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Abstract

In recent years, Heart Rate (HR) monitoring is becoming increasingly wide-
spread in wrist-worn devices where low-cost photoplethysmography (PPG)
sensors are installed. On the other hand, the accuracy of PPG-based HR
tracking is often compromised by Motion Artifacts (MAs), which result from
movements of the subject’s arm, and cause degradation in the quality of the
PPG signal gathered. To mitigate this issue, the PPG signal is commonly
combined with acceleration measurements obtained from an inertial sensor.
In the state-of-the-art, many traditional methods based on temporal and
frequency filters and, more recently, deep learning algorithms have been ex-
ploited to combinate the information from these two sensors. In this thesis,
driven by the recent achievements of self-supervised learning, we investigate
its application for PPG-based heart rate tracking. The main disadvantage
of using this kind of approach is that it requires a large amount of data
to process. This problem has only been overcome in recent years, with the
introduction of large datasets such as PPG-Dalia and WESAD. Once data
have been made available, self-supervised learning could represent an alter-
native and innovative solution to obtain a good level of accuracy in model
predictions, allowing better generalization. Adopting Masked Autoencoders
as reference model, we exploit self-supervised learning to teach a neural net-
work how to reconstruct PPG signals both in time and in frequency. During
this pre-training step, the layers of the network learn to extract good features
for the task. Subsequently, we fine-tune our Masked Autoencoder, substitut-
ing the decoder with a regressive tail and leveraging the knowledge acquired
from the previous phase to estimate the heart rates of the patients. We
reach an average of Mean Absolute Error (MAE) over all patients of 6.14
Beats Per Minute (BPM) for PPG-Dalia and 5.41 BPM for WESAD (better
than state-of-the-art of 2.06 BPM). Applying an additional post-processing
step, the MAE is further reduced to 5.72 BPM and 5.19 BPM, respectively.
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Furthermore, we analyze the advantages of using Transfer Learning during
the self-supervised pre-training step. This involves pre-training our refer-
ence model on one dataset and then fine-tuning it on the other, and vice
versa. Through this approach, we demonstrate that, for the majority of the
patients, it is possible to improve performance and further decrease MAE.
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Chapter 1

Introduction

Nowadays, wrist-worn devices [8] have gained significant popularity due to
their convenience, portability, and ability to collect and process various types
of data. In particular, this devices are a class of wearable technology de-
signed to be worn on the wrist and they offer a range of functionalities such
as activity-tracking and health-monitoring aimed at improving daily lives of
people. Indeed, heart-rate (HR) monitoring is fundamental for clinical pur-
poses and precise activity tracking. Early wrist-worn HR tracking devices
rely on a separate chest band, equipped with a simple 1-3 leads Electrocar-
diogram (ECG) sensor. While provide accurate results, this solution was
expensive and users often found it uncomfortable to wear in their daily lives.
However, in recent years, a more convenient and cost-effective alternative
has emerged and the ECG chest bands have been progressively replaced by
photoplethysmography (PPG) sensors, which allow the direct measurement
of HR and blood oxygenation (SpO2) from wrist-worn devices. A promi-
nent example of commercial devices embracing this technology are the Apple
Watch [9] and some Fitbit models [41].
PPG sensors are composed in one or more Light-Emitting Diodes (LEDs)
that periodically emit light onto the skin and a photodetector (i.e., a pho-
todiode) that measures the variations of light intensity caused by blood flow
[10], [11]. More specifically, the larger the blood volume variation, the greater
the attenuation of the light emitted by the LED, resulting in a reduced cur-
rent output on the photodiode. This relationship allows peaks in the PPG
signal to be associated with the user’s HR [12], making it a reliable approach
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Introduction

for heart rate tracking. The main problem in PPG sensors is constituted
by motion artifacts (MA), i.e., signal artifacts caused by movements of the
user arm and hand, which produce variability in the sensor pressure on the
skin or the light coming from the surrounding environment that infiltrates
between the photodiode and the wrist and this inevitably leads to inaccu-
racies in the measurements. Numerous studies and investigations have been
conducted to compare the performances of electrocardiogram (ECG) chest
straps and photoplethysmogram (PPG)-based heart rate (HR) tracking sys-
tems [42] [43]. These studies have consistently demonstrated that the former
generally achieve better levels of accuracy, particularly when encountering
motion artifacts (MAs). Consequently, ECG-centered solutions continue to
be upheld as the established benchmark for wearable HR tracking [44]. On
the other hand, PPG sensors are nowadays the standard sensor for consumer
products, given their non-invasiveness.

To cope, however, with the problems of MAs, some solutions have been
proposed which employ the correlation between acceleration data and the
PPG signal to cancel the noise and remove the MAs. The majority of these
methodologies rely on traditional signal processing algorithms, including In-
dependent Component Analysis (ICA), Wiener Filters, and Spectral Peak
Detection [45]-[48]. Notably, seminal contributions to this domain include
TROIKA [12] and its subsequent iteration, JOSS [25]. These works em-
ploy adaptive filtering to estimate the interference stemming from motion
artifacts (MAs), followed by the use of spectral peak tracking to discern the
heart rate frequency within the photoplethysmogram (PPG) signal. A funda-
mental constraint inherent in these methodologies regards to the substantial
quantity of unconstrained hyper-parameters, a characteristic that frequently
curtails their capacity for broad generalization.

Driven by the notable achievements of deep learning in various bio-signal ap-
plications, researchers have turned their attention to exploring the potential
of deep Neural Networks (NNs) for PPG-based heart rate tracking. Further-
more, the publication of large datasets for heart rate monitoring in the pres-
ence of MAs such as PPG-Dalia and WESAD has further increased the rapid
expansion of this new category of PPG-based HR prediction algorithms that
relies on deep learning approaches. PPG-Dalia is a large dataset for motion
compensation and heart rate estimation during daily life activities. There
are in total 15 subjects who participated in the data collection: 8 female
and 7 male participants with age ranging from 21 to 55 years old. WESAD,

16



Introduction

instead, is a multimodal dataset for wearable stress and affect detection.
The data collection involved 15 participants, aged between 24 and 35 years.
The primary goal behind this dataset was to collect a wide amount of data
to identify and differentiate various affective states, such as neutral, stress,
and amusement. In addition to the two mentioned datasets, other smaller
datasets have also been published such as IEEE_Train & IEEE_Test. These
datasets comprise 12 sessions, each session is recorded from a distinct sub-
ject aged between 18 and 58 years. The sessions encompass activities like
treadmill running at varying speeds, forearm and upper arm exercises (such
as arm rehabilitation exercises), and intensive arm movements (such as box-
ing). Each session has an approximate duration of five minutes.
Within the family of algorithms related to Deep Learning, an interesting and
promising solution is given by self-supervision learning. Self-supervision is
a learning approach where a model is trained to learn from unlabelled data
by automatically generating training labels. This approach is useful in a
variety of contexts where obtaining large amounts of labeled data might be
expensive or difficult. In particular, it has been proven to enable AI systems
to recognize and understand generalizable patterns in fields such as natural
language processing (NLP), computer vision and speech recognition.

In this thesis, we exploit the advantages of self-supervised learning to predict
the heart rates from PPG signals. Particularly, this goal is reached in two
successive steps, according to the self-supervised learning approach. The first
is the pre-training phase, in which we use Masked Autoencoders (MAE) [7]
as reference model to test their ability in extracting good features from data
by reconstructing the input signals both in time domain and in frequency do-
main (i.e., spectrograms). Subsequently, in the finetuning phase, we slightly
change the last part of the network in order to adapt it to the final task
in which we are really interested in, using the knowledge acquired from the
previous step to estimate the heart rates of the various patients present in
the mentioned dataset. In the end, we compare the obtained results applying
also a further step of post-processing since the dynamics characterizing the
human heart rate impose an upper bound on the permissible variation of
the estimation over time, in normal conditions. To improve the results, we
explored Transfer Learning. A possible disadvantage of using deep NNs is, in-
deed, that they often require big amounts of labeled data for training, which
can be expensive and time-consuming to collect in this context. Motivated
by this observation, we investigate transfer learning since it mitigates this
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problem by allowing models to exploit knowledge gained from one dataset
and apply it to another, often related, dataset.

Within this thesis you can find the following main contributions:

1. We demonstrate that Masked Autoencoders are a powerful model
that can be employed also for PPG signals. Indeed, we used a Masked
Autoencoder with 12 attention blocks to reconstruct PPG signals
in time and a smaller Masked Autoencoder with 4 attention blocks to
reconstruct PPG signals in frequency.
This procedure is explained in details in Section 4.3 and Section 4.5
where Figures 4.7, 4.8 and 4.9 show some examples of reconstructed
signals in the two different domains.

2. We analize the behavior of Masked Autoencoders for the estimation
of heart-rates, focusing on two different datasets: PPG-Dalia and
WESAD. Respectively, we reach an average of Mean Absolute Error
(MAE) over all patients of 6.14 and 5.41 Beat Per Minute (BPM). Ap-
plying an additional post-processing step, the MAE is further reduced
to 5.72 and 5.19 BPM.
Particularly, for WESAD dataset it represents a new state-of-art since
in the previous work [13], the authors proposed a model based on CNNs
reaching a reference MAE of 7.47 BPM.

3. We investigate Transfer Learning between the two mentioned datasets.
Thanks to this approach, on the majority of the patients it is possible
to generalize better and further decrease MAE. This is particularly ev-
ident on patient 1 (S1) where the application of transfer learning on
PPG-Dalia using WESAD as a pre-training dataset helps the model to
improve accuracy by 0.56 BPM, smoothing the error from 5.86 BPM to
5.30 BPM. Instead, by looking at the overall results on WESAD using
PPG-Dalia as a pre-training dataset, we are able to further decrease
MAE to 5.09 BPM.
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Chapter 2

Background

2.1 Artificial Intelligence

Figure 2.1: Distinction between Artificial Intelligence (AI), Machine Learning
(ML) and Deep Learning (DL).

Artificial intelligence (AI) is a field of computer science that focuses on cre-
ating systems, programs, and machines that can perform tasks that normally
require human intelligence. The main goal of AI is to develop algorithms and
models that allow machines to learn from data, draw conclusions, adapt to
new situations and make autonomous decisions as a human being. The appli-
cations of AI are vast and span across industries such as healthcare, finance,
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manufacturing, transportation, and more. In healthcare sector, AI can help
in disease diagnosis and predicting patient prognosis. In finance, it aids in
fraud detection, risk assessment, and algorithmic trading. In manufacturing,
AI-powered robots streamline production processes. Self-driving cars rely on
AI to navigate and make real-time decisions on the road.

2.1.1 Learning algorithms: Supervised, Unsupervised,
Self-supervised

Within Artificial Intelligence there are fundamental paradigms. The main
difference between these approaches lies in the type of data they use for
training and the learning objectives they aim to achieve:

• Supervised Learning: is a Learning approach where training data
consists of input-output pairs, where the inputs (features) are the data,
and the outputs (labels) are the corresponding target values. The goal
of supervised learning is to learn a function that maps the input in the
corresponding output in order to make accurate predictions mainly for
unseen data.
Examples of this kind are: classification, regression, object detection,
etc...

