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Abstract

The nature of pulsar radio emission is a longstanding open problem in high-
energy astrophysics, mainly due to the intrinsic challenge of modeling the behavior
of the electron-positron plasma filling its magnetosphere. That region gathers the
most extreme physical conditions, as pulsars are the most compact and magnetized
stellar objects we know of. Time-dependent cascades of electron-positron pairs
are thought to be the main source of the aforementioned plasma, together with
being the main ingredient to explain the nature of the characteristic pulsars radio
emission. The cascade events consist in positive feedback loops of gamma-ray
photon emission, produced via curvature radiation by TeV electrons and positrons,
and pair production.

In this Thesis, I present the analytical models aimed at describing the pair
cascades in the framework of pulsar kinetic electrodynamics: starting from the
description of the underlying QED mechanisms of photon emission and pair pro-
duction, the self-consistent development of pair cascades in the pulsar polar caps is
investigated accounting for the time dependency of the electric field and its spatial
non-homogeneity. The onset stage and the exponential growth of those events are
studied in the case of a background linear electric field by using an heuristic model
of the pair production process, while the saturation stage is instead analyzed purely
through parametric analysis.

The analytical results are confirmed with the use of the fully-relativistic particle-
in-cell (PIC) code OSIRIS, which relies on pushing macro-particles on a grid by
forces deriving from solving the full set of Maxwell’s equations, which in turn
depend on the self-consisting charge densities, currents and fields. PIC method is
shown to be fundamental to reduce the high computational effort associated to the
kinetic characterization of the plasma dynamics and the presence of many QED
processes, which are intrinsically highly nonlinear. Following the heuristic approach,
different simulation setups are investigated in order to reconstruct and confirm the
analytical models, together with performing parallel parametric analysis aimed at
inferring possible considerations in the study of these high-energy plasmas.



La natura delle emissioni radio delle pulsar è, ad oggi, una questione aperta
nell’astrofisica delle alte energie, principalmente a causa della difficoltà intrinseca
nel modellare il comportamento del plasma di elettroni e positroni che popolano
la magnetosfera di questi corpi celesti. La regione in esame è caratterizzata da
condizioni fisiche estreme, essendo le pulsar i corpi celesti più compatti e più
magnetizzati che conosciamo. Si pensa che la principale sorgente di questo plasma
sia da ricercare in processi a cascata che portano alla creazione di coppie elettroni-
positroni, oltre ad essere l’ingrediente principale per descrivere la natura delle
caratteristiche emissioni radio delle pulsar. Questi processi consistono in cicli a
feedback positivo di emissioni di raggi gamma, prodotti da radiazione di sincrotrone
di elettroni e positroni da svariati TeV, e produzione di coppie.

In questa Tesi presento i modelli analitici atti a descrivere le cascate nel contesto
dell’elettrodinamica delle pulsar. Partendo da una descrizione dei meccanismi
QED alla base, emissione di fotoni e produzione di coppie, si indaga lo sviluppo
autoconsistente di cascate di coppie tenendo in considerazione la dipendenza
temporale del campo elettrico e la sua disomogeneità spaziale. Lo stadio iniziale e
la crescita esponenziale di questi eventi sono studiati nel caso di un campo elettrico
lineare di fondo utilizzando un modello euristico del processo di produzione di
coppie, mentre lo stadio di saturazione è analizzato puramente tramite analisi
parametriche.

I risultati analitici sono confermati utilizzando il codice PIC (particle-in-celle)
OSIRIS, tramite il quale macro-particelle di plasma sono spinte su una griglia
da forze derivanti dalla soluzione delle equazioni di Maxwell che, a loro volta,
dipendono da campi elettrici, cariche e correnti autoconsistenti. Il metodo PIC
si rivela fondamentale per ridurre l’elevato sforzo computazionale associato alla
caratterizzazione cinetica della dinamica dei plasmi e alla presenza di diversi processi
QED, in quanto intrinsecamente non-lineari. Seguendo l’approccio euristico, diverse
configurazioni sono indagate con lo scopo di ricostruire e confermare i modelli
analitici, insieme allo sviluppo di diverse analisi paramentriche atte a trarre possibili
considerazioni nello studio di questi plasmi ad alta energia.
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Chapter 1

Introduction

1.1 Pulsars

Pulsars are astronomical objects that gather the most extreme physical conditions
as they are the most compact and the most magnetized stellar objects we know
of, with typical masses of tens solar masses and radii of tens of km. A strongly
magnetized rotating neutron star is thought to be at their core, which is responsible
for the radiations emitted by these objects that span from radio to gamma-rays.
They are the end result of supernovae explosions after supergiant stars collapse,
and remain stable due to the equilibrium between self-gravitation and neutron
degeneracy pressure [1]. Along with that, their intrinsic magnetic fields can be
as large as 1012 G, supporting highly relativistic plasmas and their complex self-
consistent electromagnetic fields, that extend to light-years away from the neutron
star surface.

Early observational evidences of pulsar came from A. Hewish, J.B. Bell et al. [2]
as as source of pulsed radio emission at a frequency of 81.5 MHz with an incredibly
constant period of 1.33 s. The most likely astronomical body which could emit
that kind of pulsed radio wave are compact stars, either a white dwarf or a neutron
star. A common analogy for the pulsed character of this emission is the one with
the light emitted by lighthouses, that can be directly observed only periodically,
which is based on the association between the rotation of the neutron star and the
constancy of emission period [3]. Later on, various observations highlighted other
significant radiation signatures of pulsars, in the high-energy X-ray and gamma-ray
bands; the most significant discovery of high-energy radiating pulsars came recently
from the Fermi space telescope [4].

Thomas Gold [5] proposed a model where the neutron star magnetosphere -
the region close to the star characterized by the highest magnetization - would
be filled with plasma in corotation with the stellar surface up to a radius RLC, or
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light-cylinder radius, that can be expressed as

RLC = c

Ω , (1.1)

and defines a cylinder beyond which the linear velocity required for corotation
would exceed the speed of light c in a neutron star with rotation frequency Ω.

Despite decades of observations and theoretical research, there is yet no consensus
in the plasma astrophysics community regarding radio emissions from pulsars [6],
hence no definite, robust model had yet fully connected radio emission to collective
plasma processes. The driving scope of this work was to investigate the possibility
that plasma collective effects may actually play a significant role in those emissions.

1.1.1 System characterization
The general configuration of pulsar magnetospheres has been well established for
decades following the model proposed in the work by P. Goldreich and W. H. Julian
[7]. In this model, the star is considered to be an ideal magnetized rotating spherical
conductor with radius r∗ = 10 km, rotating with frequency Ω ∼ 1 - 10 Hz, highly
magnetized with surface magnetic field B ∼ 1012 G . Such a conductor rotating in
vacuum induces an electric field above the stellar surface strong enough to extract
charged particles from it. For this very reason, a plasma-filled magnetosphere
must exist surrounding the neutron star, which screens the strong rotation-induced
electric field parallel to the magnetic field. More precisely, we consider the part of
its magnetosphere that can corotate with the star i.e. the magnetosphere located
between the surface of the star and RLC = c/Ω. The charge density required to
effectively screen the parallel electric field is called the Goldreich-Julian (hereafter
GJ) density, and is given by

ρGJ = ∇ · E
4π = −Ω · B

2πc
1

1 − (Ωr/c)2 sin2 χ
, (1.2)

where E and B are the vacuum electric and magnetic fields, r = rr̂ is the coordinate
vector and χ is the angle between the magnetic axis and the rotation axis, defined
by the vector Ω as shown in Figure 1.1. This charge-separated GJ plasma on the
surface of the star is filled with relativistic leptons. Because of the strong magnetic
field, it is assumed that particle motion is restricted to occur mostly along the
magnetic field lines and that they rotate with the stellar surface, ensuring that
the electric field component parallel to B is fully screened. Thus, in almost all
the magnetosphere E · B ∼ 0. However, since the plasma can only corotate with
the star up to a cylindrical radius RRL, the magnetosphere itself is divided in two
regions: the region of magnetic field lines that close on the neutron star and from

2



Introduction

which the plasma cannot escape, and the region of open field lines, from which
plasma can outflow as shown in Figure 1.1.

Figure 1.1: Schematic representation of a pulsar magnetosphere. The central
neutron star is drawn with a black circle and the relevant regions are highlighted
and/or identified with labels. Figure taken from [8]

The magnetic field of neutron stars is assumed to be well approximated by a
dipolar profile. With this configuration, the open field lines form a bundle that
starts in the magnetic polar regions and extend to infinity. At the transition
between open and closed field lines, the magnetic field assumes a Y shape, which
helps converting efficiently magnetic energy into particle kinetic energy thanks to
the favourable onset of a process called "magnetic reconnection" [7].

1.1.2 Physical processes involved
The plasma outflow through open field lines required by this model poses an
important problem: a source is required to replenish the leaking magnetosphere. In
order to provide a charge density ρGJ and an associated current density |jm| Ä ρGJc
to the outer magnetosphere that supports the equilibrium solution of Goldreich
and Julian [7], Peter Sturrok [9] proposed as sites of intense pair plasma production
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the vacuum gaps, regions of strong unscreened electric field where the equilibrium
charge and current density conditions are not met locally. Therefore, in those
vacuum gaps an electric field E can actually accelerate particles along the magnetic
field lines such that E · B /= 0.

The vacuum gap dynamics can be described in a frame co-rotating with the
neutron star [10], where Gauss’s and Ampere’s laws become:

∇ · E = 4π (ρ− ρGJ) (1.3)

∂E
∂t

= −4π (j − jm) (1.4)

where jm is a free parameter that can be interpreted as the current density which
flows in the star crust towards the vacuum gap.

Two main classes of quantum electrodynamic (QED) models for vacuum gaps,
needed to replenish the magnetosphere, occur in neutron star polar caps, the regions
of the stellar surface that embed the footprints of open field lines. For a dipolar
magnetic field profile, these footprints are located around the magnetic axes of the
star [11].
The first model assumes that a significantly dense population of charged particles
are extracted from the stellar surface and accelerated to high energies. These
relativistic leptons, co-rotating with the pulsar magnetosphere, stream along curved
magnetic field lines and emit gamma-ray photons through curvature radiation that,
very like the synchrotron radiation, appears when an accelerated charge follows a
locally curved trajectory.
It is worth noticing that, due to the intensity of the magnetic field B, the gyro-
frequency ω = eB/mγc of an electron of charge −e, mass m and Lorentz factor γ, is
so large that the momentum (of a lepton) perpendicular to the local magnetic field
is almost instantaneously dissipated to very low values due to the radiation reaction
force associated to synchrotron emission. Electrons and positrons can be then
assumed to follow the local magnetic field lines, radiating mostly because of their
motion along the curved field line rather than perpendicular to it. Furthermore,
this emission does not significantly perturb the trajectory of the lepton, only its
energy.
The so-produced photons then propagate away from the star and undergo multi-
photon Breit-Wheeler (also known as nonlinear B-W or strong field B-W) pair
production, another relevant QED process in pulsar polar caps: photons are
absorbed in the strong magnetic field and converted into electron-positron pairs.

For the second model let’s assume, without loss of generality, that the electric
field in the gap is negative: the positrons are then accelerated towards the neutron
star surface, while the electrons are accelerate outwards. If a positron is provided
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from regions of higher altitude, where E · B = 0, it enters the vacuum gap and it is
accelerated almost instantaneously to relativistic speed along the strong curved
magnetic field. This positron can emit gamma-ray photons through curvature
radiation, therefore gradually reducing its energy; the so-produced photons then
propagate away from the star and, following the same mechanisms as in the first
model, can later decay in the strong magnetic field, converting into electron-positron
pairs. Those leptons, that are produced with some delay, are in turn accelerated and
will eventually undergo the same processes: the process of pair production, followed
by re-acceleration of the leptons and consequently by repeated pair production
events takes the name of "pair cascade". A schematic representation of this process
in a polar cap vacuum gap is shown in Figure 1.2.

Figure 1.2: Schematic representation of a pair cascade in a polar cap vacuum
gap. An initial positron e+ (marked with *) enters the gap, producing a curvature
photon γ. After propagating a finite distance (trajectory indicated with a dashed
line), the photon decays into an electron-positron pair e−e+ (event marked with a
star icon). The positron is absorbed at the neutron star surface, and the electron
is accelerated outwards, emitting a new photon. This process is repeated until
the fresh plasma drives enough current to screen the vacuum electric field. For
simplicity, the rotation axis is assumed to be aligned with the magnetic axis. Figure
taken from [8]
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Once created, this electron-positron plasma can advect to outer regions in the
magnetosphere and provide the charge density ρGJ and the associated current which
can satisfy the equilibrium of the magnetosphere itself. The overall effectiveness of
pair cascades in replenishing the magnetospheric plasma can be quantified via the
plasma multiplicity at the end of the discharge process, which is defined as

M = ρ+ + |ρ−|
|ρGJ |

= n+ + n−

nGJ
(1.5)

where ρ± = ±en± are the charge densities of positrons and electrons, while
nGJ = |ρGJ |/e is the Goldreich-Julian particle number density. For standard pulsar
parameters, the M parameter can be as large as 105 [12], which justifies the GJ
equilibrium conditions to be achieved through polar cap discharges.

The pair cascade self-regulates, stopping when the fresh plasma conducts the
required current and has the required charge density to screen the vacuum electric
field. Once the electric field is totally screened, the plasma is driven away from the
magnetosphere following the open field lines. As the plasma advects into the outer
magnetosphere, the density of the plasma does not match the equilibrium density
anymore, therefore the vacuum gap opens again and the process is repeated.

1.2 This dissertation

1.2.1 Objectives and outline

The overarching goal of this Thesis is to present the analytic models and the
associated large-scale ab initio particle-in-cell (PIC) simulations aimed at describing
the pair cascades in the framework of pulsar kinetic electrodynamics.

