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Abstract 

The global food system is facing the task of sustainably feeding a growing population under 

the effects of climate change. Amidst concerns about its environmental impact, the livestock 

sector plays a crucial role in addressing this challenge, serving as a vital element for the food 

security and economic well-being of millions. Grasslands are an essential source of forage 

for livestock, accounting for half of the total biomass consumed by the entire livestock 

industry. Currently, a considerable portion of global grasslands already suffers from 

degradation due to inappropriate grazing practices, and overgrazing issues are anticipated to 

exacerbate with increasing demand for livestock products. Consequently, the response of 

grasslands to climate change will determine the extent to which increasing anthropogenic 

pressures will impact the health of these ecosystems. This analysis combines future 

projections of net primary productivity from five distinct vegetation models to obtain a 

robust estimation of climate change effects on grasslands carrying capacity (number of 

grazing animals a piece of land can support). The results indicate that rising temperatures 

and CO2 levels will have a generally positive effect on carrying capacity, thereby implying 

some opportunities to increase grazing pressures. Negative hotspots, where vegetation 

productivity is projected to decline, will primarily be concentrated in the Horn of Africa, 

Australia, Brazil, and Central America, affecting only a small fraction of the world's 

grasslands. However, despite this overall positive outlook, climate change will generate 

additional challenges due to the increasing severity, frequency and duration of extreme 

events. In particular, the adaptation to low-productivity years will become more challenging 

in most of the world’s grasslands, sometimes exacerbated by declining annual minimums. 

Furthermore, the inter-annual variability of carrying capacity will increase for over 70% of 

grasslands worldwide. This implies that the productivity of these grasslands will become 

more variable from year to year. Failure to effectively address these challenges through 

appropriate adaptation strategies may eventually offset the benefits derived from increased 

productivity. Moreover, considerations regarding the effects of climate change on forage 

quality and livestock health, may further diminish the benefits of projected productivity 

gains. Nevertheless, the results of this analysis provide crucial insights into future threats 

and opportunities for livestock production, serving as valuable tools for the development of 

policies aimed at preserving grassland resources in response to the growing demand for 

animal products.  
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1. Introduction 
 

1.1. Context 

The global food system is facing the daunting task of sustainably feeding a growing 

population under the effects of climate change. This necessitates a transformative shift in the 

entire food sector, with a focus on its resource use efficiency and on its greenhouse gas 

intensity.  

Among the various sectors, the livestock industry will play a crucial role in this 

transformation. Indeed, despite being responsible for significant environmental impacts and 

an excessive use of natural resources, livestock plays a vital role in the food security and 

economic well-being of millions of people. In particular, in low-income countries it is an 

important source of nourishment, income, and employment, directly supporting the 

livelihoods of local communities. 

Grasslands are an essential source of forage for livestock, supplying between 50 and 60% of 

the total biomass consumed by the entire industry. They are one of the most dominant land 

cover types, covering between 25% and 43% of land surface, and they are highly diverse 

ecosystems, ranging from the tropical savannahs of Central Africa to the arid steppes of 

Central Asia. They provide numerous ecosystem services, such as carbon storage, runoff 

regulation, and erosion control, and they directly support the livelihoods of 600 million 

smallholder farmers in low-income countries. 

Despite their importance, a considerable portion of global grasslands is already in a degraded 

state due to inappropriate grazing practices, and overgrazing issues are expected to worsen 

with increasing demand for livestock-based products. At the same time, climate change 

poses additional challenges to grassland ecosystems, through increasing CO2 levels, 

temperature changes, droughts, and altered precipitation patterns.  

Understanding the response of grasslands to such climatic changes is essential to understand 

the possible impacts that increasing anthropogenic pressures might have on their health. 

Future projections of carrying capacity (number of grazing animals a piece of land can 

support) can serve as valuable tools to guide policymakers in making well-informed 

decisions regarding livestock production. It is only by implementing effective policies and 
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adaptation strategies that we can attain sustainable food production and ensure the 

preservation of grassland ecosystems while meeting the demands of a growing population.  

 

1.2. Research questions and objectives 

The main goal of this analysis is to understand how grasslands ecosystems will respond to 

climate change. To do so, future climate projections of different general circulation models 

will be combined with estimated future grasslands’ productivities according to multiple 

vegetation models. This will enable the estimation of future grassland carrying capacity on 

a global scale. Attention will also be paid to identification of vulnerability hotspots, 

representing the communities that will be most affected by such change, and to understand 

if new opportunities for increasing grazing pressures will emerge. 

This thesis has multiple purposes. Firstly, it aims to fill the gap regarding a topic that is still 

not widely assessed, such as the effect of climate change on the productivity of global 

grasslands. Existing studies have focused on limited areas or utilized a single vegetation 

model, whereas this analysis intends to provide robust global estimations of climate change 

effects on grassland carrying capacity by incorporating a wide range of vegetation models. 

Another purpose of this work is to produce an open-access dataset that could be used for 

food system modelling, especially for food systems optimization. By providing this dataset, 

the analysis aims to contribute to the development of a more efficient and sustainable food 

system. 

Lastly, this work aims to provide policymakers with valuable information that can inform 

global or regional policies. Grassland carrying capacity has already been used in regional 

policies to determine appropriate grazing pressures. By highlighting global hotspots and 

opportunities, this study seeks to provide useful insights for the development of new 

strategies to achieve food security and improve the resilience of vulnerable communities to 

climate change. 

 

1.3. Structure of the thesis 

First, Section 2 provides a detailed guide to relevant literature that introduces the topic and 

provides an overview of the state of existing research. Subsequently, Section 3 offers a 
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comprehensive description of the data and the methodology employed, while the outcomes 

of this analysis are presented in Section 4. Section 5 is dedicated to discussing these findings 

in depth, supported by reference to relevant literature and comparisons with other studies. 

Lastly, Section 6 provides concluding remarks, summarizing the key points and 

contributions of this work.  
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2. Literature review 
 

2.1. The global livestock sector 

In the next decades, the global food system is going to face the challenge of feeding 

sustainably a growing and more meat-consuming population under the effects of climate 

change. This will require a transformation of the whole food sector. In particular, in order to 

achieve a sustainable global food production system, notable achievements in resource use 

efficiency and greenhouse gases (GHGs) emissions will be needed (Herrero and Thornton, 

2013).  

In this transition, the livestock sector plays a key role. Indeed, while providing 33% of the 

proteins in human diets (Havlík et al., 2014), it is also responsible for notable environmental 

impacts and a significant resource use. It is the largest land use sector on Earth, occupying 

between 30% and 45% of the world’s ice-free surface (Herrero et al., 2009; Herrero et al., 

2013), and it accounts for 14.5% of all anthropogenic GHGs emissions. In addition, the 

sector consumes roughly one third of global cropland production and one third of freshwater 

resources used for agriculture (Herrero et al., 2013), and is responsible for significant 

amounts of soil nutrients inputs (Herrero et al., 2009). As the demand of livestock-based 

products is projected to significantly increase in the future, especially in developing 

countries (Herrero and Thornton, 2013; Michalk et al., 2019), significant achievements in 

the resource use efficiency and GHG emissions intensity are needed.  

Despite these negative environmental impacts, livestock products play a key role in the 

global food system and livestock itself can be also associated to a wide variety of societal 

benefits. Firstly, it allows the utilization of areas that are not suitable for crop production and 

it can consume low-quality organic by-products that that are not suitable for human nutrition 

(Michalk et al., 2019; O’Mara, 2012). Moreover, livestock significantly contributes to the 

wellbeing of millions of people and is an essential element for the food security of many 

communities in low-income countries. Here, livestock is a vital source of nourishment, 

guaranteeing the direct access to protein-rich products, such as milk and meat (Herrero et 

al., 2013). It is also an important economic activity, thus being a significant source of income 

and employment. Moreover, it can easily provide nutrients (through manure) and traction 

(for ploughing and transporting goods), thus enhancing the productivities of cropping 

systems, and it’s an important asset that vulnerable communities could sold to finance 
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investments or use as insurance when required (Herrero et al., 2009). Lastly, livestock holds 

great importance for women empowerment in developing countries, as women are 

responsible for the majority of livestock-related tasks (e.g., managing and caring for 

animals).  

Being a source of income for 1.3 billion of people and an essential source of nourishment 

for 800 million people (Herrero et al., 2013), the livestock sector cannot be excluded from 

the discussion on how to transform the global food sector. 

The livestock sector is characterized by different systems: grazing system, where the 

majority of the feed is directly grazed by the animals, which can be moved throughout the 

year or remain in a specific area, mixed systems, where livestock’s feed is based on pastures 

and food crops, and intensive systems, characterized by high animal densities and located 

near large urban centers (Figure 1). In these latter two the animals are fed with supplementary 

feeds, and the percentage of directly grazed forage is more limited (Herrero et al., 2013).   

 

Figure 1. Average composition of global ruminant diets. LGA. livestock grazing arid; LGH, 

livestock grazing humid; LGT, livestock grazing temperate; MXA, mixed arid; MXH, mixed 

humid; MXT, mixed temperate; OTHER, other systems; URBAN, urban systems; ANY, all 

sytsems. Source: Havlík et al. (2015).                

According to Herrero et al. (2013), mixed crop-livestock systems produce most of the meat 

and milk on a global level, but grazing system play a vital importance in supporting the 

nutritional security and incomes of the smallholder producers of Latin America, Africa, and 

Oceania. These latter systems usually rely on feeds of limited quality and availability, and 

are characterized by low productivity levels, thus lower resource efficiency and higher CO2 

emissions.  
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Independently of the system, grasslands are an essential source of forage, as they provide 

between 50% and 60% of the total global biomass consumed by livestock (Havlík et al., 

2015; Herrero et al., 2013; Wolf et al., 2021). Therefore, given the predicted trends of 

population growth and livestock products consumption, increasing attention is now on 

understanding what will be the effects of such anthropogenic pressure on the health of 

grassland resources. The key question at hand is whether these ecosystems can accommodate 

a portion of the increased demand for animal-based products, particularly in regions that will 

face the greatest need, such as low-income countries. 

 

2.2. Grassland ecosystems 

Grassland ecosystems are an essential source of forage for livestock and they are one of the 

most dominant land cover types, covering between 25% and 43% of the land’s ice-free 

surface (Gao et al., 2016b; White et al., 2000). The variability regarding their extent is related 

to the fact that there’s no globally accepted definition of grasslands, as they generally 

indicate grass-dominated terrestrial ecosystems suitable for forage use (Boval and Dixon, 

2012; Michalk et al., 2019; White et al., 2000). Because of this, grasslands are highly diverse 

ecosystems, encompassing multiple biomes and characterized by different climatic patterns, 

vegetation productivities, and plant species (Figure 2). Their vegetation is generally 

constituted by grasses, forbs, legumes, shrubs, and eventually other woody species, and they 

range from managed pastures, which require sowing or grazing for their maintenance, to 

natural ecosystems directly grazed by wildlife and livestock. 

The majority of grassland resources is located in low-income countries and the largest 

grassland areas are found in Sub-Saharan Africa and Asia (Michalk et al., 2019). Their 

productivity is strictly related to the temporal and spatial patterns of temperature and 

precipitation, and the highest productivities are achieved in the savannas of Central and 

Eastern Africa, and the tropical grasslands of Eastern South America and Northern Australia 

(Figure 3) (Piipponen et al., 2022; Sun et al., 2021a).  
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Figure 2. Different grassland ecosystems across the globe. Source: Sun et al. (2021a). 

 

Figure 3. Productivity of grassland ecosystems across the globe expressed as aboveground biomass 

(biomass available for grazing). Adapted from: Piipponen et al. (2022). 

Grasslands are characterized by a significant biodiversity richness and they provide several 

ecosystem services, such as carbon storage, runoff regulation, and erosion control (Petz et 

al., 2014). Indeed, as shown by Bengtsson et al. (2019), when not overgrazed, grasslands’ 
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vegetation is able to stabilize the soil and prevent surface runoff. Grasslands are also able to 

store in their soil significant amounts of carbon, and many consider grassland management 

as an effective climate change mitigation strategy (Boval and Dixon, 2012; Michalk et al., 

2019; O’Mara, 2012).  

In addition to these environmental benefits, grasslands directly sustain human societies, 

enabling the production of meat, milk, wool, and leather (White et al., 2000). They support 

the livelihoods of around 600 million smallholder farmers in low-income countries (Herrero 

et al., 2009), where the production of livestock-based products is mainly reliant on 

smallholder farming systems characterised by a limited resource use efficiency. Here, 

livestock production is closely tied to grasslands productivity, meaning that any change in 

grasslands’ condition will significantly affect the livelihoods of millions of people. At the 

same time, the role of grasslands in developing countries is expected to become even more 

important in the future, as they will have to support an important fraction of the increased 

demand for livestock-based products (Boone et al., 2018; O’Mara, 2012).  

In spite of this, increasing demand for animal products might undermine the health of 

grassland ecosystems. Indeed, despite moderate grazing intensities being related to positive 

effects on grasslands’ condition (Bengtsson et al., 2019), the projected increasing grazing 

intensities are expected to exacerbate overgrazing problems (O’Mara, 2012; Petz et al., 

2014). Multiple studies have shown that a considerable fraction of grasslands is already in a 

degraded state (Michalk et al., 2019; O’Mara, 2012; White et al., 2000), mainly due to 

inappropriate grazing practices, and with current approaches, an increase in the demand of 

animal-based products can be achieved only in spite of further degradation of grasslands. In 

addition to this, climate change is expected to affect the productivity and the condition of 

grasslands (Boone et al., 2018; Gang et al., 2017; Herrero et al., 2009), thus generating 

additional challenges for grasslands management. 

