
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Matematica

Tesi di Laurea Magistrale

Bio-Inspired Modifications of the PSO Algorithm

Relatori Candidato
prof. Marco Scianna Melissa Cannas

Anno Accademico 2022-2023

Contents

Introduction 5

1 The Particle Swarm Optimization Model 7
1.1 Definition of the problem . 7
1.2 Original PSO . 8
1.3 Observations and critical points . 9

2 Proposed method 11

3 Numerical settings 13
3.1 Parameters . 14
3.2 Varying model coefficients . 15

4 Variations to the proposed method 21
4.1 Numerical setting . 22
4.2 Results . 22

5 Conclusions 25

A Particle Swarm Algorithm 27

B Particle Swarm Algorithm with Neighbourhood 31

4

Introduction

Most real-world problems are not deterministic in nature and, therefore, require stochastic
techniques to find solutions. To achieve this, it is convenient to rely on stochastic optimiza-
tion algorithms. Although they are efficient in finding solutions, they can lead to significant
computational efforts and may fail as the complexity of the problem increases. To address
these issues, bio-inspired stochastic algorithms and population-based techniques have been
developed and gained importance due to the improvement in computational efficiency.
Particle Swarm Optimization (PSO) is an example of such algorithms, as it is indeed a
population-based stochastic optimization algorithm that exploits the concepts of social be-
havior observed in animals like insects, herds, birds, and fish, in the search of the best pos-
sibile solution/s to a given problem. The algorithm was first introduced by James Kennedy
and Russell Eberhart in their 1995 paper titled "Particle Swarm Optimization" (Kennedy
and Eberhart [1995]).
The basic idea behind PSO is to simulate the cooperative behavior observed in nature,
where animals in a swarm share information about their local surroundings and collectively
navigate towards better conditions.
In PSO, a population of individuals, referred to as "particles", move through the search
space, adjusting their positions and velocities based on both their individual experiences
and the experiences of the swarm as a whole. This combination of individual exploration and
swarm cooperation helps guide the particles towards optimal solutions. This algorithm has
several advantages: it is easy to describe and implement, requires a relatively small number
of function evaluations to converge, and boasts a fast rate of convergence. It has undergone
numerous variations and improvements, including modifications to the update equations,
incorporation of constraints, and hybridization with other optimization techniques.
In this thesis, we will introduce bio-inspired modifications to the PSO algorithms, follow-
ing the considerations given in Section 1.3. While Particle Swarm Optimization is highly
effective and suitable for modeling swarms of animals, from a biological perspective, this
algorithm needs to undergo slight changes, that will be presented and described in detail in
Chapter 2 .
The rest of the thesis is organized as follows. The formalization of a generic PSO will be
presented in Chapter 1, including a description of the algorithm, and comments on the
component ingredients and parameters.
As previously introduced, Chapter 2 will be dedicated to presenting our proposed method.
In Chapter 3 we will describe our two objective functions and numerical settings used in our
simulations. Moreover, we will explore how different values of the model coefficients affect
simulation outcomes, specifically the method’s ability to reach convergence.
Finally, in Chapter 4, with the introduction of the concept of "neighbourhood", we will
present a variation of our proposed method, with slight changes in some terms of the algo-
rithm.

6

Chapter 1

The Particle Swarm
Optimization Model

1.1 Definition of the problem
Let us introduce a given high dimensional "objective" function of d variables:

F (x) : X ⊆ Rd → R. (1.1)

An optimization problem consists in finding x∗ ∈ argminx∈X F (x), i.e, in finding the points
of the domain X where F attains the minimum value.
In this respect, the domain X of the function is often called acceptable region, or search
space, while each point x = {x1, x2, ..., xd}T ∈ X is typically referred to as admissible or
candidate solution.

The Particle Swarm Optimization algorithms solve the above minimization problem by
employing a population of simple entities, called particles, which move in the search space X
according to a specified set of behavioural rules. Their positions indeed represent candidate
solutions of the problem.

Figure 1.1. Representative system setting.
The objective function F (x, y) = (x − 3.14)2 + (y − 2.72)2 + sin(3x + 1.41) + sin(4y − 1.73)
is defined on the one-dimensional domain X = [a, b].
A population of N particles, with position xi and velocity vi is then allowed to move along
X in order to find out x∗ = argminx∈X F (x) ∈ X.

The Particle Swarm Optimization Model

1.2 Original PSO
As previously seen, Particle Swarm Optimization algorithms typically take into account a
set of N particles: each generic agent i is represented by a material point with unitary mass,
with actual position xi(t) ∈ X ⊆ Rd and velocity vi(t) ∈ Rd, being X the domain of the
objective function F defined in (1.1), and t ∈ T = [0, tf] is indeed the time variable, with
tf the final observation time.
In the perspective of numerical implementation, we hereafter refer to the discretized version
of the time domain T.