• Unsupervised Learning: is a Learning approach that, on the other
hand, deals with data without their labels. In this scenario, the algo-
rithm is presented with a dataset containing only input features and is
not provided with explicit output labels or target values. The goal of
unsupervised learning is to find patterns, structures, or representations
within the data without any predefined notion of what the output should
be.
Examples of this kind are: clustering, dimensionality reduction, etc...

• Self-supervised Learning: in this context, we use again data without
the labels as in the case of unsupervised learning. The goal, this time,
is try to extract features and knowledge from the data in order to use
this kind of information in a transfer learning step (downstream task).
Examples of this kind are: relative positioning and contrastive learning.
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2.1 – Artificial Intelligence

Since this thesis mainly focuses on the third scenario, below you can find a
short additional sub-chapter in order to better understand how the latter is
exploited.

Self-supervised Learning

In many real-world applications, obtaining labeled data can be expensive,
time-consuming, or even infeasible. Conversely, there are frequently a huge
amount of unlabeled data accessible. Self-supervised learning is designed to
tackle this particular challenge by converting an unsupervised problem (lack
of labels) into a supervised one through the design of pretext tasks. Indeed,
in self-supervised learning, the first step is to create a pretext task. This
task involves generating pseudo-labels from the available unlabeled data.
The pseudo-labels are derived from specific properties or transformations of
the data, which are generated without human intervention. The goal of the
pretext task is to create a supervised learning setup using the unlabeled data
and training the model in order to predict these pseudo-labels. After the
model is trained on the pretext task, it has learned useful representations
from the data. These representations capture meaningful information about
the data’s underlying structure, even though the model was not explicitly
given any labels during the pretext task. The acquired information are then
fine-tuned on a downstream task. A downstream task is a specific task that
we are truly interested in, such as image classification, object detection, or
semantic segmentation. In this step, the model’s learned representations are
used as a starting point, and the model is further fine-tuned on a labeled
dataset for the downstream task. The fine-tuning step is exploited to further
training the model with the labeled data to adapt the previously learned
representations to the specifics of the target task.

Nowadays, the success of self-supervision is strictly correlated to the use of
a new deep learning architecture called Transformer [18], which can handle
large quantities of data in parallel. In our work, we will exploit indeed
Transformer-based Masked Autoencoders [7].
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2.1.2 Machine Learning and Deep Learning

Machine Learning is a branch of AI and refers to a wide range of algorithms
and techniques that enable machines to learn from data without being ex-
plicitly programmed. It relies on discovering patterns and structures in the
data, bringing machines to make predictions, classifications, and decisions
autonomously. Some of the most common algorithms include Support Vec-
tor Machines [49], Random Forests [50], Linear Regression [51], and more.
In recent years, however, Deep Learning has garnered particular attention.
Deep Learning is a subset of Machine Learning that leverages neural networks
with multiple layers to autonomously extract features and acquire high-level
representations from data. Deep neural networks consist of layers of inter-
connected neurons. Each neuron plays a crucial role in the learning process
of the network. The general data processing flow of a neuron is described in
Figure 2.2.

Figure 2.2: Artificial neuron.

1. Input: each neuron receives an input vector representing the data to
be processed. These inputs can be the feature values of an image, the
words in a sentence, or the time values in a time series.

2. Weight: the input is associated with a weight. The weights determine
the relative importance of each input for the neuron. During the training
phase of the network, the weights are updated so that the network can
learn from the data.
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2.2 – Transformers and ViT

3. Weighted Sum: each neuron performs a sum between its inputs mul-
tiplied by the corresponding weights.

4. Activation Function: after computing the weighted sum of the inputs,
the neuron applies an activation function to the result. Usually, the
activation function introduces non-linearities into the neuron, allowing
the network to model complex relationships between input data.

5. Output: after the activation function, the neuron produces the output.
This output can be sent to other neurons in successive layers of the
network or constitute the final output of the network.

In deep learning models, neurons are organized into layers: input layer, hid-
den layers and the output layer, see Figure 2.3. The input data pass through
each neuron in sequence, and learning occurs through the process of back
propagation [17], in which the network adjusts weights to reduce the objec-
tive loss which is a function that measures the error between expected and
actual outputs. Thanks to this complex process, a neural network can learn
from data and become able to solve a wide variety of complex problems, such
as image recognition and natural language processing, often achieving better
performance compared to traditional Machine Learning techniques. Despite
promising results, Deep Learning also presents significant challenges: train-
ing deep neural networks can require large training datasets and considerable
computational resources.

2.2 Transformers and ViT

A Transformer is a type of deep learning model introduced in 2017 by Vaswani
et al. [4]. Transformers were a significant innovation in the field of Natu-
ral Language Processing (NLP) and have subsequently proven to be highly
effective in a wide range of machine learning applications, including auto-
matic translation, text generation, speech synthesis, and much more. The
main feature of Transformers is the "attention" mechanism, which allows the
model to weigh the importance of different parts of an input during process-
ing. This attention capability enables Transformers to handle long sequences
of data effectively, improving their ability to capture long-term relationships
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Figure 2.3: Deep Neural Network architecture.

Figure 2.4: Model summary.
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2.2 – Transformers and ViT

between words or features in the data. A "Vision Transformer" (or ViT),
instead, is a variant of the Transformer designed specifically for image pro-
cessing. Initially, Transformer models were primarily developed for natural
language processing (NLP), but the idea of applying the same architecture
to visual data proved to be very promising. Vision Transformers replace se-
quences of words or tokens in NLP models with a grid of image patches and
use the attention mechanism to process these patches in the same way that
NLP Transformers process words. The use of Vision Transformers has led
to outstanding results in computer vision tasks such as object recognition,
semantic segmentation, and generating descriptive text for images. These
models have become an important part of the computer vision field and are
used in applications requiring advanced understanding of images. Further-
more, the main advantage of use this kind of architectures is that, unlike the
RNNs counterparts, they can process the entire sequence of input data in
parallel focusing only to sub-parts of the input instead of the entire input.
An overview of the Vision Transformer model is depicted in Figure 2.4. The
conventional Transformer takes as input a 1D sequence of token embeddings.
To handle 2D images, as written in [18], the authors of the model did in this
way: "we reshape the image x ∈ RH×W ×C into a sequence of flattened 2D
patches xp ∈ RN×(P 2·C), where (H, W) is the resolution of the original image,
C is the number of channels, (P, P) is the resolution of each image patch,
and N = H × W/P2 is the resulting number of patches, which also serves
as the effective input sequence length for the Transformer. The Transformer
uses constant latent vector size D through all of its layers, so we flatten the
patches and map to D dimensions with a trainable linear projection (2.2),
where E ∈ R(P 2·C)×D and Epos ∈ R(N+1)×D. We refer to the output of this
projection as the patch embeddings."
Then we prepend a learnable embedding to the sequence of embedded patches
(z0

0 = xclass), whose state, at the output of the Transformer encoder, (z0
L) is

used as the image representation y (2.5). A classification head is added to
the end of the model and to z0

L and it is implemented by a single linear layer.
Position embeddings are incorporated into the patch embeddings to preserve
positional information. There are a lot of possible position embeddings, the
main one is 2D sine-cosine position embedding which consists in:

PE(pos, 2i) = sin( pos

n2i/dmodel
); PE(pos, 2i + 1) = cos( pos

n2i/dmodel
); (2.1)
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where pos is the position in the input sequence, dmodel is the output dimension
of the embedding, n is a scalar and i is the dimension.

The sequence of resulting embedding vectors serves as input to the encoder.
The Transformer encoder is composed of alternating layers of multiheaded
self-attention (MSA) and MLP blocks (2.3), (2.4). Layer-normalization (LN)
is applied before every block, and residual connections after every block.
The MLP contains two linear layers with a GELU non-linearity.

z0 = [xclass; x1
pE; x2

pE; · · · ; xN
p E] + Epos (2.2)

z′
ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1...L (2.3)

z′
ℓ = MLP (LN(z′

ℓ)) + z′
ℓ, ℓ = 1...L (2.4)

y = LN(z0
L) (2.5)

2.2.1 Multihead self-attention

Standard qkv self-attention (SA) is a popular building block for neural ar-
chitectures. For each element in an input sequence z ∈ RN×D, we compute
a weighted sum over all values v in the sequence. The attention weights Aij

are based on the pairwise similarity between two elements of the sequence
and their respective query qi and key kj representations.

[q, k, v] = zUqkv, Uqkv ∈ R(D×3Dh) (2.6)

A = softmax(qkT /
ñ

Dh), A ∈ R(N×N) (2.7)
SA(z) = Av (2.8)

Multihead self-attention (MSA) is an extension of SA in which we run k
self-attention operations, called “heads”, in parallel, and project their con-
catenated outputs. As highlighted previously, each head focuses on a relevant
detail within the input and, therefore, having several heads within the same
layer, it is possible to distinguish different definitions of relevance. For ex-
ample, in NLP tasks, one head might focus on the next word, one on the
subject, and another on the verb of the entire sentence. To keep compute
and number of parameters constant when changing k, Dh (2.6) is typically
set to D/k.
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2.3 Masked Autoencoder

Figure 2.5: MAE architecture.

With the maturity of deep learning, modern networks are becoming more
and more deep, since they try to solve complex tasks, which necessitate of
deep and width neural network architectures. On the other hand, training
such architectures is not trivial, given problems such as vanishing gradient,
exploding gradient or simply underfitting. One of the possible solution to
these issues are Masked autoencoders (MAE), a form of more general de-
noising autoencoders [3]. The concept behind this innovative architecture
is fundamentally straightforward: it involves eliminating a portion of the
data and training the model to predict the missing content. The concepts
of masked autoencoders are very intuitive and applicable both in NLP and
computer vision, enabling the training of models containing over one hundred
bilion parameters.

Kaiming He et al. [7] introduces a efficient and scalable version of a masked
autoencoder (MAE) designed for visual representation learning. Their MAE
masks random patches from the input image and subsequently reconstructs
the absent patches in the pixel space. The architecture features an asymmet-
rical encoder-decoder design. The encoder exclusively processes the visible
subset of patches, excluding the mask tokens. The decoder is lightweight
and reconstructs the input using the latent representation and the mask to-
kens (Figure 2.5). Furthermore, the transfer of mask tokens to the smaller
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decoder results in a notable reduction in computational requirements. Fur-
thermore, the transfer of mask tokens to the smaller decoder results in a
notable reduction in computational demands. This design allows for the use
of a significantly high masking ratio, such as 75%, which yields a beneficial
outcome: it improves accuracy while enabling the encoder to process only
a small fraction, e.g., 25%, of patches. As a result, the overall pre-training
time can be reduced by at least 3 times or more, and memory consumption is
also minimized, facilitating the efficient scaling of the MAE to larger models.

Since this is the main architecture used for the different experiments con-
ducted in this thesis, I would like to focus more on explaining the various
implementation details:

• Masking. Following ViT [6], the authors partition an image into non-
overlapping patches. Then they sample a subset of patches and mask
(i.e., remove) the remaining ones. They sample random patches without
replacement, following a uniform distribution and refer to this strategy
as "random sampling". Employing random sampling with a high value
of masking ratio effectively reduces redundancy, resulting in a task that
cannot be solved in a easy way by extrapolating from neighboring visible
patches (see Figure 2.6). The uniform distribution ensures the avoidance
of potential center bias, where more masked patches are concentrated
near the image center.

