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Abstract 
 
Industry 4.0 is the last phenomenon that has brought the industry to a new level of process 

optimisation, and one of its key elements is the Machine Learning. 

This thesis aims to depict the current Machine Learning methodologies and techniques present 

in the current industrial system, highlighting challenges and future opportunities. The study is 

going also to dig and further analyse the fields in which these algorithms are used the most, 

like the Digital Twin, a new technology that is becoming a standard in the industrial 

technologies.  
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1. Introduction 
 
The Machine Learning, or self-teaching-computer, are a type of statistical based approach to 

the solution of different types of human problems, or human-related problems, their 

applications are countless and may be implemented for medical diagnose or to online 

advertising.  

In this  work, however, the focus will be on the purely industrial applications of the Machine 

Learning: a typical example of industrial application, is the tool wear detection: through the 

collection of raw data from the machine the algorithm enables a preset of command that are 

able to foresee when and whether the device is going to be worn and have to be substituted. 

Despite the name, the Machine Learning techniques are purely based on statistics concepts, 

however there are a multitude of different models that can be used for different scopes, each 

with different commands and parameters, and hence more or less effective depending on the 

type of the problem.  

This thesis is going to review, using articles retrieved on Scopus, the main principles that define 

a Machine Learning model and their applications in the industrial field, and also how they can 

relate to other Industry 4.0 technologies like the Digital Twin, The following chapter will 

discuss the most common models that are usually implemented in the articles reviewed, 

distinguishing between classification and regression models, analysing also how they can often 

be implemented in Python. The fourth chapter will discuss and depicts the techniques that are 

used for the implementation of the Machine Learning, from the data collection to the evaluation 

of the models. 

The last chapter will discuss a practical implementation of a Machine Learning algorithm with 

a personal elaborated code and a public retrieved dataset, showing and commenting all the 

methodologies that have been seen in the other chapters and how they can affect the efficiency 

of the model, including the evaluation of the model. 
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2. State-of-the-art 

2.1. Paper selection 
 

A systematic and methodological search for articles on Scopus is obviously necessary, to 

understand what the most efficient methods are and what are the most feasible solutions. In 

this chapter three different queries have been tested and they are going to be analysed, 

providing a short description for any result that has been found.  

 

2.1.1. First query: machine learning for prediction applications 
 
For this first section the following query has been computed: TITLE-ABS-

KEY ( machine AND learning AND prediction AND 

manufacturing) AND ( EXCLUDE ( SUBJAREA , "medi") OR[…]), the query includes also a 

long list of EXCLUDE(SUBJAREA) commands, it has been useful to, indeed, rule out all the 

articles that have a topic different from the manufacture, industry or engineering in general, 

such as medicine, social study etc. The following tables [Table 1] are divided in 5 columns: 

the first for the title of the article (linked to the bibliography), the second reference to the 

operating area of the article, the third to the topic the article is dealing with, the fourth is about 

the foreseen methods used in the procedure (the methods in bold have been found to be the 

most precise solution) and eventually the last column is a brief dataset description, and if the 

datasets are public, private or simulated.  

 
Table 1: first iteration analysis by article 

Title Area Topic Methods 
Used 

Datasets 
Used 

A use case to implement machine 
learning for lifetime prediction of 

manufacturing tools [1] 
Drilling Machines Flank Wear 

Prediction 
RF, ANN, SVM, 

DeT 

Several Process 
Parameters 
(Privates) 

Model predictive control in milling 
based on support vector machines [2] Milling Machines Quality prediction SVM 

Several Process 
Parameters 
(Privates) 

Fatigue-life prediction of additively 
manufactured metals by continuous 

damage mechanics (CDM)-informed 
machine learning with sensitive features 

[3] 

AlSi10MG Alloy Quality prediction SVM and RF 
Several Process 

Parameters 
(Privates) 

Machine learning and deep learning 
based predictive quality in 

manufacturing: a systematic review [4] 
Review Quality prediction None None Used 

A dimensionally augmented and 
physics-informed machine learning for 

High-entropy 
Alloy Quality prediction SVM, BNN, 

ANN, RF 

Several Process 
Parameters 
(Privates) 
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quality prediction of additively 
manufactured high-entropy alloy [5] 

Machine Learning-Enabled Prediction 
of 3D-Printed Microneedle Features [6] Microneedle Feature Prediction CNN, SVM, 

Gaussian 

Several Process 
Parameters – Both 

numerical and 
images - (Privates) 

A fatigue life prediction approach for 
laser-directed energy deposition 

titanium alloys by using support vector 
regression based on pore-induced 

failures [7] 

Titanium Alloys 

Fatigue-life 
prediction through 

continuous 
damage 

SVR, ANN, RF, 
GPR 

Several Process 
Parameters – Both 

numerical and 
images - (Privates) 

Multistage quality control in 
manufacturing process using blockchain 

with machine learning technique [8] 
Review 

Increase 
productivity with 
Quality prediction 

ANN, KNN 
Several Process 

Parameters 
(Simulations) 

Machine learning-enabled prediction of 
density and defects in additively 

manufactured Inconel 718 alloy [9] 
Inconel 718 Alloy Defect presence 

prediction 

SVM, CNN, Naïve 
Bayes, LR, RF, 
KNN, Kernel 

SVM, Gradient 
Boosting, DeT, 

ANN 

Several Process 
Parameters 
(Privates) 

Monitoring and predicting the surface 
generation and surface roughness in 
ultraprecision machining: A critical 

review [10] 

Ultraprecision 
Machining 

Fatigue-life 
prediction through 

continuous 
damage 

Hybrid and ANN, 
RNN, CNN 

Several Process 
Parameters 
(Privates) 

Data-driven fatigue life prediction in 
additive manufactured titanium alloy: A 

damage mechanics-based machine 
learning framework [11] 

Titanium Alloy 

Fatigue-life 
prediction through 

continuous 
damage 

RF 
Several Process 

Parameters 
(Simulated) 

A machine learning framework with 
dataset-knowledgeability pre-

assessment and a local decision-
boundary crispness score: An industry 

4.0-based case study on composite 
autoclave manufacturing [12] 

Polymer 
composite 

Pipeline, Decision 
Making ANN 

Several Process 
Parameters 
(Privates) 

A joint classification-regression method 
for multi-stage remaining useful life 

prediction [13] 
Review Lifetime 

prediction 
KNN and SVR, 

LR, LSTM 

Several Process 
Parameters 
(Simulated) 

Application of Machine Learning to the 
Prediction of Surface Roughness in 

Diamond Machining [14] 
Diamond 

Shape 
deformation 
prediction 

ANN, RF 
Several Process 

Parameters 
(Privates) 

Prediction of Mechanical Properties of 
Wrought Aluminium Alloys Using 

Feature Engineering Assisted Machine 
Learning Approach [15] 

Aluminium 
Alloys Quality prediction 

SVR-
RBF(Hybrid), 

SVM, RF 

Several Process 
Parameters 
(Privates) 

Quality Prediction of Drilled and 
Reamed Bores Based on Torque 
Measurements and the Machine 

Learning Method of Random Forest 
[16] 

Drilling Machine Quality prediction RF, ANN, CNN, 
SVR 

Several Process 
Parameters 
(Privates) 

Log-based predictive maintenance in 
discrete parts manufacturing [17] 

Discrete parts 
Manufacturing 

Maintenance 
prediction RF 

Different datasets 
are used, none of 

the publisher 
(Privates) 

A Comparative Study on Machine 
Learning Algorithms for Smart 

Manufacturing: Tool Wear Prediction 
Using Random Forests [18] 

Milling Machines Flank Wear 
Prediction RF, ANN, SVR 

Several Process 
Parameters 
(Privates) 

Online Remaining Useful Life 
Prediction of Milling Cutters Based on 
Multisource Data and Feature Learning 

[19] 

Milling Machines Flank Wear 
Prediction MSFLRUL 

Several Process 
Parameters 
(Privates) 

Tool remaining useful life prediction 
using bidirectional recurrent neural 

networks (BRNN) [20] 
Cutting Tools Lifetime 

prediction BRNN 
Several Process 

Parameters 
(Privates) 

Machine learning for monitoring and 
predictive 

maintenance of cutting tool wear for 
clean-cut 

Clamping 
Machines 

Cutter Wear 
Prediction 

SVM, ANOVA, 
RNN 

Several Process 
Parameters 
(Privates) 
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machining machines [21] 

Machine learning based fatigue life 
prediction with effects of additive 

manufacturing process parameters for 
printed SS 316L [22] 

Stainless Steel 
316L 

Fatigue-life 
prediction through 

continuous 
damage 

RF, ANN, SVM 
Several Process 

Parameters 
(Privates) 

Prediction of geometry deviations in 
additive manufactured parts: 

comparison of linear regression with 
machine learning algorithms [23] 

Injection 
moulding Quality prediction SVR, DeT, LR 

Several Process 
Parameters 
(Privates) 

A tool condition monitoring method 
based on two-layer angle kernel extreme 
learning machine and binary differential 

evolution for milling [24] 

Milling machine Monitoring 
Method TAKELM 

Several Process 
Parameters 
(Privates) 

Prediction of microstructural defects in 
additive manufacturing from powder 

bed quality using digital image 
correlation [25] 

Metal 
Components 

Shape 
deformation 
prediction 

Naïve Bayes 
Several Process 

Parameters 
(Privates) 

Automated Geometric Shape Deviation 
Modelling for Additive Manufacturing 
Systems via Bayesian Neural Networks 

[26] 

Review 
Shape 

deformation 
prediction 

Bayesian NN 

Several Process 
Parameters – Both 

numerical and 
images - (Privates) 

Prediction of selective laser melting part 
quality using hybrid Bayesian network 

[27] 
Melting Machine Prediction of 

melting part 

Bayesian NN, 
Gaussian 

Regression 

Several Process 
Parameters 
(Privates) 

Prediction for Manufacturing Factors in 
a Steel 

Plate Rolling Smart Factory Using Data 
Clustering-Based Machine Learning 

[28] 

Review Lifetime 
prediction 

Gaussian 
Regression, RF, 

GB 
None used 

A defect-based physics-informed 
machine learning framework for 

fatigue finite life prediction in additive 
manufacturing [29] 

AlSi10Mg Fatigue-life 
prediction PINN 

Several Process 
Parameters 
(Publics) 

 
 Machine Learning in CNC Machining: 

Best Practices [30] 
 

Milling Machine Flank wear 
prediction RF 

Several Process 
Parameters 
(Privates) 

Deep multi-task network based on 
sparse feature learning for tool wear 

prediction [31] 
Milling Machine 

Lifetime 
prediction through 

tool wear 
DMTL 

Process 
Parameters 

collected with 
experiments 
(Privates) 

Meta domain generalization for smart 
manufacturing: Tool wear prediction 

with small data [32] 
Review Tool wear 

prediction MDG 

Several Process 
Parameters 

(Publics-provided 
by NASA) 

Tool Wear Monitoring Using Machine 
Learning [33] Review Tool wear 

prediction SVM, NN 

Several Process 
Parameters – both 

acoustic and 
numeric - 
(Privates) 

Automated Domain Adaptation in Tool 
Condition 

Monitoring using Generative 
Adversarial Networks [34] 

Review Tool condition 
monitoring GAN 

Several Process 
Parameters 
(Privates) 

Tool Life Stage Prediction in Micro-
milling from Force Signal Analysis 

Using Machine Learning Methods [35] 
Milling Machine Tool wear 

prediction RF 

Several Process 
Parameters – both 

imaging and 
numeric - 
(Publics) 

Correlating tool wear and surface 
integrity of a CNC turning process using 

Naïve based classifiers [36] 
Turning Machine Tool wear 

prediction Naïve Based 
Several Process 

Parameters 
(Privates) 

Tool Remaining Useful Life Prediction 
Method Based on Time-frequency 

Features Fusion and Long Short-term 
Memory Network [37] 

CNC Machine Tool wear 
prediction LR, Bayes, SVR, 

Several Process 
Parameters 
(Privates) 
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Machine learning based approach for 
process supervision to predict tool wear 

during machining [38] 
AlSi10Mg Tool wear 

prediction RF, SVM 
Several Process 

Parameters 
(Publics) 

An intelligent prediction model of the 
tool wear based on machine learning in 

turning high strength steel [39] 
Steel Turning 

Tool wear 
prediction and 
quality of the 

product 

SVR, ANN 
Several Process 

Parameters 
(Privates) 

Logistic classification for tool life 
modelling in machining [40] Milling Machine Tool wear 

prediction LoR 
Several Process 

Parameters 
(Privates) 

Tool Condition Monitoring for High-
Performance Machining Systems—A 

Review [41] 
Review Tool wear 

prediction None None used 

Implementation of Machine Learning 
techniques for prognostic of railway 

wheel flange wear [42] 
Railway Wheel Flange Wear 

prediction LoR, ANN 
Several Process 

Parameters 
(Privates) 

Machine Learning Framework for 
Predictive Maintenance in Milling [43] Milling Machine Predictive 

Maintenance 

LR, DF, BLR, 
BDT, NN, LoR, 

DJ, BDT 

Several Process 
Parameters 
(Privates) 

In-process Tool Wear Prediction System 
Based on Machine Learning 

Techniques and Force Analysis [44] 
Machining Flank Wear 

Prediction CNN 
Several Process 

Parameters 
(Privates) 

Tool Wear and Tool Life Estimation 
Based on Linear Regression Learning 

[45] 
Cutting Tool Tool wear 

prediction LR 
Several Process 

Parameters 
(Privates) 

 
 

Most of the analysed articles have used Python as implementation tool, few others Matlab. 

However, in several documents, there is no reference to the software used. Almost all the 

articles have used only numerical parameters (in the column the typology is specified only 

where there were more than one). Unfortunately, almost all the articles have private data or at 

least the publisher did not provide information about the availability. 

Eventually, some graphs from the SCOPUS Analysis have been collected and shown 

underneath [Figure 1] this section to furnish some additional particulars regarding the articles 

presented formerly. One of the most important interesting facts is, indeed, the increasing 

number of articles on this topic, especially in the last 8 years. 
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2.1.2. Second query: machine learning and digital twin 
 

For the second iteration, a slightly different query has been chosen: TITLE-ABS-KEY (machine 

AND learning AND manufacturing AND digital AND twin) and, like the first iteration, the off-

topic subjects have been excluded. The table [Table 2] presented beneath, differently from the 

previous one [Table 1] differentiates the Machine Learning (ML) topics with the ones of Digital 

Twins, since the two arguments are related but they are complementary and almost never they 

have the same purpose. 

