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Abstract

The emergence of COVID-19 caused by SARS-CoV-2 has created a global health
crisis, necessitating rapid and non-invasive diagnostic methods. Traditional ap-
proaches like RT-PCR have limitations, so this study aims to use Machine Learning
to detect COVID-19 from patients’ breath mass spectra. The study began by
creating a dataset of mass spectra stored in .ASC files. These files contain multiple
acquisitions, each corresponding to a mass spectrum. The first phase aimed to
identify the zones where the mass spectrometer is stable, we considered flat the
zones with first derivative inside a tolerance guard, then standard deviations within
the plateau were computed, and the acquisitions with the lowest values were se-
lected and mass spectra were extracted. After this preliminary phase we got four
datasets, one for each range. Data exploration revealed measurement bias, where
acquisitions from the same day or close days were closer together. Normalization
techniques such as TIC and Krypton normalization were applied to address this.
High dimensionality issues were mitigated using feature selection methods like PCA
and gradient boosting. The lack of data samples were solved using a brand new data
augmentation technique that used the combination of different ranges acquisitions
of the same patient. To augment the signal quality we applied signal pre-processing
methods to the spectra. Those included baseline correction with an ALS algorithm,
a Savitzky-Golay smoothing filter and a peak alignment procedure. To detect and
discard outliers a z-score filter and a comparison with the NIST krypton isotopic
ratios are applied. A Convolutional Autoencoder (CAE) was designed as a feature
extractor, trained for 20 epochs with various layers and regularization techniques.
In particular we used a padded noised version of the signal as training set and
the aim of the net is to reconstruct the denoised version. The choice of the l2
regularization was a key point for the realization of the CAE. The net architecture
involved a basic block made by a 1D convolutional layer, a max pooling or up
sampling layer (depending if we are in the encoder or decoder part) and a batch nor-
malization layer with different kernel and pooling size. CAE achieved satisfactory
performance in terms of signal reconstruction and its encoder part will be used as
feature extractor with a dimensionality reduction of a factor of 6. Several Machine
Learning models, including KNN, RF, LR, XB, SVM, and an ensemble model,
were employed in a 10-fold cross-validation protocol with stratification and outlier
reduction. Variance thresholding, PCA or xgboost addressed features reduction
and oversampling addressed class imbalance. Experiments revealed range 2 as the
most discriminating for classification. With PCA as feature selection and TIC
normalization, accuracy and F1-score improved from 82% and 68% to 93% and 87%,
respectively. Expanding the dataset to the whole mass range led to 95% accuracy



and 92% F1-score. CAE improved results, achieving 92% balanced accuracy and
90% F1-score by mitigating day bias. This study introduced a framework for
COVID-19 detection from breath mass spectra using Machine Learning and a CAE
to handle high dimensionality. Range 2 was found to be the most informative, and
the proposed method achieved a 95% accuracy and 92% F1-score with a portable
mass spectrometer, representing an improvement over invasive methods.
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Chapter 1

Introduction

1.1 Problem Description

The emergence of the novel coronavirus disease (COVID-19) caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has led to an
unprecedented global health crisis, challenging healthcare systems, economies,
and societies worldwide. Rapid and accurate diagnosis of COVID-19 is crucial
for effective disease management, infection control, and public health response.
Traditional diagnostic methods such as reverse transcription-polymerase chain
reaction (RT-PCR) have played a vital role in detecting the virus, but they often
require specialized equipment, reagents, and can be time-consuming. As the
pandemic continues to evolve, there is a pressing need for innovative diagnostic
approaches that can provide quick and reliable results. These tests require medicals
staff because are classified as invasive tests, an invasive test method is not applicable
taking in consideration the high number of personnel required when a mass testing
is performed, without taking in consideration that these methods can be stressful
or in some cases even dangerous for fragile people.

Mass spectrometry, a versatile analytical technique widely used in proteomics and
metabolomics research, has shown promise in disease detection and identification
due to its ability to characterize molecular composition. Recent studies have
highlighted the potential of mass spectrometry in detecting viral infections through
the analysis of complex biological samples. The distinct molecular signatures
associated with viral infections can be captured by mass spectrometry, offering a
unique opportunity for rapid and sensitive diagnostics.

Machine learning and deep learning techniques have demonstrated remarkable
success across various domains, including healthcare and medical diagnostics. Their
ability to extract intricate patterns and information from large datasets makes
them particularly well-suited for complex data analysis tasks. By harnessing the
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power of these techniques, it is possible to develop accurate and robust diagnostic
models for detecting COVID-19 from mass spectra samples.

The primary objective of this study is to explore the feasibility of using machine
learning and deep learning algorithms to detect COVID-19 from mass spectra
samples obtained from patient specimens. By leveraging the inherent information
contained within mass spectra, we aim to develop a predictive model capable of
distinguishing COVID-19-positive samples from negative ones with high accuracy
and efficiency. In particular, for the reasons specified above, the aim of this study
is the creation of a non invasive test method that exploits both the advantages of
the mass spectrometry data and the machine learning techniques.

NanoTech Analysis S.r.l. (NTA) was set up in Turin in 2013 as an Italian
“Innovative European Startup” operating in the domain of MEMS and NEMS
technologies. NTA owns patented technologies with the main purpose to develop
and launch a technically innovative product family in the fluid and chemical
measurements industry. The company owns the mass spectrometer to make the
acquisitions of the patients breaths directly at molecular level. The instrument is
able to identify the sample composition and with this not invasive technique we
are able to distinguish positive or negative to COVID-19 samples.

1.2 Motivation and Objectives
The motivations of our study are mainly related to the realization of a rapid,
non-invasive test protocol that is able to detect the presence or the absence of
COVID-19 from a breath sample converted in a mass spectrum.

The first goal of this research is to build a relatable and ready to use dataset
made by mass spectra of different patients starting from the acquisitions done by
the NanoTech Analysis company from the 2021 to the 2022. A mass spectrum
is a graphical representation or data output produced by a scientific instrument
called a mass spectrometer. It provides information about the distribution of ions
(charged atoms or molecules) based on their mass-to-charge ratio (m/z) measured
in AMU (atomic mass unit). Since these are the raw results taken directly from the
instrument, it is possible that they are affected to some noise, peak misalignment
and background noise and so they will be subsequently processed to have cleaned
data. Collecting these samples together allows us to build a primary version of
our dataset where all the acquisitions are stacked together and so we will have
as columns the AMUs (the mass to charge ratios), as values the intensity and as
index the patient ID. Since this tabular version of our data contains valuable and
exploitable knowledge we may proceed with some exploration and visualization of
our data or proceed with the classification.

An other objective of our study is to actually extract some knowledge from the
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mass spectra, in particular we want to classify each sample as positive or negative to
COVID-19. Our problem can be seen as a machine learning classification problem
where the labels are provided and are discrete and categorical. To do this we will
exploit on some classical machine learning techniques like SVM (Support Vector
Machine) and Linear Regression but we will also try some deep learning approach.
For this work we take inspirations from [1], [2] and [3].

1.3 Mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the
mass-to-charge ratio of ions, the results are presented as a mass spectrum, a plot of
intensity as a function of the mass-to-charge ratio. In particular MS is a powerful
scientific technique used to analyze the composition of molecules based on their
mass.

• The process includes a first part called ionization, in this phase the compounds
enter in a room in which the molecules are turned into ions (charged particles)
so they can be manipulated by an electric and magnetic field. This is typically
done by bombarding the sample with high-energy particles causing some of
the molecules to gain or to lose one or more electrons. In particular, we can
have two different situations:

e− + A −→ A+ + 2e−

In this case the bombarded molecule lose an electron and it is positively
charged, or

e− + A −→ A2+ + 3e−

In this case the compound is charged with one more electron, which will
influence the result in the next step.

• Once the molecules are ionized, they are subject to an electric field that
accelerate them, this step allows the particles to gain kinetic energy.

• The accelerated ions then pass through a magnetic field, since they are
electrically charged, they experience a force due to the magnetic field, causing
them to deflect from their straight path. The degree of deflection depends on
their mass and charge: lighter ions deflect more than heavier ions. Exploiting
this fact the particles can be separated basing on their mass to charge ratio
(m/z): in particular ions with the same charge but heavier will deflect less
respect to lighter ions.

3
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• At this point the separated ions can be detected by a device that can measure
their time of flight or their final position and determine the m/z ratios of
the ions. Computing the abundance of each ions is possible to build the
mass spectrum of the gas since each peak of the spectrum corresponds to a
specific ion with a particular mass. A problem that we can already arise is
that different compounds but with the same atomic mass are detected inside
the same peak. For example a molecule of N2 with AMU 28 has the same
atomic mass of the carbon monoxide CO, this two compounds will be added
together and will be in the same peak.

1.4 COVID-19
COVID-19 or 2019-nCoV is a pathogenic virus responsible of the outbreak of
pneumonia that began at the beginning of December 2019 near in Wuhan City,
Hubei Province, China. Coronaviruses mostly cause gastrointestinal and respiratory
tract infection. In particular, SARS-CoV (Severe Acute Respiratory Syndrome
coronavirus) are known to be extremely pathogenic [4]. Specifically, the principal
mode by which people are infected with SARS-CoV-2 (the virus that causes COVID-
19) is through exposure to respiratory fluids carrying infectious virus. Exposure
occurs in three principal ways:

• Inhaling air that contains infectious virus within very small fine droplets
and aerosol particles poses the highest risk of transmission. This risk is
most pronounced when one is within a proximity of three to six feet from an
infectious source, where the concentration of these fine droplets and particles
is the highest.

• The deposition of virus, carried within exhaled droplets and particles, onto
exposed mucous membranes (referred to as "splashes and sprays," such as
those from coughing) presents a significant risk of transmission. This risk is
especially elevated when one is in close proximity to an infectious source, where
the concentration of these exhaled droplets and particles is most concentrated.

• Transmitting the virus can also occur by touching mucous membranes with
hands contaminated by exhaled respiratory fluids containing the virus or by
coming into contact with inanimate surfaces contaminated with the virus.[5]

1.4.1 Test Methods
During the pandemic different kinds of test methods have been developed in order
to trace the virus proliferation. Currently, the following tests are available:
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• molecular tests

• rapid antigen tests

• serological tests

Molecular tests on nasopharyngeal and oropharayngeal respiratory samples still
remain the international gold standard for COVID-19 diagnosis in terms of sensi-
tivity and specificity. The real-time RT-PCR (Reverse Transcription-Polymerase
Chain Reaction) method allows for the detection of the viral genome’s presence by
amplifying the most expressed viral genes, not only in symptomatic individuals
but also in the presence of low viral load, pre-symptomatic, or asymptomatic
individuals.

Rapid antigen tests detect the presence of viral proteins (antigens). Different
types of antigen tests are available, ranging from lateral flow immunochromato-
graphic assays (first generation) to immunofluorescence reading tests (second
generation), which exhibit better performance. The latest generation tests (im-
munofluorescence with microfluidic reading) seem to yield results comparable to
RT-PCR assays. Antigen tests that can be performed in laboratories are now
also available. The performance characteristics of these tests, based on chemilu-
minescence detection systems, are fundamentally similar to those of the so-called
"third-generation" antigen tests (microfluidic tests with fluorescence reading). They
appear to be particularly suitable, among other things, for managing screening
within hospital facilities. If the patient’s clinical conditions are inconsistent with the
latest generation antigen test, RT-PCR remains the gold standard for confirming
COVID-19.

Serological tests detect exposure to the virus by highlighting the presence of
antibodies against the virus, but they cannot confirm an ongoing infection. For
this reason, given the current state of technological evolution, serological tests
cannot replace diagnostic tests (molecular or antigenic). Serological tests are useful
for epidemiological assessment of viral circulation and estimating the spread of
infection within a community.

1.4.2 Long COVID
Long COVID, also known as ’post-acute sequelae of COVID-19,’ is a complex
condition characterized by severe and diverse symptoms that develop following an
infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
It is estimated that at least 65 million individuals worldwide are affected by long
COVID. This estimate is based on a conservative assumption that 10% of infected
individuals experience these prolonged symptoms, given the documented 651 million
COVID-19 cases globally. However, the actual number is likely much higher due to
numerous unreported cases.
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The incidence of long COVID varies, with estimates suggesting it affects 10–30%
of individuals who did not require hospitalization, 50–70% of those who were
hospitalized, and even 10–12% of those who have been vaccinated against COVID-
19. Research has uncovered hundreds of biomedical findings, revealing that many
patients endure a wide array of symptoms affecting multiple organ systems [6].

Individuals with long COVID can experience persistent symptoms that last
for more than four weeks after the acute phase of their COVID-19 infection.
Additionally, there is growing evidence suggesting a link between long COVID and
metabolic dysfunction, particularly metabolic syndrome (MS). Laboratory analyses
of long COVID patients have identified imbalances in various cardiometabolic
parameters, including lipids, glycemic control, and markers related to obesity [7].
For these reasons we also tried to study the relationship between the mass spectra of
healed from COVID-19 patients and the predictions of our classifiers. In particular
patients that presented long COVID symptoms, since they may present some bio
markers typical of positive patients should be detected as positive while the tampon
results may have marked them as negative.

1.5 Organization
This work aims to organize a dataset for the collection of mass spectra data
coming from the NanoTech S.r.l mass spectrometer instrument. The global goal
of this study is to create a framework able to detect the COVID-19 presence
or absence from the collected mass spectra with the auxiliary help of Machine
Learning classification models and a deep convolutional autoencoder for the feature
extraction.

• The Chapter 2 describes the organization and the content of the output file
of the instrument, how the data have been collected and starts exploring the
content of our dataset and the main problem that this kind of acquisitions
can bring.

• In Chapter 3 a brief analysis of the used machine learning methods is done
and also we start explaining how a convolutional autoencoder works.

• The Chapter 4 contains the main application of the signal pre-processing
methods applied on the mass spectra to align the peaks, to correct the baseline
and smooth the samples. Also, we start discussing some machine learning
techniques to normalize the data and also some features selection methods are
explained. Eventually, the metrics to quantify the performance of the machine
learning models are cleared up.

