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ABSTRACT  
 

Extreme weather events have sadly escalated in recent years as a result of climate change. Every year, 
extreme precipitation causes devastating damage to communities and ecosystems, as well as loss of 
lives. As a result, new engineering solutions are required to forecast and mitigate the most severe effects 
of such disasters. The Short-Term Ensemble Prediction System (STEPS) is one of the most important 
nowcasting techniques to model the precipitation fields in short time ranges and can be employed and 
integrated in flood-control applications. One of this methodology's strengths is that it can generate 
both deterministic and probabilistic forecasts, allowing for an evaluation of the uncertainty associated 
with high precipitation peaks and hydrological balances.  

This thesis has two central objectives. The first is to investigate the possibilities of py-STEPS, a Python 
library based on the STEPS technique for nowcasting applications. As open-source software, the 
functions of py-STEPS enable a wide range of applications, including motion field calculations, 
decomposition of precipitation structures, and the generation of both deterministic and probabilistic 
nowcasts. The second goal is to compare the probabilistic forecasts provided by py-STEPS and STEPS-
BE, the STEPS implementation developed at Belgium's Royal Meteorological Institute (RMI). It is 
indeed interesting to see which STEPS-based solution conforms better to observations and whether a 
modular and open-source library like py-STEPS can outperform a private product designed specifically 
for Belgium. 

Since the STEPS approach is based on radar image extrapolation, one of the main issues of the nowcasts 
relates to the uncertainty of observations. As a result, before forecasting the evolution of the 
precipitation field, it is required to validate the quality of the available radar images with additional 
devices such as rain gauges. In this study, the validation revealed that there is a general time shift of 
10 minutes between the precipitation peak observed in situ and the one measured by the radar, and that 
locations 50-60 kilometers away from the closest radar are affected by smallest errors. 

Three models were employed in the deterministic nowcast analysis: a simple extrapolation, S-PROG, 
and ANVIL. While the first approach merely translates the precipitation field detected in the most recent 
radar images without affecting the intensity of the precipitation, the other two can represent the growth 
and decay of precipitation structures within the moving cloud. An analysis of radar image subdomains 
that considered events classified as convective and stratiform revealed that there is no single model 
that can be used for all possible situations: ANVIL performed better in reproducing convective events, 
while S-PROG performed better when stratiform clouds were analyzed. The deterministic analysis 
chapter additionally focuses on an algorithm built specifically for this master thesis that is based on 
the parametrization of power spectra to distinguish between stratiform and convective events. 

Finally, the comparison of the probabilistic nowcasts produced by STEPS-BE and py-STEPS 
demonstrated the latter's superiority. In almost all the cases examined, the ensemble of py-STEPS 
demonstrated to be better calibrated (through reliability diagrams and rank histograms) and suited as 
a warning system (by ROC curves). Furthermore, py-STEPS performed significantly better at 
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intercepting cumulative rainfall volumes throughout the events, which is crucial for flood-control 
systems. 
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Chapter 1: PROBLEMS RELATED TO EXTREME 
PRECIPITATION  

 

As stated in one of the IPCC reports [1], it is difficult to elaborate one unique and general definition of 
extreme rainfall event, since in scientific literature, depending on the context and cultural background, 
many approaches have been used to describe and quantify such phenomenon. In general, two main 
methods [1] can be established to identify a precipitation extreme: (a) the use of percentiles (typically 
the 95th), (b) the use of absolute thresholds, defined country by country (e.g., in the United States is 
50.8 mm/day). However, in order to clarify this concept in a more approximate but intuitive way, it can 
be stated that “heavy precipitation refers to instances during which the amount of rain or snow 

experienced in a location substantially exceeds what is normal” [2].  

Starting from the 1950s, many regions of the world have experienced an increase of extreme precipitation 
events [3], with devastating consequences. In fact, heavy and intense rainfalls are associated with 
problems like flooding, soil erosion, crop damage, landslides triggering, water pollution, damages to 
ecosystems and resulting loss of lives. Therefore, finding new methods to predict and manage these 
kinds of events is fundamental for the future, especially considering that, on the whole, an increase of 
extreme rainfall events is expected around the world [4], [5]. Indeed, in a warming planet, the amount 
of water vapor in the atmosphere available for fostering heavy precipitations increases at a rate of 6-7 
% in saturation concentration per degree rise in temperature, in compliance with the Clausius-Clapeyron 
relationship [4].  

Nevertheless, as stated in the IPCC report of 2021 [5], the Clausius Clapeyron effect is not sufficient to 
give an exhaustive description of the changing patterns of extreme rainfall events on a regional scale, 
since both thermodynamic and dynamic processes should be accounted for. Consequently, nowadays it 
is still difficult to find a global and complete description of causes that trigger heavy precipitation 
events, since “the effect of warming-induced changes in dynamic drivers on extreme precipitation are 
more complicated, difficult to quantify, and are an uncertain aspect of projections” [5]. 

Despite this, in the report it is highlighted that the AR5 (fifth IPCC assessment report) predicts that over 
mid-latitudes and wet tropics the number of extreme precipitation events is very likely to increase due 
to global warming. These results are corroborated also by CMIP5 and CIMP6 simulations [5]. With 
particular reference to Europe, it is expected that “extreme precipitation will likely increase at global 
warming levels of 2° C and below, but very likely increase for higher warming levels for the region as 
a whole” [5]. Furthermore, other studies [6] suggest that also one single degree of warming, with respect 
to pre-industrial levels is enough to increase the frequency of extreme precipitation events over Europe. 
Considering that current global policies and energy investments are insufficient to meet the 
requirements of the Paris Agreement [7], the above-mentioned scenarios are likely to occur and 
therefore it is fundamental to elaborate proper prediction and adaptation strategies for this kind of 
events. Nevertheless, in the IPCC report [5] alternative scenarios associated to different global warming 
levels are considered and the results obtained by the CMIP6 project are shown in the figure below:  
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It is easy to notice that extremes in precipitation are going to increase in all the future scenarios almost 
in all the regions of the world, hence there is no doubt that mitigation measures will be needed in the 
next decades. Eventually, it is worthy to underline that the results shown in the figure above are not 
valid for changes in sub-daily extremes like hourly rainfall [8], since usually these kinds of data “have 

only sporadic spatial coverage and are of limited length” [8] , making difficult to elaborate conclusions 
with a sufficient level of certainty. 

Therefore, we have great uncertainties about the future development of extreme precipitation events, and 
this should represent another incentive to enhance methods for short-term prediction, like nowcasting 
techniques.  

This thesis focuses on the Short-Term Ensemble Prediction System (STEPS), one of the most well-
known and widely utilized nowcasting approaches for predicting rainfall extremes. Two 
implementations of this method will be evaluated in particular: py-STEPS and STEPS-BE. The first is 
an open-source Python library that permits control of all the phases and parameters included in the 
STEPS nowcasting technique, while the second is a private software developed at the Belgian RMI. In 
the following chapters, not only will some of the capabilities of py-STEPS, such as the generation of 
deterministic and probabilistic forecasts with a 2h lead time, be explored, but a comparison with 
STEPS-BE will be performed to see which is better suited for implementation in flood control systems.  
To accomplish these two main objectives, the thesis is structured as follows. 

The second chapter contains a literature review that describes in detail all the principles underlying the 
STEPS method, as well as a description of py-STEPS and its main modules to highlight its similarities 
and differences to STEPS-BE. Moreover, the main metrics commonly used in literature and in this work 
to validate and compare the models are defined and discussed. 

The radar images used to perform the nowcasts are examined in chapter three because STEPS, as an 
extrapolation-based method, is sensitive to errors in radar inputs. Hence, it is important to assess their 
quality to be aware of potential future radar corrections and the reliability of the model's outputs. This 

Figure 1.1. Results taken from the simulations of the Coupled Model Intercomparison Project Phase 6 
(CMIP6), which were run using the Shared Socio-economic Pathway (SSP). On the upper-right part of 
each map it is indicated the number of simulations employed for the scenario. Diagonal lines are depicted 
on those regions where the modes agreement is <80%, while no signs are present in those regions where 
the model agreement is >80% [5].   
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data validation will be performed comparing the observations of the radar network and rain gauges 
(considered the “ground truth”) relative to a set of events extracted using an algorithm developed in 

Python. 

Three alternative deterministic models generated using py-STEPS will be discussed and compared in 
chapter four.  These models (simple extrapolation, S-PROG, and ANVIL) present structural 
differences, and the goal is to determine which is better suited to represent convective and/or stratiform 
precipitation. The comparison will be conducted using some of the metrics introduced in the literature 
review, considering both the complete radar domain and sub-areas of the radar images, to simulate a 
more realistic analysis inside a hydrological catchment. In addition, a section of this chapter is dedicated 
to an algorithm developed in python to categorize the events in convective and stratiform.  

In chapter five, the same methodology used in chapter four will be used to compare probabilistic 
nowcasts produced by py-STEPS and STEPS-BE. This time, however, probabilistic metrics will be 
used to assess the skill and calibration of the ensembles of the two models. Furthermore, a section of 
the chapter will assess the benefits of using the ensemble mean rather than a more straightforward 
deterministic output.   

Finally, chapter six will draw the conclusions of this work. 
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Chapter 2: LITERATURE REVIEW 
 

The concept of meteorological nowcasting was firstly investigated in the ’70 [9] and at the beginning of 
the ’80. In a comprehensive book on the subject, Keith Browning [10] defined it as “the description of 

the current state of the weather in detail and the prediction of changes that can be expected on a 
timescale of few hours”. In 2010, the World Meteorological Organization (WMO) refined the former 
definition specifying that nowcasting should be characterized by a high local detail and should make 
forecasts over a period from the present to six hours ahead [10].  

Despite the deep interest for this subject, the technological improvement in the ’70 / ’80 did not provide 

neither a sufficient time and spatial resolution nor advanced computer algorithms to properly describe 
the instantaneous state of the atmosphere and implement a real nowcasting system. Therefore, the first 
applications of this field were mainly limited to extrapolation of meteorological radar data for short 
term prediction of relatively simple atmospheric phenomena, like thunderstorm motions [9].  

However, the development of communication technologies, weather data availability and data 
assimilation techniques opened to the implementation of increasingly advanced nowcasting systems 
and methods [9]. Indeed, smartphones and internet networks enable a fast and easy communication of 
weather information and complex graphics also to a non-expertise public, new surface and remote 
sensing data, communicated in real time, guarantee an accurate description of the current state of the 
atmosphere, while more sophisticated algorithms improve the synergic link between increasingly 
accurate observations and advanced models.  

Since the main objective of nowcasting is to make prediction for short time periods over regional and/or 
local scales, the best results are obtained when instrumentation that guarantees high temporal resolution 
and spatial coverage is used. The best example is represented by radars, which, as previously 
mentioned, have been successfully employed since the very beginning of nowcasting history and still 
today are considered the main observational device for short time forecast. In fact, it is no coincidence 
that the most sophisticated nowcasting techniques are implemented in those developed countries where 
radar systems are more mature and robust [10].  

However, the simultaneous employment of more observations (obviously referenced in the same grid 
system) coming from instruments like radar, satellites, lightning networks, surface stations, wind 
profilers and radiosondes should represent the ideal input dataset for a nowcasting system [10]. Once 
the optimal observational configuration for describing the real-time state of the atmosphere has been 
established, it comes the time to decide which nowcasting techniques suits better the scope of the 
meteorological prediction.  

Although many nowcasting procedures have been proposed throughout the years, it is possible to 
subdivide them in three main categories, keeping in mind that the constant and rapid research behind 
this field could suddenly lead to new solutions and proposals.  
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The three basic groups of methods are [11] : Extrapolation Methods, Blending Methods, Artificial 
Intelligence-Based Methods. The accurate and extensive description of each method lies outside the 
scopes of this work, therefore in this section only a general summary will be given, based on the paper 
of Sokol et al[11]. Nevertheless, a much more exhaustive insight on a specific extrapolation/blending 
technique will be given in the successive paragraph.  

 

• Extrapolation methods [11] 
 
As previously mentioned, the extrapolation technique was used in the first nowcasting applications and 

still today represents the main baseline of advanced short-term prediction methods. The great advantage 
of extrapolation methods lies in their relatively simple application, especially considering that:  

 
• The basic data can comprise only radar reflectivity. Obviously, an integrated system of different sources 

of observation would be preferable, but it is not essential. 
• The computational cost is pretty low and therefore the calculations are pretty fast. This allows to make 

multiple forecasting in different short time steps. 
• The use of currently measured data guarantees that the forecast is accurate for very short lead times 

(usually in the order of tens of minutes).  

However, purely extrapolation-based methods do not take into account any physical property of the 
atmosphere in their modelling and are usually based on the extrapolation of radar-derived precipitation 
cells along Lagrangian trajectories, determined after the calculation of the Motion Field. Therefore, 
these kinds of methods become extremely inaccurate after leading times exceeding 10–20 minutes, 
because they rely on the oversimplified hypothesis that precipitation intensity does not change along 
the trajectories. This assumption is well applicable only in case of purely stratiform precipitations, while 
convective precipitations are usually characterized by significant intensity changes along the 
Lagrangian trajectories.  

Consequently, modern extrapolation-based methods have implemented spatial stochastic models to 
forecast some of the unpredictable patterns of precipitation fields. A great variety of these last models 
has been developed, depending on the chosen approach for the determination of the Motion Field and 
the probabilistic techniques employed. However, it can be said that each stochastic model has the 
objective of filtering out/ adding small scale features to the precipitation cell, to predict in a more or 
less accurate manner the evolution of the forecasted event.  

 

• BLENDING METHODS [11] 
 

An alternative to the implementation of stochastic methods in extrapolation-based models is represented 
by the possibility of blending the results of the forecast using the outputs of numerical models based on 
physical atmospheric mechanisms (NWP models).  
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The main idea behind this technique is to combine the benefits of extrapolation methods, which are really 
stick to observations, and NWP models, which have the ability to make the forecast results more reliable 
for lead times higher than 10 minutes, thanks to their physic-based approach. Without providing 
complex details, it could be stated that Blending Models outputs are determined by a weighting of the 
two forecasts (namely, the forecast by extrapolation and the forecast by NWP model). The weighting 
system relies on the lead time of the forecast: the shorter the lead time, the higher the importance of the 
forecast by extrapolation and vice versa. Nonetheless, it is important to underline that blending methods 
are not always an alternative to stochastic assimilation in extrapolation-based methods: there are several 
examples of nowcasting techniques that implement both probabilistic and blending components in their 
extrapolation baseline.  

 

• ARTIFICIAL INTELLIGENCE-BASED METHODS [11] 
   

New nowcasting approaches based on machine learning (ML) are becoming increasingly widespread in 
the last years. These innovative methods greatly differ from the previously described techniques, as 
their estimations are usually independent of physical equations, and they frequently neglect the explicit 
statistical description of the problem. Due to this lack of physical meaning, usually ML methods are 
called “black box models”.  

In order to structure these models, historical data of precipitations, derived from radar observations or 
in-situ weather stations, are used and consequently the algorithm is able to exploit the video sequence 
of input images to predict future rainfall fields. Therefore, these kinds of models have a self-learning 
ability to construct the patterns that lead to the conversion of inputs into the most logical output. 
Nevertheless, it can be noted that the principle exploited to obtain the outputs of ML models is similar 
to the one of extrapolation-based methods, since in both cases the used input is a sequence of radar 
images (even though, as previously mentioned, machine-learning models can use other sources of data).  

In conclusion, it can be said that nowcasting methods experienced a stunning development in recent years 
and new technologies permitted not only a technical improvement related to the quality of observations 
and accuracy of model outputs, but also a more and more efficient involvement of the public. This last 
aspect is crucial considering that nowcasting is responsible for early detection of potentially dangerous 
precipitation events, which could have catastrophic repercussions on safety, health, and environment. 
Considering that in the future such extreme events are projected to increase almost everywhere, the 
implementation of advanced nowcasting systems becomes an urgent matter all around the world. 
Indeed, scientific literature reports many examples of more or less successful integration of nowcasting 
systems both in already developed [12] and developing [13] countries. Among all the possible 
nowcasting methods, this work focuses on STEPS (Short-term Ensemble Prediction System), which 
could be categorized as a hybrid form of extrapolation-based and blending models.  
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2.1 STEPS 
 

STEPS is a probabilistic nowcasting method that exploits both the extrapolation and the NWP blending 
techniques. It has been developed by the joint work of the UK Meteo office and the Australian Bureau 
of meteorology to provide reliable nowcasts for lead times that extend till 6 hours ahead [14]. As 
previously mentioned, purely extrapolation-based models can be inaccurate for forecasting beyond 20 
minutes, since they do not take into account all the phenomena of growth and decay inside the moving 
precipitation field, but they only make corrections to the estimation of the motion field [14]. 
Furthermore, another deficiency of these models is that they produce one single forecasting for each 
lead time, thus making impossible to estimate probabilistic metrics throughout the nowcast.  

On the other hand, STEPS not only adopts an autoregressive approach to model the formation and 
dissociation of precipitation cells, but, thanks to a noise cascade, is also able to create an ensemble of 
forecasts for each lead time [14]. In addition to that, STEPS has also implemented a technique to 
estimate and correct the errors of the motion field, that will be explained later. Another interesting 
peculiarity of this method is the blending with NWP models, that allows to increase the skill of the 
forecast and add a “physics-based” factor that increases the accuracy of the outputs. Indeed, as 

explained by Seed et al. [15], STEPS can be interpreted as a merging of three different cascades: one 
for the extrapolation, one for the noise and another for the NWP models. Although this last point 
represents one of the key stones of STEPS, it is not always easy to directly implement it, for the 
following reasons:  

 

1) It is not always possible to have access to the outputs of an NWP model. 
2) Usually, NWP models require high computational efficiency and therefore it is difficult to obtain 
results in short times. This can be an issue, especially when nowcasting for short lead times (15-30 
minutes) is needed. 
3) NWP models have a coarse resolution when compared to the necessities of hydrological 
applications [16]. For example, the grid used in the NWP model by UK- Meteo Office has a resolution 
of 12 Km [14], but considering that usually these models cannot solve features on a scale of less than 5 
times the grid length [14], the effective resolution is approximately 60 Km.  
4) Even though different authors reported that blended nowcasts offer higher skill in comparison 
with the application of the STEPS method alone, usually the most evident benefits are obtained after 2 
hours lead time [15], [17]. As a matter of fact, as shown in the figure below [18], radar-based nowcast 
methods can offer higher skill than NWP models for the first 2 hours of lead time: 
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For these motivations, not in all the implementations of STEPS the blending with NWP models is applied 
(like in the case of STEPS-BE, that will be explained in next sections).  

Therefore, after briefly introducing the main aspects of STEPS, a detailed scheme of all the fundamental 
steps of the method is given below, to describe in a concise manner how all the above-described 
processes are carried out in practice. However, before doing this it is necessary to clarify the 
terminology that will be used. “STEPS” refers to the overall nowcasting method, which starts with the 
acquisition of radar images and ends with the production of an ensemble of forecasts; therefore, its 
description comprises all the 9 points reported in the scheme below. “S-PROG” is the model that carries 
out the operations of extrapolation of the rainfall field, thanks to an optical flow algorithm, 
decomposition in sub-structures, by means of a fast Fourier transform and a multiplicative cascade, and 
temporal evolution of the precipitation cells, through an autoregressive filter. Namely, S-PROG is the 
core of the STEPS method, since it models the properties of “dynamic” and “spatial scaling” of the 

precipitation field; in the scheme below, its description comprises points 1-3-5. Yet, the S-PROG 
scheme does not include the application of the stochastic noise and thus the production of an ensemble.  

Since this thesis focuses on forecasting predictions for lead times of at maximum 2 hours, the blending 
with NWP models is not taken into account and it is not then included in the conceptual scheme reported 
below. 

 

 

 

 

Figure 2.1. Qualitative skill comparison 
between extrapolation and NWP forecasting  
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2.1.1 Estimation of the velocity field using optical flow on the last two radar 
rainfall images (S-PROG model)  

 

Similarly to other extrapolation-based models, STEPS needs the estimation of the motion field of the 
precipitation that is therefore propagated by means of an advection scheme [14]. In the proposed model, 
the motion field is estimated through an optical flow algorithm, which exploits the last two observed 
radar images to calculate the components of the motion field from the following equation [19]:  

 

𝑑𝑅

𝑑𝑡
=  

𝜕𝑅

𝜕𝑡
+ 𝑢

𝜕𝑅

𝜕𝑥
+ 𝑣 

𝜕𝑅

𝜕𝑦
 , 𝑢 =  

𝑑𝑥

𝑑𝑡
 , 𝑣 =  

𝑑𝑦

𝑑𝑡
 (2.1) 

 

Where 𝑅 represents the precipitation field and 𝑢 and 𝑣 are the x and y components of the motion field. 
It is interesting to notice that the solution of the previous equation is obtained under the hypothesis that 
𝑑𝑅

𝑑𝑡
= 0, namely that the intensity of the precipitation field does not change in time, which is typical of 

traditional extrapolation-based models. In fact, in STEPS method the growth and decay of precipitation 
parcels is not represented through the calculation of the motion field but thanks to the decomposition 
of the rainfall field in different substructures, as it will be explained in the next points.  