Starting from the description of the underlying QED mechanisms of photon
emission and pair production, the self-consistent development of pair cascades in
pulsar polar caps is investigated with the analytical models presented in Chapter
2. The recent 1-D model described by F. Cruz [13], which is based on a constant
electric field in an infinite gap, did not account for the time-dependency of the
electric field, nor for its spacial non-homogeneity, despite it still lead to relevant
results regarding the macroscopic plasma dynamics of pulsars. This work aims
at making this model more realistic by following the ideas of Timokhin [10] by
investigating time-dependent electric fields and studying the self-consistency of
the phenomena. This new assumption required the implementation of further
parameters in the first-principle description of the QED processes treated, which in
turn evolved in parametric analysis aimed at validating the accuracy of the whole
model itself for what concerns the time and energy scales of the problem.
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High-performance computing technologies, together with the advancements in
numerical techniques, have enabled a remarkable progress in the understanding
of pulsar electrodynamics in the last two decades. Fluid models developed for
the description of pulsar magnetosphere are based on magnetohydrodynamics
(MHD), which considers the plasma as a single fluid; however, this MHD approach
cannot include the intrinsically kinetic character of phenomena such as particle
acceleration.
The research presented in this Thesis strongly relies on massively-parallel particle-in-
cell (PIC) simulations performed with the OSIRIS code. In Chapter 3, the analytical
expression are compared with the numerical result of the simulations performed
with OSIRIS, which has been suitable for the description done hereafter thanks to
the various QED processes it has implemented. These PIC simulations, performed
using realistic pulsar parameters, have been used to obtain fully kinetic models
of pulsar magnetospheres. Vacuum gaps are demonstrated to open periodically,
producing burst of pair plasma, and the different species (electrons and positrons)
have been studied individually and in conjunction in order to fully describe their
role in the cascade process, both in the local-short and global-long scales.

Finally, in Chapter 4 the conclusion of this Thesis are presented and open
challenges in the multiscale modelling of pulsars magnetospheres are discussed.

1.2.2 Particle-in-cell (PIC) methodology
The phenomena investigated in this Thesis require a kinetic characterization of
the plasma dynamics and present many QED processes, which are intrinsically
highly nonlinear. While attempting to simulate plasma behavior we may first be
tempted directly simulate the interaction of all the particles, using what is known
as Particle-Particle method. At each time step would be necessary to calculate the
forces acting on the particles and then to push the particles themselves, leading to
a total number of operations 10N2

p −Np, therefore scaling with N2
p [14]. Another

method is the so-called Particle-Mesh method, in which the forces are exchanged
through fields that are approximated by a regular array of mesh points, where
field values at the particles position are obtained by interpolation. Despite being
already faster that the previous one, this method is still not feasible for the number
of particles we need to simulate. Since we are generally interested in the collective
behavior of the plasma and not in the time evolution of each individual particle,
the optimal choice will be using "superparticles" (ensembles of real particles) which
makes also good physical sense. These superparticles could be seen as finite-sized
clouds of plasma particles, with position and velocity being those of their center of
mass.

The first-principle kinetic simulations are performed with the Particle-In-Cell
method, or PIC, which is a subset of the Particle-Mesh method. PIC codes rely
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on solving the full set of Maxwell’s equations on a grid using currents and charge
densities calculated by weighting discrete particles onto the grid. Each particle
is pushed to a new position and momentum via self-consistently calculated fields
therefore, to the extent that quantum mechanical effects can be neglected, these
codes make no physics approximations.
The key equation that describes the motion of the particles is the Lorentz equation

ṗp = qp

3
E + vp

c
× B

4
(1.6)

where pp is the particle momentum, qp is the particle charge, vp is the particle
velocity, and E and B are, respectively, the electric and the magnetic field.

The simulation domain is represented by a discrete spatial grid, in which
the superparticles continuously move. As they move across the grid, charged
superparticles carry electrical currents that are deposited on the grid vertices.
These currents, defined with the vector j, are then used to advance the electric and
magnetic fields E and B in time via Faraday’s and Ampère’s laws, respectively

∂B
∂t

= −c∇ × E (1.7)

∂E
∂t

= c∇ × B − 4πj (1.8)

By using the generalized velocity up ≡ γpvp, where γp = (1 − ëvpë2/c2)−1/2 is the
Lorentz factor, we could obtain the relativistic generalization of equation 1.6

u̇p = qp
mp

A
E + 1

c

up
γp

× B
B

(1.9)

where mp is the particle mass. The corresponding Lorentz force is combined with
other external forces (e.g. external electromagnetic or gravitational fields, radiation
recoil) and used to advance the particles’ momentum via the relativistic equations
of motion

mp
d(γpvp)
dt

= FL
p + Fext

p = qp(E + vp
c

× B) + Fext
p (1.10)

where Fext
p is the external force applied to it. Particle’s position xp is finally updated

by solving
dxp
dt

= vp (1.11)

The most common numerical scheme to solve equation 1.7 and 1.8 in PIC is the
Yee solver [15], a second-order finite-difference time-domain method that considers
E and B to be defined in staggered positions on the grid. Equations 1.10 and 1.11
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are solved with the so-called Boris pusher [16] using the updated electromagnetic
field values, defined on the grid vertices, interpolated to the particles’ positions.
This numerical scheme is a leapfrog method that defines xp and up at interleaved
times. Current deposition algorithms compute the current density j on the grid
vertices while ensuring the continuity equation

∂ρ

∂t
+ ∇ · j = 0 (1.12)

Ensuring equation 1.12 guarantees that the electric field satisfies Gauss’ law,

∇ · E = 4πρ (1.13)

an equation not solved explicitly in PIC.
Figure 1.3 shows the PIC loop cycle. Beginning with a self-consistent initial

condition for particle position/velocity and electric/magnetic fields, the cycle first
interpolates the field values a the particle position. Then, using the interpolated
fields, it integrates the equations of motion of the particles. It then proceeds
to deposit the current density values on the grid and finally uses these values
to integrate the field equations. The topmost block represents the additional
modifications performed by the code OSIRIS, which also accounts for the QED
processes occurring.

Figure 1.3: Simulation loop cycle performed by OSIRIS. Grid quantities are
shown with indices i and particles are labeled with subscript p. Figure taken from
F. Cruz [8]
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All sub-steps of PIC can be performed with only local operations (in space).
For this reason, PIC can be solved independently by a collection of computing
nodes that only require information exchange with their neighbours. Furthermore,
because the individual macro-particles interact through the collectively produced
electromagnetic fields defined on a grid, the number of computations in PIC scales
proportionally to Np (and not to N2

p as particle-particle codes), where Np is the
number of simulated macro-particles. These highly scalable properties set PIC as a
unique and efficient tool to model plasma dynamics ranging from the kinetic to
meso and large scales.

Another thing worth mentioning is that PIC simulations are usually done in
normalized units, therefore the multiplication by several constants is avoided, hence
increasing the overall performances. Furthermore, by expressing the quantities used
in the simulation in terms of the fundamental plasma quantities ωp, me, e and c,
respectively the electron plasma frequency, its rest mass, its charge and the speed
of light, the obtained results are general and not bound to some specific units we
might have chosen. Position, linear momentum, electric and magnetic field become

xÍ = ωp
c

x (1.14)

pÍ = p
mspc

= γv
c

= u
c

(1.15)

EÍ = e
c/ωp
mec2 E (1.16)

BÍ = e
c/ωp
mec2 B (1.17)

where msp is the mass of the considered species. In this case γ can be calculated
as γ = (1 + pÍ2)1/2.
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Chapter 2

Analytical models

As previously stated, the development of pair cascades and the following plasma
collective dynamics are highly non-linear phenomena. In this chapter, the heuristic
pair production analytical models used to investigate the onset, saturation and late
stage of pair cascade are described. In a preliminary section, a constant external
field is considered in order to characterize the pair cascade process, hence the self-
consistent excitation and damping of current-driven plasma waves; subsequently, the
model is generalized in order to consider the growth of a non-linear self-consistent
electric field.

2.1 Quantum parameters
As leptons are accelerated along magnetic field lines up to TeV they emit γ rays
curvature photons. This is the classical limit of nonlinear Compton scattering,
which consists in the interaction between a lepton with energy Ô± = γ±mec

2 and
an arbitrary number of photons (which describe the background electric field). In
this QED process, a photon with a fraction fγ of the lepton’s energy is emitted,
hence Ôγ ≡ fγÔ± with an associated lepton recoil. The differential probability
rates for these QED processes are well known [17] [18] functions of the energy,
local electromagnetic field components and momentum components of the parents
particles. These complex functions, hence the QED processes regulating pair
discharges, revolve around the Lorentz invariant χ±,γ of the electron, positrons and
photons (subscript ± and γ, respectively) defined as

χ± = 1
BQ

ó3
γ±E + p±

mec
× B

42
−
3 p±

mec
· E
42

(2.1)
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χγ = 1
BQ

öõõôA Ôγ
mec2 E + ~kγ

mec
× B

B2

−
A
~kγ
mec

· E
B2

(2.2)

where p± is the momentum of the lepton, Ôγ is the photon energy and kγ is the
wavevector. The quantum parameter χ± (χγ) corresponds to the ratio between
the electromagnetic field that the lepton (photon) experiences at rest and the
Schwinger critical field BQ Ä 4.4 × 1013G, which in turn defines the field able to
perform a work equal to an electron rest mass within a Compton wavelength. The
emission can be considered classical, hence the QED effects can be disregarded,
when the ratio between the energies of the radiated photon and the producing
lepton is negligible, hence when

fγ = Ôγ
γ±mec2 = χγ

χ±
¹ 1 (2.3)

which subsists if we assume that the leptons are moving almost exactly along the
MF lines and for typical pulsar surface field B Ä 1012G.

2.2 Constant electric field
On the analytical side, a recent 1-D model described by Cruz et al. [13] assumes
the presence of a constant electric field in an infinite gap; this model represents the
background over which we will build our study.

To begin with, photons are assumed to have zero mean free path, which means
that the very moment the photon is produced, it immediately decays into an
electron-positron pair (the pair production is done in place). Accordingly, from now
on photons won’t be considered and leptons will be considered as able to directly
pair produce. This hypothesis is justified in [13] and still allows us to model the
cascade in a large variety of pulsars.

The second assumption is that a lepton emits a new electron-positron pair
whenever it reaches a Lorentz factor γthr, as a very simple energy-based prescription.
The ratio between the primary and combined secondary particle energies can be
expressed as:

f = γpair/γthr Ä χ± (2.4)

where γpair is the Lorentz factor of the two secondary leptons right after their
creation. The approximation is justified by the fact that, in the classical emission
regime, the photon quantum parameter distribution has a sharp peak at χγ Ä χ2

±.
For realistic pulsar parameters, f ¹ 1 and γpair > 1. Finally, the energy γpairmec

2,
is supposed to be equally split between the two leptons energy. Right after the

12
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emission, the Lorentz factor of the emitting particle will then be γthr(1 − f) and
the two secondary leptons emitted will have γpair/2.

Let us now suppose that the cascade occurs in an infinite vacuum gap with
uniform background field E0.

Figure 2.1: Schematic representation of heuristic pair production model and
associated populations and time scales. Solid blue lines represent the time evolution
of the Lorentz factor of leptons. When they reach a Lorentz factor γthr, leptons emit
a pair with energy γpairmec

2. Emission times are indicated with blue dashed arrows,
and new particles created at those times are shown with darker colors. The energy
bands corresponding to populations 1 and 2 described in the text are indicated on
the right hand side. Characteristic times ta and tp are also schematically indicated.
Figure taken from [8]

As appreciable in Figure 2.1, plasma can be divided in two populations:
1) particles with a Lorentz factor γ ∈ [γthr − γpair, γthr],
2) secondary particles, with γ ∈ [γpair/2, γthr − γpair[ .
We hereby define two time scales relevant for the description of the system. The
first one is the time required for particles to be accelerated from rest to γthr, defined
as ta ≡ γthrmec/eE0, where e is the electron charge. The second one, tp ≡ fta is
the time needed to accelerate particles from γthr − γpair to γthr, i.e. it is the period
at which each particle in population 1 undergoes the QED processes responsible
for the pair production. Since there is yet no forces to decelerate particles, the
ones in population 1 are never converted into population 2, however particles in
population 2, created due to pair production, are accelerated and get in the energy
range of population 1 over a time ta − (3/2)tp = (1 − (3/2)f)ta as appreciable in
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Figure 2.1. The particle population equilibrium can be written as

n1 (t+ (1 − (3/2)f)ta) = n1(t) + (1 − f)n2(t) (2.5)

where n1,2 are the number of particles in each population. The factor (1 − f) is
only a small correction, and removes from equation 2.5 the fraction of particles in
population 2 at the time t that decelerates and counter-propagates with the bulk
distribution. This small fraction can be written as (1 − 3f/2)/(1 − f/2) Ä 1 − f
for f ¹ 1 and corresponds to electrons emitted by positrons (or vice-versa) [8].

At each time interval tp ≡ fta the number of particles in population 2 increases
thanks to pair production of both electrons and positrons in population 1, while
the conversion to population 1 occurs via acceleration of particle in population 2.
We can thus write:

dn2(t)
dt Ä 2n1(t)

fta
− n2(t)

(1 − 3f/2)ta
(2.6)

It is possible to solve the system of coupled equations 2.5 and 2.6 assuming solutions
of the type exp(Γt) such like n1,2 = n1,2 exp(Γt):

n1e
Γta(1−3/2f) = n1 + n2 (2.7)

Γn2 = 2n1

tp
− n2

ta − 3/2tp
, (2.8)

which leads to
eΓta(1−3/2f) = 1 + 2/f

Γta + 1/(1 − 3/2f) . (2.9)

This is a difficult equation to solve analytically, but one that can be solved numeri-
cally for Γ given ta and f .

Let us work out the case for which Γta º 1 and Γfta = Γtp ¹ 1. This is
equivalent to considering tp ¹ ta, or equivalently f ¹ 1. In these conditions,
equation (2.9) simplifies to

eΓta Ä 2
fΓta

. (2.10)

The problem is that we cannot expand the factor in the exponential. One can
recast this equation in the form

xex = 2
f
, (2.11)
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which amounts now to find the argument of the Lambert W function, W (x) = xex

[19] for W = 2/f , where x = Γta. There is an approximate solution W (x) Ä ln x,
valid for x > e (or for f ¹ 1), which allows us to write

Γ ∼ 1
ta

ln
A

2
f

B
. (2.12)

From equation 2.8 and using the approximation given by equation 2.12 considering
f ¹ 1, it is possible to write the equilibrium condition

n1

n2
Ä f

2 ln(2/f) + f/2
1 − 3f/2 Ä f

2 ln(2/f) (2.13)

i.e. that the ratio of particles in populations 1 and 2 is constant over time and
only depends on f . Since f ¹ 1, the number density at the screening time ts is
ns = n1(ts) + n2(ts) Ä n2(ts). It is noteworthy that the factors "2" in equation 2.13
are the result of the presence of both the electrons and the protons in the gap that
can pair emit when reaching γthr.