• In Chapter 5 the experimental results are presented, we first give an explanation
of how the outliers are detected and how each normalization method impact
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on the distribution of our samples. Also in this chapter is presented the CAE
architecture and the training phase of the net. During the last section the
classification results are presented with a brief consideration for each of the
outcome.

• The Chapter 6 contains the conclusion and an overall evaluation of the study
has been done.

7



Chapter 2

Preliminary Dataset Studies

In this chapter we will analyze the main characteristics of our dataset and how
it has been build, in particular we will focus on how mass spectrometer data are
represented and how the measures are organized.

2.1 ASC files
All our data has been collected with the NanoTech Mass Spectrometer, this tool
stored the acquisitions into an ASC file that follows this format: the first lines
describe the measure environment and setting, while after the IntervalOfScan line
we have the AMU value followed by the intensity value. As we can imagine from
the previous statement our measure will be made by the couple AMU - intensity
value. All these files are collected into a directory structure that follows these
criteria:

1. the folder is named with the data of the acquisition with the format yyyy-
mm-dd, i.e all the acquisitions taken the 25th December, 2022 will be into the
folder 2022-12-25.

2. Inside each of these folders, will be held all the ASC files containing the
acquisitions of each patient. In particular, the file name is made by the date
of the acquisition followed by the information about the patient ID inside the
day and the range of measure (for this field the zero value means that this is
an air acquisition and not a breath acquisition). i.e an ASC file named ’mar
10 2021 2_1.ASC’ means that it is relative to the second patient measured in
that day and contains the first mass range measures.

3. inside this folder an additional file is stored: this is a CSV file that contains the
information about each file like the name, the COVID status of each patient
and the mass range of the measure.
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As we said before each file contains the information about the range of the measure,
this field can contain values that goes from 0 to 4, in particular the 0 value means
an air sample, while the others are specific for a range:

• the files with the *_1 notation contain the range that goes from 10 to 51
AMUs with an acquisition time of 10s and an EM voltage of 1000V.

• the files with the *_2 notation contain the range that goes from 49 to 151
AMUs with an acquisition time of 14s and an EM voltage of 1800V.

• the files with the *_3 notation contain the range that goes from 149 to 251
AMUs with an acquisition time of 14s and an EM voltage of 1800V.

• the files with the *_4 notation contain the range that goes from 249 to 351
AMUs with an acquisition time of 14s and an EM voltage of 1800V.

2.2 Data Collection
For a deeper understanding of how the dataset is built, we have to specify that the
mass spectrometer takes its measures in different moments during the acquisition,
so in each file we have the information about the Interval Of Scan that specifies
when the various measures are taken and after that a set of couples of values that
contain the information about the specific AMU and the relative intensity. So,
inside a single file we will have different set of intensities for different interval of
scan, in particular, when the machine is still pumping air in we will have growing
TIC values, while when the machine is in full operation we will have a plateau
and finally when the tool is pumping out the air we will see decreasing TIC values.
When we talk about TIC (Total Ion Current), we mean the sum of all the intensity
values that we have for a particular range, for each file we will build the TIC plot
using the interval of acquisition as x values and the TIC (the sum of the intensities
of all the AMUs) as y values.

From this plot we will select 4 TICs inside the plateau and the relative acquisition
will be selected for the raw dataset. In this way will have a dataframe with primary
key the date concatenate with the patient, the range and the acquisition selected
from the plateau.

Figure 2.1: raw dataframe for range 1 - as we can see we have a column with the
acquisition, a column for each AMU with its intensity and the index column that
identifies the patient and the range.
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The full dataset is built using the list of patients containing the date of the
analysis, the relative file, the index and the COVID status and joining it with
the one of the acquisitions that we talked before. From now we will consider our
dataset as the set of columns made by the index that identifies the measure and
the patient inside a date, the set of AMUs and their intensities and the COVID
status.
A problem that we had to tackle during this preliminary phase was due the fact
that in mass spectrometry when we talk about ion current values we deal with
large numbers and in some cases they are too big to be represented with a finite
decimal notation. We can graphically see such a fact plotting some spectra and
we can notice that some current intensity values are negative. These numbers are
physically impossible since that they can assume only positive values and so we
know that there is a representation error.

Figure 2.2: overflow error - we can see that in correspondence of the peak 28
AMU we have negative values due to the floating point representation.

The automatic Python conversion to integer is the cause of this error, in
particular the programming language is able to represent values that are inside the
range [−231, 231 − 1] where the asymmetry is due the zero representation. In order
to overcome this error, a manual conversation has to be done:

1 de f UINT32_conversion ( va lue ) :
2 i f va lue < 0 :
3 value = 2∗∗32 − 1 + value
4 re turn value

This solution uses the unsigned integer type provided by the programming
language. In this way we can represent our values inside the range [0, 232 −1]. After
this transformation we can plot again our dataset to see the result. Proceeding
with this method for each of the problematic value allows us to build a first version
of our dataset with all the decimal AMUs as features.
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Figure 2.3: AMUs plot after overflow correction

2.3 Unsupervised Learning

2.3.1 T-SNE
In the following section and future chapters we make use of the t-SNE method.
T-SNE stands for t-Distributed Stochastic Neighbor Embedding, is a dimensionality
reduction technique used primarily for data visualization and exploration. It is
particularly effective when dealing with high dimensional data by reducing the
number of dominions while preserving the relationships between data points. In
our study we mainly used it to plot the patients’ spectra in a 2-dimensional space
in order to be able to assess the distribution and the possible relationships between
different samples.

T-SNE operates by first projecting data points into a lower-dimensional space.
Then, it calculates pairwise similarities between these data points in both the
original high-dimensional space and the lower-dimensional space. These similarities
are quantified as conditional probabilities, reflecting how similar data points are in
both spaces. The primary goal of t-SNE is to minimize the disparity between these
two similarity metrics. In doing so, it determines optimal positions for data points
in the lower-dimensional space, ensuring that similar points are positioned closely
together, while dissimilar points are placed further apart. To do this, it exploits an
iterative gradient descent technique [8].

2.4 Data Exploration
In this section we start exploring the mass spectra inside our dataset in order to
identify some pattern, to assess the quality of our data, to make some studies on
the distribution of the patients and how different compounds are related. A crucial
point of this step is to identify outliers in our dataset, outliers are observations that
are far from the samples distribution. We use the data coming from Section 5.1,
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but instead of using all the acquisitions we compute the mean for each patient, in
this way we will have a single spectrum for each patient. The final dataset is stored
in a Pandas DataFrame in this way the whole structure is more manageable and it’s
easier to build plots with the plotly express library. In this section we consider
the whole spectrum as feature, the study of the set of features is important to try
to understand the relationship between AMUs and extract valuable information
from the dataset.

Figure 2.4: Comparison between air sample and patient sample for an acquisition.

To make this study coherent with the later classification phase we joined all
the 4 ranges, in this way the patients that doesn’t have the whole set of ranges
acquisitions will be discarded. Since we are considering a very large set of features
we focused on a reduced set of compounds to make the analysis more clear and
significant. In particular the molecules that we investigated are:

• AMU 28, N2 (Nitrogen). This compound is part of the first range of
acquisitions, it’s a colorless and odorless diatomic gas and it forms about 78%
of Earth’s atmosphere, making it the most abundant element in air.

• AMU 32, O2 (Oxygen). Diatomic oxygen has constitute 20.95% of the
Earth’s atmosphere, for this reason it should represent the second most
present compound in our air sample. Since this molecule it’s transformed
during the metabolism into carbon dioxide we should find it inside the breath
sample but in minor quantity respect to the carbon dioxide.

• AMU 44, CO2 (Carbon Dioxide). This molecule is present both in air samples
and in breath samples, but in different quantities. Inside the air samples it
should have a value about 0.04%, while inside the breath samples should be
present in higher quantity due the metabolism transformation of the Oxygen.

• AMU 84, Kr (Krypton). It is a noble gas, since that it should not have any
correlations with the other compounds. This gas belongs to the second range
of acquisitions.
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• AMU 132, Xe (Xenon). It is a noble gas, since that it should not have any
correlations with the other compounds. This gas belongs to the third range of
acquisitions.

As we can see from the Figure 2.4 in the air sample is easy to see the 4 peaks
of first range relative to Nitrogen, the most abundant one, to Oxygen relative to
the AMU 32 and the smaller one relative to the Carbon Dioxide. Instead, in the
second subplot we can see the CO2 peak more evident respect to the Nitrogen and
Oxygen one, from the biological point of view this is a signal that our acquisitions
are coherent with the literature.

A very common analysis to make in the data exploration phase is the construction
of a box plot. A box plot is a graphical representation used to visually display
key characteristics of numerical data, including its central tendency, variation, and
distribution asymmetry. It achieves this by depicting data through quartiles. In
addition to the central box, which covers the interquartile range, you’ll often find
lines (referred to as whiskers) extending from the box. These whiskers illustrate the
range of variability beyond the upper and lower quartiles. Outliers, which are data
points significantly different from the majority of the samples, are represented as
individual points located beyond the whiskers on the box plot. As we can see from
the Figure 2.5, the problem of the skewness is evident, in particular we can see it
from the distance of the whiskers in each plot. For example, taking in consideration
the Oxygen-32 we can see that for the negative class the min value is around
1.5M while the max value is over 1B, a difference of three order of magnitude. An
assumption that we can make at this point is that the positive class suffers less
this problem due the fact that the acquisitions are taken in a contracted lass of
time and so they suffer less the data skewness. The choice of using the log scale for
the y-axis is due the difference of intensity magnitude between a less present gas
like the Xenon and the more abundant gas like CO2 and O2.

Figure 2.5: Box plots in log scale of Nitrogen, Oxygen, Carbon Dioxide, Krypton
and Xenon. Each gas is divided by positive and negative samples in order to
visually represent the quartiles of the 5 features by class label.
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We can also notice a lower presence of outliers inside the first ranges, while it
increases for higher ranges. This can be explained by the higher quality of the
acquisitions inside the first 2 ranges due to the abundance of the compounds and
the high quality of the TIC plot. On the other hand for higher ranges it is harder
to detect compounds present in ppm quantities and also the plateau in those TIC
plots are harder to detect or we had to increase the threshold parameter to have a
sufficient number of samples scarifying a little the quality of the plateau.

In the next analysis will focus on the relation between the compounds, this is
done with scatter plots. In particular this plot put in relation two compounds using
on the x-axis and y-axis the intensities of these two compounds. The intersection of
the points of the 2 axis identifies a patient, so compounds that are highly correlated
should have an high number of points laid on the diagonal. This is the example of
the CO2 and the O2 that seems to be highly correlated by their plot, this can be
confirmed by the fact that they are also biologically related by the transformation
inside the human respiration.

Figure 2.6: Scatter plots of some well known compounds. On the top of the figure
are represented the AMUs of the x-axis, while on the left the AMUs of the y-axis.
The 2 classes are again separated by color.

In this paragraph we will focus on the correlation between features, for this
study we exploit the Pearson correlation coefficient and the relative heat map
shown in Figure 2.7. Correlation is a statistical metric that quantifies the degree
of association between two variables. It can take on either a positive or negative
value. A positive correlation indicates that the variables tend to move in the
same direction—when one increases, the other also tends to increase. Conversely, a
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negative correlation signifies that the variables move in opposite directions, meaning
when one goes up, the other tends to go down.

Figure 2.7: Comparison between air sample and patient sample for an acquisition.

In data analysis, the goal is to identify highly correlated features to select from
a set of variables, as they exhibit similar behavior and often convey redundant
information. To build this plot we use the Pearson Correlation Coefficient:

ρX,Y = cov(X, Y )
σXσY

where:

• cov(X, Y ) The covariance between two features (X and Y ) represents a
measure of how these two features vary together. In other words, it indicates
whether, on average, they tend to increase or decrease together (positive
covariance) or move in opposite directions (negative covariance).
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• σX is the standard deviation of the X feature. The standard deviation for
a single variable is a measure of how much individual data points in that
variable deviate from the mean (average) of that variable. It quantifies the
dispersion or spread of data points.

• σY is the standard deviation of Y .

Since the high dimensionality of our dataset it’s hard to build an understandable
heat map, to make the task more easy we considered only the integer AMUs and
their associated peak to reduce the number of variable to 250 for the three ranges.
As we can see from Figure 2.7 the most correlated features are peaks near to each
other and the correlation decrease while we are moving away from the considered
peak.

2.4.1 Class labels distribution

Figure 2.8: class distribution inside our dataset

As first analysis we will consider the class balancing: once we built the raw dataset
with the class label we can count the number of positive and negative patients
inside our dataset. Since the measures are taken from 2021 when the pandemic
was at its peak, the positive samples are concentrate in that year, while in the 2022
there are only negative patients. Given that, our dataset results imbalanced, in
particular the negative samples are more then twice the positive one.

This can lead to biased model performance. Many machine learning algorithms
are designed to maximize overall accuracy. In the presence of class imbalance, the
algorithm may become biased towards the majority class because it can achieve
high accuracy by simply predicting the majority class most of the time. As a
result, the minority class may be overlooked or misclassified at a higher rate. Since
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that, we will use some technique like under-sampling, oversampling or SMOTE
(Synthetic Minority Over-sampling Technique).

2.4.2 Data skew

In time series analysis, the term "day bias" typically refers to the systematic patterns
or variations that occur in data based on the day of the week. Day bias arises
due to regular, recurring patterns associated with specific days of the week. This
phenomenon can have a significant impact on the analysis and modeling of time
series data, and it’s important to understand and account for it appropriately. If
we proceed our analysis on this first version of the dataset we can assess a skew
problem inside our data. In particular, since the measures are taken during a large
period of time (from March 2021 to July 2022), the machine under went to some
maintenance and some deterioration, this caused a skew. More precisely, we can
see this problem considering the spectra of the same person during different times
of the study.