 

2.1.2 Data transformation  
 

Usually, a logarithmic transformation is applied to the precipitation data, exploiting the relationship Z-R 
that correlates radar reflectivity (Z) and estimated surface rain rate (R) [14]:  

 

𝑍 = 10 𝑙𝑜𝑔10(200𝑅1.6)(2. 1) 

 

There are two main reasons why this transformation is necessary [19]. Firstly, thanks to the formula 
above the data are forced to follow a log-normal distribution: this allows to use established stochastic 
models that assume Gaussianity. Secondly, log-transformed rainfall fields simplify the decomposition 
of the precipitation structures when applying the fast Fourier transform, since the multiplicative cascade 
can be replaced by summation in the transformed space [14].   
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2.1.3 Decomposition of the last two observed rainfall fields into a multiplicative 
cascade (S-PROG model) 

 

It has been demonstrated [14] that precipitation fields exhibit spatial characteristics that can be described 
by multi-fractal models. This property, known as “spatial scaling” of the precipitation field, basically 

assumes that similar features exist along different spatial scales, which range from very large (> 104 m) 
to small ones (< 10 m) [14]. 

Another relevant observation is that usually the temporal persistence of these features is broadly 
proportional to their size [19]. This other property, known as “dynamic scaling” of the precipitation, 

suggests that bigger structures of the field are easier to predict, since they take a large time to form and 
precipitate, while small scale features are harder to model, since their “lifetime” is relatively low [20]. 
These two characteristics of the precipitation field are the basis behind the development of the Spectral 
Prognosis (S-PROG) model [14], that represents the main core of the STEPS methodology. 

Basically, the S-PROG model decomposes the precipitation fields into a multiplicative cascade by means 
of a fast Fourier transform (FFT), to detect and isolate the different precipitation structures. If the data 
transformation described in the previous point is applied, the multiplication is replaced by summation 
in the transformed space. In a second moment, once the process has been completed, an inverse FFT 
can be applied to skip from the frequency domain to a spatial one, in order to re-obtain a decomposed 
rainfall field. It is important to understand that the multiplicative cascade of a precipitation field does 
not imply the formation of distinct and independent cells of different extent, but “rather a hierarchy of 

precipitation structures embedded in each other over a continuum of scales” [20]. 

After this, the S-PROG model applies an autoregressive model to estimate the evolution of the different 
precipitation structure, as explained in next sub-sections. 

The number of spatial scales can be calculated in the transformed space using the radial Fourier 
wavenumber |𝑘| =  √𝑘𝑥

2 + 𝑘𝑦
2  through the following formula [19] 

 

𝑠𝑐𝑎𝑙𝑒 =  
𝐿∆𝑥

2 |𝑘|
(2. 2) 

 

Where 𝐿 is the number of rows/columns of the radar grid and ∆𝑥 is the resolution. Then, for every spatial 
scale, the decomposition of the precipitation field can be summarized as follows [14]:  

 

𝑑𝐵𝑅𝑖,𝑗(𝑡) =  ∑ 𝑥𝑘,𝑖,𝑗

𝑁

𝑘=1

(𝑡), 𝑖 = 1, . . , 𝐿 ; 𝑗 = 1, . . , 𝐿 (2. 3) 
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Where 𝑑𝐵𝑅𝑖,𝑗(𝑡) denotes the precipitation intensity in dBR at pixel (i,j) at time t and the term 𝑥𝑘,𝑖,𝑗 
indicates the precipitation intensity in dBR at pixel (i,j) for the cascade level k.  

As an example, the figure below reports a decomposition of a precipitation field in seven cascade levels 
observed by the Finnish Meteorological Institute: 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Generation of a cascade of spatially correlated stochastic noise  
 

This is a fundamental step of the method, since the production of a stochastic noise is used to reproduce 
the phenomena of growth and decay of the precipitation field and this is what distinguishes STEPS 
from other nowcasting methods. The produced noise must follow a spatial correlation that is compliant 
with the one of the observed rainfall field detected by the radars. For this reason, usually three passages 
are implemented to obtain the desired perturbation [20]:  

• Computing the FFT of a white noise field 
• Applying a filter to the obtained components in frequency domain  
• Computing an inverse FFT to switch again to the spatial domain.  

The filter needed in point 2 is usually acquired by applying a 1-D or 2-D power spectrum to the most 
recent radar images, in order to get a spatial correlation of the noise that is similar to the precipitation 
field. If, during the forecasting, it is not possible to retrieve a recent radar image, the filter can be 
parametrized using a climatological power law [20]. 

 

Figure 2.2. Decomposition of a precipitation field in seven cascade levels[19] 
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2.1.5 Perturbation of the original rainfall cascade  
 

Once the noise cascade has been obtained, it can be applied to the multiplicative cascade of the rainfall 
field obtained in point 3. Therefore, the perturbation is applied level by level according to the following 
equation, which is generalized for an autoregression of order p [19]: 

 

𝑅𝑗(𝑥, 𝑦, 𝑡) =  ∑ 𝜑𝑗,𝑘

𝑝

𝑘=1

𝑅𝑗(𝑥, 𝑦, 𝑡 − 𝑘∆𝑡) + 𝜑𝑗,0𝜀𝑗(𝑥, 𝑦, 𝑡) (2. 4) 

 

The symbols j and k represent the cascade level and the level of the autoregression respectively. R is the 
intensity of the rainfall field, 𝜑𝑗,𝑘 are the parameters of the autoregressive model for each structure of 
the precipitation estimated through the Yule-Walker equations, 𝜑𝑗,0  is the parameter of the 
autoregression applied to the noise cascade, 𝜀𝑗 is the noise estimated for each cascade level and ∆𝑡 
denotes the time difference between different estimations. 

By further analyzing the equation above, it can be noted that the first term corresponds to the Lagrangian 
(i.e. deterministic) component of the forecasting, which derives from the extrapolation process, while 
the second terms represents the stochastic component, that stems from the noise cascade described in 
the previous point. Therefore, the combination of the multiplicative cascade and the autoregressive 
model, together with the stochastic noise, allows the forecaster to control the temporal and spatial 
structure of the precipitation, considering at the same time the contribution of fast growth and decay of 
precipitation cells, that are usually the biggest responsible for nowcasting errors [14].  

Even though the equation above is generalized for an autoregressive order p, an AR(2) model is usually 
employed. The Yule-Walker equations exploit the time-lagged auto-correlation functions 𝑟(𝑡)  to 
retrieve the values of the coefficients of the autoregression, through the following system [21](in case 
of a second order):  

 

[
𝑟(1)
𝑟(2)

] =  [
𝑟(0) 𝑟(1)
𝑟(1) 𝑟(0)

] [
𝜑𝑗,1

𝜑𝑗,2
] (2. 5) 

 

Where the equations 𝑟(𝑡) can be calculated from the observations and the extrapolations.  

Finally, the term 𝜑𝑗,0 is chosen in such a way that the AR(2) process is normalized to unit variance. 
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𝜑𝑗,0 =  √1 −  𝑟(1)𝜑𝑗,1 − 𝑟(2)𝜑𝑗,2  (2. 6) 

2.1.6 Extrapolation of the cascade levels by means of an advection scheme  
 

Another source of uncertainty in nowcasting applications stems from the propagation of the motion field 
for different lead times [19]. In fact, the velocity field is usually subjected to considerable noise [14].  

For this reason, similarly to what has been explained in the points above, it is possible to apply a 
perturbation to the motion field calculated at the beginning of the forecasting (through the optical flow 
algorithm) to compensate the uncertainties derived from the application of the advection scheme. An 
indicative formula that explains this mechanism is [19]:  

 

𝑤𝑝(𝑥, 𝑦) =  𝑤0(𝑥, 𝑦) +  𝛼𝑝𝑎𝑟(𝑡)𝜀𝑝𝑎𝑟(𝑥, 𝑦)𝑤𝑝𝑎𝑟 + 𝛼𝑝𝑒𝑟𝑝(𝑡)𝜀𝑝𝑒𝑟𝑝(𝑥, 𝑦)𝑤𝑝𝑒𝑟𝑝 (2. 7) 

 

Where 𝑤𝑝𝑎𝑟 and  𝑤𝑝𝑒𝑟𝑝 denote the parallel and perpendicular components of the motion field 𝑤0, 𝜀𝑝𝑎𝑟 
and 𝜀𝑝𝑒𝑟𝑝 are two random variables taken from a Laplace distribution with 0 mean and unit variance 
and the parameters 𝛼 are used to scale the perturbations. These last parameters are usually obtained by 
analyzing a large sample of advection fields and are therefore tuned to get the best results for the 
forecasting [19] 

 

2.1.7 Application of the autoregressive model for each lead time of the forecasting 
to the different cascade levels and recomposition of the cascade into the 
spatial domain 

 

Exploiting what has been written in points 6 and 7, it is possible to monitor the evolution of the 
precipitation field in space and time for each lead time of the forecasting. Since the application of the 
multiplicative cascade to both the rainfall field and the precipitation returns the different rainfall 
features in the domain of frequency, it is necessary to apply an inverse FFT to obtain results referenced 
in space.  

 

2.1.8 Probability matching of the forecast results with the observed rainfall fields 
 

During the different passages of the STEP procedure, it is possible that some discrepancies with respect 
to the observed rainfall field are introduced. For this reason, it necessary to apply a post-processing of 
the data to match the statistical properties of the nowcasting outputs with the ones of the observed radar 
images (this point will be further discussed in next sections).  
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2.1.9 Forecast production  
 

At the end of the process, if all the 8 point described above have been applied, it is possible to obtain a 
probabilistic nowcast, which comprises an ensemble of rainfall fields calculated for the desired lead 
time. Alternatively, it is also possible to apply only the S-PROG model and neglect the procedure of 
stochastic perturbation (namely, point 4 and 6), in order to retrieve a deterministic nowcast. Obviously, 
in the latter case all the benefits related to an ensemble forecast are lost to the advantage of a quicker 
and simpler method.   

 

2.2 PY-STEPS 
 

In this section an explanation about the implementation of STEPS in an open-source and python- based 
library, py-STEPS, is provided. This section offers the following insights: description of py-STEPS, 
metrics used in the software to evaluate the forecast’s skill and main observations derived from practical 

applications. In the first paragraph, all the information, tables and images are taken from the official 
paper of py-STEPS creators [19]; therefore, if not differently specified, all the main statements refer to 
the same source.  

2.2.1 py-STEPS DESCRIPTION  
 

py-STEPS is an open-source and python-based library, which offers a modular framework for 
implementation of the STEPS method. Since it is open source, all the modules, functions and features 
of this platform are available to all sorts of public, ranging from meteorologists to hydrologists. This 
not only gives the opportunity of utilizing a well-documented and reliable software for weather 
prediction, but also pushes a community-driven effort for the constant improvement of the method. As 
a matter of fact, the source code of py-STEPS is hosted on GitHub [22], and external developers have 
the possibility to apply changes/integrations to the main repository via pull request. Therefore, py-
STEPS not only allows free copying and redistribution of the software, but also modifications (as long 
as these are tracked and made available under the BSD license). Furthermore, practical examples of 
this library applications are available on the official website [23], together with an explanatory guide 
of all the modules and functions implemented in the library [24].  

py-STEPS is built upon several external libraries, among which the most important ones are Numpy, 
SciPy and Matplotlib, that all together provide a MATLAB-like computing environment in Python. In 
particular, the main data structure is based on Numpy. For the sake of completeness, the table below 
reports all the external libraries used in py-STEPS: 
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Library Website 

h5py http://www.h5py.org 

netCDF4 http://unidata.github.io/netcdf4-python 

PIL https://github.com/python-pillow/Pillow 

OpenCV http://opencv.org 

NumPy http://www.numpy.org 

SciPy http://www.scipy.org 

FFTW/pyFFTW http://www.fftw.org 

https://github.com/pyFFTW 

dask http://dask.org 

cartopy https://github.com/SciTools/cartopy 

Matplotlib http://matplotlib.org 

mpl_toolkits.basemap http://matplotlib.org/basemap 

Table 2.1.Summarizing table of external dependencies of PYSTEPS [19] 

 

Another key feature of py-STEPS is the modularity. Multiple functions, written to perform different 
procedures of the STEPS method, are subdivided into different modules, which can be used in a 
complete interchangeable manner. This means that the user has a complete freedom of combining 
different methods in different orders and controlling the algorithms implemented in the library, without 
being forced to follow a rigid workflow.  

py-STEPS implements several optical flow methods (such as Lukas-Kanade, VET, DARTS), different 
procedures for filtering white noise (parametric, non-parametric), as well as multiple post-processing 
approaches (which are based on either masking or matching the statistics of the forecast fields with the 
most recent radar observations). Therefore, the user can test, case by case, all the options offered by the 
library and make a comparison among the different obtained results, highlighting which are the main 
outcomes of different algorithms choice. Moreover, the forecaster can also decide to perform either a 
deterministic nowcast, where the application of the stochastic noise cascade to the different spatial 
fields is skipped, or a probabilistic forecast, which encompasses all the stages described in the previous 
section. Obviously, in the first case only one result will be available at the end of the forecast, while in 
the second one an ensemble of precipitation fields can be obtained. It is also possible to have control 
on the number of the ensemble members of the nowcast, basing on the requirements of the application. 
The figure below shows the general workflow of py-STEPS. 

As it can be noticed, since py-STEPS is an implementation of the main STEPS procedure, the conceptual 
sequence of the different passages resembles the one described in the previous section. Inside each chart 
element there are two rows: the first one describes the task carried out, while the second reports the 

http://www.fftw.org/
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name of the py-STEPS module used. White colors indicate the operations that are performed in all 
nowcast methods. Green colors represent the operations that are performed when the S-PROG model 
is applied, namely the cascade decomposition and the application of an autoregressive filter to each 
cascade level. Blue colors refer to the passages that are carried out only when a probabilistic forecast is 
performed (i.e., they are neglected in case of a deterministic approach). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Optical flow algorithms  
 

As previously discussed, the nowcasting procedure always starts with the calculation of a motion field 
by means of an optical flow algorithm. In py-STEPS currently 3 methods are implemented and shortly 
discussed here:  

 

  
Figure 2.3. Work flow followed in py-STEPS[19] 
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• Lucas-Kanade algorithm:  it is an easy method for estimating the mobility of interesting features in 
successive images of a scene. The objective is to assign a velocity vector (u, v) to each pixel in the 
scene by comparing two consecutive images.  Considering one single pixel, the equation to solve has 
the form [25]:  

 

𝐼𝑥(𝑥, 𝑦) ∗ 𝑢 + 𝐼𝑦(𝑥, 𝑦) ∗ 𝑣 = −𝐼𝑡(𝑥, 𝑦) (2. 8) 

 
Where 𝐼𝑥 , 𝐼𝑦  and 𝐼𝑡  are the derivatives of the image function 𝐼(𝑥, 𝑦) with respect to 𝑥, 𝑦 and 𝑡 (time), 

while 𝑢, 𝑣 denote the 𝑥 and  𝑦 components of the velocity vector.  
 
Usually, the equation above is not solved for one single pixel, but for a neighborhood of pixels which are 

supposed to have the same velocity, thus forming the system:  
 

𝑆 ∗ (
𝑢
𝑣

) = 𝑇 (2. 9) 

 
Where S is a (n x 2) matrix containing the rows [𝐼𝑥(𝑥1, 𝑦1), 𝐼𝑦(𝑥1, 𝑦1)  … 𝐼𝑥(𝑥𝑛, 𝑦𝑛), 𝐼𝑦(𝑥𝑛, 𝑦𝑛)] and T 

is a vector containing the terms [ 𝐼𝑡(𝑥1, 𝑦1), …,  𝐼𝑦(𝑥𝑛, 𝑦𝑛)] . Usually, the system above is over-
determined, but can be solved using the least square method:  

 

𝑆𝑇 ∗ 𝑆 ∗ (
𝑢
𝑣

) = 𝑆𝑇 ∗ 𝑇 (2. 10) 

 
 
• Variational echo tracking method (VET): technique used for calculating the velocity field of radar 

reflectivity echoes. The entire radar map is divided into sub-regions, where a velocity vector 𝑉𝑚,𝑛 is 
calculated by minimizing the difference in radar reflectivity between two composite maps 𝑍(𝑥, 𝑦, 𝑡) 
and 𝑍(𝑥, 𝑦, 𝑡 + ∆𝑡) separated by a time interval ∆𝑡. Therefore, to construct the whole velocity field 𝑉, 
each 𝑉𝑚,𝑛 should be calculated inside every sub region. However, in variational methods it is possible 
to compute simultaneously all the vectors by a global minimization of the following equation over the 
entire composite map [26]:  

 

𝐹(𝑉) =  𝐹𝑍 + 𝐹𝑉  (2. 11)  

 
Where 𝐹(𝑉) is the cost function to be minimized, completely dependent on the velocity field V and 

𝐹𝑍, 𝐹𝑉 are two constraints.  
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The first constraint 𝐹𝑍 imposes the conservation of reflectivity and is defined as the sum of the square of 
the residuals at all locations (𝑥, 𝑦) that arise between the map at time 𝑡 and at time ∆𝑡 according to the 
vector field 𝑉 [26]:  

 

𝐹𝑍 =  𝑤𝑍 ∑ ∑{𝑍(𝑥, 𝑦, 𝑡0) −  𝑍(𝑥 − 𝑢∆𝑡, 𝑦 − 𝑣∆𝑡, 𝑡0 − ∆𝑡)}2

𝑦𝑥

𝑑𝑥𝑑𝑦 (2. 12) 

 
Where 𝑤𝑍 is a weight related to data quality (usually set constant) and 𝑢, 𝑣 are the 𝑥, 𝑦 component of the 

velocity vectors interpolated at every location (𝑥, 𝑦) with respect to the 𝑉𝑚,𝑛 values in every sub-area.  
 
The second element of equation 2.11 is the so called “smoothness penalty function” and is used to limit 

the variability of the velocity vectors 𝑉𝑚,𝑛 [26]: 
 

𝐹𝑉 =  𝑤𝑉 ∑ ∑{(
𝑑2𝑢

𝑑𝑥2
)2 +  (

𝑑2𝑢

𝑑𝑦2
)2+ 2(

𝑑2𝑢

𝑑𝑥𝑑𝑦
)2 + (

𝑑2𝑣

𝑑𝑥2
)2 +  (

𝑑2𝑣

𝑑𝑦2
)2 +  2(

𝑑2𝑣

𝑑𝑥𝑑𝑦
)2 }𝑑𝑥𝑑𝑦

𝑦𝑥

(2. 13) 

 
As a result, to minimize the function 𝐹(𝑉) several iterations are needed. In VET, a conjugate-gradient 

algorithm is used to determine the optimum search direction and the step length. 
 
 
• Dynamic and Adaptive Radar Tracking of Storms (DARTS): this method exploits reflective 

atmospheric data (i.e., a time series of sequential radar images) and the following flow equation to 
retrieve the future and current atmospheric conditions [27]:  

 

𝜕

𝜕𝑡
𝐹(𝑥, 𝑦, 𝑡) =  −𝑈(𝑥, 𝑦)

𝜕

𝜕𝑥
𝐹(𝑥, 𝑦, 𝑡) − 𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦
𝐹(𝑥, 𝑦, 𝑡) + 𝑆(𝑥, 𝑦, 𝑡) (2. 14) 

 

Where 𝐹(𝑥, 𝑦, 𝑡) is the scalar field of radar observations, 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦) are the x-axis and y-axis 
motion velocity over the spatial domain and 𝑆(𝑥, 𝑦, 𝑡) represents some dynamic mechanisms occurring 
in the scalar field (for example, growth and decay of precipitation structures).  

 
To find a solution of equation 2.14, a Discrete Fourier Transform (DFT) is applied to obtain a linear 

system that can be solved in the frequency domain. Finally, an Inverse Fourier Transform can be applied 
to estimate the components 𝑈(𝑥, 𝑦) and 𝑉(𝑥, 𝑦). 
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2.2.3 Stochastic noise generators 
 

As previously stated, the stochastic noise used in equation 2.4 is generated by filtering a white noise field 
in the frequency domain. Filtering mechanisms available in py-STEPS include: 

 

• Parametric method: In this method, the white noise field 𝜀𝑤 is filtered in frequency domain exploiting 
the slope of the Radially Averaged Power Spectrum (RAPS) of the most recent radar image and then 
transformed back to the spatial domain by means of an IFFT [19]:  

 

𝜀(𝑥, 𝑦) = Ϝ−1{𝑓(|𝒌|)Ϝ{𝜀𝑤}(𝑘𝑥, 𝑘𝑦)} (2. 15) 

 
Where Ϝ indicates the FFT (and Ϝ−1 the IFFT) and 𝑓 represents the slope of the RAPS.  
 
To be more precise, py-STEPS uses a piecewise linear function with two spectral slopes (𝛽1, 𝛽2) and one 

breaking point to filter the white noise field. One problem of this method is that it cannot represent 
anisotropic structures, as this model assumes an isotropic power-law scaling relationship.  

 
• Non-parametric method: This method, as the name implies, does not rely on the parametrization of 

the most recent radar image, but instead directly applies their power spectrum to the white noise field 
in frequency domain [19]:  

 

𝜀(𝑥, 𝑦) = Ϝ−1{|Ϝ{𝑹}(𝑘𝑥, 𝑘𝑦)|Ϝ{𝜀𝑤}(𝑘𝑥, 𝑘𝑦)} (2. 16) 

 
With 𝑹  indicating the power spectrum of the observed precipitation field. This method can 

represent anisotropic structures, but it is very sensitive to the quality of the input radar images and 
requires a large sample size. 

