doi.org/https://dx.doi.org/10.15866/irease.v13i2.18317
https://hdl.handle.net/11583/2837831
https://hdl.handle.net/11583/2503388
https://hdl.handle.net/11583/2503388
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://doi.org/{10.1109/AERO.2011.5747233}
https://doi.org/{10.1109/AERO.2012.6187008}
https://doi.org/{10.1109/AERO.2012.6187008}
https://doi.org/{10.1109/AERO.2013.6497182}
https://doi.org/{10.1109/AERO.2013.6497182}
https://doi.org/{10.1109/AERO.2016.7500791}
https://doi.org/{10.1109/AERO.2016.7500791}
https://doi.org/{10.1109/AERO.2018.8396755}
https://doi.org/{10.1109/AERO53065.2022.9843832}

[110] F. Topputo, F. Ferrari, V. Franzese, et al., “The Hera Milani Cubesat Mission,”
in 7th IAA Planetary Defense Conference (PDC 2021), 2021, pp. 1–2. [Online].
Available: https://hdl.handle.net/11311/1171933.

[112] T. Tumenjargal, S. Kim, H. Masui, and M. Cho, “CubeSat bus interface with
Complex Programmable Logic Device,” Acta Astronautica, 2019. doi: https://
doi.org/10.1016/j.actaastro.2019.04.047.

[114] Using the Serial Peripheral Interface to Communicate Between Multiple Microcom-
puters, AN991/D, Rev. 1, 1/2002, Freescale Semiconductor, Jan. 2002. [Online].
Available: https://www.nxp.com/docs/en/application-note/AN991.pdf.

[115] S. Vartanian, F. Irom, G. R. Allen, W. P. Parker, and M. D. O’Connor, “Single
Event Latchup Results for COTS Devices Used on SmallSat Missions,” in 2020
IEEE Radiation Effects Data Workshop (in conjunction with 2020 NSREC), 2020.
doi: {10.1109/REDW51883.2020.9325824}.

[116] Visual Studio Code website, Accessed on 16 October 2023. [Online]. Available:
https://code.visualstudio.com/.

[117] R. Walker, CUBESAT EVOLUTION: FROM EDUCATIONAL TOOLS TO AU-
TONOMOUS SPACE DRONES & BEYOND, Presentation to 8th ECS, Sep. 2016.
[Online]. Available: https://a3space.org/wp- content/uploads/2017/10/
CubeSat-Evolution.pdf.

[118] A. C. Watkins, S. T. Vibbert, J. V. D’Amico, et al., “Mitigating Total-Ionizing-
Dose-Induced Threshold-Voltage Shifts Using Back-Gate Biasing in 22-nm FD-SOI
Transistors,” IEEE Transactions on Nuclear Science, 2022. doi: {10.1109/TNS.
2022.3146318}.

[119] Why Space Radiation Matters (NASA website), Accessed on 16 October 2023. [On-
line]. Available: https://www.nasa.gov/analogs/nsrl/why-space-radiation-
matters.

[120] World’s largest database of nanosatellites, almost 3500 nanosats and CubeSats,
Accessed on 16 October 2023. [Online]. Available: https://www.nanosats.eu/.

[121] M. Yingqi, H. Jianwei, S. ShiPeng, et al., “SEE Characteristics of COTS Devices
by 1064nm Pulsed Laser Backside Testing,” in 2018 IEEE Radiation Effects Data
Workshop (REDW), 2018. doi: {10.1109/NSREC.2018.8584271}.

[122] R. Zeif, A. Hormer, M. Kubicka, M. Henkel, and O. Koudelka, “From OPS-SAT to
PRETTY Mission: A Second Generation Software Defined Radio Transceiver for
Passive Reflectometry,” in 2020 International Conference on Broadband Commu-
nications for Next Generation Networks and Multimedia Applications (CoBCom),
Jul. 2020, pp. 1–8. doi: {10.1109/CoBCom49975.2020.9174103}.

181

https://hdl.handle.net/11311/1171933
https://doi.org/https://doi.org/10.1016/j.actaastro.2019.04.047
https://doi.org/https://doi.org/10.1016/j.actaastro.2019.04.047
https://www.nxp.com/docs/en/application-note/AN991.pdf
https://doi.org/{10.1109/REDW51883.2020.9325824}
https://code.visualstudio.com/
https://a3space.org/wp-content/uploads/2017/10/CubeSat-Evolution.pdf
https://a3space.org/wp-content/uploads/2017/10/CubeSat-Evolution.pdf
https://doi.org/{10.1109/TNS.2022.3146318}
https://doi.org/{10.1109/TNS.2022.3146318}
https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters
https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters
https://www.nanosats.eu/
https://doi.org/{10.1109/NSREC.2018.8584271}
https://doi.org/{10.1109/CoBCom49975.2020.9174103}

Technical documents

[1] .050 X .050 TERMINAL STRIP, TFM-1XX-XX-XXX-D-XXX-X-X, Rev. FT,
Samtec, 2014. [Online]. Available: https://suddendocs.samtec.com/prints/
tfm-1xx-xx-xxx-d-xxx-x-xx-mkt.pdf.