It is therefore important to develop effective policies to define proper grazing intensities and 

preserve the health of global grasslands. 

 

2.3. Grassland carrying capacity and global grazing studies  

Carrying capacity (CC) is a concept developed to define proper grazing intensities and avoid 

land degradation. It indicates the number of grazing animals that an area can sustainably 
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support based on its productivity (de Leeuw et al., 2019) and is expressed as number of 

animals per unit area and per unit time. It is estimated by evaluating the amount of available 

aboveground biomass (AGB) from net primary productivity (NPP) estimations, the fraction 

of AGB that could be sustainably grazed, and livestock’s forage consumption.  

However, despite being relatively simple to define and calculate, there’s a limited agreement 

regarding its calculation principles, and different studies have adopted different 

methodologies to estimate grasslands CC (de Leeuw et al., 2019; Piipponen et al., 2022; 

Qian et al., 2012; Umuhoza et al., 2021). Indeed, some adopted a proper use factor (PUF) to 

express the fraction of AGB that can be sustainably grazed (de Leeuw et al., 2019), while 

others determined geographical restriction factors, such as for terrain slope, tree cover 

(Piipponen et al., 2022), or distance from water sources (Umuhoza et al., 2021), to limit 

AGB availability.  In addition to this, the calculation of available forage is challenging and 

its estimations, and consequently the ones of CC and grazing intensity (GI), are highly 

variable in the literature. As highlighted by Fetzel et al. (2017), this is in part related to the 

uncertainty in NPP estimations, which can be obtained through different methods (e.g., 

remotely sensed data, field-based estimations, vegetation models) and which directly affect 

the estimations of available biomass for grazing.  

In particular, when conducted on a global scale, grazing studies tend to adopt a simplified 

approach for the estimations of available forage. First, they usually adopt a single constant 

to allocate the fraction of NPP to AGB (Fetzel et al., 2017; Fetzel et al., 2017; Petz et al., 

2014; Wolf et al., 2021). Moreover, they limit the spatial extent of grazing areas by excluding 

woody areas from the analysis (Petz et al., 2014; Wolf et al., 2021), or they consider just a 

constant reduction factor for tree cover (Fetzel et al., 2017).  

Piipponen et al. (2022) recently developed a new methodology that enables more accurate 

estimations of available forage and CC. In particular, they used temperature as a proxy to 

allocate the fraction of NPP to AGB, similarly to other studies (de Leeuw et al., 2019; 

Umuhoza et al., 2021), and developed a geographical correction factor for tree cover, thus 

enabling the inclusion of woody areas in the analysis. 

However, despite these recent improvements, global studies regarding future grasslands 

productivity are still very limited (Godde et al., 2020), and in general, studies on future 



17 

 

ecosystems productivity only consider the evolution of NPP (Boone et al., 2018; Gang et al., 

2017; Tian et al., 2021).  

Up to date, there’s no study in the literature that considers the future evolutions of grasslands 

CC. However, as CC estimations allow to determine proper stocking rates, ensuring 

sustainable grazing intensities and avoiding overgrazing, future projections of CC are an 

important information that could be used by policymakers to develop sustainable grazing 

systems. In addition, CC can be used in food system modelling and understanding its 

possible future trends is important to foresee the potential threats and opportunities for the 

production of livestock products. 

 

2.4. Overgrazing and climate change 

Despite their importance, the wealth of the world's grassland resources is constantly 

threatened by anthropogenic pressures. Multiple studies have shown that many grasslands 

are already in a degraded state (Kwon et al., 2016; O’Mara, 2012; White et al., 2000), with 

inappropriate stocking rates and grazing management practices being the main cause 

(Michalk et al. 2019). Overgrazing can lead to land degradation and desertification by 

decreasing soil compaction, thus enhancing soil erosion and decreasing it’s runoff regulation 

capacity (White et al., 2000), but can also lead to plant species shift, by favoring less 

palatable species. Currently, 20% of global grasslands resources is in a severely degraded 

state (Michalk et al., 2019), and 30% of grazing land is overstocked (Piipponen et al., 2022). 

However, as the demand of livestock-based products is expected to increase, overgrazing 

issues might become even more severe and widespread in the next decades. 

With that being said, the future health of grassland ecosystems will not only depend on how 

they will be used and managed. Indeed, as highlighted by multiple studies, climate change 

is also expected to significantly affect these ecosystems through increasing CO2 levels, 

temperatures, drought frequency, and altered precipitation patterns (O’Mara, 2012). How 

grassland will respond to such changes is still unclear.  

Some studies have highlighted positive impacts of historical climate change on ecosystems 

productivity, which globally showed an increasing trend in the last decades (Gao et al., 2022; 

Kolby Smith et al., 2016; Li et al., 2015). In particular, increasing temperatures and CO2 

levels have been positively correlated to NPP, because of the increased carbon accumulation 
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rates and the lengthening of the growing season (Puche et al., 2023; Reyes-Fox et al., 2014; 

Tian et al., 2021). In addition, elevated CO2 levels might even increase the resilience of 

grasslands to hot extremes, because of the improved water-use efficiency, and the increased 

root growth and nitrogen uptake during extreme events (Puche et al., 2023; Roy et al., 2016). 

Given these physical responses, multiple studies agree that globally climate change could 

have a positive effect on ecosystems productivity also in the future (Gang et al., 2017; Tian 

et al., 2021). By contrast, some other studies argue that climate change might decrease the 

herbaceous biomass productivity of some grasslands (Godde et al., 2020; Wu et al., 2021). 

The same can be said for regional studies, which both predict positive effects (Gao et al., 

2016a; Hufkens et al., 2016; Zarei et al., 2021) and negative ones (Qian et al., 2012). Yet, 

these contrasting views do not necessarily contradict each other, as the effects of climate 

change will vary between different grasslands of the world. 

Despite this disagreement, there’s a growing consensus that the projected increases in length, 

frequency, and severity of extreme events will affect the stability of  grasslands productivity 

(Gao et al., 2022; Godde et al., 2020; O’Mara, 2012). In particular, Godde et al. (2020) 

predicted that both inter-annual (year-to-year) and intra-annual (month-to-month) variability 

of rangelands productivity will increase, generating additional challenges for smallholder 

farmers. 

In spite of these emerging challenges, estimations of future grassland CC will be an essential 

tool to develop effective adaptation strategies to increase the resilience of vulnerable 

communities to climate change, achieve sustainably food security, and preserve the health 

of grassland ecosystems.  

 

2.5. Vegetation models and future projections of grasslands productivity 

If historical and present-day estimations of NPP can be obtained in multiple ways (e.g., field-

based estimations, remotely sensed data, models simulations), the production of future 

projections of NPP require the use of vegetation models (VMs). 

VMs simulate global vegetation patterns and try to represent the response of land ecosystems 

to specific climatic and other environmental conditions. They combine global climate 

information, provided by General Circulation Models (GCMs), with hydrological and 
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biogeochemical cycles, land management operations and eventual disturbances (e.g., 

wildfires, insects damage), to simulate changes in vegetation productivity and in species 

abundance. These models use a limited number of plant functional types (PFTs) to represent 

vegetation, combining them to obtain a simplified representation of the vegetation 

composition of each cell according to specific ecosystems. 

Up to date, a wide variety of VMs has been developed, each one with its own specific 

features. In particular, differences in the modelling of plant mortality, nutrients cycling, and 

plant competition, are some of the main sources of uncertainty in models’ projections 

(Scheiter et al., 2013). More importantly, the lack of intercomparisons between different 

model results is the leading cause for significant uncertainties among future projections of 

ecosystems response to climate change (Tian et al., 2021). 

As the few existing studies on global climate change effects on grasslands productivity are 

based on the result of a single VM (Boone et al., 2018; Godde et al., 2020), a more 

comprehensive and robust global analysis is needed. To do so, a careful analysis of the 

results of different VMs is required, together with a complete understanding of the 

differences between models and the limitations of their results.  
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3. Data and Methods 
 

3.1. Methodology for carrying capacity estimations 

The approach adopted to estimate carrying capacity (CC) is the one described by Piipponen 

et al. (2022) in their recent assessment of grassland CC through MODIS-derived data. This 

new methodology introduced notable improvements in CC estimations, as it developed a 

relationship between tree canopy cover and available biomass for grazers, allowing the 

inclusion of woody areas in the analysis. It also used temperature as a predictor to allocate 

the fraction of total net primary productivity (NPP) to aboveground biomass (AGB), instead 

of a single constant. This methodology has been proven to be effective also for modelled 

NPP estimations, producing similar results at the national and regional level (Piipponen et 

al., 2022, Supporting Information), and thus it was considered suitable for this analysis.  

This approach uses total NPP to derive AGB, which is then used to estimate the CC of a 

specific area. NPP represents the carbon flux subtracted from the atmosphere by vegetation 

(gC m-2) and is obtained as the difference between gross primary productivity of 

photosynthesis (GPP) and plant respiration. 

First, NPP is converted to total dry matter biomass (from gC m-2 to gBiomass m
-2) through a 

carbon conversion factor. However, as plants store part of NPP below ground, this total 

biomass is converted to AGB, the only one available to grazers, through the factor fANPP, 

which represents the fraction of the NPP allocated to AGB. In this case, fANPP was calculated 

through the following equation (Eq. 1) developed specifically for grasslands by Sun et al. 

(2021b):  

𝑓𝐴𝑁𝑃𝑃 = 1 − (1.14 × 10−7 𝑀𝐴𝑃2 − 3.07 × 10−4 𝑀𝐴𝑃 − 6.65 × 10−3 𝑀𝐴𝑇 + 0.786)       (1)  

where MAT represents the mean annual temperature in °C and MAP the mean annual 

precipitation in mm y-1. This equation was considered more accurate than the one proposed 

by Hui and Jackson (2006) and adopted by Piipponen et al. (2022). More importantly, this 

relationship was assumed to be still valid under future climates. Further comments about this 

aspect will be made in Section 5.4.1.  

The calculated AGB is then corrected for terrain slope to account for the risk of erosion and 

the avoidance of land degradation, and for tree canopy cover, as it has been shown that an 
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increase in the tree canopy cover results in a non-linear reduction in the sub-canopy cover 

that is available to grazers (Piipponen et al., 2022).  

Given what is described above, the potential biomass available for grazing in a year (AGB) 

is calculated through the following equation and is expressed in kgBiomass m
-2 y-1: 

𝐴𝐺𝐵 =  
𝑁𝑃𝑃 × 𝑓𝐴𝑁𝑃𝑃

𝐶𝐶𝐹
 × 𝑇𝐶𝐶𝐹 × 𝑆𝐶𝐹                                                                                                    (2) 

where CCF is the carbon conversion factor (gbiomass gC
-1), and TCCF and SCF the tree cover 

and slope correction factors respectively (ranging from 0 to 1). 

After obtaining AGB, CC is estimated by dividing this potential available biomass by the 

annual forage requirement of an Animal Unit (AU), which in the literature corresponds to 

an animal with a weight of 455 kg and a daily forage intake varying between 1.8% and 4% 

of its body weight (Piipponen et al., 2022). 

𝐶𝐶 =  
𝐴𝐺𝐵

𝑊𝑒𝑖𝑔ℎ𝑡𝐴𝑈 × 𝐷𝑎𝑖𝑙𝑦 𝐹𝑜𝑟𝑎𝑔𝑒 𝐼𝑛𝑡𝑎𝑘𝑒 × 365
                                                                                                     (3) 

 

3.2. Datasets selection and assumptions 

The methodology presented above requires consideration of six different datasets to estimate 

grassland CC: a land cover map to identify grassland areas, and datasets of total NPP, 

temperature, precipitation, tree cover, and slope correction factors. However, as this analysis 

has the goal of understanding the future trends of grassland CC, it is important to identify 

which of these datasets could change in the future and which of these changes cannot be 

neglected.  

Of all of the different datasets, the only one that can be considered reasonably constant in 

the future is the terrain slope. All the others (land cover, NPP, temperature, precipitation, 

and tree canopy cover) are expected to change in the following decades.  

A change in the future could be caused both by anthropogenic actions and climate change. 

As these factors are strongly interlinked, especially for land cover changes, it has been 

decided to maintain the current extent of grasslands adopted by Piipponen et al. (2022) for 

this analysis. This study therefore tries to understand the possible effects of climate change 

on the carrying capacity of current grassland resources. Further research could then be 

conducted to estimate future trends of grassland CC considering both climate change effects 
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and anthropogenic pressures, such as land use and cover change (LUCC), or changes in 

fertilizers input, irrigation patterns, and land management practices. 

Similarly, for the tree canopy cover correction factor it was decided to maintain the values 

adopted by Piipponen et al. (2022), relative to the period 2001-2015. Although forest cover 

is expected to be affected by climate change (Gang et al., 2017), the limitations in terms of 

available data forced us to make this specific assumption. However, it is still reasonable to 

assume that changes in tree cover will have a limited impact on the results, as the resolution 

of the data adopted in analysis is so coarse (30 arc/min, meaning more than 50 km at the 

equator) that the cells would be too big to be affected significantly by such changes. In other 

words, we assume that changes in tree canopy cover will occur, but that they will be very 

significant only at smaller scales than the resolution of the available data for future climate 

scenarios, thus that they would not significantly affect the value of the correction factor 

adopted. Further comments about the potential limitations of this approach will be made in 

Section 5.4.2. 