2.3 Linear electric field
Despite it led to relevant results regarding the growth of a cascade process in the
gaps, the model from Cruz et al. [13] did not account for the charge screening
one could expect but only for a screening current. In this Thesis that model is
generalized by using a time-space dependent electric field instead of a constant
field in the gap as numerically described in [10]. Various aspects of the problem
have been explored, step by step and under different angles through a quantitative
analysis performed with variable scanning.

2.3.1 Initial setup for the linear field
The system considered is that of a plasma-filled magnetosphere with initial uniform
density profiles of electrons ρ− = −2 |ρGJ| and positrons ρ+ = |ρGJ|, which assure
the equilibrium of the system ρ = ρ− + ρ+ = ρGJ at time t = 0 when the gap opens.
As in [13], without loss of generality, ρGJ = −ΩB∗/2πc < 0 has been chosen in
order to reproduce the conditions of an aligned rotator (Ω ë B). The plain sight of
the cascade is the driving force for the cone of light to spread in the plasma at the
pulsar polar caps.

From the initial density ρ = ρGJ setup, a vacuum gap develops as the electrons
flow outward due to the externally-applied electric field, therefore generating a gap
with a linear electric field inside of it, with E · B /= 0. As in [10] and in Figure 2.2,
the gap contains just a fraction of the total positrons ρGJ defined as ρgap ≡ f+ |ρGJ|.
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Figure 2.2: Initial setup at time t = 0 and system evolution at a generic time
t > 0. The rightwards motion of electrons due to the external electric field results
in a gap opening, hence to the creation of a linear electric field inside of it such
that E · B /= 0.

The front, which represents the upper limit of the gap, moves at speed vf = v−.
Knowing that the current density jm ≡ ρ−v− + ρ+v+ by definition and that
v− = −v+, it is possible to find

vf = −jm
3 |ρGJ|

(2.14)

Despite this very correlation stands only for the values of initial density that had
been chosen, it’s noteworthy underlining how the front velocity is fixed depending
on the jm, which can be treated - at least for now - as a free parameter. Since the
front is composed by relativistic electrons we have vf < c, therefore jm < 3ρGJc.
Furthermore, as shown in [10], jm > 1.5 |ρGJ| c, which corresponds to a front velocity
vf > 0.5c.

2.3.2 Linear Field regime
As electrons flow outwards (to the right, in our setup), the so-formed gap is
characterized by a growing electric field. This field develops with a linear profile
because of the capacitor-like setup, and scales linearly with both time and distance
from the electrons population front up to the surface (at x = 0). The generic
equation for the field will then be:

E(x, t) = a(t)x+ b(t) (2.15)

This is true only in the early stages of the gap opening, when the number of
pairs created is still sufficiently low such that the zeroth order electric field is not
affected by them filling the gap itself.
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Initially, the vacuum gap only contains positrons with density ρ = −f+ρGJ
flowing towards the surface with speed which is assumed to be c in the gap, hence
the presence of a current j = −f+ |ρGJ| c. Equations 1.3 and 1.4 can be extended
with the introduction of ρgap and jgap:

∇ · E = 4π (ρ− ρGJ) ≡ 4πρgap (2.16)

∂E
∂t

= −4π (j − jm) ≡ −4πjgap (2.17)

From equation 2.16 applied to 2.15 is possible to deduce a(t) = 4π(1 + f+) |ρGJ|.
Using jm ≡ −α |ρGJ| c, equation 2.17 can be rewritten as

∂E
∂t

= 4π (f+ − α) |ρGJ| c (2.18)

Since E(x = 0, t) = b(t), it’s possible to find b(t) = 4π (f+ − α) |ρGJ| c · t+C by
integrating 2.18. The boundary condition E(x = vf t, t) = 0 is imposed considering
that the electric field is completely screened out of the vacuum gap. Equation 2.15
than becomes:

E(x, t) = 4π(1 + f+) |ρGJ| (x− vf t) (2.19)

which is valid for a lepton in the gap, i.e. for x < vf t. The use of parameters
like α and f+ is supported by the quest for self-consistency between the parameters
used in the numerical simulation, as later shown in Chapter 3.

Knowing the electric field profile, it is now possible to write the momentum
equation for the leptons (with subscript + or - for positrons or electrons, respectively)
by assuming that their speed is equal to c in the gap and using p± Ä γ±mc, where
p± is the momentum, γ± is the Lorentz factor:

dγ±

dt
= −e
mec

E(x, t) = −4πe
mec

(1 + f+) |ρGJ| (x− vf t) (2.20)

Since this very analytical model has been later compared with numerical
simulations, it has been necessary to normalize the problem to OSIRIS units:
|ρGJ| = e× nGJ and, as in OSIRIS, the equivalent of a plasma frequency ω0 and n0
are defined as:

4πe2n0

me

= ω2
0 ≡

3
c

r∗

42
(2.21)

Finally, let nGJ = (1 + f+)nGJ/n0. By setting c = 1, n0 = 1, ω0 = 1 and
vf = vf/c, the equation of motion becomes:
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dγ±

dt
= nGJ (vf t− x) (2.22)

Depending on the nature of the lepton, x = xi ∓ (t− ti), where xi is the position
of the lepton at time ti. By integrating equation 2.22 between time ti and time t,
we get:

γ±(t) − γ± (ti) = nGJ

A
t2 − t2i

2 (vf ± 1) ∓ (ti ± xi) (t− ti)
B

(2.23)

This can be written as a second order equation for t:

γ±(t) − γ± (ti)
nGJ

= t2
3
vf ± 1

2

4
∓ t (ti ± xi) + ti

3
ti
2 (vf ± 1) − (ti ± xi)

4
(2.24)

The determinant of this problem reads

∆ = (ti ± xi)2 − 4
2(vf ± 1)

5
−(ti ± xi)ti − γ − γi

nGJ
+ vf ± 1

2 t2i

6
,

= (xi − vf ti)2 ± 2(γ − γi)(1 ± vf )
nGJ

.

Then

t− = ti − xi
1 − vf

−

öõõôAvf ti − xi
1 − vf

B2

− 2 (γ(t) − γ (ti))
(1 − vf )

1
nGJ

(2.25)

t+ = ti + xi
1 + vf

+

öõõôAvf ti − xi
1 + vf

B2

+ 2 (γ(t) − γ (ti))
(1 + vf )

1
nGJ

(2.26)

The signs in front of the square roots are chosen so that t± increases with γ(t).
It is now possible to compute the times tp(t) and ta(t) according to their

definition: for instance, ta is the time required to accelerate a particle from γpair/2
at time ti to γthr at time t, hence ta± ≡ t± − ti:

ta−(ti) = vf ti − xi
1 − vf

−

öõõôAvf ti − xi
1 − vf

B2

− 2γthr (1 − f/2)
(1 − vf )

1
nGJ

(2.27)

ta+(ti) = −vf ti + xi
1 + vf

+

öõõôAvf ti − xi
1 + vf

B2

+ 2γthr (1 − f/2)
(1 + vf )

1
nGJ

(2.28)
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while tp, by definition, is the time required to accelerate a lepton from γthr − γpair
to γthr, hence:

tp−(ti) = vf ti − xi
1 − vf

−

öõõôAvf ti − xi
1 − vf

B2

− 2γthrf

(1 − vf )
1
nGJ

(2.29)

It is noteworthy that, since all the leptons are relativistic (supposed to be moving at
c), the problem is only time dependent because xi is in the form xi = x0 ± c(ti − t0).
Furthermore, it is remarkable how the difference between electrons and protons is
embodied by the reverse sign in the speed and in the square root argument.

2.3.3 Layers and characteristic times
Analytically describing the whole cascade is quite nontrivial because of the high
non-linearity of the processes involved, the self-consistency of the phenomena to be
addressed and the successive optimization of the numerical analysis to be performed.
Together with the few approximations regarding the physics of the phenomena
(such like the zero-MFP for the photons) it becomes necessary to divide the whole
process into sub-processes, which are easier to approach analytically and lighter to
be computed.

By considering time scales for which the number of leptons is small enough in
order not to perturb the externally-imposed electric field, it is possible to assume
that all the leptons are substantially independent from each other. Thanks to
this assumption, in a preliminary approach it is possible to consider only the
electrons in the gap while neglecting the presence of the positrons, both the ones
originally present in the magnetosphere (primary e+) and the ones that have been
pair-produced (secondary e+). Specifically, for the moment the only leptons able to
pair produce will be the electrons, and the will only emit electrons in the cascade.
Furthermore, the variables ta(t) and tp(t) will be referred to the electrons, hence
equations 2.27 and 2.29) will be the ones considered.

Because all the electrons in the gap move at c, the cascade is described as
occurring in a succession of layers of infinitesimal width moving at c towards
the positive values of x. The whole cascade process can be then subdivided into
different phases, according to the following scheme.
- Phase 1) : As the gap gradually opens, positrons start being accelerated towards
the surface as soon as the front reaches their position in the initial distribution.
The very first ones subjected to the linear electric field, due to their proximity to
the surface, collide with it before being able to reach γthr, hence they are absorbed
without undergoing any pair production. Let tPhase 1 be the time at which the front
reaches the very first positron that could be accelerated to γthr right before hitting
the surface in x = 0. The position of this positron can be considered to be the
layer of infinitesimal width located in x = vf tPhase 1.
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- Phase 2) : The positrons produces at t = tPhase 1 in x = 0 an electron-positron
pair. While the so-produced positron is instantly absorbed by the surface, the
electron created with γ = γpair/2 starts being accelerated by the gap field while
moving at c towards the front moving at vf . The layer it belongs to, which is
moving rightwards at c as well, will be the focus of the model, since the layers to
the right do not present any electrons accelerating towards the front as stated in
Phase 1, while the ones to the left could be momentarily considered as "copies" of
it (more on this in Chapter 3). In the available time before it reaches the front
of the gap, this electron hits γthr, pair produces other electrons on site and starts
being re-accelerated from γthr − γpair several times. It is worth noticing how the
so-produced secondary (and even further generation) electrons move at c with their
progenitor since they are assumed to move basically at c.
- Phase 3) : The cascade process ends when the electrons layer under the focus
reaches the gap front; here the electric field vanishes, hence the leptons couldn’t be
accelerated anymore to γthr and pair produce.

This whole scheme and, particularly, the evolution of the number of particles in
each layer are fully determined by the time tPhase 1 when the positron from the front
enters the gap, which in turn has to be already wide enough so that the electric
field inside is sufficiently strong to accelerate the positron to γthr. Phase 1 can thus
only occur after a time tPhase 1 that satisfies vf tPhase 1 > ctA+(x = vf tPhase 1), since
the positron has to be sufficiently far apart from the surface to be accelerated to
γthr in a time tA+ evaluated in the gap front position x = vf tPhase 1. This condition,
applied to equation 2.28, leads to

tPhase 1 > τ∗ = 1
vf

öõõô2 (γthr − 1)
(1 + vf )

1
nGJ

∼
ó
γthr

nGJ
(2.30)

for which an initial γ = 1 has been considered, since the positron was still before
being reached by the gap front.

From now on, only the layer that left the front at time tPhase 1 = τ∗ will be
considered, meaning that the first electron is produced right on the stellar surface.
Let us now introduce some notations. The positron emitted at time τ∗ takes a
time ta+(τ∗) to reach the surface of the star where it can produce the first pair.
τ0 = τ∗ + ta+(τ∗) is hence defined as the time when the first generation electron
is emitted at x0 = 0, i.e. on the surface of the star. By imposing xi = c(t − τ0),
which corresponds to t − τ0 in normalized quantities, equation 2.29 for the seed
layer of that progenitor can be rewritten as:

tp(t) = τ0

1 − vf
− t−

öõõôA τ0

1 − vf
− t

B2

− 2γthrf

(1 − vf )
1
nGJ

(2.31)
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It is worth underlining how tp,a(t) are then sums of a linear term and a square root
term: this becomes relevant in the analysis of the numerical simulations performed
in Chapter 3.

Since the choice of nGJ used in OSIRIS simulations directly reflected the average
Goldreich-Julian density normalized by 1 + f as shown in equations 2.20 and 2.22,
the problem now considered only depends on three parameters: f, γthr and vf .

It takes a time ta(τ0) for the progenitor electron to reach γthr, hence τ1 = τ0+ta(τ0)
can be defined as the time at which the first generation electron emits its first
electron. Then at time τ1 + tp(τ1) it emits a second electron and so on.

Figure 2.3: Illustration of the cascade in a layer. One horizontal line represents
one electron. The yellow stars represent the moment an electron is born with
γ = γpair/2. The green stars represent the moment an electron reaches γthr for the
first time. The red stars represent the production of electron every tp(t). Some
useful time labels are used according to the notation expressed in 2.32; t0 is what
was previously defined as τ0 (more precisely, τ0,1), while T1 stands for τ1 (τ1,1).

In order to assess the time dependency of the cascade process, a useful sequence of
timestamps (conceptually shown in Figure 2.3) has been introduced:

I
τ1,i
τn+1,i = τn+1,i + tp−(τn+1,i)

(2.32)

τ1,i is the time when the ith electron reaches γthr for the first time, while τn,i is the
time when the ith electron reaches γthr for the nth time.
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By paying closer attention to equations 2.29 and 2.27 it is noticeable that the
two functions share the same time dependence. The main difference between them
stands in the multiplying factor in front of γthr, which is a direct consequence of
the fact that tp(t) is defined on a smaller interval than ta(t).

It is therefore possible to evaluate the time at which the cascade process ends by
considering two possible events. The first possible condition for which the whole
process concludes is when the electron layer moving at c catches up with the gap
front moving at vf < c. The other situation that leads the almost-exponential
cascade to an end is when ta(t) is no longer defined, i.e. the electrons produced
in the layer are subjected to an electric field which is too low for them to be
accelerated to γthr, hence to be able to pair produce anymore. According to this,
the time t that marks the conclusion of the cascade is

tend = τ0

1 − vf
−

öõõô2γthr(1 − f/2)
(1 − vf )

1
nGJ

(2.33)

This tend should depend only slightly on the f parameter since f ¹ 1, while it
should significantly increase with vf .

2.4 Differences between the two models
For what concerns the particle growth rate, hence the capability of the cascade
process to replenish the gap, the constant field and spatio-temporal linear field
models differ mainly differ according to the characteristic times tp and ta. More
precisely, while in the constant field regime the two values are fixed depending
on the initial distribution in the particle densities and the plasma current, if we
consider the linearly-growing field tp(t) and ta(t) depend on time as well.