Figure 2.9: skew problem

As we can see from the plot above, the same person, whose wasn’t positive to
COVID and so we can assume that has the same breath composition except for
some small changes, has a spectrum that is different from other spectra of some
order of some order of magnitude. In the Figure 2.9 we can see a patient’s breath
and it is evident the difference between the peak on the AMU 68 of the acquisition
of the 2022-04-12 (the highest one) and the lowest peak of the same AMU that is
taken from the 2022-04-22.

This problem also led to a measurement bias, in particular if we run a dimen-
sionality reduction technique like PCA or T-SNE, in order to be able to represent
a single sample in a 2D space, we will see that acquisitions of the same day will be
grouped together to form a cluster.
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Figure 2.10: patients’ spectra colored by day - in this scatter plot, it is shown the
distribution of the patients’ spectra projected inside a 2-dimensional space using
the T-SNE method, each of them coloured by the date of acquisition.

A plot that makes more evident the measurement bias by day is shown in Figure
2.10, in this figure each point represents a patient spectrum coloured accordingly
to its date: so acquisitions with the same colour belong to the same day. It’s pretty
straightforward to see that there is a pattern in the distribution of the dots: if we
move from the left to the right we can see measures of the 2021, while moving from
the right the date value increases to the 2022 acquisitions. A part from this, we
can see that the measure of a day are concentrated in clusters, this is typical of
day bias: points belonging to the same day are nearer respect to acquisitions taken
in different dates.

This kind of problem can be mitigated using some normalization techniques or
training our models using some stratified k-fold solution involving day separation.

2.5 Curse of Dimensionality
The curse of dimensionality arises when dealing with high-dimensional spaces,
typically occurring when there is a large number of observed features. This
phenomenon leads to an increase in data sparsity. To grasp this concept, let’s
consider a population of samples, denoted by n to represent the sample size, and p
to indicate the number of observed variables (features). Some of these variables
may even have missing values for certain samples.

As the dimensionality p increases, the "volume" of the space that the samples
can occupy grows rapidly. You can visualize each of the p variables as an axis in a
high-dimensional space. With a higher p, any specific neighborhood within this
space is more likely to contain little or no data, making it sparse. In practical
terms, this increase in sparsity poses significant challenges when collecting data
that accurately represents the entire population.

Moreover, the curse of dimensionality can lead to computational challenges and
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hinder the effectiveness of various machine learning algorithms, as the amount of
data required to adequately explore or model the high-dimensional space grows
exponentially with the number of dimensions. Therefore, addressing the curse of
dimensionality often involves techniques such as dimensionality reduction, feature
selection, or feature engineering to reduce the adverse effects of high dimensionality
on data analysis and modeling.[9]

Since we start from a first version of the dataset with 3021 features, it’s highly
probable that we occur in the curse of dimensionality and that our machine
learning model may be penalized by that. For this reason we will recur to some
dimensionality reduction techniques like PCA and also we will apply some of the
most used methods in mass spectrometry like peak picking to try to reduce the
number of features of our dataset.

19



Chapter 3

Background

3.1 Machine Learning and Statistical Learning

In today’s rapidly evolving technological landscape, Machine Learning (ML) and
Statistical Learning (SL) have emerged as pivotal disciplines that are reshaping a
wide array of industries, including healthcare, finance, marketing, and autonomous
transportation. These fields represent transformative approaches to harnessing the
power of data, enabling more informed and efficient decision-making processes.

Machine Learning is both an art and a science, centered around the idea of
training machines or computer systems to enhance their performance in specific
tasks by leveraging knowledge acquired from data. It empowers computers to learn
from experience, adapt to new information, and make predictions or decisions
without explicit, task-specific programming. Machine Learning encompasses a
broad spectrum of techniques, ranging from supervised learning (where models
learn from labeled data) to unsupervised learning (which uncovers hidden patterns
in unlabeled data) and reinforcement learning (where agents learn to interact with
environments to maximize rewards). Machine Learning algorithms excel in tasks
such as image and speech recognition, recommendation systems, and predictive
analytics.

Conversely, Statistical Learning forms the bedrock upon which many Machine
Learning methods are constructed. It is deeply rooted in statistical theory and
focuses on comprehending the underlying relationships between variables within
data. Statistical Learning is indispensable for tasks involving inference, prediction,
and decision-making. It encompasses techniques like linear regression, classification,
and clustering, providing the means to model and analyze data, extract valuable
insights, and facilitate data-driven decision-making processes.

Together, Machine Learning and Statistical Learning offer a powerful toolbox for
extracting knowledge and value from data, making them indispensable components
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of the ever-advancing field of data science [10].
In the next subsections we will explore some of the state-of-the-art models used

in Machine Learning with a brief explanation of their behavior and functioning.

3.1.1 KNN Classifier
The K-nearest neighbors (KNN) algorithm stands as a non-parametric supervised
learning classifier, leveraging the concept of proximity to make informed classifi-
cations or predictions regarding the categorization of individual data points. It
frequently finds application in classification problems, where the assignment of a
class label is determined through a majority vote mechanism. Nevertheless, before
undertaking such classification tasks, a critical prerequisite is establishing a distance
metric. In our work we chose the Minkowski distance with the parameter p equals
to 2, that results as the classical Euclidean distance:

d(x, y) =
öõõô nØ

i=1
(yi − xi)2

KNN operates on the principle that data points with similar features tend to belong
to the same class or category. To make a prediction for a new, unclassified data
point, the algorithm calculates the distance between this point and its K-nearest
neighbors within the dataset, where k represents a user-defined parameter indicating
the number of neighbors to consider. The class label assigned to the new data
point is then determined by the majority class among its K-nearest neighbors. By
tuning the value of k, KNN allows for flexibility in the balance between model
complexity and robustness. Smaller k values yield more flexible models that may
be sensitive to noise in the data, whereas larger k values tend to provide smoother
decision boundaries but might miss finer details in the data. The wrong choice of
this value can lead to overfitting or underfitting.

In essence, the K-nearest neighbors algorithm is a versatile tool in the realm of
machine learning, offering an intuitive approach to classification tasks by relying
on the proximity of data points within a defined feature space.

3.1.2 Random Forest Classifier
The Random Forest algorithm is a versatile member of the ensemble learning
family, serving dual roles in both classification and regression tasks. What sets
it apart is its ability to harness the wisdom of multiple decision trees to improve
predictive accuracy while mitigating the risk of overfitting. Random Forest operates
by aggregating the predictions of individual decision trees. Instead of relying on
a single tree’s output, it takes a majority vote for classification tasks or averages
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predictions for regression tasks from a group of decision trees. This ensemble
approach is what makes Random Forest robust and reliable.

To address overfitting, Random Forest introduces diversity into its decision
trees. Each tree in the ensemble is trained on a distinct subset of the data and
a random subset of features. This ensures that each tree focuses on capturing
different aspects of the data, reducing the likelihood of overfitting to noise in the
training data.

Furthermore, Random Forest often employs the bootstrap technique. This
involves randomly sampling the dataset with replacement to create multiple training
sets for each decision tree. By incorporating bootstrapping along with feature
subsampling, Random Forest enhances the diversity of training data, further
fortifying the ensemble’s predictive power.

3.1.3 Logistic Regression

The logistic regression method is a machine learning algorithm employed firstly for
binary classification tasks. The input of this algorithm is a set of features and a
binary label. This classifier makes use of a sigmoid function (also called logistic
function) to shape the probability that the input is a member of the positive class,
in particular it transforms each input inside the range [0, 1], making this algorithm
appropriate to emulate a probability result. The sigmoid function is mathematically
represented as:

σ(z) = 1
(1 + e(−z))

This model supposes that the log-odds of the probability of the class 1 is a linear
combination of the output variables:

log( p

1 − p
) = β0 + β1x1 + β2x2 + ... + βkxk

where p is the probability to belong to class 1 and each β is the coefficient associated
to a feature. When training this model, the objective is to determine the optimal
values for each β coefficient that effectively align with the training data. Achieving
this entails utilizing optimization techniques such as gradient descent to minimize a
specified loss function. Once these feature coefficients are established, they enable
the transformation of log-odds into probabilities using the previously mentioned
sigmoid function. This transformation facilitates the computation of the decision
boundary, which acts as the threshold demarcating the two classes within the
feature space.
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3.1.4 Gradient Boosting Classifier

The gradient boosting classifier is a versatile machine learning algorithm categorized
under ensemble learning. It serves both classification and regression purposes by
harnessing the strengths of multiple weak learners, typically represented as decision
trees, to construct a robust predictive model. This classifier initiates the process by
creating one or more weak learners and utilizing them for preliminary classifications
or predictions. At each stage of the process, a new learner is introduced, specifically
optimized to rectify errors made by the preceding model, with a focus on addressing
misclassified instances. The predictions from each decision tree are assigned varying
weights based on their performance. These weighted predictions are then aggregated
to form the final prediction for a given data point.

The algorithm further enhances its performance by adjusting the weights. It
calculates the gradient of the loss function concerning predictions and updates the
model’s parameters in the opposite direction to minimize prediction errors.

This iterative process continues until a predefined number of new models have
been generated or until the algorithm converges to an acceptable level of accuracy.
Gradient boosting, with its iterative and ensemble-based approach, consistently
delivers highly accurate and robust predictive models, making it a preferred choice
in various machine learning applications.

3.1.5 SVM

Another widely employed state-of-the-art machine learning model is the Support
Vector Machine (SVM). SVM is a powerful supervised learning model designed for
both classification and regression tasks. Beyond its capability for linear classification,
SVMs excel at efficiently conducting non-linear classification through a technique
known as the kernel trick: instead of explicitly mapping data to a higher-dimensional
space, which can be computationally expensive, the kernel computes the dot product
in the higher-dimensional space directly in the original feature space. In our study
we use the RBF kernel. The Radial Basis Function (RBF) kernel, also known as
the Gaussian kernel, is a popular kernel function used in Support Vector Machines
(SVMs) for classification and regression tasks. It is especially effective for non-linear
classification problems, it allows the SVM to create non-linear decision boundaries
that can flexibly adapt to complex patterns in the data.

The fundamental goal of SVM algorithms is to delineate a clear margin between
samples belonging to different classes. These margins are drawn in such a way that
the distance between the margin and the classes is maximized, thereby minimizing
the classification error. This margin optimization process is a hallmark of SVM’s
discriminative power, enabling it to make robust and accurate predictions [11]
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3.1.6 Voting Classifier
The concept behind a voting classifier is to leverage the collective wisdom of
diverse machine learning classifiers and make predictions based on a majority vote
among them. This approach proves valuable in harmonizing the strengths and
compensating for the weaknesses of individual classifiers, enhancing the overall
predictive performance. In our study, we employ a specific type of voting known
as "hard majority class voting." With hard voting, the predicted class label for a
particular instance in the dataset is determined by the majority vote among the
class labels predicted by each individual classifier. In essence, the class that receives
the most votes from the ensemble of classifiers is selected as the final prediction.

In contrast, there’s another form of voting called "soft voting." Soft voting takes
into account not only the majority class but also the associated class probabilities
predicted by each classifier. The final prediction is made by aggregating these
probabilities, often by calculating the weighted average or using other aggregation
methods. Soft voting can provide more nuanced predictions, especially when the
classifiers in the ensemble assign varying degrees of confidence to their predictions.

3.2 Deep Learning and Neural Network
Artificial intelligence (AI) has made remarkable strides in recent years, finding
applications in various domains such as automation, speech and image recognition,
medical diagnosis, and scientific research. However, one of the challenges in AI
is extracting high-level, abstract features from raw data, especially when these
features involve complex variations like accents in speech. This difficulty necessitates
sophisticated understanding of the data, almost at a human-like level.

Deep learning, a powerful subset of AI, addresses this fundamental problem
in representation learning by introducing hierarchical representations. These
representations build complex concepts from simpler ones, allowing computers
to understand data in a more human-like manner. At the core of deep learning
is the feedforward deep network, often referred to as the multilayer perceptron
(MLP). This mathematical function maps input data to output values through the
composition of many simpler functions. Each mathematical function applied at
different layers provides a new representation of the input, gradually forming a
deep understanding.

One perspective on deep learning is that it empowers machines to learn the most
suitable representation for the given data. Another perspective views deep learning
as enabling computers to learn multi-step programs. In this view, each layer in
the network can be seen as a state of the computer’s memory after executing a
set of instructions in parallel. Deeper networks can execute more instructions
sequentially, leveraging the power of referring back to earlier results. However,
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it’s important to note that not all information within a layer’s activations directly
encodes data-related variations. Some of it serves as state information, similar to
counters or pointers in traditional computer programs, helping the model organize
its processing. This approach helps to build deeper and deeper networks that are
able to learn more complicated structure and improve task like image recognition
and image segmentation. The improvements in this field also moved to create
new layers or architectures with different goals. In particular in the next section
we will focus on the Convolutional Autoencoders that take inspiration from the
traditional autoencoder (Section 5.5.3) and the convolutional layers typically used
in image-related projects.

3.2.1 Convolutional Autoencoder
A Convolutional Autoencoder (CAE) is an autoencoder that is commonly used for
unsupervised learning tasks, such as image compression and denoising. It is an
extension of the traditional autoencoder architecture that incorporates convolutional
layers into both the encoder and the decoder part of the networks. Since our spectra
are 1-dimensional inputs, we developed a 1D convolutional autoencoder that uses
1D convolutional layers, making it particularly suitable for sequential or time-
series data. In CAEs, convolutional layers are used in the encoding part instead
of the fully connected layers used in the classical autoencoder architectures and
deconvolution layers are used in the decoding phase. A part from this layer, we also
used standard layers of convolutional neural networks as well, as expanding layers
such MaxPooling, UpSampling that performs inverse function in the decoding phase
and BatchNormalization. The training process for a Convolutional Autoencoder
is similar to that of a traditional autoencoder. The network is trained to minimize
the difference between the input signal and the reconstructed spectrum using a
loss function such as mean squared error (MSE). To build the architecture we took
inspiration from [12] and [13]. The designed Convolutional Autoencoder (CAE)
comprises 33 layers structured around a recurring block. This block consists of a
1D convolutional layer, followed by a batch normalization layer, and subsequently
a max pooling layer in the encoder or an up-sampling layer in the decoder section,
depending on its role (Figure 3.1).