• MAE encoder. The encoder in this architecture is based on the Vision
Transformer (ViT) [6] saw in previous sub-section, but it operates solely
on the visible, unmasked patches. Just like in a standard ViT, the
encoder projects the patches linearly and adds positional embeddings to
the result. It then processes the set of patches through a sequence of
Transformer blocks. However, unlike the traditional ViT, this encoder
only works with a small subset (e.g., 25%) of the complete patch set.
Masked patches are excluded, and no mask tokens are utilized. Thanks
to this approach is possible to train very large encoders using only a
fraction of the computational power and memory.
The input of the MAE decoder includes (i) encoded visible patches and
(ii) mask tokens (refer to Figure 2.4). Each mask token [2] represents
a shared, learned vector indicating the presence of a missing patch that
needs to be predicted. Positional embeddings are added to ensure that
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mask tokens have information about their location in the image. Similar
to the encoder, the decoder consists of a series of Transformer blocks. It
is important to note that the MAE decoder is exclusively employed for
the purpose of image reconstruction during the pre-training phase. As a
result, the decoder’s architecture can be flexibly designed independently
of the encoder’s design. Using this design, the full set of tokens is solely
processed by the lightweight decoder, leading to a significant reduction
in pre-training time.

• Reconstruction target. Their MAE reconstructs the input by predict-
ing the pixel values for each masked patch. Each element in the decoder’s
output is a vector of pixel values reprenting a patch. The final layer of
the decoder is a linear projection that has the same number of output
channels as there are pixel values in a patch. The decoder’s output is
reshaped to form a reconstruced image. The loss function computes the
distance in pixel between the original and reconstructed images through
the Mean Squared Error (MSE) metric. The loss is computed only on
masked patches.
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Figure 2.6: Results on ImageNet validation images. Left: masked image.
Middle: MAE reconstruction. Right: Ground-truth. The masking ration is
80%, leaving only 39 out of 196 patches.

Figure 2.7: Reconstructions of ImageNet validation images using a MAE
pre-trained with a masking ratio of 75% but applied on inputs with higher
masking ratios. The predictions differ plausibly from the original images,
showing that the method can generalize.
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2.3.1 Hyperparameters

Figure 2.8: Masking ratio. A high masking ratio (75%) works well for both
fine-tuning (top) and linear probing (bottom). The y-axes are ImageNet-1K
validation accuracy (%).

It is important to note that from [7] several interesting properties can be
observed:

• Their MAE pre-training approach is implemented efficiently and, in par-
ticular, does not require any sparse operations. Initially, they create a
token for each input patch by implementing a linear projection in con-
junction with an added positional embedding. Next, they randomly
shuffle the list of tokens and remove a portion of the list based on the
chosen masking ratio. This process results in a smaller subset of tokens,
which serves as input for the encoder and effectively correspond to sam-
pling patches without replacement. After encoding, they add a list of
mask tokens to the list of encoded patches and then unshuffle the full list
(reversing the random shuffle operation) to align all tokens with their
respective targets. The decoder operates on this full list with positional
embeddings included. This methodology introduces minimal overhead,
as the shuffling and unshuffling operations are fast and straightforward.
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• Figure 2.8 illustrates the impact of the masking ratio on the model’s per-
formance. Surprisingly, the optimal ratios are relatively high. For both
linear probing and fine-tuning, a ratio of 75% proves to be effective. This
is in contrast to BERT [2], which typically uses a much lower masking
ratio of around 15%. The model deduces missing patches to generate
various yet reasonable outputs. (as seen in Figure 2.7). The authors
hypothesize that this behavior is strictly connected to the learning of
useful representations.

2.4 Heart-rate estimation

Heart rate estimation and monitoring is one of the most important chal-
lenges in the field of Deep Learning as it has the dual purpose of tracking
fitness-related metrics and monitoring cardiovascular well-being. Heart rate
refers to the number of times the heart beats per minute (bpm), and it is an
essential physiological measurement that can provide insights into cardiovas-
cular health and overall well-being of people. In practice, the heart rate is an
indicator of how effectively the heart is pumping blood throughout the body.
For instance, it is customary for the majority of adults to maintain an HR
range of 60 to 100 beats per minute (bpm) [19]. This rate can be influenced
by various factors including stress, anxiety, hormonal balance, medications,
and physical activity levels. Indeed for example, athletes or individuals en-
gaged in higher levels of activity might have a resting heart rate as low as 40
bpm. In the context of resting heart rate, a lower value is typically advanta-
geous, as it often indicates a better cardiac muscle condition and decreased
effort to maintain a constant heart rate level. Furthermore, research under-
scores a direct correlation between elevated resting heart rate, diminished
physical fitness, and increased blood pressure and body weight. The process
of HR estimation commonly involves the computation of the temporal gap
between two consecutive heartbeats. These heart rate measurements are de-
rived from various types of biological signals, such as those obtained from
electrocardiograms or photoplethysmographic signals. However, the presence
of noise can obscure the authentic heart rate signal. As a result, the accu-
racy of the heart rate estimation depend on the quality of the underlying
waveform [20], which is intricately linked to the degree of noise present in
the signal. Initially, electrocardiograms predominantly served as the primary
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source for obtaining heart rate data. This approach entails the positioning
of electrodes on specific areas of the body (such as the chest, wrists, arms,
and legs) to record electrical impulses and subsequently calculate heartbeats.
This approach proves to be rapid, uncomplicated, and efficacious; however, it
simultaneously entails higher costs and necessitates direct skin contact, ren-
dering it non-portable and uncomfortable (as the wearing of an ECG chest
band could hinder an individual’s daily activities).

Figure 2.9: The principle behind a PPG sensor. The pulse signal obtained
from a PPG sensor comprises an AC (pulsatile) and a DC (slowly varying)
component. The AC component is attributed to changes in the blood volume
synchronous with each heartbeat, whereas the DC component is related to
respiration, tissues, and average blood volume. The two most common LEDs
are red and infrared (IR), which exhibit distinct absorption properties in the
bloodstream. The photodetector captures light and it is used to estimate
blood volume changes. [22]

To surmount this challenge, recent years have witnessed an increasingly
widespread use of PhotoPlethysmoGraphic (PPG) signals for heart rate com-
putation in individuals utilizing smartwatches. In contrast to ECG, the ac-
quisition of PPG signals is non-intrusive and more comfortable. Specifically,
PPG leverages LED lights in conjunction with a photo-detector as a receiver
to discern volumetric variations within blood streams [21]. Figure 2.9 illus-
trates the operational logic underlying a PPG sensor’s functionality. The
rhythm of the light pulses corresponds to the heart rate.
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2.4.1 PPG signal

Figure 2.10: PPG waves.

A PPG (Photoplethysmogram) signal represents variations in blood volume
in the blood vessels of a tissue. It is commonly employed to monitor and
record physiological data related to the cardiovascular system. PPG signals
are typically obtained from a small sensor placed on the skin’s surface and
provide valuable information about a person’s heart rate and blood flow.
This signal can be divided into two main components:

• Systolic Peak: is the highest point in the PPG signal and is associated
with the contraction of the heart, known as systole. During systole, the
heart contracts and pumps a greater amount of blood into the arteries.
This increase in blood volume in the peripheral blood vessels is detected
by the PPG sensor as a sudden increase in the signal’s amplitude. The
systolic peak represents the moment when blood pressure is highest in
the arteries.
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• Diastolic Peak: is the lowest point in the PPG signal and is associated
with the relaxation phase of the heart, known as diastole. During di-
astole, the heart relaxes, and blood flow in the arteries decreases. This
is reflected in the PPG signal as a reduction in the signal’s amplitude.
The diastolic peak represents the moment when blood pressure is lowest
in the arteries.

The PPG signal is typically represented as a cyclic waveform in which these
systolic and diastolic peaks repeat in synchrony with the cardiac cycle. The
time interval between one systolic peak and the next systolic peak corre-
sponds to the interval between two consecutive heartbeats, known as the RR
interval and identified with t1 in Figure 2.10. This interval can be used to
calculate heart rate.

2.4.2 Motion Artifacts

Figure 2.11: Photoplethysmography signals. (a): PPG signals in normal
conditions. (b): PPG signals influenced by MAs during movement.

The existence of distinct motion artifacts, characterized as signal distortions,
frequently encountered in waveform signals acquired via wrist-worn devices,
can compromise the signal’s accuracy [23]. These artifacts occur when the
PPG signal is distorted or contaminated due to body movement. Any move-
ment of the body part being monitored (e.g., the wrist, finger, or earlobe)
can introduce motion artifacts. This includes actions like walking, talking,
or even subtle muscle contractions. Moreover, if the PPG sensor is not se-
curely attached to the skin or if it moves during measurement, it can result
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in artifacts. Motion artifacts can lead to irregularities in the PPG waveform,
including fluctuations in the signal amplitude and shape. These irregularities
can make it difficult to accurately detect the systolic and diastolic peaks and
measure physiological parameters such as heart rate and oxygen saturation
and, in severe cases, can render the PPG signal unusable for clinical or re-
search purposes. Figure 2.11 illustrates a visual example of the difference
between clean and dirty PPG signal. Specifically, as depicted in Figure 2.11
(b), it is evident that identifying peaks accurately becomes more challenging
from PPG affected by MA, as the signal undergoes changes in shape and
amplitude. This can potentially result in erroneous heart rate estimations.
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Chapter 3

Related work

Research in recent years has witnessed considerable interest from both aca-
demic and industrial sectors in the examination of HR monitoring solutions
that rely on wearable devices incorporating PPG sensors. While monitor-
ing people in steady positions (e.g., while sleeping or watching the TV) is a
relatively straightforward and resolved task, the introduction of movement
often hinders the effectiveness of this process, introducing interference into
the PPG signal. Consequently, the principal hurdle lies in maintaining a
consistently high level of accuracy, even during activities involving vigorous
movements. In contemporary practice, the methodology to mitigate these
distortions involves the application of sensor fusion techniques combining
PPG signals with accelerometer data. The algorithms designed to address
such data can be categorized into two primary groups. Firstly, there are
classical approaches, based on time or frequency related features, as well as
filtering and peak detection functions. The second category relies on deep
learning approches.