In the original PSO algorithm, starting with initially assigned values

I
xi(0) = x0

i ;
vi(0) = v0

i ,
(1.2)

for any agent i = 1, .., N , the system is updated as follows:


xi(t + 1) = xi(t) + vi(t + 1)
vi(t + 1) = wvi(t)ü ûú ý

inertia

+ c1Ri
1(t) · (pi(t) − xi(t))ü ûú ý

"individual knowledge" awareness

+ c2Ri
2(t) · (g(t) − xi(t)).ü ûú ý

"social interactions" transmission of information
(1.3)

Regarding the last equation:

• pi(t) identifies the best position, in the perspective of minimization of F , found by
the i-th particle up to t-th iteration.
It is initialized as

pi(0) = x0
i ,

and updated with rule:

pi(t + 1) =
I

pi(t), if F (xi(t + 1)) ≥ F (pi(t));
xi(t + 1), if F (xi(t + 1)) < F (pi(t)).

(1.4)

The vector pi(t) is usually referred to as the local best position.

• g(t) is instead the best position found among all the particles up to iteration t.
In this respect, we have that:I

g(0) = argmini=1,..,N {F (xi(0) = x0
i)};

g(t + 1) = argmini=1,..,N {F (pi(t + 1))}.
(1.5)

The vector g(t) is also called global best position.

• The terms Ri
j(t), with j = 1,2, indicate two d-dimensional diagonal matrices. In

particular, they contain random numbers uniformly distributed in the interval [0,1],
and that are generated, for any iteration, for each agent, i.e.,

(Ri
1)jj , (Ri

2)jj ∈ U([0,1]), ∀j = 1, .., d, t ∈ T, i = 1, ..., N.

8

1.3 – Observations and critical points

Such random contribution may be also given as vectors, i.e. ri
j(t), with j = 1,2, for

any time t ∈ T and agent i = 1, ..., N .
In this case, we have to introduce in (1.3) the Kronecker product, denoted with ⊗:

c1ri
1(t) ⊗ (pi(t) − xi(t))

and
c2ri

2(t) ⊗ (g(t) − xi(t)),

being
a ⊗ b = (a1b1, ..., anbn),

with a, b ∈ Rd.

• w, c1, c2 ∈ R+ are finally a sort of acceleration coefficients.

1.3 Observations and critical points
In the perspective of an application of PSO algorithm to biological scenarios, it is necessary
to make some considerations:

• Random movement is self-generating, i.e. it is independent from other behavioural
stimuli and for this reason we have to consider a separate term in the velocity to
represent them.

• A cell can only interact directly with those in the surrounding, i.e. the global best
position has to be specified for each particle:

g(t) → gi(t).

• In the original PSO all behavioural traits can be simultaneously maximized or mini-
mized and this is not possible considering a biological point of view. Furthermore the
agent speed is not differentiated from the movement direction and it is necessary to
take into account this difference in a biology perspective.

• Cells move in a highly viscous environment, i.e. characterized by low Reynolds’ num-
ber. In this respect, inertia can be considered negligible.

9

10

Chapter 2

Proposed method

Basing on the considerations of the previous section, let us now propose our version of the
PSO method.
In particular, in perspective of numerical implementation, we here after consider one-
dimensional settings.
In this respect, the objective function is defined on a one-dimensional domain, i.e.,

F (x) : X ⊆ R → R. (2.1)

We define the following notation for unit vectors,

â = a
|a|

,

with a ∈ R, and then introduce a "new" actual velocity for the probing particles:

vi(t + 1) = viŵi(t + 1), (2.2)

where vi ∈ R+ is an individual speed/motility, that may account for physiological limitation,
while

wi(t + 1) = α(\pi(t) − xi(t)) + β(\g(t) − xi(t)) + γr̂i(t), (2.3)

for any t ∈ T and i = 1, ..., N . Agent position is instead updated exactly as in (1.3).

In the above equation (2.3):

• pi(t) and g(t) are respectively the individual best position and the global best position,
as previously defined in section (1.2).

• ri(t) ∈ R implements cell Brownian crawling. In this respect, a wide range of so-
phisticated or application-related laws may be employed. However, for the sake of
simplicity, we opt to set ri(t) as a random variable that takes the values -1 or +1 with
probability 1

2 .

• The acceleration coefficients α, β, γ ∈ R+ are then set to be subjected to the following
constraint:

α + β + γ = 1. (2.4)

In this respect, they can be interpreted as weights that define the relative importance
of each migratory contribution in (2.3), i.e. in affecting cell probing activity.

Proposed method

Some comments on the proposed version of the algorithm:

• it consistently decouples cell speed (vi) and direction of movement (wi). The former
quantity in fact is essentially determined by intracellular pathways involving molecules
such as Roc, Rho,... that affect membrane ruffles and fluctuations. The latter is instead
established by the polarization of the cell cytoskeleton , which is influenced by internal
and external signals, able to activate action-filament rearrangements.