 
• Local non-parametric method: This method is quite similar to the previous one, but this time the 

noise is generated locally through a Short Space Fourier Transform (SSFT) to account for 
discontinuities in the covariance structure of the last observations [19]:  

 

𝜀(𝑥, 𝑦) = Ϝ−1{|Ϝ{𝑹𝑤ℎ(𝑛1, 𝑛1)}(𝑘𝑥, 𝑘𝑦)|Ϝ{𝜀𝑤}(𝑘𝑥, 𝑘𝑦)} (2. 17) 

 
Where 𝑤ℎ(𝑛1, 𝑛1) =  𝑤ℎ(𝑛1) ∗  𝑤ℎ(𝑛2) is the outer product of two Hanning windows with sizes 𝑛1 and 

𝑛2. 
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2.2.4 Postprocessing  
 

Some remarkable discrepancies between the modeled and the observed precipitation field may arise 
during the intermediate stages of the nowcasting procedure. Therefore, after the production of the final 
precipitation field, it is customary to apply some postprocessing techniques to match the statistics of 
observations and modeled precipitation field. This is accomplished in py-STEPS using two 
complementing approaches, which are briefly detailed in this section.   

 

• Masking: This procedure is implemented to avoid the formation of stochastic precipitation in no-
rain areas. Currently, in py-STEPS three masking methods are available. The first one generates 
the mask using a precipitation threshold, and the mask is then kept constant throughout the 
nowcast. The second method works similarly, but the mask is progressively relaxed and changes 
at each lead time to better simulate the stochastic evolution of the wet area. Finally, the mask can 
also be obtained through S-PROG, namely an unperturbed (deterministic) nowcast. 

 

• Matching the statistics of the forecasted field with the most recent radar images: two 
methods can be used to reach this goal. The first consists of matching the conditional mean 
(determined by the previously applied mask) of the forecasted field with the conditional mean of 
the observed one. In the second method, the Cumulative Distribution Function (CDF) of the 
forecasted field can be mapped to the observed field through the following expression [19]:  

 

𝑅′(𝑥, 𝑦) =  𝐹𝑜𝑏𝑠
−1 (𝐹(𝑅(𝑥, 𝑦))) (2. 18) 

 

Where  𝐹𝑜𝑏𝑠
−1  and 𝐹 denote the CDF of the observed field and the forecasted one 𝑅.  

 

2.3 VERIFICATION METRICS 
 

Different metrics have been used in literature to assess the forecast’s skill. Therefore, in order to provide 

a proper context that helps to interpret the results and the main conclusions about PYSTEPS that will 
be provided in the next paragraph, it is presented here a short introduction to the principal metrics. 
Generally speaking, it is possible to identify two main kinds of forecast’s metrics: qualitative and 

quantitative.  

In this work, “qualitative” (or categorical) refers to all those metrics that represent the ability of the 
forecast to correctly predict an event in comparison to the observations. For instance, given a grid’s 
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pixel and a precipitation threshold, it is possible to say that the forecast has a good qualitative skill if it 
predicts that the threshold will be exceeded when this is observed also in radar image. On the other 
hand, it can be stated that the weather model has a poor skill if it is predicted that the threshold will not 
be exceeded, but the contrary is observed.  

Conversely, quantitative (or continuous) metrics are those that express the bias of the forecast and 
therefore are a representation of the accuracy of the weather model. For example, once it has been 
verified that in a grid’s pixel both the forecast and the radar exceed the precipitation threshold, it is of 
interest to know by how much the forecast’s precipitation differs from the one observed by the radar.  

Below it is provided a more in-detail description of some of the most important metrics used in 
forecasting, while a summarizing table containing more information is presented at the end of this 
paragraph:  

 

2.3.1 Receiver Operating Characteristic (ROC) curves  
 

The relative operating characteristics curves are plotted considering the False Alarm Ratio (FAR) against 
the Hit Rate (HR). These two metrics can be defined as follows[28]:  

 

𝐹𝐴𝑅(%) =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 𝑋 100 (2. 19) 

 

𝐻𝑅(%) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑋 100 (2. 20) 

 

Where TP means “true positive”, FN “false negative”, FP “false positive” and TN “true negative”. 
Considering a grid and a precipitation threshold, a true positive is obtained when both the forecast 
prediction and the radar observation overcome the threshold inside a given pixel, while a false negative 
is registered when the forecast predicts a value lower than threshold, but the radar observes an 
exceedance. Analogously, a true negative is obtained when neither the forecast nor the observation 
exceeds the threshold, while a false positive verifies when only the prediction outcomes the critical 
value. Therefore, considering a value threshold and a set of probability thresholds a curve like the one 
below can be built [28]. The bisector functions as a discriminant: an ROC curve above it (as shown in 
the graph) represents that the forecast has more HR than FAR and therefore can be considered reliable, 
while a curve below it is the result of a forecast that performs worse than a random generator, since for 
each probability threshold more false alarms than effective hits are given [28]. As a consequence, also 
the area subtended by the curves can be used to interpret the forecast skill [29]: a value equal or lower 
to 0.5 represents a random generator, while areas close to 1 are the results of a very accurate forecast.  
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2.3.2 Reliability diagrams  
 

While ROC curves represent the forecast’s ability to correctly predict the occurrence of an event, the 

reliability diagrams graphically show what is the actual chance of observing the forecasted event [30]. 
As shown in the picture below, this kind of diagram plots the forecast probability against the frequency 
of the observations. Consequently, the bisector represents the reliability diagram of a perfect weather 
model; for instance, if the model predicts that an event will occur with a given % of probability, this 
will be effectively observed exactly with the same % of probability all the times [30]. Therefore, the 
closer the reliability diagram approximates the bisector and the more reliable the forecast is.  

 

 

 

 

 

Figure 2.4. Example of an ROC curve [28] 
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2.3.3 Rank Histograms  
 

As suggested by the name, this metrics is a frequency histogram, where the class intervals defined by the 
forecast values are filled with observed data [31]. These histograms give a good qualitative assessment 
of the bias of the forecast: as a matter of fact, an accurate forecast will produce a rank histogram where 
all the bins have a similar frequency, while a histogram characterized by big frequency differences 
among the classes is symptom of an inaccurate model [31].  

 

 

Figure 2.6. Example of a rank histogram [32] 

 

Figure 2.5. Example of a reliability diagram[30] 
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2.3.4 Fraction skill score (FSS) 
 

The Fraction skill score is a quantitative metric that represents the accuracy of the forecast in relation to 
the spatial extent [16]. It is defined as follows [33]:  

 

𝐹𝑆𝑆 = 1 − 
〈(𝑃𝑓 − 𝑃𝑜)𝑛

2  〉

(〈𝑃𝑓
2〉 + 〈𝑃𝑜

2〉)𝑛

 (2. 21) 

 

Where:  

• The numerator represents the MSE between the precipitation threshold frequency of the forecast and of 
the observations inside each grid cell (the angled brackets indicate a mean over the grid boxes for the 
length scale n). The numerator defined in this way is also known as fraction Brier score (FBR) [33] 
 

• The denominator represents the FBS of the worst possible forecast for length scale n, namely the 
forecast that gives the highest discrepancies with respect to the observations [33] 

 

The FSS ranges between 0 (total mismatch) and 1 (perfect forecast) and usually increases as the spatial 
area considered increases [16]. Therefore, this metric defines a sort of “resolution” of the forecast’s 

skill. For example, if considering a length scale of 8 Km the forecast shows a high skill, it means that 
the weather model can represent pretty well the reality at small scales. On the other hand, if it is possible 
to obtain a sufficient skill only for spatial extents over 50 Km, it means that the weather model gives 
good results only at coarse resolutions.  

 

2.3.5 Summarizing table 
 

After listing some of the principal metrics used in the meteorological context and in literature, below it 
is reported a summarizing table:   
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NAME TYPE DEFINITION PARAMETER 
DEFINITION MEANING 

ROC CURVES Qualitative 

Plot of false alarm rate (FAR) ratio 
against hit ratio (HR), where: 

 

𝐹𝐴𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
[28] 

𝐻𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
[28] 

 

TP = True positive 

FN = False negative 

FP = False positive 

TN = True negative 

Scalar measure of 
forecast accuracy 

RELIABILITY 
DIAGRAM Qualitative 

Plot of the forecast probability 
against the observed frequencies 

[30] 
- 

Measurement of the 
bias and 

resolution of the 
probabilistic 

forecast 

RANK 
HISTOGRAM Qualitative 

Frequency histogram where bins 
defined by forecast values are 

filled with observed values [31] 
- 

Qualitative 
assessment of the 
ensemble forecast 

reliability with 
respect to newly 

observed data 

 

CRITICAL 
SUCCESS 

INDEX (CSI) 

 

Qualitative 𝐶𝑆𝐼 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
[34] 

FP = False positive 

TP = True positive 

FN = False negative 

Verification 
measure of 
categorical 

forecast 
performance 

 

PROBABILITY 
OF 

DETECTION 
(POD) 

 

Qualitative 𝑃𝑂𝐷 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
[34] 

TP = True Positive 

FP = False negative 

It represents the 
percentage of 
events that are 

forecasted 

PEARSON 
COEFFICIENT Quantitative 𝜌 =  

𝑐𝑜𝑣(𝑓, 𝑜)

𝜎𝑓𝜎𝑜
[17] 

𝑓 = forecast rainfall 
in one pixel 

𝑜 = radar rainfall in 
one pixel 

𝑐𝑜𝑣(𝑓, 𝑜) = 
covariance of 𝑓 

and 𝑜 over all the 
grid 

𝜎𝑓,𝑜 = variance of 𝑓 
or 𝑜 over all the 

grid 

Description of the 
associations 
between the 

forecast dataset 
and the 

observation 
dataset 
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MEAN 
ABSOLUTE 

ERROR (MAE) 
Quantitative 𝑀𝐴𝐸 =  

∑ ‖𝑓 −   𝑜‖𝑁
𝑖=1

𝑁
[16] 

N = Number of 
pixels 

𝑓 = forecast rainfall 
in one pixel 

𝑜 = radar rainfall in 
one pixel 

Description of the 
discrepancies 
between the 

forecast dataset 
and the 

observation 
dataset (used for 

deterministic 
nowcasts) 

BRIER SCORE Quantitative 
𝐵𝑆 =  

∑ (𝐹𝑖 − 𝑂𝑖)2𝑁
𝑖=1

𝑁
[16] 

 

𝑃𝑓𝑖 = Exceedance 
probability of the 
forecast for the i-

th pixel 

𝑃𝑜𝑖 = Exceedance 
probability of the 

observation for the 
i-th pixel 

N = Number of 
pixels 

 

It basically 
represents the 

mean square error 
of the forecast. 
The lower the 
brier score, the 

more skillful the 
forecast 

FRACTION 
SKILL SCORE 

(FSS) 
Quantitative 

𝐹𝑆𝑆 = 1 − 
〈(𝑃𝑓 − 𝑃𝑜)𝑛

2  〉

(〈𝑃𝑓
2〉 +  〈𝑃𝑜

2〉)𝑛

[33] 

 

Numerator = FBS 
between the 

forecast and the 
observation per 
length extent n 

Denominator = FBS 
of the worst 

possible forecast 
per length extent n 

Accuracy of the 
forecast in relation 

to the spatial 
extent 

Table 2.2. Summarizing table of typical meteorological verification metrics 

 

 

2.4 STEPS – BE  
 

STEPS-BE is a nowcasting system developed at the RMI (Royal Meteorological Institute) in Belgium. 
As the name suggests, it is built on the same principles of STEPS, but it has been optimized for urban 
application in Belgium [20]. For this reason, some peculiarities have been implemented to adapt this 
extreme rainfall prediction system to its hydrological scopes in the Belgian domain.  

Firstly, since STEPS-BE has been designed for lead-times below 2 hours [20], it does not implement any 
NWP blending. In fact, as already remarked in previous sections, for the first two hours of the forecast 
extrapolation methods can offer better results than numerical weather prediction models. Therefore, 
STEPS-BE follows the same conceptual model explained in section 2.1 and can be categorized as an 
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extrapolation method, where the stochastic noise cascade partially accounts for the phenomena of 
growth and decay of the precipitation field.  

Secondly, the motion field equation (equation 2.1) is solved using a COTREC scheme. Similarly to the 
VET technique, the equation is computed in smaller subdomains of the radar image, with pixels 
collected into 10 × 10 pixel blocks. However, in order to solve the motion field equation within each 
block, an additional constraint is required, which in the COTREC scheme is the minimization of the 
velocity field divergence ∇2𝑉. This condition works as a smoothness constraint, since minimizing the 
divergence of the velocity field implies decreasing the differences among velocity vectors of adjacent 
blocks.  However, since the minimization is performed only at the block level but not at the pixel level, 
some sharp discontinuities between pixels belonging to different blocks may arise. As a result, STEPS-
BE includes a Gaussian Kernel smoothing that interpolates the velocity vectors in the center of the 
blocks, which are subsequently assigned to each pixel in the block. 

Thirdly, to simplify the computations, an autoregressive model of order 1 is applied to the different 
cascade levels instead of the second order one used in the original STEPS implementation [20]. 

Fourthly, in STEPS-BE the stochastic perturbations are generated only inside the radar domain, while in 
the original STEPS implementation these are also produced outside the observed images when blending 
of NWP models, which have a coarser resolution than radars, is applied. This adaptation helps in 
improving the probability matching made at the end of the extrapolation process, that could be disturbed 
by the stochastic rain cells appearing outside the validity domain [20].  

Finally, in STEPS-BE the velocity field is perturbed by simply multiplying the velocity vectors by a 
factor C calculated as follows [20]:  

𝐶 = 10
1.5𝑁

10  (2. 22) 

 

Where N is a normally distributed random variable with zero mean and unit variance. Basically, this 
means that the velocity field is randomly accelerated/decelerated by a single factor C, while the 
direction of the movement remains unperturbed.  
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Chapter 3: RADAR-RAIN GAUGE COMPARISON  
 

As mentioned in the previous chapter, the STEPS model requires radar images as an input. Therefore, 
before computing the forecasts and making the comparison of py-STEPS with STEPS-BE, it is 
necessary to make some preliminary analysis on the radar images.  

The considerations that will be reported at the end of this chapter allow us to have not only a deeper 
knowledge about the radar data, but also a better understanding of the results provided by the py-STEPS 
software. As a matter of fact, radar images can be affected by different sources of error, which depend 
on: 1) variations in the relationship between the rainfall rate and the backscattered energy (the Z-R 
relation previously mentioned) ; 2) changes in the precipitation before reaching the ground; 3) 
anomalous propagation of the beams [35] For example, it could occur that, during the precipitation 
phenomenon, physical mechanisms like wind speed or evaporation alter the drop-size distribution of 
rainfall [36], leading to a change in the Z-R relationship and thus to wrong estimation by the radar [35]. 
Similarly, the presence of obstacles in the surroundings of the radar or of ice-particles inside the cloud 
can cause scattering or attenuation of the electromagnetic signal, leading to severe underestimations 
[36]. Again, also errors in the hardware calibration may be present and influence the results of the 
detected precipitation field [35]. Finally, also heavy precipitation leads to attenuation of the radar signal 
[37]. Even if this short list does not provide a complete and exhaustive description of all the possible 
radar errors and uncertainties, it gives a general idea about all the circumstances that can affect the 
results of these kinds of systems.  

The validation of the available data has been carried out through a comparison with rainfall intensities 
measured by the rain-gauges network of the Flanders region. The basic assumption behind the 
validation of the radar images is that the rain-gauges represent the “true” value of the precipitation, 

therefore any discrepancy between the values measured by the radar and the ground stations is 
interpreted as an error of the former. It is worth noting that assuming the rain-gauges as the “ground-
truth” is a simplification, since, obviously, also these can be affected by various sources of errors in 
their measurements, that usually are related to factors like evaporation, advection and vertical wind 
motions [35].  

In this chapter, in first instance, a description of the available data will be provided. Secondly, all the 
analysis and considerations will be explained through graphs and summarizing images. Finally, the 
overall conclusion will be reported. 
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3.1 DESCRIPTION OF RADAR DATA  
 

The Belgian territory is covered by 4 radar stations, located in Jabbeke, Helchteren, Zaventem and 
Wideumont. On the overall, the composite of these stations guarantees a complete coverage of the state, 
as reported in the image below:  

 

 
Figure 3.1. Representation of the radar coverage over the Belgian territory [38] 

 

The radar domain is subdivided into a 512 x 512 grid, with a spatial resolution of roughly 1 Km 
(precisely, 1058m). The grid point locations are expressed in planar coordinates (x,y), using a 
stereographic projection starting from the reference system WGS84. The temporal resolution of the 
data is 5 minutes, while the intensity of the rainfall is expressed in [mm/5 minutes]. Finally, the data 
are provided in netCDF4 format. In the table reported below, all the 10 available events observed by 
the radar network are listed:  

OBSERVATION DATE START / END TIME 
1 18/05/2017 13:30 – 21:15 

2 19/07/2017 
20/07/2017 

20:05 
13:00 

3 15/08/2017 02:05 – 11:25 

4 
29/08/2017 
30/08/2017 
31/08/2017 

21:05 
 

00:00 

5 11/09/2017 
12/09/2017 

07:35 
00:00 

6 24/05/2018 12:05 – 18:20 

7 
27/05/2018 
28/05/2018 
29/05/2018 

10:05 
 

03:20 
8 31/05/2018 00:05 – 22:50 
9 07/06/2018 02:40 – 17:45 

10 05/09/2018 
06/09/2018 

00:05 
03:00 

Table 3.1. Available radar observations 
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3.2 DESCRIPTION OF RAIN GAUGE DATA 
 

The rain-station data have been acquired from the open data platform waterinfo.be and cover the years 
2017 and 2018.  The network comprehends 60 rain gauges, which cover the entire Flanders region, as 
reported in the image below:  

 

 
Figure 3.2. Coverage of rain gauges (red dots) along the Flanders region. 

Also in this case, the data are provided with a temporal resolution of 5 minutes and are expressed in units 
of [mm/5 minutes]. Each station is identified with a numerical code, which is related to the geographical 
coordinates, expressed as longitude and latitude over the WGS84 reference system. Below, a part of 
the table of the rain gauges’ metadata is reported. 

 

 

 

 

 

 

 

 

 

 

 

Station name Identity number Station latitude Station longitude 

Herentals_P 210409042 51.16224315 4.845694177 

Korbeek-Dijle_P 210396042 50.83615983 4.64327789 

Sint-Joris_P 209278042 51.12657282 2.760080418 

Oostkamp_P 207607042 51.13220211 3.253455485 

Bonheiden_P 210397042 51.03254282 4.510399646 

Liedekerke_P 210392042 50.88663188 4.094898384 

Ieper_P 209277042 50.84242046 2.889729506 

Maarke-Kerkem_P 210390042 50.81897472 3.670943421 

Tessenderlo_P 210407042 51.05208545 5.120756298 

Boekhoute_P 210381042 51.26641081 3.68645591 

Table 3.2. Metadata of rain gauges 
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3.3 EVENT EXTRACTION  
 

After acquiring the available observations from the radar and the rain gauges, it is necessary to define a 
criterion for the extraction of events. In particular, this thesis is focused on extreme precipitation and 
therefore the validation of radar data should be done for this kind of events. Since, as previously 
specified, the rain gauges are considered as the “ground truth”, it has been decided to base the event 

selection on their data. Moreover, it should be clarified that the extracted events must be independent 
one from each other since the aim of this section is to perform statistical analysis.  

It has been decided to adopt a separation of events that keeps into account the functioning and the working 
principles of the sewage system of a city. As a matter of fact, after the occurrence of a high-intensity 
rainfall, the sewage system requires a certain time to completely drain. Therefore, if multiple short-
duration storms occur within a short time span, there is an increased risk of flooding, since the sewer 
system did not completely drain in between the storm events. As a result, two or more precipitation 
events that occur within this time range should be considered as one single event and not distinctly. 
Conversely, if the separation time between the two events is long enough to guarantee the complete 
drainage of the system, the two events can be considered as “independent”. 

Therefore, the separation and distinction of independent events is based on what is usually defined as 
“inter-event time” (IET). Actually, the IET depends on different factors, such as the type of the sewer 

system, the catchment size and the land cover and can vary dramatically around the world. Since no 
specific catchment was considered in this work and the independence of the events should be general, 
an arbitrary time of 12 hours as been chosen as IET. Consequently, a specific algorithm has been 
developed in Python. To clarify its description, the explanatory graph reported below will be discussed: 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3. Explanatory graph for event extraction 
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The graph represents the value of precipitation intensity measured by one rain gauge against time. As 
can be noticed, one high and one low thresholds are set. The exceedance of the higher threshold defines 
the starting time of the event, while the lower threshold has the function of distinguishing between 
different events. However, basing the separation of the events only on the thresholds would not reflect 
the considerations made above; it is also necessary to consider the time factor. Consequently, the 
algorithm works as follows:  

When the upper threshold (set to 2 [mm/5min] in the graph) is overcome, the event starts. Once the 
rainfall intensity falls below this value, the algorithm starts counting the time (as indicated by the arrow 
in the image). When the rainfall intensity falls below the lower threshold (set to 0.2 [mm/5min] in the 
graph), the system keeps registering the values until the counting of 12 hours is reached. If, during the 
counting, the lower threshold is not exceeded again, the algorithm will only extract the peak 
precipitation (namely, the values included between the two arrows “the event starts” and “algorithm 

starts counting”); conversely, if the lower threshold is exceeded a second time, all the precipitation 
values will be included in the event. Every time the upper threshold is overcome, all the mechanism 
previously described is reiterated (and the algorithm’s counter is set to 0 and restarts).  