[2] .050[1.27] DISCRETE WIRE INSULATOR & LATCH ASM, ISDF-XX-D-X, Rev.
Q, Samtec, 2006. [Online]. Available: https://suddendocs.samtec.com/prints/
isdf-xx-d-x-mkt.pdf.

[4] 16-channel analog multiplexer/demultiplexer, 74HC4067; 74HCT4067, Rev. 8,
Nexperia, 2021. [Online]. Available: https://assets.nexperia.com/documents/
data-sheet/74HC_HCT4067.pdf.

[5] 3.3V 20Mbps RS485/RS422 Transceivers, LTC2850/LTC2851/LTC2852, LT 0615
REV E, Linear Technology, 2007. [Online]. Available: https://www.analog.com/
media/en/technical-documentation/data-sheets/285012fe.pdf.

[8] ARM➤ Debug Interface v5 - Architecture Specification, IHI0031A, ARM Limited,
Feb. 2006. [Online]. Available: https://developer.arm.com/documentation/
ihi0031/a/.

[21] Cubesat Design Specification, CP-CDS-R14.1, Rev. 14.1, The cubesat Program,
Cal Poly SLO, 2022. [Online]. Available: https : / / static1 . squarespace .

com / static / 5418c831e4b0fa4ecac1bacd / t / 62193b7fc9e72e0053f00910 /

1645820809779/CDS+REV14_1+2022-02-09.pdf.

[26] Description of STM32L4/L4+ HAL and low-layer drivers, UM1884, Rev. 9, STMi-
croelectronics, Sep. 2021. [Online]. Available: https://www.st.com/resource/
en/user_manual/um1884-description-of-stm32l4l4-hal-and-lowlayer-

drivers-stmicroelectronics.pdf.

[40] Hardware Integration Manual - MTi 1-series, MT1503P, Revision 2019.A, Xsens
Technologies, 2019. [Online]. Available: https : / / www . xsens . com / hubfs /

Downloads/Manuals/Hardware_Integration_Manual_MTi_1-series.pdf.

[41] HEXFET➤ Power MOSFET, IRF7342PbF, Rev. 2016-5-26, Infineon Technolo-
gies, 2016. [Online]. Available: https://www.mouser.it/datasheet/2/196/
Infineon_IRF7342_DS_v01_01_EN-3166065.pdf.

183

https://suddendocs.samtec.com/prints/tfm-1xx-xx-xxx-d-xxx-x-xx-mkt.pdf
https://suddendocs.samtec.com/prints/tfm-1xx-xx-xxx-d-xxx-x-xx-mkt.pdf
https://suddendocs.samtec.com/prints/isdf-xx-d-x-mkt.pdf
https://suddendocs.samtec.com/prints/isdf-xx-d-x-mkt.pdf
https://assets.nexperia.com/documents/data-sheet/74HC_HCT4067.pdf
https://assets.nexperia.com/documents/data-sheet/74HC_HCT4067.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/285012fe.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/285012fe.pdf
https://developer.arm.com/documentation/ihi0031/a/
https://developer.arm.com/documentation/ihi0031/a/
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf
https://www.st.com/resource/en/user_manual/um1884-description-of-stm32l4l4-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1884-description-of-stm32l4l4-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1884-description-of-stm32l4l4-hal-and-lowlayer-drivers-stmicroelectronics.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/Hardware_Integration_Manual_MTi_1-series.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/Hardware_Integration_Manual_MTi_1-series.pdf
https://www.mouser.it/datasheet/2/196/Infineon_IRF7342_DS_v01_01_EN-3166065.pdf
https://www.mouser.it/datasheet/2/196/Infineon_IRF7342_DS_v01_01_EN-3166065.pdf

[42] High Performance Serial Persistent SRAM Memory, AS1001204, AS1004204,
AS1008204, AS1016204, AS3001204, AS3004204, AS3008204, AS3016204, Rev.
S, Avalanche Technology, 2022. [Online]. Available: https://www.avalanche-
technology.com/wp-content/uploads/1Mb-16Mb-Serial-HP-MRAM-S_SD-

10_20_2022.pdf.