 
 

Table 2: second iteration analysis by article 

Title Area ML Topic DT Topic Methods 
Used 

Datasets 
Used 

Hybrid learning-based digital twin for 
manufacturing process: Modelling 

framework and implementation [46] 

Metal Cutting 
Machines Quality prediction 

Increasing the 
knowledge of the 

features 
ANN 

Several Process 
Parameters 
(Privates) 

Toward a smart wire arc additive 
manufacturing system: A review on 

current developments and a framework of 
digital twin [47] 

Wire-Arc-
Additive-

Manufacturing 
(WAAM) 

Quality prediction Real Time 
Monitoring ANN, RNN 

Several Process 
Parameters 
(Privates) 

Figure 1: diagrams and charts of the result of the first interaction; 



 

 
 

7 

A bio-inspired LIDA cognitive-based 
Digital Twin architecture for 

unmanned maintenance of machine tools 
[48] 

Drilling machine Tool wear 
prediction 

Maintenance Self-
Evaluation RF, SVM, CNN 

Several Process 
Parameters 
(Privates) 

An AR-assisted Deep Reinforcement 
Learning-based approach towards 

mutual-cognitive safe human-robot 
interaction [49] 

Safety Measures Safety Protocols 
Prediction 

Real Time 
Monitoring PPO None used 

A multi-access edge computing enabled 
framework for the construction of a 

knowledge-sharing intelligent machine 
tool swarm in Industry 4.0 [50] 

Swarm Tool Quality prediction Real Time 
Monitoring Not Specified 

Several Process 
Parameters 
(Privates) 

Petri Nets-Based Modeling Solution for 
Cyber–Physical Product Control 

Considering Scheduling, Deployment, 
and Data-Driven Monitoring [51] 

CLIA Not mentioned Real Time 
Monitoring None 

Several Process 
Parameters 
(Privates) 

Metaverse and AI Digital Twinning of 
42SiCr Steel Alloys [52] Steel Alloys Digitalisation Real Time 

Monitoring 

RF, DeT, LR, 
Gradient Bosting 

Regression 

Several Process 
Parameters 
(Privates) 

Digital twin assisted: Fault diagnosis 
using deep transfer learning for 
machining tool condition [53] 

Milling and 
Drilling Machines 

Quality 
prediction/Tool 
wear prediction 

Real Time 
Monitoring SVM 

Several Process 
Parameters 
(Privates) 

Dynamic Scheduling Optimization of 
Production Workshops Based on Digital 

Twin [54] 
AGV Implant 

Production 
Simulation 
Analysis 

Scheduling, 
Control and 
Monitoring 

Not Specified 
Several Process 

Parameters 
(Privates) 

A digital twin implementation 
architecture for wire + arc additive 

manufacturing based on ISO 23247 [55] 
WAAM Quality prediction Real Time 

Monitoring CNN 
Several Process 

Parameters 
(Privates) 

Machine Learning for Design 
Optimization of Electromagnetic 

Devices: Recent Developments and 
Future Directions [56] 

EM Devices Quality prediction Possible Future 
implementation 

ANN, RF, SVM, 
DNN, CNN 

Several Process 
Parameters 
(Privates) 

Mechanistic models for additive 
manufacturing of metallic 

components [57] 

Additive 
Manufacturing 

(Review) 

Quality 
prediction/Tool 
wear prediction 

Increasing the 
knowledge of the 

features 
ANN, SVM, RF 

Several Process 
Parameters 
(Privates) 

Simulation-Optimization of Digital Twin 
[58] 

Beverage 
Manufacturing 

Plant 

Quality prediction 
(Not Mentioned) 

Increasing the 
knowledge of the 

features 
None 

Several Process 
Parameters 

(Simulation) 
Digital Twin Security Threats and 

Countermeasures: An Introduction [59] Review Not Mentioned Threats and 
Countermeasures None None used 

Knowledge Project – Concept, 
Methodology and 

Innovations for Artificial Intelligence in 
Industry 4.0 [60] 

Review Not Mentioned 
Presentation of the 

Project and 
Methodology 

None None used 

A Framework of Dynamic Data Driven 
Digital Twin for Complex Engineering 

Products: The Example of Aircraft 
Engine Health Management [61] 

Aircraft Engine Tool wear 
prediction 

Predictive 
Maintenance RF, RNN, LSTM 

Several Process 
Parameters 

(Publics-provided 
by NASA) 

Synthetic datasets for Deep Learning in 
computer-vision assisted tasks in 

manufacturing [62] 
Robotic Arm Classification of 

the images 
Real Time 
Monitoring CNN 

Several Process 
Parameters 
(Privates) 

Reinforcement Learning Based 
Production Control of Semi-automated 

Manufacturing Systems [63] 

Car Engine 
Components 

Distribution of the 
tasks 

Increasing the 
knowledge of the 

features 
ANN 

Several Process 
Parameters 
(Privates) 

Incorporating process physics 
phenomena in formation of digital twins: 

laser welding case [64] 
Laser Welding Not Mentioned Real Time 

Monitoring None 
Several Process 

Parameters 
(Privates) 

Foresighted digital twin for situational 
agent selection in production control [65] 

Manufacturing 
Implant 

(Not Specified) 
Not Mentioned Real Time 

Monitoring None 
Several Process 

Parameters 
(Privates) 

Digital twin improved via visual question 
answering for vision-language interactive 
mode in human–machine collaboration 

[66] 

VQA 
Recognition of 

Words, Images and 
Sounds 

Real Time 
Monitoring CNN 

Several Process 
Parameters – both 

acoustic and 
numeric - 
(Privates) 

Digital-twin-driven geometric 
optimization of centrifugal impeller with 

Centrifugal 
Impeller (Milling 

Machine) 

Tool wear 
prediction 

Increasing the 
knowledge of the 

features 
Not Specified 

Several Process 
Parameters 
(Privates) 
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free-form blades for five-axis flank 
milling [67] 

Smart Manufacturing Control 
with Cloud-embedded Digital Twins [68] 

Manufacture 
Controller 

Quality 
prediction/Tool 
wear prediction 

Real Time 
Monitoring SVM 

Several Process 
Parameters 
(Privates) 

Combining Simulation and Machine 
Learning as 

Digital Twin for the Manufacturing of 
Overmolded 

Thermoplastic Composites [69] 

Thermoplastic 
Composites Quality prediction Real Time 

Monitoring RF, DeT 
Several Process 

Parameters 
(Privates) 

Towards Real-time Process Monitoring 
and Machine Learning for Manufacturing 

Composite Structures [70] 
CFRP Tool wear 

prediction 
Predictive 

Maintenance Not Specified 
Several Process 

Parameters 
(Simulated) 

Physics-based modeling and information-
theoretic sensor and settings selection for 

tool wear detection in precision 
machining [71] 

Milling Machine Tool wear 
prediction 

Increasing the 
knowledge of the 

features 
KNN 

Several Process 
Parameters –

Images, Sonorous 
and Numerical- 

(Privates) 
Digital twin-driven supervised machine 
learning for the development of artificial 

intelligence applications in 
manufacturing [72] 

Multiple 
Machinery 

Quality 
prediction/Tool 
wear prediction 

Increasing the 
knowledge of the 

features 
ANN, CNN 

Several Process 
Parameters – both 
image and numeric 

- 
(Simulated) 

An effective architecture of digital twin 
system to support human decision 

making and AI-driven autonomy [73] 

Manufacturing 
Implant 

(Not Specified) 
Creating the DT Predictive 

Maintenance Not Specified 
Several Process 

Parameters 
(Privates) 

Understanding of the Modeling Method 
in Additive 

Manufacturing [74] 
Review Not Mentioned 

Challenges, 
Descriptions and 

Applications 
None None used 

The prediction method of tool life on 
small lot turning process – Development 

of Digital Twin for production [75] 
Turning Machine Tool wear 

prediction 

Increasing the 
knowledge of the 

features 
CNN, BP, SVM 

Several Process 
Parameters – both 
image and numeric 

- 
(Private) 

Context Aware Control Systems: An 
Engineering 

Applications Perspective [76] 
Review General 

Description 

Challenges, 
Descriptions and 

Applications 

KNN, CNN, 
Bayesian 

Regression 
None used 

Digital twin for cutting tool: Modeling, 
application, and service strategy [77] Cutting Tool Tool wear 

prediction 
Real Time 
Monitoring 

ANN and CNN, 
SVM 

Several Process 
Parameters 
(Privates) 

Digital Twin: Enabling Technologies, 
Challenges and Open Research [78] Review Not Mentioned 

Challenges, 
Descriptions and 

Applications 
None None used 

An Implementation Approach for an 
Academic Learning Factory for 

the Metal Forming Industry with Special 
Focus on Digital Twins 

and Finite Element Analysis [79] 

Metal Forming Not Mentioned Real Time 
Monitoring None 

Several Process 
Parameters 
(Privates) 

Machine Learning based Digital Twin 
Framework for Production 

Optimization in Petrochemical Industry 
[80] 

Petrochemical Training the DT Real Time 
Monitoring RF 

Several Process 
Parameters – both 
image and numeric 

- 
(Simulated) 

A supervised machine learning approach 
to data-driven simulation of 

resilient supplier selection in digital 
manufacturing [81] 

Supplier Selection Performance 
prediction 

Increasing the 
knowledge of the 

features 

SVM, ANN, 
Bayesian Network, 
Naive Bayes, DeT, 

KNN, LR 

Several Process 
Parameters 
(Privates) 

Machine Learning based Continuous 
Knowledge Engineering for Additive 

Manufacturing [82] 

Additive 
Manufacturing Quality prediction Real Time 

Monitoring 
KNN, SVM, NN, 

DeT 

Several Process 
Parameters 
(Privates) 

Enhancing Digital Twins through 
Reinforcement Learning [83] 

Metal 
Manufacturing Quality Prediction Safety Policy 

Controller 
Bayesian Neural 

Network 

Several Process 
Parameters 
(Privates) 

Electric Motor Production 4.0 – 
Application Potentials of Industry 4.0 

Technologies 
in the Manufacturing of Electric Motors 

[84] 

Electric Motors 
(Review) 

Challenges, 
Descriptions and 

Applications 

Challenges, 
Descriptions and 

Applications 
None None used 
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A Survey on Digital Twin: Definitions, 
Characteristics, Applications, 
and Design Implications [85] 

Review Not Mentioned 
Challenges, 

Descriptions and 
Applications 

None None used 

Digital Twin for Machining Tool 
Condition Prediction [86] Milling Machine Not Mentioned 

Integration of 
digital and physical 

knowledge 
None 

Several Process 
Parameters 
(Privates) 

Lead time prediction in a flow-shop 
environment with analytical and machine 

learning approaches [87] 
Lead Time Lead time 

prediction 
Lead time 
prediction LR, RF, SVR 

Several Process 
Parameters 
(Privates) 

Data Construction Method for the 
Applications of Workshop Digital Twin 

System [88] 
Data Construction Verification of the 

Hypothesis 
Tool wear 
prediction Naïve Bayes, RF 

Several Process 
Parameters 

(Public) 
Digital Twin-enabled Collaborative Data 

Management for Metal Additive 
Manufacturing Systems [89] 

Additive 
Manufacturing 

Decision-Making 
Support (Quality 

prediction) 

Increasing the 
knowledge of the 

features 
CNN 

Several Process 
Parameters 
(Privates) 

Intelligent welding system technologies: 
State-of-the-art review and 

perspectives [90] 

Welding Machine 
(Review) 

General 
Description 

Real Time 
Monitoring 

DeT, SVM, ANN, 
CNN, RNN None used 

 
As in the first interaction, here some graphs extrapolated from SCOPUS are shown [Figure 2], 

to provide a better understanding of where and when this research is pursued the most.  It’s 

interesting noticing how ten years ago the number of research documents about was nought 

and has raised just in the last two years. 

 

 
 
 
 

Figure 2: diagrams and charts of the results of the second iteration; 
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2.2. Machine Learning and Industrial applications 
 

This section is going to analyse, the industrial applications for ML algorithms that have been 

highlighted by the sources of [Table 1]. The main industrial applications are essentially: tool 

wear (25) and quality prediction (12), several others may have been applied for specific works. 

The tools on which the ML models have been applied are also object of discussion since there 

are mainly three different devices the sources are focus on: milling machines (10), drillers (4) 

and alloy (10). Eventually, a subsection is going to briefly describe the not common ML 

method that have been applied for specific purposes. 

 

2.2.1. Tool wear prediction 
 
One of the main fields of intervention that ML faces, at least in industrial applications, is the 

wear prediction of the machinery. Drillers, Millers and in general attrition-based tools, 

equipment that has a flank face operating directly on a workpiece surface causing frictions that 

lead toward the wear of the machine are all potential subject of application for the tool wear 

prediction task for a ML algorithm. Typically, the tool wear of an industrial machine is 

measured mainly on the flank wear ( measured as 

VB) [Figure 3]: the attrition that is generated on 

the flank face of the tool leads to a consistent loss 

of the latter, compromising therefore the 

functionality of the machine [Figure 4] [30].  In 

this context, the ML has indeed proven to be 

efficent and brought a high degree of innovation 

and performance in the industry. In particular, the 

ML objective is to detect patterns, according to 

the features provided and predict a likely value 

(in this case, tool wear), using statistical and 

probability models [33]. The tool life, therefore, 

can be computeted using the Taylor’s Formula 

[Equation 1]: 

 

 

Figure 3: tool wear that can be observed on 
the device [30]; 

Figure 4: a milling machine operating 
along a piece [30]; 
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Equation 1: Taylor’s formula for tool life; 

𝑉𝐶𝑇𝑛 = 𝐶 (1) 

 

Where, VC is the cutting speed of the tool, Tn the tool life expected before the flank wear will 

be too extended and C a constant that has to be computed experimentally. The other values 

depend on the metal and on the machine that are used. The ML is hence used (at least in this 

task) to foresee the value of Tn, using the other parameters as regressors. However, the ML 

may be also applied to classify the tool if worn or still usable according to the value of the 

regressors. These two “types” of ML might seem similar, but the models used for the 

implementation are very different, since the former pursue a prediction on continuous values 

and the latter aim to predict a categorical output, anyway these models and their implications 

are going to be seen in the details in the following chapter.  

An example of implementation of ML is provided by R.Oberlé et al. [1] precisely explain the 

argument of this subsection: the authors, at first, prepared the framework, that is showed aside 

[Figure 5] . They have 

implemented a Random Forest 

(RF) method to predict the tool 

wear in cutting machines, it has to 

find a relationship between the 

input (i.e., torque, temperature, 

speed, etc.) and the output data 

(i.e., the tool wear) during the so 

called “training phase”, verified 

during the “testing phase” and 

eventually applied on new input data computing, hence, the prediction. As described by the 

work of D.Wang et al.[32], the collection and the management of these data may be 

problematic, since their amount in order to be statistically significant has to be enormous, hence 

the authors proposed to implement a meta domain generalisation: the algorithm aims to 

generalise an ML model in a source domain into a target domain, where there are few or no 

data, training and testing these datasets. 

The decision of the best model to be applied is, obviously, determined by the number of error 

that it is expected to do, according to different methods that are going to be discussed in the 

third chapter, like R2 or the Mean Average Error. Speaking of which, the RF is one of the most 

used and efficient (statistical speaking) ML models in both regression  and classification 

Figure 5: conceptual model for tool life prediction from [1]; 



 

 
 

12 

problems, speaking about the latter: A. Varghese et al. [35], for example, used the RF to 

classify the tool wear condition in two different stages, according to how the machine was 

reaching the end of its useful life and how fast the machine was cutting. 

Different authors [9], [11], [14], [22], [17] and [42] have indeed implemented an RF model for 

different machinery (including milling and turning) and for quality prediction (mainly alloy 

plates) field as well, such as [16], illustrating the best practices and ideas they applied during 

the optimisation of the model. 

However, most of the sources in their work, do not implement directly a precise model, they 

compare the results of  the most likely to be efficient methods and eventually they select the 

one that has the best evaluation method, like D.Wu et al. [18],  that analysing a miller, confirm 

the accuracy of the RF, since it has been capable of outperforming other solutions: like 

Artificial Neural Network (ANN) and Support Vector Regression (SVR). The authors affirm 

that they used different sensors to collect the data directly from the machine (e.g., cutting force 

sensor, vibration sensor, acoustic emission sensor) through 315 milling tests.  

Anyway, the RF is not always the best answer, nor it may be applied everywhere: A. Gouarir 

et al. [44] and M.R. Sarabi et al. [6]  have both applied Convolutional Neural Network (CNN) 

as a model to predict the tool wear of machining through the direct analysis of image and the 

prediction embedded in all the Neural Network (NN). Always based on the CNN there is the 

work of J.Wu et al. [13] that implemented a joint classification method for the multi-stage 

Remaining Useful Life (RUL) like the one of [35].  

Speaking of which,  J. He et al. [31] proposed a method, Deep Multi-Task Learning (DMTL), 

derived from the NN, with the peculiarity of being capable of computing the prediction of 

different tasks simultaneously, it was tested on three different cutting machines in different 

working conditions and the method has been able to outperform the other models, revealing 

hence its efficiency.  

Some other methods, require an optimisation or even to be fused to other components/methods 

in order to become reliable, like N.S.Karuppusamy et al. [45] that have to combine the Linear 

Regression (LR) and Principal Component Analysis (PCA), to obtain a hybrid method much 

more effective than the LR alone for predicting the tool wear of a cutting tool edge.  

Eventually, it is also possible to combine in one algorithm both the classification and the 

regression problems: in the work of E.Traini et al. [43], the authors studied the implementation 

of a milling cutting tool, applicable to different machines. The model is thought to predict wear, 

and to classify the output given by the former to decide when it has to be substituted.  
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2.2.2. Quality prediction 
 

A similar topic to the tool wear prediction is the quality prediction, as suggest the name, its aim 

is to predict the quality of the product, providing quality-enhancing insights and hence a 

decrease in the reject rate of the line [4] or it may be used to study the predicted surface 

roughness as in the work of [10]. An 

example of this topic is provided by J. L. 

Bartlett et al. [25], that implemented a 

Naïve-Bayes (NB) as a classification 

model, for the distortion along the metal 

components. The image aside [Figure 6] 

depict the process applied in the article: the 

system from a picture extracts the topology 

of the piece and then detects any difference 

in the height on the surface, the NB, 

eventually, classify (according to the 

settings decided), whether the product is 

defective or regular as in the article of N.K. 

Mandal et al. [36]. Eventually, below is reported an image [Figure 7 ] show three possible 

defects that may be detected by the process illustrated above.  

 

 
Figure 7: defects detected in the process of [25]; 

 

The works of [2] and [3] are both focused the Support Vector Machine (SVM), in particular 

the latter discuss the implementation of the SVM method on Continuous Damage Control 

(CDM), a technique that through a continuous damage is able to provide information to the 

ML about the life and the remaining resistance of the material on which is working. Actually, 

it seems that SVM is rather effective in the task of quality prediction: references [5] and [38] 

Figure 6: process scheme of [25]; 
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have indeed implemented a model to predict the quality of the different types of alloys, with 

an SVM algorithm that systematically outperformed the RF one. The model has been able, in 

both cases, to predict the deterioration of the samples with good accuracy considering both 

morphology, size and defect location. The SVM is a classification model, its version for the 

prediction for continuous values have been implemented by both L. Dang et al. [7]  and I. 