It can be noted that the lower threshold has been set to a value slightly higher than 0: this is done to avoid 
that really light rain, which has not an influence on potential flooding of the sewage system, is included 
inside the event. The image above shows that, if the time between the exceedances of the lower 
threshold is higher than 12 hours, the events are extracted and classified as independent.   

The two thresholds were calibrated through a sensitivity analysis in order to extract a significant number 
of events to perform statistical analysis. In particular, the higher and the lower thresholds were set to 3 
[mm/ 5 min] and 0.1 [mm/5 min] respectively, so that 50 events were extracted after applying the 
algorithm to all the data of each rain gauge. In appendix A the table that summarizes the event extraction 
by listing the station location, start time and end time is reported.  

 

3.4 RADAR DATA VALIDATION 
 

After extrapolating the events through the method previously described, it is possible to make a 
comparison between the measurements of the rain gauges and of the radar system. In the next sections, 
all the analyses that have been carried out will be presented, as well as the relative conclusions.  

 

3.4.1 Radar errors  
 

As previously mentioned in the introduction of this chapter, the main hypothesis behind the radar data 
validation is that the rain gauges measure the “true value” of the precipitation; namely, every 

measurement that differs from what has been recorded by the stations is interpreted as an error of the 
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radar. Furthermore, it is important to specify that, during the following comparisons, the precipitation 
value of the radar corresponds to the one measured inside the grid’s pixel that contains the rain gauge.  

Therefore, one first simple way to assess the radar’s accuracy consists in plotting a cluster of points of 

coordinates (x,y), where the x-axis represents the value measured by the rain-gauge, while the y-axis 
expresses what has been recorded by the radar.  The points on the graph below correspond to the 
precipitation intensities (unit of [mm/5min]) measured throughout all previously defined events. On the 
graph, all points above the bisector (red line of the graph) represent an over-estimation of the radar, 
while all points below imply an under-estimation.  

If the radar system was really accurate, all the points should be on the bisector; yet, it can be observed 
that the points on the graph are dispersed evenly above and below the red line. This means that the error 
of the radar does not follow a precise trend, but it is rather random, with both over and under-
estimations.  

As can be observed from the plot, most events have relatively low precipitation intensity values for both 
gauge and radar observations. Consequently, absolute errors in that area are also low. For increasing 
precipitation, differences between gauge and radar tend to become larger. Points situated in the upper 
left or lower right corner are the most interesting on the graph, as they show a serious discrepancy 
between the observations. Probably, this dispersion is the result of the typical radar errors previously 
mentioned, such as the high sensitivity of the Z-R relation to the drop size or the beam attenuation 
occurring when high-intensity precipitations are present.  

 

 

 
Figure 3.4. Scatterplot of the selected events 
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3.4.2 Time-shifting between radar and rain gauge data  
 

In second instance, it has been decided to make a visual analysis by plotting the values measured by the 
rain gauges and the radars side by side for single events, as shown below:  

 

 

 

From these graphs, it is clear that the peaks in precipitation intensity observed by the gauges and the 
radar are shifted in time by 10 minutes. These results, similar to what has been reported in literature 
[36], can be explained by considering that the precipitation field intercepted by the radar requires a 
certain amount of time to fall to the earth’s surface and hence to be measured by a rain gauge. As a 
result, the peak values of the rainfall are measured by the rain gauges with a certain delay compared to 
the radar system.  

However, the time delay between the two maximum values is not always equal to ten minutes for all the 
events, but a certain variability can be observed. Therefore, a frequency histogram of the time-shift 
between the two peaks is created, which represents how many events are characterized by a certain time 
delay:  

 

 

Figure 3.6. Radar and station measurements for an 
event occurred in May of 2017 at Bruges 

Figure 3.5. Radar and station measurements for an 
event occurred in May of 2018 at Denderbelle 
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Figure 3.7. Frequency histogram of the time delay for all the considered events 

 

As can be noticed, the events are more or less all characterized by a certain time delay, which, on average, 
ranges from 0 to 30 minutes. Still, the most common time delay, similarly to the example events 
reported above, is equal to ten minutes. This information is particularly important for two reasons.  

Firstly, if the radar images, that are the required inputs for the STEPS method, represent a precipitation 
field that will reach the ground with an average time of 10 minutes, similarly, the results of the 
forecasting system will provide an advected precipitation field with similar characteristics. Namely, the 
lead time of each forecast based on these radar images can be extended, on average, by ten minutes.  

Secondly, it is safe to say that the error between the radar and station measurements, along one single 
event, will be surely higher if no time shift between the two sets of data is applied compared to the case 
in which the radar measurements are shifted by the average time of ten minutes.  

As a consequence, when some comparative metrics, such as the root mean square error (RMSE) will be 
calculated in the next sections, the time shift of ten minutes is applied to all the radar datasets of each 
event. Furthermore, it is important to specify that the time shift has been applied also to the graph 
previously reported in figure 3.4.   

 

3.4.3 Values in the surrounding of the rain gauges 
 

In the previous analysis, the comparison between radar and station data has been done considering the 
value measured by the radar in the grid’s pixel where the station is located. However, it could be of 

interest to also consider the precipitation intensities measured by the radar in the surrounding of the 
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rain gauge, to analyze if, by shifting the radar value’s location, the error between the two datasets could 

diminish.  

Therefore, two different methods to investigate this aspect have been implemented: one that extracts the 
maximum value among all the pixels that surround the station and another that calculates the mean of 
all the precipitation values close to the rain gauge. While performing this operation, it is possible to 
consider different distances (or radii) from the rain gauges; in this case, it has been decided to take into 
account the distances of 1058, 2116, 3174 and 4232 meters (in other words, the four pixels around the 
rain gauge have been selected). Obviously, investigating observations further than these radii would 
not be meaningful, since extending the gap between the rain gauges and the radar even more, would 
surely lead to remarked differences in the measurements of the two devices.  

It has been found out that considering the maximum value of precipitation intensity in the surrounding 
of the rain gauge usually leads to an increasing overestimation with increasing distance, as represented 
in the graph below for an example event:  

 

 
Figure 3.8. Esemple event at Boortmeerbeek  

 

Accordingly to what has been reported in the previous section, all the curves relative to the radar 
measurements are shifted with 10 minutes in time. In order to understand if what has been observed for 
the case above is valid for all the considered events, the RMSE between the radar and the station data 
has been calculated for each event and for each radii. In order to summarize the findings, the boxplots 
of the root mean square error are reported in the image below: 
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Figure 3.9. Boxplot of the RMSE with increasing distance 

 

The RMSE clearly increases every time the distance between the rain gauge and the pixel containing the 
maximum precipitation value expands, as it can be appreciated from the increasing trend of the median 
in the boxplot. Therefore, it can be concluded that considering the maximum precipitation value in the 
surrounding of the rain gauge does not show any clear benefit in the validation of the radar data. 
Analogously, it is possible to elaborate the same boxplots considering the second method, namely the 
one that extracts the mean of all the cells that surround the radar within a certain radius:  

 

 

 

 

 

 

 

 

 

 

 

 

For this second case, it can be observed that the RMSE tends to be constant with increasing distance. 
Unlike the previous case, few but really high outliers have been detected and then discarded from the 
boxplots.  

Figure 3.10. Box plots of the RMSE for the second method 
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Although the RMSE tends to be constant with increasing distance, these graphs show again that no 
benefit is obtained by considering the radar values in pixels that surround the rain gauges. Therefore, it 
seems that the best strategy for the validation is simply to extract the precipitation values in the same 
radar-grid cell where the station is located. Consequently, all the next analyses will follow this method. 

 

3.4.4 Aggregation and cumulative volumes 
 

In the previous sections, the comparison between radar and rain gauges has been performed considering 
the precipitation intensities, measured by the two devices, every 5 minutes. However, as it has been 
explained, time-shifting and different radar errors can lead to remarked over-estimations and under-
estimations by the radar. Therefore, it can be of interest to also consider the total rainfall volumes 
cumulated during the event, expressed in [mm], in order to check if relevant differences are detected 
by the two sensors.  As a matter of fact, evaluating the cumulated volumes allows to estimate the radar 
errors regardless of the time shifting that has been previously explained and not considered in the 
following exemplificative graph related to one event. 

 

 
Figure 3.11. Cumulative rainfall volume for an event neglecting the time-shift 

 

As can be observed, towards the end of the event both the radar and the station register a constant 
cumulative rainfall volume, that is independent of the time shift between the rainfall measured peaks. 
However, in this case the two total volumes do not coincide as there is an overestimation by the radar. 
Obviously, it is possible to perform the same operation for all the events that have been extracted and 
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compute the difference between the cumulative volumes measured by the radar and the stations, thus 
obtaining a scatter plot as the one reported below.  

 

 
Figure 3.12. Scatter plot of the differences in cumulated volumes between the radar and the rain gauges as a function of the duration of 

the event 

 

As it was expected, the graph underlines that both over-estimations (positive values) and under-
estimations (negative values) are present. It emerges that, for most of the considered events, the 
estimation of the overall volumes is not highly biased, since the differences between the two devices 
range between -5 and +5 [mm] of rain (as indicated by the horizontal red lines in the graph). In 
particular, it can be observed that events with a longer duration are characterized by a higher accuracy 
of radar’s measurements when compared to events that last for a short time. In fact, some events that 
have a duration of roughly 20 minutes can also present differences in the detected cumulative volumes 
(up to 15 millimeters).  

Besides considering the cumulative volumes, it is also possible to make an additional comparison 
between the radar and rain gauges by aggregating the rainfall values for different time ranges. 
Therefore, a rolling window has been applied to the radar and rain gauge observations in order to 
aggregate the time series 5, 15, 30 and 60 minute timesteps. Obviously, all the events that have a 
duration shorter than the aggregation time have been excluded from the computation.  

After aggregating the values, it is possible to calculate the RMSE for each event and, similarly to what 
has been done before, to summarize the results in the following boxplot.   
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Figure 3.13. Boxplot of the RMSE for different aggregation times 

 

It is clear that aggregating the rainfall intensities has a good influence on the radar’s validation procedure. 

As a matter of fact, not only the RMSE tends to be pretty low for all the aggregation levels (< 2 
mm/5min), but it also decreases by increasing the moving average window size. However, since the 
events have different time extents and can last less than 30 minutes, it must be considered that the 
estimation of the boxplot for durations of 30 and 60 minutes has a lower number of members (36 out 
of the 50 considered) 

 

3.4.5 RMSE as a function of the duration of the event 
 

In figure 3.12, It has been observed that events with short duration are characterized by an higher error 
in the estimation of the cumulative rainfall volume compared to events that last more than 60 minutes. 
To investigate better this aspect, it is possible to produce a scatter plot of the RMSE, in which the metric 
has been calculated for every event considering the rainfall intensities in units of [mm/5min], as 
reported in figure 3.14.   

In this specific case, before calculating the RMSE, every value of the considered event has been 
normalized with respect to the peak observed at the rain gauge, to better highlight the decreasing of the 
RMSE as a function of the duration. Moreover, all the radar measurements have been shifted by 10 
minutes, since, as previously stated, this operation helps in reducing the RMSE value.  

As expected, the radar and the rain gauges have a better agreement for those events with long duration, 
while higher errors in the rainfall estimation intensities are present when the events have a short 
duration. However, this statement is not valid in general for all the considered events. In fact, a small 
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“cluster” of points can be observed in the lower left part of the graph, where the duration of the event 

ranges between 0-20 minutes and the RMSE has values between 0.2 – 0.4: in these cases, the 
estimation of the radar can be considered acceptable despite the short duration.   

 
Figure 3.14. RMSE as a function of the duration with normalized peak intensity 

 

3.4.6 RMSE in function of distance between radar and rain gauge   
 

In order to better understand the performances of the radars as a function of space, it has been decided to 
evaluate the trend of the RMSE when the relative distance between a rain gauge and the nearest radar 
is considered. Namely, for every station at which the event occurs, both the distance from the nearest 
radar (among the four available) and the RMSE are calculated. The resulting graph is reported in figure 
3.15. 

It can be observed that the RMSE tends to decrease when the distance of the considered station with 
respect to the closest radar increases. Even if this result may seem counter-intuitive, different authors 
[36], [39] have reported that errors associated with ground clutter and wetting of the radar’s radome are 

more remarked in the proximity of the device, especially for short duration and high intensity events. 
However, it would be expected that, as observed in another study [36] the RMSE increases again after 
a distance about 60-70 Km, since at long distances a stronger decorrelation between radar and rain 
gauges is usually assessed [36]. As a matter of fact, an “optimal” distance between the rain gauge and 

the closest radar, at which the RMSE is the lowest possible and the typical radar errors are minimized, 
should be found, contrary to what can be observed from the presented graph. One possible explanation 
could be that the considered domain is too small to assess an effective rise of the RMSE, since the 
maximum distance between a station and the closest radar is below 80 km. Moreover, there are only 
four events in our dataset with a distance higher than 60. Therefore, the available sample is too small 
to make concrete conclusions. 



Chapter 3: Radar-rain gauge comparison 

43 

 

As a recommendation for future studies in this region, we would advise to retrieve a higher amount of 
observations, in order to build a bigger sample that allows to make more robust estimations about the 
RMSE for distances between rain gauge and the closest radar above 60 km.  

 

 
Figure 3.15. RMSE as a function of the distance between the rain gauge and the nearest radar 

 

3.5 CONCLUSIONS  
 

In this chapter, a validation analysis of the available radar images has been performed considering a 
number of 50 events that have been extracted through an algorithm programmed in Python. Analyzing 
a number of 50 events helped in drawing more general conclusions.  

The validation of radar observations is an important step, as the measured precipitation fields can be 
employed not only in hydrological modelling, but also as inputs for the nowcasting methods that will 
be further investigated in the next chapters. Different sources of errors, explained in the introduction, 
can affect the performances of the radar system and thus may be propagated in the results of the 
hydrological/nowcast models. The aim of this master thesis is not to elaborate procedures that allow 
the correction of these different sources of error, but rather to present the key aspects of precipitation 
radar forecasting, to have a more critical interpretation of the results. However, it is highly 
recommended to investigate specific radar corrections in future studies.  

Firstly, it has been assessed that the selected events are characterized by a time-shift between the 
observed peaks of the radar system and of the rain gauges. Specifically, it has been observed that the 
most frequent time shift is about 10 minutes on average, but also other time-delays surfaced, as 
underlined by the frequency histogram in figure 10. Therefore, it can be stated that, for example, 
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nowcasts based on radar images represent a rainfall field that will take 10 more additional minutes to 
precipitate on the ground.  

Secondly, no systematic error of the radars was observed, as both underestimations and overestimations 
have been assessed with the same frequency. In particular, this last statement applies not only to rainfall 
intensities, measured in units of [mm/5 min], but also to cumulative volumes, as depicted in figures 3.4 
and 3.12. Unfortunately, since there is not a systematic error of radar images, it is difficult to predict, 
in case of a new rainfall event, if the radar will give an overestimation or underestimation of the 
cumulative volumes at the end of the event; this may have important implications for models that 
operate at local-catchment scales. However, as highlighted by the boxplots in figure 3.13, aggregating 
the rainfall intensity values may increase the overall accuracy of the radar images, since a decrease of 
the RMSE is observed.  

Thirdly, the possibility of considering pixels in the proximity of rain gauges during the validation 
procedure has been taken into account. Yet, no benefits have been observed by extracting the maximum 
value or computing the average of rainfall intensities around the station’s location. This implies that, 
when it comes to evaluating the precipitation intensity in a certain location, it is trivially more 
convenient to consider the value inside the pixel that contains the point of interest.  

Finally, the accuracy of the measured precipitation as a function of the duration of the event and of the 
distance from the closest radar has been evaluated in terms of RMSE. As previously explained, it has 
been noticed that long duration events are estimated by the radar with higher accuracy with respect to 
short duration ones. In addition to that, image 3.15 shows that the RMSE tends to decrease as the 
distance from the nearest radar increases. This implies that, at least for the considered Belgian domain, 
rainfall images are more reliable when the considered points have a certain distance from the radar 
system, while observations close to the radars could be affected by ground clutter and wetting of the 
radar’s radome, reducing the performances. 

After carrying out the validation analysis and delineating the necessary conclusions, a basic 
understanding of the value and shortcomings of radar observations has been acquired. With this context 
in mind, the next steps of this study focus on the creation of precipitation forecasts, which require 
precipitation radar images as input. 
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Chapter 4: DETERMINISTIC NOWCAST 
 

After performing the validation step, it is possible to use the radar data as inputs for the nowcasts. In 
particular, this chapter will focus on deterministic nowcast, while probabilistic short-term forecasts, 
based on STEPS and STEPS-BE methods, will be treated in the next chapter. It has been decided to 
evaluate the performances of three deterministic models for the current analysis: extrapolation, S-
PROG and ANVIL (Autoregressive Nowcasting Vertically Integrated Liquid Method). 

In chapter 2, it has already been explained how extrapolation methods advects the precipitation field in 
time without modeling the growth and decay of precipitation structures (i.e., following the so called 
“Lagrangian persistence”), while S-PROG, by decomposing the rainfall field and applying an 
autoregressive model, is able to simulate changes in intensity throughout the forecast. On the other 
hand, ANVIL is a more recent method, developed by Pulkkinen et al. [40], that brings two remarkable 
changes to the S-PROG scheme [40].  

Firstly, the input data to ANVIL is not a rain rate, but a vertically integrated liquid (VIL) variable, namely 
the total mass of water that is possible to retrieve observing the reflectivity of weather radars. Secondly, 
an ARI (integrated autoregressive) model instead of a simpler AR is applied to each cascade level of 
the decomposed VIL. The ANVIL method is implemented in py-STEPS library and offers the 
possibility of using both VIL and rain-rates as inputs for the nowcast. As reported by the developers 
[41] , using the ARI model should “avoid biasedness and loss of small-scale features in the forecast 
field, and no statistical post-processing is needed”. Therefore, ANVIL is expected to produce nowcasts 
that are more reliable than S-PROG, as also shown in the research conducted by Pulkkinen et al. [40] 

The results of the above-mentioned methods will be evaluated by performing a sensitivity analysis on 
the motion field, the number of lead times and the precipitation thresholds by means of both categorical 
and deterministic metrics that will be discussed in the following sections. The nowcasts will be 
computed not only over the entire radar domain (namely, in the 512 x 512 radar grid), but also in smaller 
portions of area 50 x 50 km2, that should simulate the size of a hydrological catchment. In fact, it is of 
interest of this thesis to verify the performance of the models in smaller areas where flooding could 
occur. In addition to that, a method based on the power spectrum of the precipitation field that allows 
to distinguish between stratiform and convective events will be presented. Thanks to this classification, 
it will be possible to assess which method better forecasts the convective events, which are usually 
associated to higher risk of flooding.  

Therefore, the chapter is structured as follows. In section 4.1 the sensitivity analysis related to the motion 
field will be presented; in section 4.2 a first analysis of all the events retrieved in the previous chapter 
will be performed; in section 4.3 the method to characterize the convective nature of the events will be 
explained; in section 4.4 the analysis of the events will be repeated by distinguishing between 
convective and stratiform events; in section 4.5 the conclusions will be presented.  
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4.1 MOTION FIELD SENSITIVITY ANALYSIS 
 

As explained in chapter two, computing the motion field is the first step in every nowcast model. In fact, 
the precipitation field needs to be advected along the Lagrangian trajectories defined by an optical flow 
algorithm through each lead time of the forecast. Different optical flow algorithms can be used for this 
purpose and currently in py-STEPS three of them are implemented: Lucas-Kanade, VET and DARTS.  

Lukas-Kanade is one of the most famous algorithms in which the local features are tracked in a sequence 
of two radar images [19]. In the current python implementation, a final interpolation step is performed 
to produce a smooth field of velocity vectors. DARTS (Dynamic and Adaptive Radar Tracking of 
Storms) is a spectral approach based on the Fourier transform of a temporal sequence of radar fields. 
Contrary to Lukas-Kanade, this optical flow algorithm requires a higher number of precipitation fields 
to be applied (at least nine radar images) [22]. VET is a global Variational Echo Tracking approach. In 
VET the radar image is segmented into small regions called “echoes”, where velocity vectors can be 

computed by minimizing the difference in the reflectivity between two radar maps separated by a 
certain time interval [42].  

Since the motion field is potentially one of the most relevant factors that influences the nowcast’s 

outcome, a sensitivity analysis is performed to establish which method will be applied in the following 
nowcasts. The following image shows the result of the three different methods applied to a precipitation 
field:  

 

 

As it can be observed, the Lukas-Kanade and VET algorithms yield a similar result, while DARTS 
presents some remarked differences, especially in the zones far from the precipitation field, where the 
velocity field can also assume values equal to 0. This has little effect on the forecast results.   

In order to perform a quantitative analysis that allows to evaluate the benefits offered by one motion field 
than another, two metrics have been chosen.  

Figure 4.1. Three different motion fields estimated for the same precipitation field by Lukas-Kanade, VET and DARTS algorithms. 