3.1 Classical approches

An exemplary case is illustrated by TROIKA [24], a framework including
three distinct components that lend their names to the system: decomposi-
Tion, sparse signal Re-cOnstructIon, and spectral peaK trAcking. The first
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module partially mitigates the impact of motion artifacts (MA) on PPG data,
dispersing its spectrum within the [0.4 - 5] Hz range. The second module
bolsters TROIKA’s resilience against noise interference by computing a high-
resolution spectrum of the PPG signal. Finally, the spectral peak tracking
module, a fondamental aspect of the framework, try to find peaks corre-
sponding to heart rate (HR) values. For validation, the authors gathered
data samples from 12 subjects and demonstrated that TROIKA reached no-
tably improved outcomes, with a standard deviation error of 3.07 beats per
minute (BPM), in contrast to previous jobs. Other studies such as Inde-
pendent Component Analysis (ICA) [26] and Kalman filtering [27], explored
only scenarios with minimal motion artifacts. To address this limitation and
reach a satisfying accuracy in case of high MAs, researchers from [25] intro-
duce a novel approach called JOint Sparse Spectrum reconstruction (JOSS).
This approach is inspired on the notion that PPG and acceleration signals
may share common spectral structure characteristics. JOSS employs a model
known as the multiple measurement vector (MMV) to jointly estimate spec-
trum (a less powerful version applied to single spectrum was also presented
in TROIKA). This MMV model identifies spectral peaks linked to motion
artifacts within PPG spectrum by leveraging spectral peaks extracted from
acceleration spectrum. The method focuses around a common sparsity con-
straint, promoting alignment between the frequency locations of motion arti-
facts within PPG spectrum and corresponding locations in acceleration spec-
trum. The author assessed the algorithm across 12 distinct patients, each
comprising PPG signals, accelerometer data, and an ECG data channel. As
an initial data preprocessing step, the raw data was subjected to bandpass
filtration, covering the frequency range from 0.4 to 4 Hz. The paper [25]
provided a direct comparison with the results obtained from TROIKA using
the same dataset, demonstrating improvements in the Mean Absolute Error
(MAE) values. To be specific, JOSS achieved an MAE of 1.28 beats per
minute (BPM), in contrast to TROIKA’s 2.42 BPM across all datasets.
Following JOSS, several other algorithms have been developed with the ob-
jective of estimating heart rate from PPG signals that are affected by mo-
tion artifacts. In this section, I’ll mention the two most recent algorithms.
First, the approach introduced by Salehizadeh et al [55] called SpaMa. This
method initially calculates the power spectral density of both the PPG and
accelerometer signals within each sample (8-second segment). Subsequently,
it identifies the highest peaks in each spectrum. The logic behind this ap-
proach is that the peaks in the acceleration spectrum correspond to motion.
Therefore, by removing these motion-related peaks from the PPG spectrum,
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it effectively eliminates major motion artifacts. The highest peak remaining
in the PPG spectrum is then taken as the heart rate. Recognizing that rapid
changes in heart rate are physiologically constrained, it is advisable to rely on
estimates from preceding segments. However, the SpaMa approach considers
only the last segment in its heart rate tracking step. To enhance estimation
robustness, SpaMaPlus extends the heart rate tracking step by incorporat-
ing a mean filter over the last six heart rate estimates (with the value six
determined empirically). It then identifies the peak in the current segment’s
PPG spectrum closest to the heart rate frequency predicted by the mean
filter. Another issue addressed by SpaMaPlus is the potential propagation
of errors in heart rate estimation. To mitigate this, it resets the heart rate
tracking if the difference between the current and previous segment’s heart
rate estimation surpasses a trainable threshold (e.g., 10 beats per minute)
for a set number of consecutive times (e.g., three times). This way, heart
rate estimation and tracking can recover every few seconds, even if spectral
filtering fails over certain periods.
Second, the approach introduced by Schaeck et al. [56] called Schaeck2017.
This method, in contrast to SpaMa and SpaMaPlus, supports the utilization
of multiple PPG signal channels (e.g., the IEEE datasets include two PPG
channels). The algorithm initiates by applying correlation functions, both
auto- and cross-correlation, to the time series signal. This step aims to re-
duce noise. Subsequently, it computes the spectrum of the resulting time
series. Similar to the SpaMa approaches, spectral filtering is applied to di-
minish motion artifacts by considering the acceleration spectra. Finally, it
utilizes a linear least squares fit on the preceding three segments for heart
rate tracking. To compare performance, tested on WESAD, SpaMa reaches
a MAE over all the subjects of 11.51, SpaMaPlus of 9.45 and Schaeck2017 of
19.97. Tested on PPG-Dalia, the overall MAE reached are 15.56, 11.06 and
20.45, respectively.

3.2 Deep Learning-based approaches

Deep Learning (DL) is relatively less explored for this task. Only in recent
years researchers are embarking on an exploration of Deep Learning (DL)
techniques for this task, identifying a series of problems and challenges that
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necessitate a solution. The primary problem is memory since highly accu-
rate DL models typically involve millions of parameters, which exceed the
memory available in most Microcontrollers (MCUs) commonly found in wrist-
worn devices. Second, DL solutions necessitate large amounts of labeled data
to be trained efficiently and to obtain good performances, which were not
available for this task, since signal annotation is a laborious and time con-
suming procedure. About this last point, things improved recently with the
introduction of PPG-Dalia [13], a very large dataset for heart rate tracking
using PPG in presence of MAs, which includes recordings from 15 subjects
performing different daily activities. When the publication of this dataset
was available, various researchers have tried to delve into this new task. The
authors of [13] also introduced the first DL solution based on Convolutional
Neural Networks (CNNs), which was shown to outperform state-of the-art
algorithms. Following their example, other researchers have then proposed
different DL models for this task, such as CorNET [15] and Binary CorNET
[16], which combine convolutional and recurrent layers. CorNET was eval-
uated on the TROIKA and JOSS dataset having 22 PPG records collected
during various physical activities and achieving a mean absolute error of 1.47
BPM for HR estimation. BinaryCorNET, instead, achieves a MAE of 6.67
BPM when evaluated on the mentioned 22 PPG records. Lastly, Burello et
al. focus in particular on Temporal Convolutional Networks(TCNs). With
their proposed methodology [14] on PPGDalia they achieves a Mean Abso-
lute Error (MAE) of 4.36 BPM (Beats Per Minute), and with an additional
fine-tuning step, the MAE is further reduced to 3.61 BPM.

3.2.1 ActPPG

Risso et al. [30] introduced a collection of Temporal Convolutional Networks
(TCNs) for the estimation of heart rate (HR) using raw photoplethysmogram
(PPG) signals and acceleration data. TCNs represent a form of 1D Convo-
lutional Neural Networks (1D-CNN) that incorporate causality and dilation
parameters within their convolutional layers. The inclusion of causality en-
sures that the output of the layer yt solely relies on inputs xt̃ with t̃ ≤ t.
Dilation, on the other hand, involves introducing a gap (d) between the input
samples processed by the convolution. This gap increases the receptive field
without necessitating the addition of new parameters. Thus, a convolutional
layer in a TCN can be expressed through the following function:
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Where x and y represent the input and feature maps respectively,t corre-
sponds to the output time-step, and m denotes the output channel. W stands
for the filter weights, Ci,n is the number of input channels, d represents the
dilation factor, and K denotes the filter size. Within their paper, the authors
propose an adaptation of a well-known TCN named TEMPONet, originally
designed for gesture recognition. Their customized TEMPONet receives raw
data from a PPG sensor and the raw input from a three-axis accelerometer
sensor as inputs. Furthermore, the final classification layer is substituted
with a single neuron for regression purposes. The training loss employed
is LogCosh. To optimize the network’s size and complexity, enabling its de-
ployment in embedded systems, the authors employ MorphNet, an algorithm
for Neural Architecture Search (NAS). This algorithm automatically prunes
channels within each layer, significantly reducing the occupation of the seed
network, TEMPONet in this instance. The authors also apply full-integer
post-training quantization, converting the outputs from float32 to int8.
In [31], the work presented in [30] is extended to introduce two primary con-
tributions: TimePPG and ActPPG. TimePPG comprises a series of TCN
architectures designed to predict heart rate by utilizing raw PPG values and
tri-axial accelerometer data as inputs. The diverse architectures are gener-
ated through the MorphNet NAS algorithm [32], using TEMPONet as the
seed TCN. MorphNet takes the training dataset and the original TEMPONet
as inputs, initiating the architecture exploration process. This initial TCN
optimization produces multiple refined models, each reaching a good balance
between heart rate predictions and model complexity. This set of optimized
models collectively forms what the authors refer to as TimePPG. In addition,
a smoothing post-processing step is introduced to further enhance accuracy.
This process entails the application of a threshold (Pth) to the maximum vari-
ation in predicted heart rate concerning the averaged heart rate estimated
during the preceding N stages, in order to limit eventual incorrect predic-
tions of the model and is motivated by the fact that during heart rate (HR)
tracking, a subset of these errors can be readily filtered out by taking into
account the human physiological parameters. The results indicate that the
largest model, referred to as TimePPG-Big, produces a Mean Absolute Error
(MAE) of 4.88 BPM with approximately 232k parameters. Even the small-
est mode, in normal conditions, comprising only 5.09k parameters, achieves
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promising results with an MAE of 5.63 BPM.

The second significant contribution presented in [31] is a framework called
ActPPG. This framework strategically integrates various TimePPG mod-
els based on the quality of the PPG waveform, hence on the high presence
of Motion Artifacts (MAs), leveraging the accelerometer-derived movement
data. ActPPG is structured around two core modules:

• Movement Detector: This component employs a lightweight Random
Forest model, comprising 8 trees. It is fed with accelerometer data to
categorize movement levels on a scale of [0, N − 1], with N being set to
2. Although accelerometer values do not inherently offer insights into
heart rate estimation, they have recently emerged as the state-of-the-art
signal for mitigating MAs in PPG values arising from device movement,
especially in wrist-worn devices.

• Predictors: These are the models responsible for actual heart rate esti-
mation. This module receives inputs including the previously calculated
window difficulty (wd), training data, and optionally accelerometer data.
Based on wd, a specific predictor is selected, with higher wd values favor-
ing more performant predictors. It’s important to note that the predictor
ordering is established offline.

The framework is based on two assumptions. Firstly, as the occurrence of
movements increases, MAs escalate, consequently reducing the accuracy of
heart rate predictions. Secondly, the disparity between larger and smaller
models primarily depend on their capacity to correctly predict the HR even
in presence of MAs.
Drawing inspiration from big-little neural networks, ActPPG enhances both
small and large models by deploying the more suitable model according to
the given context. Despite the notable improvements in Mean Absolute Error
(MAE) values, the substantial reduction in complexity, size, and subsequent
energy consumption is a pivotal outcome.
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3.2.2 Q-PPG

Following the methodology introduced in [30], the authors extended their
research to further reduce the complexity of models used for estimating heart
rate (HR) based on PPG in [33]. Their extended work encompasses three
main contributions:

• The optimization scope of Neural Architecture Search (NAS) is broad-
ened to encompass dilation parameters for convolutional layers. This
expansion serves to further reduce model complexity with a marginal
compromise in accuracy.

• To trim down the model size, enhancing the Pareto frontier, hardware-
friendly quantization is introduced.

• The researchers deployed their results on a real embedded smartwatch
device powered by an STM32WB55 MCU from ST Microelectronics.