Baturynska et al. [23], with the Support Vector Regression (SVR) as a classification ML 

algorithm in Additive Manufacturing to detect the formation of pores on metal surfaces, 

discussing also about the optimisation problem that is always necessary for any ML algorithm.  

  

2.2.3. Alternative methods for Machine Learning 
 
This section groups the articles that have implemented uncommon or peculiar regression 

methods that may represents an alternative solution to the other seen above, or a combination 

of two common methods. Normally, however, these approaches are dedicated to specific case 

and may be harder to implement then the ones already studied. 

The article of T.F. De Barrena et al. [20], for example, treats the implementation of the 

Bidirectional Recurrent Neural Network (BiRNN), a derivation of the Recurrent Neural 

Network (RNN), that is typically used for algorithms that have to recognise a speech or a 

handwriting, but  in this case has been applied to compute the RUL. Another derivation of the 

NN has been studied by the sources [26] and [27], the Bayesian Neural Network (BNN) as 

model for the prediction, the model may be either discrete or continuous, so in order to receive 

a more precise result, the model has been proposed is a hybrid solution of the two versions of 

the BNN. Eventually, E. Salvati et al. [29] implemented a new neural network: the Physics-

Informed Neural Network (PINN), that combines the numerical analysis embedded in the NN 

models with the underlying physics of the studied phenomenon. 

The sources [21] and [37] investigated the effectiveness of a prediction tool method based on 

time-frequency features implementing the Long Short-Term Memory (LSTM) network, the 

extraction of the data is performed through the time-frequency domain analysis, and then the 

LSTM is applied to combine the multidimensional features and predict the RUL.  

The combination proposed by M. Cheng et al. [39] and M. Hu et al. [15] for tool wear 

prediction, compared the SVM and the combination GS-SVM, that showed a reduction of the 

MSE of 85%. A hybrid model is thought to be an algorithm able to gain the ability of both the 

models it is based on, and therefore enhance both their capabilities, in the case of the GS and 
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SVM have been hybridised since the SVM is necessary to the prediction of the tool wear, and 

the GS is able to perform a grid search on the product, hence improving the ability of the SVM 

itself.  

B. Lutz et al. [34]  proposed the Generative Adversarial Network (GAN) as the model for the 

prediction of Tool-Condition-Monitoring, the peculiarity is that this innovative model is able 

to analyse and study the images obtained from the tool itself, some activity of labelling is still 

required, but the algorithm definitely reduces the effort in this operation.  

Y. Zhou et al. [24] studied for Tool Condition Monitoring another algorithm: Two-Layer Angle 

Kernel Extreme Learning Machine (TAKELM), a direct variation of KELM, a model 

considered efficient especially in the case of a small dataset, however, it does underperform 

with the extraction of inherent features in raw data and hence the TAKELM is supposed to 

overcome these two drawbacks.  

L.Guo et al. [19] proposed the model MSFLRUL, that includes both the data acquisition, 

deletion of outliers and the prediction itself of the RUL model for milling machines and has 

been found capable of effectively foreseeing the remaining life of the tool.   

J. Karandikar et al. [40] worked on a model to classify the tool wear of a milling machine 

through an algorithm of Logistic Regression (LoR), the authors worked on a classification 

problem since, using shop floor data, the wear can only be measured at the time of tool 

replacement. 

 

 

 

2.2.4. Miscellanea 
 
In this subsection, the utmost articles are shortly analysed and explained. One of the most 

interesting of these applications is the work of B. Crawforda et al. [12] designed and tested a 

pipeline for decision-making, in an Industrial implant, implemented on the basis of an ANN 

algorithm. The proposed system had the transparency of the model increased and so was the 

dataset and provided a score ranking globally and locally.   

J. Gu et al. [8] studied Blockchain Technology (BCT) to overcome both quality management 

and data protection issues, due to the high volume of these latter. 

In the work of M. Li et al. [33], they discussed and tested the efficiency of Self Organising 

Maps (SOM), useful for identifying the features for tool wear monitoring through the use of 

competitive learning strategies. The models used for the prediction are the NN and the SVM, 
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and the former has obtained better results than the latter, but the SOM has demonstrated 

significant capability into improving the efficiency of the regression method. 

Eventually, the references,, [28] and [41] provide useful reviews about the optimal criteria for 

choosing features, the quality classifications, optimisation challenges, and the most used and 

efficient models divided by task and process. 

 
 

2.3. Machine Learning and digital twin 
 
As in the previous section, the articles from the second table [Table 2] are going to be explored 

and studied according to their topic and field of application. Moreover, are also provided  

several subsections where peculiar sources have been analysed in the details, since this work 

consider them necessary to give to the reader a sufficient knowledge to continue in the further 

sections of this chapter. Preliminary, three main fields of applications have been detected: 

monitoring (19), simulation  (3) and predictive maintenance (14) that, in the sources, may have 

been applied differently and on a different tool, like drillers (3), milling machines (6) and 

cutting machines (3) or directly the whole implant/production line (9). Notable, is also the 

numerous applications of DT on additive manufacturing systems (5) and other implementations 

that show how elastic the DTs can be. 

Between these articles, there are also some reviews that debate on the DT, not on certain 

applications but on the implications that come with the implementation of these technologies. 

2.3.1. Digital twin definition  
 
In this section is going to be described the DT, an innovative technology that is spreading 

through all the industrial fields. It usually has been described as “the forefront technology of 

Industry 4.0” [78],  for what concerns data analysis and the connectivity on the Internet of 

things (IoT). The DT is, indeed, expected to be one of the most important innovations brought 

by the Industry 4.0 revolution, but what is exactly a DT?  

According to the NASA: “A DT is an integrated multiphysics, multiscale, probabilistic 

simulation of an as-built vehicle or system that uses the best available physical models, sensor 

updates, fleet history, etc., to mirror the life of its corresponding flying twin” [78].  
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More in general, a DTs can be defined as a virtual machine (or computer based) model that 

simulates, emulates, or mirrors a physical entity (the so-called physical twin). The DT is, 

therefore, linked to its twin through a unique key, identifying the physical entity, however it 

cannot be simply considered a model or a simulation, it has to be considered an evolving 

counterpart that follows the lifecycle of the physical twin and learn from it, sometimes being 

also able to monitor and control the physical entity (or process). Specifically talking, the 

twining it’s possible by the use of a continuous communication and interaction, through the 

synchronisation between the DT and the physical part, and/or an external entity that supervise 

the whole process [85]. Big-data storage and analytics are all technologies that nowadays are 

hugely common and affordable and hence, relatively 

easy to implement. On the other hand, prediction, 

monitoring and control is entrusted to both Artificial 

Intelligence (AI) and ML, enabling the predictive 

maintenance approach and real-time monitoring of 

the system. [85], moreover the AI may be a valid 

assistant for the DT to improve the product quality 

and enhancing the supply chain efficiency [60]. The 

image aside [Figure 8] summarises the behaviour of 

a DT and how it relates with its physical counterpart.  

As already explained above, the DT system is provided with both AI and ML to ensure the 

highest level of autonomy and precision available, however the system cannot usually be 

considered fully autonomous, but they still require an adequate amount of human operators 

especially when the operation performed is of the diagnosis type or when modification or 

testing are required [85].  

At the begin of the section, there has been expressed a general description of a DT, in this 

subsection, according to the work of B.R. Barricelli et al. [85], are going to be showed the main 

characteristic that a proper DT system is supposed to be implemented with:  

• Both the DT and the physical counterpart have to be equipped with networking devices 

to ensure the continuous exchange of data, even with a cloud-based connection, 

however, DT system may be completely cloud-based as in [56]; 

• All the data exchanged among the system have to be stored in a data storage system, 

accessible by the DT as well. The data to be stored, moreover, have to be both the 

dynamic and the static, that will work as a “memory” of the physical twin; 

Figure 8: a DT system from [112]; 
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• The DT has to be able to manage and process high-dimensional data, hence it has to be 

equipped with high-dimensional data-(de)coding and data fusion algorithms to manage 

the data coming from different sources; 

• A proper DT system implies the use of an AI, based on supervised/unsupervised 

learning models, enabling different applications: prediction, pattern recognition, 

outliers detection as shown in the work of Z. Huang et al. [46]; 

• Obviously, the DT has to provide modelling and simulation applications for depict in 

the best possible manner the current state of the two twins. Alternatively, it may be also 

applicated for the creation of simulated datasets for training ML algorithms [62]; 

As highlighted by the work of A. Fuller et al. [78], several similar terms spreaded in the field 

of the DT might be misleading and cause of incomprehension and hence they need to be 

clarified:  

• Digital Model: a digital version of a pre-existing physical object, it lacks of any data 

exchange and there is no communication with its physical counterpart; 

• Digital Shadow: a digital version of a physical object, as the name suggests, the former 

receive information from the physical part but not vice versa; 

• Digital Twin: the DT is characterised by a reciprocal exchange of data between the 

digital and the physical twin, and a modification in one leads automatically to a change 

in the other.  

The following image [Figure 9], provide a graphical description of what it has just been 

described above: 

 

 

Figure 9: Digital Model, Shadow and Twin, from [78]; 
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The work of Y. Xie et al. [77] has highlighted the procedure of a manufacturing task within an 

industrial environment, about the cutting machine as the following lines are going to portrait.  

The following data are, therefore, required to prepare a DT system for the whole life of the 

manufacturing tool: 

• Market Analysis data: quantity and production volumes may be determined by the 

customer demand, market data and segmentation; 

• Development data: improvement and modification on the tool design or specifications, 

can be obtained and shaped by the historical, functional and parametrical data; 

• Production plan data: inventory, supplier data are all information that are definitely 

useful to understanding the tool and the line itself; 

• Manufacturing data: the raw materials, once arrived at the implant are inspected during 

the quality testing and then used to assemble the products ; 

• Usage and service: failure data, tool wear status and general utilisation information are, 

eventually, obtained directly at the usage stage of the machine. This particular type of 

data, since there is a huge amount of these parameters and they are also supposed to be 

cloud-shared, necessary to consider the implementation of specific technologies and 

techniques to deal with these problems, like: Apache Spark, Apache Hadoop and 

MapReduce that have been presented by [73] 

 

The tool life cycle and the type of information that are obtained at each stage are depicted 

graphically in the image below [Figure 11]. 

 
 

In case the amount of data available from the manufacturing phase, the work of S. Stieber et 

al. [70] explains the introduction of the “Transfer Learning”, a technique that allows to obtain 

Figure 10: data obtained over the stages of the tool cycle from [77]; 
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data in high volume: initially a model is trained with simulated data and hence tuned on the 

actual tool with real-world data. 

The DT is thought to be a complete map for its physical part, obviously the data acquisition is 

performed priorly to be merged with the machine status, followed with an analysis of these 

data. The data fusion allows  the creation of a bi-directional and real-time share of data, the 

ML, on the other hand, is able to predict event such as tool failure over the machine life cycle.  

The following image [Figure 12] shows the interaction between basic and extended data, that 

are going to be explained after the figure. 

 

 
The so called “Basic data” are a range of data that include the design dimensions, various state 

data (feed speed, cutting depth), processing time etc.,  the shape of the digital model is thought 

to be a perfect representation of its physical counterpart, in every possible aspect, fact that is 

possible through the use of these basic data.  On the other hand, the “Extended data” are 

intended to be all the series of parameters, specifications and information that are not directly 

accessible from the tool, but that they are computable by the basic data. Moreover, the extended 

data may be calculated with the use of ML models, especially for tool wear parameters. 

Figure 11: interaction between extended and basic data, from [77]; 
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The DT is hence thought to portrait the tool life cycle, from the begin to the decay, therefore 

also depicting the current efficiency status of the machine, indexes are usually calculated at 

this stage: RUL, surface quality, etc.. 

The fusion of these data is performed over three different layers [77]:  

• Data level: acquired by customers or engineers, all the initial information is here 

received and stored; 

• Feature level: the recognition and the prediction itself of the wear, take place at this 

layer; 

• Decision level: tool failure, maintenance and tool wear status data are obtained at this 

stage, to assist in the human procedure of decision making; 

Furthermore, the following image [Figure 13], displays the relationship between these three 

levels. 

 

 

 

 
As explained by the work of  E.Karaaslan et al. [59], the DT has undoubtedly enabled a new 

level of innovation at the industry level, however several threats may target this newborn 

technology, and the protection of the corporation’s technologies is a priority, especially in this 

Figure 12: relationships between layers during the fusion of all the data [77]; 
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era. This section is going to review and analyse them, providing the best solution for the 

problem, therefore even the implementation of the technology itself requires a knowledge of 

the risks that come with the DT.  

The main threats that have been identified by [59], are described in the following lines: 

• Physical threats: since the interaction with the physical part, even the DT may be 

physically damaged, or may even provoke injuries (even fatal) to human personnel, 

hence it is generally considered as a top-tier in a risk-assestment, however the DT may 

represent the best chance to prevent any fatal injury since it can be programmed to 

avoid or restrict certain movement if organic presence is detected in the system, as 

explained by the work of C. Li et al. [49] and in C. Cronrath et al. [83];  

• System threats: attackers might attack the operative system that host the DT, rather than 

the DT itself, through the use of malicious programs; 

• Software threats: any unauthorised access to the code may compromise the whole DT 

since, the code is the very blueprint of  the DT, and would let the attacker to have access 

to sensible information, such as the vulnerabilities and the characteristics of the DT; 

• ML threats: ML algorithms are also target of malicious program, they are more 

vulnerable in the training/testing phase, and may compromise the reliability of the 

program or decrease the performance; 

The countermeasure, on the other hand, proposed by [59] are showed in the following table 

[Table 3]: 

 

 

Table 3: threats and countermeasures for DT [59]; 

Threats Countermeasures 

Physical Threats Physical Security 

Data Modification Threats 
Tamper-proof and Tamper-resistant 

hardware, Hash, Blockchain, IPFS 

Software Threats 
Software Hardening, Secure SDLC, 

Security Testing 

Data Communication Threats 
Network Resiliency, Cryptographic 

solutions, Blockchain, Firewall, IDS 

System Threats 
Firewall, IDS, Antimalware, System 

Hardening 
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Data Storing Threats Cryptographic solutions 

ML Threats 

Data sanitization, Algorithm robustness 

enhancement, Security Assessment 

Mechanism, Privacy Preserving Techniques 

 

 

 As may be seen by the table, most of these applications/techniques are quite easy to implement 

and should be implemented anyhow, however the implementation of some of these 

countermeasures should not be any prior to a risk-assessment performed in consideration of 

the likelihood and the impact of each event since the important cost that these techniques would 

have on the company/industry. 

 
The previous lines have described the DTs in the detail, studying their features and 

characteristics, however the DT technology comes with issues and challenges as well, that are 

going to be described in this section: 

• Ethical issues: by nature, the DTs technology is expected to compute and analyse huge 

amount of data, some of this data, may be classified as “personal data” (i.e., the height 

of a human operator that work with a machine), according to the definition of the 

GDPR, at the art. 4 [114], and hence under the protection of the European act;  

• Cost of implementation: as explained in other sections, might be characterised by an 

important expenditure that can result in an unbearable sunk cost, that may compromise 

the whole finance of a small company. Worsen by the absence of a standardised system 

of DT [78]; 

• Threats and securities: the security is a source of primary preoccupation for the 

implementation of a DT system, since this technology has to elaborate data that may be 

considered delicate, the protection of these information is of primary importance for 

the company that have to protect against any attempt of breach [59];  

• Misleading predictions and technical limitations: an issue that might has not seem 

obvious is the fact that a DT, even though it is innovative and effective, it may also be 

misplaced or commit errors that are not so easy to detect or correct. Another perilous 

scenario may be considering these system not as in assistance of human-lead task but 

as a substitute for them.  

• Trust: as highlighted by [76], the rapid evolution of technology that has touched every 

sector of the ordinary life, like food and smart cities, that may not be accepted easily 



 

 
 

24 

by everyone. Therefore, the Context-Aware System (CAS) may become an important 

factor to the implementation of these new technologies; 

 

 

2.3.2. DT and ML for production control and monitoring 
 
As highlighted by the work of Q.Min et al. [80], the DT would enable a continuous interaction 

and analysis: a system non-DT based, is strictly dependent on the presence of an expert human 

operator or at top, to a one-time ML output. On the other hand, the DT system is able to 

guarantee that the data collected in real-time in the physical factory are stored with the 

historical ones and both elaborated (training and testing) and provide real-time feedback to the 

industry for the production control, there are also examples of implementation of DT for the 

direct control of machinery in an industrial environment, such as the work of S. Wu et al. [54], 

where the DT operates on Automated Guided Vehicles (AGV) or the article of  Z.Liu et al. [51] 

with the implementation of Petri Nets (PN). 

he ML is perfect for any implementation of DT, since it may be applied in different task and 

situation to obtaining the most useful information: it may be able to compute and foreseen the 

expected Lead Time in the machines [87][63] or it may be applied to predict the supplier 

performance over time [81]. 

