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Abstract 
The thesis delves deeply into innovative methodologies aimed at enriching our 

comprehension of urban building energy dynamics. By merging the principles of 

Urban Building Energy Modeling (UBEM) with the strength of Machine Learning 

(ML) techniques, the study achieves substantial advancements in evaluating 

potential energy savings and harnessing renewable resources within Satom. 

The research journey involves developing a sturdy building model, employing 

Geographic Information System (GIS) software to enhance modeling precision and 

data aggregation. Furthermore, by incorporating state-of-the-art ML algorithms like 

LightGBM and Random Forest through a bottom-up strategy, the study offers 

accurate forecasts of energy patterns and effective renewable energy utilization.  

Additionally, this study pioneers a forward-looking trajectory spanning three 

decades, meticulously assessing the energy-saving potential of buildings. This 

initiative intricately weaves together physical attributes, energy efficiency, and 

socio-economic context. By designing tailored renovation scenarios and 

implementing meticulous selection processes, the study identifies buildings 

suitable for integration into the District Heating Network (DHN). This iterative 

approach systematically optimizes the network's capacity, encapsulating a 

pioneering strategy that harmonizes innovation, environmental concerns, and 

infrastructural enhancement.  

In sum, the current research underscores the pivotal role of Data-driven techniques 

in refining Energy Demand (ED) and offers insights to enhance Energy Efficiency 

(EE) and nurture a greener and more sustainable urban future. 

 

Keywords: Energy efficiency model, Urban building energy modeling, Data-driven 

models, Machine learning, Place-based approach, Geographic Information System 

(GIS) 
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1. INTRODUCTION 
The relationship between sustainability and environmental concerns is closely 

intertwined with energy consumption and carbon dioxide (CO2) emissions, factors 

contributing to both global warming and air pollution (Ang, Choong & Ng, 2015). 

The impact of built environments on global climate change has a profound 

influence on the quality of urban living and overall livability. Urban activities serve 

as the primary sources of greenhouse gas (GHG) emissions. Notably, 

transportation and buildings emerge as pivotal contributors, collectively accounting 

for 75% of global CO2 emissions (United Nations Environment Program, 2016). 

An unprecedented drop of 5.4% in global CO2 emissions in 2020 was experienced 

due to the COVID-19 pandemic. Though no reliable data was reported for GHG 

emissions in 2020, the speculations illustrated that reduction in CO2 was more 

significant rather than GHG emissions. However, the reoccurrence of an increasing 

trend in emissions was anticipated for 2021 on (UNDP, 2021). 

To be able to tackle energy crisis the basic formula is to enhance energy efficiency 

(EE) and to use renewable energy sources (RES) (Delmastro, Mutani, & Corgnati, 

2016). Enhancing EE is crucial to reducing GHG emissions (UNDP, 2016). An 

optimal EE policy is built upon two main pillars: the reduction of energy use and 

the efficient exploitation of the available sources (Bordin, Gordini & Vigo, 2015). 

Moreover, Resource depletion and climate change caused by raising CO2 levels 

have raised interest in RES (van der Zwan & Pothof, 2020).  

From the above-mentioned viewpoint, District Heating Network (DHN) gains higher 

importance in contemporary cities to achieve sustainability and EE (Bordin, Gordini 

& Vigo, 2015). In many territories with cold and moderate temperatures, the need 

for space heating (H) and domestic hot water (DHW) in buildings still receives 

considerable attention as a sizable portion of the overall energy demand (Sperling 

& Möller, 2011). Around one-third of all main energy resources are consumed by 

buildings, making them a key area for the implementation of EE measures (Shaikh, 

Nor, Nallagownden, Elamvazuthi & Ibrahim, 2014).  
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Returning to the previously mentioned information, the objective of current thesis 

is to implement a methodology for optimizing the connection of additional buildings 

to the existing DH network. To achieve it, it was essential to build energy use model 

to be able to speculate the potential heating demand (HD) of potentially 

connectable buildings to the existing DH network, and investigate the feasible 

conditions that allows to supply maximum amount of thermal energy to users. The 

significant achievement of DH network optimization is being influential in the 

reduction of the CO2 emissions, the fact that is also investigated in the final step of 

the thesis. 

What the thesis seeks to answer is that what are the most effective methods and 

promising optimization algorithms for conducting an analysis of DH network 

optimization. Additionally, it aims to identify the specific conditions under which 

each algorithm can exhibit optimal efficiency. There are a number of methodologies 

which are popular among the experts and in this thesis the attempt is to choose an 

optimal technique considering the characteristics of the case study and conduct 

the analysis. In further step, the attempt was to implement the optimization 

algorithm to analyze the scope and the outcomes of the implementation. 

Following the aim of the thesis, research flow carried out by exploring the 

numerous works published in the literature. Optimization of the DH network has 

gained a crucial consideration in the literature of RES use in the last few decades 

and still a vast group of researchers are conducting optimization analysis to 

develop its accuracy and scope of implementations. The first chapter followed by 

the penetration on more details about the theories supporting the DH system 

optimization. The methodologies and the materials used to carry out theories in 

hand are described in the later chapter. The discussion on the implementation of 

the methods and findings are reported on the Fourth chapter. At last but not least, 

the conclusion and the suggestions for the further research in the literature are 

discussed. 
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2. LITERATURE REVIEW 
2.1. Introduction 
Resource depletion and climate change force modern communities to hardly focus 

on the matter of energy consumption (EC). To tackle those issues a low-carbon 

sustainable energy system has been suggested which requires reducing 

unnecessary energy uses, shifting from fossil fuels toward RES, and increasing the 

EE to be guaranteed (Dou et al., 2021). DH network has gained a critical 

importance as one the principal strategies in the transition toward low-carbon 

sustainable urban development. In this regard, numerous researches have been 

conducted and still is been conducting in order to study the competencies of the 

DH network in urban contexts, optimization, and potential development of those 

systems. Back to this notion, the aim of this chapter is to investigate in deep about 

the establishment, evolution, operation, and researches in the literature of DH 

networks. 

 

2.2. District heating network’s history 
Historically, supplying fuels ranging respectively from wood, charcoal, coal, coke, 

oil, and natural gas, and burning that fuel was supporting house heating. From 

1900 onward, in most of the industrial nations, new technology, namely “Central 

Heating”, has introduced that was burning fuel to heat water and produce steam, 

pumped into the piping system surrounding buildings, and was supplying H by 

using radiators. This technology at first implemented in large buildings and 

continued to be provided for low-density buildings (Wiltshire, 2015). 

Although providing central heating networks put forth in the UK at a high speed 

enjoying the availability of natural gas, in countries such as Denmark, Sweden, 

Germany, and Many Eastern European countries, H supply turned over from 

"Central Heating" to “District Heating” (DH). According to historians, the earliest 

DH network including the hot water distribution construction relying on geothermal 

energy had been established in Chaudes-Aigues in France. The United States also 

largely contributed to the evolution of the DH networks in the 1870s with a 
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breakthrough in the development of the steam distribution system for the first time 

in the world. The latter technology traveled over the borders and gained a great 

interest in Europe. Though in Europe later on the modern heat distribution 

technology is modified based on an alternative to using hot water for supplying H 

and DHW (Wiltshire, 2015). 

Starting from the 19th century on, three generations of the DH networks are 

possible to recognize. Illustrated in Figure 2.1 the initial DH generation relied upon 

high-temperature steam (200 °C) for heat distribution. The first generation as 

mentioned above originated in the US and was the dominant technology in use 

before 1930 in almost every location where the DH network had developed. The 

steam-based DH network was designed by using concrete supply and return 

pipelines in which steam was traveling, steam traps, and compensators. Corrosion 

as a result of condensation is very common in return pipes that make high losses 

and reduce EE. As a consequence of significant heat losses by steam along with 

exposure to the potential risk of steam explosion that may cause severe damage, 

such systems have now become obsolete (Lund, Werner, et al., 2014; Lund, 

Østergaard et al., 2018).  

High-pressure fluid, namely water, heated over 100 °C and flowing inside the 

pipelines underpinned the second generation of the DH network. The shift toward 

the water as a carrier in the heating network was witnessed between the 1930s-

1970s and in that specific period of time, numerous cities adopted the new 

technology in their heating network. Concrete water pipes, bulky tube heat 

exchangers, and control valves were the main components of the second DH 

generation. Energy efficiency in the aforementioned heating network is rather poor 

due to the fact that in such systems it is possible to only have control over 

temperature adjustment at the supply plant, hence heat consumption and 

performance of the system are unobservable and uncontrollable (Lund, Werner, et 

al., 2014; Lund, Østergaard et al., 2018). 
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Figure 2.1. Four generations of DH systems1 

 

The third generation is the dominant DH technology all around the world and was 

introduced in the 1970s. In the latter technology, the water is still the heat carrier 

inside the supply network, though contrasting with the former generation water 

temperature was set below 100 °C. Since the suppliers of equipment in the latter 

generation are from Scandinavian countries, sometimes the third generation is 

called “The Scandinavian Heating System Technology”. The constituents are pre-

fabricated and pre-insulated pipes, trenchless laying technology, compact thermal 

                                            
1 (A) Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th 
Generation District Heating (4Gdomestic): Integrating smart thermal grids into future sustainable energy systems. Energy, 
68, 1-11. 
(B) Lund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., ... & Möller, B. (2018). The status of 
4th generation district heating: Research and results. Energy, 164, 147-159. 
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points using place heat exchangers made of stainless steel, and low volume 

materials (Lund, Werner, et al., 2014; Lund, Østergaard et al., 2018). 

