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Abstract 

In a future energy system, the large share of volatile renewable energy will increase flexibility 

needs to resolve the temporal mismatch between demand and supply. A central enabler for this 

flexibility needs is energy storage. While short duration storage applications recently are getting 

widely adopted, in a renewable based future energy system there will be an increasing need for 

longer storage durations. Stand-alone long duration energy storage technologies, however, face 

economic challenges due to their high capital costs and limited revenue streams. To overcome 

these challenges, Hybrid Energy Storage Systems (HESS) that combine long duration storage with 

short duration storage have gained significant attention in scientific literature. By integrating 

different storage technologies, HESS can enhance the overall performance and economic viability 

of energy storage systems, benefitting from the strength of both technologies. 

This master's thesis project focuses on conducting a techno economic analysis of an energy system 

to produce green hydrogen in combination with a Li-ion battery storage and a hydrogen storage. 

The hydrogen is produced to substitute the methane consumption of a final heavy industry user on 

an hourly basis. The hydrogen string consists of an electrolyzer and a storage system for storing 

hydrogen if it is not directly consumed by the final user. The battery, on the other hand, is integrated 

into the electricity system to reduce curtailment of renewable electricity and potentially decrease 

the size of the electrolyzer. It is connected only to renewable electricity production to provide 

electricity to the electrolyzer. The renewable energy plants are connected to the electrolyzer and 

to the grid, to have the possibility feeding in excess electricity in case of full storages and thereby 

avoiding curtailment. 

By utilizing Particle Swarm Optimization (PSO), the research aims to optimize contemporary the 

sizing of the components. A rule-based control system determines the control strategy, considering 

the specific requirements of heavy industry applications. Through the development of a rule-based 

energy management strategy, the system takes the generation and demand profile and is able to 

compute the hourly state for each component. From the component states and electricity 

consumption the operational costs are obtained. This cost is summed to the annualized cost of 

components and allows the optimization algorithm to choose the next iterations component sizes. 

After each simulation the optimal component sizes and cost are determined, based on the given 

assumptions. The whole system is developed in python.  

The results highlight that the high capital cost of battery storage cannot be recovered through a 

better exploitation of solar energy. To make the Li-ion battery storage interesting the electricity 

acquisition price must be increased substantially, or other revenue sources for the battery storage 

must be included. Hydrogen storage on the other side allows to transform a higher share of PV 

into hydrogen and with the comparably low capital cost reduce the levelized cost of hydrogen. 

Consequently, the optimal solution is not represented by a HESS, but rather by a single storage 

solution with hydrogen. 
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A sensitivity analysis on the electricity prices shows that if grid injection is remunerated at a price 

close to the levelized cost of electricity of PV or higher, it is convenient to maximize the installed 

capacity. For these grid injection prices the PV grid injection subsidizes the hydrogen production. 

On the other side lower electricity acquisition prices lower the installed PV capacity and 

consequently also the installed electrolyzer and hydrogen storage capacity.  

The analysis of a 2030 future scenario shows significant cost reductions compared to today, being 

in line with recent studies on green hydrogen production. However, none of the solutions is able 

to economically compete with the cost of conventional natural gas supply, even if carbon taxes are 

considered. These results highlight further need for technological improvement as well as policy 

adaptations to generate interesting investment cases and foster the substitution of natural gas. 
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1. Introduction 

1.1 Relevance of energy storage to future energy systems 

The urgency to address climate change necessitates radical changes in power systems. As today 

energy production is the most responsible emitter, the introduction of renewable energy sources 

(RES) is inevitable. Today renwables passed fossil power supply as cheapest electricity sources 

and consequently the diffusion of wind and solar energy is surging rapidly.[1] However, the 

intermittent nature of RES and the inherent mismatch between energy demand and production pose 

significant challenges. To resolve these issues and enable a sustainable energy future, the 

deployment of energy storage technologies, specifically Long Duration Energy Storage (LDES), 

becomes imperative. 
The current penetration of RES in both Italy and worldwide is still far from a 100 % renewable 

energy system. Therefore, the characteristics of a future energy system will be different to the 

present situation. However, even for the current power composition the intermittent nature of solar 

and wind power generation introduces variability in energy production. Consequently, instances 

arise where energy demand exceeds the available renewable energy supply. To mitigate the 

volatility and mismatch in energy demand and production, short duration energy storage solutions 

have been implemented worldwide. Energy Storage contributes to grid stability, facilitates RES 

integration, and optimizes energy supply and demand. With these characteristics and different 

potential revenue sources short duration storages like Li-ion batteries (LIB) represent a feasible 

business model today and become widely adopted. LIB are experiencing a boom with their 

application from portable electronics to electric cars and stationary electricity storage.[2] 

Generally, the trend of increasing installations of energy storages is observed worldwide (Figure 

1.1), with large capacity additions in the future. 

 
Figure 1.1: Global installed energy storage capacity estimation: BloombergNEF [3] 
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1.2 Long Duration Energy Storage 

As the proportion of renewable energy increases, longer periods will occur where electricity 

demand exceeds renewable energy production. This necessitates the development and deployment 

of LDES solutions capable of storing excess energy during periods of high generation and releasing 

it during periods of scarcity. LDES systems ensure the reliability and resilience of the power grid, 

bridging the gaps in energy supply and demand. 

The economic viability of LDES technologies currently faces challenges, primarily due to the need 

for significant capital investment and the uncertainty surrounding revenue streams. Additionally, 

regulatory uncertainties add to the complexities. To facilitate the rapid integration of LDES 

solutions, cost reduction is imperative to enhance their competitiveness in comparison to 

conventional fossil fuel-based approaches.[4] Unlike the well-established dominance of specific 

technologies in short-term energy storage, the landscape for LDES is characterized by a wide range 

of technologies competing for prominence. The choice of the most suitable storage method heavily 

depends on specific application requirements, with an expectation that multiple technologies will 

coexist simultaneously in the future. For a comprehensive overview of Long Duration Energy 

Storage technologies, refer to Figure 1.2.  

 
Figure 1.2: Long Duration Energy Storage technologies, based on data from LDES council [5] 

1.3 Hybrid Energy Storage 

The current landscape of energy storage solutions is characterized by a certain immaturity across 

various aspects, limiting their widespread adoption. The different energy storage technologies 

exhibit divergent cost structures and technical attributes. The prospect of a singular, impeccable 

energy storage system technology that adeptly addresses limitations from all dimensions is 

unlikely to develop in the immediate future. The idea of hybrid energy storage is to combine two 

heterogeneous storages and take advantage of the strengths of each individual technology and at 
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the same time hide their drawbacks. This typically involves the combination of a high-power 

density storage system with a high energy density counterpart.[6] The control logic governing 

HESS constitutes a subject of substantial research interest, with different control schemes and 

power electronic layouts. A common categorization is the distinction into active, semiactive, and 

passive control, which describe where the power electronic converters are placed and how flexible 

each storage can be controlled.[7] 

Usually, these control schemes focus on regulation in a timeframe of few seconds or below. 

However, in this thesis, a macro-level optimization is undertaken, utilizing an hourly demand 

profile as a basis. As a result, the influence of rapid dynamics becomes relatively minor, rendering 

the need for intricate control logic modelling less significant. Furthermore, the arrangement 

involves situating one storage unit upstream for electricity and the other downstream for hydrogen. 

This configuration distinguishes the proposed system from conventional HESS setups, wherein 

both storage elements are interconnected to a shared bus. Notably, this configuration eliminates 

the presence of independent control challenges. 

Numerous articles focus on the application and Sizing of Hybrid energy storage, particularly 

concerning transportation applications and microgrids. Hajiaghasi et al. offer a comprehensive 

overview of hybrid storage applications, sizing methodologies, and associated control strategies in 

microgrid contexts. Given the multifaceted nature of optimization problems and the distinct 

requirements of various systems, there is no universally applicable design procedure. System 

design is inherently case-specific and tailored to the unique demands of each application.[8] 

Marocco et al. undertake a sizing analysis employing Mixed Integer Linear Programming (MILP) 

for a hydrogen-battery Hybrid Energy Storage System designed to meet the requirements of a 

remote off-grid island. This approach is subsequently compared to a meta-heuristic methodology 

employing Particle Swarm Optimization alongside a rule-based control strategy. The MILP-based 

approach yields lower minimum levelized cost of energy outcomes; however, it comes at the 

expense of greater computational overhead.[9] In remote off-grid regions, the expense of fossil 

fuel procurement is substantial higher due to the necessity of imports, resulting in escalated costs. 

Consequently, fully renewable energy systems, characterized by their competitive edge, emerge as 

compelling alternatives. Such remote areas, challenged by high fossil fuel costs, represent 

noteworthy study subjects for the evaluation of future energy systems reliant solely on renewable 

sources and practical applications of hybrid energy storage systems. 

1.4 Green Hydrogen 

The necessity for decarbonization extends beyond the power sector to cover other sectors like heat 

as well. Especially the decarbonization of high-temperature processes poses significant challenges, 

due to the difficulty to substitute fossil fuels in cost effective way. Industries requiring elevated 

temperatures often encounter limitations in terms of electrifying such demanding processes, 

thereby necessitating the adoption of alternative energy carriers, such as hydrogen. However, the 

cost of hydrogen is typically higher than a conventional natural gas supply. 
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Hydrogen has several advantages and will serve a central role in a future renewable energy 

system, acting as a Long Duration Energy storage. It is a highly versatile fuel and can be used in 

hydrogen ready turbines, as well as fuel cells. Hence, hydrogen can substitute natural gas without 

the need of building a new infrastructure as long as certain technical differences are taken into 

consideration. Moreover, hydrogen is essential in numerous chemical processes, further 

highlighting its importance.[10] 

However, the adoption of hydrogen is not without challenges. The main drawbacks include the 

necessary conversion processes which entail energy losses, reducing overall efficiency. 

Additionally, hydrogen possesses a lower volumetric energy density when compared to 

conventional fuels, which presents complexities in terms of both transportation and storage. 

Furthermore, conventional hydrogen production pathways, often reliant on fossil fuels, contribute 

to emissions, counteracting the clean energy objective. Finally, the production, transport, and 

storage of hydrogen come with significant costs, making it an expensive energy source that will 

not be suitable for all energy needs.[10] 

Generally different production pathways for hydrogen exist, which are frequently associated with 

colours. The most common production pathways are shortly described here: Green Hydrogen is 

produced by water electrolysis, using renewable electricity. This method yields minimal CO2 

emissions and aligns with the thesis's commitment to sustainable practices. Grey hydrogen is 

usually generated through steam methane reforming (SMR) from natural gas and therefore no 

carbon-neutral alternative to methane and even more impacting than the direct use of methane. 

Blue hydrogen uses the same production pathway as grey hydrogen but with subsequent carbon 

capture and storage (CCS) technologies in place to mitigate emissions. Also, other colour codes 

for hydrogen exist like pink, black and turquoise. In some cases, a different colour coding is used 

in other sources.[11] For this thesis green hydrogen is used for further considerations, due to the 

potential to produce it locally by water electrolysis from renewable electricity and thereby causing 

very little CO2 emissions. 

1.5 Legislative Background 

In early market stages, having a clearly defined regulatory environment and removing legislative 

barriers is essential to facilitate investments in energy storage and hydrogen production. In recent 

years, the legislative landscape evolved rapidly. Now, there is a specific definition that determines 

when hydrogen production is considered 100 % renewable and which incentives apply. An 

overview on this development on European as well as Italian level is given in this chapter.  

On a European basis RED II defines the general outlook for the policy on green hydrogen 

production and targets[12]. However, the specific technical requirements are not provided within 

RED II but are instead defined by two additional Delegated Regulations. Delegated Regulation 

EU 2023/1185 establishes minimum threshold for greenhouse gas emissions savings for the 

production of renewable fuels of non-biological origins RFNBO. EU 2023/1184 defines detailed 

rules for energy used to produce RFNBO. The requirements to classify hydrogen as green are 

outlined in the following articles: 
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Article 3 specifies that in the case of a direct physical connection between the electrolyzer and the 

RES plant, the production can be considered as 100 % renewable if both of the following 

conditions are met: 

• The RES plant must not be installed prior to 3 years before the electrolyzer 
• It is ensured that the electricity is not drawn from the grid 

Article 4 defines that if the electricity is taken from the grid, one of the following rules must be 

satisfied to classify the hydrogen as 100 % renewable: 

• The electrolyzer is placed in the bidding zone where the share of renewable energy is higher 

than 90 % and the electrolyzer operational hours are limited to the share of renewable 

electricity in the bidding zone. 
• The emission intensity of electricity in the bidding zone is less than 18 gCO2eq/MJ and a 

PPA is concluded, which covers at least the amount of electricity used for green hydrogen 

production and satisfies the temporal and geographical correlation requirements (see next 

paragraph) 
• The electricity is used during imbalanced grid conditions where RES plants are curtailed, 

and the hydrogen production reduces the curtailment need by the corresponding amount. 

If none of the above rules regarding electricity in the bidding zone are met, the requirements of the 

following three articles must be respected: 

• Article 5, Additionality assures that the electricity is taken from additionally installed 

renewable energy capacity. It's important to note that the rules regarding additionality do 

not apply until 2038 for electrolyzers installed prior to 2028, which significantly relaxes 

the requirements for currently installed electrolysers. [13] 
• Article 6, Temporal correlation requires that renewable production (e.g., through a PPA) 

and consumption occur during the same period. The requirement for temporal correlation 

is set to one calendar month until the end of 2029 and then tightened to one hour. 
• Article 7, Geographical correlation regulates that the renewable plants are located in the 

same bidding zone or, under certain conditions, in interconnected bidding zones with 

respect to the electrolyzer[13] 

New legislation related to green hydrogen is being introduced not only at the European level but 

also within member states. In Italy DL 36/2022 exempts electricity from renewables used in 

electrolysis from general network fees. It also exempts resulting green hydrogen from excise duty 

when it is not directly used as fuel in combustion engines. Additionally new legislation was 

introduced regulating authorization processes and the definition of areas with special national 

interest. DM 21/09/2022 further defines the exemption from general system charges for green 

hydrogen, using GHG reduction thresholds similar to those defined in RED II on the European 

level.[14] Table 1.1 provides an overview on recently enacted legislation related to green 

hydrogen. 

Under this new legislative environment, it is important to understand to which extend the 

production of green hydrogen can be accelerated. However, the precise implementation of 
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financial incentives, such as those related to capital expenditures or operational costs, is yet to be 

determined. Further national or regional subsidies may exist which further influence the project 

costs. 

Table 1.1: Overview on recent legislation on green hydrogen in the EU and Italy [14] 

Legislation Content 
EU RED II[12] RFNBOs have to obtain a lifecycle GHG emission reduction of 

at least 70 % compared to a fossil fuel with a reference emission 

factor of 94 gCO2/MJ. The threshold is increased to 80 % for 

plants for electricity generation, heating or cooling installed after 

2025.  
EU Gas Hydrogen Package 

[14] 
Defines regulating fee exemptions which should be applied until 

2030. Currently in revision 
EU Delegated Acts RED II 

(EU) 2023/1184 [13] 
(EU) 2023/1185 [15] 

Supplementing RED II 
Defines under which conditions hydrogen, hydrogen-based fuels 

or other energy carriers can be considered as a renewable fuel of 

non-biological origin (RFNBO). EU 2023/1185 defines 

minimum greenhouse gas savings. 
Law Decree 36/2022[16] Electricity from renewables used in electrolysis is exempt from 

general network charges.  
The resulting green hydrogen is exempt from excise duty when 

not used directly as fuel in combustion engines. 
Legislative Decree 

199/2021 [17] 
Referring to RED II 
Facilitating authorization processes for electrolyzers. 
The guarantee of origin is defined and expanded for green 

hydrogen. 
DL 115/2022 [14] Define how areas of strategic interest for large scale investments 

can be established, and how these benefit from facilitated 

regional authorization processes if a strategic national interest is 

applicable. 
DM 21/09/2022[14] Defines the condition under which green hydrogen is exempt 

from the variable part of general system charges. The conditions 

are in line with the GHG reductions required by RED II. The 

exemption request procedure is defined by ARERA. 
Delibera ARERA 

557/2022/R/EEL [14] 
Defines the request modality of the network fee exemption. 

DL 13/2023[14] Regulates authorization processes for green hydrogen production 

plants and adds them to a group of prioritized projects to 

accelerate the environmental impact assessment procedures. 

1.6 Objective and structure of the thesis 

In the realm of green hydrogen production and energy storage systems, this thesis aims to evaluate 

the potential of simulating a real industrial consumer use case. To achieve this goal, a hybrid energy 

storage system is modelled, comprising a photovoltaic plant, an electric grid, Li-ion battery 
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storage, an electrolyzer, and hydrogen storage. The simulations are conducted based on a one-year 

hydrogen demand profile. The model is governed by a rule-based operational logic designed to 

maximize hydrogen production from renewable energy sources, minimize grid power 

consumption, and ensure fulfilment of the end user's hydrogen demand. The optimization of 

component sizes is executed using the particle swarm optimization (PSO) algorithm, chosen for 

its ability to reduce computational time and effectively handle multi-objective optimization. To 

authenticate the outcomes and explore potential future developments, sensitivity analyses are 

performed. 

This thesis is organized as follows: Chapter 2 explains the methodology used in this study. It 

covers a detailed description of the model's components, including their techno-economic aspects. 

The chapter provides insights into the functioning of the control logic and the particle swarm 

optimization (PSO) algorithm and concludes by outlining the various scenarios examined. 

Chapter 3 provides a detailed analysis of the results from both the base case and the sensitivity 

analysis. The outcomes are presented in depth, offering insights into the system's performance 

across different scenarios. Chapter 4 discusses the results comprehensively, placing them within 

the context of green hydrogen production. The findings are also compared with a conventional 

fossil fuel-based energy supply. Chapter 5 concludes the thesis, summarizing the key points, 

which are drawn from the results. A look ahead is presented, suggesting potential avenues for 

future research in this field.  
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2. Methodology 
Chapter 2 provides an overview of the methodology employed in this thesis. First the system is 

described, defining its components, specific system boundaries, and outlining the underlying 

assumptions. The section on cost methodology, outlines economic modelling approach and the 

associated challenges. The chapter further introduces particle swarm optimization and explains its 

function in the global modelling strategy. In the end the scenarios which are simulated are 

summarized. 

2.1 Definition of the case study 

The energy system under analysis comprises a combination of hydrogen production, hydrogen 

storage and a Li-ion battery to meet the electricity demand of a heavy industry user. The hydrogen 

string includes an electrolyzer, which converts excess electricity into hydrogen through 

electrolysis, and a storage system for hydrogen when it is not directly consumed by the end user. 