Hower this system cannot be expected to be costless nor easy to implement, since it would 

require a great amount of chip and sensor, virtual environment, connection between the 

machines and the virtual environment etc., The source [80] also provides a graphical 

representation of how a DT relates to the physical environment [Figure 10] 
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According to the picture above, the DT (initially training by a ML model using historical data, 

then deployed online) receives the real-time data from the physical environment and elaborates 

various data (optimisations, market modelling and profit maximisation), and the computed 

results are hence used to manage the factory, through secondary systems, such as MES and 

ERP, or even more peculiarly, the ERP can be managed directly by the DT system as described 

in the work of  M. Dehghanimohammadabadi et al. [58], similarly a DT can automatically 

chose the strategy (i.e., FIFO, LIFO) according to the necessity of the implant [65]. 

According to the sources analysed, the Additive Manufacturing (AM), and also the Wire Arc 

Additive Manufacturing (WAAM), seems to be appealing field of application for the most 

recent innovation such as the DTs. The AM, also known as 3D printing, is the technique of 

building parts, layer-on-layer, directly from the raw materials, the WAAM, in particular is a 

subcategory that uses the heat generated by wires to shape the material to be used [47]. 

Typically, the AM relies on trial-and-error techniques before achieving any defect-free 

product, the DT may be applied to reduce the time necessary to this trial and error since it can 

provide a higher level of detail for the data received [57], however it may also be implemented 

for a ‘general’ task of monitoring of the machinery, predicting the process parameters [74]. As 

highlighted by the work of . H.Ko et al. [82], the evaluation performed on these models are 

either physical, either numerical: the former refers to the prediction precision of the physical 

phenomena, the latter, on the other hand, refers to the efficiency of the mathematical model 

Figure 13: A DT for industrial production control [80]; 
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used for the ML. Eventually, the sources [89] and [55] both provide additional implementation 

procedures for DT systems in WAAM manufacture. 

 

 

2.3.3. DT and ML for simulation 
 
Another, important, field of application for the DT is the simulation: simulations of event that 

cannot be recreated on a real device either for human endanger, for time constraints [80] or 

because it is too complicated to figure and understand numerous relationships in a device 

allowing the detection of errors in the project at an early stage [84].  

A world that applies the DT technology consistently is the Formula 1,  where the time constraint 

is important, and on the other hand, an extremely high efficiency is required. Each team has to 

verify the reliability of countless of components each week, and other parts like powertrains 

and tyre compounds have their worn status checked weekly [117]. The DTs perform a primary 

task in developing the car performance, since they can receive continuously new data coming 

from the vehicles, and hence provide the engineers with new data to work on to develop or take 

decisions during the race. A further example of this field of application has been provided by 

Tesla, that implemented a DT for the simulation of the car engine and other component [80]. 

In these applications, the relationship, between the DT and the AI is of primary importance, 

because the final output is generally performed by the AI that using data analytics can improve 

the quality of the forecast of the components, in particular it may be used to enhanced to train 

the ML training phase and improving the final output of the AI [72][67]. Z. Wua et al. [61], is 

one of the few sources that explained in the detail the framework of their proposed a RNN 

based model to monitor the health of aircraft engines, thought to manage the monitoring, 

visualisation, data storage, analysis and eventually control resulting in a system capable of 

calculating the RUL, to diagnose and prognose the engine.  

 

 

 

2.3.4. DT and ML for predictive maintenance 
 
The last field of application of DT that is going to be studied in this work is the predictive 

maintenance, that may be even considered a consistent part of the monitoring and control field. 
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The DT may be in fact created to mirror a device or a machine that is subject to worn, they are 

able to detect both anomalies and predict maintenance to a single object. As explained in the 

work of  T Bornagiu et al. [68], the process is divided in four different layers: 

• Collecting data streams: linked to the physical part, the DT collect several types of 

data, not only from the device but also from the environment, events etc. Eventually 

the system should also be prepared to properly construct and assemble the data and 

convert these data according to a standard, as explained in [88] and [50]. The 

positioning of the sensors over the device is a complicated task and should be performed 

by an expert, however a sensibility analysis can be defined as a good practise to avoid 

any uncertainty [71]; 

• Processing analysis data streams: in this face the DT has to separate and align data 

from the streams in standard time slices and grouping them according to their 

covariance. In this layer, an anomaly may be detected and if necessary, the DT may 

signal to block the machine and isolate defective resources as shown in [86], applied 

for CNC milling machine; 

• Machine Learning: extract online insights from the aggregated data streams from the 

shop floor of resources, process and environment and paralleling computing patterns 

and orders. The use of ML usually implies prediction, classification, and clustering, 

performed with different models, however the NNs have proven themselves to be the 

most effective method for tool wear prediction with historical data availability [75]. 

The system should also be able to manage and deal the conflicts of data in the and to 

direct the system [90]; 

• Decision making: the outputs given by the other layers, allow enabling the predictive 

maintenance and a global optimisation of the process, however it is possible that the 

DT itself can be able to perform self-maintenance and self-optimisation [53], or at least 

provide the exact guideline to the human operator [48]. As depicted by [64], there are 

situations where the algorithm has been designed to receive more than one output 

(obtained with different method), and the DT system itself decides. After several 

training and testing phase, which one is the method that best describe the phenomenon 

of the device on which the DT is working on; 

 

A typical characteristic of this application of DT system is a strict cooperation with a human 

operator, and several solutions to facilitate the interaction have been proposed, one example is 
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depicted in the work of T. Wang et al. [66], they implemented a DT system with a Visual 

question answering (VQA), an embedded technology that, through the deep learning,  is 

capable of visual understanding, text information understanding and reasoning, enabling the 

DT to understand simple question from the operator or to answer to multiple-choice questions. 
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3. Machine learning algorithms 
 
In this chapter the most common and useful algorithms are going to be studied and analysed, 

depicting the mathematical calculations behind them and the architecture of these models. 

Preliminary, it may be useful to provide some general definition:  

• Unsupervised Learning: reveals the underlying pattern in the dataset not explicitly 

presented [102]. 

• Supervised Learning: learns a function to make a prediction of a defined label based of 

the dataset provided [102]. 

• Reinforcement Learning: the ML learn to operate accordingly to the interaction with 

the environment, similarly to a trial-and-error approach [102]. 

However, the ML model analysed here are mainly of the supervised learning. 

According to the sources analysed the most used models are displayed in the following chart 

[Figure 14] and hence the ones that are going to be analysed in the following sections: 

 

 

 

 

Eventually, in the section 2.3., the main libraries that are necessary for any implementation in 

Python of the ML are described briefly. 

Figure 14: pie chart with the models most seen in the sources; 
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3.1. Classification ML Models 
 
As already discussed in the first chapter, while describing the work of the authors there are two 

type of ML models: one is the regression, used to predict continuous values and the second one 

is the classification that, as the name suggest, classify the values in two or more categories. In 

this section, the latter are going to be studied: the classification, in the details, is a process that 

aims to find a model that automatically divide the dataset in the category needed, according to 

several parameters provided. In this section, hence, the most important classification models 

are going to be analysed. 

 

3.1.1. Decision Tree 
 
The DeT has been applied by O.Khalaj et al. [52] for the research of features in the 

implementation of a DT for steel alloys obtaining relevant results, moreover this model can be 

used for both classification and regression, however it is definitely more effective in the 

classification processes [100]. The 

logic behind a DeT, that is a 

supervised model, is quite simple: 

it is a tree structured (see the image 

[Figure 15] aside from the source 

[52]) classifier composed by three 

types of nodes: Root, Interior and 

Leaf. The root node is obviously 

the initial node and represents the 

whole dataset, the interiors are the 

features of the dataset and eventually the leaves are the outcome of the  queries. Hence, the 

output or the leaf is determined exclusively by a True/False mechanism. It has the advantage 

of being quite simple to understand and may help with the data cleaning problem, however it 

is usually subject to overfitting (inability to generalise the algorithm) that makes it unreliable 

to run efficiently [100]. The RF algorithm is a derivation of the DeT that is able to deal with 

this last problem and it is going to be analysed also in its classificator version in the following 

subsection.  

Figure 15: graphic representation of the DeT of [52]; 
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3.1.2. Random Forest 
 
 
According to the several sources reviewed in chapter 1, RF is considered one of the most 

effective ML algorithms for both classification and regression problems. RF is a decision tree, 

and indeed a derivation of DeT described at the subsection 2.1.1.. The RF, differently from 

DeT, is based on Ensemble Learning: a technique that implies the use of multiple trees, 

averaging the result, maximising the efficiency and hence resolving the overfitting problem, 

these models are therefore trained 

with different samples of the 

original dataset through the use of 

the Bootstrapping technique that 

randomly chose these samples 

[101]. These procedures are shown 

graphically in the figure below 

[Figure 17], and moreover it is also 

reported the computational flow 

chart [Figure 16], both coming from 

the source [11]. 

 

 

 

 

 

 

 

 

 

A further analysis regarding the regressor version of the RF is going to be performed in the 

following chapter 2.2.3..  

 

Figure 17: a schematic diagram of the RF of [11]; 

Figure 16: computational flow chart of the RF of [11]; 
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3.1.3. Support Vector Machine 
 
The SVM is a supervised ML algorithm that can be used for both classification and regression 

problem, however the SVM is more reliable in the former, and it’s one of the main classificator, 

being easy to implement, fast and robust [33]. The SVM can be divided in two categories: 

• Linear SVM: used for linearly separable data, meaning that if a dataset can be classified 

into two classes by using a single, straight, line then it is a linearly separable data [103]; 

• Non-linear SVM: if a dataset cannot be classified using a straight line [103]; 

There may be a multitude of “lines” for divide the dataset, but the best decision boundary has 

to be determined anyhow and it is called Hyperplane. The 

data that are closest to the hyperplane, and hence affecting 

it are called Support Vector (SV) because their role [103].  

The graph [Figure 18] aside shows the concepts that have 

just been described.  The work of H. Wang et al. [5] 

highlights the importance of the Kernel Functions in the 

SVM model to avoid the curse of dimensionality by 

replacing high-dimensional data calculation, beneath this 

subsection a table [Table 4] depicts the main Kernel 

Functions. 

 

 

Table 4: Kernel Functions from [5];  

Kernel function Analytical formula Parameter 

Linear Kernel 𝑘(𝑥𝑖, 𝑥) = (𝑥𝑖
𝑡, 𝑥) - 

Polynomial Kernel 𝑘(𝑥𝑖 , 𝑥) = (𝑥𝑖
𝑡, 𝑥)𝑑 𝑑 ≥ 1 

Radial basis function Kernel 
𝑘(𝑥𝑖, 𝑥) = 𝑒

−
‖𝑥𝑖−𝑥‖2

2𝜎2  
𝑑 > 0 

Sigmoid Kernel 𝑘(𝑥𝑖, 𝑥) = tanh(𝛽𝑥𝑖
𝑡𝑥 + 𝜃) 𝛽 > 0, 𝜃 < 0 

 

 

 

Figure 18: graph illustrating the 
main components of a SVM model 

from [103]; 
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Conversely, the role of these Kernel Functions is 

to convert the raw data into a suitable format for 

the SVM algorithm to process, as shown in the 

figure aside [Figure 19] from [5]. Where w is the 

normal vector, output of the Kernel Function. At 

the very end of the algorithm, the result of the 

SVM is given by the following system of 

equations [104] : 

 

 
Equation 2: output of a SVM classifier; model 

𝑦 =  { 1 ∶  𝑤𝑡𝑥 + 𝑏 ≥ 0
0 ∶  𝑤𝑡𝑥 + 𝑏 < 0

  (2) 

 

 

 

3.1.4. Naïve Bayes 
 
The NB, a supervised ML model as well, is called this way since it depends on the Bayes’ 

theorem [25]:  
 

Equation 3: Bayes’ theorem; 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (3) 

 
 

The NB classifier simplifies the assumption that the predictors are conditionally independent 

of each other given the class, however it doesn’t seem to affect the robustness of the model 

results since, they are related to the highest probability and only the single observation might 

be inaccurate. Actually, it has been proven that the model does work efficiently even when 

there is a dependency among the classes. Therefore, under the assumption of independent 

variables the probability of class A occurring due to a known value of data B is given by [25]: 
Equation 4: NB, probability of A=k; 

𝑃(𝐴 = 𝑘|𝐵1, … , 𝐵𝑛) =
𝜋(𝐴 = 𝑘 ∏ 𝑃(𝐵𝑗|𝐴 = 𝑘)𝑛

𝑗=1

∑ 𝜋(𝐴 = 𝑘)𝐾
𝑘=1 ∏ 𝑃(𝐵𝑗|𝐴 = 𝑘)𝑛

𝑗=1

 (4) 

Figure 19: network structure of the SVM 
proposed by [5]; 
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As already explained, the above equation gives the probability of A=k (i.e., worn, or not worn), 

but the algorithm requires an additional part that gives a value or another according to what is 

the classification foreseen, this equation is the Bayes’ classifier [105]: 

 
Equation 5: Bayes’ classifier; 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)
𝑛

𝑖=1
(5) 

 

The GP model, eventually, is a similar approach to both the classification and regression 

problems, but it is slightly less common than the NB. 

 

3.1.5. K-Nearest Neighbour  
 

The KNN is one of the simplest ML models among the supervised ones: it assumes the 

similarity between data and categorise it to the most similar available, its peculiarity is, indeed, 

that it doesn’t require an actual training phase, but it stores all the dataset for classify the new 

data [106]. K, is an integer chosen by the user and it is the number of “neighbours” to consider. 

[8]. A sequence of the procedure just described is depicted in the following picture [Figure 20] 

below: 

    

 

Figure 20: sequence of the operation carried by the KNN algorithm [106]; 
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The nearest neighbour is chosen with the Euclidean distance between the data points, obviously 

the closest is chosen [106]. The choice of K can be done with the elbow method or a cross-

validation [8], conversely the higher K is, the more KNN is immune to the outliers. 

3.1.6. Artificial Neural Network  
 
The ANN is part of the family of the NN, a type of ML based on the human biology since it 

reproduces the connection present in a human brain, concept that can be shown graphically 

with the following images [Figure 21][Figure 22] [107]:  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: graphical representation of the system running in a NN model [107]; 

Figure 22: ANN inner structure [107]; 
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In the details, the second picture shows the inner structure of an ANN , the hidden layers are 

the phases where the algorithm make its calculation and tries to find a pattern in the available 

data. The following equation is the output expected by the ANN model: 

 
Equation 6: ANN output equation; 

𝑦𝑗 =  𝑓𝑖 (∑ 𝑤𝑖𝑗𝑥𝑖 − 𝜃𝑖) (6) 

 

 

Where xi is the input signal of neuron, fi is the activation function and ϴi is the error threshold 

of hidden layer neuron [5]. The activation function is a set of transfer function used to obtain 

the required output, it may be binary, linear, hyperbolic, etc. [107]. In order to minimise the 

error between output the result and the test, the weight and the threshold are updated by the 

back-propagation algorithm and gradient descend algorithm during the training as shown by 

the following equations [5], the iteration stop when the threshold is reached as showed. 
Equation 7: back-propagation algorithm; 

𝑤𝑖𝑗(𝜎 + 1) =  𝑤𝑖𝑗(𝜎) −  𝑙𝑟

𝜕𝑒(𝜎)

𝜕𝑤𝑖𝑗(𝜎)
(7) 

 

 
Equation 8: gradient descend algorithm; 

𝜃𝑖𝑗(𝜎 + 1) =  𝜃𝑖𝑗(𝜎) −  𝑙𝑟

𝜕𝑒(𝜎)

𝜕𝜃𝑖𝑗(𝜎)
(8) 

 

3.1.7. Convolutional Neural Network 
 

The CNN, a component of the NN family, is famous for being one of the most used algorithms 

for the processing of grid-like topology, such as an image [108]. A CNN is typically divided 

in three different layers: 

• Convolutional layer: it performs a dot product using two matrices, one composed by 

learnable parameters and the other by a portion of the receptive field [108]; 

• Pooling layer: it replaces the output from the convolutional layer by computing a 

statistic of the nearby outputs [108]; 

• Fully Connected Layer: it is useful to connect the input and the output [108]; 
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The following image [Figure 23] show the typical structure of a CNN model [109], where the 

input is convolved for producing the activation map, letting the model to learn the features of 

the input.  