The next generation of the DH networks, will seek to reduce the temperature of the 

return and supply fluid respectively. The temperature reduction inside the DH 

network is a key action to lower the cost in the further energy system. In order to 

actualize this, a variety of interventions at the building level are required. These 

interventions encompass diverse H systems, suppliers of DHW (Domestic Hot 

Water), building retrofits, and potential additions like substations or supplementary 

heat pumps if deemed necessary. In line with aforementioned interventions, power 

plants and DHN itself should be improved to ensure that the supply at low 

temperature would still perform efficiently materials (Lund, Werner, et al., 2014; 

Lund, Østergaard et al., 2018). 

 

2.3. Technical design of DHN 

The three primary components of a classic DH network are heat generation, 

distribution, and consumption. According to the Figure 2.2.A the main components 

of the DH network consist of the central heat source and heat exchanger for 

generation, a pipeline network for heat distribution and a heat exchanger as 

essential part of consumer substation and a heat sink for H and DHW. In the further 

evolutions of the DH network, in order to fulfilling the energy demand for H and 

DHW along with handling environmental and climate challenge, advanced 

components have been added. As shown in Figure 2.2.B, in the energy generation 

phase, besides adding thermal heat storage, central heat source has been 

improved to make it possible to use RES including heat pumps. In the distribution 

phase, thermal heat storage and local heat sources using RES was added, the 

consumer section enhanced with the installment of individual heat sources besides 

thermal heat storage (Sayegh et al., 2018). 
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Figure 2.2. main components of a DH network: (A) standard, (B) advanced. (FF: Fossil Fuels, HS: Heat 
Source, RES: Renewable Energy Sources, TES: Thermal Energy Storage)2 

 
Customer substations installed in the connected buildings deliver heat from the 

network to the building heating systems. One system to heat the radiators and one 

system to distribute DHW are the minimum number of internal distribution systems 

that need to be heated in a building (Werner, 2013). In order to transport heat from 

the DH network to the internal space heating system, space heating substations 

either include a central heat exchanger or a direct connection where the DH 

network simply provides hot water to the pipes of the internal space heating 

system. According to Figure 2.3 the substation should include: (A) a controller that 

enables weather-compensated control to decrease heating network supply 

temperatures as outdoor temperatures increase and demands for H decrease 

(Euroheat & Power, 2008); (B) temperature sensors in the outdoor air and on the 

supply pipe to realize weather-compensated control; (C) a valve that controls the 

supply of DH network to regulate the heating network supply temperatures 

according to the weather-compensated set-points; (D) To guarantee suitable 

operational parameters for the control valve, perhaps the inclusion of a differential 

                                            
2 Sayegh, M. A., Jadwiszczak, P., Axcell, B. P., Niemierka, E., Bryś, K., & Jouhara, H. (2018). Heat pump placement, 

connection and operational modes in European district heating. Energy and Buildings, 166, 122-144. 
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pressure controller could be considered; and (E), if directly connected, a non-return 

valve to mix the H return water into the supply water to achieve the desired supply 

temperature set-point. (Østergaard, Smith, Tunzi, & Svendsen, 2022). 

 

Figure 2.3. Example of basic layout for an indirect (left) and a direct (right) space heating substation. (A) 
Controller (B) Temperature sensors (C) Actuator and control valve (D) Differential pressure controller (E) 

Non-return valve3 

 

Figure 2.4 depicts a sample configuration comprising a DHW exchanger and a 

DHW storage tank. Instantaneous heat exchangers or buffer tanks are used in the 

majority of home hot water installations. In each instance, a heat exchanger 

physically divides the DH water from the fresh drinking water (Østergaard, Smith, 

Tunzi, & Svendsen, 2022). By instantly heating DHW when tapped, instantaneous 

heat exchangers lower the amount of DHW that must be kept and the chance of 

Legionella growth. On the other hand, in single-family homes or terraced homes, 

they must instantly meet the peak demand, which necessitates larger heat 

exchangers and service pipes (i.e., the pipes connecting the DH network to the 

building) (Thorsen, Christiansen, Brand, Olesen, & Larsen, 2011). 

Local DHW storage in buffer tanks necessitates careful consideration of Legionella 

development. Tank systems work best in situations requiring significant bypass 

flows to maintain high enough temperatures in the pipes (due to long service pipes 

or low H demands) or in facilities with simultaneous tapings (such as sports 

                                            
3 Østergaard, D. S., Smith, K. M., Tunzi, M., & Svendsen, S. (2022). Low-temperature operation of heating systems to 
enable 4th generation district heating: A review. Energy, 123529. 
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facilities) (Euroheat & Power, 2008). Due to a continual low charging rate, buffer 

tanks can lower the peak heat demand, but they also cause more heat to escape 

from DHW networks (Østergaard, Smith, Tunzi, & Svendsen, 2022). 

 

Figure 2.4. Example of basic layout a DHW exchanger (left) and a DHW storage tank (right). (A) Controller 
(B) Temperature sensor (C) Actuator and control valve (D) Differential pressure controller (E) Bypass valve4 

 

The citywide distribution network of pipes erected in basements of buildings or 

buried beneath streets, sidewalks, and park lawns is the most typical component 

of a DH network. Typically, heat is transferred through water in networks of heat 

distribution. For high-temperature industrial heat demands and in systems 

established prior to 1930, steam is employed entirely or in part. The pipes are made 

to allow for thermal expansion while preventing outside corrosion. The techniques 

used to build pipes that are buried in the ground have changed over time. Today, 

prefabricated steel pipes with polyethylene casing and polyurethane foam 

insulation are the most often used approach. Cheap heat losses, low distribution 

costs, and high reliability are benefits of this technology (Werner, 2013). 

The supply pipelines' water temperature ranges from 70 to 150 C, with an annual 

average of 80 to 90 C. The lower temperature is utilized in the summer to facilitate 

the preparation of DHW, while the greater temperature is employed at extremely 

low outdoor temperatures. The return water's temperature ranges from 35 to 70 C, 

with an average of 45 to 60 C per year. The linear heat density, pipe size, supply 

                                            
4 Østergaard, D. S., Smith, K. M., Tunzi, M., & Svendsen, S. (2022). Low-temperature operation of heating systems to 
enable 4th generation district heating: A review. Energy, 123529. 
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and return temperatures, and thermal resistance in the pipe insulation all affect 

how much heat is lost in the distribution system (Werner, 2013). 

Rankine cycles with steam superheating are often the foundation of combined heat 

and power (CHP) plants. In said cycle, a steady pressure and a temperature over 

the saturation point, the steam from the boiler is superheated. The heat exchanger 

from the condensing steam turbine uses cooling water to condense the steam into 

water if the process is solely producing power. The amount of moisture in the steam 

after the turbine restricts the steam's ability to expand inside the steam turbine. In 

cases where steam is required for an industrial process, an extraction turbine is 

employed. Although the CHP's output is reduced by the extraction steam, overall 

efficiency is still very good (Sipilä, 2016). 

Four separate levels of control equipment are used to control the operation of the 

DH network. The DH operator is in charge of two of these, and the other two are 

situated in the connected buildings. The first level is the regulation of the heat 

demand through mixing valves for DHW and thermostatic valves at the radiators. 

The flow control in the customer substations is the second level. Valve adjustments 

to the DH water flow regulate the heat transfer. The third stage involves controlling 

the pressure differential between the network's supply and return pipes. This is 

done by modifying the distribution pumps' speed. Since the pressure differential is 

what causes the flow to move through the customer substations, this control level 

enables all of the customer substations to receive heat. The final stage involves 

regulating the capacity in the heat generation facilities to manage the supply 

temperature (Werner, 2013). 

 

2.4. District heating regulatory policy 
There are too much to learn from widely various status of DH networks with CHP 

plants among different countries. From the list of the major institutional factors that 

differ among the countries are: 
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• National Energy Policy 

• Building regulations 

• Price regulation 

• Competition 

• Feed-in tariffs for CHP and RES 

• Emission trading scheme 

• Carbon tax 

• Investment grants 

It can be worthful and helpful for a country to learn lessons from the other countries 

(Nuorkivi, 2016). 

The EU is a big proponent of increasing the use of effective DHC and CHP systems 

to lower emissions and primary energy use as well as to market RES. The rules 

and measures to achieve the renowned 20-20-20 target aims to reduce primary 

energy consumption, emissions, and the share of renewable energy sources are 

introduced in the Directive 2012/27/EU stated on the 25th of October 2012. Under 

the Directive each Member State must establish an indicative national EE target, 

which may be based on primary or final energy consumption, primary or final 

energy savings, or energy intensity (Nuorkivi, 2016). 

Previously, with the aim of improving EE in buildings stock across the European 

Community, a directive namely 2002/91/EC on the energy performance of 

buildings had been stated. The directive was looking for: 

• the broad framework for a method of calculating a building's integrated 

energy performance; 

• the implementation of minimal criteria for new buildings' energy 

performance; 

• the implementation of minimal standards for large existing buildings 

undergoing significant renovations in terms of their energy performance; 

• energy certification of buildings; and 

• Buildings should have regular inspections of their heating and cooling 

systems, as well as assessments of any heating installations with boilers 

that are more than 15 years old. 
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The amending Directive on Energy Efficiency (2018/2002) was approved in 2018 

as a component of the "Clean energy for all Europeans package" to update the 

regulatory framework through 2030 and beyond. The energy savings duty in end 

use, introduced in the 2012 directive, is further extended by the amending directive. 