• The first term at the right hand side of (2.3) may be defined of mesenchymal nature,
as it implements a single-cell mode of migration, i.e. independent from the presence
of other individuals. Coherently, the second contribution has an epithelial nature, as
it depends on intercellular communication.
In this respect, the assumption that g is in common for all agents has the underlying
implication that each cell is able to exchange information with any other group mate,
regardless its distance.
From a biological perspective, we are indeed assuming the possibility of a long-range
cell-cell trasmission of signals, that may rely upon release and absorption of selected
chemical factors (and not only upon the activity of cadherins that are instead involved
in short-range cell-cell contact interactions).

12

Chapter 3

Numerical settings

In the forthcoming sections, we will analyze the ability of the proposed method to solve
minimization problems upon variations in selected model components and parameters.
In particular, numerical tests will involve the following two objective functions, both eval-
uated in the closed domain X = [−30,30]:

F1(x) = x2, (3.1)

F2(x) = (2 − cos(x))(x − 3)2. (3.2)

As reproduced in Figure 3.1, the former function is a parabola with the global minimum in
the vertex, i.e., in x = 0. The latter is instead a function characterized by a global minimum
in x = 3 and several local minima.

Figure 3.1. Graphical representation of the objective functions defined in (3.1) and (3.2),
both evaluated in the domain X = [−30,30].

Numerical settings

In particular, for any numerical setting, the output of the algorithm will be classified accord-
ing to the mean value of the following quantities, calculated over 7 independent realizations:

dmin = |g(tf) − argmin
x∈X

F (x)|, (3.3)

dmax = max
i=1,...,N

|pi(tf) − argmin
x∈X

F (x)|. (3.4)

In this respect, we will distinguish four different scenarios:

• S1, when dmin is larger than 0, regardless the value of dmax. It is the worst situation
since it implies that no agent is able to find the target point.

• S2, when dmin = 0 but dmax > 0: in this case, only a subset of particles is able to find
the point of interest.

• S3, when dmin = dmax /= 0, i.e., all particles get stuck in one or more local minima.

• S4, when dmin = dmax = 0 finally implies that all particles converge to the desired
point. From an algorithmic point of view, it is the best situation, as the minimization
problem is solved by the entire population of individuals.

3.1 Parameters
For any forthcoming simulation setting, the cell population size N will be constantly set
equal to 50.
For any cell i = 1, ..., N , we will set vi(0) = 0 and randomly established the initial position,
i.e., to avoid biases deriving from the specific initial configuration.
As a boundary condition we employ the Absorbing Walls (Robinson and Rahmat-Samii
[2004]): when a cell hits the border of the domain, its velocity is set to zero.
Finally, for the sake of simplicity, the individual speed vi will be set equal to 1 and the final
observation time tf will be constantly fixed to 5000 iterations.

14

3.2 – Varying model coefficients

3.2 Varying model coefficients
In this section, we will analyze how variations in the coefficients α, β and γ will affect the
simulation outcomes, in terms of ability of the method to eventually solve the problem.

For this purpose, we will illustrate our results using two graphs relative to the two objective
functions, and four different colors, one for each scenario described before.
In particular, the green points stand for S1, the light-blue points represent S2, the red ones
are used for S3, and finally the orange ones stand for S4.

Function F1

Figure 3.2. Behavior of the proposed method in case of the objective function F1 upon
variations in the parameters α, β and γ.

First of all, we can obviously observe that the third scenario S3 does not exist for the
parabola because there is only the global minimum, which is the vertex.
When γ assumes high values (i.e., ∈ [0.5, 1]), regardless the value of α and β, no particle
reaches the minimum (Scenario S1).
Conversely, if γ assumes low values (i.e., ∈ [0, 0.4]), three different situations may emerge,
depending on the value of α.
For α ∈ [0.9, 1], and therefore low values of β, no particle is capable of reaching the minimum,
thus leading to scenario S1. Instead, when α assumes intermediate values (i.e, ∈ [0.3, 0.8]),
we have that a subset of particles successfully reaches the minimum (Scenario S2).
Lastly, if α ∈ [0, 0.2], and therefore β assumes sufficiently high values, all particles find the
global minimum (scenario S4).

15

Numerical settings

For the sake of completeness, in Fig. 3.3, 3.4 and 3.5, we show a representative time-lapse
sequence of particle dynamics for each of the above discussed scenarios.

Scenario S1

Figure 3.3. Representation of particle dynamics on function F1, at iteration 1, 30 and 60,
with chosen coefficients α = 0.1, β = 0.3 and γ = 0.6.