The Li-ion battery is integrated into the system to reduce curtailment of renewable electricity and 

decrease the necessary size of the electrolyzer. It is connected only to renewable production to be 

able to store excess renewable electricity. The renewable energy plants are also connected to the 

electrolyzer and the grid, allowing them to feed surplus electricity into the grid, in case of full 

storages and thereby avoid curtailment. The modeling process begins with a simplified approach 

for each component to facilitate result tracking and validation, gradually increasing complexity as 

needed. Once the energy system's framework is defined, the assumptions regarding prices, 

efficiencies and operational strategies must be established. 

 

 
Figure 2.1: Overview of the system structure and energy flows 

The physical system boundaries extend from the renewable plants to the entry point of the final 

customer. Little is known to the location and geographical details of the industrial user’s site. 

Hence, the objective is to satisfy the clients energy demand without modelling downstream 

processes. The components are treated as black boxes in the simulations, and system efficiencies 

are used for modelling. 
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2.1.1 Choice of Location 
To test whether a system with two storages can be economically viable a location with large 

renewable availability has to be chosen. Thereby a comparably low LCOH can be obtained and set 

into context. For this study, the city of Catania in Sicily was chosen as the study site due to two 

key advantages for renewable hydrogen production. Firstly, Catania receives an average global 

horizontal irradiation of approximately 1.800 kWh/m2/y, which is one of the highest values in 

Europe and therefore ideal for PV power generation[18]. Secondly, Catania has a large existing 

steel industry that is looking to decarbonize its operations. Given that the steel industry is 

anticipated to become a major consumer of hydrogen in the future, it is likely to foster an economy 

centred around the production of green hydrogen. This, combined with its proximity to the sea, 

makes Catania a favourable site for this study. 

2.1.2 Photovoltaic plant 
To obtain the power production values, radiation data for the selected location is needed. PVGIS 

is a reliable source where the location can be imported and it can calculate hourly electricity 

production based on past meteorological data.[19] The problem is that the user profile is given for 

2021 while PVGIS has radiation data from until 2020. Although PV production tends to have less 

annual variability compared to wind or hydropower generation, there are still notable fluctuations, 

ranging between 93 % and 106 % of the average over the past 30 years. Hence selecting the right 

year is important.  

To solve this problem by the calculating the average production for each day poses the problem of 

unrealistically smooth profiles. A more suitable approach is to select a reference meteorological 

year and calculate the power production based on this input data. For this task the modelling 

software Polysun is used. The meteorological reference year is generated by Polysun using the 

software Meteonorm, which provides the necessary meteorological data.[20] 

The main technical parameters can be seen in Table 2.2. The plant is placed in Catania, Sicily. To 

achieve an optimal power output the slope is set at 35°[21]. The selection whether solar trackers 

are used to follow the suns position is a trade-off between capital cost and power output. Both 

fixed-mount and tracking systems are available on a utility scale. The decision which tracking 

system to use is more precisely discussed in the following section.  

In recent years modules increased in size as well as in efficiency. For this study a module with a 

peak power of 585 W and an efficiency of 20.85 % at STC is chosen, which represents the current 

state of the art of utility scale PV.[22] The simulation of the power output uses the preset values 

by Polysun of 2 % cable loss and 4 % mismatching loss due to the interconnection of the cells with 

different operation properties under certain conditions. The overall inverter efficiency in the 

simulation exceeds 95 %.[21]  
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Table 2.1: Main technical parameters for PV systems 

Location Catania, Sicily 

PV-surface slope 35° [21] 

Tracking Monoaxial tracking system on the vertical axis 

Efficiency at STC 20,85 % 

Module Power 585 W 

Cable loss 2 % 

 

Polysun then generates a one-year PV-production profile from the reference meteorological year, 

incorporating the selected components and assumptions. To investigate the impact of a tracking 

system, three simulations are carried out.  

In the case of fixed mounting, a low variation in productive hours can be observed throughout the 

year and a total production of 1.547 kWh/kWp is reached.  

 
Figure 2.2: PV generation data for Catania, fix mounted, 35° inclination, 180° solar azimuth angle, Polysun 

Monoaxial tracking is commonly employed in modern plants. While it involves slightly higher 

capital expenditure, it significantly improves the power output. The power output is also made 

more constant over the day, with a higher productivity especially during summer. As a result of the 

tracking system, the AC power output reaches 1.985 kWh/kWp, marking a substantial 28% 

increase.[23] 
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Figure 2.3: PV generation data for Catania, vertical monoaxial tracking, Polysun 

In addition to monoaxial tracking systems, biaxial trackers are available, optimizing both the 

azimuth angle as well as the slope. Thereby the daily Energy Curves are flattened as the sun always 

is at the right angle and the yearly production. Overall, the yearly production increases to 

2.163 kWh/kW, which is a nearly 40 % improvement compared to the fixed-mounted cases. 

However, it is important to note the drawbacks of biaxial trackers, including increased CAPEX 

and maintenance cost due to greater complexity of the system. Additionally, systems with biaxial 

trackers run into shading issues in off-peak hours and require a larger space demand.[23] 
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Figure 2.4: PV generation data for Catania, biaxial tracking, Polysun 

 

 
Figure 2.5: Monthly energy production of different tracking system 1 kWp 

For this thesis, a vertical axis tracking system is selected, as it strikes a favourable balance between 

high electricity generation and extended production hours throughout the day. 
Figure 2.5 shows that the monoaxial tracking the vertical axis achieves this objective very well 
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already capturing most of the advantage relative to a biaxial tracking system. In the context of this 

study, the demand profile of the final user remains relatively constant throughout on a daily, weekly 

and seasonal basis. Therefore, achieving high-power generation during morning and evening hours 

is crucial to prevent over-sizing of the plant. The central goal of the energetic system is to 

consistently satisfy the users demand profile, and demand side management is not considered 

possible. Hence monoaxial tracking is considered a convenient option in this case.  

The size of the PV-plant is treated as an optimization parameter. To calculate the power output the 

plant’s size is multiplied for each hour by the specific production profile for 1 kWp. 

Apart from the technical considerations also economic assumptions must be made. The selection 

of realistic component prices has become increasingly difficult over the last years. Whilst 

previously the specific cost for solar panels wind turbines, electrolysers and storages constantly 

went down with improvement of the technologies and their high learning rates, this behaviour 

changed. The Pandemic and later the energy crisis inflation led to a high volatility in prices. In late 

2021 and 2022 a general upward trend in prices occurred, which also reflects on PV component 

cost. While the IEA in the 2022 World Energy Outlook uses a price of 704 €/kWp based on 2021 

assumptions, this price increased after this[1]. In another report on the Electricity generation cost 

the IEA reports cost of 735 €/kWp specifically for Italian utility scale plants in 2020.[24] 

 
Figure 2.6: Commodity and freight price indexes PV Source: IEA Renewable Energy Market Update June 2023 [25] 

 

The impacts of these on developments on PV- price components can be seen in Figure 2.6. In 2022, 

main commodities and transportation costs made up around 30-35 % of overall capital expenditure 

(CAPEX) for utility-scale and wind projects, doubling from 2020. The combined impact of higher 

prices and annual cost reductions due to technological innovation led to an estimated 15-20 % 

increase in the Levelized Cost of Electricity (LCOE) for these technologies in 2022. In 2023, 

commodity prices have significantly fallen from their peaks but remain higher compared to 2020. 
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For instance, average prices in Q1 2023 were over 200 % higher for polysilicon, 100 % for steel 

in the United States and Europe, and 20-40 % for aluminium, copper, and freight.[25] 

In the midterm future a new decline in prices is expected together with new production capacities 

coming online. Taking into account the IEA technology costs from 2020 and 2021 and the recent 

price increases of 10-20 % together with the increased cost due to the tracking, the baseline 

scenario consists of a PV-system cost of 900 €/kWp.[26] 

In the analysis of future scenarios, the projected costs for utility-scale solar PV in 2030 are 

examined. The U.S. Department of Energy has set a target for the LCOE for utility-scale solar at 

20 €/MWh for single-axis tracking ground-mounted PV plants. This target entails more than 

halving the cost, primarily driven by reductions in module prices.[27] The Fraunhofer Institute for 

Solar Energy Systems projects a more conservative learning rate of about 30 % in the PV cost from 

2021 to 2030. In their 2040 projections system cost for utility scale PV plants are expected to be 

lower than 350 €/kWp.[28] presents a wide range of installation cost estimates for 2030, ranging 

from 340 to 840 $/kW. This variation underscores the high degree of uncertainty and the specificity 

of individual cases.[29] From these estimates, a price of 550 €/kWp is selected for 2030, 

representing one of the more conservative values. 

Table 2.2: Main techno-economical parameters for PV systems 

 2023 2030 

Investment cost 900 €/kWp [1], [24], [26] 600 €/kWp [1],[28] 

Operation and maintenance cost 20 €/kWp/year [30] 20 €/kWp/year [30] 

Lifetime 25 Years [1] 25 Years [1] 

Discount rate 6 % [31] 6 % [31] 

 

2.1.3 Electrolyzer 
The electrolyzer converts electricity from the PV plant or the grid into hydrogen through water 

electrolysis. Three main types of electrolyzer cells exist: Alkaline electrolyzer cells, proton 

exchange membrane (PEM) electrolyzer cells, and solid oxide electrolyzer cells. In comparison to 

alkaline electrolysis, PEM electrolyzers represent a more recent technology with a history of rapid 

advancements and a promising trajectory for future improvements. Although alkaline electrolysis 

comes with slightly lower initial investment costs, PEM electrolyzers offer superior efficiencies. 

Another advantage of PEM electrolyzers is their higher power density relative to the space they 

require, making them particularly advantageous when available area for installation is limited.[10] 

[32] A disadvantage of PEM electrolyzers is their reliance on precious catalyst like platinum and 

iridium, which represent a significant cost factor and source of price volatility.  

Solid oxide electrolyzer cells have the potential for higher efficiencies but operate at high 

temperatures, typically between 500 °C and 900 °C. They are considered a less mature technology, 



15 
 

with a Technology Readiness Level (TRL) of around 7, and due to the high temperatures do have 

drawbacks regarding fluctuation operation conditions.[33] For this study, where the primary input 

for the electrolyzer is renewable energy with highly variable input, the PEM electrolyzer is 

considered the most suitable choice due to its favourable dynamic behaviour, and it is selected for 

further modelling. 

Electrolyzer efficiency model 

The efficiency of an electrolyzer depends on activation, ohmic, and concentration losses, along 

with auxiliary consumption. These factors, combined with auxiliary consumption, compose the 

characteristic efficiency curve, with peak efficiency occurring during part-load operation. 

The electrolyzer is modelled as a Blackbox, with only its efficiency curve considered. This 

efficiency curve given to transform electricity to hydrogen. The electrolyzer’s efficiency is 

represented by a curve that varies based on the load, employing four fixed points and spline 

interpolation. These points are chosen to match the efficiency curve observed in a real system of a 

PEM electrolyzer.[34] The efficiency curve is not modelled as a function of the size. In all observed 

scenarios, the optimal electrolyzer size falls within the utility-scale range, and it is assumed that 

the electrolyzer's efficiency remains relatively consistent within these dimensions. All efficiency 

values are based on the HHV of hydrogen. 

 
Figure 2.7: Electrolyzer efficiency curve 2023, based on HHV  [35], [36] 

To follow the control logic of the system and align with the objectives of the operational strategy, 

there are situations where it is imperative to achieve a precise system output while simultaneously 

determining the electricity input. This is particularly relevant during periods of low-res production 

and low storage SOC.  The critical scenario arises when the hydrogen demand from end-users 

exceeds the production capacity of RES. In these cases, it is essential to determine the correct grid 
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withdrawal, knowing the total electrolyzer output and the efficiency curve. The solution is 

achieved through the application of the bisection method, which eliminates the need for calculating 

derivatives on a spline. The bisection iteratively calculates the correct electrolyzer input and 

efficiency by halving the search space with every iteration and checking whether the computed 

hydrogen production is larger or smaller than the desired value.  

𝑃𝑒𝑙
′ ∗  𝜂𝑠𝑦(𝑃𝑒𝑙

′ )  =  𝑃𝐻2′  
 

2.1 

The electrolyzer output of the iteration 𝑃𝐻2′ is calculated considering the electrolyzer input power 

𝑃𝑒𝑙
′  and the corresponding efficiency 𝜂𝑠𝑦.The Bisection method stops when the difference to the 

desired electrolyzer output 𝑃𝐻2 drops below a predefined threshold tolerance Δ𝑡𝑜𝑙.   

Δ𝑡𝑜𝑙 >  𝑎𝑏𝑠(𝑃𝐻2
′ − 𝑃𝐻2) 2.2 

 

If the difference is larger than the threshold value, the interval boundaries are update, and a new 

input power is tested. Establishing the appropriate tolerance level involves finding a balance 

between obtaining precise values and minimizing computational expenses. As the available 

computational resources represents already a bottleneck the tolerance is set to 1 kW. This error is 

negligible as it can be positive as well as negative, and on a simulation basis of a whole year, it is 

probable that the error balances out. 

Economic inputs 

For PEMEC systems, at current R&D funding levels in 2020, experts estimate the lifetime to fall 

within the range of 41.000-60.000 hours (median values). Looking ahead to 2030, if current R&D 

funding remains constant, experts project a similar or slightly extended lifespan range of 

approximately 50.000 to 60.000 hours for PEMEC systems. It is anticipated that increased R&D 

funding is expected to improve PEMEC lifetimes further, with estimates of up to 85.000 hours by 

2030 with a tenfold increase in funding. Overall, the expert elicitations indicate that PEMEC 

lifetimes may improve moderately by 2030 but are not expected to increase drastically compared 

to current levels of around 40.000-60.000 hours. Significant R&D funding could improve lifetimes 

further to 60.000-85.000 hours. Considering the typical operational hours, a lifetime of 10 years is 

chosen.[2] 

In the future, advancements in technology are expected to significantly reduce stack costs, 

primarily through the reduction in the required catalyst, such as platinum According to an in-depth 

study by the Fraunhofer ISE on electrolyzer costs, these stack advancements are projected to 

diminish the overall significance of the stack in terms of cost, reducing it to approximately 40 %. 

At the same time cost for the power supply won’t increase to the same extent. In comparison to 

2020, a substantial cost reduction of about 30 % for the entire system can be expected.[32] The 

IEA, in its Global Hydrogen Review 2022, assumes a learning rate of 18 % for stack 

improvements, while other components are expected to progress at a lesser rate, ranging from 7 % 

to 13 %. Their cost estimates in 2022 range from 1.400 to 1.770 $/kW. Overall, the IEA expects 

significantly higher cost reductions. Depending on the scenario 500-220 €/kWe are projected for 

PEM electrolysis in 2030. Simultaneously the average system efficiency increases from 60 % in 
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2020 to 70 % in 2030. In the World Energy Outlook, three scenarios are presented, each with 

varying degrees of optimism. These scenarios include a conservative stated policy scenario, a more 

optimistic announced pledge scenario with increased investments and research and development 

efforts in renewable technologies, and a net-zero emissions case by 2050.[1], [24], [33] Another 

study of Schmidt et al. estimates the cost and efficiency of electrolyzers based on expert interviews. 

On average the experts predict a price of 850 to 1.650 €/kWe for 2030 which is significantly higher 

compared to other studies. Regarding the efficiency an increase to 70 % is expected on 

average.[35] 

To take into considerations not only the IEA predictions, but also the more conservative findings 

of the Fraunhofer ISE and Schmidt et al., for 2030 an electrolyzer cost of 600 €/kWe is selected. 

For the average system efficiency relative to the HHV of hydrogen of 70 % is chosen for 2030.  

Another cost factor for electrolysis is the water supply. In regions with water scarcity, the water 

supply for electrolysis must be thoroughly planned and considered from the beginning. If not, 

enough freshwater resources are available, desalination plants can be a solution to overcome water 

related constraints and conflicts. The cost of desalination via reverse osmosis are in the range of 

1 USD/m3, contributing to approximately 0.5 % of the total electrolysis cost and electricity 

consumption during desalination makes up of for less than 0.1 % of the electrolysis consumption. 

Hence, the cost of water is neglected in the tecno-economic analysis.[33], [37] 

Table 2.3: Main techno-economic parameters for Electrolyzers 

 2023 2030 

Investment Cost 1.500 €/kWe  [1],[2] [16] [32] 600 €/kWe  [1],[2] [16] [32] 

Operation and Maintenance cost 3 % of investment cost [38] 3 % of investment cost [38] 

Lifetime 10 Years [2] 10 Years [2] 

Discount rate 7 % [24] 7 % [24] 

 

2.1.4 Hydrogen storage 
Hydrogen storage is confronted by the challenge of its notably low density, measuring at 0.899 

kg/m³ under standard conditions. This inherent limitation restricts its practicality for various 

applications, necessitating the exploration of methods to enhance its energy density. One of the 

options to increase energetic density is compression, which is associated to high energy 

consumption. The pressure levels range from lower pressures for utility scale storages to 

applications in fuel cell vehicles that require pressures of 350 or even 700 bar.[39] 

Liquefaction represents another strategy for augmenting hydrogen's energy density. This process 

requires cooling hydrogen to cryogenic temperatures, resulting in the transition from a gaseous to 

a liquid state, thereby substantially reducing its volume. However, the challenges lie in maintaining 
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the low temperatures, requiring effective insulation, and addressing the auxiliary energy 

consumption associated with the cooling process. 

Furthermore, exploring storage within metal hydrides or chemical hydrides, such as ammonia, 

offers intriguing prospects. Metal hydrides form through the reaction of hydrogen with specific 

metals, providing a mechanism for reversible hydrogen storage. Similarly, chemical hydrides form 

stable compounds with hydrogen, which can be released under suitable conditions. These 

approaches enable compact storage, although challenges involving reaction kinetics, material 

stability, and energy requirements for hydrogen release must be considered.[10],[39] 

 

 
Figure 2.8: Hydrogen storage technology overview, based on Andersson and Grönkvist [39] 

To address energy-intensive processes and operational complexities, opting for compressed 

storage proves pragmatic. This choice offers the advantage of avoiding additional components and 

costs. While salt caverns are the most economical for gaseous storage, their application is limited 

by the presence of geological conditions and therefore they cannot provide the solution in many 

circumstances. An alternative is aboveground storage within pressure vessels, usually at lower 

storage pressures usually below 100 bar which is selected for this work. 