According to the amending regulation, all EU nations except for Cyprus and Malta 

will have to make new energy savings of 0.8% of final energy consumption year 

for the years 2021–2030. Cyprus and Malta will have to achieve 0.24% each year 

instead. Except for metering and billing provisions, which have a different deadline 

(25 October 2020), the directive entered into force in December 2018 and required 

to be transcribed into national legislation by Member States by 25 June 2020 

(European union, 2018). 

 

2.4.1. Denmark 

An example of a country with widespread DH supported by strict government 

regulation is Denmark. The rule gives DH precedence in densely populated 

building zones. As a result, DH enjoys a sizable market share and is a widely used 

and favored heating mode across the nation. CHP has been developed to provide 

high-efficiency service to the DH networks and the national power grid (Nuorkivi, 

2016). 

Through the establishment of a new public planning process that rationalized heat 

supply, the first Heat Supply Law of 1979 played a significant role in the expansion 

of the CHP/DH market. Denmark's reliance on coal and oil as a source of energy 

decreased with the development of CHP and DH in the 1980s and 1990s. Initially, 

some oil was gradually replaced by CHP powered by coal and natural gas as well 

as by a greater use of renewable energy sources; from the mid-1990s, coal has 

also been phased out (Nuorkivi, 2016). 

Danish Energy Agreement for 2012-2020 described the course that Denmark will 

take until 2050 and created a framework for climate and energy policy up to 2020. 

According to the Agreement, in 2020, 35% of total energy consumption shall come 

from renewable sources, with half of that amount coming from wind power. 

Additionally, compared to 2006, the energy usage should drop by more than 12% 
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by 2020. By prohibiting the installation of new oil-fired and natural gas boilers in 

new buildings beginning in 2013, and the installation of new oil-fired boilers in 

existing buildings in areas with access to DH or natural gas beginning in 2016, the 

Agreement supports the phase-out of oil-fired boilers in existing buildings (IEA, 

2020). 

 

2.4.2. Switzerland 

The Federal Assembly of the Swiss Confederation stated Energy Act (EnG) in 

September 30th, 2016 to set requirements for the transition towards RES supply, 

specifically indigenous renewable energies. According to the directive, at least 50 

percent of the global contribution allocated to a canton must be used to promote 

private measures including connection to existing or a new local and district heating 

networks. The Energy Act came into effect from 1st of the January 2018, with the 

statement of the Energy Regulation (EnV) by the Swiss Federal Council. 

 

2.4.3. Italy 

The Directive 2009/28/EC regulations on promoting the use of energy from 

renewable sources are transposed into Italian law by Decree No. 28 of March 3, 

2011. It starts making modifications to Italy's renewable energy support programs 

(including some related to RES H&C networks). In order to meet the overall 

national goal of using 17% renewable energy in gross final energy consumption in 

2020, it sets particular sectoral goals. The Decree also established unique 

administrative procedures for each type of installation in order to govern the 

development and operation of renewable energy facilities. An expert committee 

has been assembled ad-hoc to examine the energy potential of biomass and to 

assist in the creation of pertinent laws (IEA, 2019). 

Additionally, specific provisions for authorizations and modifications are included 

for the development of district heating and cooling as well as to the natural gas and 

electricity systems. A guarantee fund is funded in part by a tax (0.05€/Sm3) levied 

on natural gas use (paid by the final consumers), which aids in the construction of 



14 
 

DH networks. Additionally, Article 22, Section 3 mandates that all municipalities 

with more than 50,000 residents develop district heating and cooling networks in 

coordination with provincial authorities and in accordance with regional energy 

plans, with the aim of maximizing the use of energy generated from RES (IEA, 

2019). 

The revised Annexes, which partially replace and supplement the Annexes of the 

Decree No. 20/2007 that implements Directive 2004/8/EC on the promotion of 

cogeneration (CHP), are contained in the ministerial decree from August 4, 2011. 

This metric establishes a new formula for recognizing highly efficient cogeneration. 

The ministerial order from September 5, 2011, specifies the cogeneration incentive 

mechanisms. For generation plants and integrated DH plants, it created an 

incentive system based on the White Certificates Scheme, which is recognized for 

a term of 10 years and 15 years respectively (IEA, 2013). 

The Decree-Law No. 63 of 2013 on "Urgent measures for the transposition of 

Directive 2010/31/EU of the European Parliament and of the Council on the energy 

performance of buildings" was amended by Law of 3 August 2013, No. 90. It 

replaces Legislative Decree 192/2005, which dealt with the implementation of 

Directive 2002/91/CE on building energy performance. 

Objectives of the Decree are as followings: 

• encourage improvements in the energy performance of buildings; 

• encourage the development, enhancement and integration of renewable 

energy sources in buildings; 

• to support energy diversification; 

• promote the competitiveness of the domestic industry through technological 

development; achieve the national targets for energy and the environment; 

• extend and enhance the system of tax deductions from 55 % to 65% (10 

equal yearly amounts) for the redevelopment of Buildings (Eco- bonus), 

building renovations, the installation of RES-H technologies (e.g. 60% for 

heat pumps, solar thermal collectors, 50% for biomass-fueled heat 

generators (since 2017(-Art. 3, par. 4 L 205/17)). For energetic 

requalification works aimed at improving the winter and summer energy 
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performance of common buildings, the tax deduction will amount to 70% or 

75% (IEA, 2019). 

 

2.5. Energy prediction models 
The evolution of buildings is closely tied to energy consumption patterns (Sikder, 

Nagarajan & Koetter, 2018). For instance, a well-designed urban framework can 

exhibit energy-efficient practices and potentially encourage the adoption of cleaner 

energy sources as cities expand (Gassar & Cha, 2020). Gaining a deeper 

comprehension of the spatial and cause-and-effect connections among buildings, 

infrastructure, energy consumption patterns, and the community's way of life holds 

significant importance (Resch, Bohne, Kvamsdal, & Lohne, 2016). Hence, to 

achieve a shift towards clean energy and carbon neutrality by 2050, it is vital to 

employ comprehensive approaches and techniques that integrate detailed spatial 

and temporal data from various urban sources (Perera et al., 2023). 

Making energy projections, whether for the entire lifespan of a building or for 

gauging energy consumption performance across various levels of constructions, 

holds the potential to enhance energy utilization in particular structures by 

implementing retrofits or integrating advanced renewable energy technologies. 

This process also presents an opportunity to uncover avenues for reducing energy 

demand and formulating more effective strategies in urban settings (Ahmad, 

Mourshed, & Rezgui, 2017; Reinhart, & Davila, 2016). These prognostications aid 

in appraising diverse design alternatives, devising energy efficiency strategies, and 

refining supply-demand management, while considering factors like building 

attributes, weather conditions, socio-economic characteristics, installed 

equipment, occupancy patterns, and geographical locations, all of which influence 

energy consumption rates (Kwok, & Lee, 2011; Amasyali, & El-Gohary, 2018). 

Furthermore, energy projections shed light on the consequences of 

comprehensive energy retrofit initiatives and changes to energy supply 

infrastructures. Typically, energy prediction models establish energy requirements 

as a function of input parameters (such as socio-demographic, economic, climatic, 

appliance, and building characteristics). As a result, these predictive energy 
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models emerge as invaluable tools for energy managers, urban 

designers/architects, and policymakers to assess national/regional energy supply 

needs and shifts in energy demand for specific structures resulting from upgrades 

or the integration of new technologies (Gassar & Cha, 2020). 

 

2.5.1. UBEM, USEM, and USBEM models 

Urban building energy modeling (UBEM) stands out as an effective approach for 

simulating and assessing the EE of neighborhood-scale buildings. However, the 

capability of UBEM to support sustainable development within constructed 

environments is restricted due to its reliance on traditional physics-based inputs 

(Heidelberger & Rakha, 2022). This challenge becomes particularly crucial for 

broader studies encompassing districts or entire cities, where the availability of 

data also raises concerns (Mutani, Vocale, & Javanroodi, 2023). 

UBEM stands as a foundation for the decision-making processes mentioned 

earlier, offering a bottom-up, physics-rooted method to simulate the thermal 

behavior of multiple buildings (Reinhart & Davila, 2019). It essentially extends the 

concept of individual building energy models (BEM) to encompass a considerable 

number of buildings, ranging from hundreds to even tens of thousands. These 

BEMs entail intricate calculations involving heat transfer and mass flow, with their 

core simulation techniques tracing back to the 1970s (Mills, 2004; Swan, & 

Ugursal, 2009). Over time, BEMs have grown more cost-effective (Roth, 2016), 

becoming integral tools during the planning and design phases of energy-efficient 

buildings (Ang, Berzolla, & Reinhart, 2020). To account for the intricate interaction 

between buildings and their surroundings, the adoption of UBEM and urban-scale 

energy model (USEM) has gradually increased, enabling extensive static and 

dynamic simulations of diverse building types and urban configurations (Ang, 

Berzolla & Reinhart, 2020; Basu, Bale, Wehnert, & Topp, 2019). While the 

fundamental physics principles remain consistent between BEM and UBEM, the 

latter necessitates substantial automation procedures and computational 

capabilities throughout data input, model generation, and analysis (Ang, Berzolla, 

& Reinhart, 2020). 
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An UBEM necessitates the fusion of multiple datasets encompassing climate 

information, building characteristics, construction standards, and usage schedules 

(Reinhart & Davila, 2019). Climate datasets for simulating building performance 

have been accessible for some time, following the establishment of a viable data 

format called the typical meteorological year (TMY) (Hall, Prairie, Anderson, & 

Boes, 1978; Crawley, Hand, & Lawrie, 1999), coupled with the availability of data 

in this format for various global regions. The input data related to building geometry 

in UBEM entails details like building envelope shapes, window opening 

proportions, and terrain characteristics. Depending on whether the focus is on a 

new or existing neighborhood, this data can either be sourced from existing 

datasets or generated anew (Reinhart & Davila, 2019). Moreover, beyond the 

physical structure, non-geometric aspects such as construction assemblies and 

HVAC systems must also be defined. At the individual building level, this phase 

often accounts for roughly a third of the modeling process (Cerezo, Dogan, & 

Reinhart, 2014) and introduces significant differences between simulated and 

actual energy consumption due to uncertainties surrounding factors like infiltration 

rates, equipment loads, and occupant behavior (Ashrae, 2009). While these 

parameters can be measured for a small sample of existing buildings, gathering 

such detailed data becomes infeasible for larger urban areas. Consequently, an 

UBEM needs to simplify a building stock into "building archetypes," which are 

essentially building definitions representing groups of structures with similar 

attributes (Reinhart & Davila, 2019). 