In order to better structure the analytical model for the processes involved and
being able to use it as a framework for the numerical analysis foreseen, it becomes
crucial to address the dependency of the functions previously described on the
parameters that can be varied.

From the definition of tp(t) and ta(t) in equations 2.27 and 2.29, it can be
shown that ∂tp,a/∂t > 0. Physically, the electrons are flowing from the surface
(x = 0), a region of high electric field, to the gap front, a region in which the
electric field vanishes. Subsequently, it takes longer and longer time for the leptons
to be accelerated to γthr. This time-dependency can be appreciated in Figure 2.4,
in which the investigated functions have been plotted with different parameters
and compared.
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Figure 2.4: Top: time evolution of function ta(t) for different values of γthr ∈
[500; 5 · 106] with vf = 0.7c and f = 0.05. The function is normalized to its first
value of interest ta(T1) and time itself is normalized to T1 (previously referred to
as τ1).
Bottom: Evolution of function tp(t) with time for different values of f ∈ [0.316,0.001]
with vf = 0.7c and γthr = 1000. All the curves share a common part for t ∈ [T1,2T1].
After that, depending on the value of f , the tp(t) start diverging at different
timestamps.
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It is immediately noticeable that, for a fixed values of f and vf and with time
normalized to T1, ta(t) and tp(t), hence the whole problem, do not depend on the
value of γthr.

It is also noteworthy how, when fixing the value for γthr, ta(t) and tp(t) are
roughly linear up to t ∼ 1.8 T1 and how, by this time, they are only multiplied by
a factor 2. It can be deduced that, during this time lapse, the number of pairs is
increasing almost exponentially if one admits that ta is kind of constant.

Let us now introduce a local exponential growth rate, namely Γ(t) = d ln(N)/dt
where N is the total number of electrons in the gap. Γ(t) is the key element to fully
describe the evolution of the number of particles in one layer, later generalized to
the behaviour of the whole gap.

If tp(t) increases, the growth rate will decrease accordingly since it would take
more time for an electron to reach γthr and populate the layer through pair creation.
More precisely, tp(t) is evolving linearly and slowly varying when the square root
part is almost constant since

A
t0

1 − vf
− t

B2

¹ 2γthr

(1 − vf )
f

nGJ
(2.34)

For f ¹ 1, this approximation is valid for a larger time interval if vf is close to c.

2.5 Growth in time

When considering a constant electric field setup, it is straightforward to determine
that the two relevant timescales ta,p are also constant, therefore the growth of
the cascade is exactly exponential for t º ta, as shown in section 2.2. Rigorously
determining the evolution in time of the number of particles in the cascade with the
time and space dependent ta and tp is a challenging task. Moreover, with such time
and space dependence, it is not straightforward that a pure exponential behavior
similar to that observed for a constant electric field occurs.

Since functions tp,a(t) are increasing with time for electrons, equations 2.5 and
2.6 are still valid for a linear electric field. However, their analytical solution is
really hard to find as, even in the easiest case, the equations are dilation equations
(e.g. f(2t) = f(t)) that cannot be easily solved by classical techniques such as
Laplace transform.

The purpose of the theoretical models described hereafter is to determine the
evolution of the growth rate of the cascade Γ(t) as a function of time and of the
parameters f , γthr and vf .
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2.5.1 Continuous approach
When tp,a vary with time, one has to consider another type of solution. The
one sought is for a scenario where ta and tp are slowly varying, such that one
may have a local growth rate. The form of the solution is then changed from
n1,2(t) = n1,2 exp(Γt) to an evolving n1,2(t) = n1,2 exp

1s t
ta(T1) Γ(tÍ) dtÍ

2
, where ta(T1)

is approximately the time when the cascade starts to be exponential. With this
definition, the particle population can be described with n1,2(t) = n1,2 exp(u(t)).
This approximation is valid when tp(t) and ta(t) are almost linear and slowly
evolving, which corresponds to the case where vf is close to c according to equation
2.34 (e.g. vf & 0.7c and f . 0.05).

First, it is assumed that, on the portion of time considered, tp(t) Ä fta(t),
therefore ta(t) − 3/2tp(t) Ä ta(t) since f ¹ 1. This assumption is valid as long
as the layer is far from the front of the gap. In these conditions, it is possible to
re-write equations 2.5 and 2.6 as:

n1 (t+ ta(t)) Ä n1(t) + n2(t) (2.35)

dn2(t)
dt Ä n1(t)

fta(t)
− n2(t)
ta(t)

(2.36)

It is worth noticing that the first term on the right-hand side of equations 2.6 and
2.36 differs by a factor of 2 because, in the case of a linear electric field, the growth
in the number of electrons is caused only by pair production events triggered by
primary electrons (and not positrons).

Given the results given in section 2.2 and the rationale above, it is reasonable to
assume that the solution of this system can be written with the WKB approximation

n1,2(t) ∝ exp
AÚ t

t∗a

Γ(tÍ) dtÍ
B

(2.37)

where Γ(tÍ) is the local (in time) growth rate of the cascade at time tÍ and t∗a = ta(T1)
is the time in which n1,2 start to grow exponentially, which can be estimated as the
time of creation of the second generation of electrons. Plugging n2(t) into equation
2.36, it is possible to write

n2(t)
n1(t) = 1

f(Γ(t)ta(t) + 1) (2.38)

Equation 2.35 then becomes:

n1 (t+ ta(t)) = n1(t)
A

1 + 1
f

1
(Γ(t) × ta(t) + 1)

B
(2.39)
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Given that, as it was for the constant field model, (Γ(t)ta(t) + 1) > 1 for f ¹ 1:
Ú t+ta(t)

t
Γ(tÍ) dtÍ Ä 1

fΓ(t)ta(t)
(2.40)

Assuming that Γ(t) varies slowly during a time ta(t), it is possible to use its Taylor
expansion Γ(tÍ) Ä Γ(t) + (t− tÍ)Γ̇(t) to obtain:

Ú t+ta(t)

t
Γ(tÍ) dtÍ Ä Γ(t)ta(t)

A
1 + Γ̇(t)ta(t)2

2Γ(t)

B
= Γ(t)ta(t) (1 + ψ(t)) (2.41)

Plugging this result in equation 2.35 and using equation 2.38 leads to

exp
è
Γ̃(t)ta(t)

é
Ä 1 + ψ(t)
f Γ̃(t)ta(t)

, (2.42)

where Γ̃(t) = Γ(t)(1 + ψ(t)). The solution of equation 2.42 yields a correction to
equation 2.12,

Γ(t)ta(t) = 1
1 + ψ(t)W

A
1 + ψ(t)

f

B
. (2.43)

This is not a fully closed form of Γ(t), since ψ is a function of Γ and Γ̇. Assuming
that ta(t) Ä ta(T1)(1 + Ct), where C ¹ 1 is a constant, we can get ψ to the lowest
order when Γ(t)ta(t) Ä W (1/f),

ψ Ä Cta(T1)
W (1/f) ¹ 1 . (2.44)

2.5.2 Discrete approach
In the early stages of this Thesis’ workflow, the PIC simulation tool was non-
trivial to be approached, both due to the training needed to be used and to the
computational efforts that lead to extensive time required to run the simulations
themselves. Therefore, in order to grasp initial understanding and confirmations
of the problem, some heuristic simulations have been performed through Python
coding.

A preliminary program aimed at numerically solving the coupled equations
2.27 and 2.29 by using a centered Euler scheme, hence leading to the evolution
of n1(t) and n2(t), considering those functions as continuous. Since it was not
possible to precisely establish the time at which electrons are created in the gap,
the distribution functions derived this way were unreliable.
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Here the necessity to adopt a new algorithm, in which each electron is represented
by a list. Starting with the first electron created at time τ0, whose list is [τ0], the
program keeps track of every event of pair production by updating the current lists
and creating new ones (corresponding to freshly created electrons). For example,
at time τ1 the lists are [[τ0, τ1], [τ1]], meaning that two electrons are in the layer;
the next step, corresponding to a time increase of tp(τ1), updates the lists in the
following way: [[τ0, τ1, τ1 + tp(τ1)], [τ1], [τ1 + tp(τ1)]]. The program updates at each
time-step both the tp between the pair production events and the ta necessary to
accelerate the newly-born electrons.

This numerical approach can be described theoretically as a sequence ruled by
intervals of duration ta(t) and tp(t) over considering the number of particles as a
continuous function of time. According to equation 2.31, it is possible to write
tp(t) = A−t−

ñ
(A− t)2 −B, where A = τ0/(1−vf ) and B = 2fγthr/ (1 − vf )nGJ.

From the system 2.32, it is possible to deduce by recursion the sequence of all the
timestamps τn,i when the ith electron pair-produces, given the time τ1,i when it
reaches the threshold for the first time:

I
τ1,i

τn,i = A−
ñ

(A− τ1,i)2 − (n− 1)B
(2.45)

For a given time t, τ1,i < t ∀i < imax, which allows to determine the maximum
number of generations imax able to produce pairs every tp(t) at a given time t.

The main issue is then determining how τ1,i evolves as a function of i. The
intrinsic limit of this kinetic model emerges because tp,a(t) actually varies in time:
ta(t) + tp(t+ ta(t)) /= tp(t) + ta(t+ tp(t)). This implies that, after a sufficiently long
time, there might be an almost continuous γ-distribution.

2.5.3 Asymptotic Regime: Linear tp(t)

In this section the behaviour of tp is further investigated by considering it to be a
linear function of time and slowly evolving, which corresponds to the case where
vf is close to c according to equation 2.34 (e.g. vf & 0.7c and f . 0.05). This
assumption is clearly valid for time intervals in the order of magnitude of T1 (τ1,1)
as shown on the left panel of figure 2.5. In these conditions, after a time sufficiently
long for the exponential cascade to develop, it is clearly visible on the right panel
of Figure 2.5 that:

τ1,i = a ln(i) + b (2.46)

It is possible to compute imax using (τ1,i < t ∀ i < imax) ⇒ imax = åexp ((t− b)/a)æ.
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Figure 2.5: Top: Evolution of τ1,i as a function of i for vf = 0.5, f = 0.05,
γthr = 1000. When tp(t) slowly varies in time, the τ1,i function can be accurately
fitted by a model a ln(i) + b. Here a× T1 = 0.104 and b/T1 = 1.
Bottom: Evolution of normalized tp(t) with respect to T1. For those values
vf and f considered, the function can be well approximated by a linear model
f(t) = 0.20t+ 0.77 in normalized units.
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The number of particles ni(t) produced at time t by the ith electron is given by the
condition τn,i < t:

ni(t) = (A− a ln(i) − b)2 − (A− t)2

B
(2.47)

Then the total number of electrons, given by N(t), can be obtained by summing
all the ni(t) on i in the range [1; imax]:

N(t) =
imaxØ
i=1

(A− a ln(i) − b)2 − (A− t)2

B
(2.48)

N =
exp

1
t−b
a

2
B

è
−t2 + 2At+ b(b− 2A)

é
+

+ 1
B

C
2a(b− A) ln (imax!) +

imaxØ
i=1

a2 ln2(i)
D (2.49)

The total number of particles in the layer can be approximated by an exponential
with a growth rate 1/a modulated by a polynomial.

The term ln(imax!), which is an exponential too, can be computed by using
the Stirling’s approximation: ln(imax!) ∼ imax (ln(imax) − 1) = (t − b − a)/a ×
exp ((t− b)/a). For the term

imaxØ
i=1

a2 ln2(i) (2.50)

since ln(x)2 is a monotonically increasing function, then:

Ú imax+1

2
ln(x− 1)2 dx ≤

imaxØ
i=1

ln(i)2 ≤
Ú imax+1

1
ln(x)2 dx (2.51)

It can therefore be approximated by

imaxØ
i=1

ln(i)2 ∼ imax
1
ln(imax)2 + 2 − 2 ln(imax)

2
=
At− b

a
− 1

B2

+ 1
 imax (2.52)

The total number of electrons N(t) can be then expressed as:

N(t) =
exp

1
t−b
a

2
B

(−2at+ 2a(A+ a)) (2.53)
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2.6 Growth in space
In order to extend the analysis presented above from one to multiple electron layers,
other sets of simulations, later shown in Chapter 3, have been performed starting
with a uniform positron distribution and externally imposing the electric field,
which is chosen to be negative when the gap is opened. Positrons are accelerated
as the gap opens, pair producing close to the surface and triggering the cascade
process. Fresh electrons are then accelerated towards the magnetosphere, with
each of them developing its own single-layered cascade. Since the initial uniform
positron distribution, a multi-layered cascade is generated in this case. However,
all layers move at approximately the speed of light, so each layer behaves according
to the model outlined in the previous sections. For the sake of calculation, we set
the growth of particles the layer k to be

Nk(t) = N0 exp
3Ú t

tk

Γ(tÍ)dtÍ
4

with Γ(t)ta(t) Ä W (2/f) (2.54)

according to the results obtained in section 2.2, where tk denotes the time at which
the layer has been created.

For the first layer, let t1 = 0 and thus tk = ktp since the subsequent layers of
seed electrons will be created every tp. Layers are assumed to be of width ctp, with
the further assumption that the electron density inside them is uniform, hence
equal to nk = Nk/(ctp). It follows that

nk−1(t) = nk(t) exp
A

−
Ú t

t−tp
Γ(tÍ)dtÍ

B
(2.55)

If the electric field varies slowly in space, nk−1 Ä nke
−Γtp . The argument of the

exponential is Γtp = fW (1/f), which is much smaller than unity for f ¹ 1.
Therefore, the density between layers does not vary abruptly. This is a key
ingredient to determine the continuous profile (or the envelope) of the density
histogram. Equation(2.55) can be rewritten in the following manner:

nk(t) = n(xk, t) (2.56)
nk−1(t) = n(xk − ctp, t) (2.57)

with xk being the position of the k layer moving at the speed of light. We can
proceed to the calculation of the profile by expanding n(x−ctp, t) Ä n(x)−ctp∂xn =
n(x)e−Γtp , which leads to

n(x, t) = n0 exp (Γ(t+ x/c)) (2.58)
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This estimate holds for as long as the growth rate of individual layers is approxi-
mately the same, i.e., while the number of electrons in each layer is dominantly
determined by the life time of that layer. This condition can be written as
tΓ̇(t)/Γ(t) ¹ 1, which is valid in early times of the cascade.
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Chapter 3

Simulation results

3.1 Coding and post-processing
The analytical models presented in Chapter 2 have been thoroughly tested with
and validated against 1D PIC simulations performed via the OSIRIS code. To
those followed, firstly, a preliminary visualization of the simulation outputs through
the VisXD tool, a set of data analysis and visualization routines based on IDL
developed at GoLP; subsequently, if the outputs met the expectations, more detailed
post-processing analysis have been carried out via Python.