[45] INA1x8 High-Side Measurement Current Shunt Monitor, INA138, INA168,
SBOS122E Rev. December 2017, Texas Instruments, 2017. [Online]. Available:
https://www.ti.com/lit/ds/symlink/ina138.pdf?ts=1695306220346.

[55] Low Power, 16-/24-Bit,Sigma-Delta ADCs, AD7788/AD7789, Rev. C, Analog De-
vices. [Online]. Available: https://www.analog.com/media/en/technical-
documentation/data-sheets/AD7788_7789.pdf.

[62] MT Low Level Communication Protocol Documentation, MT0101P, Revision
2020.A, Xsens Technologies, Jun. 2020. [Online]. Available: https://www.xsens.
com/hubfs/Downloads/Manuals/MT_Low-Level_Documentation.pdf.

[64] MTi 1-series Datasheet, MT0512P, Revision 2019.A, Xsens Technologies, 2019.
[Online]. Available: https://www.xsens.com/hubfs/Downloads/Manuals/MTi-
1-series-datasheet.pdf.

[65] MTi User Manual - MTi 10-series and MTi 100-series 5th Generation, MT0605P,
Revision 2020.A, Xsens Technologies, 2020. [Online]. Available: https://www.
xsens.com/hubfs/Downloads/usermanual/MTi_usermanual.pdf.

[67] NTC Thermistors, Radial Leaded, Accuracy Line, NTCLE203E3, 29048 Rev. 05-
Jul-2022, Vishay, 2022. [Online]. Available: https://www.vishay.com/docs/
29048/ntcle203.pdf.

[68] NUCLEO-XXXXRX, MB1136, Rev. C-05, STMicroelectronics, Aug. 2022. [On-
line]. Available: https://www.st.com/content/ccc/resource/technical/
layouts_and_diagrams/schematic_pack/group2/5a/85/d6/9a/34/e2/47/

1d/MB1136-DEFAULT-C05_Schematic/files/MB1136-DEFAULT-C05_Schematic.

pdf/jcr:content/translations/en.MB1136-DEFAULT-C05_Schematic.pdf.

[71] PC/104 Specification, Version 2.6, PC/104 Embedded Consortium, Oct. 2008. [On-
line]. Available: https://pc104.org/wp-content/uploads/2015/02/PC104_
Spec_v2_6.pdf.

[72] PCI-104 Specification, Version 1.0, PC/104 Consortium, Nov. 2003. [Online]. Avail-
able: https://resources.winsystems.com/specs/PCI-104Spec_v1_0.pdf.

[73] PCI/104-Express➋ & PCIe/104➋ Specification, Version 3.0, PC/104 Consortium,
Feb. 2015. [Online]. Available: https://pc104.org/wp-content/uploads/2015/
03/PCI104_Express_v3_0.pdf.

[82] SN74AVC4T245 Dual-Bit Bus Transceiver with Configurable Voltage Translation
and 3-State Outputs, SN74AVC4T245, SCES576G Rev. November 2014, Texas
Instruments, 2014. [Online]. Available: https://www.ti.com/lit/ds/symlink/
sn74avc4t245.pdf?ts=1695371287154.

184

https://www.avalanche-technology.com/wp-content/uploads/1Mb-16Mb-Serial-HP-MRAM-S_SD-10_20_2022.pdf
https://www.avalanche-technology.com/wp-content/uploads/1Mb-16Mb-Serial-HP-MRAM-S_SD-10_20_2022.pdf
https://www.avalanche-technology.com/wp-content/uploads/1Mb-16Mb-Serial-HP-MRAM-S_SD-10_20_2022.pdf
https://www.ti.com/lit/ds/symlink/ina138.pdf?ts=1695306220346
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7788_7789.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7788_7789.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MT_Low-Level_Documentation.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MT_Low-Level_Documentation.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf
https://www.xsens.com/hubfs/Downloads/usermanual/MTi_usermanual.pdf
https://www.xsens.com/hubfs/Downloads/usermanual/MTi_usermanual.pdf
https://www.vishay.com/docs/29048/ntcle203.pdf
https://www.vishay.com/docs/29048/ntcle203.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group2/5a/85/d6/9a/34/e2/47/1d/MB1136-DEFAULT-C05_Schematic/files/MB1136-DEFAULT-C05_Schematic.pdf/jcr:content/translations/en.MB1136-DEFAULT-C05_Schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group2/5a/85/d6/9a/34/e2/47/1d/MB1136-DEFAULT-C05_Schematic/files/MB1136-DEFAULT-C05_Schematic.pdf/jcr:content/translations/en.MB1136-DEFAULT-C05_Schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group2/5a/85/d6/9a/34/e2/47/1d/MB1136-DEFAULT-C05_Schematic/files/MB1136-DEFAULT-C05_Schematic.pdf/jcr:content/translations/en.MB1136-DEFAULT-C05_Schematic.pdf
https://www.st.com/content/ccc/resource/technical/layouts_and_diagrams/schematic_pack/group2/5a/85/d6/9a/34/e2/47/1d/MB1136-DEFAULT-C05_Schematic/files/MB1136-DEFAULT-C05_Schematic.pdf/jcr:content/translations/en.MB1136-DEFAULT-C05_Schematic.pdf
https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf
https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf
https://resources.winsystems.com/specs/PCI-104Spec_v1_0.pdf
https://pc104.org/wp-content/uploads/2015/03/PCI104_Express_v3_0.pdf
https://pc104.org/wp-content/uploads/2015/03/PCI104_Express_v3_0.pdf
https://www.ti.com/lit/ds/symlink/sn74avc4t245.pdf?ts=1695371287154
https://www.ti.com/lit/ds/symlink/sn74avc4t245.pdf?ts=1695371287154