 

 
Figure 23: typical structure of a CNN model from [109]; 

 

3.1.8. Recurrent Neural Network 
 
The RNN is going to be the last model to be seen in this work, and it is mostly used for 

processing information that is sequential: a speech, for example, indeed its name, recurrent, 

comes by the fact that the model repeats the process for each element and the output is 

depended to the previous calculations [110].  Mathematically speaking, the process that allows 

the RNN is provided by the following equations: 
Equation 9: calculation of ht in the RNN; 

ℎ𝑡 = 𝑔ℎ(𝑤𝑖𝑥
𝑡 + 𝑤𝑅ℎ𝑡−1 + 𝑏ℎ) (9) 

 
Equation 10: computation of the output in the RNN; 

𝑌𝑡 = 𝑔𝑦(𝑤𝑦ℎ𝑡 + 𝑏𝑦) (10) 

 

Where w is the weight of the value, x the input and b the bias of the observation. The process 

is, therefore, repeated continuously for training and hence improve the quality of the output 

[111]. 
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3.2. Regression  ML Models 
 
As already explained in the section 2.1. the regression is used to foresee the continuous value 

of a dependent variable in relation with another one that is an independent variable, and it is 

also called regressor. Although, what is exactly a regression? A regression is defined as a 

statistical technique that compute the strength of the relationship between the regressor and the 

dependent variable using experimental data. A certain percentage of the data available is 

intended to be trained in the fitting process of the model the rest is used to verify the validity 

of the model: the lower the obtained error, the more accurate is the model. In this section the 

most important regression models are going to be studied. 

 

 

3.2.1. Linear Regression 
 
The LR is one of the simplest supervised algorithms and one of the easier to implement, it’s 

simpleness may be useful when the prediction is just considering one regressor and the 

relationship between is supposed to be linear. This model has been used by N.S. Karuppusamy 

et al. [45], providing also the equation shown underneath this description.  
Equation 11: Linear Regression model 

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + 𝜀

𝑛

𝑖=0

 (11) 

 

 

Where xi is the regressor of the i-th component, Y is the dependent variable, β are the coefficient 

of each component of the equation and eventually ε represents a residual to the dependent 

variable Y. The coefficients β are estimated with the following equation: 
Equation 12: LR computation of β 

𝛽 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖 −  𝑥̅)2𝑛
𝑖=1

(12) 

 

This equation is obtained by the ε minimisation problem of the (10). 
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3.2.2. Logistic Regression 
 
The LoR is depicted in the work of J. Karandikar et al. [40] even though in the article it has 

been used as a classification method, it is not a core competency of its, but it can be used as 

classificator when a threshold command is used in the algorithm. The LoR model, a supervised 

algorithm,  is a Log shaped (s-curve) graph and typically, it is used when Y is a dichotomous 

variable (labelled either 0 or 1) implying that all the values between are the probabilities of Y 

to be one of the two. Its equation model is given by: 
Equation 13: Logistic Regression Model 

𝑝(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 (13) 

 

Where p(x)k is the probability that the respective Yk has one of the two values or (if it is not 

dichotomous) p(x) is equal to Y.  

 
 
 

3.2.3. Random Forest  
 
The analysis performed in the subsection 2.1.2., showed the classificator side of the RF, the 

work of Z. Zhou et al. [11], however showed how even in the regression role the RF performed 

efficiently. The RF is, indeed, composed by several DeT composed by leaves and roots. The 

training stage of the RF model consists in developing these DeT, uncorrelated, and the final 

result is given by the average of the result of all the DeT, on which the RF was trained 

specifically for. Therefore, the final output of the RF for the regression is given by [11]: 
Equation 14: RF regression equation; 

𝑌𝑝𝑟𝑒 =
1

𝑘
∑ 𝑌𝑖

𝑝𝑟𝑒

𝑘

𝑖=0

=
1

𝑘
∑ 𝑓(𝑋, 𝑆𝑛

𝑘)
)

𝑘

𝑖=0

 (14) 

 

As already explained, Ypre is given by the average output of the i-th tree, or alternatively may 

be computed directly in the second equation where (𝑆𝑛
1, … , 𝑆𝑛

𝑘) is the vector of the bootstrap 

samples, and X represents the input variables. The non-linear relationship between X and S, 

f(X, S) is built once the training stage is completed [11]. 
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3.2.4. Support Vector Machine  
 
After the analysis portrayed in the subsection 2.1.3., the SVM regressor is going to be studied 

with the help of the source [2] that used it for predictive control on milling machines. The SVM 

in the regression role may also be called SVR. M. Ay et al. [2] provide a full description to the 

SVR: it has been firstly studied by Vapnik and Lerner in 1963, originally thought to be just a 

classification model, but it was developed later by Vapnik in 2000 with the following 

regression equation:  
Equation 15: Vapnik’s SVM regression equation; 

𝑦 =  𝜔𝑇 ∙  𝜃(𝑥) + 𝜌  (15) 

 

Where ρ is the bias, x is the input vector and ωt ϴ(x) is a function useful to map the input and 

weight the result.  

The learning ability of the algorithm is described by Vapnik as the optimisation of a cost 

function J: 
Equation 16: Vapnik’s minimisation problem; 

min  𝐽 =
1

2
∙ ‖𝑤‖2

2 + 𝐶 ∙ ∑(𝜀𝑘 + +𝜀𝑘
∗)

𝑁

𝑘=1

(16) 

 

Where the first term represents the structural error and the second the empirical error. The 

solution of the optimisation problem leads to the Lagrange coefficients αl, and w can now be 

computed as follows: 
Equation 17: computation of w in the Vapnik’s equation 

𝑤 = ∑(𝛼𝑙 − 𝛼𝑙
∗) ∙ 𝜃(𝑥𝑙)

𝑁

𝑙=1

(17) 

 

Hence, the initial formula of Vapnik can be reworked with the new term [2]. 

 

3.3. Python libraries 

Python is one of the most important and diffused programming languages among the object-

oriented ones, and it’s characterised by a great readability and a relatively easy implementation 

According to most of the sources of chapter 1, Python is the most used language for the 
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implementation of ML algorithms, it may be confronted with Matlab, but the former is 

undebatable easier to implement and to read, easier to transport and it posses far more 

capabilities (at least with the countless libraries that can be imported in the code). The 

following subsections are going to briefly reviews the main libraries that are implemented in 

ML algortihms. 

3.3.1. Matplotlib 

As the name suggests, Matplotlib is a library able to compute laborious mathematical 

operations and plotting the results of these last-mentioned. Matplotlib is a fundamental package 

for the implementation of a ML algorithm, it allows to verify graphically the result or see the 

pattern of the data. Eventually, Matplotlib is also capable of plot several charts at once, 

allowing even a certain amount of customisation of the graph plotted. Below is reported the 

importing line of the library [Code snippet 1], importing it with the command “as” allows to 

short the name of the method once called in a function or in a class. 

 
import matplotlib.pyplot as plt 

Code snippet 1: importing line of Matplotlib; 

 

3.3.2. Numpy 

NumPy is Python package fundamental for scientific computation, enabling calculation with 

arrays and matrices, but also gives to the user several command ( as the square root ), essential 

but absent in the vanilla release of Python, and since its structure, the library accelerates and 

makes smoother all the calculations that are performed in the algorithm [95]. Below has been 

provided the import line of the NumPy library [Code snippet 2]. 

 
 
import numpy as np 

Code snippet 2: importing line of NumPy; 

 

 
 

3.3.3. Seaborn 

Seaborn is a Python package and an extension of Matplotlib, that allows the algorithm to 

elaborate and plot graphs with a statistical purpose (i.e., “scatterplot” and “correlation matrix”) 
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as described in [96]. Below is reported the import line of the Seaborn package [Code snippet 

3]. 

 
import seaborn as sns 

Code snippet 3: importing line of Seaborn library; 

3.3.4. Pandas 

Pandas is a data manipulation  and analysis library. The operation that Pandas is able to perform 

are several: join, merge, split, indexing, select, grouping and ordering, it is able to both create 

the database in-app or importing and reading it from other sources (i.e., local hardware or in-

cloud database) in multiple format: xls, SQL and csv. Pandas is also known since it’s capable 

of performing data cleaning and since it is extraordinary easy to use and to work on. Below, is 

reported the importing line of the package [Code snippet 4]. 

 
import pandas as pd 
df = pd.read_csv('/Users/administrator/... /experiment.csv') 

Code snippet 4: importing line of Pandas and of an external file; 

 
The second line shows the command to use an external file as database in Python, it will not 

be saved and hence any manipulation prior to the stop of the application run has to be repeated 

in any following run. 

3.3.5. Scikit Learn 

Scikit Learn, eventually, is the library that mathematically enables the ML algorithm since it 

brings to the code both the regression and the classification models. Scikit Learn, moreover, is 

thought to work in collaboration with the Python libraries that have been described in the other 

subsections, especially Pandas and Numpy [98]. Underneath this description some command 

for importing the packages from Scikit Learn are showed [Code Snippet 5] 

 
from sklearn.linear_model import LinearRegression, LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 
from sklearn.metrics import classification_report, confusion_matrix, 

f1_score, ConfusionMatrixDisplay 
Code snippet 5: implementation of Scikit Learn library and importation of necessary packages; 
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Metrics is a module that contains the statistical evaluations of the ML modules present in Scikit 

Learn, including F1, R2 and Mean Absolute Error (MAE), hence it’s also a fundamental 

package for any implementation of ML algorithms. 
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4. Steps of Machine Learning implementation  
 

This chapter is going to review step-by-step the main phases that characterise any 

implementation of a ML algorithm, from the collection of the data to the evaluation of the 

model, distinguishing, when possible, particular cases or different situations that may occur 

during the implementation. 

4.1. Collection of the data 
 
The first step is obviously the collection of the data, that varies according to what type of task 

or machine is going to be analysed and prepared for.  

Normally the data are obtained experimentally, hence with several datasets where the authors 

may have varied some condition and kept constant others, as a rule of thumb: to keep constant 

are supposed to be only the condition that are not expected to change in an actual application 

(i.e., the material or the federate). Otherwise, some sources have also implemented a ML model 

using external datasets that have been provided by public sources like NASA or Universities. 

There are, therefore, different ways to extract a dataset from a working machine [115]: 

• Sensors: fundamental for any dataset, they can be placed on the machine or nearby, in 

the environment. They have the advantage of being relatively low-cost solutions and 

are easy to position, however they require precision when they have to be placed on the 

machine since, a misplaced sensor may lead toward an unsatisfactory dataset or worse, 

to a biased dataset;  

• Operators: some information can only be collected by physical operators. Typically, 

these types of information are Boolean (i.e., worn/not worn) and have to be bounded 

with other types of information to be relevant for the ML algorithm; 

• Connected systems: in some cases, the machines are connected to other systems or a 

DT, that are able to provide more accurate, in real time and that would be harder to 

collect manually; 

• Machine tools: most of the modern machine are already capable of produce and share, 

reducing hence the need of the sources listed above; 

The following image [Figure 24] shows a generical configuration for a dataset collection,  it is 

also possible to see the placement of different sensors that have to collect different data type: 
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Figure 24: experiment station from [24] 

 

4.2. Data normalisation and cleaning 
 
As already explained the first section, the number of features to be extracted are several or even 

more and an obvious problem is that each feature has a different dimension, unit of measure 

etc., this inconvenient may lead to an extended time for the training in the model (typically 

80% of the whole dataset is used in this phase) and an eventual failure in the convergence of 

the model [3]. The most common solution to this problem is the normalisation of the dataset 

and especially the z-score standardisation, to eliminate the difference between the feature and 

utilise the whole information available from the dataset. The formula of the z-score is the 

following: 
Equation 18: z-score standardisation equation; 

𝑥∗ =
𝑥 − 𝜇

𝜎
(18) 

 

The standardisation remaps the dataset to an interval [-1,1], equalising the weight of all the 

values. Other known techniques are the ‘Feature Clipping’ that, as the name suggests, clip the 
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value in the datasets to avoids the outliers, or the ‘Log Scaling’ that is able to compress a wide 

range of values into a narrower one using the following formula: 

 
Equation 19: log scaling equation; 

𝑥′ = 𝑙𝑜𝑔(𝑥) (19) 

 

 

The normalisation became necessary especially when in the dataset are present also 

information that are categorical and that can assume value way higher than the measurements 

that have been taken on the machine, even though they are not likely to be that important. 

Eventually, the last operation that has to be performed directly on the dataset, is the data 

cleaning in order to ensure the algorithm to be more efficient and faster. Typically, the data 

that should be removed are: 

• Duplicates: in high-volume collection of data is very likely that duplicate values are 

present in the dataset, these rows should be removed since they don’t add information 

to the algorithm, but it just makes it slower; 

• Outliers: the outliers are value that are significantly different from the rest of the 

dataset, maybe because collected under particular circumstances, and hence should be 

removed from the dataset, however in some cases they may be kept in the database, but 

the ML chosen should be one that is unlikely to be biased by outliers; 

• Incomplete rows: sometimes, may happen that the collection of the data is only 

partially, due to errors in the system or in the sensor, however the status of incomplete 

makes them unusable for a ML algorithm hence they should be removed; 

• Structural errors: errors may be anything that is not consistent with the rest of the 

dataset and that can be defined as mislabelled categories, theoretically these errors may 

be corrected in the dataset and not removed, at least in some cases; 

4.3. Selection of the features 
 
Typically, during the collection of the data several different features are gathered, even though 

a certain amount of them is not decisive for the algorithm and may even hamper the regression. 

The best practise for identifying  empirically the feature is considering the correlation of two 

features, the Pearson Correlation Coefficient is reported below [3]: 
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Equation 20: Pearson Correlation Coefficient; 

𝐶𝑜𝑟𝑟(𝑥𝑖, 𝑥𝑗) =
𝐶𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗)

√𝑉𝑎𝑟(𝑥𝑖) ∙ √𝑉𝑎𝑟(𝑥𝑗)

(20) 

 
 
A graphical and quick solution is the heat 

matrix showed aside [Figure 25] from [3]: 

each square shows the correlation [-1,1] 

between the two features with a different 

intensity of the colour accordingly.  

According to this matrix, the feature should 

be selected when they reach a certain grade 

of correlation in the label that is going to be 

the target of the algorithm. However, there 

are some ‘trick’ to enhance the result, for 

example in the work of [43] didn’t 

considered any feature with a higher correlation then 0.9, since they don’t add any relevant 

information to the model. Alternatively, it can be used the Anova F-Value that gives an idea of 

how much two features are related [17]. 

Eventually, each feature has to contain only value that can be related to other values: typically, 

there may be several featured labelled with strings (name of the material, worn/ not worn, phase 

), hence all these features should be converted in a value: worn/not worn will became 1/0 for 

the calculation and then it may be reconverted back for the final output. 

4.6. Split of the dataset into train and test sets 
 
 
The split of the dataset may be seen as a simple procedure; however, it is a delicate operation 

that has to be studied very carefully: the dimensions of the two derived sets and the way that 

the dataset has been collected are both parameters that may affect importantly the efficiency of 

the algorithm.  

The dimensions of the dataset are typically 80% of the dataset that is used for the training phase 

and the remaining 20% to the test of the model. However different strategies might be taken 

into account for a specific model that have a particular learning capabilities increasing or 

decreasing the size of the training size,  

Figure 25: heat matrix between features from [3]; 
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A second matter is the way in which the whole dataset has been collected: it is important indeed 

to maintain the i.i.d. condition in entire dataset, and especially between the train and the test 

sets. In a typical industrial environment, the train dataset is collected separately to prepare the 

model and then verified on a new dataset which is indeed the test dataset, otherwise, the model 

will be negatively affected, and its output will be a value that does not reflect the actual 

prediction ability of the model. 

Eventually, there is another method to furtherly verify the validity of the model: the k-fold 

cross validation [43], it’s a procedure in which different outputs, obtained from different 

dataset (ideally, they are all supposed to be approximately the same size), are collected and 

their results are averaged for all the evaluators, resulting in just one final output for each 

performance metric. 

 

4.4. Optimisation of the model 
 
Although the several approaches presented above for enhance the results of the ML algorithm 

there is still the need for a further phase for optimise the model, in this section some of these 

are going to be reviewed: 

• Early stopping: during the training phase, the main objective is to reduce the loss 

function (i.e., errors), with this technique the train of the model stops when the evaluator 

stops improving [20]; 

• Training process hyperparameter: the hyperparameter is a parameter that control the 

learning process, and its effect may be enhanced through the so-called Cross Validation. 

Several iterations are performed during the training phase and then compared to define 

the best hyperparameter [20]; 

• General optimisation: during the implementation of the ML algorithm is possible to 

configure different parameters on different models enhancing the result of a model 

according to its specific requirement and needs; 

 

4.5. Evaluation of the Machine Learning model 
 
The decisive final task, it’s obviously the evaluation of the model, or the evaluation between 

the models. Typically, this phase it has to be different according to which type of ML algorithm 

has been performed: classification models require different evaluation method then the ones 
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that can be used on the regressions. In this section both typologies are going to be reviews. 

Eventually, after the evaluation has been performed would be wise to step back to the 

optimisation phase to search if anything could have been done better and hence enhancing 

furtherly the algorithm. 

 

4.5.1. Regression evaluations 
 
The first to be reviewed are the most common: the regression ones, the main evaluators, 

according to most of the sources are: the MAE, Root Mean Squared Error (RMSE), R2. 