Strategic pressure selection often aligns with electrolyzer output, typically at 25-35 bar. This 

decision eliminates the need for supplementary compression, thus bypassing compressor 

requirements and compression work. Nevertheless, lower pressure leads to higher capital expenses 

due to the need for larger vessels resulting from hydrogen's lower density and increased space 

demand. The initial SOC is set at 0 and the during operation it can vary from 0 to 100 %. 
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Table 2.4: Technical parameters of the hydrogen storage 

 2023 2030 

Operation pressure 30 bar 30 bar 

Charging efficiency  100 % 100 % 

Discharge efficiency 100 % 100 % 

 

Economic inputs 

Hydrogen storage in pressure tanks is a well-established and widely adopted technology. 

Numerous manufacturers offer a variety of tank sizes, plant configurations, and pressure options. 

For example, Baglioni S.p.A. provides vertical and horizontal storage solutions at 35 or 70 bar in 

different sizes, up to 570 kg of Hydrogen.[40] Using this manufacturer data, an estimation of the 

needed area can be made, to respect constraints regarding the available land. The hydrogen storage 

itself is modelled as a black box with an associated charging and discharging efficiency. 

Regarding the cost estimation literature values diverge highly. On mobility applications precise 

estimates exists but the structure of stationary storages is typically different with lower pressures 

and larger storage volumes. Hence, the applicability of the mobility hydrogen storage costs is not 

necessarily given. 

For stationary storage Vera et al. estimate 850 €/kg studies cost per kg range from 850 €/kg [41]. 

Other studies suggest a cost of approximately 470 €/kgH2 for a 50-bar storage system in 2017 and 

predict similar values for 2025. When operating at 30 bar, the lower volumetric energy density 

necessitates about 60 % more storage volume, but it also entails fewer structural requirements due 

to lower pressure forces. Therefore, the capital expenditures are not expected to change 

significantly for a 30-bar storage system [38]. Urs et al. provide an overview over the hydrogen 

tank cost used in literature. The costs vary broadly in a range from 1 €/kgH2 up to approximately 

1.300 €/kgH2.[42] Taking into consideration all the different sources, and the recent component 

cost inflations one of the higher estimates is selected. In this thesis a cost of 700 €/kgH2 is selected, 

corresponding to 18 €/kWh on base of the HHV of hydrogen. For the future scenarios no huge cost 

improvements can be expected as pressurized steel cylinders are a mature technology. Cost 

reductions could be mostly reached due to economy of scale and standardization with increased 

manufacturing due higher demands. However, to take a conservative approach and follow the 

literature values for 2030 the storage cost is kept constant. The techno-economic modelling 

assumptions can be seen in Table 2.5. 
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Table 2.5: Main techno-economic parameters for hydrogen storage 

 2023 2030 

Specific storage cost 18 €/kWh [42] 18 €/kWh [42] 

Lifetime 25 Years [41] 25 Years [41] 

Operation and maintenance cost 2 % of investment cost [43] 2 % of investment cost [43] 

Discount rate 7 % [16] 7 % [16] 

 

2.1.5 Battery storage 
In this study not only a hydrogen storage is simulated, but also the combination with a Li-ion 

battery (LIB) storage. Several types of Li-Ion batteries exist, which are distinguished mainly by 

the cathode chemistry. For utility scale battery storage nickel manganese cobalt (NMC) and lithium 

iron phosphate (LFP) chemistries are frequently used. LFP has the advantage of slightly lower cost 

and a good stability, increasing the safety. Further it allows a high cyclability, increasing the 

lifetime. LFP batteries achieve lower gravimetric energy densities compared to chemistries 

including cobalt. However, this characteristic is less important for stationary applications, unlike 

for electric mobility. Due to these characteristics LFP is expected to become the dominant 

chemistry on the battery storage market by 2030 and is the one considered in this study.[44]  

The idea of the additional battery storage is to increase the self-consumption of renewable energy 

and allow to reduce the size of the electrolyzer. Thereby the time where the electrolyzer is operated 

at a higher load is increased too. However, the main drawback of using batteries is the added 

upfront cost. Further, the battery produces additional losses due to charging and discharging 

efficiencies as well as auxiliaries for cooling. Grimaldi et al. studied the roundtrip efficiency of a 

utility-scale grid connected Li-ion battery in various use cases. Due to auxiliary consumptions, 

limited operational hours and conversion loss the effective round-trip efficiency decreases to 65 - 

85 %, especially for operations at lower power rates.[45] In this study, achieving economic 

viability for battery operation poses challenges due to the absence of opportunities to directly 

utilize low-cost renewable electricity from the battery. Therefore, an optimistic scenario of 85 % 

system round trip efficiency is considered. For simplicity this loss is equally shared between 

discharging and charging, assuming the efficiency to be constant for all power ranges. As the 

efficiency of the battery itself is typically higher than 95 % only minor improvements can be 

generated in the future. The efficiency reductions on a system level are related for example to the 

electric system, standby loss or operation outside optimal voltage ranges.[46] Here potential for 

improvement is given. Hence, in a 2030 scenario the system roundtrip efficiency is increased to 

90 %. 

Further, constraints regarding the charging power and the state of charge are implemented. These 

constraints are also useful for error catching, given that the control logic is built to stay inside the 

constraints and outliers can be identified easily.  
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0 ≤  𝑎𝑏𝑠(𝑃𝐿𝐼𝐵,𝑐ℎ) ≤  𝑃𝐿𝐼𝐵,𝑛𝑜𝑚 
 

2.3 

0 ≤  𝑆𝑂𝐶𝐿𝐼𝐵 ≤  1 
 

2.4 

During charging the SOC is updated, where 𝜂𝑐ℎ is the charging efficiency, 𝐶𝑎𝑝𝐿𝐼𝐵 the capacity in 

𝑘𝑊ℎ, 𝑃𝐿𝐼𝐵,𝑐ℎ the charging power and 𝑃𝐿𝐼𝐵,𝑛𝑜𝑚 the nominal battery power. 

 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 +  
𝑃𝐿𝐼𝐵,𝑐ℎ ∗ 𝜂𝑐ℎ

𝐶𝑎𝑝𝐿𝐼𝐵
 

 

2.5 

An overview of the Battery system efficiencies is given in Table 2.6. 

Table 2.6: Technical parameters of Li-ion batteries 

 2023 2030 

Charging efficiency √0.85 *100 % [45] √0.9 *100 %  

Discharging efficiency √0.85 *100 % [45] √0.9 *100 %  

 

Similar to PV-plants, the cost of battery storage is subject to fluctuations due to external factors 

and has increased during energy crises. Modelling battery storage presents an additional challenge 

because the final cost depends not only on the installed power but also on the capacity. Typically, 

in a typical 4-hour battery storage system, most of the cost is attributed to the installed capacity. 

However, certain components, particularly power electronics such as inverters, scale with power 

rather than energy. To realistically model costs, both power-related and energy-related costs must 

be taken into account and combined into a single cost function. 

𝐶𝑎𝑝𝑒𝑥𝑡𝑜𝑡,€  = 𝑐𝑜𝑠𝑡𝑠𝑝,𝑃  ∗  𝑃𝑘𝑊  +  𝑐𝑜𝑠𝑡𝑠𝑝,𝐸 ∗ 𝐸𝑘𝑊ℎ 2.6 

Equation 2.6 combines the two cost factors for power and energy and calculates the total system 

capital expenditures 𝐶𝑎𝑝𝑒𝑥𝑡𝑜𝑡,€. This specific battery cost then depends on the ratio between 

energy and power of the battery. The term 𝑐𝑜𝑠𝑡𝑠𝑝,𝑃 are the specific power cost in €/kW, 𝑃𝑘𝑊 the 

total system installed power in kW, 𝑐𝑜𝑠𝑡𝑠𝑝,𝐸 the specific capacity cost in €/kWh, 𝐸𝑘𝑊ℎ the total 

system installed capacity in kWh. The cost function in Figure 2.9 is then benchmarked with 2021 

utility battery storage cost provided by NREL.[44],[47]. All costs in USD are transformed into 

EUR using the yearly average exchange rate of the corresponding year. The results show that the 

cost function in this thesis follows well the data used by NREL if the factors 𝑐𝑜𝑠𝑡𝑠𝑝,𝑃 = 260 €/kW 

and  𝑐𝑜𝑠𝑡𝑠𝑝,𝐸 = 260 €/kWh are selected.  
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Figure 2.9: Utility scale Li-ion battery cost, data from [44] 

In the future significant cost reductions on battery storage are to be expected. The NREL forecasts 

a reduction in costs ranging from 16 % to 47 %, with the extent depending on the particular 

scenario. [47] The IEA estimates even larger cost reductions to reach 161 €/kWh in 2030, based 

on a starting point of 248 €/kWh in 2021.[48] Future cost reductions are more significant on the 

energy component than on the power cost component. The most substantial cost reductions are 

expected to occur in the domain of battery production itself, whereas other cost factors such as 

power electronics and inverters are projected to remain relatively stable. +To be in line with the 

2023 scenario the mid cost projections from the NREL are taken. For the 2030 scenario cost factors 

of 𝑐𝑜𝑠𝑡𝑠𝑝,𝑃 = 226 €/kW and  𝑐𝑜𝑠𝑡𝑠𝑝,𝐸 = 174 €/kWh is selected in line with the learning rate of 

30 %. Using equation 2.6 for a 4-hour storage system this leads to a cost of 269 €/kWh, which is 

lower than the latest NREL scenario but significantly higher than the 161 €/kWh used by the 

IEA.[48]  
 
The Battery lifetime depends on the technical specifications of the battery and on the operational 

characteristics. Especially the depth of discharge and number of cycles, and the battery temperature 

determine when failure occurs. A high depth of discharge significantly reduces the number of 

cycles to failure and reduces the lifetime. To estimate the lifetime of a battery approaches like the 

lifetime throughput exist, which estimate the energy a battery can deliver or store during its 

operational lifetime.[43],[49] However, these concepts require previous knowledge on the 

operational behaviour. In this study the sizes of the battery and the other components are 

determined by the PSO algorithm and vary greatly, completely changing the depth of discharge 

and operational behaviour of the battery storage. Since the LIB storage is mainly used as short-

term storage to bridge short periods without sufficient PV production, a high depth of discharge 

can be expected. The IEA uses an estimate of 10 years of battery life, whereas Marocco et al. obtain 

a lifetime of 13 years in a microgrid application, using the lifetime throughput to estimate the 

lifetime. In this thesis the more conservative estimate of 10 years is used, further motivated by the 
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fact that degradation is not incorporated into the model.[24],[43] An overview on the techno-

economic battery parameters is provided in Table 2.7. 
 

Table 2.7: Main techno-economic parameters for Li-ion battery storage 

 2023 2030 

Cost factor power 𝒄𝒐𝒔𝒕𝒔𝒑,𝑷 260 €/kW [47] 226 €/kW [47] 

Cost factor energy 𝒄𝒐𝒔𝒕𝒔𝒑,𝑬 260 €/kWh [47] 174 €/kWh [47] 

Specific CAPEX final 4h storage 325 €/kWh [47] 230 €/kWh 

Operation and maintenance cost 7 €/kWh/y [43] 7 €/kWh/y  [43] 

Lifetime 10 years [43] 10 years [43] 

Discount rate 7 % [1] 7 % [1] 

 

2.1.6 Grid 
The goal is to provide the electricity predominantly from renewable energy generation on site. 

However, due to the fluctuations in generation and the demand profile which has to be satisfied 

also during periods of low-res availability also the electrical grid is included into the model. 

Various approaches exist to establish realistic prices. Looking at consumer statistics of industrial 

users Arera reports a price of 139 €/MWh in 2021 for users with a consumption of 20.000-

70.000 MWh/year.[50] The price has to consider that electricity is taken from the grid usually 

when there is no PV-generation on-site, resulting in on average lower availability of renewable 

energy at the grid level, which causes higher prices. The code is implemented in a way that allows 

the input of an hourly energy price profile in future work. In this thesis the price is chosen to be 

fixed. 

As discussed in chapter 1.5 there are different subsidies and tax breaks set by the European Union 

as well as the Italian government. However, accessing these incentives requires meeting certain 

sustainability criteria for the produced hydrogen. Given that Italy's current electricity mix is not 

entirely based on renewables and causes emissions of 250 g/kWh in 2021, satisfying the EU 

requirements for green hydrogen can be challenging[51]. To keep the assumption of a low emission 

grid withdrawal, other market mechanisms like Power Purchase Agreements need to be evaluated.   

The grid connection serves not only for withdrawing electricity but also for injecting excess 

electricity into the grid when the storage systems are fully charged. Determining the price of 

electricity purchase involves considering various factors and available remuneration schemes. On 

a utility scale electricity can be typically sold at the zonal price. The zonal price is related closely 

to the PUN, but differences can occur depending on the electricity availability within a bidding 

zone. The high renewable electricity availability during the peak hours and no PV generation 

during the night has an effect on the zonal prices and PUN.[52] This causes higher electricity 
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acquisition prices and lower injection revenue for the client, as the PV based system usually sells 

electricity during the day and buys it during the night. For the 2030 scenario, this effect will have 

a large impact on the prices and is considered in a sensitivity analysis. Other possible remuneration 

schemes include example PPAs and contracts for difference. However, their applicability in 

combination with incentives for green hydrogen production must be carefully considered. 

Additionally, when selecting the electricity injection price, it's important to note that a price above 

the LCOE of photovoltaic generation pushes the algorithm to maximize the PV-size. In fact, the 

PV subsidizes the hydrogen production as it sells electricity over the generation cost and generates 

additional revenue. The subsidization effect is investigated more in detail in chapter 3.1. The 

indirect subsidisation is a non-desired effect, as the goal of this study is not to investigate the 

economics of utility scale PV plants. Hence, for the optimization of the sizes in the main scenarios 

the price for electricity injection is set at 0 €/MWh. Furthermore, a sensitivity analysis investigates 

the effect of remuneration for grid-feed, using the fixed sizes obtained from the 2023 base scenario. 

An overview of the selected prices for the main scenarios is given in Table 2.8. 

Table 2.8: Electricity price assumptions main scenario 

 2023 2030 

Cost electricity acquisition 120 €/MWh [53] 120 €/MWh [54] 

Revenue grid injection 0 €/MWh 0 €/MWh 

 

2.1.7 Industrial user 
The goal of this this study is to satisfy the demand of an industrial user and substitute natural gas 

with hydrogen. The methane consumption profile of the user is shown in the following diagram. 

The industrial user acquires methane and employs it in a gas turbine. Specific information 

regarding the electricity and heat generation process or any further utilization by the end user is 

currently unavailable. 
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Figure 2.10: Industrial user consumption profile 

The profile is characterized by an almost constant methane consumption over the duration of the 

whole year. A slight seasonality and higher consumption values are present during winter and a 

period of about two weeks without consumption during august. Some outliers exist in the profile, 

often followed by a lower consumption in the following hour. The cause of these outliers is 

unknown and could be apart from technical motives also attributed to measurement errors or data 

acquisition issues. Due to the infrequent occurrence of the outliers and a lack of in-depth 

knowledge on the industrial processes in the company as well as the reasons for the outliers the 

data is not modified or filtered. 

The profile of the final user is given in normal cubic meters of natural gas. To determine the 

equivalent hydrogen energy content, the energy content of the natural gas is calculated, and it is 

assumed that the energy content needed is the same independently if the energy carrier is hydrogen 

on a HHV basis. To simplify calculations in later modelling stages, the energy content is expressed 

in kWh. The calculation for the energy content of the supplied methane in kWh is as follows, using 

the HHV of the fuels.  

𝐸𝑛𝑒𝑟𝑔𝑦 [𝑘𝑊ℎ] = 𝑁𝐺 [𝑁𝑚3] ∗
1

1.0549
[

𝑆𝑚3

𝑁𝑚3
] ∗ 𝐻𝐻𝑉𝑁𝐺 [

𝑀𝐽

𝑆𝑚3
] ∗

1

3.6
[
𝑘𝑊ℎ

𝑀𝐽
] 

 

2.7 

Natural gas can have different compositions and energy contents, depending on its origin. 

Previously to the energetic crisis a large share of the European gas mix was imported from Russia. 

The import shares drastically changed in 2022. This is also valid for Italy. For the calculations a 
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weighted average HHV based on the 2022 import shares for Italy is used, calculated in the 

following table. 

Table 2.9: Italian gas imports and HHV in 2022 

Country Import share in 2022 [%] [17] HHVNG [𝑀𝐽/𝑆𝑚3] [16], [17] 

Algeria 38 39.6 

LNG 22 40.0 

Azerbaijan 16 40.0 

Russia 13 38.7 

Northern Europe 6 39.0 

Libya 4 39.5 

Weighted average 100 39.6 

 

2.2 Cost methodology  

To evaluate the economic performance of the system the LCOH are used. LCOH is a financial 

metric employed to evaluate the comprehensive economic feasibility of hydrogen production 

across its complete lifecycle. Analogous to the widely utilized concept of Levelized Cost of 

Electricity 

LCOH incorporates the entirety of costs entailed in generating, storing, and disseminating 

hydrogen. This encompasses initial capital investments, ongoing operational expenditures, and 

pertinent financial considerations. The primary goal of the optimization is to satisfy the user’s 

request with the lowest LCOH possible.  

Calculating the LCOH it is essential to thoroughly aggregate all costs involved. Nevertheless, a 

notable challenge arises due to limited data availability, as data for a single year of user demand is 

present. To prevent making speculative assumptions about future demand, which can be influenced 

by various external factors, the simulation is restricted to a one-year timeframe. A significant 

complexity arises when dealing with Capital Expenditures (CAPEX), as the entire lifespan of each 

component must be considered, even though the investment cost occurs only once at the beginning. 

In contrast, Operational Expenditures (OPEX) entail annual costs, and therefore do not undergo 

annualization. The OPEX consist of the cost of the electricity acquired, subtracting the revenues 

of grid injection, as well as operation and maintenance of the components.  