3.1.1 OSIRIS
The de facto state-of-the-art PIC code is OSIRIS, a fully parallelized, fully implicit,
fully relativistic and fully object-oriented code that has been used to perform large-
scale simulations in fields as diverse as plasma wakefield acceleration, laser-plasma
interaction, space physics and relativistic plasma astrophysics. Together with the
typical PIC algorithm, OSIRIS is equipped with additional QED modules that
account for effects such as photon emission via nonlinear Compton scattering and
multiphoton Breit-Wheeler pair production.
In a nonlinear Compton scattering event a lepton emits a photon with a significant
fraction of its energy when accelerating in a strong electromagnetic field. The
superparticle radiation recoil is added to equation (1.10), and a new macro-photon
is created.
In multiphoton Breit-Wheeler pair production a electron-positron pair is produced
after a high-energy photon is absorbed by a high-energy density electromagnetic
field while propagating in it. In this case the macro-photons are instead deleted
from the simulation and a pair of two new superparticles is created in its stead.
Both implemented QED processes satisfy momentum, energy and charge conserva-
tion. The differential probability rates for these processes are evaluated by OSIRIS
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via Monte Carlo methods in each simulation time step and for each superparticle.
Finally, in order to deal with the rapid growth of the number of superparticles

due to the pair cascade processes, OSIRIS is implemented with a merging algorithm
which combines multiple superparticles of the same species, conserving energy,
momentum and charge locally, ensured by merging particles that are close in both
configuration and momentum spaces. This very algorithm is applicable not only
to massive (e.g. electrons, positrons, protons) but also to massless (e.g. photons)
particles. This merge greatly optimizes and accelerates the simulations in which an
accumulation of a large number of superparticles in a small region of space could
otherwise lead to a load imbalance, hence making the simulation inaccessible.

3.1.2 NATA
Nata is a python package for post-processing and visualizing simulation output for
particle-in-cell codes. It utilizes the numpy interface to provide a simple way to
read, manipulate, and represent simulation output. I used it inside JupyterLab, an
environment for interactive and reproducible computing based on the web-based
Jupyter Notebook, which supports Python at its core.

The tool has proven essential not only to being able to visualize the simulation
results, which format does not allow a simple Python script to be opened with, but
also for the possible ways to compare different data files in parallel, which were not
available by using the VisXD tool.

The results of the series of post-processing analysis can be appreciated in the
following chapters: I will describe the thought process behind the simulation setup
for each aspect of the cascade event to be investigated, together with some of the
most significant plots produced to verify the analytical models.

3.2 Cascade onset
Considering that most of the analytical considerations are based on equations
(2.27) and (2.29) governing the acceleration times for the leptons to reach the pair
production threshold γthr, those are the very first equation to be verified. Following
the layers characterization described in Section 2.3.3, I tried and evaluating the
distinct phases of the cascade process onset.

3.2.1 Evaluation of τ0

By looking at Figure 2.2, at time t = 0 the gap gradually opens due the electron
drifting rightwards, generating a capacitor-like system that leads to the development
of a linear electric field inside of the gap. The chosen setup consists in a uniform
distribution of positrons, which are initially static due to the zero electric field, and

33



Simulation results

no electrons whatsoever. This decision aimed at simplifying the simulation while
still satisfying the Goldreich-Julian density 1.2, which the positron density is set to
be equal to, for the reason depicted in Section 2.3.1. Since the absence of electrons
in this first stage simulation, the effect of the departing leptons is mimicked by
superimposing an external electric field that grows according to equation (2.19) in
the simulation setup itself.

Figure 3.1: Top: positrons (red) phase space distribution at t = 0.6[1/ωp]
Bottom: positrons (red) phase space distribution at t = 0.75[1/ωp]
In both plots, obtained with vf = 0.79c and f = 0.05, the electric field (black) has
been resized in order to visualize the gap opening while leptons are accelerating
towards γthr = 1000. Diagrams obtained via VisXD.

By comparing the positrons phase space diagrams at different times in Figure
3.1, it can be observed how the leptons in the gap start being accelerated towards
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the surface as soon as the gap front reaches their position. This preliminary set of
simulations, which includes others performed with different vf and γthr, confirms the
expected time τ0 at which the first positron pair produces at the gap, in accordance
with the analytical model described in Section 2.3.3.

Figure 3.2: Top: positrons (red) and electrons (blue) phase space distribution at
t = 0.77 [1/ωp] with vf = 0.79c and f = 0.05.
Bottom: positrons (red) and electrons (blue) phase space distribution at t =
0.94 [1/ωp] with vf = 0.79c and f = 0.05.
After the first progenitor reaches γthr for the first time at t = τ0, it undergoes pair
production process (the same occurs for all the positrons behind it at later stages):
in that events it loses a fraction f of its energy and produces an electron-positron
pair with energy equal to f/2∗γthr. The electrons produced this way will eventually
reach the threshold themselves while drifting rightwards, pair producing and feeding
the cascade process in their turn.
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In this thesis, the QED pair production is assumed to be a threshold process,
hence it takes place as soon as a lepton reaches the chosen threshold energy. At τ0
the first proton reaches γthr on the stellar surface: there it loses a fraction f of its
energy, which is equally distributed between the just pair-produced particles (each
with energy f/2 ∗ γthr). After this characteristic time, all the positrons behind
the first progenitor, which are accelerated towards the surface by the electric field,
undergo pair production in their turn at further and further distance from the
surface itself. This can be appreciated in Figure 3.2 by observing the lower edge of
the plot: in that region it’s possible to find the so-defined "population 1" particles,
which we defined in Section 2.2 as the ones having energies in the range between
γthr − γpair = (1 − f) ∗ γthr and γthr. These particles continue being accelerated
towards the threshold energy and pair produce every tp until collapsing on the
surface.

At the same time the electrons so-produced are accelerated in the opposite
direction: after a time interval ta they will eventually pair produce (as noticeable
in the bottom plot of Figure 3.2), leading to other generations of progeny particles
filling the gap.

3.2.2 Superimposing a linear electric field

The simplification induced by the absence of the initial electron population, hence
the need of superimposing a linear electric field that grows according to the GJ
parameters, is perfectly reasonable until QED processes occur: after pair production
events initiate, positrons in population 1 start accumulating in the energy band
close to γthr while new leptons are created and accelerate in opposite directions.
Those particles start perturbing the electric field in a more significant manner
the further we proceed in the cascade process, hence making the simulation non
comparable with the analytical models. Since it is not possible to manually remove
the self-consistent electric field from the OSIRIS code (contrary to what you can do
with the QED processes, that can be switched on and off according to need), the
solution adopted in these analysis is to reduce by different orders of magnitude the
initial particle density, such that the E field they create is negligible if compared to
the superimposed one.

This conjecture has been proven against different simulations, by changing both
the setup density and the parameters governing the cascade process (f , γthr and,
accordingly, vf): in each run with ρ+ = ρGJ the self-consistent E field perfectly
matched the theoretical one up until t = τ0, while in the low-density setups it has
been proven that the particle-induced field is negligible with respect to the imposed
one even after some generations of pair cascade progeny, whose multiplicity could’ve
eventually led to some perturbation.
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3.3 Single electron setup

With the fundamental equation of the analytical models being proved against PIC
simulations, I then aimed at investigating the behavior of such electron-positron
plasma in forced linearly-growing electric fields.

One of the crucial aspect for this kind of cascading phenomena in pulsars is
the capability of filling with fresh plasma the gap generating in the polar caps:
this is possible only under the condition of a sufficiently high multiplicity M (1.5),
which can be achieved if the growth rate of the leptons population is sufficiently
high. It is worth underlining that the low-density reduced model is still necessary
to ensure that the electric field keeps developing linearly, not perturbed by the
particle-generated one, as justified before.

Hereafter, the thought processes and the simulation choices aimed at investigating
Γ(t) will be presented. The focus of this analysis will be specifically the growth of
the electrons population: this choice is purely out of convenience since, as electrons
move together with their progenitors of the same specie unlike positrons, it is easier
to count the firsts in the post-processing phase.

Figure 3.3: Electrons (blue) and positrons (orange) phase space distribution at
t = 0.7 [r∗/c], starting from a single still electron in x = 0; γthr = 1000, f=0.05.
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3.3.1 Total electrons evolution
Following the considerations made in Section 2.3.3 we can assume that, right after
t = τ0, an electron generated at the surface (which we assume having initial γ = 1)
starts being accelerated by the gap field while moving rightwards at c, leading to
pair cascade once reaching γthr. This cascade process ends when the observed layer
reaches the gap front since the E field vanishes there, hence the particles are not
accelerated anymore. Another condition under which the whole process concludes
is when ta(t) is no longer defined, which occurs when the E field is too low for the
particles to be accelerated to γthr, marking a tend (2.33) for the analysis.

By taking a close look at Figure 3.3, one could easily notice the difference
between population "1" (gathering close to ±γthr) and population "2" leptons we
mentioned before. However, the most noticeable behavior in the distribution is
the the separation between different groups of leptons depending on their spacial
position; these correspond to many generations of particles and their progeny of
the same kind.

Figure 3.4: Unnormalized electrons distribution based on their energy throughout
the whole system at t = 0.7 [r∗/c]. The peak between γ = 980 and γ = 1000 = γthr
corresponds to "population 1" electrons, while all the others are "population 2"
ones.
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1) at x = 0.7[r∗/c] the thin layer gathers the initial electron of the setup and all its
electron progeny, which move together at c rightwards while pair producing.
2) between x = 0.4[r∗/c] and x = 0.7[r∗/c] there are the positrons recently produced
by the previous group; their distribution seems "tilted" since they drift towards the
surface, away from their source, while accelerating to high energies.
3) between x = 0.18[r∗/c] and x = 0.4[r∗/c] a new generation of electrons shows
up, deriving from the previous positron reaching γthr and pair producing; their
positron counterpart extends up to the surface for the reason given above, but the
"slope" is noticeably steeper due to the stronger electric field the particles face here.
4) finally, the denser group before x = 0.18[r∗/c] includes the particles generated
by the positrons ahead; electrons here do not extend up to the surface since they
need at least a time t = ta to reach the threshold despite it being even lower here
due to the higher E field.

Figure 3.4 shows the number of electrons in the discretized energy space (intervals
of γ = 10): "population 2" has a decreasing number of particles with the energy,
followed by a sharp peak between γ = 980 = γthr − γpair = (1 − f)γthr and
γ = 1000 = γthr corresponding to "population 1" electrons. This distinction
strongly depends on the f parameter: since particles lose a fraction f of their
energy in the pair production process, the lower the value of f , the faster they are
re-accelerated to γthr according to the concept of the characteristic time tp (2.29).

Figure 3.5: Evolution of the number of electrons in the system. Results are shown
on a logarithmic scale since we are investigating an exponential growth
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Figure 3.6: Growth rate evolution corresponding to the particles evolution shown
in Figure 3.5. The exponent Γ(t) is clearly time-dependent, especially in the early
stages of the growth, because of the linearly-increasing electric field and the new
generations of pair producing leptons every ta

The global growth of the electrons in the system can be appreciated in Figure
3.5, in which their number is plotted on a log scale as a function of time. The
first part of the graph is flat and corresponds to the initial time ta Ä 0.19 [r∗/c]
(2.27) needed for the single electron of the setup to be accelerated to γthr and
pair-produce. The increase in the number of electrons represented by the first
"bulge" after ta is related to the progeny of the original lepton and is basically linear:
that’s because the single electron that is pair producing does so every tp, which is
weakly depending on time due to the slow increase of the electric field (it can be
considered constant locally). The plot then presents other bumps roughly every
ta due to new generations of leptons reaching the threshold, making the growth
roughly exponential.

This exponential growth Γ(t), whose evolution is displayed in Figure 3.6, presents
a time-dependent exponent due to the field growing linearly in time, as analyzed
in Section 2.5. Despite the bulges are less evident with the passing of different
generations, leading to less varying growth rates, the average Γ value is slightly
increasing over time. The time necessary for a particle to undergo a pair-production
event tp(t) becomes smaller and smaller the longer the simulation, since it decreases
with the electric field becoming stronger with time, hence leading to more and
more frequent pair-production events.
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3.3.2 Inhibited pair production by positrons
While observing the evolution of all the electrons produced by the system it is
not possible to confirm the theoretical conditions under which the cascade process
should conclude. In fact, even if the setup-electron reaches the gap front, hence
stop being accelerated due to the E field vanishing there, electrons that were
generated by positron continue pair producing closer to the surface. In order to
verify the analytical model, I chose to inhibit pair production by positrons by
directly modifying the OSIRIS code. This has later been proven to give the same
results as by only taking into account the electrons in the very first layer.

Out of coherence with the previous model, the gap has been set to be already
open at the beginning of this setup, since no acceleration would be induced on
the first electron if it immediately overtook the gap front at the simulation onset.
The starting magnitude and dimensions of the electric field have been calculated
according to the analytical models (2.19) with the chosen values of vf and f and
with initial time τ0.

Figure 3.7: Comparison of the number of electrons for different f and vf = 0.6

Figure 3.7 shows the evolution in time of the number of electrons in the system
for different values of the parameter f . Let us compare this results with the previous
evaluation in which all the electrons were taken into account, including the ones
produced by positrons, displayed in Figure 3.5.
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Figure 3.8: Comparison in the evolution of the growth rates corresponding to the
different values of f and vf = 0.6

Aside from the particle count at a given time, which is predictably lower in the
current case since I deliberately inhibited protons from pair producing, what is
also varying is the behavior of the growth rate (Figure 3.8): while in the previous
scenario it was observed to oscillate around a value slightly increasing over time,
here it progressively reduces until vanishing completely at a specific moment,
independently on the value of f chosen.