In the decoder section, the input signal undergoes initial processing through
a 1D convolution with a 128x3 kernel size. Subsequently, batch normalization
is applied to the convolutional layer’s output to maintain a mean close to 0 and
introduce regularization during training. Following this, a max pooling operation
reduces the sample size by half. These processes repeat in the encoder section with
varying kernel sizes and pooling sizes.

The final layer yields a 63x8-dimensional feature space, representing the encoded
version of the input spectrum. This encoded representation serves as input for the
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Figure 3.1: The basic structure of the encoder and decoder block.

Figure 3.2: The general structure of a standard AE, compressing input data and
reconstructing it from the encoder output layer.

decoder, where each layer executes operations that reverse those of the encoder.
Specifically, up-sampling layers increase the input’s dimensionality to reverse the
max pooling operations. From this embedded space, the network aims to reconstruct
the original signal with minimal Mean Squared Error (MSE).
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To prevent data overfitting, L2 regularization is employed in each convolutional
layer. This technique introduces a penalty term in the model’s loss function, which
is proportional to the sum of the squared weights. Consequently, it encourages
smaller weights in the model, reducing complexity and mitigating the risk of
overfitting. The terms follows the equation:

L2_loss(w) = λ ∗
Ø

w2

where

• w is the weight of a particular model parameter

• λ is the hyperparameter that controls the impact of the regularization

The architecture of the CAE, the actual code implementation, the training phase and
the application of such convolutional autoencoder are explained in the Experimental
Results chapter in Section 5.5.3.
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Chapter 4

Method

4.1 Signal Processing
Signal processing in the context of mass spectrometry is the indispensable bridge
that transforms raw, often noisy, and intricate data generated by mass spectrometers
into meaningful insights. It involves a series of mathematical and computational
techniques that extract valuable information from the signals produced during the
ionization and detection processes. These signals provide a wealth of information
about the mass-to-charge ratios of ions present in a sample, which in turn offers
crucial insights into the molecular composition, isotopic distribution, and even
three-dimensional structures of compounds.

The importance of signal processing in mass spectrometry cannot be overstated.
It serves as the catalyst that enhances the accuracy, sensitivity, and reliability
of mass spectrometric analyses. By efficiently filtering out noise, correcting for
instrumental artifacts, and highlighting relevant features, signal processing tech-
niques empower researchers to uncover hidden patterns, identify compounds with
unparalleled precision, and unravel the complexities of biological, chemical, and
physical systems.

In this introduction, we will explore the pivotal role of signal processing in the
realm of mass spectrometry, delving into the methodologies that transform raw
data into actionable knowledge.

4.1.1 Signal and Noise
Experimental measurements are never perfect, even with sophisticated modern
instruments. Two main types of measurement errors are recognized: systematic
error, in which every measurement is consistently less than or greater than the
correct value by a certain percentage or amount and random error, in which there
are unpredictable variations in the measured signal from moment to moment or
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from measurement to measurement. This latter type of error is often called noise.
The main goal of denoising is to reduce the influence of random variations, several
methods and transformations are available for this task, in our study we chose to
adopt the Savitzky-Golay filter.

The Savitzky-Golay smooth is based on the least-squares fitting of polynomials
to segments of the data. Compared to other technique like the sliding average
smooths of the same width, this filter is less effective at reducing noise, but more
effective at retaining the shape of the original signal.

Figure 4.1: Application of the Savitzky-Golay filter on a mass spectrum. The
blue signal is the raw data while the blue is the smoothed one.

4.1.2 Baseline correction
In mass spectrometry, the baseline problem refers to the challenge of separating the
true signal representing the ions of interest from the background noise present in
the acquired mass spectra. The baseline is essentially the flat or slightly undulating
signal that runs along the zero intensity level on a mass spectrum plot. This
baseline noise can arise from various sources, including electronic interference,
fluctuations in the instrument, and other external factors, and it can obscure the
accurate identification and quantification of analytes. The baseline problem is
particularly significant in mass spectrometry because it can lead to inaccurate
measurements, misidentification of compounds, and reduced sensitivity. If the
baseline noise is not effectively removed or minimized, it can interfere with the
detection and interpretation of the ions of interest, making it difficult to distinguish
between true analyte signals and background noise. This is especially critical in
applications where the target analytes are present in low concentrations, as the
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baseline noise can mask their presence or distort their peak shapes.
Addressing the baseline problem requires the application of sophisticated signal

processing techniques. These techniques aim to distinguish between true signals and
noise by employing mathematical algorithms to filter, smooth, and baseline-correct
the mass spectra. Common approaches include baseline subtraction, where a fitting
function is used to estimate and subtract the baseline noise, and various de-noising
algorithms that aim to preserve the signal while reducing the impact of noise. The
presence of a baseline or background signal, on which the peaks are superimposed,
will greatly influence the measured peak if not corrected or compensated.

Figure 4.2: Baseline detection for a patient breath sample.

As we can see from the Figure 4.2, the mass spectrum contains a background
signal that brings up the picks of the first part of the acquisition. This problem is
due the fact that the machine cannot go immediately to zero after an higher pick is
detected and so the next ion will start not from zero but from a higher value. This
phenomenon can lead to overestimate the compounds near to a high peak and so it
need to be tackle.
To solve this we leverage on the Asymmetric Least Squares (ALS) baseline correction
method. ALS in an iterative mathematical algorithm used to estimate and correct
the baseline of a signal, particularly when the baseline may exhibit both systematic
variations and random noise. This is how it works:

• The ALS method assumes that the observed signal can be divided into two
components: the baseline (slowly varying background) and the analyte peaks
(rapidly varying signal components)

• The algorithm starts by making an initial estimation of the baseline, which
can be a simple linear fit or a smooth curve that follows the general trend of
the baseline.

• The ALS algorithm iteratively updates the baseline estimation and the analyte
peaks’ estimation. During each iteration, it applies a weighted least squares
fit to the signal, where the weights are chosen asymmetrically to give more
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importance to the data points that are likely to be part of the baseline rather
than the analyte peaks. This asymmetric weighting helps to prevent the
baseline from being pulled toward the analyte peaks.

It iterates the last step until the change in the estimated baseline between consecu-
tive iterations becomes small.

4.1.3 Peak Alignment
Errors in calibration or limitations of the mass spectrometer can lead to variations
between the observed m/z ratios values and the true ion intensity values [14].
Therefore, systematic shifts may appear in repeated acquisitions and the same
compound that should belong to a particular AMU can have different m/z values
in a different spectra. To correct this behavior different peak alignment algorithms
have been proposed, in our case we adopted a simple approach moving the peak to
the nearest integer m/z position, using them as anchors. The curves are adapted
depending on the direction of the shift in order to avoid information loss. Stretching
and compression are done with linear interpolation to fit the corresponding segments
in the reference.

Figure 4.3: Effect of the peak alignment procedure on a patient breath spectrum.
The dashed lines highlight the principal peaks of the signal before and after the
alignment. As we can see each peak has been correctly aligned to the respective
integer AMU.

4.2 Normalization
As we have described in the section 2.4 our dataset suffers of the problem of
measurement bias in a way that acquisitions taken in the same day are nearer
respect to others taken in different day. To overcome this problem we have to
apply some normalization technique in order to scale our samples in a way that
are comparable between them and not only with measures inside the same day. To

31



Method

overcome the problem the feature scaling is applied, taking in consideration both
normalization and standardization solutions. In addition to classical approach we
will use we try to build a Krypton normalization method to try to use an intrinsic
value of the sample as reference.

4.2.1 Standard Scaler
The StandardScaler class from the sklearn library is used to standardize features
by subtracting the mean and re-scaling to unit variance. In particular, the output
will assume the value:

z = (x − u)
s

where u is the mean of the training samples and s is the standard deviation of
the training samples. Standardization is a common prerequisite in many machine
learning methods. This requirement arises from the observation that features with
unscaled, high intrinsic values can dominate the importance of other features that
typically possess lower values.

4.2.2 Robust Scaler
As we said before, normalization and standardization are useful to avoid that fea-
tures wit a larger scaler dominates other features, similarly outliers can overshadow
other data point for a given feature. For this reason in this section we will introduce
the Robust Scaler, a scaling method resistant to outliers. The goal of this method
is the same of the Standard Scaler: we want to re-scale our features in a way that
are comparable with each other, the difference lies in how they scale the input
values. Despite Standard Scaler, Robust Scaler uses median and interquantile range
to scale the input features, in a more precise way it measures the distance in terms
of IQR between the considered point and the input’s median.

z = x − medianinputs

IQRinputs

The IRQ is the range between the first quantile and the third quantile, the fact
that this method uses the IRQ and median makes it resistant to outliers. That’s
because outliers, unlike the mean, doesn’t affect the median.

4.2.3 TIC normalization
TIC normalization, which stands for Total Ion Current normalization, is a common
data pre-processing technique used in mass spectrometry to correct for variations
inside the spectrum intensities across different mass spectra. In mass spectrometry
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experiments, it’s common to observe fluctuations in ion intensity due to various
factors such as instrument settings and experimental conditions. TIC normalization
aims to mitigate these variations and enhance the comparability of mass spectra
acquired in different days or conditions. For TIC (Total Ion Current) we mean the
sum of all the intensities inside a mass spectrum. So, the normalized sample z will
assume the value:

z = x

TIC

where

TIC =
NØ

amu

intensityamu

In practice we sum up all the m/z values inside the spectrum and then we will
divide the sample by this sum. The result of such a method is a spectrum made by
the relative compounds abundance respect to the TIC.

4.2.4 Krypton normalization

Normalizing mass spectra using a specific compound’s intensity is an alternative
approach to use the Total Ion Current (TIC) for normalization, this method
employs the intensity of a chosen reference compound’s ion peak. This technique is
often referred to as internal standard normalization or compound-specific
normalization. In our study we chose the Krypton-84 as reference compound,
in this way the final result of this method is an histogram of values of relative
intensities respect to the Kr-84. The reason for which our choice has fallen on
this particular compound is that it is a noble gas and consequently it should not
interfere with the metabolism and so it should remain constant between all the
patients. In particular, the choice of the Kr-84 should reflect the property of
constant concentration across all samples in our experiment, so it’s important to
pick a reference that is not affected by experimental condition and represents a
stable concentration. This method involves the selection of the peak of the Kr-84
and the computation of the ratio between all the intensities inside the sample and
the selected value. Mathematically:

z = x

xKr84

This technique has the advantage of being compound specific, this method relies
on the small variations of the selected compound between different samples rather
then the whole TIC.
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4.3 Feature Selection
In section 2.5 we talk about the curse of dimensionality and the relative problems
of having an high number of features as input of a machine learning model. To
tackle this problem we propose different features selection methods that leverage on
classical machine learning approach like PCA and Gradient Boosting, on statistical
methods like the variance threshold and on domain knowledge like using the peaks
as feature. The feature selection phase should help us to have a more compact and
lower dimensional dataset without the loss of information on the other side some
of these methods will be later used to represent our samples in a 2-dimensional
space in order to visualize the representation of our dataset.

4.3.1 Peaks Selection
Since now we have considered all the AMUs inside the spectrum as features, each
acquisition has 3020 intensity values, but in this measures we are considering also
the fractional AMUs. Physically talking, AMUs can assume only integer values,
this value should be approximated by the peak intensity corresponding to that
AMU. So, the idea behind this feature selection method is to use only the intensity
associated with the peaks of the spectrum and the integer AMU as features. Doing
this, since our acquisitions are made by mass ratios distanced by 0.1 of an AMU,
we can reduce the dimensionality of our dataset by a factor of 10, bringing the
features dimension to 302.

An important step in this method is the peak detection phase, in which we try to
identify the peaks inside our spectrum and also we have to associate them with the
integer AMU. A very common technique for this task is to use the differentiation,
in particular the first derivative of a peak has a downward-going zero-crossing at
the peak maximum, which can be used to locate the x-value of a peak [14]. This
method assumes that there is no noise in the signal, because some noise in real
experimental signals can cause many false zero-crossing. To avoid this problem we
chose to apply a smooth algorithm before running this procedure, specifically we
use the Savitzky-Golay filter as we have discussed in Section 4.1.1. For this step we
used the find_peaks function of the scipy.signal module, this procedure also
takes as input a distance parameter that specifies the minimum distance after
which it can find another peak. Since in our case the peaks are often in the middle
of the range [AMU − 0.5, AMU + 0.5] where AMU is the integer m/z ratio, we
set a distance of 6, in order to start the next identification after the 5-th decimal
AMU. This function returns the position of the peaks inside our spectrum, so
it’s easy associate each maximum to its position. In some cases, especially when
the spectrum is nearly flat or there is a particular noisy area of the spectrum the
procedure is not able to find peaks. In this cases we associate the intensity value
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Figure 4.4: Application of the peak detection algorithm on a slice of a second
range mass spectrum normalized with the TIC normalization and smoothed with
the Savitzky-Golay filter.

to the integer AMU, this simple approximation works because it’s highly probable
that a high number of spectra has these flat zones and so these peaks will be filtered
during the variance threshold phase (Section 4.3.4).

4.3.2 PCA
PCA (Principal Component Analysis) serves as a dimensionality reduction tech-
nique, employed to condense the number of features within input data instances.
Typically, it transforms a large feature set into a smaller one while preserving
the majority of the essential information from the original set. The objective
of PCA is to discover a more meaningful basis for representing a given dataset.
This newly derived basis is anticipated to unveil concealed patterns within the
dataset while effectively reducing noise. PCA finds applications in various domains,
including dimensionality reduction, data compression, feature extraction, and data
visualization. [15]

The core objective of PCA is to diminish the feature count by constructing a
covariance matrix, identifying highly correlated variables that can be safely removed
due to their redundancy. In the quest to reduce features, a select few linearly
uncorrelated principal components are chosen to account for the majority of data
variation. The initial principal component explains the greatest variation within
the data, followed by each subsequent component, which is selected to be the
most orthogonal and varying. Principal components are essentially novel variables
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created as linear combinations of the original variables. These combinations are
designed in such a way that the new components remain uncorrelated, and most
of the information is condensed into the initial components. This makes PCA an
invaluable tool for exploring and simplifying multidimensional data.