As with previous research efforts, TEMPONet serves as the seed network for
the NAS. The outcome of this process yields a collection of quantized Tem-
poral Convolutional Networks (TCNs), thus giving rise to the methodology’s
name: Quantized-PPG (Q-PPG). More precisely, the method employed is lin-
ear quantization, which transforms the floating-point tensor from the range
[αt, βt] into N -bit integer tensor t̂, as expressed by the following equation:

t̂ = round
1t − αt

ϵt

2
(3.2)

where ϵt = (βt − αt)/(2N − 1) is the smallest value the quantizer tensor can
assume.
In [33], the authors initiate their process by implementing uniform quanti-
zation. Subsequently, quantization-aware training is executed across various
formats, including int2, int4, and int8. This iterative procedure is fol-
lowed by the identification of the optimal data format for each layer. In the
final stage, a post-processing step is introduced to mitigate the inherent and
unpredictable errors associated with data-driven models like TCNs. This
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post-processing phase involves the application of a filter based on the natu-
ral dynamics of the heart, which establishes a reasonable range for heart rate
estimations over time.
The quantization optimization results in networks spanning a size spectrum,
ranging from the largest at 1MB (in floating-point representation) to the
smallest at less than 1kB. The most extensive model that can accommodate
the target embedded device, STM32WB55, requires approximately ≈ 412kB,
yielding a Mean Absolute Error (MAE) of 4.41 beats per minute (BPM).

44



Chapter 4

Methods

This section constitutes the core of this thesis: here, I’ll describe how the ex-
traction of the heart rate values from ECG-signals commonly occurs. These
values will be our targets (ground-truth) during the fine-tuning phase where a
regression task is performed. As often happens during the training of DNNs,
a pre-processing step is applied to normalize input values, reducing the risk of
possible outliers. For this reason, before starting the effective training loop,
raw data (PPG signal and acceleration data) are first preprocessed with a
sliding window of 8 seconds and shift of 2 seconds, and the label is calculated
accordingly, as the average of the signal peaks in each time window. This
is a commonly used methodology in heart rate tracking via PPG signals.
Furthermore, as we concentrate on conducting two distinct experiments, we
must take into account both the time and frequency domains. Consequently,
when working in the frequency domain, the Fast Fourier Transform (FFT)
is employed to extract spectrograms from the raw signal. During the fine-
tuning step we also apply a post-processing at runtime to prevent eventual
errors in the predictions of the model, mainly linked to data distributions
different from those processed during the training phase. In the last part of
this chapter, I’ll discuss the advantages of using transfer learning and how
it is exploited in the specific case of heart rate estimation through different
datasets, to further reduce patients’ Mean Absolute Error (MAE).
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4.1 Label computing

Figure 4.1: Example ECG-signal snippet from the data recording of subject
S1. The two encircled R-peaks were falsely identified by the R-peak detector,
and were thus manually removed during heart rate ground truth generation.

Reliable ground truth information can be derived from the ECG signal. The
procedure for heart rate extraction is quite simple: initially, an R-peak detec-
tor [39] was employed. Subsequently, the identified R-peaks were manually
reviewed and adjusted when necessary. Such adjustments were needed in a
few instances for each subject due to strong motion artifacts in the ECG
signal. R-peak correction encompassed both the elimination of erroneous
peaks and the retrieval of R-peaks that were overlooked in the initial stage.
Shown in Figure 4.1 there is an illustrative segment of the ECG signal from
participant S1 of PPG-Dalia extracted from [13], where motion artifacts in-
duced during the table soccer activity resulted in the erroneous identification
of R-peaks. Based on these corrected R-peaks, the instantaneous heart rate
was computed (in BPM) through the following equation:

instantHR = 60 × (fs

δt
) (4.1)

where fs is the sampling rate and δt is the time difference between two con-
secutive corrected peaks.
Ultimately, the ECG signal was segmented using a shifted window approach
(window length: 8 seconds, window shift: 2 seconds). Ground truth heart
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rate was consequently defined as the average instantaneous heart rate within
each 8-second window. Thus, the first value gives the calcualted heart rate
ground-truth in the first 8 seconds, while the second value in gives the calcu-
lated heart rate ground-truth from the 3rd second to the 10th second and so
on. Utilizing a sliding window of 8 seconds with a 2-second shift is a common
practice within the literature of PPG-based heart rate estimation. [37], [40].

4.2 Pre-processing

The sliding window described in Section 4.1 can be applied directly in time
to the raw PPG signals or in frequency to the corresponding spectrograms.
If we work in the time domain, PPG signals are divided into time windows
for analyzing heart rate in specific intervals and these windows are passed
directly to the algorithm described in Section 4.1. This means each window
will be 8 seconds in duration and the next window will start 2 seconds after
the end of the previous one. Otherwise, if we work in the frequency domain,
PPG signals are always divided into time windows but, this time, we apply
an additional step to extract from each window the corresponding spectrum
through the Fast Fourier Transform (FTT). This process converts the sig-
nals from the time domain to the frequency domain, showing how energy in
different frequencies varies over time. Heart rate can also be calculated from
spectrogram data by looking for peaks in the frequencies associated with the
heart rate, often in the range of heart frequencies (e.g., between 0 and 4 Hz).
The dominant frequency in each time window will represent the estimated
heart rate for that window.
Furthermore, researches have indicated that humans don’t perceive frequen-
cies on a linear scale. Our sensitivity to distinctions in lower frequencies
surpasses that in higher frequencies. For instance, we can effortlessly distin-
guish between 500 and 1000 Hz, but perform a distinction between 10,000
and 10,500 Hz proves challenging, despite the interval range is equal. Back in
1937, Stevens, Volkmann, and Newmann introduced a pitch unit that aimed
to make equal pitch intervals sound equally perceptible to the listener. This
unit is known as the mel scale. We perform the following mathematical
operation to convert frequencies to the mel scale:

mel(f) =
f, if f ≤ 1kHz

2595 × log(1 + f
700), if f > 1kHz

(4.2)
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4.2.1 Spectrogram extraction

From the PPG signal is possible to retrive the corrispondent spectogram
thought the Fourier Transform (FT).

Figure 4.2: Spectogram from a raw signal using FFT on overlapping win-
dowed segments.
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The Fourier Transform is a mathematical formula that gives us the possibility
to decompose a signal into its constituent frequencies and their correspond-
ing amplitudes (see Figure 4.3), in this way, it transforms the signal from its
time-domain representation into the frequency-domain representation, the so
called spectrum. The Fast Fourier Transform (FFT), instead, is an algo-
rithm well-suited for efficiently computing the Fourier transform and it is
widely used in signal processing. It is a technique that allows to analyze
the frequency content of a signal, but in numerous applications, it can prove
valuable to comprehend how the frequency components of our signal change
across time. This holds true for various audio signals, including music and
speech. The FFT is computed on overlapping windowed segments of the raw
signal and in this way we get what is called the spectrogram. Figure 4.2
can help to understand the process with a visual example which now which
I’ll describe in greater detail with a code example.

Figure 4.3: Fourier Transform from a raw signal.

There are several transformations that allow to compute the FTT from the
raw signals. In this thesis, I investigated MelSpectogram from the Tor-
chAudio library. After careful analysis, the parameter configurations were
set in the following way:

49



Methods

1 #spectogram trasformation and relative parameters
2

3 spectrogram_transform = torchaudio.transforms.MelSpectrogram(
4 sample_rate = 32,
5 n_fft=510
6 win_length=32
7 hop_length=1
8 center=True,
9 pad_mode="reflect",

10 power=2.0,
11 normalized=True,
12 f_min = 0,
13 f_max = 4,
14 n_mels = 64
15 )
16

Listing 1: MelSpectogram transformation.

• sample_rate: this parameter specifies the audio sample rate in Hz
(samples per second). It indicates how many times per second the audio
signal is sampled. Working with PPG signals sampled at 32 Hz, I set
the parameter accordingly.

• n_fft: it represents the size of the analysis window used to calculate
the spectrogram of an audio signal (FTT Length in Figure 4.2). Setting
the parameter to 510 means that the analysis window will have a size of
510 audio samples. This, indeed, is the number of samples that will be
considered in each analysis window. A larger n_fft value can capture
finer temporal details but requires more computational power.

• win_length: this parameter defines the length of the analysis window
in time-domain samples (Window Length in Figure 4.2). This window
is used to divide the audio signal into small temporal segments, called
frames, on which the spectrogram will be computed. In other words,
win_length specifies how many audio samples are included in each anal-
ysis frame.

• hop_length: it represent the amount of overlap between successive
windows in samples (Overlap Length in Figure 4.2). A smaller value
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captures finer temporal details but requires more computation.

• center: this flag indicates whether the analysis window should be cen-
tered with respect to the audio frame. Setting this parameter to True
positions the window at the center of each frame, while False positions
it at the beginning of each frame.

• pad_mode: if center=True, this argument is passed to np.pad for
padding the edges of the signal. By default pad_mode = "reflect" is
set. This means that signal is padded on both sides with its own reflec-
tion, mirrored around its first and last sample respectively.

• power: this parameter specifies the power to which the magnitude of
the Mel spectrogram should be raised. It is often set to 2 to compute
the power spectrogram.

• normalized: it indicates whether the Mel spectrogram should be nor-
malized. When set to True, the spectrogram values are normalized to a
range between 0 and 1.

• f_min: it represents the minimum frequency (in Hertz) that we want
to include in the Mel spectrogram. The Mel filters will start capturing
spectral energy from this frequency.

• f_max: it represents the maximum frequency (in Hertz) that you want
to include in the Mel spectrogram. The Mel filters will stop at this
frequency and will not capture spectral energy beyond this point.

• n_mels: it controls the number of Mel filters used during the computa-
tion of the Mel spectrogram. This parameter is essential in the process
because it determines the amount of spectral information that will be
extracted from the audio representation. Setting n_mels to a higher
value, you’ll have more Mel filters at our disposal. This means that
the extraction of spectral details will be finer, and we’ll have a more
detailed representation of the spectral components of the signal. Other-
wise, setting n_mels to a lower value, we’ll have fewer Mel filters. This
results in a coarser spectral representation, where spectral components
are grouped into a smaller number of frequency bands. In general, it’s
common to use values between 20 and 128.

In the particular context of this thesis, I set n_fft to 510 and win_length
to 32. It means we are using a very short analysis window (32 samples)
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compared to the total size of the FTT length (510 samples). From these
parameter configurations is important to highlight some considerations:

1. Zero Padding: To adapt the analysis window (win_length) to the size
of n_fft, zero padding is required. In other words, the 32-sample analysis
frame is extended with zeros to reach a total length of 510 samples.

2. Temporal Resolution: Using such a short analysis window produce a
very high temporal resolution. That is, our Mel spectrogram will capture
very small temporal changes in the audio signal.

3. Spectral Resolution: The spectral resolution, i.e., the ability to dis-
tinguish frequencies in the signal, will still be determined by the size of
n_fft, which is 510 samples. This means that despite the short analysis
window, we will still have good spectral resolution.