The solution allowing to consider both OPEX and CAPEX in the results of a one-year simulation 

is the annualization of CAPEX. This is done calculating the equivalent annual cost 𝐸𝐴𝐶 for each 

component 𝑖, 
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𝐸𝐴𝐶𝑖 =
𝑁𝑃𝐶𝑖

𝐴𝑟,𝑖
 

 

2.8 

where 𝑁𝑃𝐶𝑖 are the net present cost. The annuity factor 𝐴𝑟,𝑖 can be calculated like the following: 

𝐴𝑟,𝑖 =  
1 −

1
(1 + 𝑟)𝑡

𝑟
 

 

2.9 

The higher the discount rate 𝑟 and the lower the lifetime of the component 𝑖, the lower will be the 

annualization factor and correspondingly causing higher equivalent annual cost.[55] Selecting an 

appropriate discount rate is not straightforward due to factors like inflation and the unpredictable 

regulatory and market environment. Based on historical trends and considering the increasing 

maturity of renewable energy technologies and decreasing investment risk, a discount rate in the 

range of 5-7 % appears reasonable. However, it's important to note that during times of energy 

crises and increased inflation, current discount rates may vary considerably.[31],[1] 

Finally, the levelized cost of hydrogen can be obtained, summing the CAPEX of every component 

i and the OPEX from every contribution j for every time instance t in one year, dividing it by the 

sum of the hydrogen demand in one year.  

 

𝐿𝐶𝑂𝐻 =  
∑ 𝐶𝐴𝑃𝐸𝑋𝑖

𝐼
𝑖=1 + ∑ ∑ 𝑂𝑃𝐸𝑋𝑡𝑜𝑡,𝑡,𝑗

8759
𝑡=0

𝐽
𝑗=1  

∑ 𝑃𝐻2,𝐸𝑛𝑑𝑢𝑠𝑒𝑟,𝑡
8759
𝑡=0

 2.10 

 

As is the case with other economic comparison methods, the discount rate must be selected in 

advance for each project. If this forecast is inaccurate or changes occur during the project's lifetime, 

these alterations cannot be considered, significantly affecting the results. All costs in the model are 

denominated in EUR. Since some sources report costs in USD, the dollar-euro exchange rate of 

the year of the specific data is used. If no date is provided, the year of publication is utilized to 

determine the exchange rate. It's worth mentioning that in all calculations of component prices, 

conservative estimates have been applied. 

2.3 Control logic 

To manage the different components and decide how to operate the system a control logic is 

needed. Various types of control logics exist, and they are broadly divided into rule based and 

optimization-based strategies. 

A rule-based control strategy offers several advantages in various applications. The logic behind 

rule-based systems is transparent and interpretable, enabling straightforward troubleshooting and 

adjustments. Moreover, rule-based systems tend to exhibit stability due to their deterministic 

nature, making them reliable for well-defined scenarios. Due to their simplicity, they also ensure 

low computational demand and work well together in combination with optimization algorithms. 
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However, rule-based control strategies come with limitations. They may struggle to adapt to 

unforeseen or complex situations that were not explicitly considered during rule formulation, 

leading to degraded performance in novel scenarios. This has to be especially taken into account 

when conducting a sensitivity analysis with different assumptions regarding efficiencies and costs 

of the components. Managing a large number of rules can become cumbersome, affecting 

scalability and maintainability. Defining rules can also be subjective, relying on expert knowledge 

to ensure their effectiveness. Moreover, handling trade-offs between conflicting objectives can be 

challenging for rule-based systems, potentially resulting in suboptimal decisions.[7],[56],[57] 

Considering these characteristics, a rule-based control is used to reduce computational demand 

and create a solid base as an input for the PSO algorithm. Having an optimization-based control 

strategy in an inner loop and the PSO algorithm on the outer loop would significantly increase the 

computational demand and programming complexity. 

Table 2.10: Advantages and disadvantages of main control strategies [7],[56],[57] 

 Advantages Drawbacks 

Rule-based • Low computational 

demand 
• Transparent and 

predictable behavior 

• Require expert 

knowledge. 
• Low adaptability to new 

conditions 
Optimization-based • High flexibility in variable 

modelling conditions 
• Less knowledge on the 

system behavior required 

• Difficult to implement. 
• High computational 

demand 

 

The main scope in the design of the system control logic is to be in line with the predefined 

objectives of the system and establish a structured and efficient decision-making process. Hereby 

a central control logic is advantageous. From a programming perspective the decision to establish 

a central control logic is taken with the scope to follow an object-oriented programming approach. 

This central logic oversees power flows, state of charge, and user demand, and it determines the 

appropriate actions to be taken, which are then communicated to the individual components. 

Thereby the control system optimizes the utilization of renewable power, minimizes reliance on 

grid power, and ensures the fulfillment of the end user's hydrogen demand. 

Practical implementation of the control strategy 

In the following the rule-based control strategy is presented. Due to the complexity of the decisions 

to control, the modelling strategy is complicated and for clarity broken into pieces. The control 

system has two main parts. The upper part determines the general system state on the electricity 

side, while the lower part determines the situation downstream and if necessary, corrects the 

electrolyzer and battery storage operation.  
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Figure 2.11: Control strategy overview 

The logic of the Upper Part can be summarized as follows: In a first step the logic checks whether 

there is excess renewable power available. At this point the optimal hydrogen production according 

to the end users demand is not known and the system tries to transform all the renewable power 

available into hydrogen in a first guess. Thereby two cases can occur: 

• Case U1: A larger RES power is available than the electrolyzer can convert. 
• Case U2: The electrolyzer works below the nominal load as not enough RES power is 

available. 

Case U1 occurs if the available RES electricity is more than the electrolyzers nominal power. Then 

the electrolyzer runs at its maximum power. It is then checked whether the battery has enough 

power and free capacity to be charged and to take in the surplus RES power. If the battery is not 

able to handle all the surplus the remaining excess power is injected into the grid. Possible 

congestion of the grid is neglected at this modelling stage. 
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Figure 2.12: Control strategy upper part U1 

In Case U2 not enough power from RES is available to operate the electrolyzer at nominal power. 

In this case the battery is charged considering limits to maximum discharge power and SOC. The 

resulting battery and RES power is converted to hydrogen in the electrolyzer. The current 

electrolyzer state is saved for later considerations in every case. 
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Figure 2.13: Control strategy upper part U2 

Following the assessment of the upstream side of the model with RES supply, the hydrogen side 

involving the user demand is considered to eventually correct the upstream operation. The 

connection of the upper and lower modelling part is presented in Figure 2.14. In the lower part 

the hydrogen production determined by the upper part of the control logic is compared with the 

user demand to determine if the system is in a surplus or deficit case. Depending on the resulting 

case, the operation of the electrolyzer is optimized to follow the control system objectives. Again, 

two main cases exist: 

• Case L1: The hydrogen production from RES is larger than the user demand. A surplus 

situation is present and the available storage options have to be investigated.  
• Case L2: The hydrogen production calculated upstream is not enough to meet the user 

demand. Available storage capacity is checked and if this is not enough also electricity 

withdrawal from the grid. 
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Figure 2.14: Control strategy, connection of upper and lower part 

In Case L1 the hydrogen production exceeds the hydrogen demand. The system logic for this case 

is visually presented in Figure 2.15. The surplus must be stored in the hydrogen storage. Therefore, 

an initial check determines if the available hydrogen storage capacity is sufficient to accommodate 

the remaining surplus. In this case all the excess hydrogen is stored in the hydrogen storage, the 

user-demand is satisfied and the electrolyzer and battery are operated as determined in the upper 

control part. 

If the H2-storage does not have enough capacity to store all the excess hydrogen a reduction of 

production is necessary upstream to avoid unnecessary energy losses. This case is more complex 

as it involves a correction of the upstream production, reducing the electrolyzer output. First the 

maximum hydrogen production which can be handled by user-demand and storage is calculated. 

This is the production target of the electrolyzer. Due to the knowledge of the efficiency curve of 

the electrolyzer given a desired hydrogen output, the corresponding electricity input can be 

determined. The new electricity input implies a reduction to the previous input of RES and battery 

established upstream. The input reduction is then tried to achieve by discharging the battery less 

or charging it more, while respecting available battery charging power and free capacity. The idea 

is still to use all the possible PV power within the system and use the new electricity surplus to 

charge the battery rather than injecting excess electricity into the grid. If the electricity input of the 

electrolyzer through battery is insufficient, then the additional electricity is injected to the grid. 
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Figure 2.15: Control strategy lower part L1 

In Case L2 of missing hydrogen supply the strategy is the opposite and it is presented in Figure 

2.16. To satisfy the unmet user demand the first check is to see if the hydrogen storage can supply 

the rest of the demand. When the stored hydrogen is enough, the remaining demand is discharged 

and the upstream operation of electrolyzer and battery remains the same.  

 
Figure 2.16: Control strategy lower part L2 
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The other case where the demand cannot be met only by discharging the hydrogen storage is more 

complicated. First the hydrogen storage is completely discharged, but still a part of the user 

demand is unmet. Then it has to be checked upstream if the H2 production of the electrolyzer can 

be increased enough using grid electricity to meet the missing demand. Thereby the operation of 

the electrolyzer is changed. Due to the upstream logic all possible power from RES and the battery 

is already used in the electrolyzer. Thanks to this principle only the load condition of the 

electrolyzer has to be investigated. Thereby the electrolyzer is simulated at full load and checked 

if this hydrogen output is enough to satisfy the remaining user demand after discharging the 

hydrogen storage. Again, two subcases exist: 

In the first subcase the user demand can be satisfied by using grid electricity to operate the 

electrolyzer at a higher capacity. This means that the increase in hydrogen production is equal to 

or larger than the remaining user demand. In this case the correct hydrogen production is calculated 

and using the electrolyzer efficiency curve the electricity input. Knowing the total RES production 

and battery discharge determined in the upper part, the correct electricity acquisition is computed. 

In the second subcase the user demand cannot be satisfied, even with the use of grid electricity. In 

this case the electrolyzer works at nominal load, taking the missing electricity from the grid. The 

difference between the total production and hydrogen storage discharge on one side and the 

hydrogen demand on the other equates to the unmet demand. This unmet demand is also associated 

to a cost by multiplying it with a penalty of 5 €/kWh to incentivize the algorithm to select a 

different set of sizes which avoids this case. The selection of the penalty should be high enough to 

let the model avoid these kinds of situations but also not hindering the conversion of the algorithm 

by incentivizing it to choose over-dimensioned sizes. 

The penalty is introduced to reduce the computational cost, while still assuring to meet the final 

user demand. When the yearly simulations for the particles are conducted the sizes of the 

components are already determined. Hence an adaptation of the sizes to avoid the occurrence of 

unmet demand would require restarting the simulation, escalating the computational time. An 

alternative approach is to introduce system reliability as a second optimization objective, with the 

drawback of creating a bilevel optimization problem. 

In the case of an electrolyzer which sizing is smaller than the peak final user demand it can be 

useful to also to charge the hydrogen storage preventively with grid electricity, if the SOC is lower 

than a certain threshold value. Thereby the danger of not meeting the customer demand for peak 

hours is reduced. Hence the strategy with a variable threshold for grid supply is included but not 

active in a base case scenario and provides a future application strategy. Conditions to avoid 

overcharging of H2-storage with grid electricity is that the H2-storage has a much larger capacity 

than the maximum production by the electrolyzer. These safety constraints are introduced for cases 

with a large electrolyzer and small hydrogen storage, to avoid undesired behavior. An example of 

this additional part of the control strategy is presented in Figure 2.17. 
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Figure 2.17: Example of preventive charging strategy to reduce supply loss probability. 

Most of the modelling strategy is straightforward and clearly in line with the control objectives. 

However, some decisions must be critically discussed. For example, the case that the battery is 

discharged to charge the hydrogen storage even if the user demand is already met. This 

simplification is valid since both electrolyzer and hydrogen storage operate at the same pressure 

on the hydrogen side, meaning no additional compression work and associated losses are present. 

Charging the hydrogen storage does not lead to significant energy losses and the usage of the 

battery increases the supply security. If the hydrogen would be stored at higher pressure or 

liquified, this assumption is not valid anymore, meaning that the rule-based strategy would not 

obtain the optimal result. 

2.4 Particle Swarm optimization 

The present study explores the optimization of a complex model, characterized by numerous 

interdependencies and nonlinearities, wherein achieving the exact optimal solution becomes 

impractical. Consequently, the adoption of metaheuristic algorithms becomes imperative to tackle 

these intricate optimization challenges effectively. Within the domain of energetics Particle Swarm 

Optimization (PSO) is frequently employed algorithm and emerges as a prominent choice for 

addressing such complexities.[58] 

Particle swarm optimization is inspired by the social behavior of bird flocking or fish schooling. 

PSO mimics a swarm by using multiple particles where each of these particles represent an 

individual of the swarm. In the context of birds, the idea is that each bird has its own idea of where 

to find food, but they also pay attention to the other birds in the swarm. If one bird finds a good 

source of food, the other birds will follow it. In PSO, each particle represents a possible solution 

to the problem. The particles are initialized with random positions and velocities. At each iteration, 

each particle updates its position and velocity based on its own best past position 𝑝𝑏𝑒𝑠𝑡 and the 
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best position of the entire population 𝑔𝑏𝑒𝑠𝑡. The particles are attracted towards their own and global 

best position to achieve converge to the global optimum.[58],[59] 

The particles positions 𝑋 from one iteration to the next are updated according to the following 

equations, updating first the velocity 𝑉: 

𝑉𝑖
𝑘+1 = 𝑤 ∗ 𝑉𝑖

𝑘 + 𝑐1 ∗  𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡
𝑘 −  𝑋𝑖

𝑘) + 𝑐2 ∗  𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡
𝑘 −  𝑋𝑖

𝑘) 2.11 
 

Then the position is updated, summing the new velocity 𝑉𝑖
𝑘+1  to the previous particle position 𝑋𝑖

𝑘. 

𝑋𝑖
𝑘+1  =  𝑋𝑖

𝑘 +  𝑉𝑖
𝑘+1  2.12 

 
𝑤 is the inertia factor which describes how much of the previous velocity of the particle is kept. 

The acceleration factors 𝑐1 and 𝑐2 determine the magnitude of the pulling towards the personal 

best values of a particle 𝑝𝑏𝑒𝑠𝑡 and globally best value of the swarm 𝑔𝑏𝑒𝑠𝑡. The parameters 𝑟1 and 

𝑟2 are randomly generated numbers between 0 and 1. Other important parameters to be set are the 

number of iterations and the number of particles. 

2.4.1 Setting the PSO algorithm 
Given the intricate nature of the optimization problem at hand, a pivotal aspect of the study 

revolves around the selection of appropriate parameters (c, w, population, iterations) for the PSO 

algorithm. This crucial decision-making process aims to find an optimal trade-off between the 

quality of solutions obtained and the computational resources expended. This parameter-selection 

is not straight forward as the correct choice of parameters is highly problem specific and sensitive. 

The search space is not well known before running the model and it is only explored in detail when 

the algorithm is running. Hence it is also difficult to access the algorithms performance in depth.  

However, the assignment of random positions during the initialization phase and the incorporation 

of the two random components when updating a particle provides validation possibilities. There is 

no knowledge of an optimal solution for many of the cases. Nevertheless, a validation of the 

performance is still possible.  

One opportunity consists in running multiple simulations with the exact same setting the results 

will be different with every run. If the algorithm works well on this specific problem and finds 

results close to the global minimum, it must produce similar results each run. This still does not 

exclude the possibility that every of these runs gets trapped in a local minimum but gives an idea 

on how well the algorithm converges. Repeating the simulations multiple times and adapting 

systematically the hyperparameters to find the most economical and reproducible result is a useful 

strategy to optimize parameter setting. 

A second validation strategy is the simulation of extreme cases where the optimal result can be 

obtained manually, allowing simple benchmarking. One of many examples is to set high specific 

electricity prices for renewable grid injection, expecting the optimizer to increase the size of the 

PV-plant. 
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Another idea of validation is the discretization of the search space and the calculation of all 

different size combinations in the discrete search space. The discrete optimal value could then be 

confronted to the PSO output in the continuous space. However, to get a reasonably exact result a 

discretization of must investigate a set of sizes per parameter. If the discretization is too rough 

minima could be in between the discretization steps and produce incorrect result. With the 5 

optimization parameters the number of possible combinations is n5 where n is the number of sizes 

for a single component. This number of combinations is easily out of a feasible range from 

regarding the computational cost.  

Consequently, a trial-and-error approach involving multiple runs with a 24 h generation and 

consumption profile. Since in the model CAPEX are annualized and the summed to the OPEX for 

the calculation of the objective function, it has to be avoided to overestimate the CAPEX. 

Therefore, in the test runs with a 24-hour profile CAPEX were divided by 365 to simulate a setting 

close to the complete optimization problem with a whole year. Simulations were performed on a 

desktop computer with an Intel Xeon E3-1245 v5 of 3.4 GHz and with 32 GB RAM. 

For each setting 5 runs were conducted to validate the runs against each other and evaluate the 

quality and stability of the algorithm with this hyperparameter setting. From literature c1 and c2 

usually have the same value and this was kept for all the testing runs. It started with a high c value 

of 𝑐1 = 𝑐2 = 2  which was known from literature.[60] The value of 𝑐1 and 𝑐2 war reduced in 0.2 

to determine the most suitable value until reaching 0.6. Also values of c > 2 were checked but as 

expected from the calculation of the velocity they lead to non-convergency using w = 0.9. 

The tests found values from 1.4 to 1.8 to achieve the best results. Finer testing and many repetitions 

revealed a value around 1.7 to suit best. The other parameter to set is the inertia w. According to 

equation 2.12 the inertia says how much of the velocity of the previous iteration is kept. The 

velocity is then influenced by the correction toward 𝑐1  and 𝑐2 .  

The inertia w is usually set between 0.4 and 1. Testing for various w rates was done taking 𝑐 = 1.7. 

The simulations with w = 0.9 show the best results. Also, other combinations were tried, however 

over all the tests relatively high values performed because of the tendency to not get stuck in local 

minima.[59],[60]   

Testing revealed the problem of getting trapped into local minima, showing the difficulty of dealing 

with a multimodal programming problem. This happened especially for the optimization 

parameters which were less significantly influencing the cost. While during the test runs the 

purchased electricity and PV-plants caused the highest cost these parameters were optimized 

reasonably well. The final parameter configuration was tested by repeating 15 simulations with 

the same setup.  

Historically, it was commonly assumed that a swarm size of 20 to 50 particles represents the best 

choice for PSO algorithms [60]. The higher the dimensions the more complex the search space can 

become, meaning that more particles enhance the performance. Piotrowski et.al. found out that 

previous hypothesis on swarm size is not necessarily true and PSO performance can be 

significantly enhanced with a larger swarm size for some application. The correct swarm size 

depends on the variant of the algorithm and usually is best set over 70.  The analysis was conducted 
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on optimization problems with 10 or more dimensions.[61] Considering practical constraints of 

available computational resources in this specific problem a swarm size larger than 25 is difficult 

to realize. The lower dimensions of the problems allow also to achieve reasonably stable results 

with a lower number of particles, accepting a lower conversion rate because of higher acceleration 

factors and inertia. 