Scenario S2

Figure 3.4. Representation of particle dynamics on function F1, at iteration 1, 500 and
5000, with chosen coefficients α = 0.5, β = 0.2 and γ = 0.3.

Scenario S4

Figure 3.5. Representation of particle dynamics on function F1, at iteration 1, 10 and 30,
with chosen coefficients α = 0.1, β = 0.8 and γ = 0.1.

16

3.2 – Varying model coefficients

Function F2

Figure 3.6. Behavior of the proposed method in case of the objective function F2 upon
variations in the parameters α, β and γ.

As in function F1, when γ ≥ 0.5, no particle is able to find the minimum (scenario S1).
When we decrease the value of γ, specifically when γ ∈ [0, 0.4], we have three different
scenarios depending on α, as before.
When α ∈ [0.6, 1], and consequently β assumes low values, we are in the worst scenario, S1.
Conversely, if α falls in an intermediate range (i.e., ∈ [0.3, 0.5]), we are in scenario S2.
Finally, when α ∈ [0, 0.2], and therefore β assumes high values, the entire population of
particles reaches the global minimum (scenario S4).
It is interest to notice that we do not observe scenario S3 for any tested parameter setting.

17

Numerical settings

As for function F1, in Fig. 3.7, 3.8 and 3.9, we show a representative time-lapse sequence
of particle dynamics for each of the above discussed scenarios.

Scenario S1

Figure 3.7. Representation of particle dynamics on function F2, at iteration 1, 30 and 60,
with chosen coefficients α = 0.1, β = 0.3 and γ = 0.6.

Scenario S2

Figure 3.8. Representation of particle dynamics on function F2, at iteration 1, 500 and
5000, with chosen coefficients α = 0.5, β = 0.3 and γ = 0.2.

Scenario S4

Figure 3.9. Representation of particle dynamics on function F2, at iteration 1, 10 and 30,
with chosen coefficients α = 0.1, β = 0.8 and γ = 0.1.

18

3.2 – Varying model coefficients

Comparison
By comparing the above results, we can make the following comments:

• A substantially high relevance of randomness (i.e., γ ≥ 0.5) disrupt the possibility of
the agent population to reach the desired point, i.e. regardless the value of α and β.

• For sufficiently low values of γ, the algorithm behaviour relies on the ratio between α
and β. In this respect, the ability of the agent population to converge to the solution
of the problem emerges only for high values of β, i.e. for high relevance of the social
component in individual exploratory behaviour. Furthermore, slight differences emerge
between the two tested objective functions: in the case of F1, the range of values of β
leading to scenario S4 is larger than that observed in the case of F2. This is due to the
smoothness of function F1 compared to F2, as F1 lacks local minima: this fact makes
it easier for particles to reach the global minimum relying solely on their individual
knowledge.
It is clear that the two functions yield qualitatively equivalent results, but it’s evident
that as the complexity of the functions increases, a higher value of β is required to
achieve convergence.
In conclusion, β is indeed the key coefficient to reach the solution.

In this respect, we analyze the number of iterations needed to achieve convergence in selected
numerical realizations.

Figure 3.10. Fixing γ = 0.1, we show the number of iterations needed to reach
convergence, varying the value of β.

As shown in Figure 3.10, it becomes evident that as β increases, the number of iterations
required to achieve convergence decreases for both functions F1 and F2, i.e., the more
efficient is the information transmission across the population of agents, the quicker is the

19

Numerical settings

algorithmic convergence to the solution.
From the same graph, we can observe a saturation effect, as the iterations required to
converge to the solution decrease up to a certain point and then stabilize.
It is finally useful to observe that for a given parameter setting, the amount of iterations
needed for convergence is higher for F2 compared to F1, and this is determined by the
different complexity of the two functions.

20

Chapter 4

Variations to the proposed
method

The model proposed in Chapter 2 implies that all agents interact with the entire popula-
tion, regardless their position. However, it is important to note that a cell can only interact
directly with its immediate neighborhood.

To model this aspect, we have first to define a "global" best position that is different for
each individual, i.e.,

g(t) → gi(t), ∀i = 1, ..., N, t ∈ T.

We then introduce the Euclidean distance function:

| · | : X × X → R+ ∪ {0}, (4.1)

where X ⊆ R is the usual one-dimensional domain.

We can define the neighbourhood of the generic particle i as:

Ni(t) = {j = 1, ..., N, j /= i : |xi(t) − xj(t)| < n, n ∈ R+}, (4.2)

being n the interaction radius.
In this respect, for any agent i, its global best position is:

gi(t) = argmin
j∈Ni(t) ∪ i

{F (xj(t))}, (4.3)

which is the global best position within the neighbors.