UBEM has undergone significant advancement, resulting in a wealth of robust 

urban data streams originating from diverse sources like geographic information 

systems (GIS), light detection and ranging (LiDAR), and tax assessor databases. 

These data streams culminate in synthetic hourly profiles detailing building energy 

demand under present and potential future circumstances. Various modeling, 

simulation, and calibration strategies have emerged based on the availability of 

historical building energy consumption data (Reinhart & Davila, 2019). Alongside 

this, a range of UBEM applications have surfaced in both academic research and 

practical implementation (Ang, Berzolla, & Reinhart, 2020). 
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Urban-Scale Energy Modeling (USEM) serves as a crucial method for simulating 

energy usage on a city-wide level, encompassing not only individual building 

attributes but also the larger urban environment (Mutani & Todeschi, 2019). 

USEMs can be classified into two categories, namely top-down and bottom-up, 

based on the level of input data (Mutani & Todeschi, 2017). The reliability of an 

energy model largely depends on the accuracy and completeness of the input 

dataset, along with the ability to compare results against extensive measured 

energy consumption data for validation (Reinhart & Davila, 2016). 

The primary challenge faced by these models at an urban scale is the management 

of a vast volume of data, which can vary in accuracy and scope when describing 

the diverse attributes of buildings and populations across a region (Ryan & 

Sanquist, 2012). Additionally, due to the intricate nature of the problem, these tools 

often exhibit prolonged simulation times, which escalate as more elements are 

introduced into the scenario (Todeschi, Boghetti, Kämpf, & Mutani, 2021). 

Furthermore, these energy models often overlook several variables that impact 

consumption, particularly concerning the urban context (Wenjing, Yanuar, & Perry, 

2004). Nonetheless, current models and tools encounter difficulties in representing 

a realistic urban energy distribution capable of evaluating energy performance at 

the neighborhood scale (Abbasabadi & Ashayeri, 2019). 

USEMs make a significant contribution by evaluating the energy efficiency of 

buildings at the urban scale, encompassing the analysis of energy consumption, 

renewable energy production, and productivity (Sola, Corchero, Salom, & 

Sanmarti, 2020). These models find utility in supporting urban planning for both 

new and existing neighborhoods, conducting retrofit analyses of building stocks, 

enhancing building energy performance through smart green technologies, and 

designing and optimizing district energy networks (Johansson, Olofsson, & 

Mangold, 2017; Ben, & Steemers, 2020). Beyond energy consumption simulation, 

USEMs also possess the capability to visualize and replicate the influence of the 

surrounding urban context on buildings. Generally, USEMs intend to cover the 

urban environment by simulating how a collection of buildings perform in terms of 

energy usage over different time periods (hourly, daily, monthly, and annually) and 

spatial scales (individual building, block, neighborhood, and district), thus aiding 
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energy retrofit strategies by assessing their territorial impact (Nutkiewicz, Yang, & 

Jain, 2018). Numerous tools and methods for energy simulations (like CitySim, 

UrbanSim, and Urban Modeling Interface) can be utilized to calculate the energy 

requirements of a collection of buildings, all while taking into account the urban 

climate and physical structure (Bruse, Nouvel, Wate, Kraut, & Coors, 2019; Sola, 

Corchero, Salom, & Sanmarti, 2018, 2020). 

By expanding the scope of UBEM and USEM to encompass districts or territories, 

a novel localized energy model can be introduced, referred to as urban-scale 

building energy modeling (USBEM) (Abolhassani, Amayri, Bouguila, & Eicker, 

2022). In the realm of USBEM, the central approach involves quantifying the 

energy efficiency of structures within an urban setting across varying spatial and 

temporal scales. Furthermore, these models have the potential to inform future 

urban planning and the enhancement of existing as well as planned regions. 

Grasping the daily and seasonal energy consumption patterns across each city 

location provides authorities with a deeper understanding of how to harmonize 

energy supply and demand, averting instabilities and shortages in the energy 

infrastructure. Such models also facilitate scenario-based strategizing and 

performance assessment for retrofitting buildings and integrating renewable 

energy solutions within a city's energy systems. Furthermore, the process of 

planning and evaluating new city districts becomes less formidable with the 

utilization of appropriate models. On the whole, USBEM serves as an effective 

instrument to guide stakeholders, urban planners, and decision-makers in 

comprehending urban energy systems. This, in turn, empowers them to shape 

energy strategies, propose sustainable initiatives, and formulate constructive 

policies (Moghadam, Delmastro, Corgnati, & Lombardi, 2017; Reinhart, & Davila, 

2016; Hong et al., 2015). USBEM operates based on two primary methodologies: 

top-down models, and bottom-up models (Ferrando, Causone, Hong, & Chen, 

2020). 
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2.5.2. Top-Down and Bottom-Up models 

Regarding the arrangement of input details and the overall modeling approach, 

investigations into urban energy dynamics can be broadly classified into two main 

categories: top-down models and bottom-up models (Swan & Ugursal, 2009; Li et 

al., 2017; Kavgic et al., 2010). Top-down modeling involves employing aggregated 

data at the municipal or national scale to depict the relationship between energy 

consumption and influencing factors like socio-economic variables and climate 

conditions. These models, known for their simplicity and reliance on historical 

aggregated data, have found widespread use in urban energy research, as seen 

in studies (Sailor & Lu, 2004; Tornberg & Thuvander, 2005). However, their 

reliance on historical macroeconomic energy trends and the absence of intricate 

technological descriptions limit their suitability for analyzing technological shifts in 

present and future development studies. 

Top-down models can be broadly classified into two categories: econometric 

models and technological models (Kavgic et al., 2010). Econometric top-down 

models primarily rely on variables such as income, fuel prices, and gross domestic 

product to establish the connection between the energy sector and economic 

output. These models may also incorporate general climatic conditions, such as 

population-weighted temperature, on a national scale. However, they often lack 

specific details about current and future technological options, as their focus lies 

more on macroeconomic trends and historical relationships rather than individual 

physical factors in buildings that influence energy demand (MIT, 1997). On the 

other hand, technological top-down models encompass a range of other factors 

that impact energy usage, such as saturation effects, technological advancements, 

and structural changes. However, these factors are not explicitly described within 

the models (Johnston, 2003). 

Conversely, bottom-up approaches are constructed using data on various 

disaggregated components, which are subsequently combined based on 

estimated individual impacts on energy usage (Rivers & Jaccard, 2005). Bottom-

up models operate with a detailed and individualized approach, requiring extensive 

databases of empirical data to comprehensively describe each component 

(Shorrock & Dunster, 1997). Based on the level of detail in end-use data and the 
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applied methodology, bottom-up models can be categorized into three types: 

statistical, engineering (physical), and hybrid models. Statistical bottom-up models 

establish connections between individual end-use energy and building 

characteristics, as well as socio-economic indicators (Kontokosta & Tull, 2017; 

Moghadam, Toniolo, Mutani, & Lombardi, 2018; Howard et al., 2012). In contrast, 

engineering models utilize the physical and technological attributes of individual 

buildings to compute energy requirements, offering a high degree of flexibility for 

assessing technological advancements and energy efficiency scenarios. However, 

engineering models demand extensive empirical data and are susceptible to 

uncertainties in underlying assumptions, especially concerning human behavior 

and occupancy patterns. This leads to the utilization of hybrid models, which blend 

characteristics of both statistical and engineering approaches. In these hybrid 

models, building attributes are defined using physical characteristics (akin to 

engineering models), while essential data, particularly occupant-related 

information, is drawn from historical energy use analysis (similar to statistical 

models). This amalgamation aims to address the limitations of both models and 

attain a more sophisticated representation (Mutani & Todeschi, 2017; Nouvel et 

al., 2015; Nutkiewicz, Yang, & Jain, 2017; Déqué, Ollivier, & Poblador, 2000). 