However, it’s worth noting that PCA’s effectiveness can be influenced by the
scaling method applied to the data and the potential presence of outliers in the
dataset.

4.3.3 Gradient Boosting
The concept behind feature selection using gradient boosting (detailed in Section
3.1.4) stems from the model’s intrinsic use of decision trees. This characteristic
makes it relatively straightforward to calculate importance scores for each attribute.

In the context of gradient boosting, importance refers to a score indicating how
crucial a feature was in constructing the boosted decision trees within the model.
Essentially, the more a feature is employed in the decision-making process within
the trees, the higher its importance score becomes. This score is computed for every
attribute in the dataset, enabling a comparison of feature importance rankings.

The determination of importance takes into consideration the impact of each
attribute’s split point on the model’s performance, factoring in the number of
observations handled by each node. Performance metrics, such as purity measured
by the Gini index or other customized error functions, guide the selection of split
points. Subsequently, these individual feature importances from each tree are
aggregated by averaging them across all the decision trees in the model.

These importance scores serve as a basis for feature selection. By establishing a
reasonable threshold, we can select only those features with relative importance
scores surpassing that threshold value. This process enables us to isolate the most
significant features, effectively reducing the number of attributes within our dataset.

4.3.4 Variance Threshold
Variance threshold feature selection is a technique used in machine learning to
select or remove features from a dataset based on their variance, which quantifies
the amount of variation or spread in the data for a particular feature. It’s a
simple method but effective for feature selection especially when dealing with
high-dimensional datasets.

The basic idea behind this method is to identify and remove features with low
variance because they are less informative and may not contribute much to the
predictive power of a machine learning model. In particular, features with low
variance have values that don’t vary significantly or are nearly constant inside the
dataset and may not carry useful information. Choosing a correct threshold is
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crucial, an higher threshold brings to a lower selection of features, while a lower
threshold to an higher selection. In our study we run our machine learning models
with different value for the threshold to compare their performance and chose the
best.

4.3.5 Convolutional Autoencoder

An autoencoder represents a distinct type of neural network with the primary
objective of replicating its input at its output. Its operation involves an initial
encoding step, wherein it transforms input data into a lower-dimensional latent
representation, followed by decoding, which reconstructs the original input using
this latent representation. Through this process, an autoencoder learns to compress
data while minimizing reconstruction errors. Typically, an autoencoder comprises
two essential components: the encoder and the decoder. The encoder usually
consists of multiple layers designed to extract feature representations from the
input. It then forwards this representation to the decoder, which endeavors to
reconstruct the initial input.

In our specific approach, we initially trained our model to replicate input spectra.
Subsequently, we omitted the decoder component and retained the encoder part,
which possesses the ability to compress information into a lower-dimensional space.
In essence, this encoder segment functions as a feature extractor, enabling the
projection of high-dimensional data into a lower-dimensional space[16].

4.4 Data Augmentation

Data augmentation is a technique commonly used in machine learning to artificially
increase the size of the dataset by applying various transformations to the existing
data. The primary goal of data augmentation is to improve the model’s performance
and generalization by exposing it to a wider range of variations and reducing the
risk of overfitting. We use data augmentation to increase the number of samples at
our disposal, in particular we start from the spectra of 312 patients and with this
technique we are able to reach over 40,000 samples. The idea behind this method is
to use all the acquisitions extracted from a single measures inside the plateau and
use them in combination with each acquisition of the other ranges for that patient.
In this way instead of extracting a single spectrum from each acquisition we can
extract multiple spectra made by the combination of each measure of different
ranges.
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4.5 Classification Task
For the classification task we use some of the state of the art machine learning
algorithms and some famous metrics. The objective of the classification is to discern
COVID-19 positive instances from the negative one. This task is done on a dataset
build from the .ASC files collected by NTA and filled with the mass spectrometer
acquisitions, how the dataset has been built is explained in the Section 5.1.

For the sake of classification we follow the standard machine learning approach:
we split our dataset into a training set and a test set and use we use part of the
training split as a validation set to perform the hyperparameter tuning. Specifically,
during the training phase we will use the training set to train our models, while
during the testing part we will focus on the testing set to compute some metrics
and evaluate each models in order to be able to compare each of them and select
the best one. Since we use data augmentation as specified in the Section 4.4, the
training set will be made by the combination of the acquisition of the same patient
during that day, while the test set is composed by the mean of all the acquisitions
taken from the plateau of the TIC plot for that patient.

In our research, we will focus on a specific validation approach known as stratified
K-fold. This method combines the conventional k-fold cross-validation technique
with the principles of stratified sampling. Stratified sampling is a sampling technique
that maintains the same proportional representation of samples as seen in the
original dataset. To achieve this, the population is divided into distinct groups,
often referred to as strata, based on a specific feature. When applied within cross-
validation, this technique ensures that both the training and test sets possess the
same proportion of the feature of interest. In our case, this feature of interest
pertains to the day of acquisition.

The stratified K-fold approach proves invaluable in cross-validation as it guaran-
tees that the cross-validation results closely approximate the errors computed over
the entire population. This method becomes particularly pertinent when dealing
with time-dependent data, where variations in data characteristics may occur across
different days. Since this is exactly our case, the application of this method allows
us to capture day-specific characteristics and enhanced generalization.

4.5.1 Metrics
In our study the results are expressed in terms of F1-score (F1), precision (P),
balanced-accuracy (A) and recall (R) to evaluate the performance of our classifiers
and to be able to compare them. These metrics are computed using the concept of
True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN). Specifically, they represents:

• True Positive (TP) represents the number of instances correctly predicted
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as positive by the model.

• False Positive (FP) represents the number of samples predicted as positive
when they are actually negative.

• True Negative (TN) represents the number of instances correctly predicted
as negative by the model.

• False Negative (FN) represents the number of samples predicted as negative
when they are actually positive.

All of these four metrics are used as parameters for the computation of the evaluation
metrics.

• Precision This metric measures how many of the positively predicted instances
are actually positive, mathematically

P = TP

TP + FP

An high precision means that the model makes fewer false positive errors,
meaning when it predicts a positive class, it’s likely to be correct.

• Recall. Recall also known as sensitivity is a metric that measures how many
of the actual positive samples were correctly predicted. It’s also the ratio of
true positives (TP) to the sum of true positives and false negatives (FN):

R = TP

TP + FN

An high value of recall indicates that the model captures a large proportion
of actual positive instances, which is particularly important when the cost of
missing a positive instance is high.

• Balanced accuracy. This metric takes in consideration both true positive
and true negative rate, making it a good metric for imbalanced datasets. It’s
the average of recall and specificity (true negative rate).

A = R + S

2

S = TN

TN + FP

and R is the recall as specified above. This metric can deal with imbalanced
datasets.

39



Method

• F1-score. The F1-score is a metric used to measure the balance between the
precision and the recall. It takes into account both False Positives and False
Negatives. The formula to compute the F1-score is:

F1 = 2 · P · R

P + R

It’s particularly useful when you want to find a balance between precision and
recall, especially, as in our case when the class distribution is imbalanced.

We have to specify that in case of unbalanced dataset, if the model tends to predict
the majority class more frequently, it might achieve high accuracy due to the
abundance of true negative despite the performance on the minority class might
be poor. In this cases we may have high accuracy but recall could be very low,
meaning that the model misses a large number of positive instances making the
FN very big lowering the ratio.
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Chapter 5

Experimental Results

In this section experiments are presented and some practical considerations are
made, in particular we will concentrate on the implementation of each method
presented in the previous chapter. The technologies used are mainly related
to Python packages, in particular we used the Scipy library, Pandas for the
presentation of the DataFrame and NumPy for the mathematical manipulation.
All the plots and results representations are made with the MatPlotLib and the
Plotly Express module. The convolutional autoencoder used as feature extractor
has been developed with the TensorFlow library. All the classification models are
imported from the scikit learn framework except for the Gradient Boosting
Classifier that is taken from the xgboost Python module. Our study used the
Jupyter Notebook technology, an open source web application to create and share
documents containing texts and live code.

5.1 Creation of the dataset
In this section we discuss about the creation of the very first version of the database,
the one that contains the raw acquisitions of each patient taken from its spectrum.
We already talk in section 2 that each patient may have been tested multiple time
(always in different days) and the organization of the ASC files with the acquisitions.
The starting point is to specify that each patient acquisition is identified by the
date, an incremental identifier relative to the day and the range in which the
measures are taken. The goal of this analysis is to find the best way to represent
the data collected for each patients in an accessible and easy to explore way.

Our mass spectrometer collects the acquisitions inside an ASC file, the machine
collects the data at each interval of scan, so inside each of these files we can found
multiple acquisitions for a single patient measure. We have to specify that the
instrument goes through different phases during the measure: when we start the
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acquisition the machine room is presumably empty, when the breath or the air
comes in, fills the room and the acquisition can start after the measurement has
taken place the air chamber is emptied and the process ended. In each of these
phases several acquisitions took place, but not each of them is a good measure. In
particular, we are interested only in the acquisitions taken when the machine is
operating at full capacity. To do that, we exploit the fact that when the instrument
room is filling with air or with the patient breath, the quantity (intensities) of
the compounds detected by the machine should grow since new substances are
introduced into the instrument. Since the global quantity of compounds is growing,
also the TIC should grow because more ions will be detected. Some seconds after
the mass spectrometer should reach its regime and we should see a plateau, that
region is where the flux reaches its stability. Eventually in the final phase the mass
spectrometer valve is open and the flux will leave the instrument decreasing also
the value of the TIC.

Figure 5.1: TIC plot for a breath sample. In this figure we can clearly see the 3
phases of the acquisition. In blue we can see the TIC plot and the red rectangle
represents the plateau region identified by our algorithm.

The algorithm to identify the plateau works in this way, it takes 5 parameters:

• the signal

• the minimum allowed length of the plateau

• the maximum length of the plateau

• the tolerance that is a number between 0 and 1 indicating how strict are the
requirements for the slope of the plateau to be considered constant.

• the size of the uniform 1D filter applied to the signal and its derivative

As first step the procedure applies a uniform 1D filter to the signal with the
specified size taken as parameter. After that, the first derivative is computed on
the smoothed version of the signal. The idea is to consider a plateau the region
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in which the first derivative of the function is almost flat. Then we apply the
q − th-quantile function to the absolute value of the first derivative of the signal
with q value equals to the specified tolerance, the returned value will be used as
threshold under which other values will be considered as zero, this will constitute
our tolerance guard-band ϵ (this can be seen from the Figure 5.1). Proceeding in
this way allows us to specify different threshold depending on if we want to be
more strict on the definition of the plateau or we can consider flat also the zone
with bigger slope variations. After this step, all the zero values inside our array
are considered as flat zone, so we have to take the largest one to find maximum
plateau. As final step we computed the standard deviation of acquisition inside
the detected plateau using a rolling window of size 4. We pick the acquisition for
which this metric is minimum and in some cases we will return directly all the
measures relative to each point of the TIC plot or one single spectrum made by
the acquisitions inside the plateau.

Specifically, all the acquisitions inside the plateau are considered during the
training phase of our models, while the mean of the patient acquisitions is considered
in the testing phase. Following this approach allows us to have a bigger dataset
during the training phase and only a sample for each patient, or better acquisition,
during the test and validation phase. Since sometimes was not possible to detect a
plateau given the highly prototypical nature of the mass spectrometer or the non-
optimal environment during the acquisition, some measures have been discarded.
After this step we built 4 different datasets, one for each range, in particular the
first goes from 10 to 51 AMUs, the second from 49 to 151 AMUs, the third from
149 to 251 AMUs and the latter from 249 to 351 AMUs. It’s mandatory to specify
that for the higher ranges less acquisitions are available and so it wasn’t possible
to build a full spectrum for each patient. The dataframes built at these step are
made by the acq column that contains for each entry the information about the
day, the patient and the id of the acquisition inside the plateau, by a column for
each AMU with a single decimal point and the index that identifies the patient.

Figure 5.2: The acquisition dataframe for the range 1.

A part for the acquisition datasets we also need the patient dataset to be able
to identify the positive from the negative. This information can be taken from a
csv file provided by the hospital, in this document we can find information about
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the date and the file that identifies the single ASC file, also for each entry it’s
specified the COVID status and if the patient is healed from COVID and if it is, in
which date. It also keeps the information about if the particular ASC file is valid
or if there was problems during the acquisitions. The raw dataset presents breath
samples of 312 patients, divided into 93 positive records and 219 negative records.

Figure 5.3: The patient dataframe and its composition.

5.2 Data Visualization
In this section we examine the database composition visualizing the samples
distribution with the help of the T-SNE (Section 2.3.1) and of the PCA (Section
4.3.2) algorithms. In order to have a visual comparison between the positive and
the negative patients we also plot some samples belonging to the two label classes.
The graphical impact of the normalization techniques is shown in Section 5.4.

The first analysis compares the positive and the negative classes, in Fig. 5.4 we
can see the difference between 20 spectra of each class randomly taken.

Figure 5.4: The comparison between the negative raw spectra and the positive
one.

In order to highlight the distribution of each patient we can employee the T-SNE
technique to plot in a 2D representation the positive and negative samples. Since
we are dealing with not-normalized spectra the day bias is still present and the
day clusters should be well-visible. To avoid misunderstanding we have to point
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out that in t-SNE plots, distance between points is not represented in a direct or
absolute manner as it would be in, for example, a scatter plot of two continuous
variables. Instead, t-SNE aims to preserve the pairwise similarity between data
points and local structures and relationships between samples.

Figure 5.5: TSNE - distribution of positive and negative patients.

To highlight the benefit of the data augmentation technique shown in Section
4.4 we also plot the t-SNE representation of the augmented version of the dataset.