Chapter 4: Deterministic nowcast 

47 

 

The first one is the Critical Success Index (CSI), already introduced in table 2.2, that expresses the ratio 
between the hits of the forecast divided by the sum of the hits, the false alarms and the misses. This is 
therefore a categorical (or qualitative) metric, and it is representative of the predicting ability of the 
evaluated model. The second one is the Mean Absolute Error (MAE), which expresses the mean of the 
absolute value of all the residuals in each pixel of the studied domain and it is therefore a continuous 
(or quantitative) metric that represents the forecast’s accuracy.  

To perform the comparative analysis, it has been decided to evaluate the results of the extrapolation 
method for two-hours lead time. The CSI is calculated using a threshold of 5 [mm/h], while the MAE 
is calculated considering all the pixels of the radar domain. It should be noted that this is not an optimal 
choice when it is necessary to evaluate the accuracy of a single method, as the pixels without 
precipitation can create a fictitious high correlation that decreases the Mean Absolute Error. However, 
since the scope of this analysis is to evaluate the performance of the model by varying the motion field 
and considering that all the forecasts have been made with the same starting conditions, this choice does 
not have an influence on the final comparison. In the next sections, when the accuracy of the single 
method (extrapolation, S-PROG, ANVIL) is more relevant, the MAE will be calculated considering 
different initial settings. The graphs reported below represent the average value of the metric for each 
lead time among all the events extracted and explained in chapter 3 (and whose summarizing table can 
be found in the appendix of the present thesis).  

 

 

 

As it can be observed, the choice of the optical flow method has a limited influence on the results of the 
nowcast, since the curves on the graphs tend to follow the same trend and to be close one to each other 
(the Lucas-Kanade curve is practically hidden under the VET one). However, as for figure 4.3, it can 
be noted that in the first 65 minutes lead time DARTS algorithm provides more biased results compared 

Figure 4.3. Mean MAE at different lead times for the three 
optical flow algorithms 

Figure 4.2. Mean CSI for 5[mm/h] threshold for the three 
different optical flow algorithms 
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to VET and Lucas-Kanade, while after 1 hour these last two methods present a higher MAE. On the 
other hand, the VET and Lucas-Kanade algorithms provide a higher CSI after the first 15 minutes lead 
times as it can be observed in figure 4.4.  These results were expected, as in figure 19 it can be 
appreciated that the motion fields provided by Lucas-Kanade and VET are remarkably similar.  

Another relevant aspect related to these algorithms is the computational time required to produce the 
motion fields. In fact, in practical applications the nowcasts must be produced in the shortest possible 
time, especially if intense precipitations that could cause flooding has to be monitored. Therefore, it has 
been decided to produce a summarizing table that represents the mean computational time, among all 
the selected events, required to produce the motion fields associated with the three optical flow 
algorithms. The calculation has been performed using an Intel Core i7 – 10510U CPU with 4 cores 
running at 2.30 GHz, over a radar domain of grid 512 x 512 as previously specified:  

  

 

 

 

 

 

 

 

Table 4.1. Mean computational time required to produce the motion fields per method. 

 

The first row of the table reports the computational time, while in the second one the computational time 
in percentage related to the VET algorithm is presented. As it can be observed, the Lucas-Kanade and 
the DARTS algorithm require a much lower computational time when compared to VET; in particular, 
Lucas-Kanade is the fastest one.  

In conclusion, after the presented analysis, the Lucas-Kanade algorithm has been chosen as default 
setting for the upcoming nowcasts. In fact, this algorithm presents the lowest MAE in the first hour lead 
time and leads to higher CSI values with the shortest computational time when compared to the other 
two options.  

4.2 DETERMINISTIC NOWCASTS OVER THE ENTIRE DOMAIN  
 

In this section, a first analysis regarding the three models previously discussed (extrapolation, S-PROG, 
ANVIL) will be presented. The nowcasts have been performed considering the entire radar domain and 
by considering the events selected in chapter 3. However, it must be mentioned that not all the events 
that are reported in the appendix table have been used. In fact, due to the size of the dataset, that not 
only reports only 10 days of precipitations, but also has some lack of images during the events, it was 

 Lucas-
Kanade VET DARTS 

Mean computational 
time (seconds) 1.1 14.8 1.7 

Relative computation 
time (%) 7.4 100 11.5 
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not possible to retrieve enough radar observations to calculate the verification metrics. For this reason, 
it has been decided to apply a time shift of 20 minutes to all the starting dates of the events (namely, 
each event's start time is set 20 minutes earlier than the starting time determined by the algorithm 
outlined in a previous chapter). This has been done for two reasons. Firstly, this allowed to retrieve 
most of the observations needed for computing the verification metrics within two hours lead time. 
Secondly, shifting back in time the starting of the event allows to track not only the decay of the highest 
rainfall intensities, but also their growth. Therefore, thanks to the time shift,  46 events could be studied 
in this case.  

For the current analysis both categorical and continuous metrics have been used. In particular, as for the 
continuous metrics, the Mean Absolute error (MAE) and Pearson’s correlation coefficient have been 

selected, while Critical Success Index (CSI), Probability of detection (POD) and False Alarm Ratio 
(FAR) have been chosen as categorical metrics. All these metrics have already been defined in table 
2.2, therefore the reader is addressed to chapter 2 for reference.  

Moreover, before presenting the results, it must be noted that the S-PROG and ANVIL nowcasts have 
been computed by making use of eight cascade levels, applying an AR(2) and by setting all light 
precipitation (i.e., below 0.5 [mm/h], that is a really small precipitation value since events that can reach 
up to 100 [mm/h] are considered) to 0 [mm/h] in both the observed and forecasted precipitation fields. 
This has been done to avoid that really light rain could fictitiously increase the level of correlation 
between the nowcasts and the observed precipitation fields. In addition to this, it has been chosen to 
use the motion field produced by Lucas-Kanade algorithm for all the forecasts, due reasons that have 
been explained in the previous section. All the graphs that will be presented are not referred to single 
events but are the results of the average computed over all the 46 considered events.  
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4.2.1 Continuous metrics  
 

 

 

It must be specified that the continuous metrics were calculated by imposing a double conditioning of 1 
[mm/h] threshold. This means that the MAE and the correlation coefficient were computed only in 
those pixels in which both the nowcast’s result and the observation overcome a value of 1 [mm/h]. 
Again, this was done to avoid that really light rainfall values could cause an increase of the correlation 
coefficient or a decrease in the mean absolute error (again, 1 [mm/h] is a really small precipitation value 
reminding the high intensity reached by some of the events). In fact, the main aim of these nowcasting 
models is to intercept the higher values of precipitation to be integrated in flooding control systems.  

Looking at the MAE graph, it can be noticed that at the beginning of the forecast all the models have a 
similar performance, while after 20 minutes lead time ANVIL presents the highest values. Surprisingly, 
the extrapolation shows a low Mean Absolute Error together with S-PROG, which has an average value 
slightly above the one of the extrapolation method. This means that, on the overall, ANVIL shows the 
most biased results among the three models.  

On the other hand, figure 4.5 shows that ANVIL maintains the highest level of correlation after 20 
minutes. However, also in this case the extrapolation method shows good performances, since the 
Pearson’s coefficient values are slightly lower than the ones of ANVIL until 40 minutes lead time. 
Eventually, S-PROG shows the lowest level of correlation in comparison with extrapolation and 
ANVIL.  

 

 

 

Figure 4.4. Averaged Correlation coefficient for the 
three different nowcast models 

Figure 4.5. Averaged MAE for the three different nowcast 
models 
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4.2.2 Categorical metrics  
 

The three chosen categorical metrics, namely the CSI, POD and FAR, have been computed by setting 
three different precipitation thresholds: 1, 5 and 10 [mm/h]. The results are reported in the graphs below: 

 

 

 

 

Figure 4.6. Averaged CSI, POD and FAR for the three different models at 1, 5 and 10 [mm/h] threshold. 
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Firstly, it can be observed that, as expected, increasing the precipitation threshold leads to a loss of skill 
of all the three models, with the values of CSI and POD that decrease and FAR that increases for every 
lead time as the threshold shifts from 1 to 10 [mm/h]. In second instance, it is pretty evident that the most 
skillful method depends on the applied precipitation threshold. In fact, when the threshold is set to 1 
[mm/h], S-PROG provides higher values of both CSI and POD and lower estimates of FAR with respect 
to the other two methods, which present comparable results. Conversely, when the threshold is raised to 
5 and 10 [mm/h], ANVIL seems to get the best results, with higher values of CSI and POD, even if the 
FAR of the three methods is similar. Therefore, even if ANVIL seems to be the more biased method in 
terms of MAE, it proves to be more skillful when the precipitation threshold is increased.  

However, as explained in chapter two, it is interesting to evaluate the model’s predictive ability not only 
over the entire radar domain, but also in relation to smaller scales. To evaluate the performances at 
smaller resolutions, the Fraction Skill scores have been computed for the three methods, as reported in 
the figure below:  

 

 
Figure 4.7. Averaged fraction skill scores at different resolutions for the three methods: ANVIL, S-PROG and extrapolation 

 

As expected, the FSS values decreases as the analysis shifts from coarser (67.712 Km) to smaller 
resolutions (2.116 Km). The scales reported in the legend are dependent on the radar’s grid resolution, 

which has a value of 1.058 Km per pixel. At smaller resolutions, S-PROG proves to have the highest 
skill starting from the first 20 minutes lead time, while ANVIL gets better results compared to 
extrapolation only toward the end of the nowcast (which is set to 2 hours). For the coarsest resolution 
(67.712 Km), ANVIL has the highest skill after 60 minutes lead time, while S-PROG gets the worst 
results after the same amount of time. However, it can be noticed that for the first hour lead time, all 
the methods have a similar performance. As for the intermediate resolution (16.928 Km), it can be 
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noticed that no method exhibits a net prevalence over the other, with ANVIL that becomes more skillful 
only toward the end of the nowcast.  

Finally, before introducing the next section, it seems appropriate to make some general considerations 
related to the results that have just been presented. In fact, on the one hand, the graphs suggest that 
autoregressive methods such as ANVIL and S-PROG are able to provide better results especially for 
categorical metrics at low (1 [mm/h) and high (10 [mm/h]) precipitation thresholds with respect to 
extrapolation. However, the MAE shows that extrapolation is able to provide forecasts with small 
errors. In addition to that, looking at the categorical metrics, it can be noticed that the extrapolation 
method does not performs so worse than ANVIL and S-PROG. These results may have different 
explanations.  

Firstly, the number of studied events is not enough to guarantee a wide variety of different storms that 
allows to draw definitive conclusions about which method performs the best. Moreover, it must be 
considered that, due to the limited size of the dataset (that reports only 10 days of radar images), some 
of the studied precipitation fields belong to the same day and are separated by few minutes/hours one 
with respect to the other. Obviously, such fields have some level of correlation that does not help in 
providing a good variety of different events as mentioned above. Another explanation is that, again due 
the limitedness of the dataset, it is not present an high number of precipitation fields that are 
characterized by a remarked level of growth and decay of small and big structures, so that the true 
power of models such as S-PROG and ANVIL, that are able to better model such phenomena compared 
to extrapolation, is not completely exploited. Finally, it should also be mentioned that in this section no 
categorization has been applied to studied events.  

However, it would be of interest to distinguish between events that have a higher or lower level of 
convectivity. In fact, literature [19], [29], [43] shows that the categorization of events can have a 
relevant impact on the performances of the nowcast models. In addition to this, it is of interest of this 
master thesis to focus more on the convective events which can cause major problems to water drainage 
systems, especially in urban environments, and lead to sudden pluvial flooding. For this reason, it has 
been decided to implement an algorithm in Python that helps in categorizing the events and that will be 
exploited to carry out further analysis on the events in the last section of the present chapter.  
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4.3 CATEGORIZATION OF CONVECTIVE AND STRATIFORM EVENTS   
 

As pointed out by different authors [19], [29], [43] , the performances of nowcasting models may vary 
depending on the meteorological nature, the persistence and the intensity of the studied event. In fact, 
usually both deterministic and probabilistic nowcasting methods show better performances in 
reproducing events that are characterized by moderate levels of growth and decay of small precipitation 
structures. In this context, it seems proper to recall one sentence from the py-STEPS developers: 
“despite the ability of PYSTEPS to generate some new light random rain, it is not designed to represent 
the uncertainty related to an explosive initiation of a thunderstorm” [19]. Therefore, these results 
suggest that it would be appropriate to make a distinction of the events based on their meteorological 
nature, to test the loss/gain of skill of the three different deterministic methods analyzed in the current 
chapter.  

In the context of hydrology, one of the most used categorizations is related to convective and stratiform 
precipitation phenomena. Convective events are triggered by warm and humid air masses that, in case 
of atmospheric instability, arise and reach the upper layers of the troposphere, where, in normal 
conditions, the temperatures tend to be lower than in the planetary boundary layer. When this happens, 
due to the temperature changes, the water vapor contained in the air condenses and forms big and 
vertically developed clouds such as cumulus or cumulonimbus, which are usually associated with high 
rainfall intensities [44]. Since these kinds of events occur when both the ground’s surface temperatures 

and the intensity of evapotranspiration are high, their frequency is elevated especially in summer / early 
autumn periods. On the other hand, stratiform precipitations are associated with the collision between 
a warm and a cold air front, thus leading to the formation of very flat and extended clouds at low 
elevations, such as altostratus and nimbostratus [44]. Therefore, stratiform precipitations exhibit lower 
rainfall intensities which persist for a longer time compared to convective phenomena. Although this 
simple classification may result useful in many cases, it is not unusual to find mixed clouds, where 
extended stratiform rain embeds some small convective cells.  

Even though the previously mentioned categorization may sound conceptually easy, it is not equally 
simple to build a precise methodology that allows to automatically distinguish between the convective 
and stratiform precipitations. In literature many different approaches can be found. Some of them are 
based on the measurements of rain gauges [45], [46] and mainly rely on the persistence of certain values 
of rainfall intensity at different timestamps; other methods exploit the Z-R relation of the weather radar 
measurements and base the distinction on the droplet size distribution inside the clouds [47]; in some 
studies satellite images have been employed [48] 

However, only radar images and rain gauge measurements were available for this study and therefore 
one method based on this kind of data had to be found. One first idea was to define a simple parameter 
(“β parameter”) calculated through the measurements of the rain gauges and inspired by one paper that 

deals with this kind of classification in Spain [45]. The simple concept behind this parameter is to define 
a ratio where at the denominator only the precipitation values above a certain threshold are summed for 
every timestamp, while at the denominator all the measured values are cumulated; the ratio value 
determines how convective the event is (ratio of 100% mean extremely convective, value of 0% refer 
to stratiform cloud).  
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Even though this method was conceptually easy and simple to automatize, it has the big flaw of 
evaluating the convectivity over only one pixel out of the entire radar domain and thus it was discarded. 
A second alternative was based on the 2D radar images and consisted in the detection of convective 
cells inside stratiform clouds. Basically, an algorithm, developed in Python, scanned all the most 
extreme rainfall values and, for each one, calculated a radius outside which the mean precipitation 
values would be significantly lower than the extreme rainfall value. Therefore, every pixel inside the 
radius would belong to the convective cell, while everything that lied outside this region would be 
classified as stratiform. However, the precipitation threshold value to define one convective cell was 
not pre-defined and, in addition to that, the radius that defines the precipitation cell is highly variable 
among different radar images. Therefore, developing the parameters of the algorithm would have 
required a sensitivity analysis over a larger dataset.  

The last and eventually chosen alternative is based on the power spectrum of the precipitation fields. As 
introduced in the literature review, the precipitation field can be interpreted as a “hierarchy of 

precipitation structures embedded in each other over a continuum of scales” [20], which can be isolated 
thanks to a Fast Fourier transform. Now, convective clouds, which include different precipitation 
intensities in their structures, will be described by a higher power of small-scale structures than 
stratiform clouds, that, conversely, are usually associated with broader and smaller precipitation 
intensities. Therefore, the power spectra of convective and stratiform clouds should present differences 
that allow a neat distinction between the two. Consequently, the key idea behind this method is to 
retrieve two representative power spectra for convective and stratiform precipitation respectively by 
means of a fast Fourier transform (FFT) and a regression applied to the power spectrum of some 
exemplificative precipitation fields.  

However, before coming to the definition of the two representative power spectra, two aspects must be 
clarified. Firstly, since a 2D radar image is employed, also the resulting power spectrum will be 2-
dimensional. To work with a more convenient 1D power spectrum, a radially averaged power spectrum 
density (RAPSD) algorithm, already implemented in the py-STEPS library, has been applied to the 
precipitation fields. Secondly, considering the entire radar domain would not be convenient for 
categorization purposes. In fact, on the one hand increasing the considered space could lead to the 
inclusion of mixed clouds that make the distinction between stratiform and convective precipitation 
more difficult, and, on the other hand, applying a transform over a large domain could require high 
computational times. However, a discrete method such as the FFT requires a significative sample to 
build a representative power spectrum. Therefore, in order to make a balance between these last two 
requirements, it has been chosen to compute the FFT over a domain of 50 x 50 Km2 (or of 2500 pixels), 
which simulates the dimension of a small hydrological catchment. In fact, as reported in the 
introduction, one of the objectives of this work is to evaluate the performances of different nowcasting 
models also in smaller areas which could be interesting under a hydrological point of view. Therefore, 
the power spectrum and the categorization will be carried out in the subdomains of 50 x 50 Km2 and 
not over the 512 x 512 radar image.  

Consequently, it is possible to proceed with the regression to produce the two representative power 
spectra over the subdomains. Ten different power spectra have been evaluated and are reported in the 
picture below on a double log scale:  
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Figure 4.8. RAPSD of 10 different precipitation fields 

 

As it can be observed, eight convective power spectra belong to convective clouds, while the remaining 
two are derived from stratiform clouds. It was possible to retrieve only two stratiform spectra because 
it was really difficult to find clouds, in the available radar images, that were purely stratiform in a spatial 
range of 50 x 50 Km2. However, for the purposes of this application, the regressed power spectrum of 
stratiform events differs significantly from the one of convective ones.  

For the sake of simplicity, the power spectra were regressed using a polynomial function, whose degree 
was determined according to the best possible fit. Convective spectra followed a linear regression 
model: 

𝑃 = 0.037𝑤 − 0.014 (4. 1) 

 

While stratiform events were better approximated by a second-degree equation: 

 

𝑃 = 2.28 ∗ 10−5𝑤2 − 0.0036𝑤 + 0.00105 (4. 2) 

 

Where 𝑃 and 𝑤 represent the power and the wavelength respectively. After calculating these power 
spectra, the algorithm works as follows.  

Every time a 50 x 50 Km2 window is applied to a portion of the image, a power spectrum is calculated 
and its RMSE with respect to the two equations reported above is computed; the power spectra with the 
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lowest RMSE determines the precipitation category (namely, the algorithm returns a string that could 
be either “convective” or “stratiform”). Finally, in order to build a set of categorized events, the list of 
selected events in chapter three (whose table can be found in the appendix) has been considered. For 
every event in the list, the window of 50 x 50 Km2 was centered at the station’s coordinates and the 

algorithm was applied for different timestamps; in other words, the algorithm has been applied every 5 
minutes to the precipitation field to characterize it as convective or stratiform. If, after a certain number 
of timestamps and before 1 hour lead-time, the algorithm found an event that from “convective” turns 

into “stratiform”, that event is characterized as stratiform, conversely, it is classified as convective.  

It must be noticed that all the events of the list have been classified as convective at least for the first 
considered timestamp; this is logical since the station list in chapter 3 was built on purpose to intercept 
the events with high precipitation intensities. In addition to that, it should be noticed that the provided 
radar observations refer only to the months of May, June, July, August and early September, that is the 
period in which convective events are more frequent.  

Therefore, the classification of the events that has been made in this context should not be interpreted as 
a rigid distinction between “convective” and “stratiform” precipitation, but rather as a differentiation 
between events that keep a certain level of convectivity throughout their analysis and events that 
“degrade” into stratiform precipitation. Consequently, even if in the next sections, for simplicity, the 
categorized events will be referred to as “convective” or “stratiform”, these remarks should be kept in 

consideration. 

Two distinct tables that report these kinds of events can be found in appendix B and C and will be used 
in the next section to provide a more in-depth analysis of the performances of the three deterministic 
methods. Nevertheless, one aspect related to these tables must be specified. As explained in the previous 
section, all the starting times of the events were shifted 20 minutes back in time to overcome the 
limitedness of the dataset and to better assess the growth and decay of the precipitation structures. 
However, in this case the time shift has not been applied, since, on average, no cloud was present in the 
50 x 50 window 20 minutes before the starting time of the event and therefore it would not be 
meaningful to calculate verification metrics. This led to problems in retrieving, as previously explained, 
enough radar observations that allowed the calculation of the comparative metrics. Therefore, all the 
events for which not enough radar images were present, were excluded. For this reason, the number of 
studied convective events is 26, while the one of stratiform is 11.  
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4.4 ANALYSIS OF CONVECTIVE AND STRATIFORM EVENTS  
 

In the previous section, an algorithm that characterizes the convective or stratiform nature of a 
precipitation field has been introduced. Thanks to its implementation, it has been possible to make a 
distinction between events that have a more remarked convective or stratiform nature within 1 hour 
lead time and whose summarizing table is reported in appendix B and C of the present work.  

Now, thanks to this selection, it is possible to perform a dedicated analysis of convective and stratiform 
(or better, events that turn into stratiform) precipitations and to make a more precise evaluation of the 
performances of the three nowcast models. As reported in the introduction of the present chapter, this 
time the evaluation of the nowcasts will not be performed all over the radar domain, but in smaller 
rectangular portion of the Belgian territory. More precisely, these “small windows” of the domain have 

a dimension of 50 x 50 Km2 and are built around the rain gauges that have measured the intensity of 
the events. This methodology has been adopted for two main reasons.  