2.4.2 Improvements and variations to the standard algorithm 
Currently numerous versions of PSO-Algorithms exist with the aim of performance improvement 

and applicability to specific problems. These involve for example, fully informed PSO where the 

target particle is affected by all its neighbors instead the single best success of the population. 

Other approaches involve the use of local best topology, allowing for parallel searches in different 

regions with equally promising optima, or dynamic topologies. In this study the general idea of a 

classic PSO algorithm was kept as benchmark different PSO algorithm is outside of the scope of 

this thesis. From the classical PSO algorithm as a basis small modifications were observed.  

For example, Liu introduces an advanced PSO method, to optimize a standalone PV-plant 

including battery storage. The structure of their operational logic remotely resembles the one of 

this study using a rule-based logic too. In this context a standard PSO algorithm with the 

parameters 𝑐 = 2, 𝑤 = 1, population = 30, and iterations = 100 is compared to a leveraged version. 

The proposed optimization consists in the damping of the inertia with increasing iterations. This 

is thought to allow a good exploration of the search space in the beginning. At the later iterations 

with decreasing inertia the particles converge faster towards the current global and individual 

optima and improve the fine search. When the approximate area of the minima is identified a lower 

w suit for quick convergency and an efficient fine search[59].  

The same strategy was tested also in work on a 24 h profile with 5 simulations for each 

hyperparameter setting. For a low number of particles, the results fell short of expectations and 

converged in local minima. It was hypothesized that the search space wasn’t explored enough and 

in the discontinuous search space of the 24 h profile the algorithm then converged in a local 

minimum.  Therefore, it was further modified reducing the inertia w linearly from 0.9 to 0.4 only 

after half of the iterations. For the first half of the iterations w is kept at 0.9. This modification 

significantly reduced the variation between simulations, resulting in a more stable algorithm and 

a lower LCOH. As a result, this adapted approach was retained for simulations based on the real 

yearly consumer profile, with ongoing monitoring to ensure that the number of particles and 

iterations are sufficient to reliably identify the global optima. Ich habe total schiss. 

Additionally, a constraint was introduced regarding components sizes, to prevent the optimization 

from assigning negative sizes. Occasionally, the algorithm yielded negative sizes, which are not 

physically feasible. In such instances, the sizes were reset to a minimum value of 0.001 to avoid 

division by zero errors. It's important to note that when resetting the sizes, the velocity of the 

particle also needed to be updated. This adjustment was necessary because failing to correct the 

velocity would result in incorrect component sizes during the next iterations and a tendency of 

getting stuck in local minima. To address this, the position values from the previous iteration were 

saved and then subtracted from the updated corrected position of the particle. 
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An attempt was made to improve the algorithm by using two vectors of random numbers instead 

of the two single random numbers 𝑟1 and 𝑟2, which are multiplied to the acceleration factors 𝑐1 

and 𝑐2 to determine the new particle velocities. The idea behind using a vector of random numbers 

was to allow for individual weighting of the velocity of sizes for each component. This means that 

one component could have slow changes while another experienced rapid size changes, potentially 

leading to different exploration behaviors. However, after testing this strategy, it did not yield any 

considerable benefits, and as a result, this approach was abandoned. 

2.5 Global modelling strategy 

The PSO algorithm is incorporated in the general modelling strategy. The global strategy starts 

with an initial random selection of component sizes. These sizes are initialized within a reasonable 

range based on approximate knowledge of area constraints and model physics. If the optimal size 

of a component is larger than the initially selected area the PSO algorithm is still likely to find the 

optimum if the hyperparameters are set correctly and the function has no strong multimodal 

characteristics. However, in such cases, the convergence might take longer, with less exploration 

around the actual global minimum. 

 
Figure 2.18: Global modelling strategy 

From the component size the renewable generation profiles are calculated multiplying the 

specific generation profile with the size. This step involves the initialization of the storages with 

their sizes. The user demand is always the same profile and imported at this step. 

Subsequently, the code utilizes the generation and determines the state of the system by running 

the control algorithm at every time step the control algorithm evaluates the current operational 

scenario, manages the charging and discharging of the storages, and records crucial operational 

parameters such as power balances and SOC. This iterative process continues for each time step 

throughout the simulated year, resulting in the creation of hourly system profiles. 
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The next step is to obtain the levelized cost of hydrogen. From the profiles the OPEX are 

calculated. Relevant for the operational expenditures are the grid withdrawal, the grid injection 

and profile of penalties in case the user demand was not entirely satisfied. Specifically, the hourly 

grid injection is multiplied by the corresponding hourly grid injection price, while the hourly grid 

withdrawal is multiplied by the hourly grid electricity price. Additionally, the hourly unmet 

demand profile is multiplied by the penalty rate. These multiplicative operations yield hourly cost 

profiles, which single cost values 𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑖
𝑡 are then aggregated over the entire year.  

  

𝑂𝑃𝐸𝑋𝑖  =  ∑ 𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑖
𝑡

8759

𝑡=0

 

  

2.13 

The calculation of operational expenditures involves three components: purchased electricity, grid 

injection, and penalties for unmet demand. The total cost consists of both OPEX and annualized 

CAPEX. Capital Expenditures are obtained as described in chapter 2.2, considering the size of the 

particle. Finally, LCOH is calculated by dividing the sum of OPEX and annualized CAPEX by the 

final user demand.  

Each particle is assigned a specific LCOH value, which serves as input for the Particle Swarm 

Algorithm. Based on the LCOH, the algorithm identifies the best position among the particles and 

calculates new velocities and positions (sizes) for the next iteration. With these updated positions, 

a new iteration begins, and the process continues until the maximum number of iterations is 

reached. The optimal solution corresponds to the global best position 𝑔𝑏𝑒𝑠𝑡 across all particles 

and iterations. 

The optimization algorithm and energy system model are implemented in Python using the open-

source integrated development environment Spyder. Python's extensibility, versatility, and open-

source nature make it a good choice for modelling energetic systems Given the substantial volume 

of data involved, the pandas library provides a valuable framework for efficiently conducting the 

modelling process[62]. 

2.6 Scenario definition 

The results are divided into two main parts. First in the base scenarios the main results are 

presented for 2023 and 2030 assumptions. Subsequently, specific cases are examined, with special 

focus on industrial needs involving hydrogen blending. 

2.6.1 Base scenarios 
In the base scenario 2023, the model utilizes current prices and component efficiencies as outlined 

in previous sections. No restrictive conditions were imposed on the size of the components, with 

the exemption of the PV field which is capped at a maximum of 500 MWp to prevent the installed 

power from reaching unrealistic levels. This limitation is necessary to avoid a situation where the 

installed power reaches infinity, which can be the theoretical optimum if the feed-in tariff is higher 

than the generation cost. In this case the additional PV power is sold to the grid operator and 
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generates enough revenues to compensate for its cost, lowering the LCOH. All base simulations 

are conducted with 25 particles and 120 iterations. 

In the base scenario 2030, price and efficiency projections derived from the single components 

are used. In addition to the lower CAPEX of the components, the peak system efficiency of the 

electrolyzer is increased to 70 %, and the round-trip efficiency (RTE) of the LIB is set to 90 %, 

reflecting advances in battery technology. 

Further a sensitivity analysis regarding electricity prices is conducted. As previously discussed, 

the electricity prices have a determining influence on the sizing. Since the grid injection at prices 

higher than the LCOE subsidizes heavily the LCOH, the optimizer maximizes the installed PV 

capacity. In this case most of the PV electricity is just injected to the grid. This study is not trying 

to analyze utility scale PV plants for grid injection, but the production of green hydrogen related 

to energy storage, this is not the scenario which should be analyzed. Therefore, the two base 

scenarios are conducted without considering revenue from grid injection. Nevertheless, generation 

revenue from grid injection is a reasonable assumption. Therefore, a sensitivity analysis is 

conducted with different purchase and selling prices. This is done for the 2023 as well as for the 

2030 base scenario. 

2.6.2 Case studies 
Apart from the scenarios where the economic conditions of the system modify considerably, some 

sensitivity and special cases are looked at, starting from the base case. As for the industrial client 

a 100 % substitution is out of reach, blending scenarios are considered. 

Most of the gas turbines currently in use are not designed for 100 % hydrogen combustion and 

typically can handle hydrogen blends ranging from 30 % to 60 % volume percent. To burn 

exclusively hydrogen, adaptations to the turbines are needed, or even full replacements, with the 

associated cost. Most project blending shares start with 5-10 % blending regarding the energy 

content. One challenge is the higher combustion temperature of hydrogen, especially for dry 

natural gas turbines. An alternative approach is to install a fuel cell, which can not only 

accommodate hydrogen but also improves overall efficiency.  Moreover, the availability of green 

hydrogen is expected to remain limited in the coming years, and the capacity of pipelines to 

transport hydrogen is constrained.[33] 

Furthermore, hydrogen is a versatile energy carrier and will be in high demand for the 

decarbonization of various industries, such as high-temperature industrial processes, aviation, and 

marine applications. Due to demand from these hard to abate sectors, prices will be high compared 

to direct renewable electricity use, while its availability will be limited. Consequently, today 

blending represents a convenient and more feasible scenario in many use cases. Therefore, 

scenarios with a fixed blending ratio of 5 %, 20 % and 50 % were investigated. For these cases the 

final user demand is multiplied by the blending factor. 
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Table 2.11: Hydrogen blending cases 

 H2 Blending 
(Related to HHV) 

Other assumptions 

Base scenario 2023 100 % See base scenario 2023 

Case 1 5 % See base scenario 2023 

Case 2 20 % See base scenario 2023 

Case 3 50 % See base scenario 2023 

 

Blending including PV-size constraints 

Ground-mounted utility-scale PV installations require significant space, and in real-world 

applications, the available area is often limited. This limitation introduces a constraint to the PSO 

algorithm, potentially resulting in solutions that are far from theoretical economical optimum and 

leading to higher LCOH. The analysis of real installed 24MWp Mono-axis PV-plant in Sardegna 

shows a space demand of 2 ha/MWp.[63] To analyse the specific case of the industrial client a 

blending scenario of substituting 20 % of the energy content of hydrogen is taken as a reference. 

Then three cases are modelled with a maximum PV size of 2 MW, 5 MW and 10 MW.  

Furthermore, it could be relevant and interesting for future work to analyse the effects of size limits 

on the other components. Looking at the space requirements of the other technologies also the 

electrolyzer with about 1000 m2/MWe has a significant space demand. Utility scale battery 

storages are usually containerized and require significantly less space compared to PV-plants for 

typical storage durations of a few hours. The space requirement for hydrogen storage depends on 

various factors, including storage pressure and configuration. However, considering the 

assumptions of a storage pressure of 30 bar and the vessels described in 2.1.4 for a storage to cover 

the entire user demand for a duration of less than 24 h, the space requirement is much inferior 

compared to the expected PV sizes. Hence, a sensitivity analysis with limited PV-size is the most 

relevant and is conducted in this thesis. 

Table 2.12: Sensitivity analysis limited PV-size 

 PV Size constraint Blending Other assumptions 

Case 1 2 MWp 20 % See base scenario 2023 

Case 2 5 MWp 20 % See base scenario 2023 

Case 3 10 MWp 20 % See base scenario 2023 

Case 4 [ - ] 20 % See base scenario 2023 
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Hybrid energy storage system including LIB 

The results in chapter 3 indicate that the hydrogen storage is heavily favoured over the battery 

storage, resulting in system without battery storage. As the scope of this thesis is to investigate the 

possible application of hybrid energy storage, also a scenario is analysed where battery storage is 

present. A further motivation for this scenario is that the objective function does not consider the 

benefit of a renewable electricity utilization, also regarding incentives for green hydrogen which 

are not incorporated. The high capital costs prevent the battery from being utilized by the 

algorithm, meaning that changes in the modelling conditions are necessary to put a battery into 

place. This is achieved following approaches: 

1) A minimum battery size is included as a constraint, which can cover the hydrogen demand 

of the electrolyzer for approximately 4 hours with an energy to power ratio of 4.  
2) The electricity price from the grid is set at an extremely high price and simultaneously 

increasing the specific cost of the electrolyzer, that it becomes economically convenient to 

install a battery to reduce the grid consumption.  
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3. Results 
In the section the results of the simulations are presented. These include the 2023 and 2030 

scenarios, as well as more specific case analysis regarding blending and size constraints. 

3.1 Base scenario 2023 

The different scenarios are analysed with a population size of 25 particles and 120 iterations. An 

overview of the optimal sizes for the base scenario are given in Table 3.1. The results for the single 

components and the algorithm behaviour are discussed in detail in the following diagrams. 

Table 3.1: Optimal sizes for the base scenario 2023 

Component Base scenario 2023 

PV installed capacity [MW]  63,0 

Electrolyzer [MW] 40,7 

Battery Power [MW] 0 

Battery Capacity [MWh] 0 

Hydrogen Storage [MWh] 87,3 

LCOH [€/kgH2] 8,09 

 

Figure 3.1 displays the PV size for each particle and every iteration in function of the levelized 

cost of hydrogen. The graph shows a conversion of the particle to an optimum of 63,0 MWp. 

Generally, a slow and steady conversion rate is observed, resulting in a broad exploration of the 

search space during the first iterations. Due to the decreasing inertia factor, as discussed in chapter 

2.4.2, the fine search is fostered for the last iteration. The multidimensional nature of the problem 

causes some outliers with high costs, even within the optimal PV size range. It is important to note 

that an optimal PV size doesn't always guarantee an efficient solution. This is because each particle 

is characterized by sizes for all components, not just the photovoltaic power. As a result, some 

inefficient solutions may occur, such as having a very small electrolyzer size, which means that a 

significant portion of the PV electricity cannot be converted into hydrogen, ultimately failing to 

meet the final user demand. 
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Figure 3.1: LCOH and PV sizes of all particles for every iteration 

Similar to the optimization process for PV sizing, the exploration of electrolyzer sizes begins with 

a broad search, showing lower conversion progress until the 40th iteration. Subsequently, a rapid 

convergence is observed, leading to an optimal size of 40,6 MWe. 

 
Figure 3.2: LCOH and Electrolyzer sizes of all particles for every iteration 

The optimization of the battery storage capacity clearly shows that battery storage is economically 

not convenient and immediately avoided by the algorithm. After the 4th iteration all particles set 

the battery capacity to 0 MWh. This outcome is attributed to the substantial capital cost associated 
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with battery storage, which cannot be offset by reductions in the cost of acquired electricity. The 

economics of the battery storage are discussed in chapter 3.3.3. 

 
Figure 3.3: LCOH and Battery capacity of all particles for every iteration 

Similar to the battery storage capacity, the optimization of storage power capacity also indicates 

an optimal value of 0 MW. However, it requires a longer time to reach this optimum compared to 

battery capacity. For all the iterations after the 4th, no benefit for a higher installed power is 

obtained as the installed capacity is 0 MW for all particles. Nevertheless, it takes the algorithm 

approximately 60 iterations to converge to the optimal size. The extended convergence period can 

be attributed to the lower importance of the power cost, which are less restrictive compared to 

energy related costs. This means that the algorithm does not experience a strong push towards 

lower installed power. It is worth noting that the initial particle sizes range from 0 to 100 MW for 

power capacity, whereas they extend from 0 to 500 MWh for battery capacity, resulting in a much 

higher importance of the battery capacity cost.  
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Figure 3.4: LCOH and Battery power of all particles for every iteration 

The hydrogen storage capacity is initialized with sizes between 0 and 1.000 MWh. The algorithm 

even explores a broader range of sizes until 2.000 MWh in the beginning. Later a continuously 

converging behavior can be observed with an optimal size of 87,4 MWh of hydrogen, related to 

the HHV. This storage capacity equates to a storage solution capable of meeting the user's demand 

for a continuous 5-hour period. 

 
Figure 3.5: LCOH and hydrogen storage sizes of all particles for every iteration 

In Figure 3.6 the best values regarding the LCOH are shown for each iteration. In the beginning a 

strong improvement of the solution can be observed, while the fine search during the last iterations 

has a lower impact on the final result. 
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Figure 3.6: Development of the best global LCOH in function of the iteration 

An analysis of the annualized cost for the optimal configuration in the base scenario reveals that 

the majority of the cost is attributed to purchased electricity. As the grid injection price is 0 €/MWh, 

no revenue is generated. The annualized PV costs are comparatively moderate because there is no 

incentive to install a larger PV capacity with increased grid injection. A small penalty is assigned 

for hours when the user demand is not satisfied. This occurs during two demand peaks in the user 

profile, one in autumn and the other in spring, each lasting for one hour. The algorithm accepts 

these two hours of penalty instead of significantly increasing the sizes of the electrolyzer or 

storage. In this scenario, Li-Ion battery storage is not economically viable, so only hydrogen 

storage is utilized. The hydrogen storage costs are not significant, partly due to the relatively low 

capital cost of hydrogen storage and the absence of the need for additional compressors. 

Additionally, the moderate share of PV generation does not justify the installation of large 

hydrogen storage volumes. 
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Figure 3.7: Overview on the total cost of the optimal solution of base scenario 2023 

The analysis of the energy balance reveals that 50.4 % of the electricity input is sourced from the 

PV plant. A small part of the PV production is injected into the grid. This happens primarily when 

the hydrogen storage is fully charged and especially during two weeks in august when the client 

has no demand for hydrogen. Additionally, during peak hours, the PV production can surpass the 

electrolyzer nominal power, meaning that grid injection is necessary. The electrolyzer has an 

average efficiency of 65,5 % based on the HHV. Most of the produced hydrogen is directly 

consumed by the industrial client, while 8,8 % is stored in the hydrogen storage.  

 
Figure 3.8: Sankey diagram of the energy flows in the optimal solution of base scenario 2023 [GWh] [64] 

Examining the system's operation, two typical weeks are analyzed: one in early January and the 

other in July. These weeks offer insights into how varying levels of solar radiation impact system 

performance. n winter, there are instances where solar radiation exceeds demand, but only for a 
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few hours under favorable weather conditions. Grid injection of surplus electricity is infrequent 

but occurs on two days when PV production briefly surpasses the electrolyzer's nominal power. 

Notably, during off-peak hours, most of the electricity demand is covered by supply from the 

electrical grid. 

 
Figure 3.9: PV production, grid injection and grid withdrawal, week in January 

 
Figure 3.10: Hydrogen demand, production and storage, week in January 

Looking at the hydrogen side in Figure 3.10, most of the time production follows the demand. 