Because of these assumptions, only the future projections of NPP, temperature, and 

precipitation were considered. The production of these projections requires the use of a 

Vegetation Model (VM) coupled with General Circulation Models (GCMs). However, in 

addition to the complexity of running a GCM and a VM, the production of robust estimations 

of future grassland CC requires projections from multiple model combinations (Tian et al., 

2021). This is a very time-consuming task that would require enormous expertise in 

modelling. Therefore, it was decided to adopt the open-access datasets provided by the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP). 

ISIMIP is designed to “provide tailored, cross-sectorally consistent impact projections by 

forcing a wide range of climate-impact models with the same climate and socio-economic 

input and by making the data publicly available” (Frieler et al., 2017). Currently, the project 

has reached its third phase (ISIMIP3), which is still relatively early and so only a limited 

amount of available simulations results has been provided so far. For this reason, the current 

study is based on the data of the simulation round 2b (ISIMIP2b). This protocol was 

developed for the IPCC Special Report on the 1.5 °C target and is based on the future 

scenarios predicted by the Coupled Model Intercomparison Project phase 5 (CMIP5). These 

climate scenarios were adopted in the IPCC Fifth Assessment Report and they are less recent 

than the CMIP6 scenarios adopted in ISIMIP3 protocol (Riahi et al., 2017). However, the 
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protocol 2b is associated with a higher data availability, providing results from multiple 

GCM-VM combinations and thus enabling the production of more robust analyses. 

The simulation round ISIMIP2b contains the results of a wide range of climate-impact 

models, which are divided into different sectors. This study is based on the datasets relative 

to the Biomes sector, as they provide future estimations of NPP produced by different VMs.  

Table 1 summarizes the original datasets adopted in this study. Further details on how they 

will be managed and used are given in Section 3.4. 

Table 1. Datasets used in the analysis. 

Data Time interval Resolution Reference 

Land cover type 2001-2015 5 arc-minutes originally from Friedl and Sulla-Menashe 

(2022), further modified by Piipponen et al. 

(2022) 

Tree cover 

correction factor 

2001-2015 5 arc-minutes originally from Sexton et al. (2013), further 

modified by Piipponen et al. (2022) 

Slope correction 

factor 

- 5 arc-minutes originally from Amatulli et al. (2020), further 

modified by Piipponen et al. (2022) 

Net primary 

productivity 

2006-2099 30 arc-minutes (Reyer et al., 2019) 

Temperature 2006-2099 30 arc-minutes (Lange and Büchner, 2017)  

Precipitation 2006-2099 30 arc-minutes (Lange and Büchner, 2017) 

 

3.3. Future scenarios: data selection criteria and definition of warming 

levels 

In this study, the effects of climate change on grassland CC will be explored by focusing on 

warming levels, as assessing impacts at different warming levels has been found to be 

beneficial for both understanding and communicating the effects of climate change. It is also 

considered crucial for defining effective mitigation targets and adaptation strategies (Ostberg 

et al., 2018). 

Multiple scenarios have been developed to represent possible future climates, with the SSP-

RCP scenarios being the most recent (Riahi et al., 2017). However, the ISIMIP2b simulation 

round is based on CMIP5 climate projections, exploring the RCP scenarios 2.6, 6.0, and 8.5. 

These scenarios were adopted by the IPCC in its fifth Assessment Report and represent 

future climatic pathways by defining a specific GHG concentration trajectory, and thus a 

radiative forcing trajectory (Moss et al., 2010). These trajectories are not the result of specific 
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socioeconomic conditions and emissions scenarios but they can be associated to multiple 

combinations of economic, technological, and population growth. They are labelled after the 

possible range of radiative forcing values (W m-2) reached in the year 2100. 

The RCP scenario adopted in this analysis is RCP 8.5, as it is the only one able to reach 

multiple warming levels (WLs), namely WL1.5, WL2, WL3, which represent respectively a 

temperature increase of 1.5 °C, 2 °C, and 3 °C from pre-industrial levels. RCP 8.5 is an 

optional scenario for ISIMIP2b simulations, and this has limited the dataset selection, as not 

all the VMs in the Biomes sector protocol are run under this scenario. 

 

3.3.1 ISIMIP2b datasets  

As described above, the methodological approach for the estimation of climate change 

impacts has determined the selection of ISIMIP2b datasets adopted in the analysis.  

The climate data (temperature and precipitation) adopted in this analysis represent the RCP 

8.5 scenario and are presented in Table 2. These datasets are used as inputs by the different 

VMs adopted for the Biomes sector simulations. They are the results of 4 different GCMs 

of CMIP5 protocol, namely GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and 

MIROC5. These atmospheric datasets have been already bias-adjusted for ISIMIP2b 

simulations with the reference dataset EWEMBI (Frieler et al., 2017). 

Table 2. Temperature and precipitation datasets from ISIMIP2b used in the analysis. 

Climate data GCM Dataset file 

Temperature 

GFDL-ESM2M tas_day_GFDL-ESM2M_rcp85_r1i1p1_EWEMBI 

HadGEM2-ES tas_day_HadGEM2-ES_rcp85_r1i1p1_EWEMBI 

IPSL-CM5A-LR tas_day_IPSL-CM5A-LR_rcp85_r1i1p1_EWEMBI 

MIROC5 tas_day_MIROC5_rcp85_r1i1p1_EWEMBI 

Precipitation 

GFDL-ESM2M pr_day_GFDL-ESM2M_rcp85_r1i1p1_EWEMBI 

HadGEM2-ES pr_day_HadGEM2-ES_rcp85_r1i1p1_EWEMBI 

IPSL-CM5A-LR pr_day_IPSL-CM5A-LR_rcp85_r1i1p1_EWEMBI 

MIROC5 pr_day_MIROC5_rcp85_r1i1p1_EWEMBI 
 

Originally, the ISIMIP2b simulation round provided modelled values of global NPP from 

10 different VMs. However, the models selected for the analysis were only the ones which 

provided results for the RCP 8.5 scenario, namely CLM4.5, LPJmL, LPJ-GUESS, 

ORCHIDEE, and VISIT (Table 3). All of the 5 selected models were forced by the 4 different 

GCMs, thus the study was based on 20 different NPP estimations (Table 4). 
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Table 3. Key features of the vegetation models used in the analysis. 

 

Table 4. Net primary productivity (NPP) datasets from ISIMIP2b used in the analysis. 

VM GCM Dataset file 

CLM45 

GFDL-ESM2M clm45_gfdl-esm2m_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

HadGEM2-ES clm45_hadgem2-es_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

IPSL-CM5A-LR clm45_ipsl-cm5a-lr_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

MIROC5 clm45_miroc5_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

LPJ-GUESS 

GFDL-ESM2M lpj-guess_gfdl-esm2m_ewembi_rcp85_2005soc_co2_npp-total_global_annual_2006_2099.nc4 

HadGEM2-ES lpj-guess_hadgem2-es_ewembi_rcp85_2005soc_co2_npp-total_global_annual_2006_2099.nc4 

IPSL-CM5A-LR lpj-guess_ipsl-cm5a-lr_ewembi_rcp85_2005soc_co2_npp-total_global_annual_2006_2099.nc4 

MIROC5 lpj-guess_miroc5_ewembi_rcp85_2005soc_co2_npp-total_global_annual_2006_2099.nc4 

LPJmL 

GFDL-ESM2M lpjml_gfdl-esm2m_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

HadGEM2-ES lpjml_hadgem2-es_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

IPSL-CM5A-LR lpjml_ipsl-cm5a-lr_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

MIROC5 lpjml_miroc5_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

ORCHIDEE 

GFDL-ESM2M orchidee_gfdl-esm2m_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

HadGEM2-ES orchidee_hadgem2-es_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

IPSL-CM5A-LR orchidee_ipsl-cm5a-lr_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

MIROC5 orchidee_miroc5_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

VISIT 

GFDL-ESM2M visit_gfdl-esm2m_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

HadGEM2-ES visit_hadgem2-es_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

IPSL-CM5A-LR visit_ipsl-cm5a-lr_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

MIROC5 visit_miroc5_ewembi_rcp85_2005soc_co2_npp_global_monthly_2006_2099.nc4 

  CLM4.5 LPJ-GUESS LPJmL ORCHIDEE VISIT 

Natural Vegetation 

Dynamics 
no yes yes yes no 

CO2 fertilization effect yes yes yes yes yes 

Nitrogen limitation and 

cycling 
yes yes no no yes 

Water stress yes 

influences 

photosynthesis 

differently for each 

PFT 

influence on 

photosynthesis 

influences 

photosynthesis 

and phenology 

influence on 

photosynthesis 

Heat stress no 

reduction of 

photosynthesis at 

high temperatures 

(PFT dependent) 

influence on 

photosynthesis 

influences 

phenology 

photosynthetic 

decline above 

optimal 

temperature 

Drought mortality yes 

not directly, but 

water limitation 

will reduce 

productivity and 

therefore increase 

growth efficiency 

mortality 

no yes 

drought affects 

vegetation 

productivity 

but did not 

increase 

mortality 

Plant Functional Types 

(PFTs) 
24 13 21 17 32 
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ISIMIP2b simulations were conducted under different scenario designs (Frieler et al., 2017). 

For this analysis it was decided to use the results of simulations that assume fixed year 2005 

management, land-use, irrigation patterns, and societal conditions (these simulations are 

indicated as “2005soc”). This allows for the separation of the effects of climate change from 

anthropogenic pressures, avoiding possible interactions between these two different factors. 

 

3.3.2 Definition of warming level 

The definition of warming level adopted in this study is the one used by the IPCC in its Sixth 

Assessment Report (Seneviratne et al., 2021). A warming level was therefore defined as “the 

20-year period for which the 20-year running mean of global surface air temperature (GSAT) 

first exceeds a certain level of warming relative to the period 1850-1900” (Hauser et al., 

2022). In this case, the reference temperature level adopted was the average global mean 

annual temperature (GMAT) of the decade 2006-2015, which according to the IPCC was 

0.87 °C higher than 1850-1900 levels (Ipcc, 2022). 

The identification of the 20-year period for a specific WL was carried out separately for each 

GCM, as temperature projections differ significantly between GCM even under the same 

RCP scenario (Tian et al., 2021). Indeed, as can be clearly observed in Figure 4, the different 

GCMs adopted in the analysis reach a specific WL at different time periods.  

 

Figure 4. Temperature anomaly in respect to 1850-1900 predicted by the different general 

circulation models (GCMs). 
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This difference in the rapidity of warming affects NPP estimations and made it necessary to 

conduct 20 different estimations of CC for each WL. The combined results of the 20 different 

models combinations were then considered to assess the uncertainty of future projections. 

 

3.4. Data processing and carrying capacity estimation 

3.4.1. Pre-processing 

The datasets of land cover type and correction factors (tree cover, slope) were directly 

retrieved from the open-access data provided by Piipponen et al. (2022). They had been 

already aggregated to 5 arc/min resolution and masked to the study area considered in the 

analysis. Their reference system was the same of ISIMIP data, thus enabling their direct 

utilization without any additional pre-processing. 

The land cover type raster, which identifies the study area considered in this analysis, was 

obtained from MODIS-derived data (Friedl and Sulla-Menashe, 2022) and represents land 

cover classes with significant grass cover according to the IGBP (International Geosphere–

Biosphere Programme) classification system, namely grasslands, savannas, and woody 

savannas. This study area is shown in Figure 5 with its original resolution (500 m). 

 

Figure 5. Study area considered in the analysis (500 m resolution). 

The slope correction factor (Figure 6) was obtained from a terrain slope steepness dataset 

(Amatulli et al., 2020) which was reclassified following the recommendations of George and 

Lile (2009) shown in Table 5. 
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Table 5. Slope correction factor. 

Slope (%) Reduction in grazing capacity (%) 

0-10 0 

11-30 30 

31-60 60 

> 60 100 
 

 

Figure 6. Slope correction factor raster adopted in the analysis. Higher values of this factor indicate 

a limited reduction of available biomass for grazing. 

The tree cover correction factor was instead obtained from MODIS forest cover data (Sexton 

et al., 2013) which were reclassified with the function shown in Figure 7. Originally, the 

dataset had 45 different raster layers, as it contained 3 different estimations (median value 

and upper and lower limits of the 95% confidence interval) for every year of the period 2001-

2015. However, as in this case it was not possible to consider the time variations of this 

factor, it was decided to adopt the mean value of all the 15 median estimations (Figure 8), 

thus considering it as a time-invariant factor. Further comments about the limitations of this 

approach will be explored in detail in Section 5.4.2. 

 



29 

 

 

Figure 7. Function for the tree cover correction factor with 95% confidence interval. The three 

black lines represent the bottom, median, and top curves of the confidence interval and they were 

used to reclassify the forest cover datasets. Source: Piipponen et al. (2022, Supporting 

Information). 

 

 

Figure 8. Tree cover correction factor raster adopted in the analysis. Higher values of this factor 

indicate a limited reduction of available biomass for grazing. 
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The ISIMIP2b datasets (NPP, temperature, precipitation) needed instead some pre-

processing, in order to be converted to the correct unit and temporal resolution. Table 6 

presents the details of this conversion. 

Table 6. Unit and temporal resolution of original and processed ISIMIP2b datasets. 

  Original dataset Processed dataset 

 Temporal resolution Unit Temporal resolution Unit 

Temperature daily K annual (average) °C  

Precipitation daily kg m-2 s-1 annual mm/y 

NPP daily (monthly average) kgC m-2 s-1 annual (average) kgC km-2 y-1 
 

In addition to this, these datasets were disaggregated from 30 arc-min to 5 arc-min 

resolution, as the whole analysis was conducted with this latter resolution. 