Firstly, the convectivity of every single event, as previously explained, has been determined through the 
algorithm inside the small windows, since it was not possible to perform this evaluation over the entire 
radar domain. In second instance, the objective of this section is to evaluate the performances of the 
nowcast models inside an area that simulates the dimension of a hydrological catchment. In fact, while 
literature presents a high number of forecast analyses over extended domains, there is a lack of 
investigations related to sub-domains of the territory. It is important to note that the size of a general 
hydrological catchment can vary drastically around the world, ranging from a few to millions of km2. 
However, given the usual dimensions of hydrological catchments in Belgium [49], such as the Ijzer 
catchment (1378 km2) and the Demer catchment (1922 km2), 2500 km2 appears to be a reasonable 
approximation for the studied domain. Therefore, the analysis of stratiform and convective events is 
reported below.  

 

4.4.1 Convective events  
 

Before presenting the results of the metrics, it is convenient to take a look at the images related to one 
single representative convective event in order to provide a qualitative description of the nowcast 
methods and their relative differences. At first, the observed precipitation field together with the motion 
field obtained through Lucas-Kanade algorithm is presented and then the fields forecasted by 
extrapolation, S-PROG and ANVIL are reported for different lead times:  
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Figure 4.9. Observed convective event with Lucas-Kanade motion field. 
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Figure 4.10. Results of the tree different deterministic forecasts for 15, 30, 1h and 2h lead time 

The red rectangle inside the different images is the simulated catchment (or “small window”) inside 

which the forecasts’ skill will be evaluated. It is possible to notice that at 1h lead time most of the 

precipitation field has left the area of interest due to the cloud’s motion and this pattern is observed in 

almost all the events that have been considered. For this reason, the results of both the continuous and 
categorical metrics will be discussed taking into account up to 30 minutes lead time, since most of the 
precipitation is concentrated in these first minutes of the forecast and therefore the results are more 
representative. Furthermore, the image reported above suggests some interesting qualitative 
considerations related to the precipitation fields produced by the extrapolation, S-PROG and ANVIL.  

As expected and discussed in chapter 2, the extrapolation method produces a precipitation field that does 
not alter the rainfall intensity and whose changes in the shape are merely dependent on the advection 
along the Lagrangian trajectories. However, it can be noticed that this method does not approximate 
badly the observed fields at least until the first hour lead time. On the other hand, the tendency of S-
PROG to smooth the rainfall field is pretty evident, especially at 2 hours lead time. In fact, it can be 
observed that toward the end of the nowcast this method not only is prone to agglomerate all the 
precipitation structures in one single cloud, but also forms a concentric pattern of precipitation 
intensities that decrease starting from the main high-intensity core located at the center of the cloud. 
Finally, the precipitation field forecasted by ANVIL exhibits a shape that is more similar to the one of 
the extrapolation for all the duration of the event; yet, the rainfall intensities differ dramatically. It can 
be observed that at two hours lead time ANVIL tends to create both regions of really high intensity 
(that can be noticed in the lower “tail” of the precipitation field) and zones of really low or 0 intensity 

rainfall (this is particularly remarked in the norther part of the field). In other words, it seems that 
ANVIL model exaggerates both the growth and the decay of the single precipitation structures 
throughout the forecast when compared to the observed field and the extrapolation method.   

Now, after this qualitative analysis, it is possible to carry out a quantitative study through the same 
continuous and categorical metrics that have been discussed in the previous sections. The MAE and 
Pearson correlation coefficient are reported below, using the same double conditioning of 1 [mm/h] 
previously seen:  

 

 

 

 

  

 

 

 

Figure 4.12. Averaged MAE over the selected convective events 
for the three models 

Figure 4.11. Averaged Pearson correlation coefficient over the 
selected convective events for the three models 
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These graphs provide patterns that have already been observed in the analysis computed over the entire 
domain, with ANVIL that is the most biased model in terms of MAE toward thirty minutes lead time, 
but that keeps the best correlation with respect to the observed precipitation fields. However, some 
differences compared to the previous cases can be reported.  

In first instance, the values of Mean Absolute Error are higher than those calculated over the entire 
domain. In fact, while in figure 4.5 at 30 minutes lead time the MAE was about 6 [mm/h] for ANVIL 
and 5.5 [mm/h] for S-PROG and extrapolation, in this case values between 13 and 11 [mm/h] are 
reached. This was expected since convective storms are more difficult to model and predict. Secondly, 
it can be observed that extrapolation performs slightly worse in terms of correlation, as in the first 20 
minutes lead time the Pearson coefficient is the lowest and becomes barely higher than S-PROG in the 
last 30 minutes.  

After the continuous metrics, the categorical ones are reported in the pictures below, using precipitation 
thresholds of 1, 5 and 10 [mm/h]:  

Figure 4.13. Averaged CSI, POD and FAR over the selected convective events for the three different models at 1 [mm/h] threshold 

Figure 4.14. Averaged CSI, POD and FAR over the selected convective events for the three different models at 5 [mm/h] threshold 
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When the precipitation threshold is set to 1[mm/h], S-PROG method is clearly the most skillful in terms 
of CSI, POD and FAR and it is also interesting to notice that the relative values of all the three metrics 
are higher when computed inside the “small window” instead of all over the radar domain. However, 

when the precipitation threshold is set to higher values, ANVIL performs remarkably better than the 
other two methods and in a more definite manner when compared to the analysis over the entire radar 
domain. It is also worth noting that at these precipitation thresholds the extrapolation method is the one 
that performs the worst. Apparently, the ability of S-PROG and ANVIL to model the growth and decay 
of precipitation structures better suits the investigation of convective events rather than a simple 
extrapolation.  

Nevertheless, when an analysis is performed over a hydrological catchment, one of the most relevant 
requirements to the models is to properly estimate the rainfall volumes. For this reason, it has been 
decided to report the volumes intercepted by the three models at 30 minutes, 1 hour and 2 hours lead 
time. This choice of lead times has been made because, if on the one hand most of the precipitation is 
concentrated in the first 30 minutes lead time inside the simulated catchment, on the other hand some 
residual rainfall at 1 and 2 hours could still be relevant when an evaluation of rainfall volumes is carried 
out. The obtained results are reported in the table below, where the values are calculated in percentages 
as:  𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒
 𝑥 100 

 

 

 

 

 

 

 

 
30 lead time 60 lead time 120 lead time 

Extrapolation 101% 105% 104% 

S-PROG 103% 108% 110% 

ANVIL 105% 112% 115% 

Table 4.2. Percentages of intercepted volumes at three different lead times 

Figure 4.13. Averaged CSI, POD and FAR over the selected convective events for the three different models at 10 [mm/h] threshold 
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First, it can be noticed that, in such sub-domains, all the three methods result in an overestimation of the 
rainfall volumes for all the considered lead times. As it can be seen, although the extrapolation method 
performs the worst for high precipitation thresholds, it is still able to intercept the volume pretty well, 
with an overestimation of only 4% at the second hour lead time. On the other hand, S-PROG and 
ANVIL present a more severe overestimation, which is probably due to the autoregressive method that 
tends to model a too intensive growth of rainfall intensity compared to the actual observations. 
Therefore, it is worth noting that, at least for these considered events, autoregressive methods such as 
ANVIL and S-PROG can better model the precipitation field evolution, but, due to an overestimation 
of the phenomena of growth and decay of the structures, could provide more biased volume estimation 
compared to a simpler extrapolation.  

 

4.4.2 Stratiform events  
 

The analysis reported in this paragraph will follow an order analogous to the one of the convective events. 
Also in this case, a representative stratiform event has been plotted showing the different modeling 
results of the three methods for two hours lead time, similarly to figure 4.10. However, since the 
considerations relative to extrapolation, S-PROG and ANVIL are analogous, the graph is allocated in 
appendix D. In addition to this, it is necessary to specify that only threshold of 1 and 5 [mm/h] have 
been considered, since stratiform events are characterized by less extreme rainfall intensities compared 
to the convective ones. Therefore, the resulting continuous metrics are reported below:  

 

 

Figure 4.15. Averaged MAE over the selected stratiform events 
for the three models 

Figure 4.14. Averaged Pearson correlation coefficient over the 
selected stratiform events for the three models 
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As for the MAE graph, it can be observed that in this case the values are smaller than what has been 
assessed in the convective study. ANVIL is still the most biased model, but the peak value of Mean 
Absolute Error is slightly above 9 [mm/h] contrary to the 13 [mm/h] seen in the previous paragraph. 
Again, this was expected since stratiform events are easier to model than convective ones, as suggested 
in the previous section. In addition to this, S-PROG is remarkably the less biased model and reaches 
the same extrapolation value only at 30 minutes lead time, contrary to figure 4.5, where extrapolation 
and S-PROG method tended to have comparable results. Contrary to what has been observed in the 
convectivity paragraph, it is difficult this time to pick one method that offers the best correlation level, 
since all the three methods present practically equal values until 20 minutes lead time (after which 
ANVIL is proven to be slightly better). The results of categorical metrics are reported below:  

 

Similar to what has already been assessed in the previous paragraph, at 1 [mm/h] threshold the S-PROG 
methods proves to be the most skillful (even though it can be noticed that extrapolation offers 
comparable results under the POD point of view), while ANVIL offers bad performances. By increasing 
the precipitation threshold, extrapolation and ANVIL gain skill to the disadvantage of S-PROG; 
however, it is worth noting that for the study of stratiform events it is not always necessary to push the 

Figure 4.17. Averaged CSI, POD and FAR over the selected stratiform events for the three different models at 1 [mm/h] threshold 

Figure 4.16. Averaged CSI, POD and FAR over the selected stratiform events for the three different models at 5 [mm/h] threshold 
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precipitation threshold above 1 [mm/h], especially if a forecaster is dealing with a persistent and low-
intensity event. Therefore, on the overall, S-PROG may prove to be the most convenient methods when 
it comes to evaluate such phenomena.  

In order to make a coherent comparison with the previous paragraph, also in this case the intercepted 
volumes in percentage are reported for 30 minutes, 1-hour and 2-hour lead time:  

 
 

30 lead time 60 lead time 120 lead time 

Extrapolation 113% 129% 172% 

S-PROG 93% 97% 108% 

ANVIL 106% 111% 139% 

Table 4.3. Percentages of intercepted volumes at three different lead times 

 

For these considered events, it seems that S-PROG is the best method to intercept the rainfall volume, 
even though it presents a slight underestimation in the first 30 minutes and 1 hour lead time. It is also 
interesting to note that, contrary to what has been assessed previously, this time extrapolation 
considerably overestimates the rainfall volumes over the simulated catchments. Probably, the 
tendence of S-PROG to smooth the precipitation field has a positive effect when it is necessary to 
model stratiform phenomena characterized by low precipitation intensities.  

4.5 CONCLUSIONS  
 

The sensitivity analysis related to different motion fields shows that none of the algorithms clearly 
outperformed the others. However, Lucas-Kanade algorithm proved to be the best option in terms of 
computational time while still offering good results of MAE and CSI when applied to a simple 
extrapolation method. Therefore, this optical flow algorithm is chosen as default setting for the 
computation of all the nowcasts. 

The analysis over the entire domain shows that ANVIL and S-PROG can perform better than 
extrapolation in terms of POD and CSI depending on the set precipitation thresholds. In particular, it 
has been observed that for the smallest precipitation threshold (1 [mm/h]) S-PROG can provide better 
results, while ANVIL shows better skills for the highest threshold (10 [mm/h]). This implies that S-
PROG is better at intercepting smaller precipitation values but has more problems when it comes to 
evaluate the higher intensities. Conversely, ANVIL proved to be more skillful in forecasting higher 
precipitation intensities, but in some ways fails at intercepting the lighter rainfall. However, the analysis 
over the entire radar domain also showed that the results obtained through these two models are not so 
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different with respect to extrapolation method, which surprisingly did not provide bad performances, 
especially in terms of MAE. Yet, as it has been clarified in section 4.2, several reasons could explain 
these outcomes, such as the limitedness and the scarce variety of the radar dataset or the lack of a 
categorization among the different events. 

In order to make a categorization of the events, an algorithm based on power spectra and implemented 
in Python allowed to make a distinction between more convective and stratiform events. This opened 
to the possibility of making more specific analysis and to focus on smaller portions of the radar domain, 
which could be an interesting perspective for hydrological applications. However, as also clarified in 
section 4.3, the events classified as “stratiform” should not be considered as completely stratiform 

clouds, but more as convective precipitation that turns into stratiform clouds characterized by lighter 
precipitation.  

The analysis in the smaller portions of the radar domain (namely, the simulated hydrological catchments) 
highlighted how ANVIL, despite being the most biased method in terms of MAE, has the best predictive 
ability for convective events, since it provided the highest categorical results for 5 and 10 [mm/h] 
thresholds. However, as it has been underlined in figure 4.10, it must be taken into account that this 
method has a certain tendency to exaggerate local zones of growth and decay, and this could lead to 
overestimation of the cumulated rainfall volumes (as reported in table 4.2). It is worth to notice that, 
despite extrapolation got worse results in terms of CSI, POD and FAR, it showed the best estimation 
of rainfall volumes for these kinds of events. 

On the one hand, S-PROG better models the convective events that are turned into stratiform and that 
keep low precipitation intensities. Probably, this is the result of the tendency of this method to smooth 
the precipitation field, which better suits the application to more stratiform events. In addition to this, 
it has also been noticed that S-PROG was the best model to intercept the cumulative rainfall volume 
inside the sub-domains when compared to ANVIL and extrapolation, that in this case provided the 
worst estimation.  

On the overall, it is necessary to make a balance among the three methods. Eventually extrapolation did 
not provide extremely biased results, especially during the evaluation over the entire radar domain. 
However, when it is necessary to carry out analysis over a smaller sub-domain, it is better to use 
methods such as S-PROG or ANVIL that are able to better simulate the growth and decay of local 
precipitation cells.  

After all these examinations, the suggestion for forecasters should be to use ANVIL to evaluate more 
convective situations that are characterized by higher intensities. However, if more stratiform events 
are present and it is not necessary to set high precipitation thresholds, S-PROG could provide better 
results. In any case, when applying ANVIL, it should be kept into account that this model was found to 
be the most biased in terms of MAE and that it tends to exaggerate the growth and decay of precipitation 
cells, which could lead to overestimations in the hydrological balances. On the other hand, S-PROG 
has the tendency to smooth the precipitation fields, therefore it could be more suited for stratiform 
events or convective precipitations that degrade fast into stratiform ones, but it is not well suited for 
modeling events characterized by high precipitation intensities for long lead times.  
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Chapter 5: PROBABILISTIC NOWCAST  
The nowcast methods presented in the previous chapter adopted a deterministic approach: namely, only 

one precipitation field was produced for each lead time of the forecast. Despite certain advantages 
provided by these models, such as low computational time and clear interpretation, deterministic 
outputs have the notable disadvantage of not accounting for uncertainty. In fact, as pointed out in 
literature [50], the forecast’s uncertainties remarkably increase throughout the duration of the events 

and can affect the estimations of relevant hydrological quantities, like the cumulative rainfall volumes, 
which are critical for flood control systems. As a result, in recent years, the development of probabilistic 
models such as py-STEPS and STEPS-BE, which can give uncertainty estimation, has gained 
increasing interest in hydrological applications. 

As noted in Chapter 2, these models can provide an ensemble of forecasts for each lead time using a 
perturbation scheme based on correlated noise, thus representing the uncertainty associated with the 
growth and decay of smaller precipitation structures. 

 

 
 

Figure 5.1. Representation of 9 ensemble members produced by py-STEPS model at 30 minutes lead time for the convective event of 
8/15/2017 at 5:55 a.m 
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In the image above, the ensemble members provide different locations of the main centers of convectivity 
(indicated by the red color) and forecast different rainfall intensities across the precipitation field. It is 
also important to remember that probabilistic methods can add stochastic perturbations to the velocity 
vectors to better simulate the unpredictable evolution of the motion field. As a result, when compared 
to deterministic techniques, the combination of these aspects gives a tool for better addressing some of 
the uncertainties that arise during a nowcast. 

Another great advantage of probabilistic forecasts is the ability to calculate exceedance probability maps 
for different precipitation thresholds across the entire radar domain, as represented in the following 
figure: 

 

 
Figure 5.2. Exceedance probability for 0.1 [mm/h] threshold in the previously presented event at 30 minutes lead time 

 

The exceedance probabilities in every pixel are calculated as the relative frequency of members that 
predict a precipitation intensity over the selected threshold. These exceedance probabilities can be 
exploited to calculate ensemble metrics such as the ROC curves by setting a defined range of probability 
thresholds. 

The objective of this chapter is to compare the two probabilistic models py-STEPS and STEPS-BE, 
whose analogies and differences have already been discussed in the literature review. Indeed, it is of 
interest to discover whether an open-source software like py-STEPS, built by a Python community, can 
outperform or, at least, provide results comparable to those of a private software developed at the RMI 
like STEPS-BE. Given the increasing availability of radar images, the proven reliability of py-STEPS 
could potentially play an important role in the research of hydrologists and meteorologists, who could 
have access to free stochastic nowcasts without requiring any license from third parties. 
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To compare these two probabilistic models, three ensemble metrics have been used: ROC curves, 
reliability diagrams and rank histograms. The comparison of these metrics, that will be further analyzed 
in the next sections, provides general information about the differences in predictive ability, calibration 
and rank-ordering skill of the two models. Furthermore, two of the deterministic metrics used in the 
previous chapter, the CSI and the MAE, will be evaluated using the ensemble mean to see if the addition 
of stochastic noise and motion field perturbation improves the level of agreement between the observed 
and forecasted precipitation fields. Similarly to the previous chapter, the comparison between the two 
models will be carried out at two different scales: over the entire radar domain and inside the simulated 
hydrological catchments, where the same convective and stratiform events reported in the appendix 
will be considered.  Finally, the ability of the models to intercept the observed cumulative rainfall 
volumes will be evaluated, adding the estimation of model’s uncertainty. 

However, before the comparative validation of the models, it has been decided to perform a sensitivity 
analysis on py-STEPS considering two important parameters: the number of ensemble members and 
the stochastic noise generator. This analysis will be carried out by assessing the results of the 
probabilistic metrics, to test which configuration of parameters should be used to run the model and 
compare its results with STEPS-BE.  

It is important to note that, while the py-STEPS nowcasts were generated in Python, the STEPS-BE 
forecasts were delivered directly by the RMI; thus, no sensitivity analysis or control over the model's 
parameters was possible. For example, the approach used to generate the motion field in STEPS-BE is 
known as COTREC-scheme and is based on the same premise as VET in the py-STEPS library. The 
stochastic noise generator used to generate the ensemble of predictions is parametric, and the 
perturbation of the motion field consists merely of accelerating and decelerating the velocity vectors by 
multiplying them by a random factor. This is a significant distinction from py-STEPS, in which the 
motion field changes both direction and intensity. It's also worth noting that STEPS-BE makes use of 
an AR(1), whereas py-STEPS makes use of an AR(2).  

Therefore, this chapter will be organized as follows. The sensitivity analysis will be discussed in section 
5.1. The comparison of py-STEPS and STEPS-BE over the whole radar domain will be shown in section 
5.2. The same analysis will be given in section inside the simulated catchments in section 5.3. Finally, 
concluding remarks will be made. 
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5.1 SENSITIVITY ANALYSIS  
 

In this section, a sensitivity analysis on the stochastic noise generator and the number of ensemble 
members will be presented considering probabilistic metrics. It is important to specify that these metrics 
are calculated as the mean of all the events in table 1 (of the appendix) by setting a precipitation 
threshold of 5 [mm/h]. Furthermore, the present analysis considers the entire radar domain, and it is 
then not focused on the simulated hydrological catchments.  

 

5.1.1 Stochastic noise generator  
 

The generation of stochastic noise is one of the key points of the probabilistic STEPS nowcast. In fact, 
the noise cascade produced in this passage is added to the results of the autoregressive filter as 
perturbation to obtain the ensemble of precipitation fields for each forecast’s lead time. However, 

applying a completely random noise (or white noise field) to the different cascade levels could be 
detrimental, since heavy rainfall could be formed in subdomains where actually light precipitations are 
observed and vice versa. Consequently, it is evident that the created stochastic noise must keep a certain 
level of correlation with the last radar images to produce realistic results.  

Different methods are implemented in py-STEPS to produce a correlated stochastic noise and they are 
all based on filtering a white noise field in frequency domain after performing an FFT. In the context 
of py-STEPS, these methods are called “generators” and three options have been investigated in this 

sensitivity analysis: a parametric, non-parametric and SSFT (Short Space Fourier Transform) 
generators. A parametric generator filters the white noise field exploiting the parametrized slope of the 
RAPS of the last radar image; on the other hand, the non-parametric generator directly employs the 
power spectrum of the last radar image as a filter. The SSFT generator works similarly to the non-
parametric one, but the filtering is applied by subdividing the domain in smaller portions rather than 
directly computing the PS of the entire image at once.  