Only when PV generation exceeds demand does the electrolyzer produce excess hydrogen, which 

is then stored for use when solar production decreases. This means that the electrolyzer operates 

at around 70% of its nominal hydrogen output for the majority of hours.  

During a typical July week, the PV production is significantly higher and stretches over more hours 

of the day, further supported by the monoaxial tracking system. The grid withdrawal during this 

time is mostly limited to the later part of the night when the hydrogen storage is already empty. 
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The grid injection is still limited, as it is not associated to revenue, and the optimization algorithm 

has no incentive to increase this share. 

 
Figure 3.11: PV production, grid injection and grid withdrawal, week in July 

During summer, hydrogen production deviates more from the demand profile. The system tends 

to produce excess hydrogen during peak sun hours, while in the evening hours, the stored hydrogen 

is used to cover the demand. When the hydrogen storage is discharged, the electrolyzer production 

drops until the storage cannot cover the demand. 

 
Figure 3.12: Hydrogen demand, production and storage, week in July 

To achieve high system efficiency, it is important to operate the electrolyzer within the correct 

power range. Figure 3.13 illustrates the operational characteristics of the electrolyzer, with hourly 

operational powers arranged by size. Since the electrolyzer is of the PEM type, it performs well 

even in part-load conditions and exhibits good dynamic characteristics. The electrolyzer is in 

operation for more than 7.500 hours a year, resulting in 5.700 full load hours. This load 
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characteristic leads to a high overall efficiency and only 115 hours with a system efficiency of less 

than 40 %. 

 
Figure 3.13: Electrolyzer operation profile, ordered by size 

Additionally, the impact of changes in energy prices after installation is examined. Figure 3.14 

displays the levelized cost of hydrogen using the fixed set of sizes determined in the base scenario 

for 2023. As expected, a higher grid injection price and a lower withdrawal price have a favorable 

effect on achieving lower costs. The influence of these two electricity prices is remarkably 

significant. Notably, the sensitivity regarding the grid injection price is lower than the sensitivity 

to the acquisition price, as more electricity is withdrawn than injected from the grid. The cases in 

the upper left part of the diagram are very unlikely to occur, as the acquisition price is typically 

higher than the selling price. 

From this sensitivity analysis a realistic case can be analyzed, including remunerative grid feed-in 

without distorting the PV sizes. A realistic case could be grid injection remuneration at the zonal 

price of around 100 €/MWh. For the electricity purchased the base assumption of 120 €/MWh is 

kept. For this set of prices, a LCOH of 7,68 €/kgH2 is obtained, a reduction of 5 % compared to the 

base scenario 2023.  
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Figure 3.14: Sensitivity analysis electricity price of base scenario 2023 

The following chapters deal with an optimization case of other input electricity prices, meaning 

that the system sizes are not fixed as in the figure above. 

3.1.1 Sensitivity analysis electricity acquisition prices 
Selecting the electricity acquisition price is nontrivial, as discussed in chapter 2.1.6, and has a large 

influence on component sizing and LCOH. In contrast to the previous sensitivity analysis, where 

component sizes were fixed, here the sizes of the components are optimized for different price 

assumptions. The analysis clearly demonstrates that an increase in electricity price makes it more 

advantageous to increase the share of solar energy and reduce purchased electricity. For instance, 

when the electricity price is increased from 120 to 150 €/MWh, the LCOH augments by 11 %, 

while the PV and hydrogen storage capacity increase by 30 % and 71 % respectively. This achieves 

a rise in the share of self-produced PV electricity from 50 % to 63 %. Even at a grid withdrawal 

price of 300 €/MWh, it is more cost-effective to increase the sizes of other components rather than 

including a battery storage. 
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Table 3.2: Sensitivity analysis of the optimal component sizes for different electricity acquisition prices 2023 

Component  Electricity 

acquisition 
100 €/MWh 

Base scenario 

2023 
120 €/MWh 

Electricity 

acquisition 
150 €/MWh 

Electricity 

acquisition 
300 €/MWh 

PV installed 

capacity [MW]  
55,9 63,0 81,7 132,5 

Electrolyzer 

[MW] 
37,3 40,7 48,8 69,9 

Battery Power 

[MW] 
0 0 0 0 

Battery Capacity 

[MWh] 
0 0 0 0 

Hydrogen Storage 

[MWh] 
60,4 87,3 149,5 439,8 

LCOH [€/kgH2] 7,42 8,09 8,94 11,42 

 

As expected, a higher electricity acquisition price causes an increase in the LCOH. This is driven 

by the need for larger PV capacity, electrolyzer, and hydrogen storage sizes to offset the higher 

cost of grid withdrawal. The detailed cost breakdown is illustrated in the following figure. The 

analysis clearly indicates that a higher electricity acquisition price results in a shift towards more 

significant investments in components to increase the proportion of hydrogen produced from PV 

electricity. It is notable that the total costs for grid supply are the lowest in the 300 €/MWh scenario, 

because of the drastic decline in electricity withdrawn from the grid. 

 
Figure 3.15: Cost overview of simulations with different electricity acquisition prices 2023 



55 
 

3.1.2 Sensitivity analysis electricity injection prices 
The previous cases show the large influence of the electricity purchase. However, none of the 

simulations considers remunerative grid feed in. In this chapter the purchase price is fixed at 

120 €/MWh as of the base scenario 2023, while the specific grid feed-in revenue is varied. The 

results show and motivate the base scenario setting, avoiding distortions caused by PV 

subsidization effect. 

Table 3.3: Sensitivity analysis of the optimal component sizes for different grid injection prices 2023 

Component  Base scenario 

2023: 0 €/MWh 
Grid injection  
30 €/MWh 

Grid injection  
50 €/MWh 

PV installed 

capacity [MW]  
63,0 86,3 500,0 

Electrolyzer [MW] 40,7 40,9 42,4 

Battery Power 

[MW] 
0 0 0 

Battery Capacity 

[MWh] 
0 0 0 

Hydrogen Storage 

[MWh] 
87,3 97,8 127,9 

LCOH [€/kgH2] 8,09 7,89 6,36 

 

The introduction of a remuneration for grid injection changes drastically the optimal results. And 

especially the PV capacity. It is notable that for the 50 €/MWh grid injection price the electrolyzer 

capacity remains almost the same, meaning that PV production during peak hours surpasses the 

electrolyzer nominal power by a factor of more than 10. All this excess electricity is injected into 

the grid. As a result, the algorithm indirectly maximizes the share of electricity injected to the grid 

and not the share of self-consumption. The cost overview in Figure 3.16 shows how the 50 €/MWh 

grid injection profoundly shifts the cost structure and offsets a large portion of the costs with 

revenue generated from the grid. 
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Figure 3.16: Cost overview of different electricity acquisition prices 2023 

3.2 Base scenario 2030 

In the 2030 scenario, cost and efficiencies are updated as described in component description 

chapter 2.1. Generally, the specific component costs are reduced compared to the 2023 base 

scenario, especially for the electrolyzer, battery storage and photovoltaic plant. The lower PV cost 

widens the gap between LCOE and grid withdrawal, making it more advantageous to increase 

solar electricity production. To convert this excess electricity, the system increases the electrolyzer 

size, which is further facilitated by the significantly lower electrolyzer cost. Even if the specific 

hydrogen storage cost does not change, the hydrogen storage size increases substantially and 

allows to satisfy approximately 13 h of the industrial user’s hydrogen demand. Overall, a cost 

reduction of 34 % is obtained, compared to 2023. 

Component  Base scenario 2023 Base scenario 2030 

PV installed capacity [MW]  63,0 93,8 

Electrolyzer [MW] 40,7 59,0 

Battery Power [MW] 0 0 

Battery Capacity [MWh] 0 0 

Hydrogen Storage [MWh] 87,3 237,7 

LCOH [€/kgH2] 8,09 5,32 

Figure 3.17: Optimal component sizes for the base scenario 2023 and 2030 
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The analysis of the energy balances in Figure 3.18 shows that the share of solar energy on the total 

input increases from 50.4% in the 2023 scenario to 74.4% in 2030. Due to the increased 

electrolyzer efficiency there are fewer losses. Furthermore, the amount of hydrogen passing 

through the storage increases from 13 to 45 GWh per year, indicating that the utilization rate of 

the storage also rises to the equivalent of 187 full charge/discharge cycles. 

 
Figure 3.18: Sankey diagram of the energy flows in the optimal solution of base scenario 2030 [GWh] [62] 

Like for the 2023 scenario a sensitivity analysis for changing electricity prices for a fixed set of 

sizes is conducted. Compared to 2023 the LCOH is significantly lower. Due to an increase in grid 

injection and decrease in prevailed electricity, the importance of the grid injection price is more 

significant, which results in the lines of same LCOH and consequently same color to turn 

clockwise in Figure 3.19 compared to the 2023 analysis. Again, the upper left triangle is very 

unlikely to occur, as the acquisition price is typically higher than the selling price. 

From this sensitivity analysis also a more realistic case can be analyzed, without the distorting 

effect of grid injection revenue on the PV sizes. In this scenario, a grid injection remuneration of 

approximately 60 €/MWh in 2030 is considered, as the zonal price during hours of high PV 

production is expected to decrease. The electricity purchase price remains at the base assumption 

of 120 €/MWh, as the price is significantly higher during the night. Under these pricing conditions, 

a LCOH of 4.88 €/kgH2 is achieved, representing an 8 % reduction compared to the base scenario 

2030. 
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Figure 3.19: Sensitivity analysis electricity price base scenario 2030 

3.2.1 Sensitivity analysis electricity acquisition prices 
In reference to chapter 3.1.1, a sensitivity analysis is conducted for various assumptions regarding 

electricity prices with the component sizes not being fixed. The analysis clearly shows that 

increasing the electricity price, moves the optimal configuration to larger PV sizes, with a higher 

share of self-produced electricity and larger hydrogen storages. Interestingly, the battery is still not 

preferred by the optimizer, which instead tends to increase the sizes of other components in 

response to changing electricity prices. 

Table 3.4: Sensitivity analysis of the optimal component sizes for different electricity acquisition prices 2030 

Component  Electricity 

acquisition 
100 €/MWh 

Future scenario 

2030: 
120€/MWh 

Electricity 

acquisition 
150 €/MWh 

Electricity 

acquisition 
300 €/MWh 

PV installed 

capacity [MW]  
86,3 93,8 108,3 155,3 

Electrolyzer 

[MW] 
55,1 59,0 66,8 88,9 

Battery Power 

[MW] 
0 0 0 0 

Battery Capacity 

[MWh] 
0 0 0 0 

Hydrogen Storage 

[MWh] 
196,3 237,7 311,0 517,9 

LCOH [€/kgH2] 4,97 5,32 5.77 7.15 
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To analyse how the differences in LCOH occur, the costs of each simulation are split into the single 

contributions. Surprisingly, a higher electricity acquisition price does not lead to higher expenses 

for electricity Instead, it drives the PSO algorithm to select solutions with larger PV production 

and storage capacity, which significantly reduces grid withdrawal. This reduction in grid 

withdrawal, however, comes at the cost of a larger photovoltaic plant and electrolyzer, both of 

which operate more frequently in part-load conditions and achieve fewer equivalent full load 

operation hours. Even for the highest analysed electricity price, with a resulting hydrogen storage 

capacity sufficient to cover approximately 29 hours of average user demand, the cost contribution 

of the hydrogen storage remains below 5 % of the total cost. 

 
Figure 3.20: Cost overview of different electricity acquisition prices 2030 

3.2.2 Sensitivity analysis electricity injection prices 
As for the base scenario 2023, different revenues from grid injection are considered, with an initial 

electricity acquisition price of 120 €/MWh. Compared to 2023 the LCOE of solar energy drops 

considerably, meaning that even a low grid injection price has a large impact on the optimization 

and subsidizes the green hydrogen production. This effect pushes the optimizer to select a large 

PV capacity, leading to a substantial injection of surplus electricity into the grid. This outcome is 

evident in Table 3.5. 
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Table 3.5: Sensitivity analysis of the optimal component sizes for different grid injection prices 2030 

Component  Future scenario 

2030: 0 €/MWh 
Grid injection 
30 €/MWh 

Grid injection 
50 €/MWh 

PV installed 

capacity [MW]  
93,8 192,0 500,0 

Electrolyzer 

[MW] 
59,0 61,3 58,4 

Battery Power 

[MW] 
0 0 0 

Battery Capacity 

[MWh] 
0 0 0 

Hydrogen Storage 

[MWh] 
237,7 239,0 229,1 

LCOH [€/kgH2] 5,32 4,80 1,05 

 

The optimal sizes of the hydrogen storage and electrolyzer remain relatively stable with varying 

grid injection prices. However, there is a notable impact on the PV capacity. Even with a grid 

injection remuneration of 50 €/MWh, the PSO algorithm maximizes the PV sizes, generating 

substantial revenue that offsets other costs. As the optimal storage size does not increase for a 

higher grid remuneration, the grid withdrawal does not change considerably between the 30 and 

50 €/MWh case. The increased PV capacity is mostly used for grid injection and not to increase 

PV-self consumption. This undesired effect again underscores the decision to assume no 

remuneration for grid injection in the base scenarios. 

 
Figure 3.21: Cost overview of simulations with different grid injection prices 2030 
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3.3 Case studies 

Starting from the base scenario 2023 different cases with a focus on industrial practicability are 

analysed. These involve hydrogen blending, constraints regarding the PV size and cases where a 

battery is present to analyse a hybrid storage configuration. 

3.3.1 Blending without constraints 
The table below summarizes three hydrogen blending cases. The sizes are obtained using an 

electricity acquisition price of 120 €/MWh and a selling price of 0 €/MWh, as in the base scenarios. 

In general, the sizes of the components scale with the blending factor, which aligns with the 

expected results. In the component cost and efficiency calculations, no size restrictions were 

imposed, and therefore, the blending share modelled in this thesis does not impact the system's 

operation. However, in reality, not all component sizes are commercially available, and some 

components even come in containerized forms. For a small blend the relative differences of 

available sizes and the optimal solution in the continuous search space can become significant, 

altering slightly the operation and LCOH. 

Table 3.6: Case analysis H2-blending, no size constraints on components 

Component  100 % H2 

supply 
50 % H2 

Blending 
20 % H2 

Blending 
5 % H2 

Blending 
PV installed capacity 

[MW]  
63,0 31,5 12,6 3,1 

Electrolyzer [MW] 40,7 20,3 8,1 2,0 

Battery Power [MW] 0 0 0 0 

Battery Capacity 

[MWh] 
0 0 0 0 

Hydrogen Storage 

[MWh] 
87,3 43,7 17,5 4,2 

LCOH [€/kgH2] 8,09 8,09 8,09 8,09 

 

3.3.2 Blending and area constraints 
Following the request of the industrial client, the available area is limited. Hence different 

constraints are imposed on the maximum installable PV-size at 2, 5 and 10 MWp for a blending 

scenario of 20 % hydrogen. An overview of the optimal sizes obtained is given in Table 3.7. It is 

evident that limiting the PV size increases the LCOH, as more electricity has to be taken from the 

grid, which is at a cost higher than the LCOE of self-produced PV electricity. In all cases with 

constrained PV sizes, the algorithm identifies the optimal PV size directly at the size limit. The 

optimal hydrogen storage size depends strongly on the PV size, as it allows to storage excess solar 

production which is not present enough in the 2 MWp and 5 MWp cases. The electrolyzer capacity 

also shows a slight dependence on the installed photovoltaic power, allowing for the conversion 

of more solar energy into hydrogen with larger PV capacity. 
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Table 3.7: Case analysis 20 % H2-blending, limited PV-size 

Component  2 MWp 5 MWp 10 MWp No PV limit 

PV installed capacity 

[MW]  
2 5 10 12,7 

Electrolyzer [MW] 7,4 7,4 7,5 8,1 

Battery Power [MW] 0 0 0 0 

Battery Capacity 

[MWh] 
0 0 0 0 

Hydrogen Storage 

[MWh] 
0 0 11,1 17,5 

LCOH [€/kgH2] 9.42 8,91 8,19 8,09 

 

An overview of the cost is given in Figure 3.22. There is a clear tradeoff between PV cost and the 

cost of electricity purchased from the grid. For all the constraint cases, the cost reduction achieved 

by installing a smaller PV plant is more than offset by the increased expenses for grid electricity. 

All the shown cases do not consider feed in remuneration. If feed-in is economically compensated, 

installing a larger PV plant is even more incentivized. The electrolyzer cost does not significantly 

decrease with stricter PV size constraints. The cost of the hydrogen storage is almost negligeable, 

allowing an autonomy of only 3 hours in the 10 MW case. For smaller PV-plants the surplus 

production during peak times is not enough to provide an investment case to install battery storage. 

In general, installing a higher photovoltaic capacity reduces the importance of grid supply and 

decreases dependency on electricity prices. 

 
Figure 3.22: Cost overview for different PV constraints 
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Further the total area for these cases is calculated. As discussed in chapter 2.1.2,  the required area 

for a utility scale PV plant with monoaxial tracker is approximately 20.000 m2/MWp considering 

the additional components needed for the plant. Electrolyzers are typically containerized, and 

1 MW usually fits in a 40-foot container.[65] Additionally, there is the need for other components, 

connections, and spaces around the container, resulting in a space requirement of approximately 

1.000 m2/MWe. For the hydrogen storage the largest vertical vessel for 30 bar storage found in the 

catalog is used, having a diameter of 4,5 m it can store 490 kg of hydrogen[40]. Further minimum 

distances to the other vessel for operation, maintainability, construction, and safety have to be 

considered. Taking this into account it is hypothesized that one vessel can be placed every 200 m2.   

 
Figure 3.23: Analysis on the required area for the different PV-constraints 

The analysis of space requirements highlights the dominance of photovoltaic space requirements 

over other contributions. The analysis reveals that the required area for the PV plant can be a 

significant constraint for an industrial user with a high energy demand, trying to produce its own 

green hydrogen even for a blending share of only 20 %. The electrolyzer space needs are much 

more manageable and do not pose a significant constraint, confirming that the case analysis with 

a limited PV area is the most relevant. The space demand for hydrogen storage which allows to 

satisfy the user demand for 5 hours, as in this case, can be neglected. 