 

3.4.2. Identification of warming levels 

After the gathering and eventual pre-processing of all the needed datasets, the 

methodological procedure explained in Section 3.3.2 was carried out to identify the time 

period relative to the different WLs according to each GCM. This procedure was adopted 

separately for each GCM, and it can be described in detail as follows. First, the GMAT was 

calculated for each year as a weighted average of the MAT with the grid cell area, thus 

obtaining a vector of 94 GMAT values (2006-2099); the baseline temperature used to 

calculate WLs (1850-1900) was estimated by calculating the mean value of the period 2006-

2015, to which was added 0.87 °C (difference between 1850-1900 and 2006-2015); this 

baseline value was then subtracted to the GMAT estimations of the period 2016-2099; 

finally, 20-years averages for 2015-2099 were calculated and each single WL was identified 

by the first period in which this average was higher than a specific WL. 

Table 7. 20-year periods for the warming levels considered according to the different general 

circulation models. 

General Circulation 

Model  

Warming level 

1.5 °C 2 °C 3 °C 

GFDL-ESM2M 2029-2048 2045-2064 2075-2094 

HadGEM2-ES 2018-2037 2030-2049 2048-2067 

IPSL-CM5A-LR 2019-2038 2030-2049 2049-2068 

MIROC5 2024-2043 2040-2059 2063-2082 
 



31 

 

The 10-year time period defined above for the identification of WLs (2006-2015) was 

considered as a reference period to evaluate the future trends of CC under climate change 

scenarios. Therefore, the calculation of CC was conducted for 4 different time periods: 

baseline (2006-2015), and WL1.5, WL2, WL3. 

 

3.4.3. Estimation of carrying capacity  

After the identification of the 20-year time period defining each WL, 20-year annual datasets 

of precipitation, temperature, and NPP were produced (10-years for the baseline period). In 

total, 16 different temperature and precipitation datasets (4 reference time periods for 4 

GCMs) and 80 NPP datasets (4 reference time periods for 20 GCM-VM combinations) were 

obtained. These datasets were masked to the study area defined in Figure 4 and then 

combined with the tree cover correction factor and slope correction factor ones according to 

the equation 2 presented in Section 3.1.  

In addition to the rasters presented in Table 1, this methodology also requires two additional 

constants (carbon conversion factor and forage intake), which however showed different 

values in the literature. Indeed, the carbon conversion factor ranged between 0.47 and 0.50 

(de Leeuw et al., 2019; Fetzel et al., 2017; Fetzel et al., 2017; Petz et al., 2014), while the 

daily forage intake of an AU varied between 1.8% and 4% (Piipponen et al., 2022). To 

account for this uncertainty and to ensure the comparability of the results, the same approach 

adopted by Piipponen et al. (2022) was used. More specifically, both the factors were 

estimated as the median value of 1000 simulations of a truncated normal distribution with a 

lower limit of 0.47 and an upper limit of 0.50 for the carbon conversion factor, and with      

1.8%, 2%, and 4% as the lower limit, mean value, and upper limit for the forage requirement.  

The procedure described above yielded for each WL and each models combination a raster 

of 20 layers (10 in the case of the baseline period), representing the annual CC for each year 

of the time period considered. The value of CC for a specific WL was then obtained by 

calculating the climatic average of these 20 yearly estimations. 

For each WL, a number of 20 different CC estimations was obtained (as the number of 

models combinations), meaning 80 estimations overall for the whole analysis.  
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3.4.4. Estimation of inter-annual variability and negative extremes 

The analysis of climatic averages provides only a partial picture of the effects that climate 

change will have on grassland CC. Indeed, the increasing strength, frequency, and duration 

of extreme events (Seneviratne et al., 2021) is expected to significantly affect also the 

stability of grasslands productivity and the severity of low-productivity years (Gao et al., 

2022; Michalk et al., 2019; Puche et al., 2023). As these aspects could not be assessed 

through the analysis of climatic averages, it was decided to additionally analyse the projected 

trends of the coefficient of variation (CV), expressing the inter-annual (year-to-year) 

variability of CC, and of the minimum annual CC. They were both calculated separately 

from the 20 annual CC estimations for each of the different models combinations and for 

each specific WL. 

However, the severity of low-productivity years is not only dictated by the amounts of 

available biomass itself but also by their difference from average conditions. Indeed, 

generally, livestock keepers determine the number of AUs based on average conditions, thus 

not being able to adapt to significant changes in biomass availability from year to year 

without additional feeds and efficient storage systems. 

Given the above, to study the effect of climate change on the severity of low-productivity 

years, the following indicator was developed: 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐸𝑥𝑡𝑟𝑒𝑚𝑒 (𝑁𝐸)  =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝐶 −  𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐶𝐶 [AU km-2 y-1]                         (4) 

where the average and minimum annual values of CC are obtained from the 20 annual CC 

estimations for each specific WL and models combination.  

Despite not being a commonly adopted indicator, this parameter is particularly important to 

understand the effect of climate change on grasslands productivity. Indeed, areas showing 

an increasing trend of NE will indicate grasslands where the adaptation to low-productivity 

years will become more challenging because of climate change. In particular, a significant 

increase in NE could even prevent from benefitting from increased productivity. 

 

3.4.5. Aggregation of the results at regional and national scale  

In order to effectively summarize the 20 different future projections, the results obtained 

were aggregated at the regional and national scale (Figure 9). As CC is a density variable 

(AU km-2 y-1), this was achieved by multiplying CC for the area of each cell and by summing 
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the values of the cells relative to a specific region or nation. However, although the maps 

produced cover a large fraction of the globe (as they have a 5 arc-minutes resolution), the 

total grassland area is smaller in reality. Indeed, this is just the result of aggregation to 5 arc-

minutes resolution, as the original resolution of the land cover map is 500 m. Therefore, the 

aggregation of the results was done by considering the fraction of grassland in each cell, 

which in other words represents the fraction of grassland cells with 500 m resolution in a 

cell with 5 arc-minutes resolution (Figure 10).  

 

Figure 9. Regions considered for the aggregation of the results. 

 

Figure 10. Fraction of grassland area in 5 arc-minutes resolution land cover map.  
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4. Results 
 

4.1. Future trends of aboveground biomass and carrying capacity 

Overall, climate change is expected to have a positive effect on grassland carrying capacity 

(CC), which is projected to increase under rising temperatures and CO2 levels. According to 

the models ensemble (average of the 20 models combinations), the global annual 

aboveground biomass (AGB) of grasslands will increase by 7%, 13%, and 24.5% for a 

warming of 1.5 °C, 2 °C, and 3 °C respectively. However, the magnitude of this change is 

highly dependent on the rapidity of warming. Indeed, all the vegetation models (VMs) 

demonstrate that the increase of global AGB is more limited under rapid warming scenarios 

(HadGEM2-ES, IPSL-CM5A-LR) than under slower ones (GFDL-ESM2M, MIROC5). 

Table 8 illustrates the increases in global AGB projected by each model combination.  

Table 8. Global grasslands aboveground biomass (AGB) and relative change predicted by each 

model combination. MODIS estimations were retrieved from Piipponen et al. (2022). 

      
Global aboveground biomass (Pg biomass y-1) 

  

Global aboveground biomass 

change (%) 
           

Vegetation 

Model 

General 

Circulation 

Model   2006-2015 

Warming 

Level 

1.5 °C 

Warming 

Level 

2°C 

Warming 

Level 

3°C   

Warming 

Level 

1.5 °C 

Warming 

Level 

2°C 

Warming 

Level 

3°C 

CLM4.5 GFDL-ESM2M 4.92 5.13 5.31 5.64   4.3% 8.0% 14.8% 

CLM4.5 HadGEM2-ES 5.06 5.26 5.35 5.61   4.0% 5.9% 11.0% 

CLM4.5 IPSL-CM5A-LR 5.20 5.38 5.51 5.74  3.4% 6.0% 10.4% 

CLM4.5 MIROC5   5.19 5.43 5.65 5.99   4.6% 8.7% 15.3% 

LPJ-GUESS GFDL-ESM2M 11.85 12.91 13.84 15.51   8.9% 16.8% 30.8% 

LPJ-GUESS HadGEM2-ES 12.84 13.60 14.18 15.48   5.9% 10.5% 20.6% 

LPJ-GUESS IPSL-CM5A-LR 12.17 12.95 13.59 14.70  6.5% 11.7% 20.8% 

LPJ-GUESS MIROC5   13.04 14.21 15.12 16.80   9.0% 15.9% 28.8% 

LPJmL GFDL-ESM2M 10.07 11.07 12.05 13.77   10.0% 19.7% 36.7% 

LPJmL HadGEM2-ES 10.70 11.31 11.79 12.96   5.7% 10.2% 21.2% 

LPJmL IPSL-CM5A-LR 10.02 10.68 11.17 12.20  6.6% 11.5% 21.8% 

LPJmL MIROC5   10.81 11.87 12.88 14.81   9.8% 19.1% 37.1% 

ORCHIDEE GFDL-ESM2M 10.81 12.30 13.43 15.59   13.8% 24.3% 44.2% 

ORCHIDEE HadGEM2-ES 11.45 12.46 13.16 14.63   8.8% 14.9% 27.8% 

ORCHIDEE IPSL-CM5A-LR 11.00 11.92 12.66 13.87  8.3% 15.1% 26.1% 

ORCHIDEE MIROC5   11.55 13.01 14.26 16.33   12.6% 23.5% 41.4% 

VISIT GFDL-ESM2M 10.45 11.11 11.72 13.06  6.3% 12.1% 24.9% 

VISIT HadGEM2-ES 10.97 11.48 11.82 12.61   4.6% 7.7% 14.9% 

VISIT IPSL-CM5A-LR 10.64 11.09 11.52 12.21  4.3% 8.3% 14.8% 

VISIT MIROC5   10.98 11.88 12.57 13.90   8.2% 14.4% 26.6% 

Models ensemble 9.99 10.75 11.38 12.57   7.3% 13.2% 24.5% 

MODIS     7.41 - - -   - - - 
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This expected increase in AGB, and consequently in CC, will vary markedly between 

different regions of the world. The biggest relative increases (%) are expected to occur in 

the Northern Hemisphere, in particular in North America, Eastern Europe, Central and East 

Asia. By contrast, a more limited relative increase in CC is expected for the grasslands of 

South America and Sub-Saharan Africa, where the rates of biomass productivity are already 

very high. Higher uncertainty between the 20 different models combinations is instead 

observed for the grasslands of Australia and Oceania, Central America, and North Africa. 

Here, the models combinations tend to disagree over future climate change effects, with 

multiple models agreeing that a negative trend might be observed.  

These future projections are summarized by the violin plots of Figure 11. Here, the results 

are presented for different regions of the world as the ratio between future regional CC 

(average CC of the whole region) and the regional CC of the period 2006-2015, according 

to each model combination and for each warming level (WL) considered in the analysis. The 

decreasing width of the violin plots at higher levels of warming is the result of the higher 

uncertainty in climate projections and in the response of earth ecosystems, which could even 

lead to completely different pathways, as in the case of Australia and Central America.  

Because of the different productivity rates among the world’s grasslands (Figure 12a), the 

biggest absolute increases in CC (AU km-2 y-1) are expected to occur in Uruguay, Northern 

Argentina, and the central grasslands of the United States, which are already very productive 

areas, and in the grasslands of Southern Africa and China, where this growth will be even 

more significant when compared to baseline levels (Appendix - Figure 24). At the same time, 

a decrease in carrying capacity is projected for multiple areas of the Brazilian plateau, 

Northern South America, Mexico, and the grasslands of Australia and the Horn of Africa. 

Figure 13 shows these changes according to the models ensemble (average of the 20 different 

changes for each WL). 

Higher WLs were seen to be associated with higher increases of CC, with the biggest 

increases occurring for a warming of 3 °C. At the same time, decreasing trends are more 

widespread under limited levels of warming, as the strength of the CO2 fertilization effect 

predicted by the models is still limited. This partially explains why some areas show an 

opposite trend between different WLs (negative under a warming of 1.5 °C, positive with 

increasing warming). Further comments about this aspect will be made in Section 5.2.4. 



36 

 

 

Figure 11. Violin plots for projected trends of regional carrying capacity (CC). A violin plot is a 

box plot with the width of the box proportional to the estimated probability density of CC 

estimations. The maximum density of each specific data distribution is indicated by the largest 

width of the violins. The black dots in the violin plots represent the results of each models 

combinations, while the white dot indicates their average. The y axis represents the ratio between 

future regional CC and the regional CC of the period 2006-2015.   
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Figure 12. Carrying capacity (a), negative extremes (b), and inter-annual variability (expressed as 

coefficient of variation) (c) estimations for the period 2006-2015 according to the models 

ensemble. 
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Figure 13. Absolute change of carrying capacity (AU km-2 y-1) according to the models ensemble. 

Each map represents the change for future scenarios expressed as warming levels (mean over 20 

years periods) from a baseline period (mean of 2006-2015). 
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Despite these promising benefits, the analysis of climatic averages provides only a partial 

picture of the effects that climate change will have on grassland CC. Indeed, while it has 

been shown that in general increasing temperatures and CO2 levels will be beneficial for 

plant productivity, prolonged periods of high temperatures coupled with limited 

precipitation can instead limit biomass production, eventually leading to significantly low-

productivity years.  

This effect is shown in Figure 14, where an assessment on the severity of future low-

productivity years is presented through the analysis of the absolute change of minimum 

annual CC. As can be observed, decreasing trends of minimum CC are particularly severe 

in great parts of the Horn of Africa, Eastern Europe, and the highly productive grasslands of 

the Brazilian plateau and Australia. By contrast, in areas where productivity is constrained 

by seasonality, the annual minimums tend to increase with increasing warming because of 

the longer growing season and the higher productivity in non-drought-affected months. This 

is the case for the grasslands of the Qinghai-Tibetan Plateau and most of the United States, 

Canada, Russia, and Northern Europe, where currently productivity is constrained by low 

temperatures (Appendix - Figure 26). 