The time at which the growth rate goes to zero is the one at which the first
layer of electrons (and the only one since no positrons drifting behind can pair
produce) reaches the gap front, which is moving only at a fraction of c. In that
specific moment, the E field vanishes and electrons stop being accelerated by it. In
a first approximation, this front-reaching time can be evaluated as:

tend = τ0vf
c− vf

= τ0vf
1 − vf

(3.1)

since the gap front is initially at a distance τ0vf from the surface and the relative
velocity between electrons and the front is c − vf (1 − vf in normalized units).
This approximation has been proven to match the simulation results for all the
combinations of f and vf that have been tested. Theoretically more accurate values
for tend are given by equation (2.33), which has been proven to lead to the same
results since it mildly depends on f while mainly depending on vf .
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Figure 3.9: Comparison of the number of electrons for different f and vf = 0.5

Figure 3.10: Growth rates comparison for different values of f and vf = 0.5

43



Simulation results

This kind of simulations are usually suit for parametric analysis, for which
the electrons population evolution for different values of a particular parameter is
investigated and the results compared. Aside from the magnitude of the externally
imposed E field, which evolves as the one developed by a uniform positron distri-
bution of density ρGJ , the only other parameters on which the phenomena depends
are f and vf .

Figure 3.7 directly shows the comparison in the population growth on a loga-
rithmic scale for different possible values of f while fixing vf = 0.6. First of all,
the different simulations share the same tend since they have the vf in common.
They also share similar ta, the characteristic acceleration times needed for freshly
pair-produced leptons to reach γthr, since those mainly depend on the threshold
energy itself and the E field imposed, while mildly depending on f - see equation
(2.27) - which only affects the particles low initial energy. This acceleration time
ta(t) is the one regulating the alternation of the different "bumps" in the plots:
the first one is basically a line (which become logarithmic in this scale), whose
slope is 1/tp since the only electron which is pair producing does so every tp (which
is locally time-independent since it perceives a E field almost constant). Then,
when the first-generation electrons reach the threshold hence start undergoing
pair production, the population has another burst in its rate of growth. The ta
for the second generation particles, roughly corresponding to the second bump
width, is slightly higher than the first one: that can be explained by the fact that
electrons, while drifting towards the gap front, experience an electric field which
is increasingly lower, hence the time needed for them to be accelerated to γthr is
increasingly higher.

The distinction between the bumps in the plots is more evident the lower the f ,
since for those values tp is very low, particles are pair-produced more often, hence
multiplicity is higher and more easily observable in the population evolution. This
behavior is confirmed by the growth rate evolution (Figure 3.8), which present
sharp peaks for in correspondence of the different ta(t) for f = 0.005 while being
quite smooth for f = 0.1.

A similar behavior can be observed in the comparisons of the simulations
performed with vf = 0.5, which can be observed in Figure 3.9 and Figure 3.10. In
this setup, as well as in the previous one, the growth rate tends to be smoother
for higher values of f . What can also be noticed is that the plots for the electrons
number are step-wise, since particles are produced once at a time; this behavior
is much more evident for for higher values of f since, for those, tp(t) is higher,
hence the steps larger. Those steps being increasingly larger also confirms the
time dependency for this characteristic time, since it takes longer and longer to be
re-accelerated to γthr the closer a particles is to the gap front, according to equation
(2.29). While τ0 is slightly higher for vf = 0.5 with respect to vf = 0.6 due to the
lower E field, the tend is lower as expected, all according to the analytical models.
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Figure 3.11: Comparison of the number of electrons for f = 0.05 and different vf

A broader comparison between different gap front velocities can be appreciated
in the result of parametric analysis in Figure 3.11 for the leptons population and
in Figure 3.12 for its corresponding growth rate. Here the difference in the front
catching for different values of vf becomes explicit, together with the behavior for
the slope of the curve described previously. After an initial phase in which the
setup electron is the only pair-producing particle, the curves spread significantly
due to the strong difference in the electric fields experienced by the leptons.

The most extreme case investigated in this evaluation is the setup with vf = 0.9:
for that value of the gap front velocity the population evolution plot presents only
one evident "bump", followed by a curve which is almost straight in the log plot,
hence basically a pure exponential. The idea that Γ(t) is almost independent from
time after the initial phase is confirmed by its plot in Figure 3.12, which converges
to some fixed value around 12 (in normalized 1/time units) in a very short time
- basically right after the second-generation particles start pair producing. That
setup leads to results very similar to the ones one would obtain by simulating
particles in a constant electric field: since the electrons drift rightwards slightly
faster than the gap front, the variation in the E field magnitude they are immersed
in is very slow, hence leading to characteristic times ta and tp which are almost
constant in time. This limit behavior - which becomes fully-fledged for vf = 1 - is
only valid for electrons, since those are the leptons drifting towards the gap front.
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Figure 3.12: Top: Comparison of the growth rates corresponding to the curves
of Figure 3.11 for f = 0.05 and different values of vf .
Bottom: Comparison between the growth rate corresponding to the curve obtained
with f = 0.05 and vf = 0.7 and the theoretical growth rate according to the
analytical models. Axes in this plot are referred to the length of the PIC simulation
domain L instead of the usual r∗.
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The situation would be reversed if we accounted the positrons as well, which would
instead experience a stronger increase in the field magnitude the higher the vf .
Furthermore, this behavior is locally valid when following a certain layer of electrons,
but is surely not a good approximation when studying the distribution of particles
in their phase space, for which the field they experience may change dramatically
depending on their distance from the surface and the gap front. The slower change
in the growth rate for higher values of vf is also reflected by the inherently longer
time needed to reach the gap front - where Γ(t) = 0 - hence by the smaller slope
in the growth rate versus time. In this set of simulations the gap front couldn’t
even be reached before getting to Ä 4 · 107 particles in the system, which marks
the threshold after which the simulation becomes too slow to be sustained.

While considering the growth rate constant is an acceptable approximation for
vf & 0.9, time dependency of Γ(t) is definitely non-negligible for lower values of
the gap front velocity. The bottom plot in Figure 3.12 shows the same green curve
present in the top plot, resulting from a simulation with f = 0.05 and vf = 0.7,
overlaid by the theoretical growth rate evaluated analytically. In that diagram the
axes show different values with respect to the ones above since the spacial units are
expressed by means of the length of the PIC simulation domain L instead of the
usual pulsar radius r∗: the choice reflected the need of comparing the numerical
results with the analytical ones, which were expressed in c/L units for convenience.
The theoretical line has been plotted using the corrected equation for Γ(t):

Γ(t)ta(t) = 1
1 + ψ(t)W

A
1 + ψ(t)

f

B
(3.2)

and using the first order approximation for ψ find in equation (2.44). Before
t Ä 1 − 2ta Ä 0.2 [L/c], the growth rate presents some really pronounced peaks,
sign that the particle growth is not yet purely exponential and, thus, falls out of the
regime of validity of the models. The time from which the model can be considered
valid and not only a rough approximation roughly corresponds to the end of the
second bump in particles count of Figure 3.11. After that the model has proven to
fit the simulation results with exceptional accuracy, as depicted in Figure 3.12.

When choosing higher values of the tp/ta ratio, like in Figure 3.13 where f = 0.1
has been chosen, it is possible to appreciate the tend for higher values of vf since
the whole population grows more slowly: this is well explained by the theory
since Γ(t) evolves approximately as W (1/f)/ta(t) (2.43). This not only helps
in distinguishing the differences in magnitude and time scales at which these
phenomena occur according to the setup conditions chosen, but also in starting
having an idea of what values of the parameters lead to the actual condition in the
real environment of the pulsar.
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Figure 3.13: Comparison of the number of electrons for f = 0.1 and different vf

Figure 3.14: Comparison of the number of electrons for f = 0.1 and different vf ,
time units normalized to the characteristic time τ0(vf )
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The very same results shown in Figure 3.13 are also proposed in Figure 3.14
with a slightly different time scale. While in the first image the time frame is r∗/c
and is the same for each simulation, in the second one it varies for each value of vf
because it is normalized in terms of the characteristic time τ0 - the time at which
the progenitor electron would be generated at the surface by a uniform distribution
of positrons, hence the starting point of these sets of simulations. This choice
comes from the search for an alternative in showing the simulation results such
that one could be able to compare the influence of the gap propagation velocities
on the population growth while taking into consideration the initial acceleration
time ta(τ0) needed to start the cascade process. Among the alternatives tried, by
means of different time delays and/or contractions, the simple re-scaling in τ0 time
units turned out to be the most effective for a series of reasons.

Firstly, thanks to this choice in normalization, the timestamps at which the
progenitor electrons undergo pair production for the first time is the same for
every vf , while normally it has been observed how τ0 decreases with vf , since since
higher velocities imply stronger E fields hence greater accelerations on particles.
Furthermore, in the normalized plot one could also grasp the common behavior
between the population corresponding to different velocities in the early stages of
the cascade process: all the curves start ramping up from the same normalized t∗a
and present very similar growth rates before entering the final stage of the cascade
when the field has become too weak to accelerate the electrons effectively anymore.

Despite being a simplified investigation with respect to the full QED, self-
consistent, enhanced positron case, this preliminary electrons analysis paved the
way for the ones in the following sections by confirming some fundamental analytical
model and by showing, ideally, what data analysis approach would best fit out
evaluations.

3.3.3 Allowed pair production by positrons
Since the overarching aim of this Thesis is to prove the analytical models described
in Chapter 2 via PIC simulations, the oversimplification consisting in ignoring the
pair production events of positrons is, for obvious reason, non-extendable anymore.
By directly changing the code, the QED phenomena have been then made available
again for all the leptons.

By looking at Figure 3.15 one could observe a distribution of particles in the
phase space which is very similar to the one observed at the beginning of Section
3.3, which is in perfect accordance with the explanations given in Section 3.3.1.
Following the strategy adopted in the previous case, parametric analysis have been
conducted in order to compare the plots for fixed values of f and different gap
front velocities vf : the most significant result are shown in Figure 3.16, with the
corresponding population growth rates Γ(t) shown in Figure 3.17.
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Figure 3.15: Electrons and positrons phase space distribution at t = 1 [r∗/c],
starting from a single still electron in x = 0; γthr = 1000, f=0.05, vf=0.6

Figure 3.16: Comparison of the number of all the electrons in the system for
f=0.05 and different vf , with all leptons able to pair produce.
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Figure 3.17: Corresponding growth rate comparison for f=0.05 and different vf ,
with all leptons able to pair produce.

Just by taking a quick look at the particle evolution plot one could observe
that, independently on the vf , after the first bump the population ramps up with
increasingly higher slope, contrary to the behavior observed in the previous case in
which only electrons were able to pair produce. This can be also noticed by looking
at the plot of the growth rate, which seems to oscillate around a positive-slope line,
opposite to the gradual decreasing observed earlier in Figure 3.12. In the previous
case the electrons population was limited to the progenitor layer, immersed in a
electric field that gradually vanished, which explained the progressive reduction of
growth rate until it became null when particles reached the gap front.

The presence of positrons, which have been totally neglected before, plays a
crucial role in this framework since those can now undergo the same QED processes
as electrons. It is worth underlining how pair production by positrons occurs at
earlier and earlier positions with respect to the gap front since they accelerate
towards the surface: thanks to this drifting, the electric field they face is then
greater and greater, since it has a linear behavior in space - due to the capacitor
effect it increases with the proximity to the surface while vanishing at the gap
front - but also because it increases linearly in time. These combined effects make
positrons accelerating to γthr more and more frequently, with increasingly lower
characteristic times ta(t) and tp(t), hence leading to a steeper and steeper growth
rate in the particles production.
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This mainly affects the simulation process by shortening, by a factor of Ä 3,
the time at which the code stop compiling after reaching the maximum allowable
number of particles in the system. This comparison with the previous setup is only
valid for some combinations of high vf and low f , for which the simulation didn’t
last long enough for the first layer to reach the gap front.

Another striking difference with the inhibited-positron case is the close similarity
of the plots corresponding to different values of vf , both in the number of particles
and in their growth rates, which instead used to be noticeable more spread in the
other setup. This behavior is due to the first layer electrons having less impact
on the global population growth after the first bump: leptons that are produced
behind quickly overcome the growth rate of the firsts since they experience a much
higher electric field and since, at least for protons, they are not affected by its
attenuation in time. The global behavior is then dominated by the bulk plasma,
which undergoes the same processes independently on the vf , just with a sort of
time shifting: this is explicit in Figure 3.17 between 0.06 and 0.08 [r∗/c], where
the growth rates for different vf share the very same evolution except for a slight
attenuation and time delay.

Hereafter the plots for particle population and for the corresponding growth
rate are shown with the time normalization to τ0 applied.

Figure 3.18: Particles population comparison for f = 0.05 and different vf in
normalized time scale, with all leptons able to pair produce.
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Figure 3.19: Corresponding growth rate comparison for f=0.05 and different vf
in normalized time scale, with all leptons able to pair produce.

When adopting this time normalization described in the previous section, the
behaviour between different values of vf becomes even more similar. The plots of
the normalized particle evolution in Figure 3.18 are even more packed than the
ones in Figure 3.16; while analyzing the corresponding growth rates in Figure 3.19
the superposition between the plots its even stronger: the peaks match quite well
in time, and all the curves converge to the same line, all according to the analytical
models described in Section 2.5.

As for the other setup, I wanted to perform another parametric analysis in
order to compare the results for different values of f by fixing vf . Amongst the
different gap velocities tried for this kind of analysis, vf = 0.6 proved to be the
most interesting by being not too low to be physically unlikely but also not too high
such as the simulation could last longer, hence further details could be appreciated.
The results of this investigation are shown in Figure 3.20 for the particle evolution,
while the corresponding plots for the growth rate are shown in Figure 3.21. This
time the chosen values for f have been varied between f = 0.1 - which is the
maximum after which it would make no physical sense - and f = 0.001, which is
usually too little if one is seeking for long simulations but here it proved to be fine
thanks to the chosen vf . As expected, the smaller the f , the faster the particle
growth and the more pronounced the bulges, as already deepened in Section 3.3.2.
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Figure 3.20: Comparison of the number of all the electrons in the system for
different f and vf = 0.6, with all leptons able to pair produce.

Figure 3.21: Corresponding growth rate comparison for f=0.05 and different vf
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Thanks to this extension in the parametric analysis, it can be observed how the
plots tend to converge to a limit behavior. This not only makes perfect physical
sense according to the theory, but it also allows us to make a few important
assumptions: firstly, it has been proven how it is basically worthless performing
simulations with f < 0.005, since they wouldn’t provide additional information
while being computationally heavier. Secondly, it could be acceptable, under the
right circumstances, performing the approximation f ¹ 1 → f Ä 0, since the
particle evolution has a limit behavior corresponding to f = 0.