We recall the actual velocity for the probing particles:

vi(t + 1) = viŵi(t + 1), (4.4)

where vi ∈ R+ is an individual speed/motility.
Regarding wi(t + 1), we substitute the global best position g(t) with gi(t):

wi(t + 1) = α(\pi(t) − xi(t)) + β(\gi(t) − xi(t)) + γr̂i(t). (4.5)

Variations to the proposed method

In the above equation (4.5), the agent position xi(t), the individual best position pi(t) and
the random component ri(t) are updated exactly as in Chapter 2.

4.1 Numerical setting
For any forthcoming simulation setting, we will employ the test objective functions 3.1 and
3.2, evaluated in the usual closed domain X = [−30,30], and analyze the algorithm be-
haviour upon variations in the extension of the interaction neighbourhood.
In this respect, the numerical outputs will be classified according to the above-introduced
scenarios, i.e. based on the mean, calculated over 7 independent realizations, of dmin(3.3)
and dmax (3.4).

The cell population size N will be constantly set equal to 50, and for any cell i = 1, ..., N , we
will set vi(0) = 0 and the initial position is established according to the uniform distribution.
For the sake of simplicity, the individual speed vi will be set equal to 1 and the final
observation time tf will be constantly fixed to 5000 iterations.

In all simulations, we fix the following triplet of parameters, that have been observed to
lead to the best possible scenario for both the tested functions, (3.1) and (3.2):

α = 0.1,

β = 0.8,

γ = 0.1.

4.2 Results
Varying the distance parameter n = 1, ...,30, for every agent i = 1, ..., N , we analyze the
relative scenario obtained.
We have the following two tables, one for each objective function.

n 1 3 5 10 20 30
Scenario S1 S2 S2 S4 S4 S4

Table 4.1. Function F1.

n 1 3 5 10 20 30
Scenario S1 S2 S2 S2 S2 S4

Table 4.2. Function F2.

Looking at the tables, we can make some considerations:

• For low values of n (i.e., n < 3), no particle is able to reach the optimal solution of
the problem, in the case of both tested function F1 and F2.

22

4.2 – Results

• For intermediate values of n, a subset of particles is able to reach the minimum point
of the objective functions.

• For high values of n, the entire system of particles converge to the solution of the
problem for both F1 and F2. In particular, the value of n leading to convergence to
the optimal solution is n = 10 in the case of F1, and n = 30 in the case of F2.

We can indeed comment that the more the tested function is complex, the more important
is the information transmission across the population of agents. These numerical outcomes
are consistent with those obtained in the previous sections, by varying the value of β

23

24

Chapter 5

Conclusions

In this thesis, we have modified the original Particle Swarm Optimization algorithm to ob-
tain a more suitable version in a biological perspective.
The two new methods introduced aim to overcome some issues relative to the update of the
velocity in the case of cells, which moves in a viscous environment, have a speed that is dif-
ferentiated from the direction of movement, have a random movement that is self-generating
and have a limited possibility to exchange information within all the group.
We have obtained quite satisfying and coherent results, in both methods we have imple-
mented.

For both methods, all the numerical simulations were run using two objective functions in
a one-dimensional setting, but it will be very interesting to increase the dimension of the
domain and studied the problem in two or three dimensions.
In this respect, when particles convergence to the solution in a one-dimensional domain,
they overlap in the minimum point, and this is not realistic. This issues could be overcome
using a domain with higher dimension.

In the first proposed method, the implementation of the velocity worked quite well, and
the results obtained underline how important is the social component to reach the solution,
and this is coherent with the biological phenomena we have in nature.
In the second proposed method, we have introduced the concept of neighbourhood to take
into account the communication possibility of the cells, which have not an infinite radius
of interactions. These changes has produced coherent solution, but there is a problem
from a biological point of view: in nature, cells communicate with each other using the
surrounding space. When we have defined the neighborhood, we used the Euclidean norm
and we did not introduce a unit of measure: this is important from a biological point of view.

Looking at the choice for the model coefficients, the balance between α, β and γ was funda-
mental to reach the solution and, although the random component (and the relative model
coefficient γ) seems to be a problem if assumes very high values, the choose of γ is extremely
important when we work with complex functions that present one or more local minima.
Looking at the choice of the random variable, in our model we choose a uniform distribu-
tion, where the random variables assume the values -1 and 1 with probability 1

2 .
In a perspective of future work, this distribution could be modified, for example taking into
consideration the Levy’s distribution.