As shown in Figure 14, low-productivity years seem to be more severe and widespread under 

a warming of 1.5 °C, with minimum CC increasing in most areas of the world with increased 

warming. From the physical point of view, this is explained by the fact that higher WLs are 

associated with a higher CO2 fertilization effect, which, according to multiple studies, 

improves grasslands resilience to extreme events through accelerated biomass production, 

improved water efficiency, and increased nitrogen uptake (Puche et al., 2023; Roy et al., 

2016). From the computational point of view however, this is also a result of the temporal 

resolution of the analysis (annual). Indeed, as drought and heat waves usually last for less 

than an entire year, the heat-stress-related declines in productivity induced by dry periods 

can be partially or totally compensated for by the increased productivity during the rest of 

the year, as already shown by Hufkens et al. (2016). 

However, as discussed in Section 3.4.4, the severity of low-productivity years is not only 

determined by the levels of minimum CC, but also by their difference from average 

conditions. In particular, increasing differences between average biomass availability and 

low-productivity years could significantly affect the livelihood of livestock keepers, 

especially in areas with a limited adaptive capacity.  



40 

 

As shown in Figure 15, the adaptation to these low-productivity years is projected to become 

more challenging under a changing climate and in some nations it could even offset the 

benefits of increased productivity (Appendix - Figure 25, Figure 27). Overall, the models 

combinations agree on a worldwide increase in NE, with significant changes occurring 

already under a global warming of 1.5 °C. Higher warming corresponds, then, to a high 

degree of change, becoming significantly more severe in a 3 °C hotter climate. Increases in 

the difference between average and minimum CC are projected to be particularly severe in 

the Horn of Africa, where these differences are already very significant (Figure 12b), and 

for the grasslands of Europe, southern United States, and Brazil. NE is projected to decrease 

only in some parts of Australia, where low-productivity years are already highly severe and 

CC is expected to decrease.  

It is of particular interest to understand the reasons for these future trends, as they are the 

result of different conditions. Indeed, the increases in NE in the grasslands of the United 

States are mainly due to the significant increases in average productivity levels, while for 

the Horn of Africa they are the result of combined increased average productivity and 

severity of low-productivity years. As regards the greater part of the Brazilian grasslands, 

where differences between average and minimum annual CC are more moderate, the 

projected increase in NE is mainly related to the increasing severity of low-productivity 

years.  

At the same time, the increasing strength, frequency, and duration of extreme events is going 

to affect not only the productivity of grasslands, but also its stability. Indeed, the analysis of 

the coefficient of variation (CV) of CC showed that the inter-annual variability of grasslands 

CC is expected to increase in multiple grasslands of the world (Figure 16). This means that 

CC is projected to become more variable from year to year, thus posing additional challenges 

to smallholder farmers. The effects of extreme events will be particularly severe in areas 

where inter-annual variability is already high (Figure 12c), such as the Horn of Africa, 

Southern Africa, part of the Sahel Region, Kazakhstan, Southern United States, and Mexico, 

and also for areas where currently CC is more stable, like the whole Europe. At the same 

time, climate change is expected to have a positive effect on the stability of the CC of the 

grasslands of the Qinghai-Tibetan Plateau, Northern Argentina, Eastern Brazil, and Western 

United States. Here, annual values of grassland CC will become more similar from year-to-

year. 



41 

 

 

Figure 14. Absolute change of minimum annual carrying capacity (AU km-2 y-1) according to the 

models ensemble. Each map represents the change of annual minimums for future scenarios 

(minimum of the 20-years periods indicating a specific warming level) from a baseline period 

(minimum of 2006-2015). 
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Figure 15. Absolute change (AU km-2 y-1) of negative extremes (difference between the average 

and minimum annual carrying capacity of a specific time period) according to the models 

ensemble. Each map indicates how much the difference between average and minimum annual 

carrying capacity of future scenarios will change from the existing differences of the period 2006-

2015. 
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Figure 16. Change of inter-annual variability of annual carrying capacity expressed as coefficient 

of variation (CV) (%). Each map represents the change for future scenarios expressed as warming 

levels (20-years periods) from a baseline period (2006-2015). 
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4.2. Identification of hotspots 

As seen in Table 8, the estimations of AGB and CC have different orders of magnitude 

depending on the VM adopted (Appendix - Figure 28). Therefore, the analysis of the results 

only as a models ensemble could create some inconsistencies. Indeed, the presence of 

outliers could influence significantly the average values presented in Section 4.2, thus not 

allowing complete identification of negative hotspots. 

Therefore, it was decided to identify hotspots by models agreement, as a higher number of 

models agreeing on a specific trend could be associated with a high probability that this trend 

might occur in the future. In this way, we could identify the areas for which most of the 

models predict a negative trend, independently of its order of magnitude. 

Figure 17 allows identification of areas where climate change might have negative impacts 

on grasslands CC. Red areas represent those where the majority of the models predict 

decreasing CC, thus identifying the grasslands that will be the most vulnerable to climate 

change effects. As already highlighted in Section 4.1, these hotspots are mainly located in 

Australia, Central America, the northern part of South America, part of Brazil, Western 

Sahel, and the Horn of Africa. However, they represent just a small fraction of the world’s 

grasslands as shown in Table 9.  

Table 9. Percentage of the world's grasslands belonging to the classes of Figure 17. These 

percentages are calculated by combining the rasters of Figure 13 with the fraction of grassland in 5 

arc/min resolution cells shown in Figure 10. Therefore, they are actually relative to the study area 

shown in Figure 5. 

  

Percentage of grasslands where models predict decreasing 

carrying capacity 

% of models agreeing < 25 % 25 – 50 % 50 – 75 % ≥ 75 % 

Warming level 1.5 °C 76% 16% 6% 2% 

Warming level 2 °C 82% 14% 4% < 1% 

Warming level 3 °C 86% 11% 3% < 1% 
 

It should be noted that these negative hotspots seem to be more widespread under lower 

WLs. This is due to the combined effect of the higher CO2 fertilization effect at higher WLs, 

the climatic averaging operations, and the annual resolution of CC estimations. Further 

details about these aspects will be discussed in section 5.2. Nevertheless, this apparently 

higher vulnerability in the next decades should not be neglected. In fact, without any effort 

to improve the resilience of the most vulnerable areas during this period, it will be hard to 

benefit from the positive changes predicted in the future.  
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Figure 17. Hotspots identification by model agreement for carrying capacity trends. 
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Similar temporal patterns can be observed for the hotspots of minimum annual CC, with 

low-productivity years being projected to become more severe because of climate change. 

As highlighted in Section 4.1, they are more widespread under lower warming levels, and 

they are mainly located in the Horn of Africa, Australia, Central America, the Sahel Region, 

and almost the entirety of South America, where CC is expected to decrease; but also, in 

Eastern Europe and Southeast Asia, where overall CC is projected to increase.  

These negative hotspots are higher in extent compared to the ones of Figure 17. This occurs 

because the climatic averaging operations mask this increased severity of low-productivity 

years, as the increases of productivity in non-drought affected years are quite significant. 

However, because of the distribution of grasslands in these 5 arc/min cells, these negative 

hotspots still represent a limited fraction of the world’s grasslands (Table 10). 

Table 10. Percentage of the world's grasslands belonging to the classes of Figure 18. 

  

Percentage of grasslands where models predict decreasing levels 

of minimum annual carrying capacity  

% of models agreeing < 25 % 25 – 50 % 50 – 75 % ≥ 75 % 

Warming level 1.5 °C 24% 38% 29% 9% 

Warming level 2 °C 39% 32% 23% 6% 

Warming level 3 °C 54% 28% 15% 3% 
 

The opposite is true instead if we consider the predicted changes in the inter-annual 

variability of CC. As shown in Figure 19, in this case the majority of grasslands are expected 

to experience a more variable productivity (Table 11). The situation seems to be quite steady 

already under limited warming, with few changes occurring with increasing warming. This 

might be related to the fact that the severity and frequency of extreme events is projected to 

be significantly enhanced even under low warming levels (Ipcc, 2022). Because of this, a 

high number of models agree that productivity will become more unstable in the grasslands 

of Europe, Brazil, and the majority of China, Sub-Saharan Africa, Central Asia, and Russia. 

By contrast, increased stability is projected for part of the American grasslands and for the 

grasslands of Zambia, Zimbabwe, and Mozambique. 

Table 11. Percentage of the world's grasslands belonging to the classes of Figure 19. 

  

Percentage of grasslands where models predict increasing       

inter-annual variability of carrying capacity  

% of models agreeing < 25 % 25 – 50 % 50 – 75 % ≥ 75 % 

Warming level 1.5 °C 2% 26% 54% 18% 

Warming level 2 °C 2% 26% 55% 17% 

Warming level 3 °C 4% 30% 51% 15% 
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Figure 18. Hotspots identification by model agreement for low-productivity years (minimum 

annual carrying capacity). 
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Figure 19. Hotspots identification by model agreement for inter-annual variability. 
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4.3. Uncertainty assessment 

As can be noted in the tables presented in Section 4.2, most of the study area considered in 

the analysis belongs to the classes that show a higher disagreement between the models 

combinations. In addition, despite providing a simplified assessment of the uncertainty of 

CC trends, the analysis of models agreement allows only an understanding of the validity of 

the direction of the predicted trend, but does not allow evaluation of the differences in its 

order of magnitude. Therefore, a more detailed analysis is needed to understand the 

uncertainty of the results presented in Section 4.1 and to evaluate their robustness. 

The uncertainty of CC projections was assessed by calculating the CV of the absolute 

changes of CC determined by all the models combination for each specific WL, and is 

presented in Figure 20. As it can be observed, the CV of the models results is very high, 

indicating a high dispersion of the 20 different projections from their mean, and thus 

implying a high uncertainty of the results presented in Figure 13. The highest uncertainty is 

observed for the grasslands of Central America, Northern South America, Brazil, Southern 

and Eastern Africa, the Sahel Region, especially Sudan, and parts of Australia, areas where 

the agreement of the models on the direction of the future trend was already limited, as 

shown in Figure 17. The uncertainty is instead lowest for the grasslands where most of the 

models agreed on a future decrease of CC.  

This high uncertainty of future projections is the result of the combined effect of differences 

in the modelling of VMs and in the climate inputs provided by the GCMs. First of all, the 

specific VM adopted is what defines the order of magnitude of NPP, and consequently AGB 

and CC estimations. Generally, the lowest values of CC are produced by CLM4.5, while the 

maximum ones are estimated by LPJ-GUESS and VISIT (Table 8, Appendix - Figure 28). 

This in part explains the high uncertainty shown in Figure 20, as the order of magnitude of 

the absolute trends of CC (AU km-2 y-1) is directly dependent on the VM adopted. But this 

is not the only reason, as this uncertainty is very similar even when calculated for the relative 

trends. Indeed, the VMs influence future projections also through their response to changing 

climatic patterns, which is determined by the modeling features highlighted in Table 3. In 

particular, differences in the modelling of drought mortality, nutrients cycling, and 

vegetations dynamics are responsible for the notable differences in future CC projections. 

Indeed, VMs that do not describe vegetation as dynamic (CLM4.5, VISIT) usually estimate 

more limited increases of CC. At the same time, VMs models that do not consider nitrogen 
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limitations (LPJmL, ORCHIDEE) are responsible for the highest projected increases of CC 

(Table 8). 

However, despite the great influence that VMs have on the results, the high uncertainty of 

future projections is also related to the great influence of the GCM that was used as input to 

produce future NPP estimations. Indeed, the GCM that is used as forcing both defines 

specific future climatic patterns and determines the rapidity of such changes. In particular, 

CO2 levels differ between same WLs because of the different rapidity of temperature change 

predicted by the GCMs (Figure 4), thus the WLs associated with slower warming pathways 

(GFDL-ESM2M, MIROC5) are being characterized by higher CO2 effects. 

For this reason, it has been decided to also group the results by GCM used as forcing, thus 

producing 4 different models ensembles for each WL considered. This procedure allowed 

the differences between future warming scenarios to be highlighted, distinguishing between 

the effects of rapid or slower warming.  

The benefits of this approach can be seen in Figure 29 (Appendix), which shows the predicted 

relative change in CC (%) according to the ensembles of models grouped by forcing GCM. 

Here, significant differences between the negative hotspots of each different climate scenario 

can be noted, both in terms of severity and geographical extent (e.g., Sudan, Western Sahel). 

In addition, it can be clearly observed how the rapidity of warming will have an impact on 

future CC. Indeed, under rapid warming scenarios (HadGEM2-ES, IPSL-CM5A-LR), 

negative hotspots (where CC decreases) are more widespread and severe. By contrast, the 

highest increases in CC are observed for slower warming pathways (GFDL-ESM2M, 

MIROC5), as they are characterized by a stronger CO2 fertilization effect. The same can be 

said for the severity of low-productivity years (Appendix - Figure 30), as slower warming 

scenarios are associated with higher increases of minimum annual CC, and thus decreasing 

severity of low-productivity years. In particular, these differences become more evident at 

higher WLs, where CO2 concentrations, and thus the strength of fertilization effect, differ 

the most. 