In existing literature, the methodology for conducting bottom-up urban-scale 

energy modeling for buildings, encompassing physical models of heat and mass 

transfer within and around structures, is commonly referred to as "urban building 

energy modeling" (Reinhart & Davila, 2016). This approach takes into account the 

intricate interplay of various factors to create a comprehensive representation of 

urban energy dynamics, bridging the gap between detailed physical aspects and 

real-world energy consumption patterns. Table 2.1 comprehensively elaborates on 

the attributes of top-down and bottom-up methodologies. 
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Table 2.1. Characteristics of top-down and bottom-up approaches5 

Approaches Advantages Limitations 
Top-Down 
Models 

• Both long-term socio demographic 
and market economic effects 
considered 

• Detailed technology description and 
actual energy consumption not 
required 

• Limited input information often with 
aggregated economic data 

• Past energy-economy interactions 
used to predict future energy 
consumption 

• Long term historical data required 
• Lack in technological details 

Bottom-Up: 
Statistical 
Models 

• Both socio-demographic and 
marketeconomic effects considered 

• Simulation of energy use at end-use 
and/or building level 

• Variations in individual end uses 
considered 

• Billing, weather, and/or survey data 
required 

• A larger number of sampling subjects 
required 

• Possible multicollinearity to be 
addressed 

• Simulation results highly dependent on 
historical consumption trend; 
prediction well outside of bounds of 
training data not reliable 

Bottom-Up: 
Physics 
Based 
Models 

• Socio-demographic and economic 
information not required 

• Simulation of energy use at different 
temporal scales 

• Variations in individual end uses 
considered 

• Detailed physical and technological 
measures required 

• Socio-demographic and market 
economic trends not captured 

• Intensive computational effort required 

 

2.5.3. Black-box, White-box, and Grey-box models 

Various scientific reviews concur on categorizing energy scale modeling into three 

primary categories (Mutani, Vocale, & Javanroodi, 2023): data-driven (black box), 

which relies on statistical models (Malhotra et al., 2022) and AI models (e.g., Sun, 

Haghighat, & Fung, 2020; Liu et al., 2022); process-driven (white-box), which 

builds upon process-driven models (Gassar & Cha, 2020); and hybrid (grey-box) 

models, which combine data-driven and process-driven models (Sun et al., 2022; 

Wang, Lee, & Yuen, 2018) and are primarily employed by environmental and urban 

planners, governmental bodies, and policymakers (Mutani, Vocale, & Javanroodi, 

2023). 

The rapid advancement of sensing technologies and the emergence of smart city 

initiatives have resulted in an abundance of structured and unstructured data 

streams that describe buildings and their urban surroundings. Concurrently, the 

field of artificial intelligence is making rapid progress, developing new machine 

                                            
5 Li, W., Zhou, Y., Cetin, K., Eom, J., Wang, Y., Chen, G., & Zhang, X. (2017). Modeling urban building energy use: A 
review of modeling approaches and procedures. Energy, 141, 2445-2457. 
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learning models that utilize these data streams to predict and analyze various 

physical phenomena within cities, such as air pollution dynamics (Singh, Gupta, & 

Rai, 2013), traffic flow (Lv, Duan, Kang, Li, & Wang, 2014), and energy 

consumption (Jain, Smith, Culligan, & Taylor, 2014). A novel framework called 

Data-driven Urban Energy Simulation (DUE-S) aims to bridge the gap between 

traditional engineering-based energy simulation models and the emerging data-

driven machine learning models (Nutkiewicz, Yang, & Jain, 2018). 

Data-driven models do not necessitate building thermal balance equations, thereby 

requiring less or even no detailed physical information about the building. These 

models rely on historical data to uncover hidden relationships between building 

energy consumption and input variables (such as weather, building characteristics, 

occupants’ behavior, and equipment schedules) using mathematical techniques. 

Data-driven methods are particularly well-suited for buildings lacking intricate 

physical parameters, such as those in the design phase (Chen, Guo, Chen, Chen, 

& Ji, 2022). The simplicity and flexibility of data-driven models have led to their 

increasing popularity in building energy prediction (Wang & Srinivasan, 2017). 

The promising "black-box" methods employed in data-driven modeling comprise 

linear regression (LR), support vector machine (SVM), extreme gradient boosting 

(XGBoost), random forest (RF), recurrent neural network (RNN), and artificial 

neural network (ANN) (Chen, Guo, Chen, Chen, & Ji, 2022). 

White-box-based models, also known as physical-based models (PB) or Process-

driven models (Mutani, Vocale, & Javanroodi, 2023), utilize fundamental physical 

principles to calculate the thermodynamic and energy behavior of entire buildings 

or specific components within them (Zhao & Magoulès, 2012). PB is the only 

approach capable of fully estimating the energy usage of the building sector without 

relying on historical energy consumption data (Gassar & Cha, 2020). Typically, 

these models rely on energy balance equations that account for the interactions 

between buildings and the surrounding outdoor environment, taking into 

consideration building geometry, characteristics, human behavior, urban 

environment, and climate data. Simulation engines are employed to represent the 

energy and heat transfer processes within buildings, offering significant versatility 

across various application fields. Once validated, these energy balance equations 
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can be customized to fit any context and spatial-temporal scales effectively (Mutani 

& Todeschi, 2020). 

This technique has seen significant development in recent years and is categorized 

into two main methods: the simplified method, which involves estimating space 

heating based on climate using heating degree days, and the detailed 

comprehensive method, which encompasses an extensive thermodynamic and 

heat transfer analysis for all end-uses within the building. Due to their foundation 

in end-use physics, physical methods exhibit the highest flexibility and 

effectiveness in modeling novel technologies that lack historical consumption data 

(Gassar & Cha, 2020). 

The estimation of building energy usage often involves the application of black-box 

(data-driven) and white-box (physical-based) methods. Each technique has its 

limitations, especially the white-box approach, which assumes thorough 

knowledge of all thermal and geometric characteristics of buildings. Gathering such 

comprehensive information can be challenging, particularly for existing buildings in 

megacities. Conversely, the black-box approach heavily relies on data, which 

needs to be abundant and extensive. However, these limitations can be overcome 

by combining both approaches, leveraging the advantages of one to compensate 

for the drawbacks of the other (Foucquier, Robert, Suard, Stéphan, & Jay, 2013). 

This integration of physics and statistics is known as a grey-box-based approach 

or hybrid approach (Gassar & Cha, 2020). 

Hybrid modeling is a powerful approach that amalgamates the advantages of both 

data-driven and process-driven modeling to achieve optimal results. This synthesis 

harnesses the computational efficiency of data-driven models and the capability of 

process-driven models to reveal the physical relationships between variables 

(Boghetti et al., 2020). Implementing hybrid techniques requires a high level of 

expertise in formulating appropriate modeling equations and estimating the 

relevant parameters. In many large-scale applications, building properties are 

represented as an energy path analogy, where a simplified "resistance-

capacitance" circuit describes and characterizes the energy performance of the 

building sector (Ahmad, Chen, Guo, & Wang, 2018). Recent studies show that 

hybrid models outperform individual approaches, exhibiting high accuracy in 
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handling complex situations and unexpected trends (Todeschi et al., 2022). Table 

2.2 presents a quick overview of the benefits and drawbacks associated with the 

three primary methodologies for predicting building energy-use models in. 

Table 2.2. The advantages and disadvantages of the three major building energy prediction approaches6 

Item Black-box based 
approach 

White-box based 
approach 

Grey-box based 
approach 

Advantages 
• Inputs to model are 

historical data 
• High running speed, 

except support vector 
machine 

• Inclusion of macro 
socio-economic effects 

• High capacity to deal 
with both linear and 
nonlinear problems of 
input variables except 
for regression 

• Inputs to model are 
physical information 

• Results can be 
interpreted in physical 
terms 

• No training data are 
required 

• Explicit 
representation of end-
energy uses 

• High accuracy. 

• Inputs to model are 
physical information 
and historical data 

• Results can be 
interpreted in physical 
terms 

• Inclusion of macro 
socio-economic effects 

• Explicit representation 
of end-energy uses 

• Very high accuracy 

Disadvantages 
• Reliance on historical 

data 
• Several difficulties to 

interpret results in 
physical terms 

• Large amount of 
training data is required 

• Low running speed with 
support vector machine 

• Low accuracy score 
with regression 

• No explicit 
representation of end-
uses 

• Detailed input 
physical information 
is required 

• Representative 
buildings 

• Assumption of 
occupant behavior 

• No economic factors 
• Not easy to use, 

needs experience 
• Running speed is 

medium 

• An approximate 
description of the 
building is required 

• Not easy to use, needs 
experience 

• Low running speed 

 

2.6. Researches in the literature 
The supply chain of H and DHW can be energy efficient and play a significant role 

in energy savings and emission reductions by exploiting the existing DH network 

(Nagota, Shimoda & Mizuno, 2008; Rezaie & Rosen, 2012). Principally, optimized 

plants that have a capacity to produce electricity and heat, along with both use of 

RES (Lindenberger, Bruckner, Groscurth, & Kümmel, 2000; Salomón, Gómez 

Galindo, & Martin, 2014) and recycling the waste heat through specific industrial 

processes (Fang, Xia, Zhu, Su, & Jiang, 2013; holmgren, 2006; Sun, F., Fu, Zhang, 

& Sun, J, 2012) can put energy saving and emission reductions in real. In the case 

                                            
6 Gassar, A. A. A., & Cha, S. H. (2020). Energy prediction techniques for large-scale buildings towards a sustainable built 
environment: A review. Energy and Buildings, 224, 110238. 
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that DH network supplies energy to the high dense urban communities, their 

efficiency is higher than autonomous heating systems and is the maximum (Dou 

et al., 2021; Guelpa et al., 2016). 

To achieve high efficiency in the DH networks, a number of aspects can be taken 

into account. Among them on the consumption side evaluating energy-use models 

as well as building retrofitting policies, coupling with the optimization of the 

performance of the DH network in the generation and distribution phases are 

significant. 

In (Mutani, Todeschi, Kämpf, Coors, & Fitzky, 2018) three different energy-use 

models including a GIS-based tool, a 3D energy model with the use of CityGML, 

and an engineering tool with the use of CitySim is presented to analyze their 

attributes and determine the best aspects of an optimal model in the assessment 

process of energy resources, future scenarios, EE solutions and best energy 

policies. The objective of the work was to find a smarter way to consume energy, 

compatible with the available and more efficient energy sources. 