Figure 5.6: TSNE - distribution of positive and negative patients after the
application of the data augmentation technique.
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The Figure 5.6 shows the distribution of the artificial patient samples made
by the combination of different ranges of the same patient taken in the same day.
As we can see the classes are still well separated. The clusters are made by the
derived versions of the original acquisition, this is a good sign since it means that
are plausible mass spectra.

5.3 Outliers identification

In order to identify the outliers inside our data we exploit the air composition,
in particular we know that some elements that are present in the air, are not
involved inside the metabolism, so we should have a constant quantity (or in
our case ratio) inside our breath. To understand better our method we should
before talk about the isotopic ratio in mass spectrometry, it refers to the relative
abundance of different isotopes of an element found in a sample. Isotopes are
atoms of the same element that have the same number of protons in their nuclei
but a different number of neutrons, leading to differences in their atomic masses.
The ratios between each isotope should be nearly constant if we talk about pure
elements like Krypton, but it should happen that some mass fragments coming
from fragmentation of other masses could interfere with the measure adding some
quantity to that isotope. This phenomenon is called isobaric interference, in mass
spectrometry, the mass spectrometer measures the mass-to-charge ratio (m/z) of
ions. If there are other ions with the same m/z value as the ions of interest, they
can interfere with accurate measurement. In our analysis we chose the Kr for two
reasons:

• It is an inert noble gas and is not typically involved in metabolic processes
in living organisms. Unlike elements such as carbon, hydrogen, oxygen, and
nitrogen, which are essential components of organic molecules and play crucial
roles in biological processes, krypton does not have a recognized role in
metabolism. Noble gases like krypton are chemically inert, meaning they do
not readily react with other elements or molecules under normal physiological
conditions. As a result, they are not typically incorporated into the biochemical
reactions that drive metabolic processes.

• it’s present in low concentration but big enough to overcome the presence of
fragmentation of other isotopes.

To know about the relative ratio we will exploit the official documentation provided
by the NIST organization.
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Figure 5.7: Krypton isotopic ratios from the NIST organization. The reference is
peak the 84 m/z since it saturates to 100, the other peaks that we are taking in
consideration are the Kr-82, Kr-83 and Kr-86.

As we can see from the figure above we take as reference the Kr-84 isotope and
we will consider only the three mayor one: the Kr-82 and the Kr-83 that should
both be 20% respect to the Kr-84 and the Kr-86 that should be the around the
30%. This analysis will be done on the acquisitions taken from the second range,
the one that goes from 51 to 151 AMUs. To observe this ratios we will proceed in
the following way:

• We first take the peaks in correspondence of the considered AMUs, to do this
we exploit the ready made function find_peaks of the scipy.signal module.
If the function cannot find a valid peak, we will consider the maximum values
inside the range (AMU − tollerance; AMU + tollerance) where tollerance is
a parameter, in our case we will use 0.5.

• After that we will assign the peak to the relative AMU, in particular if there
are multiple peaks inside the previous range detected by the function, we will
assign the peak nearer to the AMU and discard the other.

• Eventually we will compute the ratio between each isotope respect to the
reference one (Kr-84).

The first run will be done on the air measures, in this way we can see if the machine
had an unexpected behavior during a particular day and so all the measures have
to be discarded.
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Figure 5.8: Krypton ratios inside air acquisitions.

As we can see, the ratios are seemingly constant so the acquisitions are well
taken and we can consider this approach valid. One thing that we can notice from
the plot above is that in the case of the isotopes Kr-82 and Kr-84 the relative
abundance is a little higher respect to the 30% provided by the NIST, but this is
acceptable since it’s possible that different machine may detect more precisely an
isotope respect to an other or it’s possible that fragments of other isotope interfered
during the acquisition. The important outcome of this preliminary analysis is
that the three ratios are nearly constant during the days. Given that we can
proceed with the outlier identifications and focus on the patients acquisitions. The
procedure is the same as before and results are shown in the figure below.

Figure 5.9: Krypton ratios inside patients acquisitions.

Unlike the air acquisitions, in this case we can see some anomalies, in particular
we can see 5 red peaks that are outside their acceptable value, those are relative to
20210319_8, 20210521_8, 20210525_1, 20210618_3 and the 20220412_7 patients
and will be classified as outliers. Since for our study we are using breath samples
collected from patients and medical personnel from the hospital, we also have access
to the file of the acquisitions. In this document are inserted comments and the
validity of the acquisition, so beside the previous method we will consider only
the measures without anomaly comment and the validity field checked inside the
document. Discarding the problematic measures and the ones that don’t respect
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the Kr-ratios method we will obtain a partially cleaned dataset.
Another method applied to identify and discard the outliers is the application

of the z-score. The z-score (also called standard score) helps to understand if a
data value is greater or smaller than the mean of a feature and how far away it is.
More specifically, this score tells how many standard deviations away a data point
is from the mean of the feature points.

zscore(x) = x − µX

σX

where:

• x is the data sample on which we compute the z-score

• µX is the mean of the feature in consideration

• σX is the standard deviation of the feature taken in consideration

In our study we adopt a conservative approach discarding the spectra that have at
least a feature with a z-score greater than 8. The results of such procedure can be
seen in Figure 5.10.

Figure 5.10: Comparison between raw features and normalized and filtered
spectra.

5.4 Normalization
In this section we examine some normalization techniques in order to reduce the
day bias present in the dataset. In machine and statistical learning literature a
common approach is to subtract the mean and divide by the standard deviation of
each feature, this is implemented by the StandardScaler, but we will also examine
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other methods more peculiar of the mass spectrometry field. One of this solution
plans to use the mass spectrum intensity value (the TIC) as the divisor of the
normalization process. In practice we divided each intensity value by the TIC to
obtain the relative intensity of the compound respect the whole spectrum. Another
technique that we will examine in this section is called compound normalization and
it’s explained in 4.2.4. In this method we used the Krypton-84 intensity value to
normalize the whole spectrum, the obtained values represent the relative abundance
of each AMU respect to the representative coefficient (Kr-84).

The effects of each method are visualized with the help of the TSNE algorithm
(Section 2.3.1) in order to better understand the effects of each normalization
technique. These representations show both the samples coloured by date and by
COVID-19 positivity to better evaluate both the classification separation and the
date bias effects. The first plot shows the distribution of the raw features without
any kind of normalization in order to visualize the starting point of the analysis.

Figure 5.11: Distribution of the patients’ spectra both colored by date and
COVID-19 positivity.
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As we can see from Figure 5.11 is evident the day bias problem in the first
plot because the clusters are well defined and the distribution of the dates follows
the calendar order: on the left we have the dates of 2021 growing until the last
acquisition of the 2022 on the extreme right. This is the starting point of our
analysis and from now on we try to evaluate the effects of each normalization
technique.

The first normalization method that we developed was the TIC normalization
also explained in Section 4.2.3. This method involves the use of the TIC as
denominator to scale the samples in order to obtain the relative abundance of each
compound respect the sum of the intensities of the whole spectrum. The results of
this technique are shown in Figure 5.12.

Figure 5.12: Distribution of the TIC normalized patients’ spectra both colored
by date and COVID-19 positivity.

The plots show that this normalization technique compacts the distribution of
the patients’ spectra, this can be seen by the smaller range of values in Figure
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5.12 respect to the Figure 5.11. A part from that, we can also consider the fact
that samples are starting to mix together and this is a sign of the reduction of the
impact of the day bias.

The last analysis involves the usage of both the TIC normalization and Krypton
normalization techniques. The Krypton normalization technique uses the Krypton
84 isotope as reference to normalize the whole spectrum, in this way the result of
this operation is a spectrum made by relative intensities respect to the Kr-84. The
results of such procedure can be seen in Figure 5.13.

Figure 5.13: Distribution of the TIC and Krypton-84 normalized patients’ spectra
both colored by date and COVID-19 positivity.

This kind of normalization provided the best results both in terms of classification
as we can later see in Section 5.6 and in terms of day bias reduction. As we can
especially see in the Date visualization part of the plot the days are well-mixed, but
the class are still well-separated. Also, the representation is more compact than
the two before so the patients’ mass spectra are more similar between each other.

52



Experimental Results

5.5 Feature Selection
The feature selection part is one of the crucial step to improve the classification
task, in particular this is the principal way to solve the problem of the course of
dimensionality. In this study we mainly focused on two machine learning methods:
PCA and Gradient Boosting and on a classical mass spectrometry method that is
the peak selection. In the classification part we first choose the empirical method,
so if we want to work with the whole spectra or only with the peaks and then the
method to select the features: PCA or XGBoost. The method that is activated
by default is the variance threshold, as we explained in Section 4.3.4, it is useful
to discard those features that have a low impact on the overall variance of the
correspondent feature.

5.5.1 PCA
The PCA is a dimensionality reduction method that project the dataset into a
space of lower dimensionality. The output of this method can be the input of a
classification task or of a clustering algorithm. The library used for this method
is Sklearn.decomposotion module, since scaling the data is necessary before
applying the dimensionality reduction we also used a scaler like RobustScaler or
StandardScaler alway taken from the Sklearn library.

When we apply PCA to the original dataset with k features to get a transformed
dataset with p number of variables (also called principal components) we have to
specify as parameter of the PCA algorithm the n_components (the equivalent of p).
Since this value is an hyperparameter, it is not learned from the data, so we have
to manually tune it before running the PCA() function. The classical empirical
method is based to the fact that each principal component explains a part of the
variance, since we are interested to reduce the dataset dimensionality but also to
keep most of the information, the classical choice is to select n_components that
explain 95% (cut-off threshold) of the cumulative variance.

Figure 5.14: The cumulative variance is represented in red while each bar
represents the individual variance contribute to the whole variance.
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Exploiting the results of the plot shown in Figure 5.14 we should take in
consideration 5 as n_components, but this could be a too aggressive dimensionality
reduction. For this reason we chose as n_components 20 features in each experiment
that deals with the whole spectrum as input.

5.5.2 XGBoost
The overall explanation of this method is explained in Section 4.3.3. A benefit
of using gradient boosting is that it is relatively straightforward to retrieve the
importance score of each feature after the decision trees are built. In this method,
instead of the variance contribution of each attribute, it is considered the importance:
the more an attribute is used to make key decisions inside the boosted trees, the
higher is the relative importance.

Figure 5.15: Feature selection with xgboost - only the 20 most important features
are shown

For this step we used the Python package called xgboost. The procedure involves
the usage of the XGBClassifier class to instantiate the classifier, after that we
fitted a validation set of our data to extract the feature importances from the
dataset attributes. To access to these values we used the feature_importances_
attributes of the XGBClassifier fitted model. An important note has to be put in
evidence: the results of this method may vary given the stochastic nature of the
algorithm. Also, as in PCA (Section 5.5.1), the number of selected features is an
hyperparameter, but differently respect to the other method, here we have to train
our classification models with different number of features selected by importance
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and see the performance of the classification task. Nevertheless is possible to build
a plot of the dataset features and their importances to access the most important
features selected by this classifier. The results of this method are plotted in the
Figure 5.15.

5.5.3 Convolutional Autoencoder
In this section we discuss the practical implementation of the Convolutional au-
toencoder and its architecture, we also focus on the train phase and the validation
part of the neural network. The actual code is implemented using the tensorflow
framework and its principal components such as Conv1D, BatchNormalization,
MaxPooling1D and UpSampling1D.

• Conv1D: This layer creates a convolution kernel that is convolved with the
layer input over a single spatial (or temporal) dimension to produce a tensor
of outputs. The configuration of this layer requires the specification of the
filters parameter that indicates the dimensionality of the output space
(the number of output filters in the convolution), the kernel_size parameter
which specifies the length of the 1D convolution window and the padding
that is set to "same" to pad with zeros such that the output has the same
dimension of the input. The activation function, encoded with the parameter
activation, is set to "relu", in particular this corresponds to the ReLu
activation function:

f(x) =
0 for x ≤ 0

x for x > 0

In addition we use the kernel_regularizer parameter with the L2 regularizer
which is taken from tensorflow.keras.regulirizers with penalty equals
to 1−5.

• MaxPooling1D: This layer is used to downsample the input representation by
taking the maximum value over a spatial window of size pool_size. The
resulted output has a shape of

output_shape = input_shape − pool_size + 1
strides

(5.1)

In our case the stride is always set to 1 and the pool_size to 2 or 3 depending
on the input dimensionality. The padding parameter assumes always the value
"same" as in the convolutional layers.

• The UpSampling1D is a layer that does the opposite operation respect to the
MaxPooling1D, is used inside the decoder network to augment the dimension-
ality of the reconstructed data.
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• The BatchNormalization layer applies a transformation that maintains the
mean output close to 0 and the standard deviation close to 1. This layer is
applied after each convolution.

The input of the Convolutional Autoencoder (CAE) is a 1D array of dimensionality
3024. The original dimension of the spectra is 3021, but we noticed that after the
first downsampling we got 1007 as output dimension which is not divisible by 2 or
3. Since we didn’t want to apply a bigger sampling due the risk of information loss
we evenly padded our data to 3024 to be able to implement a deep neural network
without the need of adding padding layer inside our architecture or large pool_size
values. Following these criteria we can individuate the basic block of the CAE’s
architecture composed by a convolutional 1D layer, a batch normalization layer and
according if we are in the encoder part or in the decoder part, respectively a max
pooling or an up sampling layer. For compressing mass spectra, a CAE consisting
of 33 layers has been designed. in the encoder section the signal is compressed,
in the decoder part the starting signal is reconstructed and denoised. The overall
architecture is described in the Table 5.1 where is possible to inspect the output
size of each layer and the composition of the CAE.

To train the model we used as input the padded version of the dataset with
features dimension equals to 3024, in addition to that we also add some Gaussian
random noise to the training samples. The idea behind is to make the net being
able to learn how to remove the random noise and reproduce the denoised spectrum.
So, instead of copying the input spectrum this net will learn also to remove the
artificial random noise. This practice can help improve the generalization and the
global accuracy of the neural network for several reasons:

• it helps regularization, the noise acts as a form of regularization, which can
prevent the autoencoder from overfitting the training data. By introducing
noise, we forced the CAE to learn more robust and general features.