4.2.2 Patchifying and Masking strategies

The process of patchifying divides input into smaller parts called "patches",
allowing for more flexible data handling and more efficient data processing.
A "patch" represents a small portion of the image associated to the 1D raw
PPG signal or the corrisponging 2D spectrogram. The number of patches
obtained from splitting the original image in small portions is given by:

N = H × W

P 2 (4.3)

where H is the length and W is the width of the original image, P is the
size of each square patch. This partitioning process can be done sequentially,
moving from left to right and top to bottom, or with overlap, where patches
can have overlap with adjacent ones. In this thesis we don’t focus on the lat-
ter. Indeed, following [35] and [36], we transform PPG signals into Melspec-
trograms (in frequency experiments) and divide them into non-overlapped
regular grid patches. These patches are then flattened and embedded by
a linear projection. In the end, a fixed sinusoidal positional embeddings is
added to the embedded patches. Positional embeddings are vectors that are
added to each patch of the spectrogram. These vectors encode information
about the position or relative position of the patches in the spectrogram.
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Adding these embeddings is important because in this way we can preserve
information about order of patches inside the encoder of our Masked Au-
toencoder.
Furthermore, Masked Autoencoders remove a significant subset of spectro-
gram patches. Since a spectrogram can be viewed as a 2D representation
of time and frequency components of a sound, it is reasonable to explore
treating time and frequency differently during masking. In [34] the authors
investigate both the unstructured (i.e., applying random masking without
considering time or frequency distinctions) and structured (i.e., applying
random masking over a portion of time, frequency, or time+frequency) of
a spectrogram but, in this thesis, we focus only on the structured one. Illus-
trative examples are shown in Figure 4.4 in which masked regions are shown
with dark overlay.

Figure 4.4: MAE’s masking strategies on Mel-spectrograms.

4.3 Masked Autoencoders

Our proposed method for the various experiments conducted in this thesis
relies on the Masked Autoencoder architecture. It is made up of two main
parts: encoder and decoder. The encoder consists of Transformer En-
coder blocks, whose details are shown in the Figure 4.5. As shown in Figure
4.5, indeed, it processes the input through attention layers and multi-layer
perceptron (MLP). Before going into these blocks the input passes through
a layer normalization that apply normalization over a mini-batch of inputs
[53]. The encoder is responsible for extracting features from the input. For
this purpose, and following patchifying explained in Section 4.2.2, the input
is divided into patches and, subsequently, these patches are transformed into
embedding vectors through a linear projection. Patch embedding are added
with positional embedding to keep information about relative position of the
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patches inside the encoder. Before going into the encoder, some of these
patches are masked (i.e., removed) following the structured strategy as men-
tioned in Section 4.2.2. The quantity of patches to remove from the image
is establishes accordingly to a parameter called mask_ratio (Useful exam-
ples illustrating the results of signal reconstruction with variations in this
parameter are presented in the Section 4.5). The encoder only works with
a small subset of the complete patches set. Mask tokens are then restored
after the encoder. The full set of encoded masks, and a set of "random-noise"
patches (i.e., patches composed by random numbers that fill the space left
by the masked patches) are then processed by the decoder. The decoder also
consists of Transformer Encoder blocks as those represented in Figure 4.5
and, starting from the output of the encoder, tries to reconstruct the original
input from the extracted features.

To achieve a good level of accuracy in the recostruction process of the inputs,
a fine-tuning step of the hyperparameters was performed. The hyperparam-
eters which I paid attention to are depth, embed_dim and heads, in order
to build Masked Autoencoders (MAEs) of different orders of magnitude and
analyze their behavior. In particular, small, medium and large MAEs were
created for both time and frequency experiments. In Table 4.1 you can find
a summary comparing these architectures to each other as well as to Vision
Transformers (ViTs) [6], described in Section 2.2. From Table 4.1 it is clear
that Masked Autoencoders perform much fewer operations and have many
fewer parameters than ViTs, and this aspect turns out to be an essential
advantage in training large quantities of data, significantly reducing waiting
times and resources required.
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Figure 4.5: Detailed description of the architecture of our Masked Autoen-
coder for manage PPG signals in frequency domain. Inputs, indeed, are
patches extracted from the PPG-spectograms.
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Model
Name

Type Depth Heads Embed
dim

# params # ops

ViT-Base - 12 12 768 86M 5G
ViT-Large - 24 16 1024 307M 7G
ViT-Huge - 32 16 1280 632M 49G
My MAE -
small

Time 4 4 64 364k 53M

My MAE -
medium

Time 8 16 64 564k 104M

My MAE -
big

Time 12 16 256 9M 2G

My MAE -
small

Freq 4 16 64 380k 57M

My MAE -
medium

Freq 8 4 128 1M 419M

My MAE -
big

Freq 12 16 256 9M 2G

Table 4.1: Comparison between different models.

By looking at Table 4.1, all the MAE configurations were tested and, to
achieve better results, as well as those contained in the Results Chapter, in
the end the following configurations were chosen:

• MAE-big for time experiments:

– depth = 12
– heads = 16
– embed_dim = 256
– decoder_embed_dim = 256
– decoder_num_heads = 16

• MAE-small for frequency experiments:

– depth = 4
– heads = 16
– embed_dim = 64
– decoder_embed_dim = 64
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– decoder_num_heads = 16

Moreover, is important to underline that the implementation choice of using
a MAE-small for the frequency experiments is motivated by the fact that
increasing excessively the number of layers the performance of the model
decreases, incurring overfitting.

4.3.1 Training Protocol

Following a self-supervised approach, the model is trained in two successive
steps: pre-training and fine-tune, which will be discuss in details in their
respective Sections 4.5 and 4.6. A simplified pseudo-code of the training
protocol is shown below in few lines.

1 for patient in range(patients):
2 train_set, val_set, test_set = apply_kfold(patient)
3 apply_200epochs_pretraining(train_set)
4 apply_200epochs_finetuning(train_set,val_set,test_set)
5

Listing 2: Pseudo-code of the training protocol.

Since both PPG-Dalia and WESAD contain data extracted from a total of
15 different patients, for each of them, the validation step is performed by
means of k-fold cross validation: train over 11 subjects, validate over 3 and
test on the remaining one. Training loop of each patient consists of 200 pre-
training and 200 fine-tuning epochs. These values only represent an upper
bound since, to prevent overfitting, training can be stopped when the loss
starts to increase or no longer decreases consistently through an early stop
on the validation fix to 20 epochs. The pre-training only involves training
data because, following an unsupervised learning approach, we don’t care
about labels in this step. For this reason we don’t pass val_set and test_set
to apply_200epochs_pretraining function. We test model performance only
at the end of the loop during the finetuning phase.

To get a clearer idea of how self-supervised learning is performed, a more
realistic code example (Listing 3) regarding the frequency domain is shown
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below, in order to explain better the concepts summarized in the pseudo-code
and underline the main functionalities.

Some general considerations to understand the code are the following ones:

1. get_data returns a tuple of Pytorch Datasets. The number of returned
datasets is 3 (train, validation and test). The argument of the function
is directly the link to download the entire data zip of Dalia or WESAD.

2. build_dataloaders returns a tuple of Pytorch Dataloaders. Takes as
inputs the dataset returned by get_data and constants such as the batch-
size and the number of workers. The number of elements of the returned
tuple is 3 (train,validation, test) according to get_data implementation.

3. get_reference_model returns an istance of Masked Autoencoder as de-
scribed in Section 4.3. The number of layers inside the encoder and
decoder such as the number of attention head contained in each layer
depends on the string passed as input.

4. get_default_criterion returns the Mean Square Error (MSE) crite-
rion if the task is pretrain otherwise the LogCosh criterion if the task is
finetune.

5. get_default_optimizer returns AdamW optimizer if the task is pre-
train otherwise the Adam optimizer if the task is finetune.

6. train_one_epoch_masked_autoencoder_freq implements one epoch of
training for to reconstruct the input signal. It takes as input an integer
specifying the current epoch, the model to be trained, the criterion, the
optimizer, the train and val dataloaders and finally the device to be used
for the training. It returns a dictionary of tracked metrics.

7. train_one_epoch_hr_detection_freq implements one epoch of train-
ing and validation for predict heart rate estimation. For the validation
part it directly calls the evaluate_freq function. It takes as input an
integer specifying the current epoch, the model to be trained, the crite-
rion, the optimizer, the train and val dataloaders and finally the device
to be used for the training. It returns a dictionary of tracked metrics.
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8. evaluate_freq implement an evaluation step of the model. This step
can be both of validation or test depending on the specific dataloader
provided as input. It takes as input the model, the criterion, the dat-
aloader and the device. It returns a dictionary of tracked metrics.

9. DATASET_PRETRAIN and DATASET_FINETUNING can only be the strings
DALIA or WESAD. The two variables must have the same dataset
name, since in this simplified code the transfer learning step is not con-
templated.

10. The experiments in the time domain are structured in the same way.

The full implementation of PPG Masked Autoencoders described in the var-
ious chapters of this thesis is currently private. The work will be made
available as soon as possible and published in our official GitHub group:
https://github.com/eml-eda.
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1 # Set flags for experiments
2 N_PRETRAIN_EPOCHS = 200
3 N_FINETUNE_EPOCHS = 200
4 DATASET_PRETRAIN = "DALIA"
5 DATASET_FINETUNING = "DALIA"
6

7 print(f"=> Running frequency experiment with dataset =
{DATASET_PRETRAIN}")ñ→

8

9 # Check CUDA availability
10 device = torch.device("cuda:0" if torch.cuda.is_available() else

"cpu")ñ→

11 print("Training on:", device)
12

13 # Get data and perform cross-validation
14 data_gen = hrd.get_data(dataset_name = DATASET_PRETRAIN, augment

= False)ñ→

15 for datasets in data_gen:
16 train_ds, val_ds, test_ds = datasets
17 test_subj = test_ds.test_subj
18 dataloaders = hrd.build_dataloaders(datasets)
19 train_dl, val_dl, test_dl = dataloaders
20

21 # Get the Model => Masked Autoencoder ViT (encoder +
decoder)ñ→

22 model = utils.get_reference_model('vit_freq_pretrain')
23 if torch.cuda.is_available():
24 model = model.cuda()
25

26 # Get Training Settings
27 criterion = utils.get_default_criterion("pretrain")
28 optimizer = utils.get_default_optimizer(model, "pretrain")
29 best_loss = sys.float_info.max
30

31 print(f"=> Starting pretrain for {N_PRETRAIN_EPOCHS}
epochs...")ñ→

32 #Pretraining for recostruct input signals
33 for epoch in range(N_PRETRAIN_EPOCHS):
34

35 train_stats = hrd.train_one_epoch_masked_autoencoder_freq(

60



4.3 – Masked Autoencoders

36 model, train_dl, criterion,
37 optimizer, device, epoch)
38

39 loss = train_stats['loss']
40 if loss < best_loss:
41 best_loss = loss
42 #Save checkpoint
43 checkpoint = {'state_dict': model.state_dict()}
44 utils.save_checkpoint_pretrain(checkpoint)
45

46 #Get the Model => Masked Autoencoder (only encoder + CNNs)
47 model = utils.get_reference_model('vit_freq_finetune')
48 if torch.cuda.is_available():
49 model = model.cuda()
50

51 # Get Training Settings
52 criterion = utils.get_default_criterion("finetune")
53 optimizer = utils.get_default_optimizer(model, "finetune")
54

55 #Load checkpoint from pretrain if exists
56 utils.load_checkpoint_pretrain(model,

torch.load("./checkpoint_pretrain"))ñ→

57

58 print(f"=> Starting finetuning for {N_FINETUNE_EPOCHS}
epochs...")ñ→

59 for epoch in range(N_FINETUNE_EPOCHS):
60 train_metrics = hrd.train_one_epoch_hr_detection_freq(
61 epoch, model, criterion, optimizer, train_dl, val_dl,

device)ñ→

62

63 test_metrics = hrd.evaluate_freq(model, criterion, test_dl,
device)ñ→

64 print(f" => Frequency experiment completed")
65

Listing 3: Simplified code example for the training protocol.
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4.3.2 Time-based Masked Autoencoder

As described in Section 4.3, for the time experiments we choose a big-MAE
architecture. The following code example returns an instance of our Time-
based Masked Autoencoder that is able to handle raw PPG signals. Each
parameter is described below.