Theoretically, one of the advantages of non-parametric generators is that they can represent the 
formation/dissociation of anisotropic structures, while parametric generators can only produce isotropic 
structures, as shown in the image below:  

 

 

 

 

 

 

 

Figure 5.3. Example of noise generated with a parametric method (upper row) and a non-parametric one (lower row). 
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To quantitatively compare the three different methods, the average ROC curves and their AUC (Area 
Under the Curve) are reported in the figures below, together with the reliability diagrams:  

 

 

It is possible to notice that, for the considered events, the choice of one method over another does not 
significantly improve the skill of the nowcasts. Therefore, the mean computational time (for all the 
events) has been considered the most relevant factor to determine the default generator for the following 
nowcasts. The summarizing table reported below shows that the non-parametric generator is the fastest 
method, while the SSFT requires high computational times (over 5 minutes); despite a small gain of 
AUC, this computational time is not worth the benefit.  

It is important to underline that the calculations have been performed using the same processor described 
in table 4.1:  

 

Stochastic generator Computational time [s] 

Parametric 206 

Non-parametric 193 

SSFT 312 

Table 5.1. Mean computational time of the three different stochastic generators 

 

After these results, it has been decided to adopt the non-parametric stochastic generator as default setting 
for all the following nowcasts.  

Figure 5.5. Average ROC curves considering the three different 
stochastic generators 

Figure 5.4. Average Reliability Diagrams considering the 
three different stochastic generators 
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5.1.2 Number of ensemble members  
 

The number of ensemble members has a significant impact on the forecast's accuracy. In py-STEPS, each 
member of the probabilistic nowcast is generated as a new precipitation field distinguished by noise 
from the other outcomes. As a result, increasing the number of members should improve the ability of 
the model to represent a greater variety of outcomes for each lead time. However, one interesting 
question could be how many members are effectively needed to reach a satisfactory level of 
representativeness; indeed, there is no certainty that having more members leads to a greater spread of 
the ensemble. To test this, the following ROC curves and rank histograms are reported:  

 
Figure 5.6. Average ROC curves considering 10, 20 and 30 ensemble members 

 

 
Figure 5.7. Avergae rank histograms considering 10, 20 and 30 members 

 

The ROC curves underline that there is a small gain in the forecast’s skill by increasing the number of 

ensemble members, even if this improvement is more remarked when skipping from 10 to 20 members 
rather than from 20 to 30. Yet, the rank histograms show another relevant aspect, that answers the 
previous question. In fact, in all the graphs above the last bin is always the highest one, meaning that 
the model’s ensemble fails in representing the highest precipitation rates (namely, the probabilistic 

STEPS slightly underestimates the precipitation extremes).  
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Despite the higher number of nowcasts per lead time, the tendency in all the rank histograms above is 
the same, thus proving that the ensemble spread does not remarkably vary when either 10 or 30 
members are produced, even though a small decrease of missing frequency is noticeable in case of 30 
members. Furthermore, a higher number of ensemble members increases the computational time, a 
critical parameter in operational contexts. In the table below, computational times of nowcasts produced 
with the non-parametric noise generator are reported considering the usual Intel Core i7 – 10510U CPU 
with 4 cores running at 2.30 GHz:  

 

N° of ensemble members Computational time [s] 

10 110 

20 193 

30 308 

Table 5.2. Average computational times for producing 10, 20 and 30 ensemble members 

 

Eventually, the choice of 20 ensemble members offers a tradeoff between a low computational time and 
a satisfactory gain in forecast’s skill when compared to 10 members case. It is evident that the small 
increase in AUC of 30 members is not well balanced by the required computational time. Therefore, 
from now on all the nowcasts will be computed considering 20 ensemble members produced with a 
non-parametric noise generator. This choice also guarantees a fairer comparison with STEPS-BE, 
which produces 20 ensemble members as well.   

5.2 COMPARISON OVER THE ENTIRE RADAR DOMAIN  
 

In this part, the two probabilistic models will be compared across the whole radar domain. To be more 
specific, the primary goal is to explore the features of both the overall ensemble and the ensemble's 
mean. 

Probabilistic metrics such as ROC curves, reliability diagrams and rank histograms provide information 
about the ensemble. ROC curves represent the ability of all members to correctly predict the occurrence 
of an event in each pixel of the domain, therefore they indicate the ability of the model as a warning 
system. Reliability diagrams display the observed frequency against the forecast's 
probability considering different probability intervals. Consequently, they measure the calibration of 
the model: in a well calibrated model, the observed frequencies should perfectly match the probabilities 
calculated through the ensemble (namely, the diagram should approximate the bisector). Finally, rank 
histograms express the rank-ordering skill of the ensemble. In this case, the precipitation intensities of 
the ensemble are ranked in ascending order and then every rank is filled with the observed relative 
frequency. As a result, if the ensemble is capable of entirely covering the whole precipitation range in 
the observed radar image, all of the bins of the rank histogram should align along a horizontal line. 
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On the other hand, by taking the mean of all the ensemble members, these probabilistic models can be 
converted into deterministic ones. Obviously, it is no longer possible to calculate an exceedance 
probability or estimate the uncertainty of a nowcast in this manner, thus certain advantages are lost. It 
should be noted, however, that the ensemble mean of these probabilistic models does not exactly 
correspond to the outcomes of deterministic forecasts like S-PROG or ANVIL. In fact, deterministic 
forecasts are generated by applying only an AR(2) to different cascade levels, whereas probabilistic 
models include a stochastic perturbation to both the decomposed rainfall field and the motion field. As 
a result, it can be worthwhile to investigate if noise has any beneficial or negative effects on the 
averaged rainfall field. To test this, the MAE, the CSI and the cumulated rainfall volume (compared to 
radar observations) will be presented and analyzed.   

 

5.2.1 Probabilistic analysis  
 

Firstly, the results of ROC curves for the two models are reported at 30, 60 and 120 minutes lead time 
considering a precipitation threshold of 5 [mm/h], that will be used to calculate also all the other 
probabilistic metrics.  

 

At the beginning of the nowcast py-STEPS has a higher skill than STEPS-BE, that, however, shows a 
higher AUC at two hours lead time. Yet, the differences between the two ROC curves are not so 
remarkable to establish the superiority of one model over the other. Consequently, the analysis of the 
reliability diagrams is reported considering the same lead times:  

Figure 5.8. Average ROC curves of py-STEPS and STEPS-BE for 30, 60 and 120 minutes lead time 
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In this case the results of py-STEPS are clearly better than those offered by STEPS-BE, since its 
reliability diagram is closer to the bisector for all the lead times. However, it can be observed that both 
models exhibit a reliability diagram below the bisector, which is a symptom of overconfidence of the 
ensembles. Namely, the models forecast events with a probability that is higher than the observed 
frequency.  

 

Finally, the results of the rank histograms are reported in the image below: 

 

As pointed out in the previous section, a rank histogram where the last bin has a high frequency indicates 
that the model underestimates the highest precipitation rates. From the picture above it is possible to 
notice that both py-STEPS and STEPS-BE have this flaw. However, the rank histogram associated with 
py-STEPS has more aligned bins compared to the one of STEPS-BE, indicating that its ensemble is 

Figure 5.9. Average reliability diagrams of py-STEPS and STEPS-BE for 30, 60 and 120 minutes lead time 

Figure 5.10. Figure 48. Average reliability diagrams of py-STEPS and STEPS-BE for 30, 60 and 120 minutes lead time 
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better spread and represents more accurately smaller rainfall intensities compared to STEPS-BE. In 
addition to this, it can also be noticed that the frequency of the last bin of py-STEPS decreases when 
the lead time increases. This result implies that the model underestimates the highest rainfall intensities 
less near the end of the forecast, when precipitation intensities decrease due to the decay of the most 
intense and convective precipitation structures. On the other hand, this tendency cannot be observed in 
the case of STEPS-BE, which increases the frequency of the last bin as the nowcast reaches two hours 
lead time. This comparison suggests that py-STEPS ensemble not only is more spread, thus better 
capturing the range of rainfall intensities over the domain, but also is more accurate that STEPS-BE in 
representing the decay of precipitation structures toward the end of the event. 

 

5.2.2 Deterministic analysis 
 

A qualitative assessment of some plotted precipitation fields can be presented to get a sense of the noise 
influence on the averaged rainfall field.. In the image below, the fields on the left refer to the 
observations, while the ones on the right are produced using py-STEPS for 5, 40 and 120 minutes lead 
time:  

 
 

Figure 5.11. Plotted precipitation fields at 5, 40 and 120 minutes lead time. On the left the measured precipitation field by the radar,       
on the right the ensemble's mean produced by py-STEPS 
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Firstly, it can be observed that the shape of the ensemble’s mean is pretty similar to the one of the 

observed precipitation field, also at two hours lead time. This could be due to the stochastic perturbation 
of the motion field, that not only accelerates/decelerates the velocity vectors, but also changes their 
direction. In general, it could be said that a perturbed motion field is more realistic than the static one 
implemented in deterministic methods. Moreover, it is interesting to notice the low rainfall intensity 
contours created around the main precipitation structures in the ensemble’s mean, especially at two 

hours lead time. These shapes are due to the noise characterizing every member of the ensemble and 
are much more remarked than in the case of purely deterministic precipitation fields, as it can be 
observed in comparison to figure 4.10. Therefore, this picture underlines some qualitative differences 
with respect to ANVIL or S-PROG.  

To compare the results of the two models, the following graphs are reported:  

 

 

Considering the MAE curves, it seems that py-STEPS performs better than STEPS-BE for almost all the 
lead times (except for an overlapping region between 20 and 40 minutes). STEPS-BE fields start with 
an higher error than py-STEPS, probably due to the different implemented optical flow algorithm and 
to the AR(1) that may be less effective than an AR(2). Furthermore, both models show a curious 
decrease of the MAE after 40 minutes lead time that is not visible when dealing with deterministic 
models (compare with figure 4.5). Recalling the previous considerations, this can be explained by the 
perturbed (and more realistic) motion field and by the noisy precipitation structures that increase the 
correlation level between forecasts and ensemble mean.  

As for CSI values, py-STEPS outperforms STEPS-BE at least for the first 40 minutes lead times. After 
this time, STEPS-BE presents slightly better results than py-STEPS, but the differences are not 
remarkable. This tendency is observed also considering other precipitation thresholds (1 and 10 [mm/h]) 
and therefore are not reported here.  

Figure 5.13. Average MAE curves of py-STEPS and STEPS-BE Figure 5.12. Average CSI curves of py-STEPS and STEPS-BE 
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Finally, the cumulative rainfall volumes are reported in the graph below. When considering the entire 
radar domain, both models tend to underestimate the cumulative volumes. In this case, however, 
STEPS-BE outperforms py-STEPS, which has a more severe underestimation. Despite this, the 
forecasted volume of both models does not differ much from the observations, indicating that both 
models are well suited to hydrological balances. In fact, by the end of the nowcast, STEPS-BE 
intercepted 98% of the rainfall volume, while py-STEPS intercepted 90%. 

 

 
Figure 5.14. Cumulative rainfall volume comparison 

 

Figure 5.14 shows an interesting linear trend of the cumulative rainfall volume. This can be explained 
considering that this analysis is extended to the entire radar domain, where local growth and decay 
certainly occurs, but in only two hours lead time the average precipitation intensity remains constant. 
Consequently, the cumulation of rainfall provides a sort of linear trend. However, this does not occur 
in the investigation inside the sub domains, where the smaller scale features are much more relevant. 
In fact, when a fixed area of interest is considered, the precipitation is usually intense in the first minutes 
of the nowcast, while after some time most of the precipitation field has moved and/or decayed, leaving 
only some residuals of rainfall. In these cases, as will be observed in the next graphs (5.22 and 5.23), 
the cumulative rainfall volumes follows a logarithmic trend rather than a linear one.   

5.3 COMPARISON IN SUB-DOMAINS  
 

In this section the comparative analysis will be performed inside the simulated hydrological catchments. 
In complete analogy with chapter 4, the same convective and (partly) stratiform events will be evaluated 
considering some of the probabilistic and deterministic metrics presented in the previous section. 
However, in this case the results will be presented considering 1 hour lead time to better underline the 
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differences between py-STEPS and STEPS-BE. As already explained in the previous chapter, it is not 
useful to make evaluations for longer lead times inside the subdomains because the majority of the 
rainfall has already left the area of interest within 1 hour. 

In the probabilistic analysis, the reliability and rank histograms will not be reported, since they provided 
similar results to ones seen in the previous section. Moreover, instead of building the ROC curves for 
different lead times, the AUC values will be plotted for the entire duration of the nowcasts. The 
deterministic analysis will discuss the MAE and CSI considering also the results provided by the three 
deterministic models presented in the previous chapter (extrapolation, S-PROG and ANVIL). Finally, 
instead of just computing the ensemble's mean, the cumulative rainfall volumes of the two models will 
be compared in the hydrological catchments reporting the uncertainties of the nowcasts as well.  

 

5.3.1 Probabilistic analysis in sub-domains  
 

The analyses conducted in the small sub-domains produced the following AUC graphs by setting a 
precipitation threshold of 5 [mm/h]:  

 

 

 

Firstly, it can be noticed that py-STEPS outperformed STEPS-BE in both convective and stratiform event 
analysis. This implies that, at smaller scales, the former method always functions as a better warning 
system. It is also interesting to notice that the values of AUC at 30 and 60 minutes lead times are always 
higher than those found in the analysis over the entire radar domain for both methods; for example, at 
60 minutes lead time, py-STEPS had a value of 0.68, compared to a value of roughly 0.75 found in both 
stratiform and convective events in the sub-domains (compare with ROC curves in figure 6.8). This 
gain of skill at smaller scales is analogous to the increase of CSI and POD values observed for 

Figure 5.16. AUC loss per lead time for convective 
events 

Figure 5.15. AUC loss per lead time for stratiform events 
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deterministic methods in chapter 4 during the study of convective and stratiform events. Therefore, this 
is an encouraging result for hydrological investigations, where the main interest does not concern the 
entire radar image but only smaller catchments.  

Furthermore, it can be noticed that surprisingly the AUC values of STEPS-BE at 60 minutes lead time 
are higher in convective events than in stratiform ones. Yet, this can be explained recalling the 
considerations made during the development of the algorithm to categorize the events (section 4.3), 
where it has been explained that these “stratiform” events actually start as convective precipitations that 

“degrade” fast into stratiform rainfall. Consequently, these results suggest that STEPS-BE is less suited 
to represent rapid decay of smaller precipitation structures than py-STEPS, probably because the latter 
implements an AR(2) that is more complex than an AR(1).  

 

5.3.2 Deterministic analysis in sub-domains  
 

Firstly, the MAE and CSI results related to convective events are reported considering 5 and 10 [mm/h]: 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Average MAE for convective events Figure 5.18. Average CSI for 5 [mm/h] thershold of convective events 
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Figure 5.19. Average CSI for 10 [mm/h] thershold of convective events 

In figure 6.18, at the beginning of the nowcast all the models increase their relative MAE, but after 30 
minutes they all show a drop at different lead times. This tendency is due to the fact that at 1 hour lead 
time almost all the precipitation has left the area of interest leaving just a smaller amount of lower 
intensity rainfall, resulting in the observed decrease in MAE. In chapter 4 this drop did not occur 
because the analysis considered the first 30 minutes lead time to better show the differences among 
deterministic models. As previously observed, ANVIL has the highest error in terms of MAE, while 
the ensemble’s mean of py-STEPS presents the best results. Also STEPS-BE provided a good outcome 
in comparison with deterministic models, even if, as already pointed out, it always starts with a 
relatively high MAE at the beginning of the nowcast and becomes less skillful than S-PROG after 40 
minutes lead time. A possible explanation for this bias in the first minutes lead time could be that 
STEPS-BE exploits an AR(1) and implements its own optical flow algorithm (COTREC scheme), while 
the py-STEPS models have been initialized with the same AR(2) filter and optical flow algorithm 
(Lucas-Kanade) and thus they all start with the same MAE value. Yet, from this discussion it is possible 
to conclude that the ensemble’s mean provides less biased results than a simpler deterministic 

precipitation field.  

On the other hand, the CSI graphs for high precipitation thresholds (5 and 10 [mm/h]) show that ANVIL 
still performs better than all the other models, including the ensemble’s mean of both py-STEPS and 
STEPS-BE. Therefore, it can be concluded that averaging the members of the probabilistic nowcasts 
does not provide any benefit in terms of warning systems.  

The following graphs refer to the stratiform events. In this case, the CSI is calculated only for 1 [mm/h] 
threshold since these events, on the overall, are characterized by lower intensities:  
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Despite the changing nature of the events, the considerations made above remain valid. Also in this case, 
the ensemble’s mean of py-STEPS provides the least error results, together with the one of STEPS-BE. 
The warning ability of py-STEPS (in terms of CSI) is comparable to the one of S-PROG in the first 30 
minutes of the nowcast, but without adding any relevant improvement. Therefore, the conclusion again 
is that it is not useful to average the members of the probabilistic nowcast to increase the warning ability 
of the model.  

 

5.3.3 Cumulative rainfall volume and uncertainties  
 

Finally, an analysis of the cumulative rainfall volumes inside the simulated hydrological catchments is 
presented for convective and stratiform events. In this section, the cumulative rainfall volumes were 
not calculated considering the ensemble’s mean, but every single member. Namely, after two hours 
lead time 20 different cumulative rainfall volumes, one for every member, were obtained providing the 
results in the picture below:   

 

Figure 5.20. Average MAE for stratiform events Figure 5.21. Average CSI for 1 [mm/h] thershold of 
stratiform events 
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Figure 5.22. Cumulative rainfall volumes of convective events  

 

The dark line indicates the observed cumulative rainfall volume, the solid red and blue lines refer to the 
average of the 20 volumes produced by the members of py-STEPS and STEPS-BE respectively and the 
dashed line report the maximum and the minimum cumulative volume among the ensemble members 
for every lead time.  

The interval between the dashed lines shows the uncertainty in the nowcast, which grows with lead time. 
In fact, the minimum and maximum lines tend to be near within the first 20 minutes of the forecast, but 
as the lead time increases, the gap between the two grows wider and wider. In more rigorous terms, it 
can be stated that the variance of the cumulative rainfall volume is not constant in time and therefore 
the studied variable (cumulative volume) is heteroscedastic. It is easy to notice that py-STEPS 
intercepts the cumulative rainfall volume much better than STEPS-BE, that is characterized by a 
persistent overestimation, particularly remarked toward 2h lead time.  

Another interesting aspect is related to the degree of uncertainty of the two models. In fact, although it 
provides much better results, py-STEPS ensemble is much more spread and provides a greater variety 
of volume ranges than STEPS-BE, that shows a much narrower spacing between the minimum and 
maximum volumes of its ensemble. Therefore, it can be remarked that py-STEPS is much more accurate 
than STEPS-BE in smaller domain analysis, but it is characterized by a higher degree of uncertainty.  

The same methodology can be applied to the stratiform events, thus obtaining the following result:  
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Figure 5.23. Cumulative rainfall volumes of stratiform events 

 

Again, py-STEPS performs much better than STEPS-BE, that keeps overestimating the cumulative 
rainfall volume. However, in these kinds of events the degree of uncertainty of STEPS-BE is 
comparable to the one of py-STEPS (notice that the line of minimum values of STEPS-BE is almost 
hidden under the average curve of py-STEPS).  

It is worth noting that the rainfall volume cumulates slower than in the previous case due to the more 
stratiform nature of the considered events, even if the total volume at the end of the nowcast does not 
differ dramatically compared to convective events.  
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5.4 CONCLUSIONS  
 

This chapter focused on the comparison of the two probabilistic nowcasting models py-STEPS and 
STEPS-BE. Thanks to a cascade of stochastic noise applied to each level of the decomposed rainfall 
field, these models can produce an ensemble of forecasts for each lead time. The main differences 
between these two models are the application of an AR(1) (in STEPS-BE) instead of an AR(2) (in py-
STEPS) and the implementation of two different optical flow algorithms (COTREC scheme vs Lucas-
Kanade method). The advantage of these models with respect to deterministic options consists in the 
estimation of uncertainties, that is a relevant factor in modern hydrological applications.  

Before running the py-STEPS model, a sensitivity analysis has been performed to set the optimal 
configuration to obtain the precipitation fields. In particular, the influence of two parameters was tested: 
the stochastic noise generator and the number of ensemble members. After evaluating the results in 
terms of ROC curves and reliability diagrams, it was concluded that the choice of a specific noise 
generator over another does not provide remarkable benefits. However, the non-parametric option was 
chosen since it requires the lowest computational time. On the other hand, 20 members were considered 
the other optimal alternative, as they offer a tradeoff between reasonable computational time of the 
nowcast (slightly more than 3 minutes) and ensemble’s skill.  

To validate and compare the two models, analyses were conducted across the entire radar domain and 
sub-domains (simulated hydrological catchments) considering the event categorization already 
discussed in chapter 4. To make a more general validation, both the ensemble and the ensemble’s mean 

were tested through probabilistic (ROC curves, reliability diagrams, rank histograms) and deterministic 
(MAE, CSI) metrics.  

In the analysis over the entire radar domain, py-STEPS proved more skillful than STEPS-BE, even 
though the latter showed some strengths. In fact, while py-STEPS got better results in terms of 
reliability diagrams and rank histograms, proving that its ensemble is better calibrated, STEPS-BE had 
higher values of AUC at 2 hours lead time (while py-STEPS still got better results in terms of ROC 
curves at least for the first 30 minutes of the nowcast). Considering the ensemble’s mean, py-STEPS 
provided better results in terms of MAE and CSI (for the first 40 minutes lead time), but STEPS-BE 
intercepted the cumulative rainfall volumes more accurately. Therefore, when the entire radar image is 
studied, it is difficult to establish which method is definitely the best.  