• It also helps generalization. By training on noisy data, the CAE learns a
more generalized version of the data distribution. This can lead to better
performance on unseen data during testing because the model learned how to
extract features that are less specific to the training test.

To add the noise to the padded training samples we used the numpy Python package,
in particular we used the normal procedure taken from random module. The added
noise has a mean of 0 and a variance of 0.001. The low variance value is justified by
the choice of normalize the training data with the TIC normalization (see Section
4.2.3). The normalized samples have an approximate variance of 0.003, so our
choice is consistent with the training data.

For the training of the convolutional autoencoder 70% of the data were used for
the training while the other 30% were used for the validation. For all the results
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of the experiment, the training phase of the model was performed by using 24 as
batch size for 20 epochs. For the model optimization we pick the Adam optimizer
with setting parameter β1 = 0.9, β2 = 0.999, the learning rate set to 1e−4 and
ϵ = 1−7.

Figure 5.16: The difference between a normal spectrum sample and the same
signal with the addition of a normal Gaussian noise with σ = 0.001 and µ = 0.

A class balancing is applied during the training phase using the under-sample
technique for the majority class. Using the augmented dataset with the combination
of various spectra, as explained is Section 4.4, we had 12288 samples for the training
dataset and 183 patients for the test part. In the validation phase we use a lower
number of samples in order to use the mean of the acquisitions to maintain the
procedure the most similar respect to the classification task. The losses of the
training and validation phases are shown in Figure 5.17, it’s visible that the two
MSE are comparable and follow the same trend.

Figure 5.17: Training vs Validation loss of the CAE training.
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To see the the goodness of the Convolutional autoencoder we can try to recon-
struct a sample from the validation set and assess if the two spectra are similar.
The results is shown in figure 5.18 where it’s also present the reconstruction error.
As can be seen from the plot, the original signal was successfully reconstructed
with the proposed compression model. Since the reconstruction error is nearly
visible, we can be satisfied of the results and use the convolutional autoencoder to
extract features.

Figure 5.18: Difference between a validation spectrum and the reconstructed
version, we show only a slice of the data in order to appreciate the reconstruction
error better.

We also consider different metrics taken from [13]: the performance measures
are as follows: root means squared error (RMS), percentage RMS difference (PRD)
and PRD normalized (PRDN). The calculation of these criteria were performed
on the reconstructed output signals compared to the original mass spectra of the
designed CAE.

• Root Means Squared (RMS): It is a widely used method to determine the
variance between the output predicted by the model and the original signal.
In this study we used the Eq. 5.2:

RMS =
óqD−1

i=0 (So(i) − Sr(i))2

D − 1 (5.2)

where So represents the original signal and Sr the reconstructed one, this
values should be as low as possible.

• Percentage RMS Difference (PRD): it is used to compute the quality of the
reconstructed data in the compression. For a good quality compression it

58



Experimental Results

should be as low as possible.

PRD(%) = 100 ·

öõõôqD−1
i=0 (So(i) − Sr(i))2qD−1

i=0 (So(i))2 (5.3)

• PRD Normalized (PRDN): it’s a performance metrics that is the normalized
version of the PRD. It is calculated as the PRD but it subtract the average
value of the original signal at denominator.

PRDN(%) = 100 ·

öõõôqD−1
i=0 (So(i) − Sr(i))2qD−1

i=0 (So(i) − Sm)2 (5.4)

• Signal to Noise Ratio (SNR): it is the measurement criteria used to compare
the level of the background noise with the level of the desired signal.

SNR(dB) = 10 · log10

qD−1
i=0 (So(i) − Sm)2qD−1

i=0 (So(i) − Sr(i))2 (5.5)

These metrics are applied on the validation set to test the compression process,
Figure 5.19 shows the performance of the CAE for 8 patients plus the metrics
means. The average parameters obtained for all the test samples are: PRD=26.67%,
PRDN=27.86%, SNR=11.51dB and the the RMSE=9,1 × 10−9. This values are
acceptable and show a good reconstruction quality especially the low level of the
RMSE.

Figure 5.19: Reconstruction metrics for 8 random validation patients’ spectra
and the means of each metric. The plot uses a double axes to represent the lower
scale of the RMSE, while the plot bars refer to the right y-axis
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5.6 Classification Results
In this section we present the results of the classification task focusing on the
metrics explained in Section 4.5.1. In each classification experiment we used a
different kind of normalization, feature extraction or selection method, following
this protocol we can compare each machine learning model and chose the best
configuration to treat our data. For all the models and experiments the basic
configuration used:

• the Savitzky-Golay smoothing algorithm with window size equals to 10 and
the order of the fitting curve set to 2,

• the baseline correction with the ALS optimized algorithm with parameters
λ = 103 and p = 0.001,

• the peak alignment algorithm enabled.

A part from that the chosen algorithms are taken from the Background chapter
and their implementation comes from the scikit Python library. In particular we
will use:

• the KNeighborClassifier for the KNN classification algorithm with n_neighbors=5
and as distance metric we use the Minkowski estimator.

• for the Random Forest Classifier we chose the RandomForestClassfier clas-
sifier with random_state=1 and the other parameters set with their default
values.

• the LogisticRegression class implements the Logistic Regression algorithm,
for this model we chose the default scikit configuration.

• for the implementation of the gradient boosting classifier we use the
GradientBoostingClassifier class with parameter min_samples_leaf=2,
n_estimators=500, max_depth=3 and learning_rate=0.1.

• for the SVM classifier we used the SVC class with the RBF kernel with the
automatic gamma selection configuration (gamma="auto").

• the ensemble learning algorithm exploits the VotingClassifier with the
estimators value set with the previous models instances and the voting
parameter to "hard" to emulate the hard voting.

The first experiments are run separating each range in order to know the
most discriminating ranges between the 4 available. The configuration for this
classification used a stratified k-fold approach with 10 folds and the date value
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as stratified sampling criteria. This validation protocol uses a 70% of the data to
train the model, 20% for the validation and the 10% for testing. Also, we use a
class balancing with undersampling and the means of the patients’ acquisitions in
the day as spectra to build the datasets. In this configuration the dimensions of
the dataset is different since the spectra for all the ranges are not available for all
the patients. To know which is the most expressive range we run 10 runs of the the
Random Forest (RF) and of the Ensamble learning (Ens) classification algorithms
and then we took the average of the performance metrics.

Model Mass Range N. Accuracy Precision Recall F1-score
RF 1 0.78 0.65 0.56 0.60
RF 2 0.82 0.69 0.69 0.68
RF 3 0.82 0.72 0.57 0.63
RF 4 0.79 0.65 0.53 0.57
Ens 1 0.82 0.70 0.67 0.68
Ens 2 0.84 0.75 0.69 0.71
Ens 3 0.80 0.68 0.57 0.61
Ens 4 0.77 0.62 0.60 0.59

Table 5.2: Average results with different mass ranges on the test set on 10 runs,
no features selection or pre-processing.

As we can see from the Table 5.2 the most discriminating range is the second
range, for this reason we first ran our experiments on this range and then we
evaluate the performances on the whole spectrum to see the improvements.

5.6.1 Range 2 analysis with fractional AMUs
In this section we will consider the only the range 2 AMUs and their fractional
intensity values. The next experiments are focused to highlights the impact of the
normalization techniques and the feature selection methods on the classification
task. In all these tests we applied the variance threshold algorithm to reduce the
number of features in those cases that the impact of the (fractional or integer)
AMUs are not considerable inside the overall variance. So, considering the range 2,
after the variance threshold method has been applied the number of features drop
from 1021 to 611. A part from this, we also show the impact of the employment
of all the acquisitions available for each patients during the training part respect
to the usage of the mean of the mass spectra inside the acquisition date. Inside
the table the training phase with the mean of the acquisitions is annotated with
Single while the usage of the whole acquisitions dataset with their combinations is
signed as Multiple. In this first phase we considered the raw spectra without any
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kind of normalization except for the StandardScaler to improve the classification
models internal performances.

Alg. Filter Feat. Sel. Acq. Accuracy Precision Recall F1
xGB No - Single 0.81 ± 0.05 0.73 ± 0.08 0.75 ± 0.11 0.73 ± 0.06
xGB No PCA Single 0.83 ± 0.07 0.74 ± 0.01 0.78 ± 0.11 0.75 ± 0.10
xGB Yes PCA Multiple 0.86 ± 0.05 0.78 ± 0.05 0.82 ± 0.11 0.80 ± 0.07
xGB Yes xGB(fs) Multiple 0.86 ± 0.08 0.78 ± 0.10 0.83 ± 0.15 0.80 ± 0.11
KNN No - Single 0.86 ± 0.06 0.68 ± 0.08 0.91 ± 0.1 0.77 ± 0.08
KNN No PCA Single 0.87 ± 0.04 0.71 ± 0.06 0.91 ± 0.10 0.79 ± 0.06
KNN Yes PCA Multiple 0.85 ± 0.08 0.73 ± 0.12 0.82 ± 0.13 0.77 ± 0.11
KNN Yes xGB(fs) Multiple 0.81 ± 0.11 0.60 ± 0.13 0.87 ± 0.19 0.71 ± 0.14
LR No - Single 0.81 ± 0.05 0.61 ± 0.08 0.85 ± 0.08 0.71 ± 0.07
LR No PCA Single 0.83 ± 0.04 0.60 ± 0.05 0.92 ± 0.91 0.75 ± 0.06
LR Yes PCA Multiple 0.81 ± 0.06 0.56 ± 0.08 0.93 ± 0.11 0.70 ± 0.09
LR Yes xGB(fs) Multiple 0.83 ± 0.04 0.57 ± 0.06 0.98 ± 0.06 0.72 ± 0.06
RF No - Single 0.85 ± 0.04 0.71 ± 0.06 0.84 ± 0.10 0.76 ± 0.05
RF No PCA Single 0.81 ± 0.10 0.71 ± 0.14 0.75 ± 0.19 0.73 ± 0.15
RF Yes PCA Multiple 0.88 ± 0.05 0.78 ± 0.09 0.87 ± 0.07 0.82 ± 0.07
RF Yes xGB(fs) Multiple 0.88 ± 0.07 0.80 ± 0.11 0.87 ± 0.13 0.82 ± 0.09

SVC No - Single 0.82 ± 0.04 0.55 ± 0.06 0.98 ± 0.04 0.71 ± 0.04
SVC No PCA Single 0.85 ± 0.08 0.66 ± 0.10 0.89 ± 0.13 0.75 ± 0.10
SVC Yes PCA Multiple 0.86 ± 0.06 0.70 ± 0.08 0.89 ± 0.08 0.78 ± 0.08
SVC Yes xGB(fs) Multiple 0.83 ± 0.04 0.57 ± 0.07 0.98 ± 0.04 0.72 ± 0.06
Ens No - Single 0.87 ± 0.05 0.68 ± 0.07 0.93 ± 0.08 0.78 ± 0.07
Ens No PCA Single 0.86 ± 0.08 0.70 ± 0.12 0.88 ± 0.11 0.78 ± 0.11
Ens Yes PCA Multiple 0.88 ± 0.06 0.75 ± 0.12 0.89 ± 0.09 0.81 ± 0.10
Ens Yes xGB(fs) Multiple 0.85 ± 0.06 0.62 ± 0.08 0.97 ± 0.05 0.75 ± 0.08

Table 5.3: Mean results of classification models on the test sets with mass range
2 considering any kind of normalization.

As we can see from the Table 5.3, the performances generally improve with
the application of PCA and the filtering. This is an hint that the dimensionality
reduction techniques can improve the performance of our classifiers, but still the
F1-score is quite poor. For this reason we applied some normalization techniques
to try to make the performances better.

In order to assess the performances of the classification models with different
kind of normalization we repeat the analyses with the TIC normalization (Section
4.2.3) and with the Krypton normalization (Section 4.2.4). Since it’s clear from the
table 5.3 the key role of the feature selection algorithms we avoided the classification
considering all the range-2 AMUs as features, but directly adopting one of the
methods between PCA and the XGboost. Also, since it’s clear the big impact of a

62



Experimental Results

larger training set we avoided the training experiments with the Single acquisition.
Following this protocol, the results are shown in Table 5.4, since we always adopted
the multiple acquisitions strategy we substituted the acquisition column with the
normalization technique used (Norm. column in 5.4).

Alg. Feat. Sel Norm. Accuracy Precision Recall F1-score
KNN PCA TIC 0.91 ± 0.04 0.75 ± 0.13 0.93 ± 0.07 0.83 ± 0.08
KNN PCA Kr 0.85 ± 0.07 0.75 ± 0.15 0.81 ± 0.08 0.77 ± 0.11
KNN PCA Kr+TIC 0.90 ± 0.06 0.77 ± 0.14 0.90 ± 0.08 0.82 ± 0.09
RF PCA TIC 0.89 ± 0.06 0.80 ± 0.14 0.86 ± 0.09 0.83 ± 0.10
RF PCA Kr 0.86 ± 0.05 0.76 ± 0.13 0.83 ± 0.09 0.79 ± 0.08
RF PCA Kr+TIC 0.90 ± 0.04 0.81 ± 0.09 0.89 ± 0.06 0.85 ± 0.06
LR PCA TIC 0.87 ± 0.04 0.73 ± 0.12 0.92 ± 0.09 0.80 ± 0.08
LR PCA Kr 0.81 ± 0.07 0.60 ± 0.13 0.91 ± 0.10 0.70 ± 0.11
LR PCA Kr+TIC 0.88 ± 0.04 0.72 ± 0.13 0.91 ± 0.08 0.79 ± 0.09

xGB PCA TIC 0.92 ± 0.04 0.81 ± 0.12 0.94 ± 0.09 0.86 ± 0.08
xGB PCA Kr 0.86 ± 0.05 0.76 ± 0.07 0.84 ± 0.01 0.80 ± 0.06
xGB PCA Kr+TIC 0.89 ± 0.09 0.82 ± 0.15 0.87 ± 0.15 0.84 ± 0.0.13
SVC PCA TIC 0.89 ± 0.05 0.76 ± 0.17 0.90 ± 0.10 0.81 ± 0.10
SVC PCA Kr 0.86 ± 0.08 0.78 ± 0.16 0.82 ± 0.12 0.80 ± 0.12
SVC PCA Kr+TIC 0.89 ± 0.06 0.78 ± 0.15 0.89 ± 0.12 0.82 ± 0.09
Ens PCA TIC 0.91 ± 0.05 0.81 ± 0.13 0.91 ± 0.08 0.86 ± 0.08
Ens PCA Kr 0.87 ± 0.06 0.76 ± 0.11 0.86 ± 0.08 0.81 ± 0.08
Ens PCA Kr+TIC 0.93 ± 0.04 0.83 ± 0.12 0.93 ± 0.07 0.87 ± 0.07

Table 5.4: Mean results of classification models on the test sets with mass range
2 using the proposed normalization methods (4.2.3 and 4.2.4) and PCA trained on
multiple acquisitions.