By looking at the growth rates of the different simulations, it is clear how its
development is basically the same for small values of f , like if f ≤ 0.01 in this very
case where vf = 0.6. The plot corresponding to f = 0.05 follows well the ones for
smaller values of f in the first bulge, while also presenting the same alternations
in time in the following ones: the only defect stands in the values of the peaks,
which are significantly lower in that case. Finally, the plot corresponding to f = 0.1
definitely fails in representing the growth rate evolution: this is both due to the
bulges being almost assents - for the very same reasons given in Section 3.3.2 -
and both because the particle plot was originally not smooth enough unlike for
the other values of f , leading to higher noise in evaluating the actual slope of
the curves hence the growth rate. This results lead to the further consideration,
complementary to the previous one for the low values of f , that one should exclude
f ≥ 0.1 with this simulation setups.

Figure 3.22: Leptons phase space distribution with vf = 0.6, f = 0.005
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Using the vf = 0.6 and f = 0.005, values that have been proven to fit this
investigation needs, a last simulation using this very setup has been performed, in
order to grasp an idea of the plasma multiplicity obtained starting from a single
electron in an already opened gap. Figure 3.22, as the previous ones deriving from
different combinations of parameters at different times, shows the phase space
distribution of electrons (in blue) and positrons (in orange). From that graph a
second one, shown in Figure 3.23 below, has been derived, showing the leptons
density according to the position and normalized to the total particle count.

Figure 3.23: Electrons (blue) and positrons (orange) particle density at t =
0.7 [r∗/c], vf = 0.6, f = 0.005, γthr = 1000

Let us begin with some considerations about electrons density. As expected,
electrons population presents a sharp peak in x = 0.7 corresponding to the layer of
the first progenitor, while the bulk is behind and corresponds to further generations
of particles, initially pair created by positrons, and their progeny. The presence
of distinct particles clusters, created by different generations of positrons, well
reflects the "bump behavior" of the global electrons population evolution. Another
significant detail stands in the magnitude of the particle density in the different
regions: the first layer, despite driving the particle growth in the first stages of
the cascade process, becomes less and less significant since the successive layers
present an increasingly higher density, all according to the consideration drawn at
the beginning of this section.
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Moving to the positrons density, one could distinguish mainly two regions. The
low-density interval, located between the first two electrons clusters, corresponds
to a region in which no pair-production occurs and where the only particles present
are the positrons streaming leftwards that were generated in the first layer. When
pair-production starts again in earlier positions we have the onset of the consequent
generation of particles, which are feeding the second region of high positrons density.
Contrary to the electrons density distribution, the positrons one tends to be more
uniform: this is due to those particles drifting in the opposite direction of their
progenitors, hence not accumulating in layers which are necessarily denser the
earlier their onset.

The so-obtained densities in the bulk regions closer to the surface are demon-
strated to be already sufficient to satisfy the required plasma multiplicity, which
is needed to fill an opened gap and re-establish the ρGJ density, according to the
theory. The current model has proven to be good proof of the conceptual results
obtained in the analytical treatment of these phenomena. However, the biggest
issue with this setup is the distance from the actual events that I am trying to
model in this Thesis, since no pulsar magnetosphere could be simplified with single
electrons starting this complex events. I therefore decided to switch to a different
setup, closer to the physical events, which is described and investigated hereafter.

3.4 Uniform positrons distribution
The setup in question is very similar to the one adopted in Section 3.2.1: a uniform
positrons distribution with density ρGJ is subject to a linearly-growing externally-
imposed electric field which is initially null. The initial density is chosen in order
to reach the plasma equilibrium according to the theory described in Section 2.3.1,
which is completely satisfied by the solely positrons since there are no electrons
whatsoever.

Despite having access to the phase space distribution of all the leptons for
different sets of plasma parameters at different time instants, analytically verifying
the evolution of all the particles in the system was still too arduous of a challenge
since we lack a global model that describes it. In the current section I hence decided
to stick with a qualitative analysis of the simulations results while finding proof
of conceptual results only for few selected layers of particles, in order to have a
confirmation to be on the right track. A more quantitative analysis with deeper
links with the analytical models can be found in the following Section 3.5.

On top of the consideration taken on this setup in Section 3.2.1, in Figure
3.24, performed with vf = 0.6, f = 0.05 and γthr = 1000, one could immediately
notice the high particle density in earlier positions, populated by later generation
of particles with higher multiplicity, and in the regions close to ±γthr.
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Figure 3.24: Top: electrons (blue) and positrons (orange) phase space distribution
at t = 1.6 [r∗/c]
Bottom: electrons and positrons phase space distribution at t = 1.8 [r∗/c]
Both the diagrams have been obtained starting from a uniform ρGJ positron
distribution with vf = 0.6, f = 0.05 and γthr = 1000.

58



Simulation results

Figure 3.25: Top: Leptons phase space distribution at t = 0.56 [r∗/c] using a
single particle setup.
Bottom: leptons phase space distribution at t = 1.5 [r∗/c] using a uniform positrons
distribution setup
Both the diagrams have been obtained using vf = 0.6, f = 0.05 and γthr = 1000.
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What is quite significant in this qualitative analysis is the comparison between the
two setups treated until now: Figure 3.25 shows the diagrams of the leptons phase
space distribution both for the the single-particle and the positrons-distribution
setups, in which the same vf = 0.6, f = 0.05 and γthr = 1000 have been adopted.
In order for the different simulations to be somehow comparable, performing a
time shifting has been necessary: while the single-particle setup starts with an
already opened gap (otherwise the progenitor couldn’t be accelerated whatsoever)
the uniform-positron-distribution one starts with null electric field and has the
first electron pair-produced at the surface at τ0. This characteristic time, which
is τ0 = 0.94 [r∗/c] for the selected vf = 0.6 and f = 0.05, then corresponds to the
difference in time to be adopted between the two simulation plots in order to have
corresponding first layers in the same position x = 0.56 [r∗]. With the time-shifting
applied, the second diagram is nothing but the superposition of many plots, each
one corresponding to the progeny of each of the initial positrons that pair produce
after τ0. The first diagram is then a part of the second one, and the different
regions of superposition could be noticed without effort: there is the first electron
layer in x = 0.56 [r∗], the stream of positrons deriving from it (which marks the
bottom-right boundary for the bulk of positrons in the second plot) and the region
of pair production close to the surface, with the very same structure but different
density due to the different multiplicity of the two simulations.

Figure 3.26: Comparison in the particle density of leptons with vf = 0.6, f = 0.05
at t = 1.5 [r∗/c] corresponding to Figure 3.25. Population "1" refers to the uniform
positron distribution setup, while population "2" to the single particle one.
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Those comparisons in the particle density distribution can be appreciated directly
in Figure 3.26, in which the particle density of leptons for both the abovementioned
setups are plotted with the same discretization and scales. The similarities depicted
previously can be observed in some regions, where the abrupt change in the slope
of the curves coincide to the onset of other particle populations onset, which in
turn corresponds to the onset of pair production sources.

The two curves that are most alike are, unexpectedly, the ones corresponding
to the electrons of population "1" and to the positrons of population "2": the two
distributions share the same behavior both in the electrons gap of single-particle
setup and in the region right behind it, with the main difference standing in the
different order of magnitudes of the particle densities. This strong resemblance can
be explained by comparing the sources of the particles that populate that region:
in the single particle setup those are positrons streaming leftwards as they’re pair
emitted by the first layer electrons each tp, while in the uniform distribution setup
those are the electrons drifting rightwards which are locally emitted by positrons
that follow the previous behavior, hence pair producing with the same regularity
(with the difference in magnitudes given by the sources).

The two electrons populations contrast is made explicit in Figure 3.27, in which
the phase space distributions of this specie are plotted for both the setups.

Figure 3.27: Comparison in the electrons phase space distribution for the uniform
distribution setup (blue) and the single particle one (orange).
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Figure 3.28: Comparison in the electrons phase space distribution for the uniform
distribution setup (blue) and the single particle one (orange).

As before, a time shifting by τ0 has been necessary in order to perform a proper
comparison. An analogous graph for positrons is showed in Figure 3.28. In both
diagrams one could grasp the resemblances in the space distribution behavior
within a certain specie: that is due to the characteristic times ta and tp not being
dependant on the particles distribution and count, since the electric field they
experience is externally-imposed and not always self-consistent.

3.5 Layers characterization
The previous section revolved around deepening the study on the uniform distribu-
tion setup and performing some qualitative analysis aimed at comparing it with the
single particle one. Despite it has been possible to find some proof of the analytical
models, a thorough evaluation of the particle growth in the entire system was still
not feasible: I hence decided to study consequent layers of particles in order to
reconstruct a global behavior. Layers width basically describes the discretization
chosen, as can be appreciated hereafter in Figure 3.29: starting from the first layer,
I studied the evolution of the consequent regions of the chosen width in order to
assess the growth rate behavior depending on the spatial position in phase space.
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Figure 3.29: Electrons distribution at t = 0.9 [r∗/c], with vf = 0.9375 and
f = 0.01. The two identical plots are overlaid with different discretizations of space,
performed thorough layer of thickness l = 0.01 [r∗] and l = 0.02 [r∗] starting from
the already well-known first layer.
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Figure 3.30: Top: Electrons population evolution in the different layers of
thickness l = 0.01 [r∗] corresponding to the simulation results shown in Figure 3.29.
Bottom: Corresponding growth rate evolution in the many layers. The green dotted
line is the expected growth rate obtained analytically.
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Figure 3.31: Top: Electrons population evolution in the different layers of
thickness l = 0.02 [r∗] corresponding to the simulation results shown in Figure 3.29.
Bottom: Corresponding growth rate evolution in the many layers. The green dotted
line is the expected growth rate obtained analytically. The time axis here is shifted
by a time t = τ0.
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Figure 3.32: Top: Electrons population evolution in the different layers of
thickness l = 0.05 [r∗] corresponding to the simulation results shown in Figure 3.29.
Bottom: Corresponding growth rate evolution in the many layers. The green dotted
line is the expected growth rate obtained analytically. The time axis here is shifted
by a time t = τ0.
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Layer thicknesses have been varied between l = 0.01 [r∗] and l = 0.05 [r∗]. Values of
l < 0.01 led to inconsistent descriptions of the layers behavior since we want them
to be sufficiently wider than tpc, while l > 0.05 has proven not to be useful in their
characterization. I hereby show in Figure 3.30, 3.31 and 3.32 the evolution in time
of the number of electrons in each layer and the corresponding growth rates for a
multi-layered cascade where vf = 0.9375 and f = 0.01, with layers of thicknesses
l = 0.01 [r∗], l = 0.02 [r∗] and l = 0.05 [r∗] respectively.

Let us begin with underlining the common features shared by the plots. Firstly,
independently on the observed layer, population and growth rate evolution are
basically the same but shifted in time by l/c. The reason is that all layers move at
approximately the speed of light, so each one behaves according to the models of
growth in time described in the previous sections. The solely exception is the 6th
layer for l = 0.05 [r∗], whose growth is markedly different from the others since it
completely encompasses the high-density region of the second burst of particles,
which is intrinsically associated to higher multiplicities. The 5th layer shows this
behavior as well, just on a less extent since it only partially covers that high-density
zone. Secondly, all the growth rates tend to converge into the expected value
obtained, in a first approximation, with equation (2.12).

On top of the main difference, consisting in the l/c shift mentioned previously,
the layers grow progressively faster from the front to the back of the cascade. This
is a consequence of the electrons in the back layers experiencing a larger electric
field at the time they are created (and thus throughout the development of their
single-layered cascade). Moreover, the growth rate obtained analytically (2.43)
using ψ Ä 0 and ta(t) Ä t∗a fits reasonably well the average growth rate of the
different layers as it would do if it was exactly constant asin the case of a constant
and uniform externally-imposed field.

This kind of analysis has been performed for other combinations of vf and f :
while the change in the gap front velocity didn’t add any additional information
on the results of the parametric investigation of Section 3.3.2, the use of smaller
values of f led to some useful considerations. Figure 3.33 and Figure 3.34 show
the comparison in particle count and growth rate between different layers in
simulations using, respectively, f = 0.005 and f = 0.001. The plots of the first
panel are quite smooth thanks to the f being smaller than the one used in previous
simulations. This leads to a reduced impact of possible numerical noise, which is
usually correlated to the discretization chosen being too close to the scale at which
pair production occurs (tp/c), for the same reason for which thinner layer cannot
be used. Inversely, plots in the second panel are affected by the opposite numerical
issue: lower f means lower tp, hence higher multiplicity and larger particle count
growth in the unit time, which leads to larger variance in the values obtained
during post-processing. This is evident in the bottom plot of Figure 3.34, where
the growth rate is quite swinging contrary to the previous results.
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Figure 3.33: Top: Electrons population evolution in the different layers of
thickness l = 0.01 [r∗], based on a simulation performed with f = 0.005.
Bottom: Corresponding growth rate evolution in the many layers. The green dotted
line is the expected growth rate obtained analytically.
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Figure 3.34: Top: Electrons population evolution in the different layers of
thickness l = 0.01 [r∗], based on a simulation performed with f = 0.001.
Bottom: Corresponding growth rate evolution in the many layers. The green dotted
line is the expected growth rate obtained analytically.
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Simulations using f = 0.001 are also defective in being too quick in reaching
the system maximum allowable particles count (just two "bumps" can be showed),
hence not allowing any confirm in the convergence to analytical values as other
simulation setups do. One last detail worth underlining are the actual expected
growth rates obtained with the different plasma parameters: it spans between
Γ & 20 for f = 0.01 to Γ Ä 40 for f = 0.001, in perfect agreement with eq.(2.12).

3.6 Spatial growth rate
The varying growth rate identified above for the different layers naturally gives rise
to a non-uniform electron density spatial profile. This profile is shown in Figure
3.35 for f = 0.001 and in Figure 3.36 for f = 0.005. The plasma current has
been chosen jm = −1.5ρGJc and the leptons density driving the E field evolution
n− = 1.3nGJ for electrons and n+ = 0.3nGJ for positrons, which are slightly above
the minimum necessary to maintain both the current and the Goldreich-Julian
equilibrium. The corresponding gap front velocity is vf = 1.5/(1.3 + 0.3) = 0.9375
and is the same as the one adopted in the previous section.

Figure 3.35: Electrons density profile (blue) at t = 0.75 [r∗/c], obtained in a
simulation with vf = 0.9375c and f = 0.001, and estimates of the density profile
for the 1st (orange) and 7th (green) layers.
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Figure 3.36: Electrons density profile (blue) at t = 0.8 [r∗/c], obtained in a
simulation with vf = 0.9375c and f = 0.005, and estimates of the density profile
for the 1st (orange) and 7th layers (green).