On the other hand, py-STEPS completely outperformed STEPS-BE in the analysis inside the sub-
domains. The higher AUC values when forecasting both the convective and stratiform events show that 
py-STEPS has higher skill and adaptability of STEPS-BE at smaller scales. Moreover, also in this case 
the MAE values proved that the former method is less biased to evaluate rainfall values. However, the 
most interesting aspect is related to the hydrological balance, where py-STEPS forecasted the 
cumulative rainfall volumes with a much higher accuracy compared to STEPS-BE, that presented a 
persistent overestimation.  
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This chapter also underlined that the ensemble’s mean can provide less biased results in terms of MAE 
compared to deterministic methods, thanks to the averaging of its members altered by the noise cascade. 
However, no relevant gains of predictive ability (measured through CSI) have been detected.  

Consequently, it is necessary to make a tradeoff between deterministic and probabilistic methods to 
model one single precipitation field. As usually happens in the engineering field, the choice of a model 
must suit its application.  

To draw a conclusion about the comparison between the two probabilistic models, it seems that py-
STEPS represents the best choice. In fact, the small advantages offered by STEP-BE at the domain 
scale are less relevant than the much higher skill of py-STEPS at the hydrological scale, that is the most 
interesting one for practical applications. In addition to that, it must be underlined that py-STEPS offers 
the opportunity of changing the parameters and have a complete control of the model, while the same 
is not valid for the software developed at the RMI. Consequently, py-STEPS not only provides a more 
skillful method to forecast the precipitation fields, but is also much more adaptive and thus relevant for 
hydrological research then STEPS-BE.  
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Chapter 6: CONCLUSION 
 

Rainfall extremes are projected to increase in the future. Indeed, the Clausius Clapeyron law states that 
for every 1°C increase in temperature, the atmosphere's water storage capacity increases by 7%. This 
means that when the earth warms, there will be a lot more water vapor available in the atmosphere to 
trigger convective and intense events. This is also supported by the IPCC's findings, which show that 
precipitation extremes will increase regardless of location in every global warming scenario. Therefore, 
quick and effective methods to deal with this new issue are needed.  

Nowcasting is one of the instruments that can assist us in defining and comprehending the state of the 
atmosphere in short time spans to predict precipitation extremes. The major focus of this thesis was 
STEPS, which is one of the most important nowcasting methods. STEPS can provide both deterministic 
and probabilistic nowcasts, which means it is possible to generate one or more forecasted fields for each 
lead time. The most intriguing characteristic of this method is its ability to mimic both the "spatial 
scaling" and "dynamic scaling" properties of precipitation field. The term "spatial scaling" refers to the 
fact that the precipitation field can be viewed as a stack of various precipitation structures of varying 
sizes rather than as a continuum. The term "dynamic scaling" refers to the fact that larger precipitation 
structures have a longer lifetime than smaller precipitation structures, which form and degrade at a 
faster rate. Therefore, this is the method's fundamental core: it can reproduce spatial scaling thanks to 
a FFT that decomposes the field into its different structures, and then it can reproduce the growth and 
decay of small precipitation structures, i.e. dynamic scaling, thanks to an autoregressive filter applied 
to each cascade level. Furthermore, this method allows for the generation of a noise cascade, which can 
be added to each level of the decomposed rainfall field. If this is done, an ensemble of members for 
each lead time of the nowcast can be forecasted (probabilistic model); otherwise, just one field is 
produced for each lead time (deterministic model). 

STEPS has several implementations, two of which were investigated in this thesis: py-STEPS and 
STEPS-BE. The first choice is a Python library that is open source and has several features. This library, 
for example, offers modification of settings such as the optical flow algorithm used to estimate the 
motion field, the order of the autoregressive filter (which is commonly set to 2, as in the standard STEPS 
technique published by Seed et al.), and the number of cascade levels. The other choice is the RMI 
version, which is a licensed private program. This suggests that none of its parameters can be controlled. 
This approach differs significantly from py-STEPS in several ways. For example, it implements its own 
optical flow method, a COTREC scheme, rather than the alternatives VET, DATRS, and Lucas-kanade 
of py-STPES, employs an AR(1) rather than an AR(2), and implements a different motion field 
perturbation. One of the main aims of this work was to establish which method is better suited to 
describe the evolution of precipitation extremes in the Belgian territory.  

However, before performing the validation and comparison of different models, it was decided to conduct 
a radar data analysis, because radar images are the input to all the STEPS-based models that have been 
studied in this thesis. The data used were composite radar images referring to ten separate time periods, 
with a spatial resolution of 1058 m and a temporal resolution of 5 minutes. Data from Water Info rain 
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gauges were used for validation. The network of these rain gauges covers the Flanders region, has a 
temporal resolution of 5 minutes (similar to radar images), and data for 2017 and 2018 were available. 
The data from the rain gauges were used to extract the events required for validation.  

The event extraction method took three parameters into account: an upper threshold (to define the start 
and finish of the event), a lower threshold (to remove extremely light rain from the event), and the Inter 
Event Time, which was set to 12 hours (to extract independent events). To validate the radar results, 
three main strategies were evaluated: considering the pixel in which the rain gauge is located, 
considering the maximum in the station’s neighborhood or considering the mean in the station’s 

neighborhood. It has been found that, in general, considering the maximum in the surrounding increases 
the level of overestimation by the radar. To summarize, the RMSE for various distances from the rain 
gauge were generalized within a boxplot, where it was evident that the greater the distance from the 
rain gauge, the greater the error. Similarly, the RMSE boxplots of the mean in the surrounding area 
showed that it is not advantageous to examine pixels that are too far away from the rain gauge. 
Therefore, the first validation option was adopted and is recommended for future analysis in the Belgian 
domain.  

One of the most significant sources of error was a time shift between the radar and rain gauge peaks. 
This shift is caused by the time it takes for precipitation to reach the ground. To determine the amount 
of this time shift, an analysis was performed on all the considered events, and it was discovered that the 
time shift is approximately 10 minutes for the majority of the occurrences. This is crucial information 
since it indicates that the precipitation field observed by the radar, and thus the one predicted by the 
model, takes an extra 10 minutes to precipitate, on average. However, despite this time shift was taken 
into account, the scatter plot of radar-rain gauge measurements of rain intensities showed a high level 
of disagreement between the two devices. Consequently, radar correction is required for future study, 
particularly for nowcasting applications, to acquire more reliable images.  

Obviously, aggregating the results helps to increase the level of agreement, and it was discovered that 
after a 30-minute aggregation, the RMSE between radar and rain gauge measurements was practically 
half. However, the more rain intensities are aggregated, the more information is lost. Another interesting 
finding was that the RMSE (between the measurements of the two devices) decreases with increasing 
distance from the closest radar. This is because errors caused by ground clutter, for example, are more 
remarked in proximity to the radar. However, in theory, the RMSE should increase again after 60-70 
km, due to phenomena like beam broadening or radar attenuation. This was not assessed in this study 
since there were insufficient rain gauges and events available with a distance between rain gauge and 
closest radar higher than 60 Km. Therefore, it is suggested that future research include more events at 
rain gauges located more than 60 kilometers from the nearest radar, to verify if an optimal distance 
where the values of the image are more accurate exist. This could be relevant for the Belgian domain, 
since it would be possible to identify locations where the radar values are more reliable, and hence 
where the nowcast results are more dependable as well. 

When the STEPS method is applied without any stochastic perturbation (i.e., without noise cascade), one 
single rainfall field is produced for each lead time. This procedure is known as deterministic nowcast. 
In this thesis, three different deterministic models were analyzed: a simple extrapolation, S-PROG and 
ANVIL. The extrapolation simply advects the last radar images along the Lagrangian trajectories, 
without changing the local intensities of the rainfall field (Lagragian persistence). On the other hand, 
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S-PROG and ANVIL can represent the growth and decay of precipitation structures by means of the 
STEPS procedure. The major difference between the two models is that S-PROG implements a simple 
AR(2), while ANVIL exploits an ARI (autoregressive integrated filter).  

All of these models require an estimation of the velocity field, which is the first step in computing the 
nowcast. As a result, the three optical flow algorithms available in py-STEPS were examined to 
determine how they affected the forecasted precipitation fields in terms of MAE and CSI. It was 
discovered that, at least for this investigation, the choice of one algorithm or the other did not provide 
notable differences on the final results. However, it was shown that the computational time, which is a 
significant element in real-time forecasting, varied dramatically amongst the three different optical flow 
algorithms. In the end, Lucas-Kanade was chosen as the default configuration because it provided a 
balance between satisfying CSI-MAE results and computational time, and it is thus recommended for 
future investigations over the Belgian domain.  

The three models were then compared using metrics such as CSI, POD, FAR, and MAE throughout the 
whole radar domain considering the events extracted in Chapter 3. The results revealed that ANVIL 
was the worst method in terms of MAE (i.e., more biased), whereas S-PROG and extrapolation 
performed better. In terms of categorical measures, however, ANVIL performed better on average. 
Nevertheless, since no classification of the events was carried out, these results were considered 
unsatisfactory. As a result, an algorithm based on the parametrization of power spectra within sub-
domains was developed and a distinction between convective and stratiform events was identified in 
small radar regions. Therefore, rather than analyzing the full radar domain, a second analysis was 
undertaken within these smaller regions, which should better represent the size of a real hydrological 
catchment. Although the overall tendency was not significantly different from that seen for the entire 
radar domain, the results in this case were neater. When high precipitation thresholds are set in 
categorical metrics such as POD, CSI, and FAR for convective events, ANVIL performs better. 
However, because it has errors in terms of MAE, this model can result in significant cumulative rainfall 
overestimation. S-PROG performed best for stratiform events when smaller precipitation thresholds 
were used, and it was also the best approach for intercepting cumulative rainfall volumes. As a result, 
ANVIL is recommended for more extreme events because it exaggerates both the growth and decay of 
precipitation structures, whereas S-PROG works better with stratiform events or convective events that 
"degrade" quickly into stratiform precipitation due to its smoothing tendency. 

In contrast to the deterministic approach, a probabilistic nowcast can be obtained by applying stochastic 
noise to each level of the decomposed rainfall field. This approach has a significant benefit over the 
deterministic methods because it produces various precipitation fields at each lead time, allowing the 
uncertainties of the nowcast to be estimated. Before comparing py-STEPS and STEPS-BE, a sensitivity 
analysis was undertaken to determine the configuration of py-STEPS considering the stochastic noise 
generator and the number of ensemble members. The non-parametric generator was chosen among the 
three different evaluated generators since it offered the shortest computational time (while the outcomes 
of the nowcasts showed a low dependence on generator choice). On the other hand, increasing the 
number of ensemble members is good for improving the nowcast's skill, but this gain must be 
accompanied by a fair computational time. Because creating 30 ensemble members for a 2 h nowcast 
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can take up to 5 minutes, 20 members were chosen as a reasonable trade-off between skill and 
computational time.  

In accordance with the methodology used in the previous chapter, the two STEPS implementations were 
evaluated using probabilistic metrics such as ROC curves, reliability diagrams, and rank histograms 
both in the whole radar domain and in small sub-catchments. In almost all analyses, py-STEPS 
outperformed STEPS-BE at both larger and smaller scales. In particular, the assessments conducted 
inside the simulated catchments revealed that py-STEPS has a substantially higher skill than STEPS-
BE in forecasting both convective and stratiform events, as well as better intercepting accumulated 
rainfall volumes. The fact that an open-source software, that allows complete control of all model 
parameters and can use radar images from any region of the world, outperformed a private 
one developed specifically for Belgium suggests that researchers can have free access to a powerful 
tool for nowcasts. However, it is important to underline that the hydrological balance showed that py-
STEPS uncertainties are rather high towards 2 hours lead time.  

Finally, the impact of the stochastic perturbation was investigated further by averaging all members of 
the nowcast in a single precipitation field (ensemble mean). Even if the main advantage of the 
probabilistic technique (estimation of uncertainties) is lost, the MAE curves demonstrated that the 
ensemble mean has smaller errors, on average, than pure deterministic methods such as ANVIL, S-
PROG, and extrapolation. This is most likely attributable not only to the noise in the averaged 
precipitation field, but also to the fact that probabilistic techniques incorporate a perturbation of the 
motion field as well, which is more realistic than the stationary field of deterministic methods. However, 
it was discovered that the ensemble mean's CSI is not greater than that of deterministic approaches, 
implying that the former has no greater predictive ability than a simpler deterministic nowcast. 

To conclude, it may be interesting to underline that the Belgian RMI is currently improving its 
nowcasting model STEPS-BE integrating some of the features of the open-source py-STEPS library. 
As the authors report [51], a merging of NWP outputs, stochastic noise, and extrapolation will be 
developed exploiting the same flow diagram of py-STEPS to produce probabilistic nowcasts with a 
reliability that extends beyond 2 hours lead time. Therefore, even though STEPS-BE will still be the 
operational version, soon the RMI will use the benefits of the open-source and blending procedures. 
This is an encouraging prospect for the future of nowcasting and also shows that the advantages of py-
STEPS highlighted in this thesis have a practical application in operational contexts.  
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APPENDIX A: EVENT LIST  
 

Station Start time [m/d/y 
hh:mm] End time[m/d/y hh:mm] Peak intensity 

[mm/h] 

Poperinge_P 18/05/2017 20:15 18/05/2017 21:00 37.44 

Vlamertinge OTT_P 18/05/2017 20:30 18/05/2017 21:10 58.8 

Ieper_P 18/05/2017 20:35 18/05/2017 21:30 79.08 

Lo-Fintele OTT_P 18/05/2017 20:45 18/05/2017 21:20 87.6 

Geluwe_P 18/05/2017 21:00 18/05/2017 21:40 64.8 

Zarren_P 18/05/2017 21:10 18/05/2017 21:55 142.08 

Roeselare_P 18/05/2017 21:35 18/05/2017 21:55 54.12 

Klemskerke_P 18/05/2017 21:40 18/05/2017 22:35 49.08 

Zwevegem OTT_P 18/05/2017 21:45 18/05/2017 22:05 56.4 

Brugge OTT_P 18/05/2017 22:15 18/05/2017 22:55 98.4 

Liedekerke_P 19/07/2017 23:05 19/07/2017 23:40 42.24 

Lot OTT_P 19/07/2017 23:35 20/07/2017 00:00 55.2 

St-Pieters-Leeuw_P 19/07/2017 23:40 20/07/2017 00:00 96.48 

Bonheiden_P 20/07/2017 00:00 20/07/2017 03:15 57.36 

Boortmeerbeek OTT_P 20/07/2017 00:00 20/07/2017 00:40 118.8 

Nossegem_P 20/07/2017 00:05 20/07/2017 00:25 78.72 

Loenhout_P 20/07/2017 00:25 20/07/2017 01:20 38.64 

Korbeek-Dijle_P 20/07/2017 00:25 20/07/2017 00:30 48.96 

Poperinge_P 20/07/2017 00:25 20/07/2017 01:05 38.04 

Heverlee_P 20/07/2017 00:30 20/07/2017 00:40 70.32 

Rotselaar_P 20/07/2017 00:35 20/07/2017 00:50 43.56 

Herentals_P 20/07/2017 00:40 20/07/2017 04:35 81.72 

Aarschot OTT_P 20/07/2017 00:45 20/07/2017 01:00 56.4 

Vosselaar_P 20/07/2017 00:50 20/07/2017 03:50 49.92 
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Sint-Laureins OTT_P 20/07/2017 03:05 20/07/2017 12:35 44.4 

Vlamertinge OTT_P 20/07/2017 03:45 20/07/2017 12:15 42 

Waregem_P 20/07/2017 04:30 20/07/2017 12:55 71.16 

Zwevegem OTT_P 15/08/2017 05:55 15/08/2017 07:35 57.6 

Maarke-Kerkem_P 15/08/2017 08:35 15/08/2017 08:40 36.36 

Sint-Joris_P 15/08/2017 09:05 15/08/2017 09:25 68.16 

Klemskerke_P 15/08/2017 09:25 15/08/2017 10:35 40.32 

Brugge OTT_P 15/08/2017 09:45 15/08/2017 09:50 110.4 

Geluwe_P 30/08/2017 13:40 30/08/2017 23:00 59.64 

Oostkamp_P 11/09/2017 14:50 11/09/2017 22:10 64.2 

Ertvelde_P 11/09/2017 20:25 12/09/2017 08:45 63.12 

Vlamertinge OTT_P 11/09/2017 21:00 11/09/2017 21:05 38.4 

Lommel OTT_P 11/09/2017 22:05 12/09/2017 05:15 38.4 

Houthalen_P 12/09/2017 00:50 12/09/2017 01:10 41.04 

Nossegem_P 24/05/2018 15:30 24/05/2018 17:20 105.72 

Zingem_P 24/05/2018 16:20 24/05/2018 17:05 50.88 

Denderbelle_P 24/05/2018 16:35 24/05/2018 17:15 66.36 

Klemskerke_P 27/05/2018 13:30 27/05/2018 14:55 50.04 

Sint-Joris_P 27/05/2018 14:35 27/05/2018 14:55 55.44 

Sint-Laureins OTT_P 27/05/2018 19:20 27/05/2018 19:55 57.6 

Boekhoute_P 27/05/2018 19:35 27/05/2018 20:10 63.48 

St-Pieters-Leeuw_P 07/06/2018 06:05 07/06/2018 06:25 36.96 

Aarschot OTT_P 07/06/2018 06:50 07/06/2018 07:05 57.6 

Geluwe_P 07/06/2018 15:35 07/06/2018 16:00 59.76 

Dudzele_P 05/09/2018 01:00 05/09/2018 04:30 60.36 

Waregem_P 05/09/2018 01:15 05/09/2018 01:50 44.52 
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APPENDIX B: CONVECTIVE AND STRATIFORM EVENT LIST 
 

Convective events:  

 
Station name Starting time Longitude Latitude 

Bonheiden_P 7/20/2017, 00:00 366299.5343 -281839.3941 

Boortmeerbeek OTT_P 7/20/2017, 00:00 371051.625 -286418.8022 

Nossegem_P 7/20/2017, 00:05 365559.5114 -298380.7596 

Rotselaar_P 7/20/2017, 00:35 379684.3448 -291314.4193 

Herentals_P 7/20/2017, 00:40 389475.1055 -267390.5241 

St-Pieters-Leeuw_P 7/19/2017, 23:40 351451.6476 -306521.7096 

Heverlee_P 7/20/2017, 00:30 377222.9425 -298925.547 

Liedekerke_P 7/19/2017, 23:05 337354.8354 -297933.5141 

Loenhout_P 7/20/2017, 00:25 375635.7955 -303514.6869 

Vosselaar_P 7/20/2017, 00:50 393788.5696 -252694.9699 

Lot OTT_P 7/19/2017, 23:35 349512.6734 -311261.64 

Aarschot OTT_P 7/20/2017, 00:45 389977.9522 -287293.8824 

Zingem_P 5/24/2018, 16:40 306698.2663 -295564.8595 

Lommel OTT_P 9/11/2017, 22:05 418181.8056 -257553.6995 

Houthalen_P 9/12/2017, 00:50 424886.7581 -283177.7211 

Waregem_P 9/05/2018, 01:15 289646.6383 -300182.7001 

Dudzele_P 9/05/2018, 01:00 280741.7435 -253393.0434 

Zwevegem OTT_P 8/15/2017, 05:55 284914.8912 -304308.5349 

Geluwe_P 5/18/2017, 21:00 266820.2521 -305352.9508 

Geluwe_P 8/30/2017, 13:40 266820.2521 -305352.9508 

Zarren_P 5/18/2017, 21:10 259300.2322 -281762.9531 

Vlamertinge OTT_P 9/11/2017, 21:00 247683.9378 -301230.2148 
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Sint-Joris_P 8/15/2017, 09:05 244998.142 -269903.1012 

Lo-Fintele OTT_P 5/18/2017, 20:45 242798.981 -288522.5262 

Poperinge_P 5/18/2017, 20:15 237834.1233 -303052.2863 

Korbeek-Dijle_P 7/20/2017, 00:25 237834.1233 -303052.2863 

 

Stratiform events:  

 

Station name Starting time Longitude Latitude 

Poperinge_P 7/20/2017, 00:25 379597.7127 -242559 

Nossegem_P 5/24/2018, 15:30 365559.5114 -298381 

Sint-Laureins OTT_P 7/20/2017, 03:05 298791.0951 -259338 

Waregem_P 7/20/2017, 04:30 289646.6383 -300183 

Oostkamp_P 09/11/2017 14:50 279189.4232 -270094 

Geluwe_P 06/07/2018 15:35 266820.2521 -305353 

Klemskerke_P 8/15/2017 9:25 262389.7548 -259429 

Klemskerke_P 5/27/2018 13:30 262389.7548 -259429 

Ieper_P 5/18/2017 20:35 253168.9505 -301537 

Vlamertinge OTT_P 5/18/2017 20:30 247683.9378 -301230 

Vlamertinge OTT_P 7/20/2017 3:45 247683.9378 -301230 
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APPENDIX C: FIELDS TO PARAMETRIZE CONVECTIVE AND 
STRATIFORM POWER SPECTRA  
 

Convective fields: 

 

 

 

 

Stratiform fields: 
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APPENDIX D: EXAMPLE OF STRATIFORM EVENTS AT 
DIFFERENT LEAD TIMES 
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