Given the above, further attention should be paid to consideration of multiple climate 

scenarios when predicting future trends of ecosystems productivity, as already highlighted 

by Boone  et al. (2018) and Tian et al. (2021). 
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Figure 20. Uncertainty of carrying capacity trends. The uncertainty is expressed as the coefficient 

of variation of the absolute changes of carrying capacity predicted by the 20 models combination 

for each specific warming level.   
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5. Discussion 
 

5.1. Comparison with other studies 

The comparison between global grazing studies is always challenging and sometimes it can 

highlight inconsistencies on a regional level for estimated productivities, potential 

opportunities, and future projections. Indeed, significant differences between studies can 

arise from the differences in the methodology adopted to estimate productivity levels, the 

way in which net primary productivity (NPP) estimations are obtained (e.g., satellite-based 

estimations or models projections), and on the study area that is considered (Fetzel et al., 

2017).  

In addition to these challenges, up to date, the research on future grasslands productivity has 

been narrow and it presents multiple limitations. First of all, most of the studies focus on the 

effects of climate change on ecosystems productivity only at global level (Gao et al., 2022; 

Kolby Smith et al., 2016; Li et al., 2015; Tian et al., 2021), generally providing aggregate 

results (values, figures, and discussion) that do not distinguish between different areas and 

ecosystems of the world, and that enable only a limited comparability. The few studies that 

specifically focus on future grasslands productivity have instead a more limited spatial 

extent, ranging from regional studies (Gao et al., 2016a; Hufkens et al., 2016; Zarei et al., 

2021) to more global ones (Godde et al., 2020), but still limited to rangelands only (i.e., only 

areas of vegetation suitable for direct grazing and browsing by herbivores). In addition to 

this, future projections of productivity are usually limited to NPP levels, with the exception 

of Godde et al. (2020), and most importantly they lack intercomparison between different 

vegetation models (VMs) (Boone et al., 2018; Godde et al., 2020; Tian et al., 2021).     

Despite the challenges highlighted above, the results presented in Section 4 agree well with 

current research and are highly supported by the specific literature on the topic. 

In general, historical climate change has been proven to have been beneficial for global NPP, 

especially in the Northern Hemisphere, increasing in the last decades according to both 

satellite data and models estimations (Gao et al., 2022; Kolby Smith et al., 2016; Li et al., 

2015). This trend has been favoured by increasing temperatures and CO2 levels, which have 

been shown to be generally correlated to higher productivities, and is projected to continue 

in the future (Gang et al., 2017; Tian et al., 2021), with discussions limited to the rate of this 

increase.  
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According to Tian et al. (2021), under the RCP 8.5 scenario, the global NPP is projected to 

increase by 15% and 27% for a warming of 1.5 °C and 2 °C respectively. These trends have 

been produced through the use of NASA ModelE2-YIBs and 19 CMIP5 scenarios and show 

similar geographical patterns to those shown in Figure 31 (Appendix), with NPP increasing 

globally, except for parts of Eastern South America and Western Sahel. Despite this 

agreement, the rate of the projected NPP increase is higher than what is predicted by the 

models considered in this analysis, which on average estimate NPP to increase by 7.1% and 

12.6% for a warming of 1.5 °C and 2 °C respectively (Table 12. Change of net primary 

productivity (NPP) of global grasslands according to each model combination. Appendix). 

This inconsistency stems from Tian et al.'s inclusion of forest ecosystems, which are 

expected to experience more substantial NPP increases than grasslands (Pan et al., 2022), 

and their choice of the 1996-2005 period as a reference, rather than the 2006-2015 period 

used in this study. 

Similar results were obtained by Gang et al. (2017), who through the use of a mathematical 

model predicted an increase in future global NPP, especially for the RCP 8.5 scenario. In 

particular, despite a reduction of their extent (an aspect not considered in this analysis), 

globally grasslands showed an increasing NPP, even without considering the effects of CO2 

fertilization. Because of these assumptions and the differences in the methodology adopted, 

further comparisons were not possible. 

More specific results were instead obtained by Havlík et al. (2015) who through the use of 

EPIC and LPJmL models predicted increasing grass yields for different regions of the world. 

In particular, they argue that even though climate change sometimes affected crop yields 

negatively, it could be beneficial for grasslands productivity, showing opportunities for the 

intensification of grazing systems. According to their results and in line with what has been 

presented in Figure 11, higher relative increases are projected for North America and East 

Asia, while a more moderate increase is projected for Latin America. High uncertainty is 

instead observed for Oceania, Sub-Saharan Africa, and Southeast Asia. 

In addition, multiple regional studies agree on the results presented in Section 4. In 

particular, Gao et al. (2016a) and Zarei et al. (2021) predicted respectively increasing NPP 

for the Qinghai-Tibetan Plateau and the grasslands of Tanzania under the RCP 8.5 scenario. 

More specifically, Gao et al. (2016a), with the use of a modified version of LPJ model, 

predicted that by 2070 the NPP of the Qinghai-Tibetan Plateau will increase by 134% from 
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1970 levels. This mirrors what is presented in Figure 31, where almost all the Qinghai-

Tibetan Plateau shows an NPP increase higher than 100% for a warming of 3 °C, which 

roughly occurs around 2070.  

Similarly, Hufkens et al. (2016) predicted that, despite the increasing aridity, the productivity 

of North American grasslands will increase for the same scenario, even without considering 

the effects of CO2 fertilization. This is also shown in Figure 31 (Appendix), but the 

differences in the methodology adopted limit the comparability between the studies. 

Nevertheless, despite agreeing with multiple global and regional studies, the results 

presented in Section 4 are not fully supported by the findings of Boone et al. (2018) and 

Godde et al. (2020). In particular, Boone et al. (2018) argued that global NPP may decline 

by 2050 under the RCP 8.5 scenario, despite a slight increase in herbaceous productivity. 

This is mainly due to the large productivity decline projected for Sub-Saharan Africa, which 

is in contrast with what has been shown in Figure 13. Despite this, their results agree on the 

increasing trends predicted for North America and other temperate northern rangelands, and 

on the decreases projected for Australia. Similarly, Godde et al. (2020) predicted decreasing 

herbaceous biomass across global rangelands, with significant reductions in Australia, Sub-

Saharan Africa, but also North America. Despite this disagreement, their results are 

consistent with the predicted increasing inter-annual variability of herbaceous biomass, 

despite some spatial heterogeneities. 

This inconsistency on the future trends of Sub-Saharan grasslands might be the result of the 

overly optimistic approach adopted in this analysis, from the equation used to allocate the 

fraction of NPP to aboveground biomass (AGB), to the modelled strength of the CO2 

fertilization effect, that might be better described by the model adopted by Boone et al. 

(2018) and Godde et al. (2020) (G-Range). Nevertheless, it's crucial to note that, as 

emphasized by Tian et al. (2021), relying solely on one vegetation model may lack 

robustness, as different models have demonstrated divergence in their projections in certain 

instances.  

5.2. Interpretation of the results 

The response of grassland ecosystems to climate change is still unclear and highly debated. 

This is because the mechanisms that affect grasslands productivity are complex, strongly 

interlinked, highly dependent on the type of grasses, and site-specific (Quan et al., 2020). 
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These two latter aspects are the main reasons for the notable differences in current available 

studies (Puche et al., 2023; Wu et al., 2021) and is what prevents the generalization of the 

identified patterns on a global scale. Despite this, there is growing consensus on the fact that 

increasing temperatures and CO2 levels can be beneficial for plants productivity (Puche et 

al., 2023; Reyes-Fox et al., 2014; Sun et al., 2021b), and thus the results presented in Section 

4 have a strong physical explanation. 

 

5.2.1. Warming effects on grasslands productivity 

Increasing temperatures have been shown generally to be positively correlated with NPP, 

and thus AGB, when not coupled with nutrients and water limitations. According to Sun et 

al. (2021) this is explained by the fact that higher temperatures prolong the growing season, 

thus stimulating annual plant productivity, and are associated with increased microbial 

activity, leading to higher mineralization and nitrification rates, and thus increasing nutrient 

availability. In addition to this, multiple studies have shown that even though both plant 

photosynthesis and respiration are enhanced by warming, their difference increases under a 

hotter climate, thus leading to higher carbon (C) accumulation rates (Liang et al., 2013; 

Puche et al., 2023; Tian et al., 2021).  

The benefits of increasing warming are higher where plant growth is constrained by low 

temperatures (Gang et al., 2017; Tian et al., 2021). Here, in general, increasing temperatures 

have the combined effect of stimulating photosynthetic activity and lengthening the growing 

season, thus leading to a highly increased annual productivity. This in part explains the high 

relative increase in carrying capacity (CC) predicted by the models in the Northern 

Hemisphere, especially in the grasslands of Russia and Canada, China, and Central Asia 

(Appendix - Figure 24). This trend has already been observed in Kyrgyzstan, Tajikistan, and 

the Tibetan Plateau, where the analysis of historical data has shown increased productivity 

(Umuhoza et al., 2021; Zhang et al., 2018), and is projected to continue under future warming 

(Gao et al., 2016a). 

The benefits of increasing warming are instead more limited where temperatures are already 

favorable to plant growth (low latitudes). Here, as shown by Tian et al. (2021), even though 

warming is stronger, plant respiration increases significantly, partially dampening the 

projected enhancements in GPP and thus leading to moderate relative changes in NPP. This 

explains why the predicted relative increases of AGB and CC are more limited in South 



56 

 

America and Sub-Saharan Africa (Figure 11), where the tropical climate is already able to 

support very high productivity levels.  

However, despite these generally positive effects, prolonged periods of high temperatures 

coupled with limited precipitation could eventually exacerbate water stress, thus leading to 

a reduction of NPP, as it is predicted in some cases for Australia and Central America. In 

this case, the response of grasslands is still debated, and it is highly dependent on the effects 

of CO2 fertilization. 

 

5.2.2. Effects of increasing CO2 levels on grasslands productivity 

Increasing CO2 levels are beneficial to plant growth and they are the main driver of the 

expected increase in global NPP (Kolby Smith et al., 2016; Tian et al., 2021; Wieder et al., 

2015). Indeed, as shown by multiple studies, without the CO2 fertilization effect the future 

changes in global climate would instead lead only to moderate NPP increases in the 

subtropics and huge decreases in tropical regions (Boone et al., 2018; Puche et al., 2023; 

Tian et al., 2021).  

Higher CO2 concentrations have been shown to enhance photosynthesis rates more than 

respiration ones, thus increasing photosynthetic carbon gain and biomass production (Puche 

et al., 2023). In addition to this, Reyes-Fox et al. (2014) showed that increasing CO2 levels 

are also responsible for the lengthening of the growing season, thus favouring higher annual 

productivity gains. Increasing CO2 levels are also expected to improve plants’ water use by 

reducing stomatal conductance and consequently dampening water losses through 

transpiration (Puche et al., 2023). This latter aspect explains why increasing temperatures 

can have an overall positive contribution on the productivity of hot grasslands, as it allows 

plants to minimize the effects of short-term droughts (Puche et al., 2023; Roy et al., 2016).  

Higher warming levels (WLs) are associated to higher CO2 concentrations and thus with a 

higher CO2 fertilization effect. The same can be said for slower warming pathways, which 

indeed predict higher CO2 concentrations for each WL analysed. This explains why the 

highest increases in CC are projected to occur under a warming of 3 °C (Figure 13) and why, 

for the same WL, they are more significant for the climate scenarios that predict a slower 

warming, namely GFDL-ESM2M and MIROC5 (Appendix - Figure 29). The CO2 

fertilization effect is also responsible for the projected increase in minimum annual levels of 

CC across multiple regions of the world (Figure 14).  
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Despite this, the strength of this biological mechanism is still debated and it might be 

overestimated by models (Havlík et al., 2015; Wieder et al., 2015). Further comments about 

this aspect will be made in Section 5.4.3. 

 

5.2.3. Effects of extreme events on the stability of grasslands productivity 

Grassland productivity is sensitive to climate variability, and extreme events, such as heat 

waves and droughts, can be responsible for high inter-annual (year-to-year) and intra-annual 

(within a year) variations of available biomass (Godde et al., 2020). As the severity, 

frequency, and duration of these extreme events are expected to increase under climate 

change (O’Mara, 2012; Puche et al., 2023), concern is growing that grasslands CC will 

become more variable in the future. Indeed, as Gao et al. (2022) have shown, the stability of 

productivity of  open, grass- and forb-dominated (OGFD) ecosystems had already decreased 

between 1982 and 2015, despite the overall increase in vegetation productivity. However, 

despite these risks, multiple studies have shown that elevated CO2 concentrations can 

mitigate the effect of extreme events on grassland productivity, thus increasing their 

resilience (Puche et al., 2023; Roy et al., 2016). This is because the improvements in water 

use can mitigate heat-stress, while the increases in root growth and nitrogen uptake during 

the extreme event are able to boost grasslands recovery after drought.  

This increased severity of extreme events and improved resilience under elevated CO2 levels 

is what in part explains the trends presented in Figure 14 and Figure 15. In particular, it can 

be observed that annual minimums of CC decrease in most of the grasslands under a 

warming of 1.5 °C. This is due to the fact that the severity and frequency of extreme events 

is expected to be significantly enhanced even under low warming levels (Ipcc, 2022), and 

by the limited mitigation potential of the CO2 fertilization at such levels. Only at higher 

warming is the mitigation potential of elevated CO2 concentrations effective in counteracting 

the negative effect of extreme events. The same could be said for slower warming pathways, 

that show more limited decreases in minimum CC because of the stronger CO2 fertilization 

effect (Appendix - Figure 30). 

Not only can extreme events affect the minimum annual CC, but they also significantly 

influence the stability of grasslands productivity, as shown by the overall increase in inter-

annual variability of CC (Figure 16). In addition, as highlighted in Figure 15, because of the 

increasing severity, frequency, and duration of extreme events, adaptation to low-
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productivity years will become more challenging, as their difference from average 

conditions will increase in almost every region of the world. These increasing challenges 

could then offset the benefits of increasing productivity in multiple grasslands of the world.  