26

Appendix A

Particle Swarm Algorithm

1 close all
2 clear all
3 clc
4

5 CostFunction = @(x) ((2 - cos(x)).*(x -3) .^2);
6 %(x.^2);
7 OptimumPos = 3;
8 nVar = 1; % Number of Decision Variables
9

10 VarSize = [1 nVar]; % Size of Decision Variables Matrix
11

12 VarMin = -30; % Lower Bound of Variables
13 VarMax = 30; % Upper Bound of Variables
14 %
15 x= linspace (-30 ,30 ,1000);
16 %y=x.^2;
17 y=(2 - cos(x)).*(x -3) .^2;
18

19 MaxIt = 5000; % Maximum Number of Iterations
20

21 nPop = 50; % Population Size (Swarm Size)
22

23 % PSO Parameters
24 %% Run 7 different simulations with fixed acceleration coefficients (j

=1:7)
25 n=7;
26 output_min =zeros(n ,1);
27 output_max =zeros(n ,1);
28

29

30 alpha = 0.1; % Cognitive Coefficient
31 beta = 0.8; % Social Coefficient
32 gamma =0.1; % Randomization Coefficient
33 % Velocity Limits
34 VelMax = 0.1*(VarMax - VarMin);
35 VelMin = -VelMax ;
36

37 %% Initialization
38

39 empty_particle . Position = [];
40 empty_particle .Cost = [];
41 empty_particle . Velocity = [];

Particle Swarm Algorithm

42 empty_particle .Best. Position = [];
43 empty_particle .Best.Cost = [];
44

45 particle = repmat (empty_particle , nPop , 1);
46

47 GlobalBest .Cost = inf;
48

49 for i = 1: nPop
50

51 % Initialize Position
52 particle (i). Position = unifrnd (VarMin , VarMax , VarSize);
53

54 % Initialize Velocity
55 particle (i). Velocity = zeros(VarSize);
56

57 % Evaluation
58 particle (i).Cost = CostFunction (particle (i). Position);
59

60 % Update Personal Best
61 particle (i).Best. Position = particle (i). Position ;
62 particle (i).Best.Cost = particle (i).Cost;
63

64 % Update Global Best
65 if particle (i).Best.Cost < GlobalBest .Cost
66

67 GlobalBest = particle (i).Best;
68

69 end
70

71 end
72

73 BestCost = zeros(MaxIt , 1);
74 maxdist = zeros(nPop ,n);
75 v_loc=zeros ([nPop , VarSize]);
76 v_glob =zeros ([nPop , VarSize]);
77 random =rand ([nPop , VarSize]) *2 -1;
78 for j=1:n
79 for it = 1: MaxIt
80 for i = 1: nPop
81

82 % Update Velocity
83 if particle (i).Best. Position == particle (i). Position
84 v_loc(i ,:) =0;
85 else
86 v_loc(i ,:) =(particle (i).Best.Position - particle (i). Position)./

norm(particle (i).Best.Position - particle (i).Position ,2);
87 end
88 if GlobalBest . Position == particle (i). Position
89 v_glob (i ,:) =0;
90 else
91 v_glob (i ,:) =(GlobalBest .Position - particle (i). Position)./ norm(

GlobalBest .Position - particle (i).Position ,2);
92 end
93

94 particle (i). Velocity = (alpha .* v_loc(i ,:)+ beta .* v_glob (i ,:)+gamma
.*(random (i ,:) ./ norm(random (i ,:) ,2)))...

95 ./ norm(alpha .* v_loc(i ,:)+ beta .* v_glob (i ,:)+gamma .*(random (i
,:) ./ norm(random (i ,:) ,2)) ,2);

96 % Apply Velocity Limits
97 particle (i). Velocity = max(particle (i).Velocity , VelMin);
98 particle (i). Velocity = min(particle (i).Velocity , VelMax);

28

Particle Swarm Algorithm

99

100 % Update Position
101 particle (i). Position = particle (i). Position + particle (i).

Velocity ;
102

103 % Velocity Mirror Effect
104 IsOutside = (particle (i).Position < VarMin | particle (i).Position >

VarMax);
105 particle (i). Velocity (IsOutside) = -particle (i). Velocity (IsOutside

);
106

107 % Apply Position Limits
108 particle (i). Position = max(particle (i).Position , VarMin);
109 particle (i). Position = min(particle (i).Position , VarMax);
110

111 % Evaluation
112 particle (i).Cost = CostFunction (particle (i). Position);
113

114 % Update Personal Best
115 if particle (i).Cost < particle (i).Best.Cost
116

117 particle (i).Best. Position = particle (i). Position ;
118 particle (i).Best.Cost = particle (i).Cost;
119

120 % Update Global Best
121 if particle (i).Best.Cost < GlobalBest .Cost
122

123 GlobalBest = particle (i).Best;
124

125 end
126

127 end
128 xn(i)= particle (i). Position (1);
129 yn(i)=(2 - cos(xn(i))).*(xn(i) -3) .^2;
130 %yn(i)=(xn(i)).^2;
131

132 figure (2);
133 plot(x,y)
134 hold on;
135 plot(xn ,yn ,’.’,’ markersize ’,10,’ markerfacecolor ’,’g’);
136 drawnow ;
137 hold off
138 if it== MaxIt
139 maxdist (i,j)=norm(particle (i).Best.Position -OptimumPos ,1);
140 end
141 end
142