In a study by Todeschi, Boghetti, Kämpf, and Mutani (2021), they utilize bottom-up 

urban-energy models to assess the precision and adaptability of energy 

simulations. These models are based on the hourly heating consumption of 

residential buildings. The study involves a comparison between two prevalent 

energy-use models: a machine learning model and a GIS-based engineering 

model. This comparison is carried out by contrasting the models with anonymous 

monitoring data. Additionally, a sensitivity analysis using the Morris method is 

performed on the GIS-based engineering model. This analysis aims to gauge how 

input variables influence heating consumption and pinpoint potential opportunities 

for refining the existing model. 

In 2019, Lidberg, Olofsson, and Ödlund conducted a study where they evaluated 

the effects of four distinct energy refurbishment strategies on reducing the heating 

demand (HD) and domestic hot water (DHW) system requirements in a multi-family 

building. Additionally, they examined how the DHW circulation system influenced 

the return temperature. To achieve the study's goals, they employed simulations 

of a multi-family building within the TRNSYS 17 software environment. 
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In 2020, Mutani and Todeschi crafted an urban energy balance leveraging EC data 

from the district heating (DH) network. They not only took into account influential 

urban contextual features that impact energy performance (EP), but they also 

adopted a quasi-steady state approach on a monthly timeframe. This method was 

applied to develop an energy consumption model for residential buildings operating 

at the neighborhood level. 

In a study by Mutani and Todeschi (2021), the energy performance (EP) 

certification database is harnessed to assess the EP of current residential 

structures and pinpoint enhanced retrofitting strategies. Achieving this, they 

implement an urban-level energy model. The primary objective of the research is 

to establish an updated retrofitting database, enhancing the outcomes of an urban 

building energy model by incorporating key attributes of the constructed 

surroundings. 

Mutani, Fabiano, Garcia, & Mancini, in 2021, used a bottom-up place-based 

methodology through the use of statistical analysis to evaluate the spatial 

distribution of the EC of residential buildings at the urban scale. Also, the EP of 

buildings for H, space cooling (C), DHW production, and electricity are estimated 

by using significant linear regressions. The objective of the work was to identify the 

main variables on which EC depends. 

In (Madsen, Sejling, Søgaard, & Palsson, 1994) stochastic modeling, prediction, 

and control methods are utilized to optimize the control of the flow and the supply 

temperature in DH networks following the objective of reducing heat production 

costs and heat losses in the transmission and distribution net particularly if the heat 

production takes place at a CHP plants. 

In 1995, Benonysson, Bohm, and Ravn used a mathematical model which 

incorporates the consumers, the DH network, and the production plant to formulate 

the problem of the selection of supply temperatures in a DH network following the 

objective of minimizing the operational costs. The so-called node method is 

described and applied to simulate the flow and temperature development of a given 

DH network due to the consumers’ heat loads and supply temperatures from the 

plant. 
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In a study conducted by Guelpa et al. (2016), a geographical information system 

(GIS) centered model is employed to assess the technical viability of potential 

extensions to current district heating (DH) networks. The analysis takes into 

account multiple technical constraints, and a fluid dynamics model is utilized to 

simulate the distribution mass flow rates for both the present and prospective 

scenarios. 

In (Mutani, Todeschi, Guelpa, & Verda, 2020) enjoying the full benefits of GIS-

based models, combined effect of DH expansion with different building retrofitting 

scenarios is proposed. The aim of the paper is to assess the implementation of the 

energy policies at urban level to optimize energy demand and supply of buildings 

and to evaluate effectiveness of future trends of building retrofit measures. 

In a 2011 study by Sperling and Möller, an examination was conducted on the 

current regional energy setup and the immediate integration of renewable energy 

resources. The research aimed to assess the consequences of district heating 

(DH) expansion and the implementation of energy-saving measures on end-use. 

Employing a 'transition perspective,' the study aimed to apply this approach to the 

growth of local renewable energy systems. To achieve this, the heat atlas 

methodology was adapted and implemented to analyze the existing building stock, 

ultimately evaluating the implications for both present and future energy systems. 

In (Roland and Schmidt, 2020) a mixed-integer nonlinear programing (MINLP) 

model is conducted to compute the optimal expansion of an existing tree-shaped 

DH network given a number of potential new consumers. To this end, the Euler 

momentum and the thermal energy equation are considered. Also, a novel 

polynomial approximation is developed for the optimization model. The expansion 

decisions are modeled by binary variables for which additional valid inequalities 

are derived. 

In 2020, van der Zwan and Pothof introduced what they claim to be a robust and 

expedient model-predictive control strategy. This approach apparently leverages 

building thermal mass as a makeshift daily storage solution while attempting to 

avoid breaching temperature constraints. The paper emphasizes its operational 

control strategy that purportedly accommodates temperature-restrained renewable 
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energy sources (RES). They assert that they've contorted the optimization problem 

into an almost convex form – an apparent prerequisite they emphasize for 

implementing model-predictive control in practical scenarios. 

In 2021, Bjørnskov and colleagues employed the Monte Carlo Tree Search 

initialization technique in conjunction with a branch and bound solver to tackle the 

production planning of a combined heat and power (CHP) unit. They cast the 

optimization problem as a non-convex mixed-integer program within a sliding time 

window framework. Their objective revolved around discovering improved 

solutions compared to random initialization, particularly within expansive district 

heating (DH) networks. 

In a study by Résimont, Louveaux, and Dewallef (2021), they introduce a multi-

period mixed-integer linear programming (MILP) framework intended for the 

optimal design and dimensions of a district heating (DH) network. The primary 

objective was to maximize net cash flow through the utilization of a geographic 

information system. The focus was on factoring in the year-round temporal patterns 

of heating demands, which led to the strategic inclusion of thermal storage 

solutions within the optimized solutions. 

A MILP optimization model with the endogenous decision on the potential 

interconnectors is developed to conduct an economic and environmental 

assessment of increasing the efficiency of the DH networks by interconnecting 

adjacent systems in (Dominković, Stunjek, Blanco, Madsen, & Krajačić, 2020). To 

initialize the optimization a hierarchy of network growth from a tree-like structure to 

a ring-like and at the end, a meshed structure is developed. A further attempt is 

applied to investigate the impacts of thermal energy storage (TES) placement with 

the goal of lowering costs in a form of smaller pipe sizes for interconnecting multiple 

DH networks. 

In (Guelpa, Mutani, Todeschi, & Verda, 2017) a GIS-based model is used to 

analyze the technical feasibility of possible expansion of existing DH networks. The 

aim of the paper is to analyze the reduction of fuel demands and CO2 emissions 

as well as cost by combining DH expansion with end-use energy savings. 
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Guelpa, Mutani, Todeschi, and Verda (2018) present an approach for optimizing 

the incorporation of new buildings into pre-existing extensive district heating (DH) 

networks. The focal point of the study involves seeking the most efficient expansion 

strategy with the objective of minimizing pumping expenditures. To accommodate 

technical constraints effectively, they employ a fluid dynamic network model. 

Bordin, Gordini & Vigo, 2016, developed a mathematical model to support DH 

system planning. The objective of the work was to the selection of an optimal set 

of new users to be connected to an existing thermal network, maximizing revenues 

and minimizing infrastructure and operational costs. Steady-state conditions of the 

hydraulic system and the main technical requirements of the real-world application 

are taken into account and the optimization problem is modeled through the 

application of the graph theory and MILP algorithm. 
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3. METHODOLOGY 
3.1. Introduction 
To achieve a shift towards clean energy and carbon neutrality by 2050 (European 

Commission, 2023), it is vital to employ comprehensive approaches and 

techniques that integrate detailed spatial and temporal data from various urban 

sources (Perera et al., 2023). In the context of this study, a robust energy efficiency 

model is carefully devised, encompassing a bottom-up Urban Building Energy 

Modeling (UBEM) framework alongside an innovative energy-saving scenario 

analysis. 

By integrating these components, the research aimed to construct a highly 

sophisticated model that goes beyond conventional boundaries. Leveraging a 

black-box methodology, the study harnessed the potential of advanced Machine 

Learning algorithms. These algorithms are expertly employed to accurately predict 

both real-time and future heating demands, consequently facilitating the thoroughly 

planning of potential expansions within the District Heating Network. 

 

3.2. Urban building energy modeling 
In this study, the main method adopted is a bottom-up approach, which entails 

considering the detailed characteristics, components, and behaviors of individual 

buildings to estimate aggregated heating demand. To attain this objective, the 

research design is focused on implementing Urban Building Energy Modeling 

(UBEM) coupled with a black-box method, a technique that employs place-based 

strategies enjoying the benefits of Machine Learning (ML) models to replicate the 

energy efficiency of buildings within a given location. This strategy involved a 

thorough examination of the HD patterns of the entire building stock supported by 

Satom SA (An energy company that covers the municipalities of Monthey, 

Collombey-Muraz), taking into account the intricate attributes of each individual 

building. This combination of approaches allowed for a detailed analysis of HD and 

efficiency while considering the nuanced variations among different buildings 

within the urban context. 



32 
 

In the bottom-up process of UBEM, the following steps are involved: 

• Individual Building Modeling: Detailed information about each building in 

the urban area is collected and represented in the model. This includes 

architectural features, insulation, occupancy patterns, and other factors that 

influence HD. 

• Incorporation of External Factors: The model indirectly integrated 

external factors, such as weather conditions, solar radiation, and urban 

morphology, which influence HD patterns, by employing the CitySim Pro 

simulator to simulate HD for a sample population. 