 

5.2.4. Effects of the temporal resolution of the analysis on the results 

As discussed in section 4.1, the analysis of climatic averages is not always able to identify 

all the impacts that climate change will have on grassland CC, and this is one of the main 

reasons for such positive results presented in Figure 13. Focusing only on the analysis of 

climatic averages would provide an incomplete picture of how grasslands will respond to 

future climatic patterns and CO2 concentrations. Indeed, in general, the effect of increasing 

temperatures and CO2 levels in periods of sufficient water availability is such that annual 

CC estimations increase significantly from baseline levels. Therefore, averaging operations 

can hide the decreases of annual productivity during drought-affected years if negative 

extremes are not as frequent as normal conditions. However, this does not mean that climate 

change will not generate any risk for grasslands management and livestock grazing. 

In general, the areas that show a decreasing trend of average annual CC (Figure 17) can be 

identified already as the most vulnerable to drought-related risks, both in terms of 

productivity and of variability. Nevertheless, there might be multiple additional regions of 

the world where climate change will increase the risks and challenges related to livestock 

grazing, even if the influence of heat-related productivity declines is not shown by the 

climatic average. Therefore, it is important to focus also on the effects that climate change 

will have on low-productivity years. 

However, because of the annual resolution of CC estimations, the results presented in section 

4 could still be overly positive. Indeed, as shown by Hufkens et al. (2016), on an annual 

scale, the increases in growing season and productivity during the months unaffected by heat 

stress can offset the drought-related productivity declines. For this reason, as extreme 

temperatures usually do not affect productivity over an entire year, the annual predictions of 

CC can still show an overall increase, even if the severity of drought periods could 

substantially affect the possibility of taking advantage of this increased productivity. Further 

comments about the limitations related to this aspect and possible improvements will be 

explored in sections 5.4.4 and 5.4.5.  
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5.3. Grasslands, climate change, and food security 

Grasslands are an important source of forage for livestock systems and they play an essential 

role in the food security of most low-income countries (Herrero et al., 2013). In the next 

decades, the increasing demand for livestock products and population growth will increase 

the reliance on these ecosystems (Godde et al., 2020), raising concerns about the 

consequences of such anthropogenic pressures on the health of grassland resources. At the 

same time, climate change will directly affect the status and the productivity of these 

ecosystems (O’Mara, 2012), thus generating new opportunities as well as new challenges 

for grassland management and food security. In particular, understanding how climate 

change will affect the carrying capacity of grasslands is essential to understand the possible 

impacts that such increasing anthropogenic pressure might have on the health of these 

ecosystems and the services that they provide.  

The results of this analysis can be used therefore to highlight future threats and opportunities 

for livestock production and to guide the development of effective policies to preserve 

grasslands health in spite of the projected increasing demand for livestock products. 

However, it should be remembered that considerations on future levels of livestock 

productivity are complex and should not only be limited to the possible changes of grass 

productivity and forage availability. In particular, it should be noted that this analysis does 

not consider human disturbances, such as conversion of grasslands to cropland, or changes 

in irrigation and other management practices. These aspects will strongly dictate how 

livestock systems will respond to climate change and how they will affect the future health 

of grasslands resources. 

 

5.3.1. Climate change effects on forage availability 

As deeply discussed in Section 4, this study finds that climate change may positively impact 

vegetation productivity in most of the world’s grasslands, with negative trends limited to a 

small fraction of global grasslands (Table 9). However, these positive findings cannot be 

directly related to a future growth of livestock products from grasslands, as climate change 

will generate at the same time additional challenges that could even prevent from benefitting 

from this increased productivity. In particular, most of the grasslands will experience 

increasing year-to-year variability of CC (Table 11) as well as an increasing severity of low-

productivity years (Figure 15). If not tackled correctly through efficient adaptation strategies, 
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these challenges will offset the benefits that could be achieved from the predicted increasing 

productivity. Indeed, prolonged periods of forage shortage are already one of the main 

challenges for grazing systems (Fetzel et al., 2017), as they mainly rely on directly grazed 

biomass, and they are particularly severe in areas of limited adaptive capacity (limited 

availability of additional feeds, effective storage systems, economic resources, mobility, and 

efficiency of biomass utilization), such as pastoral communities. As highlighted by Herrero 

et al. (2013), grazing systems produce only a small fraction of livestock products on a global 

scale, but they are of vital importance for the livelihoods of millions of people, mainly in the 

developing world. Here, the effects of increasing year-to-year variability of CC and 

increasing severity of low-productivity years will be the most severe, and might event 

prevent these communities to benefit from increasing productivities, threatening the 

livelihoods of millions of people. In particular, as highlighted by Fetzel et al. (2017), these 

impacts will be more significant for grasslands that are already above their carrying capacity, 

as the available resources are already overexploited.  

Given the above, in order to effectively take advantage of the positive effects that climate 

change might have on grasslands productivity, and fight at the same time the management 

challenges that it could generate, multiple adaptation strategies should be developed. In 

particular, to protect the smallholders in low-income countries from increasing inter-annual 

variability and severity of low-productivity years, strategies should focus on increasing the 

availability of additional feeds (feed crops, crop residues, and eventual supplements) and on 

their integration in ruminants’ diets to both improve livestock’s conversion efficiency and 

reduce the dependency from directly grazed biomass. In addition, widespread efficient 

storage systems should be developed to exploit the excess of available biomass during 

productive periods to increase the resilience of smallholders to prolonged periods of 

shortage. At the same time, constraints to the mobility of livestock keepers should be 

reduced, with mobility being described as a key adaptation strategy in arid and semi-arid 

systems by Godde et al. (2020). 

To conclude, thanks to the predicted increases in productivity, grasslands might be able to 

sustain part of the growth of the demand for livestock products without being excessively 

exploited. However, in order for this to be possible, context-specific adaptation strategies 

should be developed, especially for areas where livestock production and food security are 

highly dependent on smallholder grazing systems (mainly Sub-Saharan Africa, Latin 
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America, and South Asia). This will require coordinated investments and the participation 

of different actors, as well as significant efforts to guarantee the implementation of such 

strategies by livestock keepers, that might not always be able to change their livestock 

management practices if not well supported. 

 

5.3.2. Climate change effects on forage quality and livestock 

Despite the potential positive effects of climate change on forage availability, considerations 

on the future productivity levels of livestock products from grasslands are not this 

straightforward. Indeed, the amount of available forage is just one factor affecting these 

future trends, and it interacts in a complex way with multiple others, such as the future 

quality of forage, and the potential effects that climate change could have on livestock health 

and efficiencies. 

Multiple studies have highlighted that elevated CO2 levels might be responsible for a decline 

of forage quality because of the increased crude fibre content of grasses at the expense of 

their crude protein and fat contents (Erda et al., 2005; Seibert et al., 2021). Similarly, forage 

quality might also be reduced by prolonged periods of heat stress and droughts (Seibert et 

al., 2021), which are expected to become more common and severe in the future. 

At the same time, forage quality could also be affected by changes in herbaceous species 

composition. In particular, climate change might increase the ratio of C4 to C3 grasses in 

grasslands, thus decreasing their CC as C4 have usually lower nutritive value for grazing 

animals (Lin et al., 2013). Furthermore, in some areas bush encroachment might additionally 

decrease the amount of AGB that could be actually grazed by animals (Tietjen et al., 2009). 

In addition to the effects on forage quality, climate change might threaten the productivity 

of livestock in multiple ways. It is still not completely clear how animals will respond to 

increasing temperatures, but high temperatures might negatively affect their water and 

forage requirements, as well as their conversion efficiencies and their growth rates (Cheng 

et al., 2022). In addition, climate extremes will have a negative effect on livestock health, 

directly affecting mortality rates, while higher temperatures might enhance the diffusion of 

parasites and infectious pathogens. 

These aspects should be carefully considered when evaluating the effects that climate change 

could have on the production of livestock products from grassland ecosystems. 
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5.4. Limitations and future directions 

5.4.1. Climate change effect on grasslands’ biomass partitioning 

As described in Section 3.1., the equation developed by Sun et al. (2021b) was adopted to 

allocate the fraction of NPP to AGB (Eq. 1). This spatial relationship allows consideration 

of the effect of the local climate (here expressed through temperature and precipitation) on 

biomass partitioning, enabling the production of more accurate results than what is normally 

found in global grazing studies, which instead use a single constant for fANPP (Fetzel et al., 

2017; Fetzel et al., 2017; Petz et al., 2014; Wolf et al., 2021). According to this relationship 

(Eq. 1), fANPP is highest in tropical grasslands and savannas, followed by that in temperate 

grasslands, and is lowest in very arid or cold grasslands. This is explained by the fact that 

plants tend to allocate more production belowground in stressful environments (e.g., 

extremely arid or cold areas), while they allocate more production aboveground in 

favourable ones (e.g., humid and warm areas with no nutrients limitations) (Sun et al., 

2021b). 

However, despite the higher accuracy in mirroring the global situation, the validity of this 

spatial relationship under future climates is arguable, as according to Eq.1 an increase in 

mean annual temperature (MAT) always corresponds to an increase in fANPP. Hence, with 

global climate scenarios projecting a worldwide rise in MAT, fANPP might exhibit a 

growing pattern in all grasslands across the globe, eventually even compensating for a 

reduction of total NPP. 

This assumption might not be completely true. Indeed, as shown by Sun et al. (2021b), 

different grassland types respond differently to temporal temperature increases. In particular, 

according to the data they analysed, aboveground NPP (ANPP) was negatively correlated 

with MAT in arid areas, while it was positively correlated in humid grasslands (Figure 21). 

Therefore, it might happen that fANPP will decrease in arid grasslands under a hotter 

climate, as already shown by Gao et al. (2019).  
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Figure 21. Comparison of spatial models (red lines) and long-term temporal models (black lines) 

for aboveground net primary productivity (ANPP) and mean annual temperature in global 

grasslands. Adapted from Sun et al. (2021b). 

Because of this potential inconsistency between temporal and spatial patterns, part of the 

future CC estimations presented in this analysis might be too optimistic. This is the case for 

part of the grasslands of Mongolia, Kazakhstan, USA, and China, where the predicted 

increases in CC might not be so marked, and for the grasslands of the Sahel, the Horn of 

Africa, and part of Australia and Mexico, already fragile ecosystems as highlighted in 

Section 4.1, where CC might be even lower. This also, in part, explains the differences in 

the trends of herbaceous biomass in Sub-Saharan Africa noted in the current analysis and 

from those outlined in the study of Godde et al. (2020). 

However, the effects of warming on ANPP are site-specific and depend on multiple factors, 

thus their generalization on a global scale might be incorrect. In particular, Franco et al. 

(2020) showed the possibility of observing an increase in biomass allocation aboveground 

even in water-stressed grasslands because of changes in the below-ground trophic web. 

The current status of research regarding this topic is still limited and the response of fANPP 

to climate change is not quantified yet. By assuming that this relationship (Eq. 1) will still 

be valid under future climates we are assuming that plants will be able to positively adapt to 

a different environment, which might not always be the case. Further effort should be put 

into the development of a temporal relationship for fANPP for different grassland types 

under projected future climates. 
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5.4.2. Climate change effect on tree canopy cover and land cover 

As discussed in Section 3.2, no variations of the tree canopy cover correction factor were 

considered throughout the analysis, but this simplified approach could lead to some 

inaccuracies. Indeed, as highlighted by multiple studies, climate change is expected to have 

an important effect on plant dynamics, defining new climatic patterns and thus allowing tree 

species to migrate (Boone et al., 2018; Gang et al., 2017). At the same time, the strength of 

the CO2 fertilization effect has been shown to be stronger for woody systems (Pan et al., 

2022), meaning that it could affect also the tree canopy cover (and thus the correction factor 

used in the analysis) of areas where trees are already relatively abundant. Not considering 

these aspects and maintaining a constant tree cover correction factor could lead to an 

overestimation of available AGB in areas were temperature and precipitation patterns will 

favour tree growth and movement.   

Despite this, developing a dynamic description of this factor might be very challenging 

because of the complexity in the relationship between climate change and tree cover and the 

limited amount of available data, especially when adopting global open access datasets (e.g., 

ISIMIP).  

In addition, as highlighted by Piipponen et al. (2022), the tree cover multiplier function 

(Figure 7) is still far from perfect and it should be improved 

At the same time, the new future temperature and precipitation patterns will not only affect 

the tree canopy cover but will also be responsible for the expansion or shrinking of current 

ecosystems. As discussed in Section 3.2, this aspect was not considered here, and the study 

was conducted for current grasslands resources (specifically for the period 2001-2015). 

However, as highlighted by Gang et al. (2017), grasslands are expected to shrink under all 

RCP scenarios because of climate change. In particular, they predicted a significant 

expansion of temperate forests in the Northern Hemisphere, the establishment of desert 

vegetation in very hot and arid areas, such as central Australia, and the expansion of savannas 

in South America. Overall, these dynamics will have a negative effect on the current 

grassland extent, and thus considerations on the implications of our results for the future 

production of livestock products from grasslands should take these aspects into account. 
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5.4.3. Modelled strength of the CO2 fertilization effect 

As highlighted in section 5.2.2, rising atmospheric CO2 concentrations have been beneficial 

for global ecosystems productivity and are expected to enhance vegetation growth also in 

the future. However, as highlighted by Havlík et al. (2015), the strength of the CO2 

fertilization effect is one of the main source of uncertainty in future NPP projections, and 

multiple studies highlighted that models might overestimate it (Huntingford and Oliver, 

2021; Kolby Smith et al., 2016; Wieder et al., 2015).  