The MAE is one of the most common measures for errors in statistic, therefore its principle is 

simple: an arithmetic average of the absolute errors. Its equation is reported below this 

introduction: 

 
Equation 21: Mean Absolute Error; 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
(21) 

 

 

Where, yi is the prediction, xi is the regressor and n is the total number of observations. 

Obviously, the lower is the MAE the better is the model, and generally it is considered a good 

indicator of the magnitude of errors. However, the RMSE gives more weight to large errors, 

highlighting hence systematic errors in the algorithm [1], so it may be more important in the 

evaluation. The formula RMSE is the following: 
Equation 22: Root Mean Squared Error; 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
(22) 

 

Eventually, the R2 or coefficient of determination, it is commonly considered as the most 

important evaluator in statistics: it determines the portion of variability that can be explained 

by the model, hence the higher R2 the better is the model. The formula of the coefficient is the 

following: 
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Equation 23: R2 equation; 

𝑅2 = 1 −
𝑆𝑆𝑅𝑒𝑠

𝑆𝑆𝑇𝑜𝑡

(23) 

 

Where SSRes and SSTot are respectively the sum squares of the residual errors of the data model, 

and the total errors. All these evaluators can be easily implemented in any Python algorithm 

using the module Metrics of Scikit Learn, however the effectiveness of a regression model may 

be also verified graphically, as showed in the following image [Figure 26]: 

 

 

 
Figure 26: two graphs showing different levels of quality; 

 

The graph on the left, portraits a situation where the model is a good solution: it detected the 

general pattern of the data and the R2 is acceptable. On the other hand, the graph on the right 

has completely missed the pattern and the R2 value is indeed very low. Moreover, both the 

graphs allow to determine whether there is a bias in the model: since the dots are equally 

distributed along the line of regression, the model is definitely noy biased. 

Other solutions considered in the sources are: Relative Squared Error (RelSE), Normalised 

Root Mean Error (NRMSE),  Mean Absolute Percentage Error (MAPE), Relative Absolute 

Error (RAE), that are not significantly different from the ones seen above, however any 

application should study what is the best evaluator that fits for the algorithm that is working 

on, since each of them has its pros and cons.  
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4.5.2. Classification evaluations 
 
As already explained, the classification methods require a different form of evaluations since 

the different type of output (i.e., labelled). Typically, there are mainly three types of evaluation 

for classification algorithms: accuracy, precision, recall and F1. The first, the accuracy is 

simply the number of correct predictions over the total predictions: 

 
Equation 24: accuracy in a classification model; 

𝐴𝐶𝐶 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(24) 

 

 

Although, the accuracy gives an idea of how accurate the model is, it provides no clue about 

where there is an error or how to correct it. A potential solution to this problem may be given 

by the precision evaluator: it considers the relationship between the true positive (the 

predictions labelled as ‘1’ when they are actually ‘1’), it may be really useful to correct the 

problem of false positive. The formula is the following: 

 
Equation 25: precision equation; 

𝑃𝑅𝐸𝐶 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(25) 

 
 
 
A similar idea is the one of the recall (called also sensitivity) : it considers the number of true 

positive, over the number of both true positives and false negatives, hence the number of what 

is actually true. The formula is showed beneath; 

 
Equation 26: recall equation; 

𝑅𝐸𝐶 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(26) 

 

 

Eventually, the F1, that is a combination between recall and precision, considering both true 

positive and false negative. Its formula is the following: 
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Equation 27: F1 equation; 

𝐹1 =  
2 ∙ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(27) 

 
 
That, similarly to the R2, the higher the better; it can also be rewritten with a different β ( 

normally is 1 ), to give a different importance between false negatives and true positives.  

It is also possible to verify the correctness of the model through the so-called confusion matrix, 

that shows the number of measurement that were correct or wrong, allowing the user also to 

perceive the presence of any bias or misjudgement in the algorithm. The following image 

[Figure 27], depicts the composition of a confusion matrix that typically is applied on ML 

models of classification. 

 

 

 
Figure 27: confusion matrix for a classification problem; 

The above image shows just two labels, but the confusion matrix can be applied on algorithms 

with more labels and in any case it would be possible to distinguish between the correct 

prediction and the various type of errors that may occur. 

Just as the regression evaluators, all of these techniques are naturally implemented in the 

metrics module of Scikit Learn. 
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4.6.  Confront of two ML outputs 
 
In this section, two ML are going to be analysed according to highlight the differences between 

them, and depicting the features that highlights the characteristics of the two models. 

4.6.1. Implementation and evaluation 
of tool wear algorithm 

 
There are numerous examples of ML algorithms 

applied on tool wear predictions, one of the most 

detailed is the one provided by E. Traini et al. [43], 

they applied several ML models for the prediction of 

flank wear (measured with VB) on milling [Figure 28]. 

A milling machine is a rotating tool with multiple 

cutting edges that gradually remove material from the 

surface of the workpiece, that gradually advance on 

the worktable: hence, knowing how the machine 

works, it would be possible to already start working on 

the features to be used in the ML, such as feed rate, 

cutting speed and spindle speed. 

The dataset used for this article was obtained 

experimentally, and the model has the peculiarity of 

combine both regression and classification algorithms, 

as showed in the image aside [Figure 29]. Initially the 

dataset is collected through analogical sensor and then 

manipulated during the pre-processing phase for the 

generation of the features and obviously, both 

normalisation and transformation of the data in order 

to be suitable for the processing itself, that is computed 

considering the training, the testing, and the evaluation 

phase.  

A first ‘monitoring’ regression model and a classification one is supposed to determine whether 

the tool has to be replaced or otherwise, a second regression ‘predictive’, instead, has to 

compute the RUL, hence for the couple the target variable is the VB and for the second 

regression is, indeed, the RUL.  

Figure 28: milling machine illustration; 

Figure 29: framework proposed by [43]; 
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The models applied for the regression are: LR, RF, Bayesian Linear Regression (BLR), DeT 

and NN, evaluated with RMSE, Relative Squared Error (RelSE) and R2. 

On the other hand, for the classification are chosen: LoR, RF, DeT, NN and Decision Jungle 

(DJ), evaluated with ACC, and the percentages of correct responses SP and WP. 

To enhance the results given by the ML algorithm has been used the hyperparameter Tuning 

method to match the optimal value for each model. 

The results obtained by the model above are showed in the tables [Table 5][Table 6] below: 

 

 
Table 5: results obtained for the two regressions in [43]; 

 RMSEVB RelSEVB R2VB RMSERUL RelSERUL R2RUL 

LR 0.110 0.182 0.817 1.671 0.178 0.822 

RF 0.123 0.225 0.781 1.517 0.134 0.866 

BLR 0.116 0.194 0.813 1.640 0.174 0.826 

DeT 0.122 0.218 0.794 1.615 0.156 0.844 

NN 0.110 0.179 0.821 0.581 0.022 0.979 

 

 
 

Table 6: results obtained for classification in [43]; 

 SP WP ACC 
LoR 0.960 0.9 0.941 
RF 0.936 0.917 0.930 

BLR 0.952 0.917 0.941 
DeT 0.960 0.950 0.957 
NN 0.936 0.9 0.924 

 
 
 
As clearly showed, the best model for the classification is the DT and the NN for both 

regressions, since the results obtained in the R2. 

Typically, a table is the main way to visualise and confront the results, since it is clean and 

immediate to read and understand. However other sources showed the results on the graphs, 

and it may be a solution even more feasible to find a systematic error (i.e., an error om higher 

value of the target). The following image shows the output visualised through a plot [Figure 

30]. 
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The graph clearly shows the good results obtained by both ANN and SVR, however a table for 

reporting the values obtained by the evaluators is necessary in any case. The graph also shows 

the bounds of the error, beyond these lines the prediction is not acceptable.  

 

4.6.2. Implementation  end evaluation of quality control algorithm 
 

This subsection, instead, is going to review an implementation of a quality control algorithm 

for ML, the work of S. Shorr et al. [16] is a good representation of the scope of the algorithm. 

In the article are analysed drilled and reamed bores in an early stage of machining (milling 

machine), the algorithm indeed should help improving the process planning, avoiding waste 

and guarantee the quality of the workpiece. The dataset was obtained by an industry in 

Germany, producing hydraulic valves to be assembled as shown in the following picture 

[Figure 31]: 

Figure 30: ML model output displayed in a graph from [7]; 
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As may be seen, firstly the housing is machined 

with a drilling machine and eventually assembled 

in the final product. The quality of the bores of the 

housing are defined by several parameters: force, 

torque, power, vibration, or acoustic emission that 

may also be applied for the detection of tool wear 

that is itself a feature for the quality of the bores 

during machining. To reduce the amount of data to 

be analysed and hence enhancing the prediction 

itself, a selection of the features through correlation 

matrix [Figure 32] is performed. The standard 

deviation, the mean, skewness, kurtosis, minimum 

and maximum value are computed for the spindle 

and the z-axis, and the feature selected are the ones 

with the highest correlation (i.e., intensity of 

green). Moreover, the targets to be determined are 

identified in the ‘concentricity’ and the ‘diameter’, values that strictly correlate to the quality 

of the product. The model to be used initially was decided prior to the analysis, using a test 

dataset, and resulted in the RF to be the most accurate (lower error) [Figure 33]: 

 

Figure 31: final product and the phase where the ML analysis is 
performed from [16]; 

Figure 32: correlation matrix from [16]; 



 

 
 

57 

 

Accordingly, RF is indeed the model with the lowest MAE for both diameter and concentricity, 

while CNN and ANN are dramatically inaccurate for the diameter. Eventually, the RF was the 

only model applied in the algorithm, it had to compute the predictions of both the targets, 

determining eventually if the quality boundaries are complied. The following graphs show the 

learning curves of the RF over the testing phase [Figure 34]: 

Where, the training dataset size was 85% of the total dataset and the final statistical result are 

reported below [Table 7]:  

Figure 33: graphical output of the initial result in [16]; 

Figure 34: graphs showing the learning curves of the RF, (a) of concentricity and (b) of diameter, 
from [16]; 
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Table 7: results of [16] displayed in a table; 

 Concentricity Diameter 

MAE 17.1 0.27 

MAPE 27.0 0.002 

Maximum Error 83.0 0.72 

R2 96.3 94.1 

 

 

The results show how the results 

(considering especially the R2) are 

acceptable for both the target 

parameters, however it is not 

neglectable that the model could be 

improved furtherly considering the 

MAPE and MAE for the 

concentricity.  

Moreover, studying the results with a 

graphical output [Figure 35] has 

helped the authors to understand the 

results of the prediction was 

influenced by the batch it was 

referring to: the third batch prediction, 

for example, had problems to 

correctly predict the most small and 

large diameter but the model could be 

still considered effective. 

 

 

  

Figure 35: graphical output obtained in [16], divided in 
the 3 batches in which each data has been collected; 
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5. Example of a ML implementation 
 
This chapter is going to reviews a simple classification ML model that has been computed 

using publicly available dataset. The study is going to show how the implementation of a 

classification algorithm can be performed to determine whether a CNC milling machine is 

worn or not, and how it should be executed practically and how to evaluate the results. The 

implementation of the algorithm is going to be explained in the following steps: 

• Dataset: the dataset has to be correctly analysed in order to justify all the other choices 

that have been made, moreover it will also be provided a brief explanation of the CNC 

milling machine from which the dataset has been collected. Moreover, a description of 

the cross validation performed here is going to be provided as well; 

• Data normalisation: the dataset is composed by several parameters that have to be 

analysed for the feature selection, to determine whether an actual correlation is present 

the data normalisation is  a delicate operation that has to be performed; 

• Feature selection: the features selection is a necessity in any ML algorithm since it has 

to provide to the model the parameters that have been identified to be correlated the 

most to the target feature. The model cannot be applied to the entire dataset since 

problems of perfect collinearity can arise from the execution of the model and therefore 

not all the features can be used for the application; 

• Models and Optimisation: a description of the model that has been chosen for the 

analysis and the optimisation of the parameters that has been performed on them, 

moreover to maximising the effectiveness of the algorithm a procedure for K-Fold 

Cross-Validation has been implemented as well and here explained and justified; 

• Output: eventually the output and an analysis of the results have to be performed, 

therefore finding which is the most efficient model; 

 

 

5.1. Dataset 
 

The dataset used are publicly available [116], they have been collected by the University of 

Michigan on a CNC Milling machine, and divided into 18 different experiments, all provided 

in .csv, they come with a 19th file that represent the condition under each experiment has been 
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performed. In this section a general description of the machine and the dataset is going to be 

given, and how the importation/manipulation in Python is performed.   

 

5.1.1. CNC milling machine 
 
As already explained at the beginning of the chapter, 

the machine analysed is a CNC milling machine, 

which is basically a milling machine combined with 

Computer Numerical Control (CNC) [Figure 36]. 

The CNC is a technique of indirect control over the 

machine that, using a set of predefined instructions, 

is able to manipulate the object automatically and 

without any human intervention, hence the machine 

interacts only with the code that has to be converted 

into instructions (i.e., Cartesians coordinates), 

allowing the machine to be extremely precise while 

working [117]. 

 

5.1.2. Dataset description 
 
The total amount of dataset, one for each experiment conducted, is 18 and all of them are 

composed by the same features with the same dimensionality, the features that have been 

collected, have also been described by the source [116]: 

• X1_ActualPosition: actual x position of part (mm); 

• X1_ActualVelocity: actual x velocity of part (mm/s); 

• X1_ActualAcceleration: actual x acceleration of part (mm/s/s); 

• X1_CommandPosition: reference x position of part (mm); 

• X1_CommandVelocity: reference x velocity of part (mm/s); 

• X1_CommandAcceleration: reference x acceleration of part (mm/s/s); 

• X1_CurrentFeedback: current (A); 

• X1_DCBusVoltage: voltage (V); 

• X1_OutputCurrent: current (A); 

• X1_OutputVoltage: voltage (V); 

Figure 36: CNC milling machine from 
[117]; 
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• X1_OutputPower: power (kW); 

• Y1_ActualPosition: actual y position of part (mm); 

• Y1_ActualVelocity: actual y velocity of part (mm/s); 

• Y1_ActualAcceleration: actual y acceleration of part (mm/s/s); 

• Y1_CommandPosition: reference y position of part (mm); 

• Y1_CommandVelocity: reference y velocity of part (mm/s); 

• Y1_CommandAcceleration: reference y acceleration of part (mm/s/s); 

• Y1_CurrentFeedback: current (A); 

• Y1_DCBusVoltage: voltage (V); 

• Y1_OutputCurrent: current (A); 

• Y1_OutputVoltage: voltage (V); 

• Y1_OutputPower: power (kW); 

• Z1_ActualPosition: actual z position of part (mm); 

• Z1_ActualVelocity: actual z velocity of part (mm/s); 

• Z1_ActualAcceleration: actual z acceleration of part (mm/s/s); 

• Z1_CommandPosition: reference z position of part (mm); 

• Z1_CommandVelocity: reference z velocity of part (mm/s); 

• Z1_CommandAcceleration: reference z acceleration of part (mm/s/s); 

• Z1_CurrentFeedback: current (A); 

• Z1_DCBusVoltage: voltage (V); 

• Z1_OutputCurrent: current (A); 

• Z1_OutputVoltage: voltage (V); 

• S1_ActualPosition: actual position of spindle (mm); 

• S1_ActualVelocity: actual velocity of spindle (mm/s); 

• S1_ActualAcceleration: actual acceleration of spindle (mm/s/s); 

• S1_CommandPosition: reference position of spindle (mm); 

• S1_CommandVelocity: reference velocity of spindle (mm/s); 

• S1_CommandAcceleration: reference acceleration of spindle (mm/s/s); 

• S1_CurrentFeedback: current (A); 

• S1_DCBusVoltage: voltage (V); 

• S1_OutputCurrent: current (A); 

• S1_OutputVoltage: voltage (V); 
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• S1_OutputPower: current (A); 

• S1_SystemInertia: torque inertia (kg*m^2); 

• M1_CURRENT_PROGRAM_NUMBER: number the program is listed under on the 

CNC; 

• M1_sequence_number: line of G-code being executed; 

• M1_CURRENT_FEEDRATE: instantaneous feed rate of spindle; 

• Machining_Process: the current machining stage being performed. Includes 

preparation, tracing up  and down the "S" curve involving different layers, and 

repositioning of the spindle as it moves through the air to a certain starting point; 

Eventually, the datasets are bounded to a 19th file, called ‘train’, which is a summary of the 

characteristics of all the experiments, its features have also been described by [116], as follows: 

• No : experiment number; 

• material : wax (same for all the experiments); 

• feed_rate : relative velocity of the cutting tool along the workpiece (mm/s); 

• clamp_pressure : pressure used to hold the workpiece in position(bar); 

• tool_condition : label for unworn and worn tools; 

• machining_completed : indicator for if machining was completed without the 

workpiece moving out of the pneumatic in position; 

• passed_visual_inspection: indicator for if the workpiece passed visual inspection, only 

available for experiments where machining was completed; 

Obviously, the last three features have been collected after the experiments were completed, 

while the first four features have been collected prior to the experiments were conducted. 