• Energy-demand Simulations: Heating demand of each building is 

simulated based on the specific characteristics of the buildings. With this 

objective in mind, the approach of black-box methodology is adopted, 

harnessing the advantages offered by machine learning models in its 

implementation. 

• Aggregation: The HD data from individual buildings are aggregated to 

estimate the total HD for a group of buildings within a hypothetical network 

of meshes, or the entire urban area. 

• Temporal and Spatial Considerations: The model took into account the 

variations in energy usage over different time scales (hourly and annual) 

and spatial scales (individual buildings, neighborhoods, and urban-scale). 

• Validation and Calibration: The model's accuracy is validated and 

calibrated using historical HD data. This helped to ensure that the model's 

predictions align with real-world HD patterns. 

Figure 3.1 serves as a detailed and intricate overview of the methodological 

framework meticulously implemented in the current research endeavor. This 

graphical representation offers a comprehensive understanding of the step-by-step 

evolution of the research journey. It encapsulates the complexities involved in data 

collection, preprocessing, algorithm integration, optimization strategies, and the 

subsequent evaluation process. This figure assumes the role of a navigational 

marker, underscoring the interconnectedness of the core elements within the 

research and providing a visual narrative of the research expedition. 
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Figure 3.1. Flowchart of the applied methodology: Energy Efficiency model utilizing an Urban Building 
Energy Model as its foundation 
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Table 3.1 presents the existing input data along with their respective utilization 

scopes, and it also outlines the tools employed to harness the potential of these 

input data. A Geographic Information System (GIS) is employed primarily to 

construct the physical representation of the structures and, secondarily, to pinpoint 

socio-economic factors. Among the various physical aspects, the compactness of 

the buildings (expressed as the surface-to-volume ratio, S/V) is computed using a 

robust GIS method. This involves creating a 3D model of the building roofs using 

a TIN extension. Through the "Polygon Volume (3D analyst)" tool, the software 

automatically determined the volume and roof area of each building. By adding the 

wall and slab surfaces, the overall building surface area is derived. This reliable 

technique allows for the accurate calculation of a pivotal variable in UBEMs – the 

S/V ratio – with a high degree of standardization and precision. 

Moreover, the utilization of the CitySim Pro platform proved invaluable in the 

development of the UBEM. In the case study, the CitySim Pro's simulation of HD 

for connected buildings served as a reference point for enhancing the energy-use 

model of buildings that have the potential for connection. The overarching objective 

is to train the model effectively. To accomplish this objective, the cornerstone was 

“The Calibrated CitySim XM  file for Satom”. This file played a pivotal role in 

introducing essential physical and socio-economic parameters of the buildings. 

These parameters are coupled with the climate data file for the year 2021. The 

combination of these inputs within the CitySim Pro platform enabled the accurate 

incorporation of the case study's climatic conditions for the specified year. 

In pursuit of the study's goal – the simulation of HD for individual buildings based 

on their distinct characteristics – the strategy of employing a black-box 

methodology is embraced. This approach leverages the strengths of machine 

learning models to achieve accurate predictions. From an array of predictive 

machine learning algorithms available, the Random Forest (RF) algorithm and 

Light Gradient Boosting Machine (LightGBM) are judiciously selected as the prime 

candidates due to their outstanding qualities and proven track record in handling 

complex, multidimensional datasets that align with the research's requirements. 
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Table 3.1. Available data sources in UBEM 

Data Data type Usage Source 

The surveyor's data 
(GRB) 

GeoPackage • Used as building 
index to link 
buildings’ footprint to 
the right monitoring 
data 

Idiap research institute 

swissBUILDINGS3D_2.0 MultiPatch • Used to model the 
buildings’ roof 3D 
model 

• Used to extract 
minimum z value, 
maximum z value 
and buildings’ wall 
surface 

https://www.swisstopo.admin.ch/ 

swissBUILDINGS3D_3.0 
Beta 

MultiPatch • Used to model the 
buildings’ roof-top-
surface and footprint. 

• Used to extract 
minimum z value, 
maximum z value 
and building wall 
surface 

https://www.swisstopo.admin.ch/ 

The Calibrated CitySim 
XML file for SATOM 

XML file • Used to simulate HD 
of building stock 

• Used to extract 
useful information 
listed below: 

• Buildings’ land use 
• Buildings’ age 
• Buildings’ occupants 
• Wall thickness 
• Building components’ 

U-value 

Idiap research institute 

Climate files for 2021 CLI file • Used to simulate 
heating demand of 
building stock 

Idiap research institute 

Satom DHN Raster file • Used to understand 
the boundaries of 
DHN service area 

https://satomsa.ch/ 

Satom DHN CSV file • Used to draw a geo-
localized DHN 

Idiap research institute 

 

It is important to highlight that throughout different stages of the analysis; the 

dataset underwent consistent testing using various methodologies to identify and 

eliminate outliers. This practice significantly aids in data-driven analysis, ultimately 

enhancing the accuracy of the results achieved. 

Moving forward, an extensive breakdown of the RF and LightGBM algorithms, 

alongside their specific applications within this study, will be provided. 
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3.3. Black-box methodology 
The choice to employ a black box methodology in this study is influenced by two 

crucial factors: the availability of historical aggregated data and the remarkable 

predictive potential of Machine Learning (ML) techniques. 

Firstly, the utilization of a black box approach is driven by the wealth of historical 

aggregated data of case study. This data, encompassing past heating demand 

patterns and related variables, forms a valuable foundation for modeling future HD. 

Secondly, the deliberate emphasis on integrating ML techniques stemmed from 

their unparalleled ability to predict future heating demand. ML algorithms possess 

an exceptional capacity to uncover intricate patterns, correlations, and non-linear 

relationships within data that may not be readily apparent through traditional 

methods. 

By embracing these techniques, the study is positioned to capitalize on their 

predictive power, allowing to forecast HD with a level of accuracy that can greatly 

inform strategic decision-making and long-term planning, especially critical in the 

context of DHN expansion. This dual focus on historical insights and future 

predictability enhanced the robustness of the findings and equipped the proposed 

UBEM with a potent tool for shaping sustainable energy strategies within dynamic 

urban environments. Subsequently, a thorough breakdown of the Machine 

Learning techniques applied is provided. 

 

3.3.1. Random Forest (RF) regression 

Random Forest stands out as one of the most widely utilized and potent machine 

learning algorithms (Brownlee, 2016). The RF algorithm, introduced by Breiman 

(Breiman & Cutler, 2001), is a black-box approach founded on the decision tree, a 

pivotal technique for both classification and regression tasks (Gassar & Cha, 

2020). 

RF is an ensemble learning technique that comprises three predictors. In this 

approach, trees are constructed using diverse random features. It generates 

multiple decision trees by randomly selecting data and variables, ultimately 
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determining the dependent variable's class based on the consensus of numerous 

trees (Dalipi, Yildirim Yayilgan, & Gebremedhin, 2016). Averaging is employed to 

enhance predictive accuracy and manage overfitting. The size of these subsets is 

regulated by the “max_samples” hyperparameter when “bootstrap=True” (which is 

the default setting), or the entire dataset is employed to build each tree if bootstrap 

is set to False (scikit-learn developers, n.d.). 

It belongs to the category of ensemble machine learning techniques referred to as 

Bootstrap Aggregation or bagging (Brownlee, 2016). Bagging is an ensemble 

technique that involves training multiple models on distinct subsets of a training 

dataset and subsequently amalgamating the predictions generated by these 

individual models (Brownlee, 2020). Beyond that, the RF algorithm adds an 

additional layer of randomness during the tree growth process. Instead of seeking 

the optimal feature for node splitting as conventionally done, it looks for the best 

feature within a randomly chosen subset of features. This approach enhances the 

diversity of trees, leading to a trade-off between higher bias and reduced variance, 

ultimately resulting in a more improved model overall (Géron, 2022). 

As each tree is constructed through the random selection of both data and 

variables, they become random trees. The combination of numerous such random 

trees forms a random forest. The term "forest" implies the utilization of multiple 

decision trees to enhance the classification of the dependent variable (Vezza, 

Comoglio, Rosso, & Viglione, 2010). 

In the scope of this research, the UBEM benefited from the predictive capabilities 

of the RandomForestRegressor class found in the SciKit-learn library. This 

approach is geared towards conducting accurate predictive analysis within the 

urban energy context. To optimize the performance of the RF Regression, a 

Genetic Algorithm (GA) optimizer is applied, which fine-tunes the hyperparameters 

of the model. By utilizing the GA, the RF Regression tailored to provide the best 

possible predictive accuracy while also mitigating the risk of overfitting. 

To ensure the robustness and reliability of the model, a Cross-validation (CV) 

technique is integrated into the genetic optimization process. Cross-validation 

aided in assessing the generalization performance of the model by partitioning the 

dataset into training and validation subsets, enhancing the model's ability to 



38 
 

perform well on unseen data. This approach not only enhanced the predictive 

accuracy of the UBEM but also contributed to its ability to handle a variety of real-

world scenarios and unforeseen variations. 

During the concluding phase, a comprehensive sensitivity analysis is performed on 

the dependent variables. This analysis capitalized on the advantages provided by 

the "feature_importances_" attribute of the RandomForestRegressor class. 

Through this critical step, the influential dependent parameters crucial for 

constructing accurate energy-use models are successfully discerned. This process 

involved identifying the most impactful features that contribute to the predictive 

power of the models, ultimately enhancing the overall reliability and relevance of 

the outcomes. 