3.3.3 Cases including battery storage 
As described in chapter 2.6.2 first a minimum battery size is included as a constraint, which can 

cover the hydrogen demand of the electrolyzer for approximately 4 hours. Thereby the effect on 

the LCOH can be seen. The results are shown in Table 3.8 and are confronted to the 20 % hydrogen 

blending case of 3.3.1. Apart from the 4-hour LIB all the other assumptions are kept the same and 

no further constraints are introduced. 
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Table 3.8: Case analysis, 20 % H2 blending, 2023 cost, battery size forced  

Component   20 % H2 blending case Including 4-hour LIB 
20 % H2 blending case 

PV installed capacity [MW]  12,6 16,7 

Electrolyzer [MW] 8,1 7,8 

Battery Power [MW] 0 5,5 

Battery Capacity [MWh] 0 22 

Hydrogen Storage [MWh] 17,5 16,9 

LCOH [€/kgH2] 8,09 8,93 

 

Forcing the algorithm to incorporate the 4-h battery storage increases the LCOH by approximately 

10 %. The battery storage changes the behavior of the algorithm and plant as it favors a larger PV-

plant to be able to have excess electricity which can be stored during high radiation hours and 

released at the end of the day. This increases the share of hydrogen produced from PV power, 

rather than the grid, which is advantageous to benefit from subsidies. The battery further allows to 

slightly decrease the electrolyzer and hydrogen storage size.  

The energy flows of the system are shown in Figure 3.24. This time units are reported in MWh 

and not GWh to allow a detailed representation also for the smaller energy flows of the blending 

case. Comparing the shares to the base scenario 2023, it is evident that the grid withdrawal reduces, 

increasing the share of PV electricity in hydrogen production from 50,4 % to 63,7 %. This increase 

can be relevant to benefit from green hydrogen benefits of the EU. 

 
Figure 3.24: Sankey diagram of the energy flows in 4-hour LIB case [MWh] [63]  

Figure 3.25 displays the system’s operation over a typical day in July. It demonstrates the strategic 

cooperation between two energy storage systems, with a primary focus on hydrogen storage, as 

defined by the control strategy in Chapter 2.3. Immediately when enough hydrogen can be 
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produced from renewables and no grid supply is necessary, the hydrogen storage is charged. When 

the PV production exceeds nominal electrolyzer capacity, also the battery storage is charged. In 

the late afternoon, when PV electricity production cannot meet the hydrogen demand, there is a 

controlled discharge of the battery. Discharging the battery and converting this electricity into 

hydrogen satisfies the user demand over the next hours until also the hydrogen storage must be 

utilized. Notably, throughout these phases, no electricity is drawn from the grid. Grid electricity is 

only used when the hydrogen storage is empty, and there is no PV production, typically between 

3 to 5 am, to meet user demand. 

.

 
Figure 3.25: Hydrogen demand, production and SOC of the storages during a typical day in July 

During the winter, solar resources are significantly reduced, leading to the system's increased 

dependence on grid electricity. Figure 3.26 illustrates the system's operation on a sunny day in 

January. Thes system behaves according to the same operational principles as in summer, although 

the periods during which PV production surpasses the electricity requirements for meeting 

hydrogen demand are limited. On most winter days, solar radiation levels are even lower, 

necessitating grid supply throughout the entire day. 
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Figure 3.26: Hydrogen demand, production and SOC of the storages during a sunny day in January 

In a second approach, a different strategy is employed to determine how the economic modelling 

indicators must be set to let the battery storage become relevant. Generally higher electricity 

acquisition price and increased electrolyzer cost are beneficial for the battery economics. Different 

setups were tested, which are all based on the 20 % H2 blending case, using the base scenario 2023 

settings. 

This hypothetical case analyses the threshold electrolyzer cost for which a battery is convenient, 

considering an extreme electricity price of 500 €/MWh, which is in the range of the highest PUN 

values during the energetic crisis. Even for this case with a base case assumption for the 

electrolyzer the battery storage is not incorporated by the PSO algorithm. Only if the electrolyzer 

cost is increased to 2.000 €/kWe the algorithm selects a LIB with an installed power of 5,3 MW 

and a capacity of 26,8 MW. Increasing the electrolyzer costs further to 3.000 €/kWe the battery 

size increases to 10,7 MW and 53,9 MWh. 
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4. Discussion 
Generally, the modelled system is highly complex and depends on various parameters and 

assumptions. To draw general conclusion different sensitivity analysis were performed to 

understand the systems dynamic more in dept. This chapter intends to put the results in a context 

and discuss the outcomes as well as limitations.  

4.1 Comparison to Methane 

Generally, the modelling approach considered a favourable location and assumptions first to 

examine whether a green hydrogen production in combination with energy storage can be 

economically convenient in an optimistic scenario. From a purely monetary viewpoint the 

renewable scenarios cannot compete with a conventional natural gas-based system, given the 

natural gas prices as of August 2023. Natural gas price is subject to variation as the energetic crisis 

has shown, and therefore relying completely on natural gas poses a large geopolitical risk. In 

August 2022 the Dutch TTF Natural Gas Future peaked at 339 €/MWh compared to 36 €/MWh in 

August 2021, showing the enormous variability in prices[66]. This shows the risk of import 

dependencies and presents an additional motivation to diversify supply. On a yearly basis ARERA 

reports a price of 0,35 €/m3 for industrial clients with a consumption between 2,6 and 26 Mio m3/a 

in 2021. In 2023 the prices are again close to 2021 pre-crisis levels.[67],[53]  In the Future Deloitte 

as well as Fitch Ratings project slight price increases in the last years before 2030 but significantly 

lower prices compared to 2022. These forecasts depend heavily on many exogenous factors, and 

it is unlikely that they will prove to be accurate. In a future price scenario, a slight increase of 10-

20 % can be considered a reasonable assumption.[68],[69] 

While the green hydrogen scenarios do not systematically emit CO2 during the turbine usage, a 

methane-based supply does. The burning of natural gas causes 0.182 kgCO2 kWhNG⁄  based on the 

lower heating value. In a detailed assessment also the emissions due to leakage during transmission 

and extraction must be considered. Methane has a 25-time higher global warming potential than 

CO2, meaning that leakages have a huge effect on global warming.[70] Hence to be in line with 

the national and European climate targets a reduction in natural gas consumption is necessary, and 

installing new infrastructure reliant on fossil fuels contains the risk to become a stranded asset. 

An additional cost factor for the natural gas-based supply are Emission Trading System or carbon 

tax. On a European level there is the European Union Emissions Trading System (EU ETS) in 

place. Certificate prices are subject to a sharp increase since 2020 and currently range at 

approximately 90 €/tCO2.[71] In many European countries there is also a carbon tax in place 

covering industries emitters which are not part of the ETS. Emitters which are already part of the 

ETS are excluded from the tax.[72] In Italy there is no additional carbon tax in place. For this study 

the certificate price of 90 €/tCO2 is considered and no carbon tax. The additional cost per kWh is 

obtained by multiplying the certificate price to the emission factor of natural gas and results in an 

additional price component of 1,6 c€/kWh. Together with the natural gas price of 3,2 c€/kWh a 

final levelized cost of methane of 4,8 c€/kWh is reached, which is significantly lower than in the 

base scenarios of green hydrogen production obtained in this thesis. Only if the remuneration of 
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grid feed in is set higher than the LCOE of PV production, as analyzed in chapter 3.2.2, the system 

cost can compete with natural gas. However, these cases must be critically evaluated, as explained 

in the dedicated chapter. 

4.2 Context of green hydrogen production 

To set the results into a context, green hydrogen production cost estimates are an interesting metric. 

A wide range of literature is available, and many studies also investigate future price 

developments. Volpe estimated the LCOH from hydrogen by wind electrolysis at 11 €/kgH2 in the 

best-case scenario. In their case hydrogen is produced for mobility application. Not taking into 

account the cost for refuelling stations and transport cost, LCOH is slightly below 8 €/kgH2.[73] 

These findings are in line with IEA publications. In the Global Hydrogen Review cost of 4 to 

8.5 €/kgH2 for water-electrolysis are reported for 2021. The wide cost range shows how the cost 

depend on various factors and are various case specific. The costs consist of two main components: 

CAPEX for the electrolyzer and the electricity cost. The CAPEX of the electrolyzer will 

significantly decrease, as discussed in chapter 2.1.3. The cost component of electricity depends on 

the efficiency of the electrolysis, the location and the CAPEX of the PV or other renewable plants. 

Both on the electrolyzer efficiency and renewable cost, improvements are projected. These 

advancements combined could reduce the cost of green hydrogen to 1 to 4.5 €/kgH2 in 2030, which 

on the lower end is comparable with the hydrogen production from natural gas by SMR and 

following CCUS to abate the emissions.[33]  

The resulting LCOH of the base scenario 2030, do not achieve the same cost reductions and are 

slightly above the IEA projections. In this study the goal is not to produce as much hydrogen as 

possible from a given system configuration but satisfy the users hydrogen demand and its specific 

profile. Hence the plant could produce more hydrogen, which potentially lowers the LCOH. Most 

important no revenue from grid feed in is considered in the main scenario, meaning that excess 

solar production is wasted. The sensitivity analysis on this aspect shows the large impact of this 

assumption, explaining the deviation from the future LCOH estimates by the IEA. 

4.3 Limitations 

Selecting financial inputs is often a challenging task as the results and considerations depend 

highly on these factors. Especially due to the increased price volatility and drastic global 

developments the realistic choice of financial indicators is even more challenging. Due to the 

unpredictability of prices and other assumptions the scenarios can hardly simulate real conditions, 

especially in the future. However, the analysed sensitivities help to deeper understand some 

dynamics behind the results, how different factors influence the outcomes and allow to draw some 

general conclusions.  

A main limitation of the model lays in the simplification of the component assumptions which are 

modelled as black boxes with only system efficiencies assigned. Actual physical modelling of each 

component is more precise and reveals losses and limitations much more precisely. However, the 

detailed modelling of each component again increases computational burden and programming 
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complexity, which are already a limiting factor. Hence in this context of the thesis the simplified 

approach is considered necessary. Still for future research some refinements of the model are 

possible adding additional detail to the modelling. 

All the simulation were based on the available industrial user demand profile which comprises the 

year 2021. The year 2021 was still influenced by pandemic restrictions. Also due to other internal 

and external factors this year could not be representative for the whole lifetime of the components. 

Also, by simulating one year degradation of components is not included. Another problem of a 

one-year simulation lies in the fact that a final storage energy content at the end of the year is not 

economically accounted. Especially in scenarios where the optimized hydrogen storage size is 

large this could be relevant. The effect is minor as the starting SOC is 0, full storages are typically 

reached in summer while due to less radiation the SOC will be low towards the end of the year. 

The available data frequency of the of the user profile is another point of criticism. Potentially 

there could be short hidden demand fluctuations in the profile which cannot be determined on an 

hourly basis, making it harder to satisfy the user demand at all times. However, the demand profile 

in this study is relatively flat without major fluctuations during the day or seasonality, making this 

effect unlikely.  

Furthermore, there are limitations regarding the optimization algorithm. PSO is a metaheuristic 

algorithm, and it does not necessarily find the exact best solution but rather a solution which is 

close. There is room for errors as particles can get trapped in a local minimum and it is hardly 

noticeable when this problem appears. The problem is multimodal being more challenging to 

optimize for algorithms. The setting of the hyperparameters is delicate and can lead to unstable 

solutions far from the global optimal solution. The hyperparameter setting is problem specific, but 

due to practical limits of available computational resources the parameter setting is done on base 

of short simulations (24h). The computational cost restricts the number of particles and iterations. 

Using a larger number of particles could stabilize the search of the minima as the algorithm already 

starts from a broader exploration base compared to using only few particles. Increased 

computational resources would mitigate this problem. 

Further limitations lie in the missing prediction of future renewable energy generation. If the future 

demand and generation is approximately known, it allows for more advanced strategies. An 

example is to charge the hydrogen storage in advance of low renewable energy generation periods 

with grid electricity, which could reduce the needed electrolyzer size. Energy arbitrage ideas with 

the battery storage could be possible when free storage capacity is known to occur. Thereby 

additional revenues of the battery storage could be generated, improving its economics. If the 

system conditions change the previously defined rules in the operations strategy can be outdated, 

not leading to the optimal solution. Generally, an optimization-based control strategy including 

forecasting could achieve lower overall system cost, at the drawback of increased computational 

resources and programming complexity. 

Another inaccuracy of this model is the scale effect on the cost regarding the component during 

the optimization. As in the modelling cases the scale is in a utility range and many components are 

containerized, the specific costs per installed capacity or power do not vary extremely, however in 

future work this effect should be included. Further, in the model the sizes of the components are 



70 
 

considered continuous, which improves the algorithms performance and facilitates the search of 

the global optima. In real world applications component sizes are discrete and for example for 

electrolyzers even containerized, meaning that large steps between the commercially available 

sizes exist. These considerations have a minor importance for a high blending share and large 

hydrogen demand, where even for largely discrete sizes the available solution is close to optimum. 

However, it can be important for low blending rates and considerably solutions where the available 

component sizes are far off the calculated optimum. In future work an additional modeling step 

could be added. This involves starting from a continuous optimization of the sizes, selecting fixed 

discrete sizes according to commercially available solutions and followingly simulating the 

operation again with a more advanced control strategy. 

To benefit from subsidies for green hydrogen, it is crucial to meet the EU definitions to classify 

hydrogen as green. The exact incentives are case dependent and should be included in a further 

specific case analysis. In this case a storage on the electricity side could become more convenient 

as it increases the share of green electricity 

The electricity withdrawn from the grid must origin mostly from renewables to meet the 

requirements discussed in chapter 1.5. This is important not only to profit from green hydrogen 

incentives, but also to avoid emitting considerable amounts of CO2. Whether the grid supply during 

times of low PV production meets these requirements can be doubted. The exact incentives are 

highly case specific, considering also that the regulatory environment is currently evolving 

dynamically. Hence implementing the incentives on a case specific application is subject of future 

work. Generally modelling more precisely the share of green hydrogen could incentivize battery 

placement as it increases the share of renewable electricity in the electrolyzer, which is beneficial 

for incentives. 
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5. Conclusions and future research potentials 
In the context of addressing greenhouse gas emissions from hard-to-abate industrial sectors, the 

replacement of natural gas by green hydrogen could be one of the main options to reduce 

greenhouse gas emissions. This thesis introduces a comprehensive system for the production of 

green hydrogen, tailored to meet the specific demand of an industrial client. The system includes 

a LIB and hydrogen storage to ensure a continuous supply of hydrogen according to the user's 

consumption profile. To achieve the lowest possible cost for hydrogen production, an optimization 

code using Particle Swarm Optimization is developed. The primary objective of the algorithm is 

to determine the optimal sizes for each of the system's components. The python code employs a 

rule-based strategy to obtain hourly profiles of each component and these profiles are then used to 

calculate the resulting cost. The costs become the crucial input parameter for the PSO algorithm 

to update the sizes for the next iteration. The output at the end of the simulation are an optimal set 

of sizes, production data and the cost composition. Different scenarios and sensitivities are 

analyzed to allow a deeper understanding of the systems behavior and economics. 

The results of this thesis indicate that from a purely economic standpoint the substitution of 

methane by green hydrogen to satisfy an industrial user’s demand today is economically not 

convenient, at least for cases similar to this study. Nevertheless, the projected cost reductions until 

2030 are significant and when complemented by further incentives, they are poised to enable green 

hydrogen to competitively content with fossil-based hydrogen production. Hybrid energy storage, 

while being a promising concept, does not yield favorable results. The high capital expenditures 

associated with battery storage, coupled with efficiency losses and the inability to directly consume 

self-produced renewable electricity, makes the placement of a battery economically unfavorable. 

An advantage of the battery to consider in future studies is the beneficial effect on self-produced 

electricity which is crucial to benefit from incentives and subsidies.  

In contrast, hydrogen storage represents a cheaper storage option, with lower LCOS. Additional it 

has the advantage of being on the hydrogen side and therefore is able to cover the user demand 

directly, without passing the electrolyzer in-between as for the battery. As a result, hydrogen 

storage is the preferred choice in all investigated scenarios, with storage durations ranging from a 

few hours to more than a day. 

The sensitivity analyses regarding electricity prices of acquisition from and injection to the grid 

reveal the significance of these parameters. Higher electricity acquisition prices favor large PV 

plants, electrolyzers and hydrogen storages and lead to increased PV-electricity shares. If revenues 

from the grid injection are introduced, the algorithm increases the PV size. However, the study 

also highlights an unintended consequence of this effect: For grid injection remuneration above 

the LCOE of PV it is convenient to install as much PV as possible to maximize grid injection. 

Thereby the photovoltaic plant indirectly subsidizes the hydrogen production, which leads to 

unrealistic plant layouts and distorted LCOH results. 

The analysis of the area requirements emphasizes that green hydrogen production causes a large 

footprint, dominated by the PV plant. For industrial clients, especially those with high blending 

shares or a complete substitution of methane, this could pose limitations. For practicability the 
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economically optimal PV sizes can be out of range of the available area for industrial clients. In 

such cases, alternative solutions for electricity supply must be explored. Conversely, the 

electrolyzer and hydrogen storage requires significantly less space, and do not represent a major 

constraint. 

Based on this thesis, future work should validate the conclusions of this study with different user 

profiles, particularly those with variable hydrogen demand. Additionally, the integration of wind 

energy as a renewable electricity source could enhance availability and reduce grid withdrawal 

during periods of low solar production. This is also useful to increase the share of green electricity, 

aligning with EU definitions for green hydrogen. Moreover, exploring alternative energy storage 

options, such as Redox flow batteries, and benchmarking them against LIBs, could be valuable for 

future scenarios. Additionally, predictive modeling of renewable energy generation and demand 

enables more intelligent operation strategies, potentially leading to lower LCOH. Finally, future 

studies could benefit from testing different optimization algorithms, such as genetic algorithms, to 

determine their effectiveness in this specific application. 

  



73 
 

Bibliography 

[1] International Energy Agency, ‘World Energy Outlook 2022’, Oct. 2022. [Online]. Available: 

https://www.iea.org/reports/world-energy-outlook-2022 
[2] O. Schmidt, S. Melchior, A. Hawkes, and I. Staffell, ‘Projecting the Future Levelized Cost of 

Electricity Storage Technologies’, Joule, vol. 3, no. 1, pp. 81–100, Jan. 2019, doi: 

10.1016/j.joule.2018.12.008. 
[3] Bloomberg, ‘2022 Energy Storage Market Outlook’, Oct. 2022. Accessed: Aug. 05, 2023. 