1 return MaskedAutoencoderViT_time(
2 img_size = 256, in_chans = 4, mask_2d=False,
3 patch_size=1, embed_dim=256, depth=12, num_heads=16,
4 decoder_embed_dim=256, decoder_num_heads=16,
5 mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6) )

Listing 4: Time-based Masked Autoencoder.

• img_size: size of the raw PPG signal.

• in_chans: input channels (PPG signal + 3-axis accelerations).

• mask_2d: flag that indicates whether the mask ratio should be applied
to both time and frequency or only to one of them.

• patch_size: size of the patches.

• embed_dim: output size of each layer in the encoder.

• depth: number of layers of the encoder.

• num_heads: number of attention heads contained in each layer of the
encoder.

• decoder_embed_dim: output size of each layer in the decoder.

• decoder_num_heads: number of attention heads contained in each
layer of the decoder.

In particular, we deal with signals which have a shape of 256. This means
each signal is an array containing 256 elements representing time intervals
(from 0 to 8 seconds). As mentioned in Section 2.1.2, we split the array
into patches of size (1,1) in order to reach a number of patches of 256.

62



4.3 – Masked Autoencoders

Working with a mask ratio of 75% means that 75% of the 256 patches will
be removed during the pre-training, therefore, the model will only learn from
the remaining 64 visible patches and from these it will predict the remaining
192 hidden ones.

4.3.3 Frequency-based Masked Autoencoder

For the frequency experiments, we exploit the small-MAE architecture. The
following code example returns an instance of our Frequency-based Masked
Autoencoder that is able to handle signals in the frequency domain (spectro-
grams).

1 return MaskedAutoencoderViT_freq(
2 img_size = (64,256), in_chans = 4, mask_2d=True,
3 patch_size=8, embed_dim=64, depth=4, num_heads=16,
4 decoder_embed_dim=64, decoder_num_heads=16,
5 mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6) )

Listing 5: Frequency-based Masked Autoencoder.

This time, focusing in the frequency domain, we deal with signals which have
a shape of (64, 256). This means each signal is a two-dimensional array with
64 rows and 256 columns, where each element represents a data point in the
signal, 64 represent the frequencies (which are bounded between 0 Hz and
4 Hz) after applying the spectrogram transformation and 256 are the time
intervals (from 0 to 8 seconds). As mentioned in Section 2.1.2, we split the
two-dimensional array into patches of size (8,8) in order to reach a number
of patches of 256, as for Time-based Masked Autoencoder.
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4.4 Post-processing

One other important step is the post-processing that, in our case, is applied
directly at runtime on the output of our Masked Autoencoder. This step is
independent from what has been described up to now and is motivated by
the fact data-driven models like Masked Autoencoders, although generally
reaching a high level of accuracy, can occasionally produce significant and
unpredictable errors, particularly when the processed inputs radically change
from those seen during the training phase. Fortunately, in the specific context
of heart rate (HR) tracking, a subset of these errors can be readily filtered
out by considering the predictions of the model and human physiological pa-
rameters. Hence, during the process of continuous heart rate (HR) tracking,
the presence of a prediction that markedly diverges from all preceding es-
timations is indicative of a potential model error. Based on these insights,
the post-processing procedure implements a simple filtering mechanism on
the outputs. Specifically, the latest Masked Autoencoder prediction HRn is
compared with the average of the previous N, En,N = E[HRn−1, ..., HRn−N ].
If the difference between these two values is larger than a threshold Pth, the
estimate is clipped to HRn = En,N ±Pth. We set N to 10 and Pth = En,N/10,
identical for all patients.
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4.5 Pre-training

Figure 4.6: Pre-training pipeline.

The pre-training phase is described by Figure 4.6. The pipeline begins with
an image that can represents the raw PPG signal or the corresponding spec-
trogram. The image is divided into patches and multiplied with a mask
(composed by 0s and 1s) that randomly removes some of these patches. The
encoder only works with a small subset of the complete patches set. Mask
tokens are then restored after the encoder, during the unmasking. The full
set of encoded masks, and a set of "random-noise" (see Section 4.3) are then
processed by the decoder. The goal of the decoder is to reconstruct the orig-
inal signal starting from the non-masked patches minimizing an appropriate
metric. We use the Mean Square Error (MSE) as a reference metric to com-
pute the distance in pixels between targets (input signals) and predictions
(reconstructed signals).
Following [34], for the frequency the structured strategy (time+frequency)
was chosen using a mask ratio of 15% for time and 15% for frequency. Figure
4.9 shows the reconstruction process. For the time domain, instead, follow-
ing the information extracted from [7], the mask ratio parameter is first
tried with a low value of 15% (Figure 4.7) and then with a high value of 75%
(Figure 4.8) to undeline the differences.
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4.5.1 Pre-training results.

Figure 4.7: Time experiment - Mask ratio 15%. Up: raw PPG signal, Down:
PPG signal reconstruction.

Figure 4.8: Time experiment - Mask ratio 75%. Up: raw PPG signal, Down:
PPG signal reconstruction.
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Figure 4.9: Frequency experiment - Mask ratio 15%. Up: PPG heatmap,
Down: PPG heatmap reconstruction.
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4.6 Fine-tuning

Once the pre-training phase is over, we preserve the information about the
extracted features by saving the model weights. This checkpoint is then used
as a starting point for the finetuning phase where the goal is to predict the
heart rates. To perform this task, we replace the decoder from the original
Masked Autoencoder with a regression tail comprising 2 convolutional layers,
a pooling layer, and a final linear layer.

The implementation is the following one:

• First istance of regression:

– nn.Conv1d(in_channels=256, out_channels=128, kernel_size=4, stride=4)

– nn.ReLU()

– nn.BatchNorm1d(num_features=128)

• Second istance of regression:

– nn.Conv1d(in_channels=128, out_channels=64, kernel_size=4, stride=4)

– nn.ReLU()

– nn.BatchNorm1d(num_features=64)

• Linear layer for predict HR

– nn.AvgPool1d(int(embed_dim/16))

– nn.Linear(in_features=64, out_features=1)

The final task is the HR prediction, which is performed by the regressive tail
starting from the hidden representation created by the encoder. We measure
the accuracy of our model through the Mean Absolute Error (MAE).
Note that the model has been made flexible to fit any correct configuration
of embed_dim, depth and heads parameters.
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4.7 Transfer Learning

Transfer learning is a powerful technique in the field of deep learning that
enables the transfer of knowledge learned from one task to another. In tra-
ditional machine learning approaches, models are built from scratch for each
specific task. However, deep learning models, especially neural networks, of-
ten require large amounts of data and substantial computational resources
for training, making them challenging to train from scratch for every new
task. Transfer learning addresses this challenge by allowing a pre-trained
model, which has been trained on a large dataset and a related task, to be
fine-tuned or adapted to a new task with a smaller dataset. This approach
leverages the knowledge and features learned by the model during its initial
training, enabling it to perform well on the new task with fewer data and
computation resources. Applying transfer learning, pre-trained models have
learned abstract features that can be relevant across a range of tasks. By
transferring this knowledge, the model can generalize better to new tasks, es-
pecially when the tasks share similar underlying patterns or characteristics.
Driven mainly by this motivation, in this thesis, we investigate a transfer
learning approach. In particular, our transfer learning implementation uses
the full data set during the pre-training (instead of split the latter into train-
ing, validation and test subsets and then exploit only the one relating to the
training subset). This dataset is specified by the variable DATASET_PRETRAIN.
As soon as a new minimum of the loss function is found we save model param-
eters: doing so we are able to preserve the acquired information in extracting
good features coming from all the patience, therefore, we are able to have a
greater amount of data available during the pre-training which can be used
for reach a greater generalization. This information is then exploits during
the fine-tuning step, where the goal is to predict heart rates for each test
patient present in dataset specified by the variable DATASET_FINETUNING.
Next page shows with greater details what is described here, highlighting
the comparison between the normal k-fold cross validation approach and our
transfer learning implementation through a pseudo-code. Furthermore, the
differences between transfer learning on WESAD and that on PPG-Dalia are
also the highlighted.
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Chapter 5

Results

The masked autoencoders described previously has been tested on 4 differ-
ent datasets which I will describe in more detail one by one in this Chapter.
The datasets are: PPG-Dalia, WESAD, IEEE_Train & IEEE_Test. A nec-
essary observation to make is that the model is not able to correctly fit data
from IEEE_Train & IEEE_Test, reaching only an average MAE over all the
patiens of ≃ 10 BPM. IEEE_Train & IEEE_Test are considerably smaller
datasets compared to PPG-Dalia and WESAD and this behavior is probably
related to the fact that the model is too complex and has too many pa-
rameters for the amount of training data available (see Table 4.1), trying to
memorize training data rather than generalize correctly (overfitting). Since
results for these datasets are not significant, they will not be reported in this
thesis.

5.1 Datasets

5.1.1 PPG-Dalia

PPG-Dalia [13] is a large dataset for motion compensation and heart rate
estimation during daily life activities. There are in total 15 subjects who
participated in the data collection: eight female and seven male participants
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with age between 21 and 55 years old. In the dataset we can find also further
information about each subject such as height, weight and general fitness
level. The collection of data was performed employing a chest-worn device
and a wrist-worn device. The first was used to measure ECG signals, respira-
tion capture with an inductive plethysmograph sensor, and 3D-accelerometer
data. The wearable device, instead, provided a PPG sensor with four kinds of
LEDs (two red and two green), and an inertial three-axis acceleration sensor
sampling at 32Hz. As previously mentioned, the data collection protocol in-
cludes different activities, eight in particular, which are typically performed
in daily life. In their study, the authors [13] incorporated activities that
covered different intensity levels, considering tasks of low intensity such as
driving, moderate intensity like walking, and involving high-intensity arm
movements similar to playing table soccer, in order to generate motion arte-
facts at diverse amplitudes, see Table 5.1.

Table 5.1: Data collection protocol on PPG-Dalia: activities and their dura-
tion.