Table 5.4 shows the results of the classification models on normalized data.
Comparing the Table 5.3 with this one is pretty straightforward to see the big
impact of the normalization methods on the classifiers performance. In particular
we can see that the TIC normalization method is the overall best improving the
classification metrics of about 5% respect the best results obtained previously.
The Krypton normalization brings an improvement only to the logistic regression
classifier balanced accuracy. The combined application of the TIC and Krypton
normalization on range 2 improves a lot the ensemble model bringing the F1-score
of the Table 5.3 from 81% to 87% and it also reduces the uncertainty of the measure.

5.6.2 Range 2 Analysis: peaks as features
In this section we examine the impact of using the peaks of each spectrum as
features, with this approach we was able to reduce the number of features from
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1021 to 102. In the Table 5.5 are shown the results of the classification using such
a technique considering the multiple acquisitions during the training phase and
the PCA as features selector. We also use the TIC normalization as normalization
method. The peak picking is useful to concentrate the information spread in 10
fractional AMUs inside a single feature.

Figure 5.20: Patient 20220721_5 spectrum considering only the peaks as features.

To build the training dataset is used the same procedure explained in Section
4.3.1. As we can see from Figure 5.20 the number of features is much smaller and
each peaks is related to its integer AMU, in this way each spectrum shares the
same feature name set with the others.

Alg. Feat. Sel Accuracy Precision Recall F1-score
KNN PCA 0.89 ± 0.05 0.74 ± 0.14 0.92 ± 0.10 0.81 ± 0.09
RF PCA 0.89 ± 0.09 0.80 ± 0.14 0.86 ± 0.17 0.82 ± 0.13
LR PCA 0.85 ± 0.08 0.67 ± 0.13 0.89 ± 0.13 0.76 ± 0.11

xGB PCA 0.91 ± 0.07 0.83 ± 0.12 0.90 ± 0.14 0.86 ± 0.10
SVC PCA 0.88 ± 0.05 0.74 ± 0.12 0.89 ± 0.10 0.80 ± 0.07
Ens PCA 0.90 ± 0.07 0.77 ± 0.12 0.90 ± 0.13 0.82 ± 0.10

Table 5.5: Mean results of classification models on the test sets with mass range
2 using the TIC normalization method and the peaks as features.

5.6.3 Full spectrum analysis
The last analysis consists of using the whole mass range 10-351 for each patients
with multiple acquisitions inside the training set. Following this approach we
have a much larger training set consisting of more than 20,000 samples and this
should have an impact on the classification performances. To evaluate this protocol
we consider the best configuration so far: the features selection with PCA, the
normalization is done with the TIC normalization and the Krypton normalization.
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Model Accuracy Precision Recall F1-score
KNN 0.93 ± 0.06 0.87 ± 0.09 0.92 ± 0.09 0.89 ± 0.08
RF 0.91 ± 0.06 0.88 ± 0.10 0.87 ± 0.12 0.87 ± 0.07
LR 0.94 ± 0.04 0.84 ± 0.12 0.96 ± 0.07 0.89 ± 0.07

xGB 0.94 ± 0.03 0.88 ± 0.08 0.93 ± 0.07 0.90 ± 0.03
SVC 0.93 ± 0.06 0.89 ± 0.09 0.90 ± 0.12 0.88 ± 0.06
Ens 0.95 ± 0.04 0.90 ± 0.08 0.94 ± 0.07 0.92 ± 0.05

Table 5.6: Mean results (10 splits) for the whole mass range 10-351 (augmented
dataset).

As we can appreciate from the Table 5.6, the employment of the whole mass
range further improves the classification performances boosting the F1-score to
0.92.

5.6.4 Classification with the CAE as feature extractor
In this last section we examine the effect of the feature reduction carried out by
the encoder part of the trained CAE. Since we chose as latent dimension 8 the final
shape of our data will be 63 × 8, considering that all the classification algorithms
require 1D samples we flatten the output of the autoencoder into a single array of
dimensions 504 × 1. The results of such a transformation are visible on Figure 5.21.

Figure 5.21: Comparison between a standard spectrum and the extracted features
of the encoder part of the CAE. We plotted the decimals so to get the number of
features we have to multiply the maximum value on the x-axis by 10.

The considered protocol for the classification with the CAE as feature extractor is
a little different respect the previous one. In this case, since we trained the CAE with
part of our dataset, we cannot again use those samples for the validation or testing
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parts for results bias reasons. For this motivation we used a part of our dataset to
train the model and the net, a validation part to tune the hyper-parameters and a
test partition to assess the quality of the classification. We executed this process
10 times and we computed the mean of each metrics during the different iterations
and the standard deviations of each to evaluate the uncertainty. This is due the
fact that the net made the optimization choices considering the validation test and
computing the metrics on that partition may make an optimistic valuation.

Model Accuracy Precision Recall F1-score
KNN 0.91 ± 0.004 0.81 ± 0.016 0.91 ± 0.002 0.86 ± 0.009
RF 0.89 ± 0.008 0.85 ± 0.017 0.82 ± 0.020 0.84 ± 0.010
LR 0.87 ± 0.004 0.84 ± 0.012 0.90 ± 0.014 0.87 ± 0.012

xGB 0.92 ± 0.006 0.89 ± 0.018 0.91 ± 0.013 0.90 ± 0.011
SVC 0.90 ± 0.001 0.87 ± 0.009 0.91 ± 0.010 0.89 ± 0.018
Ens 0.93 ± 0.014 0.90 ± 0.013 0.92 ± 0.009 0.91 ± 0.05

Table 5.7: Mean results (10 iterations) for the whole mass range 10-351.

The results of the classification showed in Table 5.7 made use of the whole TIC
normalized spectrum. The results are comparable with the ones shown in 5.6, in
particular we can observe a lower uncertainty between the metrics. This method
allowed us to use a simple K-fold cross validation since the CAE removed the day
biases present in our acquisitions.

5.7 Long COVID analysis
In this final section we examine the impact of the COVID19 on healed patients’
metabolism. Multiple studies [7], [6] and [17] have demonstrated that the impact of
the COVID19 disease can affect the human metabolism also after the negativization.
In order to assess the effect of that, the patients that are tested few days after
the healing from the disease should still present some bio-markers symptoms that
should be detected from the mass spectrometer. Those patients should also be
considered positive by the classification models since they contain peaks that
resemble positive patients.

The protocol to assess this behavior is straightforward, the idea is to train our
model with the same configuration that we have examined in Section 5.6, after we
have trained the model we tested it on the test partition, but this time we loop over
a range that goes from zero to 100 days and we considered positive the patients
that had been positive x days before being tested. Following this procedure we
should see an increment of performance in the first iterations and a decrease when
the amount of days is large enough to consider the patient completely healed. The
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first increase of performance is related to the fact that the patients are considered
healed by the molecular tampon but still presented some bio-marker typical of
positive patients detected by the mass spectrometer.

The experiment that we ran use a 10 stratified fold with stratified sampling
on the Date column and also an oversampling on the minority (positive) class as
before. To pursue our goal we added a specific column called Days after healing
in order change the Covid label to those patients that were tested days after being
positive. The simple formula that we used to transform the Covid label is:

f(days) =
1 for dateCOV ID − dateHEALED ≥ days

covid otherwise
(5.6)

where
• days is the value that grows inside the loop and it is used to iterate over the

range [0; 100] days.

• dateCOV ID is the date when the patient has been tested with the molecular
tampon

• dateHEALED is when the patient has been tested negative after has been
affected by the COVID-19.

• covid is the old value of the class label. It is the value returned is the patient
cannot be considered affected by the long COVID since it had never contracted
the disease or it doesn’t fall back into the first case of Eq. 5.6.

The experiment employed only the Ensemble model for classification since it encloses
all the other and at this point we it’s the most performing. We also used the full
augmented dataset and used the mean acquisitions as test set. The pre-processing
techniques included the TIC normalization, the StandardScaler and the PCA with
20 features as features extractor.

Figure 5.22: Long Covid effect on test samples. On the x-axis are shown the
days after which we still considered as positive the patients, while on the y-axis
the metrics value.
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In Figure 5.22 we can see the results of our test, the behavior of the performances
metrics is how we expected: the patients that have been healed in 20 days before
the acquisition still presented some symptoms in their breath that affected the
wrong classification by the models. After 20 days that the patients are healed
(tested negative) the models worked well since changing the COVID19 label brought
to a degradation of the performances. The precision metric is not shown since
it obviously follows the opposite pattern of the other three metrics. From this
analysis we can assess that some bio-markers are still presented in the patients
that have been affected by COVID in the last 20 days.
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Layer No. of filter x kernel size Unit size Activation fun. Output size
Encoder Section

Conv 1D 128 x 3 - ReLu 3024 x 128
Batch Norm. - - - 3024 x 128
Max Pool 1D - 2 - 1512 x 128

Conv 1D 64 x 3 - ReLu 1512 x 64
Batch Norm. - - - 1512 x 64
Max Pool 1D - 2 - 756 x 64

Conv 1D 32 x 3 - ReLu 756 x 32
Batch Norm. - - - 756 x 32
Max Pool 1D - 2 - 378 x 32

Conv 1D 16 x 3 - ReLu 378 x 16
Batch Norm. - - - 378 x 16
Max Pool 1D - 2 - 189 x 16

Conv 1D 8 x 3 - ReLu 189 x 8
Batch Norm. - - - 189 x 8
Max Pool 1D - 3 - 63 x 8

Conv 1D 8 x 3 - ReLu 63 x 8
Decoder Section

Conv 1D 8 x 3 - ReLu 63 x 8
Batch Norm. - - - 63 x 8

Up Sampl. 1D - 3 - 189 x 8
Conv 1D 16 x 3 - ReLu 189 x 16

Batch Norm. - - - 189 x 16
Up Sampl. 1D - 2 - 378 x 16

Conv 1D 32 x 3 - ReLu 378 x 32
Batch Norm. - - - 378 x 32

Up Sampl. 1D - 2 - 756 x 32
Conv 1D 64 x 3 - ReLu 756 x 64

Batch Norm. - - - 756 x 64
Up Sampl. 1D - 2 - 1512 x 64

Conv 1D 128 x 3 - ReLu 1512 x 128
Batch Norm. - - - 1512 x 128

Up Sampl. 1D - 2 - 3024 x 128
Conv 1D 1 x 3 - Sigmoid 3024 x 1

Table 5.1: Architecture of the Convolutional Autoencoder - The CAE is made by
the repetition of the basic block identified in the Section 5.5.3, the chosen latent
dimension is 8 has we can see by the dimensionality of the last layer. The output
sizes of each layer are coherent with the pooling layers formula specified in (5.1).
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Conclusions

This study aimed to detect COVID-19 from breath mass spectra in order to deploy
an accurate non-invasive model and to create a dataset from the .ASC files provided
by the NanoTech Analysis S.r.l.

The creation of the dataset starting from the provided files allowed us to create
a dataframe made by the intensity value of each m/z, the patient index, the
COVID19 label and the date of the acquisition. The first version of this dataset is
made by all the acquisitions for a given date of the patient. These acquisitions are
taken directly from the particular mass range AMU file. In order to extract these
measure a plateau detection algorithm has been developed (Section 5.1). One of
the main improvement respect the previous works is the development of different
signal pre-processing techniques able to improve the overall quality of the mass
spectra. In particular we developed a smoothing procedure that employed the
Savitzky-Golay filter, a peak alignment algorithm and a baseline correction method
that make use of an ALS (Asymmetric Least Squares) algorithm [18] to detect and
subtract the signal baseline.

The following step goal was to visualize the dataset and extract some knowledge
from it. From this analysis we noticed a measurement bias connected to the
day on which the acquisitions are taken and some outliers are detected via the
z-score method and the Krypton-84 ratios analysis. To tackle the bias problem
we proposed different normalization methods. The impact of these algorithms is
evaluated plotting the projected results with the T-SNE method and the resulting
best approach is the combination of the TIC normalization and the Krypton-84
normalization.

A part from this normalization methods we also developed a features extractor
starting from a convolutional AutoEncoder (CAE). The neural network is trained
as specified in Subsection 5.5.3 then the decoder part has been considered as
feature extractor and it provided encouraging results reducing the starting 3021
dimensionality into a much lower embedding space of 504 features.
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During the evaluation phase we noticed that range 2 is the most appropriate
in predicting the presence of COVID-19. In this section we examined different
feature extractor techniques trying PCA, xg-boost and the decoder of the CAE,
also we evaluated the impact of the proposed normalization methods and the peak
as feature procedure. The results of our study are positives since we were able
to reach a 95% of accuracy and a 92% of F1-score using the whole spectra. The
proposed method with the help of a portable mass spectrometer can be reputed
an improvement respect to the current invasive method. Also, the convolutional
autoencoder had very promising effect on reducing the higher dimensionality of
the acquisitions typical of this field and can be further improved.

The last consideration concerns the long COVID analysis done in the last chapter,
this experiment should be further evaluated by some field experts in order to assess
the metabolic impact of the COVID-19 disease detected inside the breath samples.
Our experiments demonstrates that patients that has been tested positive in the
last 20 days still presented some bio-markers that are typical of positive patients
since our models classified them as positive despite they have been tested negative
with the molecular tampon.
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