[83] SN74AXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Volt-
age Translation, SN74AXC1T45, SCES882D Rev. October 2021, Texas Instru-
ments, 2021. [Online]. Available: https : / / www . ti . com / lit / ds / symlink /
sn74axc1t45.pdf?ts=1695390961054.

[96] STM32 Nucleo-64 boards (MB1136), UM1724, Rev. 14, STMicroelectronics, 2020.
[Online]. Available: https://www.st.com/resource/en/user_manual/um1724-
stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf.

[99] STM32L41xxx/42xxx/43xxx/44xxx/45xxx/46xxx advanced Arm➤-based 32-bit
MCUs, RM0394, STMicroelectronics, Oct. 2018. [Online]. Available: https :

/ / www . st . com / resource / en / reference _ manual / rm0394 -

stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-

stmicroelectronics.pdf.

[107] The FreeRTOS➋ Reference Manual - API Functions and Configuration Options,
Version 10.0.0 issue 1, Amazon Web Services, 2017. [Online]. Available: https://
www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_

Manual_V10.0.0.pdf.

[108] TL331B, TL391B and TL331 Single Comparators, TL331, TL331B, TL391B,
SLVS238J Rev. November 2020, Texas Instruments, 2020. [Online]. Available:
https://www.ti.com/lit/ds/symlink/tl331.pdf?ts=1695362356100.

[109] TL431LI / TL432LI Programmable Shunt Regulator with Optimized Reference
Current, TL431LI, TL432LI, SLVSDQ6A Rev. November 2018, Texas Instruments,
2018. [Online]. Available: https://www.ti.com/lit/ds/symlink/tl432li.pdf?
ts=1695359027933.

[111] Traco Power TMR 3WIR web page, Accessed on 16 October 2023. [Online]. Avail-
able: https://www.tracopower.com/int/it/series/tmr-3wir.

[113] Ultra-low-power Arm➤ Cortex➤-M4 32-bit MCU+FPU, 100DMIPS, up to
512KB Flash, 160KB SRAM, analog, audio, ext. SMPS, STM32L452xx, DS11912
Rev. 7, STMicroelectronics, 2020. [Online]. Available: https://www.st.com/
resource/en/datasheet/stm32l452re.pdf.

185

https://www.ti.com/lit/ds/symlink/sn74axc1t45.pdf?ts=1695390961054
https://www.ti.com/lit/ds/symlink/sn74axc1t45.pdf?ts=1695390961054
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.ti.com/lit/ds/symlink/tl331.pdf?ts=1695362356100
https://www.ti.com/lit/ds/symlink/tl432li.pdf?ts=1695359027933
https://www.ti.com/lit/ds/symlink/tl432li.pdf?ts=1695359027933
https://www.tracopower.com/int/it/series/tmr-3wir
https://www.st.com/resource/en/datasheet/stm32l452re.pdf
https://www.st.com/resource/en/datasheet/stm32l452re.pdf

Acknowledgements (Italian)