Despite the lower growth rate in time of the front layers, the density decreases
from the front to the back of the cascade. This happens because layers at any
distance d behind the head are created with a temporal lag d/c, which for the
time shown in Figure 3.35 and 3.36 is not enough to flatten (or reverse) the
electron density profile. Simulations and analytical comparisons using other sets of
parameters have been used, but smaller values of f led to non-negligible numerical
noise in the post-processing of data.

The number of particles in each layer evolves according to equation (2.54)
presented in Section 2.6. Since the electric field varies slowly in space, the
density between layers does not vary abruptly and can be written as n(x, t) =
n0 exp (Γ(t+ x/c)) (2.58). This estimate holds for as long as the growth rate of
individual layers is approximately the same, and has been proven to be valid in early
times of the cascade. In the figures above, I plotted lines with slopes computed
with equation (2.58) for sample layers L01 and L07, which are shown to be in good
agreement with the local shape of n−(x, t) obtained from the simulation. This
result is quite important since it proved that the multi-layered cascade process, at
least in the early stages and using physically acceptable parameters, evolves with
the same Γ both in time and in space.
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The approximate profile in equation (2.58) can finally be used to compute the
time it takes to screen the electric field. Since the front of the cascade is the denser
than the back, the field is first screened also at this position when n− Ä −jm/ec.
Since |jm| Ä (1 − 2)|ρGJ |c and, from previous simulations, n−(t) grows from an
initial density Ä (0.01 − 0.1)|ρGJ |/e, then the screening time is tS Ä 1/Γ(t∗a). Given
that Γ(t∗a) Ä W (1/f)ta(t∗a) - from equation (2.43) - and that W (1/f) Ä 3 − 5 for
f Ä 10−6 − 10−3, tS Ä ta(t∗a) can be finally estimated. For realistic pulsars, tS
varies between 10−9 and 10−6 s with the increasing rotation period, a result in good
agreement with previous theoretical and numerical predictions.

3.7 Self-consistent setup
In previous section I derived analytical estimates for the spatiotemporal growth of
the cascade and validated them against 1D PIC simulations, including heuristic pair
production. Furthermore, I have estimated the time at which the plasma generated
in the cascade first screens the gap electric field. These results have been proven to
be consistent with 1D PIC simulations of pair cascades, including pair production
from first principles, but what about in self-consistently developed electric fields?
Up until now, all the simulations have been performed with leptons densities that
were sufficiently small for them not to be able to perturb the externally-imposed
electric field, which was the only driver of particles motion. I thus decided to perform
additional sets of simulations in which the only electric field was the self-consistent
one generated by the particles themselves, which is the actual phenomenon taking
place in the pulsar magnetosphere.

The initial setup consists in a uniform distribution of electrons with density
n− = 2nGJ and positrons with density n+ = nGJ , contrary to the previous setups in
which only a single specie with negligible density was present at t = 0. Those values
has been chosen in order to ensure the equilibrium of the system ρ = ρ− +ρ+ = ρGJ
at t = 0 when the gap opens due to the current jm. The corresponding gap front
velocity is vf = 1.5/(1 + 2) = 0.5 while f = 0.01 and γthr = 1000 have been
chosen. As already explained, leptons drift in opposite directions due to the current,
generating the linear electric field in the opened gap near the surface, as observable
in the top plot of Figure 3.37. At t Ä 0.85 [1/ωp] = τ0 the first electron is pair
produced on the surface and is followed by a series of analogous events. Due to the
high density of positrons, the electrons count in the gap increases quite rapidly,
leading to a sudden drop in the self-consistent electric field (bottom plot of Figure
3.37): here is when the simulation differs from the ones of previous sections, for
which the E field continued growing unaffected by the presence of the newly-born
leptons. It is worth noticing that, despite the drop, the field is still negative, hence
particles continue being accelerated towards γthr, just more slowly.
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Figure 3.37: Electrons (blue) and positrons (orange) phase space distribution
at time t = 0.85 [1/ωp] (top) and time t = 1.05 [1/ωp] (bottom) resulting from a
simulation with vf = 0.5, f = 0.01 and γthr = 1000. The self-consistent electric
field (black) stop increasing after pair-production events take place.
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Figure 3.38: Leptons phase space distribution at time t = 1.25 [1/ωp] (top) and
time t = 1.90 [1/ωp] (bottom). The first gap gradually closes since the E vanishes
close to the front, while a second gap opens near the surface.
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Figure 3.39: Leptons phase space distribution at time t = 2.10 [1/ωp] (top) and
time t = 2.30 [1/ωp] (bottom). The second gap, as the first one, is filled with
freshly-produced plasma and gradually closes.
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The burst of electrons eventually leads to the reversal of the electric field,
resulting in a temporary stop in pair production events since particles are now
accelerated in the opposite direction (decelerated), as one could notice in the top
plot of Figure 3.38. The leptons multiplicity reached sufficiently high levels to fill
the gap and close it, leading to a sort of settling when the Goldreich-Julian density
is reached again. After that, as observable in the bottom plot of Figure 3.38, a new
gap develops, following an analogous behavior as before: the electric field grows
linearly again, until the positrons are accelerated again to the threshold and give
rise to another cascade event, as in the top plot of Figure 3.39. The second gap,
just like the first one, closes after some time, as hinted in the last plot.

Figure 3.40: Comparison of the externally-imposed electric field for vf = 0.5 and
the self-consistent one at time t = 1 [r∗/c]

In Figure 3.40 the self-consistent electric field is plotted together with the
corresponding externally-imposed one. They both share a linear trait, which
corresponds to the leptons drifting without pair production before τ0, after which
the self-consistent field start being screened by electrons while the other continues
growing linearly. Since simulations in the previous section have been performed with
arbitrarily small leptons density, such that their impact on the global field would
be negligible, fields with an approximated magnitude and the desired vf would be
perfectly acceptable for simple qualitative analysis. However, the magnitude cannot
be arbitrary for accurate quantitative investigations but has to grow according to
equation 2.19 accurately described in Section 2.3.

76



Simulation results

As expected, plasma multiplicity is reached quickly enough to fill the gap with
fresh plasma and close it. The time scales for which this occurs are comparable
to the ones predicted in the previous section. The alternating pair production
bursts, which occur which a certain regularity, have been proven to be responsible
of producing inductive plasma waves. The mechanism is as follows: as the current
grows in time, the electric field is screened, as prescribed by Ampere’s law (1.8);
when the field is screened, the plasma current is maximum, which reverses the
field, decelerating particles. The system enters a stage where the electric field is
approximately constant in space and oscillates in time inductively, i.e., supported by
reversals of the plasma current. The frequency of these oscillations is the relativistic
plasma frequency, ω0 =

ñ
4πe2n±/γthrme. In this stage, electrons and positrons

periodically reverse their momentum without producing new pairs. With time,
inductive oscillations become unstable [20] and perturbations in the electric field
accelerate a small fraction of particles beyond γthr, producing new bursts of pair
production.

Figure 3.41: Comparison of the number of electrons evolution in the first burst
for vf = 0.5 and different values of f .

A parametric analysis has been performed by varying the value of f with vf = 0.5 -
which is now imposed by fixing the initial density and not by making a field growing
at the required speed. Results for evolution of electrons are shown in Figure 3.41,
while Figure 3.42 displays the corresponding growth rates.
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Figure 3.42: Comparison of the electrons growth rate evolution in the first burst
for vf = 0.5 and different values of f .

As expected, the electrons population plateau quite quickly, sign that the plasma
multiplicity obtained is sufficient to screen the opened gap and stop the pair
production cascading process. Smaller values of f lead to a faster growth right
after τ0, hence screening the E field more rapidly: this reflects on the lower growth
rate right after, since the gap is already almost closed. It is worth underlining
how the number of electrons required to completely screen the field is the same
independently on the value of f , which only regulates the time at which the plateau
is reached.

A comparison between the self-consistent setup with the externally-imposed
field one is presented in Figure 3.43 for the particle population evolution and in
Figure ?? for the corresponding growth rates evolution; f = 0.01 has been chosen
for this investigation. While the current setup leads to a plateau, in the previous
one the particle count continued to increase since the E field did the same. This is
well reflected on the growth rates: in the self-consistent case it is vanishing when
the field is totally screened, while in the externally-imposed field case it gradually
converges to the value expected from the analytical evaluations, since the growth
becomes almost purely exponential.
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Figure 3.43: Top: electrons evolution comparison of the two field setups with
vf = 0.5 and f = 0.01.
Bottom: corresponding growth rates evolution.
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The initial distribution having electrons density n− = 2nGJ and positrons density
n+ = nGJ , corresponding to a gap front velocity vf = 0.5, it’s quite an important
landmark since it’s the one setup with the maximum allowable leptons density for
which the Goldreich-Julian equilibrium is still satisfied, resulting in the slowest vf
possible. This proved to be remarkable from a physical point of view considering
that lower velocities imply weaker fields, hence less particles - lower multiplicity -
required to shield it. Unfortunately, this comes with downsides when numerically
approaching the problem: at the gap closing, the electric field still presents lots
of peaks, which induce unnecessary particles fluctuations and potential numerical
noise. Here came the choice of lowering as much as possible the positrons initial
density with respect to ρGJ in order to smooth out the electric field.

The current induced by leptons drifting in opposite directions is jm = ρ+v+ +
ρ−v− = −αρGjc, with α = 1.5, according to the theory presented in Section
2.3; the previous equation can be written in terms of the particle density as
(n+ + n−)vf = 1.5nGJc since positrons drift with v+ = −v− and vf ≡ v−, hence:

vf
c

= 1.5 nGJ
n+ + n−

(3.3)

The GJ equilibrium condition consists in n+ − n− = nGJ , hence the minimum
densities that can sustain jm are n− = 1.25nGJ and n+ = 0.25nGJ . The following
simulations start with n− = 1.3nGJ and n+ = 0.3nGJ , resulting in vf = 0.9375.

Figure 3.44: Electrons evolution comparison with vf = 0.9375 and varying f .
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Figure 3.45: Electrons growth rates corresponding to the particle evolution of
Figure 3.45. Independently on the f , the curves converge to 0 in a time t Ä 0.3 [c/r∗]
after τ0.

Figure 3.44 is the result of a parametric analysis made by varying f while
the initial leptons distribution led to the desired vf = 0.9375; Figure 3.45 shows
the corresponding growth rates. While the overall behavior is similar to the one
observed for the same analysis performed with vf = 0.5, a few differences prove
that this setup leads to a better smoothing and screening of the electric field:
especially for low values of f , but also for higher ones in a less extent, both the
particle count and the corresponding growth rate are much smoother than in the
previous case. This confirms that higher gap front velocities, corresponding to lower
initial particle densities, lead to a better response of the system in its capability
of screening electric field generated by the particle current imposed. This can be
explained by the fact that a stronger field, resulting from a greater vf , accelerates
particles more frequently, hence leading to a higher multiplicity which, in turn,
leads to less oscillation induced by the currents present at the gap closing. The
higher multiplicity can be observed in the particles count of the plateau, which
passes from being Ä 103 for vf = 0.5 to being Ä 104 for vf = 0.9375.

To conclude, the electrons growth rate evolution for f = 0.01 and f = 0.1 are
plotted in Figure 3.46, where the self-consistent and the externally-imposed E field
cases are compared together with the expected growth rate analytically calculated.
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Figure 3.46: Comparison between the growth rates evolution between the self-
consistent E field case (orange) and the externally-imposed E field one (blue)
with the associated analytical growth rate (green). Both the diagrams have been
produced using vf = 0.9375, one with f = 0.01 (top) and the other with f = 0.1
(bottom).

82



Chapter 4

Conclusions

Heuristic models of pair cascades play a pivotal role in advancing our theoretical
comprehension of the intricate dance between Quantum Electrodynamics (QED)
and plasma kinetic effects. Within the scope of this study, I have undertaken a
rigorous exploration of this dynamic interplay by employing a heuristic model that
hinges on the concept of electrons and positrons generating fresh pairs each time
they undergo acceleration beyond a predefined threshold energy. In particular, this
investigation has centered around a comparative analysis of cascade development
within constant and linear background electric field profiles. In the case of a
uniform electric field, this research has unveiled an intriguing phenomenon: the
proliferation of particles within the cascade follows an exponential growth pattern.
I have gone a step further by juxtaposing the analytical estimate of this growth
rate with empirical data gathered from simulations.

Furthermore, I have made a notable revelation in the context of cascades within
a linear electric field. While exponential growth still characterizes these cascades, a
distinct feature has emerged – the growth rate experiences a time-dependent decline.
This phenomenon can be attributed to the diminishing strength of the electric field
that seed particles within the cascade encounter as time progresses. Consequently,
this leads to a spatially variable growth rate for the density of electron clouds
generated in cascades near the surfaces of neutron stars. Specifically, the density of
the leading edge of these clouds is expected to increase at a slower rate compared
to their trailing edge. However, since the initial formation of the clouds occurs at
the leading edge, the electron density exhibits a gradient, decreasing from the front
to the rear.

These findings align with previous 1D Particle-in-Cell (PIC) simulations of pair
cascades, encompassing pair production from first principles and self-consistently
developed linear electric fields. I have not only derived analytical approximations
for the spatiotemporal evolution of the cascade but have also corroborated these
estimates through meticulous validation against 1D PIC simulations, incorporating
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heuristic pair production.
Lastly, this research has ventured into estimating the critical point at which

the plasma generated within the cascade begins to screen the gap electric field.
The analysis of the properties of inductive waves, self-consistently generated as a
consequence of pair cascades within a linear electric field, is a tantalizing avenue
we’ve left for future exploration.

The insights forged through the analytical models outlined in this work serve
as invaluable tools for interpreting more complex, full-fledged QED simulations of
pair cascades. It’s imperative to note, however, that their application is confined to
the domain of validity of the heuristic model underpinning this study, specifically
in scenarios characterized by a negligible photon mean free path. As we embark on
the next phase of research into pair cascades within compact objects, it is envisaged
to extend this model. Such extensions, and consequently, the theoretical framework
elucidated here, are poised to propel our understanding closer to the realm of ab
initio descriptions of pair cascades. This entails incorporating elements such as a
soft energy threshold for photon emission and the incorporation of a finite photon
mean free path, be it constant or spatially dependent.

In essence, this work forms the cornerstone upon which future investigations
into the intriguing world of pair cascades in compact celestial objects will be built,
taking us further along the path of unraveling the mysteries of the universe at its
most fundamental levels.
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