As shown by Kolby Smith et al. (2016), CMIP5 earth system models (ESM) show higher 

global-scale CO2 fertilization effects than satellite-based estimations for the period 1982-

2011 (Figure 22). They argue therefore that models might be oversensitive to atmospheric 

CO2 concentrations. As supported by other additional studies (Huntingford and Oliver, 2021; 

Wieder et al., 2015), this might be the result of the oversimplification or complete absence 

of nutrients cycles in VMs. In particular, as carbon assimilation and plant growth are 

constrained by nitrogen (N) and phosphorus (P) availability, the amounts of N and P required 

for the NPP increases simulated by VMs greatly exceed their estimated supply rates. 

Therefore, when accounting for nutrients inputs constraints, CMIP5 projections of NPP for 

2100 are reduced by 19% and 25%, when considering only N limitations or both N and P 

limitations respectively (Kolby Smith et al., 2016), as shown in Figure 23.   

 
Figure 22. Net primary productivity (NPP) anomaly from 1982 to 2011. The green area indicates 

global NPP projections produced by CMIP5 models when considering both the effects of historical 

climate change and CO2 fertilization effect, while the blue area indicates satellite-based NPP 

estimations along with their uncertainty. Box and whisker plots (right panels), show the distribution 

of estimates for the full time period. Source: Kolby Smith et al. (2016). 
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Figure 23. Change in global net primary productivity (NPP) from CMIP5 model projections for 

RCP 8.5. Original CMIP5 ensemble mean (black), assuming nitrogen limitations (red), assuming 

nitrogen and phosphorous constraints (blue). Source: Wieder et al. (2015). 

Currently, an increasing number of VMs is incorporating N cycle, while the representation 

of P cycle is still very uncommon (Huntingford and Oliver, 2021). In particular, in the current 

analysis only three out of the five VMs considered N limitations, with the unconstrained 

ones (LPJmL and ORCHIDEE) predicting higher NPP increase rates (Table 8). The results 

presented might therefore provide an overly optimistic estimation of grasslands productivity 

under a changing climate. 

 

5.4.4. Spatial and temporal resolution 

The spatial scale of the analysis (global) is such that it required a relatively coarse resolution 

(5 arc/min), and some of the datasets had to be aggregated from their original one (land cover 

map and correction factors rasters). In addition, because of the very high computational 

expenses of running multiple VMs, the resolution of ISIMIP2b datasets was even lower and 

equal to 30 arc/min (Frieler et al., 2017).  

This aspect should be taken into account when evaluating the uncertainty of the results. In 

particular, this latter resolution (30 arc/min), is not optimal to describe in detail the 

vegetation dynamics of a specific area, and the modelled change in NPP might not be even 

directly related to grasslands unless they cover a large majority of the cell (Havlík et al., 

2015). Indeed, as highlighted by Pan et al. (2022), woody systems show greater CO2 

enhancement than grasses, and thus the predicted increase in NPP might be overestimated 

in cells with just a limited fraction of grassland. 



67 

 

Up to date, global studies on climate change effects on grasslands productivity are still very 

limited, and the ones that have considered modelled NPP values have adopted a 30 arc/min 

resolution (Boone et al., 2018; Gao et al., 2016; Gao et al., 2022; Godde et al., 2020). A 

higher resolution has been achieved only by some regional studies (Hufkens et al., 2016; 

Zarei et al., 2021; Zhang et al., 2018), which however did not adopt a VM to estimate future 

NPP or biomass productivity, except for that of Hufkens et al. (2016).  

A higher spatial resolution has the evident benefit of enabling a more detailed description of 

vegetation dynamics, providing more accurate estimations of its response to climate change, 

but at the same time it limits the study area or the number of different simulations because 

of the high computational costs. This latter aspect should not be neglected, as the validity of 

studies using a single VM and a limited number of GCMs might be arguable (Boone et al., 

2018; Tian et al., 2021), especially since this study highlighted the important influence that 

GCMs have on future NPP projections. Therefore, even though the resolution of the current 

analysis is coarse, it is necessary to accept its limitations and understand the possible 

drawbacks of using a different one. 

The temporal resolution of the analysis is also another limiting element. Indeed, the results 

presented in the previous sections represent average annual conditions but the monthly 

variations of CC should be also carefully considered, especially when defining proper 

stocking rates (Piipponen et al., 2022). As highlighted by multiple studies, the seasonal and 

monthly variations of available biomass represent an important challenge for grazing, as they 

define periods of biomass shortage or surplus (Fetzel et al., 2017; Godde et al., 2020). In 

particular, the productivity gains caused by climate change could be partially or totally offset 

if they were to occur together with an increase in intra-annual variability (month-to-month) 

of CC, especially in areas where alternative feeds or storage systems are hardly available. 

However, with the actual temporal resolution of the analysis these risks might not be 

identified, as discussed in section 5.2.4. An improved methodology should be developed to 

take into account the importance of such changes. 

 

5.4.5. Potential improvements 

This study is the first of its kind to consider the effect of climate change on global grassland 

ecosystems according to the predictions of multiple VMs. Despite this, its limitations are 

still considerable, and multiple improvements could be made to obtain more accurate results. 



68 

 

First, as suggested in Section 5.4.1, a new relationship for biomass partitioning under future 

climates should be developed in order to better describe the response of different grassland 

ecosystems to temperature changes. However, because of the complexity of such an 

approach and the high uncertainty related to it, a different solution would be to consider as 

input datasets not the models projections of NPP but of carbon mass in AGB, as was done 

by Godde et al. (2020). However, this is not always possible when using open access 

datasets, as it is the case with ISIMIP2b simulations, where this information could not be 

retrieved. 

Then, as highlighted in Section 5.4.2, a new dynamic description of the tree cover correction 

factor should be adopted. In particular, a new relationship should be developed that could 

take into account the enhanced effect of CO2 fertilization of woody systems in respect to 

grasslands. In this way the changes in future NPP could be directly related to grasslands even 

for cells where trees are relatively abundant, thus reducing the overestimation of NPP 

increases. Alternatively, instead of considering the total NPP as input datasets, the NPP 

related to the specific PFTs that for each models define grasslands vegetation could be used. 

This approach has multiple limitations, however. Indeed, these datasets are not always 

available (as is the case for multiple ISIMIP2b simulations), and PFTs differ significantly 

from VMs, thus potentially leading to possible inconsistencies. In addition, as noted by 

Fetzel et al. (2017), considering only NPP estimations for grassy PFTs could lead to a 

significant underestimation of potential grazing biomass in shrub-dominated regions, where 

shrubs can constitute up to 40–50% of the total feed demand. 

For more accurate predictions of future production levels of livestock products from 

grassland resources instead, changes in the spatial dynamics of ecosystems should be taken 

into account by considering also dynamic land cover maps. However, this information could 

hardly be retrieved from VMs simulations and might only be able to be obtained from 

external sources. This could lead to inconsistencies between different VMs, as each of them 

will predict specific spatial patterns of grassland ecosystems. 

More importantly, simulations of future ecosystems productivity should be done by 

considering nutrients limitations (nitrogen at least) to avoid the overestimation of the CO2 

fertilization effect. When not possible, as in the case of the adoption of open-access 

simulation results, careful considerations of the VMs adopted should be done, eventually 

excluding the results of VMs that do not consider nitrogen limitations. However, this 
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approach might reduce significantly the number of available projections, thus limiting the 

validity of the study as well.  

Another important improvement could be achieved by running VMs under an increasing 

number of different GCMs input climatic data. Despite the significant importance that GCMs 

have on future NPP trends, we acknowledge that this approach might require too much time 

and very high computational costs.  

To reduce instead the limitations related to the temporal resolution of the analysis, one 

solution could be to introduce improvements in the methodology for CC estimations. For 

example, seasonality constraints for biomass availability could be considered in a similar 

way to that done by Fetzel et al. (2017). In this way, the effect of extreme events on annual 

CC could be better described, thus leading to less optimistic results. At the same time, there 

should be consideration of the intra-annual variability of biomass productivity, if such data 

are available. 

Lastly, this analysis should be reproduced for different climate scenarios, in order to 

understand if path dependency exists. Indeed, despite being a commonly adopted approach 

in the literature, the consideration only of the results for the RCP 8.5 scenario might neglect 

eventual differences in the response of terrestrial ecosystems to slower increases of 

temperature and CO2 concentrations.    
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6. Conclusions 

In this analysis, future projections of grasslands productivity from five distinct vegetation 

models (VMs) were combined to obtain a robust estimation of the effects of climate change 

on grasslands carrying capacity (CC). The results indicate that rising temperatures and CO2 

levels are expected to have a generally positive effect on CC. This means that vegetation 

productivity in most grasslands around the world will increase, with negative effects 

primarily concentrated in specific regions such as Australia and the Horn of Africa, affecting 

only a limited fraction of the world’s grasslands.  

However, despite the overall positive outlook, there are challenges to consider. Most 

grasslands will also experience greater year-to-year variability and an increase in the severity 

of low-productivity years. If these challenges will not be effectively addressed through 

appropriate adaptation strategies, they could offset the benefits derived from increased 

productivity. Special attention should be given to smallholders grazing systems in low-

income countries, which will be the most vulnerable to such effects. 

It is worth noting that in some cases, the predicted trends may be slightly overly optimistic 

due to the inherent limitations of the models' projections and the methodology employed. 

Nonetheless, these projections serve as important indicators of future threats and 

opportunities for livestock production. Therefore, they can be valuable tools for developing 

effective policies aimed at preserving the health of grasslands, particularly in light of the 

growing demand for livestock products.  
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Appendix 

 

Figure 24. Relative change of carrying capacity (%) according to the models ensemble. Each map 

represents the change for future scenarios expressed as warming levels (mean over 20 years 

periods) from a baseline period (mean of 2006-2015). 
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Figure 25. Absolute change of national carrying capacity (AU km-2 y-1) according to the models 

ensemble. Each map represents the change for future scenarios expressed as warming levels (mean 

over 20 years periods) from a baseline period (mean of 2006-2015). 
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Figure 26. Relative change of minimum annual carrying capacity (%) according to the models 

ensemble. Each map represents the change of annual minimums for future scenarios (minimum of 

the 20 years periods indicating a specific warming level) from a baseline period (minimum of 

2006-2015). 
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Figure 27. Absolute change (AU km-2 y-1) of national negative extremes (difference between the 

average and minimum annual carrying capacity of a specific time period) according to the models 

ensemble. Each map indicates how much the difference between average and minimum annual 

carrying capacity of future scenarios will change from the existing differences of the period 2006-

2015. 
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Figure 28. Carrying capacity (CC) estimations (AU km-2 y-1) for the period 2006-2015 according to 

each vegetation model (VM) adopted in the analysis. They represent the average of the four 

different CC estimations produced by the same VM when forced by the four different general 

circulation models (GCMs) for that specific time period. MODIS data were retrieved from 

Piipponen et al. (2022).  
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Figure 29. Relative change of carrying capacity (%) according to each models ensemble based on 

the forcing general circulation model (GCM). Each map represents the change for future scenarios 

expressed as warming levels (mean over 20 years periods) from a baseline period (mean of 2006-

2015). 
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Figure 30. Relative trends of minimum annual carrying capacity (%) according to each models 

ensemble based on the forcing general circulation model (GCM). Each map represents the change 

for future scenarios expressed as warming levels (20 years periods) from a baseline period (2006-

2015). 
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Figure 31. Relative change of net primary productivity (%) according to the models ensemble. 

Each map represents the change for future scenarios expressed as warming levels (mean over 20 

years periods) from a baseline period (mean of 2006-2015). 
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Table 12. Change of net primary productivity (NPP) of global grasslands according to each model 

combination. 

 

     Global net primary productivity change (%) 
      

Vegetation Model 

General 

Circulation Model   

Warming Level 

1.5 °C 

Warming Level 

2°C 

Warming Level 

3°C 

CLM4.5 GFDL-ESM2M 4.0% 7.8% 13.1% 

CLM4.5 HadGEM2-ES 3.3% 4.9% 8.5% 

CLM4.5 IPSL-CM5A-LR 2.9% 5.0% 9.1% 

CLM4.5 MIROC5   4.1% 7.8% 13.6% 

LPJ-GUESS GFDL-ESM2M 9.6% 17.0% 29.7% 

LPJ-GUESS HadGEM2-ES 5.9% 10.3% 18.8 % 

LPJ-GUESS IPSL-CM5A-LR 6.5% 11.1% 20.0% 

LPJ-GUESS MIROC5   9.0% 15.8% 27.4% 

LPJmL GFDL-ESM2M 9.4% 17.6% 31.7% 

LPJmL HadGEM2-ES 4.9% 8.8% 17.2% 

LPJmL IPSL-CM5A-LR 5.9% 9.6% 18.5% 

LPJmL MIROC5   9.0% 16.7% 31.2% 

ORCHIDEE GFDL-ESM2M 13.6% 23.5% 40.5% 

ORCHIDEE HadGEM2-ES 8.0% 13.7% 24.2% 

ORCHIDEE IPSL-CM5A-LR 8.5% 14.4% 24.8% 

ORCHIDEE MIROC5   12.3% 22.1% 37.3% 

VISIT GFDL-ESM2M 7.3% 13.3% 25.6% 

VISIT HadGEM2-ES 4.9% 8.2% 14.3% 

VISIT IPSL-CM5A-LR 5.4% 9.1% 16.0% 

VISIT MIROC5   8.4% 14.7% 25.7% 

Models ensemble 7.1% 12.6% 22.4% 
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