Activity Duration (min)
Sitting still 10

Ascending/Descending stairs 5
Table Soccer 5

Cycling 8
Driving car 15
Lunch break 30

Walking 10
Working 20

An additional condition was the presence of both activities with periodic
(like walking or descending stairs) and non-periodic patterns (like eating or
table soccer). Furthermore, to ensure a wide range of heart rates, activities
requiring varying levels of physical effort were selected (e.g., driving versus
ascending stairs).
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5.1.2 WESAD

WESAD is a multimodal dataset for wearable stress and affect detection.
The data was captured through two wearable devices: a wrist-worn one (with
sensors like PPG, accelerometer, electrodermal activity, and body tempera-
ture) and a chest-worn device (incorporating sensors like ECG, accelerom-
eter, respiration and body temperature). The data collection involved 15
participants, aged between 24 and 35 years, each contributing approximately
100 minutes of data. The primary goal behind this dataset was to collect
a wide amount of data in order to identify and differentiate various affec-
tive states, such as neutral, stress, and amusement. Consequently, WESAD
predominantly includes data recorded during sedentary activities. PPG and
accelerometers are sampled at 32Hz while ECG signal at 700Hz. The labels
are different from those of PPG dataset, in fact they don’t refer directly to
heart rate values but are discrete numbers(e.g., 0 = not defined / transient, 1
= baseline, 2 = stress, 3 = amusement, 4 = meditation...). For this reason it
is necessary to follow the methodology described previously in the Methods
section to extract the mean of the instant heart rates from the ECG signal.
Additional insights about this dataset are available in [37].

5.2 Experimental Results

In this section, we present the main results obtained in this thesis using
the proposed method on PPG-Dalia and WESAD datasets. We measure
accuracy of our model through the Mean Absolute Error (MAE). The MAE is
a commonly used metric for evaluating the performance of a regression model.
It measures the average of the absolute differences between the predicted
values by the model (HR_pred) and the actual values from the test dataset
(HR_true):

MAE = |HRtrue − HRpred| (5.1)

Therefore, MAE provides a measure of the "average accuracy" of the model: a
lower MAE indicates that the model is better at predicting the target values.
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5.2.1 Experiments on time-domain input data

PPG-Dalia

Compared to the corresponding frequency experiment, the time results on
PPG-Dalia are significantly worse. In particular, from Table 5.2, we can see
how the worst result is given by patient 5 (S5), where the MAE is 24.86 BPM
against 5.41 BPM of the reference. This behavior is explained by the fact
that the model we are using is too large and is unable to extract correctly
good features from the raw data in the time domain, running into overfitting.
This phenomenon is also highlighted by Figure 5.2, which shows the trends
of train_mae and test_mae of patient 5, during the first 10 epochs: the
first drops reasonably until reaching a MAE of 4 BPM, while the second
fluctuates continuously around a value of MAE of 27 BPM. From this figure,
it can be deduced how the model performs well on training data, but poorly
on test data and therefore learns to memorize the training data instead of
generalizing from them. This gave us further proof that by applying a simple
FFT and, therefore, working on spectrograms rather than on raw PPG signals
as in [34], it is possible to teach better to the layers of the network learn how to
extract good features for the task. Working in the frequency domain, indeed,
we teach the model to give greater priority to the frequency component of
the input, which provide more details about the heart rate. This is the
primary reason why time experiments are confined exclusively to the use of
PPG-Dalia and are not subjected to further investigation.

Figure 5.1: Comparison between Target, Output and Ouput Post-processing
on 100 samples from S5 of PPG-Dalia.
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Figure 5.2: Comparison between Training MAE and Testing MAE from S5
of PPG-Dalia.

S1 S2 S3 S4 S5 S6 S7 S8
Reference MAE 3.25 2.55 2.66 4.21 5.41 4.11 2.06 5.07
T: Dalia, PT: Dalia 7,76 5,59 4,92 6,72 24,87 13,45 4,32 8,68
+ Post-processing 7,05 4,96 4,55 6,12 24,86 12,31 4,18 8,18

S9 S10 S11 S12 S13 S14 S15 AVG
Reference MAE 7.15 3.04 3.07 3.39 2.13 3.13 2.96 3.61
T: Dalia, PT: Dalia 9,26 4,94 10,15 9,97 5,10 5,13 5,70 8,43
+ Post-processing 8,11 4,42 9,86 9,44 4,98 4,70 5,08 7,92

Table 5.2: Time experiment results on PPG-Dalia. "T" is Target dataset,
"PT" is Pre-Training dataset.

Despite these considerations, on some patients we are still able to be com-
parable with the state-of-the-art. For example, on patient 10 (S10) we reach
a value of 4.42 BPM (after applying post-processing) against 3.04 BPM for
the reference. Looking at the overall results, we reach a average MAE over
all the patients of 7.92 BPM against the 3.61 BPM of the reference.
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5.2.2 Experiments on frequency-domain input data

PPG-Dalia

As can be seen by looking at Table 5.3, experimental results on frequency
domain regarding PPG_Dalia dataset are slightly worse but still comparable
to the state-of-the-art. This is true, except for patient 5 (S5) whose MAE is
approximately double (10.83 BPM vs 5.41 BPM). From this further evidence,
we deduce that among all the patients in the dataset, patient 5 is the one
on which obtaining a good level of accuracy is most challenging. We also
note that applying a further post-processing step it is possible to further
smooth MAE of all patients. Patients 3 (S3) and 13 (S13) are those that
the model is able to fit best, going down the threshold of 4 BPM. Figure 5.3
shows in details the comparison between target, output and output after post
processing of patient 3. From this example it is clear to note how the model

Figure 5.3: Comparison between Target, Output and Ouput Post-processing
on 100 samples from S3 of PPG-Dalia.

sometimes varies its predictions excessively from one value of heart-rate to
the next and how this behavior is promptly corrected by the post-processing
step. Moreover, it is also possible to underline a comparison with the behavior
of patient 5 (S5) in the time domain, shown in Figure 5.1. In this case, as we
expected, the model is able to fit the HR trend much better, demonstrating
the effectiveness of the proposed method in the frequency domain.
We can also observe how the application of Transfer Learning using WESAD
as a pre-training dataset helps the model to slightly decrease MAE in the
majority of the cases. This is particularly evident on patient 1 (S1) where it
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was possible to improve accuracy by 0.56 BPM (5.86 BPM vs 5.30 BPM).

WESAD

When employing our proposed method on the WESAD dataset, all the pa-
tients’ Mean Absolute Error (MAE) results exhibit significant enhancement
compared to the reference ones. In particular, remarkable enhancement is
obtained on patient 16 (S16), where, after applying post-processing, the per-
formance improved significantly by 8.36 BPM (dropping from 12.78 BPM of
the reference to 4.42 BPM). Looking at the overall results, it is possible to
achieve an average of 5.19 BPM against 7.47 BPM of the reference. By taking
advantage from Transfer Learning, exploiting Dalia as a pre-training dataset,
it is possible to further reduce the average MAE up to 5.09 BPM. These im-
portant results are shown in Table 5.4, and demonstrate the effectiveness and
general consistency of our approach.

S1 S2 S3 S4 S5 S6 S7 S8
Reference MAE 3.25 2.55 2.66 4.21 5.41 4.11 2.06 5.07
T: Dalia, PT: Dalia 6.30 5.67 3.69 6.28 11.09 6.15 3.48 8.37
+ Post-processing 5.86 5.19 3.63 5.90 10.83 5.76 3.47 7.42
T: Dalia, PT: Wesad 5.95 5.85 3.69 6.31 11.30 6.10 3.37 8.20
+ Post-processing 5.30 5.20 3.66 5.81 10.99 5.52 3.37 7.48

S9 S10 S11 S12 S13 S14 S15 AVG
Reference MAE 7.15 3.04 3.07 3.39 2.13 3.13 2.96 3.61
T: Dalia, PT: Dalia 9.48 4.57 7.27 6.33 3.15 5.00 5.33 6.14
+ Post-processing 8.47 4.07 6.86 5.65 3.05 4.56 5.10 5.72
T: Dalia, PT: Wesad 9.48 4.51 7.34 6.57 3.24 4.98 5.49 6.15
+ Post-processing 8.26 4.05 6.71 5.66 3.16 4.48 5.02 5.64

Table 5.3: Frequency experiment results on PPG-Dalia. "T" is Target
dataset, "PT" is Pre-Training dataset.
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S2 S3 S4 S5 S6 S7 S8 S9
Reference MAE 5.07 14.48 7.84 7.70 3.88 6.78 4.27 3.99
T:Wesad, PT:Wesad 3.77 12.06 3.72 6.37 3.76 4.94 4.35 3.62
+ Post-processing 3.60 11.93 3.63 5.82 3.50 4.85 3.88 3.50
T: Wesad, PT: Dalia 3.77 11.96 3.79 6.20 3.59 5.06 4.14 3.45
+ Post-processing 3.62 11.73 3.67 5.76 3.33 4.94 3.89 3.37

S10 S11 S13 S14 S15 S16 S17 AVG
Reference MAE 8.89 11.07 6.52 5.26 4.18 12.78 9.36 7.47
T:Wesad, PT:Wesad 4.16 9.04 4.66 3.74 3.87 4.71 8.44 5.41
+ Post-processing 4.00 8.93 4.29 3.59 3.79 4.42 8.24 5.19
T: Wesad, PT: Dalia 4.04 9.13 4.47 3.72 3.76 4.81 8.42 5.35
+ Post-processing 3.94 8.55 4.07 3.46 3.63 4.44 8.08 5.09

Table 5.4: Frequency experiment results on WESAD. "T" is Target dataset,
"PT" is Pre-Training dataset.
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Chapter 6

Conclusions and future
works

In this thesis, we explored the application of self-supervised learning to im-
prove heart rate estimation extracted through PPG sensor placed on wear-
able devices. To test the effectiveness of our proposed method we have used
mainly PPG-Dalia and WESAD datasets. They are, indeed, the two largest
datasets currently available in which various daily activities of the partic-
ipants involved are monitored. The results obtained were promising and
demonstrate the value of this innovative approach. Below, I summarize the
main conclusions:

We have seen a huge improvement in heart rate estimation performance us-
ing self-supervised learning compared to traditional methods. This progress
was particularly evident in the WESAD dataset, where the proposed model
reaches and average of 5.19 BPM (betten than state-of-the-art of 2.28 BPM)
suggesting that the use of self-learning techniques could revolutionize the
field of heart rate estimation.

At the same time it is important to note that, in addition to the WESAD
dataset, we examined also the DALIA dataset. However, in this case, the
results obtained were comparable to traditional approaches. This suggests
that the effectiveness of self-supervised learning may vary based on the spe-
cific dataset and data characteristics. So, despite WESAD was invaluable
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for this research, it may be interesting to explore other datasets to further
test the effectiveness of self-supervised learning. Larger or context-specific
datasets, indeed, could reveal new challenges and opportunities and the pre-
sented work can be used as a basis for further studies and applications in
domains such as medicine, fitness and wellness.

In conclusion, it’s worth mentioning that the implementation choice of utiliz-
ing a straightforward regression tail, as described in Chapter 4.6, might not
be the best solution. New configurations could be tested, including the use
of attention blocks, as shown in the Transformer Encoder of Figure 2.4, even
in the final phase where the heart-rate is extracted. This strategy is moti-
vated by the fact that attention blocks are able to capture broader contexts
and complex relationships between input elements, which can be difficult to
achieve with traditional CNNs that rely on local convolutions.
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