 

5.1.3. Implementation on Python 
 
The following lines shows how the datasets have been loaded in the algorithm and how 

combine them with the train file [Code Snippet 6]: 

 
def datatable(): 
   experiment_result = pd.read_csv("/Users/../Test/train.csv") 
   experiment_result['passed_visual_inspection'] = 

experiment_result['passed_visual_inspection'].fillna('no') 
   df = pd.read_csv('/Users/../Test/experiment_01.csv') 
   frames = [] 
   for i in range(1, 19): 
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       exp_num = '0' + str(i) if i < 10 else str(i) 
       frame = pd.read_csv(f"/Users/../Test/experiment_{exp_num}.csv") 
       exp_result_row = experiment_result[experiment_result['No'] == i] 
       frame['exp_num'] = i 
       frame['material'] = exp_result_row.iloc[0]['material'] 
       frame['feedrate'] = exp_result_row.iloc[0]['feedrate'] 
       frame['clamp_pressure'] = exp_result_row.iloc[0]['clamp_pressure'] 
       frame['tool_condition'] = exp_result_row.iloc[0]['tool_condition'] 
       frame['machining_finalized'] = 

exp_result_row.iloc[0]['machining_finalized'] 
       frame['passed_visual_inspection'] = 

exp_result_row.iloc[0]['passed_visual_inspection'] 
 
       frames.append(frame) 
       df = pd.concat(frames, ignore_index=True) 
   mapping_1 = {'Starting': 0, 
                'Prep': 1, 
                'Layer 1 Up': 2, 
                'Layer 1 Down': 3, 
                'Repositioning': 4, 
                'Layer 2 Up': 5, 
                'Layer 2 Down': 6, 
                'Layer 3 Up': 7, 
                'Layer 3 Down': 8, 
                'end': 9, 
                'End': 9} 
   mapping_2 = {'worn': 0, 
                'unworn': 1} 
   mapping_3 = {'no': 0, 
                'yes': 1} 
 
   df['Machining_Process'].replace(mapping_1, inplace=True) 
   df['tool_condition'].replace(mapping_2, inplace=True) 
   df['passed_visual_inspection'].replace(mapping_3, inplace=True) 
   df['machining_finalized'].replace(mapping_3, inplace=True) 
   df = df.sample(frac=1) 
   df.drop_duplicates() 
   print(df) 
   column_headers = list(df.columns.values) 
   print("The Column Header :", column_headers) 
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   return df, df_test 

Code snippet 6: implementation of the dataset in the algorithm; 

 

The code above is the function “datatable” that has been applied for this analysis, it has to 

resolve two different problems: merging 18 similar files and merge these 18 files with 

another one that is totally different. The solution that has been found is to, firstly, add as a 

feature the experiment number (“exp_num”) and then combine all the values present in 

“train” for that experiment to all the rows present in each experiment. The following is the 

output that has been obtained:  

 
“The Column Header : ['X1_ActualPosition', 'X1_ActualVelocity', 

'X1_ActualAcceleration', 'X1_CommandPosition', 'X1_CommandVelocity', 

'X1_CommandAcceleration', 'X1_CurrentFeedback', 'X1_DCBusVoltage', 

'X1_OutputCurrent', 'X1_OutputVoltage', 'X1_OutputPower', 

'Y1_ActualPosition', 'Y1_ActualVelocity', 'Y1_ActualAcceleration', 

'Y1_CommandPosition', 'Y1_CommandVelocity', 'Y1_CommandAcceleration', 

'Y1_CurrentFeedback', 'Y1_DCBusVoltage', 'Y1_OutputCurrent', 

'Y1_OutputVoltage', 'Y1_OutputPower', 'Z1_ActualPosition', 

'Z1_ActualVelocity', 'Z1_ActualAcceleration', 'Z1_CommandPosition', 

'Z1_CommandVelocity', 'Z1_CommandAcceleration', 'Z1_CurrentFeedback', 

'Z1_DCBusVoltage', 'Z1_OutputCurrent', 'Z1_OutputVoltage', 

'S1_ActualPosition', 'S1_ActualVelocity', 'S1_ActualAcceleration', 

'S1_CommandPosition', 'S1_CommandVelocity', 'S1_CommandAcceleration', 

'S1_CurrentFeedback', 'S1_DCBusVoltage', 'S1_OutputCurrent', 

'S1_OutputVoltage', 'S1_OutputPower', 'S1_SystemInertia', 

'M1_CURRENT_PROGRAM_NUMBER', 'M1_sequence_number', 'M1_CURRENT_FEEDRATE', 

'Machining_Process', 'exp_num', 'material', 'feedrate', 'clamp_pressure', 

'tool_condition', 'machining_finalized', 'passed_visual_inspection']” 

 

Moreover, the function has to solve some data transformation problems as explained in [43]: 

the features “tool_condition”, “machining_finalized”, “passed_visual_inspection” and 

“Machining_Process” are all features where the values are strings, hence they have to 

converted in values. To do so the “dictionary” method has been applied: for each string 

present in the column, a correspondent numerical value has been associated with the 

dictionaries (called “mapping_i”) and modified in the dataframe through the method 

“.replace” native of Pandas. Eventually, the function removes the duplicates present in the 

database (df.drop.duplicates()) and randomise the order of the row present in the database 
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(df.sample) in order to don’t compromise the training phase that is going to be performed in 

the other functions present in the algorithm.  

As explained in the last chapter, the test and train dataset should be separated since the 

beginning and they cannot be merged and divided any after, hence the best solution is to 

divide already the dataset, resulting in two different return for the function showed above.  

 

5.2. Data normalisation and cleaning 
 

The following lines of Python illustrate the implementation of data cleaning and normalisation 

in the application prepared for this work [Code snippet 7]: 

 
def cleaning(test, train): 
   df, df_test = datatable(test, train) 
   to_drop = [] 
   to_drop_2 = [] 
   for col in df.columns: 
       if len(df[col].unique()) == 1: 
           to_drop.append(col) 
   df.drop(to_drop, axis=1, inplace=True) 
   for col in df.columns: 
       if len(df[col].unique()) == 1: 
           to_drop_2.append(col) 
   df.drop(to_drop_2, axis=1, inplace=True) 
   cols_to_norm = ['X1_ActualPosition', 'X1_ActualVelocity', 

'X1_ActualAcceleration', 'X1_CommandPosition', 
                   'X1_CommandVelocity', 'X1_CommandAcceleration', 

'X1_CurrentFeedback', 'X1_DCBusVoltage', 
                   'X1_OutputCurrent', 'X1_OutputVoltage', 

'X1_OutputPower', 'Y1_ActualPosition', 'Y1_ActualVelocity', 
                   'Y1_ActualAcceleration', 'Y1_CommandPosition', 

'Y1_CommandVelocity', 'Y1_CommandAcceleration', 
                   'Y1_CurrentFeedback', 'Y1_DCBusVoltage', 

'Y1_OutputCurrent', 'Y1_OutputVoltage', 'Y1_OutputPower', 
                   'Z1_ActualPosition', 'Z1_ActualVelocity', 

'Z1_ActualAcceleration', 'Z1_CommandPosition', 
                   'Z1_CommandVelocity', 'Z1_CommandAcceleration', 
                   'S1_ActualPosition', 'S1_ActualVelocity', 
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                   'S1_ActualAcceleration', 'S1_CommandPosition', 

'S1_CommandVelocity', 'S1_CommandAcceleration', 
                   'S1_CurrentFeedback', 'S1_DCBusVoltage', 

'S1_OutputCurrent', 'S1_OutputVoltage', 'S1_OutputPower', 
                   'M1_sequence_number', 'M1_CURRENT_FEEDRATE', 
                   'Machining_Process', 'feedrate', 'clamp_pressure', 
                   'machining_finalized', 'passed_visual_inspection'] 
   df[cols_to_norm] = MinMaxScaler().fit_transform(df[cols_to_norm]) 
   df.dropna(axis=0, how="any", subset=['tool_condition'], inplace=True) 
   df = df.fillna("", inplace=False) 
   df_test[cols_to_norm] = 

MinMaxScaler().fit_transform(df_test[cols_to_norm]) 
   df_test.dropna(axis=0, how="any", subset=['tool_condition'], 

inplace=True) 
   df_test = df_test.fillna("", inplace=False) 
   print(df) 
   labels = ['not worn', 'worn'] 
   df['tool_condition'].value_counts().plot(kind='pie', labels=labels) 
   print(df_test) 
   return df, df_test 

Code snippet 7: data cleaning function and normalisation; 

 

 

The function above is the one used to clean the datasets and normalise the values, firstly the 

datatable function is deployed to import the databases, and all the column that are not completes 

are removed, then a list containing the name of the columns of the database that have to be 

normalised, note that all the column are selected for the normalisation but “tool_condition”, 

since the target of the analysis and if normalised it would become a continuous variable and no 

longer a categorical one. The normalisation is performed with the method MinMaxScaler(), 

from the package “Preprocessing” of SciKit Learn, and it applies a scaling normalisation to all 

columns that have been selected in a range between 0 and 1, on the basis of what are the 
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maximum and the minimum for each 

parameter. Furthermore, the function 

proceeds dropping all the rows that have no 

value in “tool_condition” since useless. 

Eventually, the function counts and plot the 

number of worn and unworn rows are present 

in the train dataframe: an excessive number 

on a side, or the other, might lead to a biased 

prediction. The result of this final part of the 

code, however, is plotted for each iteration 

like in the first one as showed aside [Figure 

37] in order to consider any bias present in the 

testing dataset. Therefore, there is no need to 

have a test dataset unbiased, since the 

algorithm should be able to determine in both cases. 

 

5.3. Selection of the features 
 
The following task is the selection of the features, that has been performed using the heat matrix 

applied on the train database, the following lines represents the lines [Code snippet 8] to obtain 

the correlation matrix and then, the output is showed [Figure 38] 
df, df_test = cleaning(test, train) 
fig, ax = plt.subplots(figsize=(40, 40)) 
sns.heatmap(df.corr(), annot=True, cmap='Blues', ax=ax) 
plt.show() 

Code snippet 8: heatmap/correlation matrix deployment; 

 
 
 
 

Figure 37: pie-chart of the number of worn and not 
worn rows in the dataset of [116]; 
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Figure 38: heatmatrix resulting of the dataset; 

 
 
 
The target feature, “tool_condition” on the last row, has to be checked on each column to 

understand which are the target that may be considered for the regression. Accordingly, all 

the features with a higher correlation then 0.05 are hence chosen for the prediction, the 

feature “passed_visual_inspection” and “num_exp”, even though are related are the target 

they are not going to be considered for the prediction since they have been evaluated 

correlated because the construction of the dataset and hence their presence would just falsify 



 

 
 

69 

the results of the prediction. Therefore, the features that are going to be considered for the 

prediction are the following: 

 
['X1_ActualPosition', 'X1_CommandPosition', 
             'X1_DCBusVoltage', 
             'X1_OutputCurrent', 'Y1_ActualPosition', 
             'Y1_CommandPosition', 
             'Y1_DCBusVoltage', 'Y1_OutputCurrent', 'Y1_OutputVoltage', 
             'Z1_ActualPosition', 'Z1_CommandPosition', 
             'S1_ActualVelocity', 
             'S1_ActualAcceleration', 'S1_CommandVelocity', 
             'S1_CurrentFeedback', 'S1_DCBusVoltage', 'S1_OutputCurrent', 

'S1_OutputVoltage', 'S1_OutputPower', 
             'M1_sequence_number', 'feedrate', 'clamp_pressure'] 

5.4. Classification models 
 

The models that have been chosen are here showed, presented with the parameters that can be 

modified and their corrispondant default value:  

• Random Forest: it can be imported by SciKit Learn as RandomForestClassifier, and the 

parameters that can be modified are the following:  

(n_estimators=100, *,  criterion='gini',  max_depth=None,  min_samples_split=2,  m

in_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_n

odes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs

=None, random_state=None, verbose=0, warm_start=False, class_weight=None, cc

p_alpha=0.0, max_samples=None); 

• K-Nearest-Neighbour: it is imported form Scikit Lean as 

neighbours.KNeighboursClassifier(), it can be modified in the following parameters: 

(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='

minkowski', metric_params=None, n_jobs=None); 

• Decision Tree: it is imported as DecisionTreeClassifier(), can be modified in 

(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_sam

ples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=Non

e, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alp

ha=0.0); 
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• Logistic Regression: imported as LogisticRegression, is the only one that is not 

properly a classifier, but it is often applied in this role, it can be modified as follows 

(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scalin

g=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_

class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None); 

• SVM: it is imported as svm.SVC, it’s the classification variant of the SVM as explained 

in the third chapter, and it can be modified in: (*, C=1.0, kernel='rbf', 

degree=3,  gamma='scale',  coef0=0.0,  shrinking=True,  probability=False,  tol=0.0

01,  cache_size=200,  class_weight=None,  verbose=False,  max_iter=-

1,  decision_function_shape='ovr',  break_ties=False,  random_state=None); 

• Naïve Bayes: imported as naive_bayes.GaussianNB, it is a gaussian variation of the 

Naïve Bayes model and it can be modified in: (*, priors=None, var_smoothing=1e-

09); 

• ANN: imported as neural_network.MLPClassifier, it is the Python most common 

method for a neural network implementation, its parameters are: 

(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch

_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_

iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_star

t=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validati

on_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-

08, n_iter_no_change=10, max_fun=15000); 

 
These models have been chosen according to what has been studied in the third chapter, in the 

section of the classification, in order to show a complete reviews about these algorithms, that 

therefore, they are also supposed to be the most common in any ML implementation. 

Each of these models has been implemented as follows [Code snippet 9]: 

 
from sklearn.linear_model import LogisticRegression 
import numpy as np 
from sklearn.model_selection import GridSearchCV 
from sklearn.ensemble import RandomForestClassifier 
from sklearn import neighbors, naive_bayes 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.svm import SVC 
from sklearn.neural_network import MLPClassifier 
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def random_forest(df, df_test): 
   X_train = df[['X1_ActualPosition', 'X1_CommandPosition', 
                 'X1_DCBusVoltage', 
                 'X1_OutputCurrent', 'Y1_ActualPosition', 
                 'Y1_CommandPosition', 
                 'Y1_DCBusVoltage', 'Y1_OutputCurrent', 'Y1_OutputVoltage', 
                 'Z1_ActualPosition', 'Z1_CommandPosition', 
                 'S1_ActualVelocity', 
                 'S1_ActualAcceleration', 'S1_CommandVelocity', 
                 'S1_CurrentFeedback', 'S1_DCBusVoltage', 

'S1_OutputCurrent', 'S1_OutputVoltage', 'S1_OutputPower', 
                 'M1_sequence_number', 'feedrate', 'clamp_pressure']] 
   y_train = df["tool_condition"] 
   X_test = df_test[['X1_ActualPosition', 'X1_CommandPosition', 
                     'X1_DCBusVoltage', 
                     'X1_OutputCurrent', 'Y1_ActualPosition', 
                     'Y1_CommandPosition', 
                     'Y1_DCBusVoltage', 'Y1_OutputCurrent', 

'Y1_OutputVoltage', 
                     'Z1_ActualPosition', 'Z1_CommandPosition', 
                     'S1_ActualVelocity', 
                     'S1_ActualAcceleration', 'S1_CommandVelocity', 
                     'S1_CurrentFeedback', 'S1_DCBusVoltage', 

'S1_OutputCurrent', 'S1_OutputVoltage', 'S1_OutputPower', 
                     'M1_sequence_number', 'feedrate', 'clamp_pressure']] 
   y_test = df_test["tool_condition"] 
   model = RandomForestClassifier() 

   model.fit(X_train, y_train) 
   y_pred = model.predict(X_test) 
   return y_test, y_pred 

Code snippet 9: implementation of a model in the algorithm; 

 
The two datasets are imported in the function and two subset for each are obtained for splitting 

each dataset to a Y and X for testing and for training, that is going to be fitted in the model, 

called RandomForestClassifier() in this case. The function is therefore yet incomplete since it 

is going to be modified in the following section  for the optimisation 
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5.5. Optimisation of the models 
 
Eventually, there is the optimisation of the models phase, where for each model the parameters 

are selected in order to have the best possible output. For this application the GridSearch 

method has been applied, it is one of the most common hyperparameter tuning methods, hence 

the implementation of the model is modified as follows [Code snippet 10]: 

 
from sklearn.linear_model import LogisticRegression 
import numpy as np 
from sklearn.model_selection import GridSearchCV 
from sklearn.ensemble import RandomForestClassifier 
from sklearn import neighbors, naive_bayes 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.svm import SVC 
from sklearn.neural_network import MLPClassifier 
 

 
def random_forest(df, df_test): 
   param_grid = {'min_samples_split': [7, 14], 
                 'max_features': [5, 10, 20], 
                 'criterion': ['gini', 'entropy']} 
   X_train = df[[...]] 
   y_train = df["tool_condition"] 
   X_test = df_test[[...]] 
   y_test = df_test["tool_condition"] 
   model = RandomForestClassifier(max_depth=None, min_samples_split=7, 

n_estimators=400, criterion='gini', 
                                  max_features=5) 
   # grid_search = GridSearchCV(model, param_grid=param_grid, cv=3, 

n_jobs=8) 
   # grid_search.fit(X_train, y_train) 
   # print('Best parameters:', grid_search.best_params_) 
   model.fit(X_train, y_train) 
   y_pred = model.predict(X_test) 
   return y_test, y_pred 

Code snippet 10: variation of implementation of the model with hyperparameter search; 

 
The param_grid list, contains the parameters that have to tuned to maximise the optimisation 

of the model. As the program runs the above algorithm return a string with the optimal 
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parameters that have to be inserted in the model manually, therefore after this procedure these 

lines may be converted into comment since they would just increase the time for the algorithm 

to complete. For the same reason, just 4 parameters have been chosen for tuning but 

theoretically all the parameters seen in the last section may be added. 