143 BestCost (it) = GlobalBest .Cost;
144

145 disp ([’ Iteration ’ num2str (it) ’: Best Cost = ’ num2str (BestCost (it))
]);

146

147 end
148 output_min (j)=norm(GlobalBest .Position -OptimumPos ,2);
149 output_max (j)=max(maxdist (:,j));
150 end
151 d_min=mean(output_min);
152 d_max=mean(output_max);
153 BestSol = GlobalBest ;
154

155 %% Results

29

Particle Swarm Algorithm

156

157 figure ;
158 %plot(BestCost , ’LineWidth ’, 2);
159 semilogy (BestCost , ’LineWidth ’, 2);
160 xlabel (’Iteration ’);
161 ylabel (’Best Cost ’);
162 grid on;

30

Appendix B

Particle Swarm Algorithm with
Neighbourhood

1 close all
2 clear all
3 clc
4

5 CostFunction = @(x) ((2 - cos(x)).*(x -3) .^2);
6

7 %(x.^2);
8

9

10 OptimumPos = 3;
11 nVar = 1; % Number of Decision Variables
12

13 VarSize = [1 nVar]; % Size of Decision Variables Matrix
14

15 VarMin = -30; % Lower Bound of Variables
16 VarMax = 30; % Upper Bound of Variables
17 %
18 x= linspace (-30 ,30 ,1000);
19 %y=x.^2;
20 y=(2 - cos(x)).*(x -3) .^2;
21

22 MaxIt = 5000; % Maximum Number of Iterations
23

24 nPop =50; % Population Size (Swarm Size)
25

26 % PSO Parameters
27 %% Run 7 different simulations with fixed acceleration coefficients (j

=1:7)
28 n=1;
29 output_min =zeros(n ,1);
30 output_max =zeros(n ,1);
31

32

33 alpha = 0.1; % Cognitive Coefficient
34 beta = 0.8; % Social Coefficient
35 gamma =0.1; % Randomization Coefficient
36 % Velocity Limits
37 VelMax = 0.1*(VarMax - VarMin);
38 VelMin = -VelMax ;

Particle Swarm Algorithm with Neighbourhood

39

40 %% Initialization
41

42 empty_particle . Position = [];
43 empty_particle .Cost = [];
44 empty_particle . Velocity = [];
45 empty_particle .Best. Position = [];
46 empty_particle .Best.Cost = [];
47

48 particle = repmat (empty_particle , nPop , 1);
49

50

51 for i = 1: nPop
52

53 GlobalBest .Cost(i) = inf;
54

55 % Initialize Position
56 particle (i). Position = unifrnd (VarMin , VarMax , VarSize);
57

58 % Initialize Velocity
59 particle (i). Velocity = zeros(VarSize);
60

61 % Evaluation
62 particle (i).Cost = CostFunction (particle (i). Position);
63

64 % Update Personal Best
65 particle (i).Best. Position = particle (i). Position ;
66 particle (i).Best.Cost = particle (i).Cost;
67

68 % Initialize best neighbourhood
69 GlobalBest .neigh =[];
70

71 % Update Global Best
72 if particle (i).Best.Cost < GlobalBest .Cost(i)
73

74 GlobalBest .Cost(i) = particle (i).Best.Cost;
75 GlobalBest . Position = particle (i).Best. Position ;
76 end
77 end
78

79 BestCost = zeros(MaxIt , 1);
80 maxdist = zeros(nPop ,n);
81 v_loc=zeros ([nPop , VarSize]);
82 v_glob =zeros ([nPop , VarSize]);
83 random =rand ([nPop , VarSize]) *2 -1;
84 neighbourhood =zeros(nPop ,nPop);
85 for j=1:n
86 for it = 1: MaxIt
87 for i = 1: nPop
88

89 % Initialize neighbourhood
90 for t=1: nPop
91 if abs(particle (i).Position - particle (t). Position) <31
92 neighbourhood (i,t)= particle (t). Position ;
93 else
94 neighbourhood (i,t)=inf;
95 end
96 end
97

98 % Initialize an array to store absolute differences
99 if neighbourhood (i ,:) ~= inf

32

Particle Swarm Algorithm with Neighbourhood

100 differences = abs(neighbourhood (i, :) - OptimumPos);
101

102 % Find the index of the minimum difference
103 [minDifference , minIndex] = min(differences);
104

105 % Get the value of the nearest neighbor
106 nearestNeighborValue (i) = neighbourhood (i, minIndex);
107

108 % Store the nearest neighbor value in GlobalBest .neigh(i)
109 GlobalBest .neigh(i) = nearestNeighborValue (i);
110 else
111 GlobalBest .neigh(i)= particle (i). Position ;
112 end
113

114 % Update Velocity
115 if particle (i).Best. Position == particle (i). Position
116 v_loc(i ,:) =0;
117 else
118 v_loc(i ,:) =(particle (i).Best.Position - particle (i). Position)./

norm(particle (i).Best.Position - particle (i).Position ,2);
119 end
120 if GlobalBest . Position == particle (i). Position
121 v_glob (i ,:) =0;
122 else
123 v_glob (i ,:) =(GlobalBest .neigh(i)-particle (i). Position)./ norm(

GlobalBest .neigh(i)-particle (i).Position ,2);
124 end
125

126 particle (i). Velocity = (alpha .* v_loc(i ,:)+ beta .* v_glob (i ,:)+gamma
.*(random (i ,:) ./ norm(random (i ,:) ,2)))...