[Online]. Available: https://about.bnef.com/blog/global-energy-storage-market-to-grow-15-

fold-by-2030/ 
[4] E. & I. S. UK Government Department for Business, ‘Facilitating the deployment of large-

scale and long-duration electricity storage Government Response’, 2022. 
[5] LDES Council and McKinsey, ‘The journey to net-zero’, 2022. [Online]. Available: 

www.ldescouncil.com. 
[6] R. H. Hedayat Saboori, ‘Emergence of hybrid energy storage systems in renewable energy 

and transport applications – A review | Elsevier Enhanced Reader’. Accessed: Mar. 21, 2023. 

[Online]. Available: 

https://reader.elsevier.com/reader/sd/pii/S1364032116302374?token=E955F45D4E80822B1

B9322639D6BDA708194E6E86AE89E0670FD78C2BB453B1316CA415206A2F529B530

473D5FC4DBC7&originRegion=eu-west-1&originCreation=20230321094803 
[7] X. Lin and R. Zamora, ‘Controls of hybrid energy storage systems in microgrids: Critical 

review, case study and future trends’, J. Energy Storage, vol. 47, Mar. 2022, doi: 

10.1016/j.est.2021.103884. 
[8] S. Hajiaghasi, A. Salemnia, and M. Hamzeh, ‘Hybrid energy storage system for microgrids 

applications: A review’, J. Energy Storage, vol. 21, pp. 543–570, Feb. 2019, doi: 

10.1016/j.est.2018.12.017. 
[9] P. Marocco, D. Ferrero, E. Martelli, M. Santarelli, and A. Lanzini, ‘An MILP approach for 

the optimal design of renewable battery-hydrogen energy systems for off-grid insular 

communities’, Energy Convers. Manag., vol. 245, p. 114564, Oct. 2021, doi: 

10.1016/j.enconman.2021.114564. 
[10] ‘Global Hydrogen REVIEW 2021’, International Energy Agency, 2021. [Online]. 

Available: https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-

e9c507a62341/GlobalHydrogenReview2021.pdf 
[11] J. M. M. Arcos and D. M. F. Santos, ‘The Hydrogen Color Spectrum: Techno-Economic 

Analysis of the Available Technologies for Hydrogen Production’, Gases, vol. 3, no. 1, Art. 

no. 1, Mar. 2023, doi: 10.3390/gases3010002. 
[12] Richtlinie (EU) 2018/2001 des Europäischen Parlaments und des Rates vom 11. 

Dezember 2018 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen 

(Neufassung) (Text von Bedeutung für den EWR.), vol. 328. 2018. Accessed: Sep. 05, 2023. 

[Online]. Available: http://data.europa.eu/eli/dir/2018/2001/oj/deu 
[13] EU, EUR-Lex - 32023R1184 - EN - EUR-Lex. Accessed: Sep. 05, 2023. [Online]. 

Available: https://eur-lex.europa.eu/legal-

content/EN/TXT/?toc=OJ%3AL%3A2023%3A157%3ATOC&uri=uriserv%3AOJ.L_.2023.1

57.01.0011.01.ENG 



74 
 

[14] F. Zanellini, ‘Il vettore idrogeno Stato dell’arte e potenzialità dell’industria italiana’, 

ANIE, 2023. [Online]. Available: https://anie.it/wp-content/uploads/2023/03/Quadro-

normativo-UE-e-Italia-Zanellini.pdf 
[15] EUR-Lex - 32023R1185 - EN - EUR-Lex. 2023. Accessed: Oct. 05, 2023. [Online]. 

Available: https://eur-lex.europa.eu/eli/reg_del/2023/1185/oj 
[16] DECRETO-LEGGE 30 aprile 2022, n. 36 - Normattiva. Accessed: Sep. 05, 2023. 

[Online]. Available: https://www.normattiva.it/uri-

res/N2Ls?urn:nir:stato:decreto.legge:2022;36~art9-com1 
[17] DECRETO LEGISLATIVO 8 novembre 2021, n. 199 - Normattiva. Accessed: Sep. 05, 

2023. [Online]. Available: https://www.normattiva.it/uri-

res/N2Ls?urn:nir:stato:decreto.legislativo:2021-11-08;199 
[18] ‘Global Solar Atlas’. Accessed: Aug. 16, 2023. [Online]. Available: 

https://globalsolaratlas.info/detail?c=37.425525,15.055046,11&s=37.485211,15.076332&m=

site 
[19] ‘JRC Photovoltaic Geographical Information System (PVGIS) - European Commission’, 

PVGIS. Accessed: Aug. 15, 2023. [Online]. Available: 

https://re.jrc.ec.europa.eu/pvg_tools/en/#TMY 
[20] ‘Polysun – Energiesysteme präzise simulieren und effizient Planen › POLYSUN’. 

Accessed: Sep. 01, 2023. [Online]. Available: https://www.velasolaris.com/downloads/ 
[21] S. Alkaff, N. H. Shamdasani, G. Yun II, and Dr. V. Venkiteswaran, ‘A Study on 

Implementation of PV Tracking for Sites Proximate and Away from the Equator’, Process 

Integr. Optim. Sustain., vol. 3, Sep. 2019, doi: 10.1007/s41660-019-00086-7. 
[22] D. S. Philipps, F. Ise, W. Warmuth, and P. P. GmbH, ‘Photovoltaics Report’, Fraunhofer 

Institute for Solar Energy Systems, ISE, 2023. [Online]. Available: 

https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovolta

ics-Report.pdf 
[23] A. Awasthi et al., ‘Review on sun tracking technology in solar PV system’, Energy Rep., 

vol. 6, pp. 392–405, Nov. 2020, doi: 10.1016/j.egyr.2020.02.004. 
[24] ‘Projected Costs of Generating Electricity 2020 – Analysis’, International Renewable 

Energy Agency. Accessed: Aug. 23, 2023. [Online]. Available: 

https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 
[25] ‘Renewable Energy Market Update - June 2023’, International Energy Agency, 2023. 
[26] ‘Global Market Outlook for Solar Power’, Solar Power Europe, 2023. [Online]. 

Available: 

https://api.solarpowereurope.org/uploads/Global_Market_Outlook_2023_2027_report_18b8

6a4568.pdf 
[27] ‘2030 Solar Cost Targets’, United States Department of Energy. Accessed: Aug. 31, 2023. 

[Online]. Available: https://www.energy.gov/eere/solar/articles/2030-solar-cost-targets 
[28] C. Kost, ‘Study: Levelized Cost of Electricity - Renewable Energy Technologies - 

Fraunhofer ISE’, Fraunhofer Institute for Solar Energy Systems ISE. Accessed: Aug. 31, 

2023. [Online]. Available: https://www.ise.fraunhofer.de/en/publications/studies/cost-of-

electricity.html 
[29] IRENA, ‘Future of Solar Photovoltaic – A Global Energy Transformation paper’, 

International Renewable Energy Agency, Nov. 2019. Accessed: Aug. 31, 2023. [Online]. 

Available: https://www.irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic 



75 
 

[30] R. Wiser, M. Bolinger, and J. Seel, ‘Benchmarking Utility-Scale PV Operational 

Expenses and Project Lifetimes: Results from a Survey of U.S. Solar Industry Professionals’, 

2020. 
[31] I. Guaita-Pradas and A. Blasco-Ruiz, ‘Analyzing Profitability and Discount Rates for 

Solar PV Plants. A Spanish Case’, Sustainability, vol. 12, no. 8, Art. no. 8, Jan. 2020, doi: 

10.3390/su12083157. 
[32] H. Grimm, Gunter Marius, ‘Cost Forecast for Low-Temperature Electrolysis - 

Technology Driven Bottom-Up Prognosis for PEM and Alkaline Water Electrolysis 

Systems’, Fraunhofer Institute for Solar Energy Systems ISE, 2021. 
[33] ‘Global Hydrogen Review 2022’, 2022. 
[34] M. Kopp, D. Coleman, C. Stiller, K. Scheffer, J. Aichinger, and B. Scheppat, 

‘Energiepark Mainz: Technical and economic analysis of the worldwide largest Power-to-

Gas plant with PEM electrolysis’, Int. J. Hydrog. Energy, vol. 42, no. 19, pp. 13311–13320, 

May 2017, doi: 10.1016/j.ijhydene.2016.12.145. 
[35] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, ‘Future cost and 

performance of water electrolysis: An expert elicitation study’, Int. J. Hydrog. Energy, vol. 

42, no. 52, pp. 30470–30492, Dec. 2017, doi: 10.1016/j.ijhydene.2017.10.045. 
[36] Lettenmeier, Philipp, ‘Efficiency – Electrolysis White paper’. Siemens energy, 2019. 

[Online]. Available: https://assets.siemens-energy.com/siemens/assets/api/uuid:5342163d-

2333-4c8d-ae85-2a0e8d45db56/white-paper-efficiency-en.pdf 
[37] ‘LIFE 3.0 - LIFE Project Public Page’. Accessed: Aug. 23, 2023. [Online]. Available: 

https://webgate.ec.europa.eu/life/publicWebsite/project/details/1306 
[38] ‘STUDY ON EARLY BUSINESS CASES FOR H2 IN ENERGY STORAGE AND 

MORE BROADLY POWER TO H2 APPLICATIONS’, TRACTEBEL ENGINEERING 

S.A. and Hinicio, 2017. 
[39] J. Andersson and S. Grönkvist, ‘Large-scale storage of hydrogen’, Int. J. Hydrog. Energy, 

vol. 44, no. 23, pp. 11901–11919, May 2019, doi: 10.1016/j.ijhydene.2019.03.063. 
[40] BAGLIONI S.p.A., ‘CATALOGO SERBATOI STOCCAGGIO IDROGENO’. [Online]. 

Available: https://baglionispa.com/idrogeno/ 
[41] E. G. Vera, C. Canizares, and M. Pirnia, ‘Renewable Energy Integration in Canadian 

Remote Community Microgrids: The Feasibility of Hydrogen and Gas Generation’, IEEE 

Electrification Mag., vol. 8, no. 4, pp. 36–45, Dec. 2020, doi: 10.1109/MELE.2020.3026438. 
[42] R. R. Urs, A. Chadly, A. Al Sumaiti, and A. Mayyas, ‘Techno-economic analysis of green 

hydrogen as an energy-storage medium for commercial buildings’, Clean Energy, vol. 7, no. 

1, pp. 84–98, Feb. 2023, doi: 10.1093/ce/zkac083. 
[43] P. Marocco, D. Ferrero, A. Lanzini, and M. Santarelli, ‘Optimal design of stand-alone 

solutions based on RES + hydrogen storage feeding off-grid communities’, Energy Convers. 

Manag., vol. 238, p. 114147, Jun. 2021, doi: 10.1016/j.enconman.2021.114147. 
[44] C. Augustine and N. Blair, ‘Storage Futures Study: Storage Technology Modeling Input 

Data Report’, NREL/TP--5700-78694, 1785959, MainId:32611, May 2021. doi: 

10.2172/1785959. 
[45] A. Grimaldi, F. D. Minuto, A. Perol, S. Casagrande, and A. Lanzini, ‘Ageing and energy 

performance analysis of a utility-scale lithium-ion battery for power grid applications 

through a data-driven empirical modelling approach’, J. Energy Storage, vol. 65, p. 107232, 

Aug. 2023, doi: 10.1016/j.est.2023.107232. 



76 
 

[46] C. Betzin, H. Wolfschmidt, and M. Luther, ‘Electrical operation behavior and energy 

efficiency of battery systems in a virtual storage power plant for primary control reserve’, 

Int. J. Electr. Power Energy Syst., vol. 97, pp. 138–145, Apr. 2018, doi: 

10.1016/j.ijepes.2017.10.038. 
[47] W. Cole and A. Karmakar, ‘Cost Projections for Utility-Scale Battery Storage: 2023 

Update’, National Renewable Energy Laboratory, 2023. [Online]. Available: 

https://www.nrel.gov/docs/fy23osti/85332.pdf 
[48] ‘Global Energy and Climate Model Documentation’, International Energy Agency, 2022. 

[Online]. Available: https://iea.blob.core.windows.net/assets/2db1f4ab-85c0-4dd0-9a57-

32e542556a49/GlobalEnergyandClimateModelDocumentation2022.pdf 
[49] C. Bordin, H. O. Anuta, A. Crossland, I. L. Gutierrez, C. J. Dent, and D. Vigo, ‘A linear 

programming approach for battery degradation analysis and optimization in offgrid power 

systems with solar energy integration’, Renew. Energy, vol. 101, pp. 417–430, Feb. 2017, 

doi: 10.1016/j.renene.2016.08.066. 
[50] ‘ARERA - Prezzi finali dell’energia elettrica per i consumatori industriali - Ue a Area 

euro’. Accessed: Aug. 24, 2023. [Online]. Available: https://www.arera.it/it/dati/eepcfr2.htm 
[51] ‘Greenhouse gas emission intensity of electricity generation in Europe’, European 

Environment Agency. Accessed: Aug. 24, 2023. [Online]. Available: 

https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1 
[52] ‘Gestore Mercati Energetici Electricity Market statistics’. Accessed: Sep. 06, 2023. 

[Online]. Available: https://www.mercatoelettrico.org/En/download/DatiStorici.aspx 
[53] ‘ARERA - Prezzi finali del gas naturale per i consumatori industriali - UE e area Euro’. 

Accessed: Aug. 18, 2023. [Online]. Available: https://www.arera.it/it/dati/gpcfr2.htm 
[54] ‘Scenario National Trend Terna’, TERNA, 2021. [Online]. Available: 

https://download.terna.it/terna/National%20Trends%20Italia%202021_8d8c8fe48cb033f.pdf 
[55] J. C. L. Fish, Engineering economics, first principles. New York McGraw-Hill, 1923. 

Accessed: Aug. 13, 2023. [Online]. Available: 

http://archive.org/details/engineeringecono00fishuoft 
[56] T. Bocklisch, ‘Hybrid energy storage approach for renewable energy applications’, J. 

Energy Storage, vol. 8, pp. 311–319, Nov. 2016, doi: 10.1016/j.est.2016.01.004. 
[57] Y. He, S. Guo, P. Dong, C. Wang, J. Huang, and J. Zhou, ‘Techno-economic comparison 

of different hybrid energy storage systems for off-grid renewable energy applications based 

on a novel probabilistic reliability index’, Appl. Energy, vol. 328, Dec. 2022, doi: 

10.1016/j.apenergy.2022.120225. 
[58] J. Kennedy and R. Eberhart, ‘Particle swarm optimization’, in Proceedings of ICNN’95 - 

International Conference on Neural Networks, Nov. 1995, pp. 1942–1948 vol.4. doi: 

10.1109/ICNN.1995.488968. 
[59] H. Liu, B. Wu, A. Maleki, and F. Pourfayaz, ‘An improved particle swarm optimization 

for optimal configuration of standalone photovoltaic scheme components’, Energy Sci. Eng., 

vol. 10, no. 3, pp. 772–789, 2022, doi: 10.1002/ese3.1052. 
[60] R. Poli, J. Kennedy, and T. Blackwell, ‘Particle Swarm Optimization: An Overview’, 

Swarm Intell., vol. 1, Oct. 2007, doi: 10.1007/s11721-007-0002-0. 
[61] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, ‘Population size in Particle 

Swarm Optimization’, Swarm Evol. Comput., vol. 58, p. 100718, Nov. 2020, doi: 

10.1016/j.swevo.2020.100718. 



77 
 

[62] ‘pandas - Python Data Analysis Library’. Accessed: Aug. 05, 2023. [Online]. Available: 

https://pandas.pydata.org/ 
[63]  ng. S. F. – Arch. C. N. Arch.Cinzia Nieddu, ‘REALIZZAZIONE IMPIANTO 

FOTOVOLTAICO A TERRA DA 24,49 MW IN IMMISSIONE, TIPO AD 

INSEGUIMENTO MONOASSIALE “SAM-SE” COMUNI DI SAMASSI E SERRENTI 

(SU)’. ENERGYSAMSE SRL, 2022. 
[64] ‘SankeyMATIC: Build a Sankey Diagram’, SankeyMATIC.com. Accessed: Aug. 30, 

2023. [Online]. Available: https://sankeymatic.com/build/ 
[65] ‘PEM Electrolyzer ME450: H-TEC SYSTEMS products’. Accessed: Sep. 29, 2023. 

[Online]. Available: https://www.h-tec.com/en/products/detail/h-tec-pem-electrolyser-

me450/me450/ 
[66] ‘Dutch TTF Natural Gas Calendar (TTF=F) Interactive Stock Chart - Yahoo Finance’. 

Accessed: Aug. 18, 2023. [Online]. Available: 

https://finance.yahoo.com/quote/TTF%3DF/chart/ 
[67] ‘Natural gas price statistics’, eurostat. Accessed: Aug. 18, 2023. [Online]. Available: 

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Natural_gas_price_statistics 
[68] FitchRatings, ‘Fitch Ratings Raises Mid-Term Oil and Cuts Near-Term Gas Price 

Assumptions’. Accessed: Aug. 18, 2023. [Online]. Available: 

https://www.fitchratings.com/research/corporate-finance/fitch-ratings-raises-mid-term-oil-

cuts-near-term-gas-price-assumptions-13-03-2023 
[69] Botterill, Andrew, ‘Energy, oil, and gas price forecast - Energy costs are stretching price 

elasticity and energy affordability’, Deloitte, 2023. [Online]. Available: 

https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/REA/eo-g-price-forecast-q4-

er-fy23-en-aoda.pdf 
[70] ‘Greenhouse gas reporting: conversion factors 2022’, GOV.UK. Accessed: Aug. 18, 2023. 

[Online]. Available: https://www.gov.uk/government/publications/greenhouse-gas-reporting-

conversion-factors-2022 
[71] ‘EU Carbon Permits - 2023 Data - 2005-2022 Historical - 2024 Forecast - Price - Quote’, 

TradingEconomics. Accessed: Sep. 05, 2023. [Online]. Available: 

https://tradingeconomics.com/commodity/carbon 
[72] M. Ferdinandusse, C. Nerlich, and M. D. Téllez, ‘Fiscal policies to mitigate climate 

change in the euro area’, Sep. 2022, Accessed: Sep. 05, 2023. [Online]. Available: 

https://www.ecb.europa.eu/pub/economic-

bulletin/articles/2022/html/ecb.ebart202206_01~8324008da7.en.html 
[73] P. Marocco, M. Santarelli, and Volpe, Flaviano, ‘Evaluation of Levelized Cost of 

Hydrogen (LCOH) produced by wind electrolysis: Argentine and Italian production 

scenarios’, 2021. [Online]. Available: https://webthesis.biblio.polito.it/17411/ 
 

 