Innanzi tutto, un doveroso ringraziamento al Professor Stesina, che mi ha accolto nella
famiglia dello STARLAB, credendo fin da subito nel mio potenziale e mettendo a dispo-
sizione la sua esperienza per tutti i progetti di cui ho fatto parte, senza il quale Singer
non avrebbe mai visto la luce; cos̀ı come la Professoressa Corpino, a cui devo non solo
l’ incredibile opportunità di lavorare al progetto SPEISAT ma anche l’ enorme regalo di
poter assistere al lancio di persona in una delle esperienze più incredibili della mia vita.
Voglio ringraziare di cuore i miei genitori, che mi hanno permesso di seguire questo per-
corso sostenendomi sempre, cos̀ı come i miei fratelli e i miei nonni, che sono sempre stati
fieri di me e hanno sempre saputo capire il mio essere particolare, cos̀ı come tutto il resto
della mia famiglia. Un ciao in particolare a mia nonna Gabry, che non c’è più da molti
anni ma ha piantato in me i semi della creatività e manualità, spingendomi a diventare
quello che sono oggi.
Ringrazio gli amici di una vita, con cui sono cresciuto giocando a calcio nel fango fino a
raggiungere tutti quanti importanti risultati.
Un saluto,un ringraziamento e un ”in bocca al lupo” a tutti i ragazzi del CubeSat team e
del team Diana, con cui abbiamo affrontato qualcosa che va ben oltre il semplice percorso
di studi e l’abbiamo sempre fatto tra mille risate.
Infine, il grazie più grande va ad Alessia, sempre al mio fianco in questo percorso difficile
mentalmente e fisicamente, tu sei stata la mia forza e mi hai aiutato nei momenti più
difficili, non so come avrei fatto senza di te, questo risultato è dedicato a te.

187

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction to CubeSat
	The CubeSat standard
	CubeSats evolution
	Some words on secondary payloads
	2000s: CubeSats introduction
	2010s: Growing interest on CubeSats
	2014: CubeSat constellations and dedicated rideshares
	2018: Deep space missions

	Polytechnic of Turin CubeSat heritage

	CubeSat platforms
	Spacecraft BUS
	CubeSat Interfaces
	PC/104 form factor
	Backplane board
	Daughter boards

	Electronics in space
	Radiation effects on electronics
	Single Event Latchup (SEL)

	Spei Satelles
	Motivations and mission
	Spacecraft architecture
	Spacecraft subsystems
	Spacecraft block diagram

	Spei Satelles team

	Sensing Suite (Singer) subsystem
	SPEISAT Secondary mission
	System requirements and specifications
	Functional requirements
	Performance requirements
	Interface requirements

	Design process
	Challenges
	Low development time
	Poor system reliability
	Reduced impact on primary mission
	Cost

	Design timeline

	Hardware design
	System architecture
	Electrical design
	ADC block
	Measurement chain characterization

	IMU block
	Gyroscope specifications
	Magnetometer specifications
	IMU reference plane

	Memory block
	RS422 block
	Processing unit
	Clock and peripherals assignment

	Power block
	Voltage regulator
	Domain protection circuits
	Domain interfaces

	Board electrical interfaces and connectors
	System power estimation

	PCB design and production
	Schematic
	Layout
	Floorplan
	Routing

	Production

	Software design
	Software overview
	development environment
	FreeRTOS

	Low level drivers
	Interfaces review
	SPI interface
	UART interface
	SWD interface

	HAL drivers
	UART drivers
	Peripheral drivers

	Utility libraries
	Buffer utilities
	Packet utilities

	IMU driver
	Xbus protocol and IMU op-modes
	Driver library

	Parrot communication library
	Parrot message frame
	Parrot communication library

	printf() implementation
	ADC driver
	AD7788 interface
	ADC logical wiring
	Driver library

	MRAM driver and log system
	AS301604 interface
	Low level driver
	Memory organization and log system

	High level software
	Inter-task communication
	Telemetry exchange
	Monodirectional requests
	Mutual exclusive access

	Sensors task
	Memory task
	Parrot task
	Available Parrot messages
	Task code structure

	Watchdog task
	Tasks timeout management
	Firmware compile modes
	Access Port debug console
	Time measurement mode

	Final firmware configuration

	Test campaign, integration and launch
	Ground Support Equipment
	Development tests
	Breadboard model
	Debug console and GDB
	Parrot mock-up
	IMU bridge

	Acceptance tests
	Power test
	MRAM test
	RS422 lines test
	ADC test
	IMU test

	Flight preparation and integration
	Hardware corrections
	Nucleo board modifications
	Flight thermistors preparation
	Integration

	Functional tests
	Full functional and day-in-the-life tests.
	Mechanical fit and vibrational tests
	Thermal cycling test

	Laboratory failures
	Qualification model failure
	Flight model failure

	Spacecraft shipping

	Mission results
	Launch
	Mission operation
	Ground station
	Analysis of data

	Conclusions
	Bibliography
	Technical documents
	Acknowledgements (Italian)