127 ./ norm(alpha .* v_loc(i ,:)+ beta .* v_glob (i ,:)+gamma .*(random (i
,:) ./ norm(random (i ,:) ,2)) ,2);

128 % Apply Velocity Limits
129 particle (i). Velocity = max(particle (i).Velocity , VelMin);
130 particle (i). Velocity = min(particle (i).Velocity , VelMax);
131

132 % Update Position
133 particle (i). Position = particle (i). Position + particle (i).

Velocity ;
134

135 % Velocity Mirror Effect
136 IsOutside = (particle (i).Position < VarMin | particle (i).Position >

VarMax);
137 particle (i). Velocity (IsOutside) = -particle (i). Velocity (IsOutside

);
138

139 % Apply Position Limits
140 particle (i). Position = max(particle (i).Position , VarMin);
141 particle (i). Position = min(particle (i).Position , VarMax);
142

143 % Evaluation
144 particle (i).Cost = CostFunction (particle (i). Position);
145

146 % Update Personal Best
147 if particle (i).Cost < particle (i).Best.Cost
148

149 particle (i).Best. Position = particle (i). Position ;
150 particle (i).Best.Cost = particle (i).Cost;
151

152 % Update Global Best
153 if particle (i).Best.Cost < GlobalBest .Cost

33

Particle Swarm Algorithm with Neighbourhood

154

155 GlobalBest = particle (i).Best;
156

157 end
158 end
159

160 % To draw the agents :
161 % xn(i)= particle (i). Position (1);
162 % yn(i)=(2 - cos(xn(i))).*(xn(i) -3) .^2;
163 % yn(i)=(xn(i)).^2;
164 %
165 % figure (2);
166 % plot(x,y)
167 % hold on;
168 % plot(xn ,yn ,’.’,’ markersize ’,10,’ markerfacecolor ’,’g’);
169 % drawnow ;
170 % hold off
171 if it== MaxIt
172 maxdist (i,j)=norm(particle (i).Best.Position -OptimumPos ,1);
173 end
174 end
175 BestCost (it) = min(GlobalBest .Cost);
176 disp ([’ Iteration ’ num2str (it) ’: Best Cost = ’ num2str (BestCost (it))

]);
177 end
178

179 output_min (j)=norm(GlobalBest .Position -OptimumPos ,2);
180 output_max (j)=max(maxdist (:,j));
181 end
182

183 d_min=mean(output_min);
184 d_max=mean(output_max);
185 BestSol = GlobalBest ;
186

187 %% Results
188

189 figure ;
190 %plot(BestCost , ’LineWidth ’, 2);
191 semilogy (BestCost , ’LineWidth ’, 2);
192 xlabel (’Iteration ’);
193 ylabel (’Best Cost ’);
194 grid on;

34

Bibliography

Mingfu He, Mingzhe Liu, Ruili Wang, Xin Jiang, Bingqi Liu, and Helen Zhou. Particle
swarm optimization with damping factor and cooperative mechanism. Applied Soft Com-
puting, 76:45–52, 2019. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2018.11.050.
URL https://www.sciencedirect.com/science/article/pii/S1568494618306823.

Mostapha Kalami Heris. Particle swarm optimization in matlab. In Yarpiz, 2015.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 -
International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4, 1995.
doi: 10.1109/ICNN.1995.488968.

Jacob Robinson and Yahya Rahmat-Samii. Particle swarm optimization in electromagnetics.
IEEE transactions on antennas and propagation, 52(2):397–407, 2004. doi: 10.1109/TAP.
2004.823969.

Wang W. Research on particle swarm optimization algorithm and its application. Southwest
Jiaotong University, Doctor Degree Dissertation., pages 36–37, 2012.

https://www.sciencedirect.com/science/article/pii/S1568494618306823

	Introduction
	The Particle Swarm Optimization Model
	Definition of the problem
	Original PSO
	Observations and critical points

	Proposed method
	Numerical settings
	Parameters
	Varying model coefficients

	Variations to the proposed method
	Numerical setting
	Results

	Conclusions
	Particle Swarm Algorithm
	Particle Swarm Algorithm with Neighbourhood