The following lines show the optimisation of each model present in the algorithm [Code snippet 

11]: 

 
model = RandomForestClassifier(max_depth=None, min_samples_split=7, 

n_estimators=400, criterion='gini', 
                              max_features=5) 
model = neighbors.KNeighborsClassifier(n_neighbors=8, weights='distance') 
model = DecisionTreeClassifier(criterion='log_loss', max_depth=None, 

min_samples_split=2, splitter='best') 
model = LogisticRegression(penalty=None, solver='saga', max_iter=10000) 
model = SVC(probability=True, shrinking=True, kernel='rbf') 
model = naive_bayes.GaussianNB(var_smoothing=0.1873817422860384) 
model = MLPClassifier(max_iter=1000, hidden_layer_sizes=13, random_state=9) 

Code snippet 11: results of the parameter tuning for each method; 

 

5.6. Outputs and evaluations 
 
In this last section are provided the outputs and the evaluations that have been obtained in this 

work, moreover each solution is going to be analysed and commented.  

As already explained in the other sections, in this application a procedure for the K-Fold Cross 

Analysis has been implemented in the algorithm: the 18 experiments are inserted in a different 

database for each of the three iteration that has been performed, the following lines show the 

subdivision of the dataset over the three experiments [Code snippet 12]: 

 
test_1 = [12, 16, 17, 18] 
train_1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15] 
test_2 = [1, 2, 6, 9] 
train_2 = [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18] 
test_3 = [8, 9, 11, 12] 
train_3 = [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18] 

Code snippet 12: subdivision of the datasets over the experiments; 
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 The subdivision has been thought to test the algorithm under a similar amount of worn and 

unworn rows; the results are hence averaged in order to provide a definitive result for each 

evaluation metric.  

What follow are two functions that have been used for the production of the output [Code 

snippet 13][Code snipper 14]:  

 
 
def final_evaluation(evaluations, method, color): 
   data = {'Random Forest': evaluations[0], 'KNN': evaluations[1], 
           'Decision Tree': evaluations[2], 'Logistic Regression': 

evaluations[3], 'SVM': evaluations[4], 
           'Naive Bayes': evaluations[5], 'ANN': evaluations[6]} 
   Names = list(data.keys()) 
   values = list(data.values()) 
   fig = plt.figure(figsize=(10, 5)) 
   plt.bar(Names, values, color=color, 
           width=0.4) 
   plt.xlabel("Methods") 
   plt.ylabel(method) 
   plt.title("Evaluation of the methods selected") 
   plt.show() 
 

Code snippet 13: function for plotting the outputs; 

 
def evaluator(y_test, y_pred, evaluations, evaluations_r, method): 
   precision = metrics.precision_score(y_test, y_pred) 
   accuracy = metrics.accuracy_score(y_test, y_pred) 
   recall = metrics.recall_score(y_test, y_pred) 
   f1 = metrics.f1_score(y_test, y_pred) 
   print(pd.DataFrame([precision, accuracy, recall, f1], 

index=['Precision', 'Accuracy', 'Recall', 'F1'], 
                      columns=[method])) 
   evaluations.append(accuracy) 
   evaluations_r.append(f1) 
   return evaluations, evaluations_r 

Code snippet 14: function for producing the evaluation of each model; 
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As may be seen in the second function, the evaluator used for this application have been: F1, 

precision, accuracy, and recall, according to what has been seen in the third chapter. Each 

time a model is applied in the algorithm, the evaluator function is also applied, that return a 

table with the evaluation of each model, the final evaluation function is triggered as well to 

append the values of the evaluation to a list that is needed for plotting the following results 

[Figure 39][Figure 40] 

 

 

 

 

Figure 39: bar chart plotting the F1 results of the algorithm for each model; 

Figure 40: bar chart plotting the F1 results of the algorithm for each model; 
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As may be seen, the RF and the DT have both obtained good results, and ANN and LoR are 

mediocre but can still be considered acceptable, KNN and SVM are highly inefficient, and 

the NB just did not detect the pattern, however more detailed comment and evaluation are 

provided in the following subsections. 

Eventually, below this paragraph it has been provided the function that has been implemented 

for the whole procedure that has been seen in the last sections [Code snippet 15] 
 

def plotter(test, train): 
   evaluations = [] 
   evaluations_r = [] 
   df, df_test = cleaning(test, train) 
   fig, ax = plt.subplots(figsize=(40, 40)) 
   sns.heatmap(df.corr(), annot=True, cmap='Blues', ax=ax) 
   plt.show() 
   y_test, y_pred = random_forest(df, df_test) 
   cm = confusion_matrix(y_test, y_pred, labels=[0, 1]) 
   disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[0, 

1]) 
   plot('Random Forest', disp) 
   evaluations, evaluations_r = evaluator(y_test, y_pred, evaluations, 

evaluations_r, "Random Forest") 
Code snippet 15: implementation of model, evaluation, and confusion matrix in the algorithm; 

 
 
This procedure is the same for the all the other models, so it would be pointless to show their 

lines as well. Initially two lists are created (void) to be used in the evaluator function, then the 

function of cleaning the database is triggered and it returns the two databases (train and test), 

normalised,  to this function. The results obtained in the model function are called and plotted 

in the confusion matrix. Eventually the function evaluator is triggered that append the 

evaluations to the lists declared at the begin of the function, the function therefore proceeds 

this way for each models that has been seen above.  

The following subsections, as already mentioned, will briefly discuss the results of each model 

and show all the other result and other possible optimisations.  
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5.6.1. Random Forest 
 
The RF is resulted to be the second-best model for 

this application, and for what can be seen in the 

confusion matrix aside [Figure 41], the model is 

balanced and provided acceptable results. 

However, it also shows a bias in the output for the 

second type error, that are five times bigger then 

the ones of first type, and the overall result is 

definitely worse than the DeT. 

The following table, shows the exact value of the 

results obtained by the model [Table 8]: 

 
 

Table 8: results of the RF model; 

Precision Accuracy Recall F1 
0.841 0.869 0.965 0.899 
0.762 0.645 0.645 0.640 
0.989 0.749 0.683 0.808 
0.864 0.754 0.733 0.782 

 
 
 

The last row reports the averaged results of the three rows above, and these numbers have to 

be considered as the results, it has been chosen to report also the other values in order to 

investigate any further problematic in the dataset or in the model. 

As may be seen, the results obtained are substantially good for all the iteration performed, 

moreover the table shows also that the bias toward the second type error is not systematic since 

the recall is strangely different only in the first iteration while in the other experiments the 

results are lower,  however the bias may be toward the first type errors as showed by the 

precision in the third iteration.  

Eventually, the RF is indeed the second better choice for the algorithm however the gap 

between the DeT is important, on the other hand a higher level of tuning of the parameters that 

may reveal a better choice for the analysis.  

 
 
 

Figure 41: confusion matrix of the RF in the 
first iteration; 
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5.6.2. KNN 
 
The KNN obtained what can be defined an 

inefficient result: it did not detect the pattern 

and definitely it suffers of a huge bias toward 

the first type error as it has been depicted in the 

confusion matrix [Figure 42],  a further analysis 

may be obtained consulting the table beneath 

shows the overall results obtained by the KNN 

in the algorithm [Table 9]:  

 
 

Table 9: results of the KNN model; 

Precision Accuracy Recall F1 
0.576 0.459 0.415 0.482 
0.403 0.335 0.336 0.367 
0.777 0.373 0.265 0.395 
0.585 0.389 0.339 0.415 

 
 

As already mentioned above, this model suffers of a bias toward the first type error as showed 

by the precision parameter, that is still high for all the experiments that have been performed. 

The optimisation has been performed on most of the parameters,  hence it’s hard to say that a 

better optimisation will improve somehow the model that on the basis of the table above is just 

inadequate to this dataset. 

 

5.6.3. Decision Tree 
 
The DeT obtained the better results of all the 

other models for all the experiments, and 

especially better than the ones obtained by the 

RF, even though this latter is supposed to be a 

“correction” of the DeT and looking at the 

confusion matrix [Figure 43], it appears also 

as it is not suffering relevant bias toward one 

Figure 42: confusion matrix of the KNN in the 
first iteration; 

Figure 43: confusion matrix obtained by the DeT 
in the first iteration; 
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type of error, and even the absolute error amount is not big as the ones obtained by the other 

models.  

The following table shows the results obtained by the DeT in details [Table 10]: 

 
 

Table 10: results of the DeT model; 

Precision Accuracy Recall F1 
0.906 0.883 0.901 0.903 
0.838 0.741 0.679 0.750 
0.904 0.895 0.966 0.934 
0.883 0.840 0.849 0.862 

 
 
 

As may be seen, the results are very good, and there is no evident sign of any bias toward any 

type of error, and therefore the DeT has provided acceptable estimations for the dataset utilised.  

5.6.4. Logistic Regression 
 
The LoR is the only model that is technically a 

regression, applied to the classification and in this 

work. As may be seen by the confusion matrix 

aside [Figure 44] the results are mediocre and 

hence the model is better than others but not 

comparable to the results obtained by the DeT. It 

can be said that the results seem heavily biased, 

and the number of errors is important. The 

following table shows the results obtained by the 

LoR for each experiment [Table 11]: 

 
 
 

Table 11: results obtained by the LoR model; 

Precision Accuracy Recall F1 
0.567 0.502 0.737 0.643 
0.438 0.342 0.529 0.479 
0.714 0.368 0.306 0.429 
0.573 0.404 0.524 0.517 

 
 

Figure 44: confusion matrix of the LoR in 
the first iteration; 
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As may be seen, the results are medially around 0.5, however looking at the single 

measurement, it is clear that the results are influenced by the datasets on which the model is 

tested and hence the model is not able to detect efficiently a path, however, as already said for 

other models, a different set of parameters obtained with a more accurate optimisation might 

be able to revert this condition and making the model more precise. 

  

5.6.5. SVC 
 
The SVM, or SVC, since it is implemented for 

a classification algorithm, obtained a awful 

result and characterised even by a high degree 

of error, seeing the output depicted in the 

confusion matrix [Figure 45], it seems also that 

a bias toward the first type error is heavily 

present in the model. 

 The following table reports the output of the 

SVC in the algorithm [Table 12]:  

 
 
 

Table 12: results obtained by the SVC model; 

Precision Accuracy Recall F1 
0.430 0.366 0.129 0.199 
0.569 0.566 0.988 0.722 
0.215 0.196 0.015 0.028 
0.405 0.376 0.377 0.317 

 
 
A bias toward the false negative is confirmed. The overall values show that the model did not 

detect the pattern, however a further hyperparameter tuning might be able to slightly increase 

the capabilities of the model, but it is unlikely that it would make the model acceptable. 

 
 
 
 
 

Figure 45: confusion matrix of the SVC obtained 
in the first iteration; 
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5.6.6. Naïve Bayes 
 
The NB obtained the worst results as may be seen 

in the in the confusion matrix [Figure 36], 

moreover it also depicts a situation where the  

model is totally biased, the predictions it made 

define the model as unusable for this algorithm 

and it also has been confirmed by the following 

table [Table 13] : 

 
 
  

Table 13: results obtained by the NB; 

Precision Accuracy Recall F1 
0.268 0.330 0.058 0.096 
0.484 0.413 0.376 0.423 
0.527 0.235 0.107 0.178 
0.426 0.326 0.180 0.232 

 
 
 

As quite clear by the outputs reported, the NB is biased and still committed an enormous 

amount of error. It is quite clear that the model did not detect any path for the target feature 

and hence is not able to be used in an actual situation. Since for it’s hyperparameter tuning 

have been used all the parameters available, it is unlikely that under other conditions the 

algorithm would obtain a better result, 

5.6.7. ANN 
 
The ANN is the only NN that has been 

applied for this algorithm, the results 

obtained are however mediocre as may be 

seen in the confusion matrix [Figure 47]: 

the model is heavily biased toward the 

second type errors, and it has never been 

actually able to correctly detect a path for 

the wear of the machine. The confusion 

matrix depicts also a situation where there 

Figure 46: confusion matrix by the NB in the first 
iteration; 

Figure 47: confusion matrix obtained by the ANN in 
the first iteration; 
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is a tendency to define as “worn” almost all the data available and hence it already proves the 

inadequacy of the model to the algorithm. As a further example of that, the report from the 

three iteration is displayed beneath this paragraph [Table 14]: 

 

 
Table 14: output report for the ANN; 

Precision Accuracy Recall F1 
0.495 0.385 0.590 0.538 
0.571 0.569 0.994 0.725 
0.368 0.186 0.072 0.120 
0.478 0.380 0.552 0.461 

 

 

The bias is evidently highlighted by the Recall metrics that shows a huge variance in the three 

experiments, that indeed influences the F1 as well. However, the values reached are purely due 

to the averaged nature of the experiments since a low value is balanced by an higher one, hence 

the model is just unable to detect the path of the wear of the machine and it should not be 

applied for an actual situation. 

 

 

5.6.8. Comment 
 

In this chapter several different models have been implemented and tested on a classification 

algorithm to verify both the implementation theories seen in the other chapters and to provide 

a deeper understanding of this methodologies. The final evaluation portrayed a situation where 

the DeT outperformed all the other models, and the RF model is almost as balanced.  

This work also reviewed the implications and complications that may arise from any ML 

implementation and provide practical suggestions for the preparation of a ML algorithm. 

All the confusion matrixes and the outputs presented in this chapter have been computed on 

the Python algorithm that has been presented as well and the compiler itself did not return any 

error for this algorithm. 
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6. Conclusions 
 
This work has studied the applications and the implementation of the ML algorithms, from the 

collection of the dataset to the evaluation of the models. Initially the review was focused on a 

purely theoretical analysis with a study on the applications like the quality and the tool wear 

predictions, and even applications that included the DT systems, then the analysis started to 

consider more practical views to see the MLs, as studying the most common ML models, from 

the RF to the KNN and which Python libraries are usually implied for the deployment of a ML 

or its preparation.  

This work studied then, the general methodologies that are used for the implementation of ML:  

how to collect a useful dataset from a machine and how to manipulate it (normalisation and 

sampling) clean the data that cannot be used, how to select the features (regressors) for the 

analysis and how a ML can be optimised using the hyperparameter tuning. Moreover, the study 

reviewed the most used evaluation methods for a ML algorithm, for both regression and 

classification models, including numerical and graphical solutions. 

Eventually the thesis, studied the implementation of a ML through a personal use case with a 

public dataset. The use case briefly studied the CNC milling machine that was the machine the 

dataset was collected from, the dataset itself and how this data has been cleaned and 

normalised, the following task has been the selection of the features and choosing the ML 

model to apply to the algorithm, that were chosen accordingly to what has been seen in the 

analysis of the sources. The final phase of this implementation was the evaluation that has been 

fully portrayed for the whole set of models, with all the evaluation methods that have been seen 

in the former chapter, the results where that the RF and DeT both obtained acceptable results 

and they can actually be used for a ML implementation. 

All this procedures that have been seen in the last chapter are presented with the python 

algorithm that was used for this personal implementation, in order to provide the reader a full 

understanding of what has been done and how it can be furtherly improved. 

 

6.1. Future work 
 
This thesis reviewed the most common techniques and methodologies that can be applied for 

the implementation of a ML algorithm, eventually providing a practical solution for a 

classification problem. Although, this latter approach is complete and fully works, it may be 



 

 
 

84 

improved furtherly with an expanded session of hyperparameter tuning, or even with the 

implementation of Deep Learning methodologies that have not really studied in this work.  

Moreover, a proper study with the DTs should be considered to increase the knowledge of this 

latter, and to understand the relationship between DT and ML. 

Eventually, a further study for a regression algorithm should also be considered in order to 

review the other kind of ML that has not be seen in this practical implementation. 
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