 

3.3.2. Genetic Algorithm (GA) 

Searching for optimal hyperparameters is often a challenging endeavor within 

machine learning endeavors. As the intricacy of deep learning methods expands 

alongside their popularity, the need for a streamlined and effective automated 

process for hyperparameter tuning has become more imperative than before 

(Akiba, Sano, Yanase, Ohta, & Koyama, 2019). 

When it comes to hyperparameter tuning, random and grid search strategies are 

presently the prevailing techniques for refining the hyperparameters of numerous 

machine learning models (Bergstra & Bengio, 2012; Bergstra, Yamins, & Cox, 

2013). Yet, these methods are considered simplistic as they explore all data points 

within the hyperparameter space without considering the training setup. As a result, 

these search methodologies are deemed inefficient, resulting in elevated 

computational complexity and increased costs associated with hyperparameter 

optimization (Raji et al., 2022). 

The genetic algorithm (GA) is an optimization technique inspired by natural 

selection (Michalewicz, 1992). GA imitates the principle of natural selection known 

as survival of the fittest. It was introduced by J.H. Holland in the year 1992 (Katoch, 

Chauhan, & Kumar, 2021). They strive to replicate the evolutionary process of 

solutions across multiple generations in order to ultimately discover an optimal or 
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close-to-optimal solution for optimization problems (Di Francescomarino et al., 

2018). 

This approach involves iteratively applying genetic operators to individuals within 

the population to generate new populations. Key elements of GA include 

chromosome representation, selection, crossover, mutation, and fitness function 

calculation. The selection, crossover, and mutation processes are repeated on the 

current population until the new population is complete (Katoch, Chauhan, & 

Kumar, 2021). 

In this present study, a Genetic Algorithm (GA) is utilized, with predefined 

parameters of a population size of 20, 10 generations, and a mutation rate of 0.1. 

This GA is employed to identify a set of hyperparameters for RF regression that 

holds potential, encompassing 'n_estimators', 'max_depth', 'min_samples_split', 

and 'min_samples_leaf'. 

 

3.3.3. Cross Validation (CV) 

A core challenge in machine learning revolves around achieving a precise 

approximation of the generalization error for a model trained on a limited dataset. 

The accurate assessment of a model's accuracy holds paramount importance not 

only for evaluating its capacity to generalize but also for selecting the most suitable 

algorithm from a diverse array of learning algorithms (Rao, Fung, & Rosales, 2008). 

Cross-validation (CV) serves multiple purposes, functioning as a tool to either 

approximate the generalization error of a specific model or to aid in model selection 

by identifying the model among several options with the lowest estimated 

generalization error (faqs.org, 2014). 

According to scikit-learn developers: “learning the parameters of a predictive 

function and subsequently testing it on the same dataset represents a 

methodological flaw. Relying on such a model could yield a flawless score due to 

its ability to merely replicate the provided labels, yet it would lack the capability to 

make meaningful predictions on new, unseen data. This phenomenon is referred 

to as overfitting. To counter this, in the context of supervised machine learning 
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experiments, it is customary to segregate a portion of the available data to form a 

distinct test set, denoted as X_test and y_test. 

However, the risk of overfitting persists even when evaluating diverse 

configurations, known as "hyperparameters," for estimators. The parameters can 

be adjusted until the estimator exhibits optimal performance, inadvertently leading 

to the leakage of information about the test set into the model. Consequently, 

evaluation metrics may no longer accurately reflect generalization performance. 

To address this, another portion of the dataset can be designated as a "validation 

set." Here, training occurs on the training set, and evaluation is carried out on the 

validation set. If the experiment proves successful, a final evaluation is performed 

on the test set. 

Yet, dividing the available data into three sets significantly reduces the number of 

samples available for training the model, and the outcomes can be influenced by 

the specific random selection of the (train, validation) sets. To mitigate this issue, 

a technique called cross-validation is employed. While a test set remains reserved 

for ultimate evaluation, the validation set becomes unnecessary when conducting 

CV.” 

CV is a method for detecting bias and variance in which instead of manipulating 

hyperparameter values, the focus is on varying the quantity of training data. 

(Kyriakides & Margaritis, 2019). Within the realm of regression analysis, CV’s utility 

encompasses tasks like determining the optimal count of underlying features and 

gauging the average prediction error. (Bro, Kjeldahl, Smilde, & Kiers, 2008). 

K-fold CV entails partitioning the data into k segments of roughly equal size. The 

model is trained k times, with each iteration excluding one of the segments from 

training, employing the omitted segment solely for calculating the desired error 

criterion. When k is equivalent to the sample size, this practice is referred to as 

"leave-one-out" CV. "Leave-v-out" represents a more intricate and resource-

intensive variant of CV, where all conceivable subsets of v cases are omitted 

(faqs.org, 2014). Figure. 3.2 offers a clear depiction of how the Cross-Validation 

(CV) technique operates on data within the algorithm. 
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Figure 3.2. Schematic illustration of how CV technique is being employed in ML algorithms7 

 

The performance metric derived from k-fold CV is the average of the values 

computed during the iterations. While this approach can be computationally 

intensive, it minimizes data wastage (unlike when using a fixed validation set), 

which proves advantageous in scenarios with limited sample sizes, such as inverse 

inference problems (scikit-learn developers). 

Within this present study, the CV technique is explored through the segmentation 

of the training dataset into 3, 5, and 10 folds, which is determined based on the 

dataset's frequency. By comparing the outcomes of these different fold sizes, the 

optimal K value is determined. It's important to highlight that in situations where the 

training dataset exhibited a scarcity in terms of frequency, introducing energy-

saving scenarios to the training dataset could play a pivotal role in augmenting its 

size. Consequently, this augmentation would potentially lead to heightened 

accuracy in predicting unseen data points. 

                                            
7 scikit-learn developers, n.d., https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators 
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3.3.4. Light Gradient Boosting Machine (LightGBM) 

Gradient Boosting Decision Tree (GBDT) (Friedman, 2001) stands as a prevalent 

machine learning algorithm, recognized for its efficiency, precision, and 

comprehensibility. GBDT demonstrates remarkable achievements in diverse 

machine learning endeavors, encompassing multi-class classification (Li, 2012), 

click prediction (Richardson, Dominowska, & Ragno, 2007), and learning to rank 

(Burges, 2010). 

LightGBM (Light Gradient Boosting Machine) is a highly optimized implementation 

of the gradient boosting algorithm, a machine learning technique that leverages a 

collection of weak learners, often in the form of decision trees, to tackle regression 

or classification challenges. Unlike conventional ensemble methods, gradient 

boosting introduces a sequential addition of these weak learners to the model. This 

approach ensures that each subsequent learner is tailored to the residuals left by 

its predecessor, enhancing the model's overall predictive power in a systematic 

manner (Todeschi, Boghetti, Kämpf, & Mutani, 2021). To enhance implementation 

efficiency, LightGBM employs a leaf-wise growth strategy for its decision trees, as 

opposed to examining all preceding leaves for every new leaf. This implementation 

technique is referred to as the histogram approach (Al Daoud, 2019). According to 

Microsoft Corporation, LightGBM presents the following merits: 

• Accelerated training velocity and heightened efficiency. 

• Diminished memory consumption. 

• Enhanced precision. 

• Compatibility with parallel, distributed, and GPU-based learning. 

• Proficient in managing expansive datasets. 

In this study, the LightGBM algorithm, developed by the Microsoft team, is utilized 

for predictive analysis within the UBEM. To achieve this goal, the Optuna optimizer 

is employed to fine-tune the hyperparameters of the LightGBM model. In order to 

optimize the performance of LightGBM regression and prevent overfitting, a Cross-

validation technique similar to that used in RF regression is incorporated into the 

Optuna algorithm. This approach aimed to strike a balance between maximizing 
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accuracy and avoiding overfitting while optimizing the LightGBM model for 

predicting HD in urban buildings. 

Similarly, mirroring the procedure for RF, a sensitivity analysis is also carried out 

on the dependent variables. This analysis is executed by making use of the 

advantages offered by the "feature_importances_" attribute within the “LightGBM” 

class. In the process of implementing LightGBM, two distinct training APIs are 

taken into consideration. For the hyperparameter tuning phase, the "train" method 

is employed, as it allowed for the integration of a pruning callback. Conversely, 

when conducting the sensitivity analysis, the "LGBMRegressor" method is utilized, 

primarily due to its inclusion of the "feature_importances_" attribute. 

 

3.3.5. Optuna 

OPTUNA, a sophisticated framework for parameter optimization, represents a 

significant advancement in hyperparameter tuning. Introduced by Akiba, Sano, 

Yanase, Ohta, and Koyama in 2019, the Optuna framework excels in both the 

searching and pruning phases, demonstrating remarkable efficiency (Ekundayo, 

2020). 

Optuna is a dedicated software framework designed for autonomous 

hyperparameter optimization in machine learning. Its user interface operates on an 

imperative, define-by-run approach. With the define-by-run API, the code structure 

developed using Optuna is notably modular, and the construction of search spaces 

for hyperparameters can adapt dynamically (Akiba, Sano, Yanase, Ohta, & 

Koyama, 2019). OPTUNA employs its internal memory data structure as the 

default storage repository unless an alternative choice is indicated. A key 

advantage of OPTUNA, particularly from a user's perspective, is its seamless 

applicability for lightweight tasks (Srinivas & Katarya, 2022). 

Optuna frames hyperparameter optimization as the process of minimizing or 

maximizing an objective function that takes a set of hyperparameters as input and 

yields a validation score. Each optimization procedure in Optuna is referred to as 

a "study," and each evaluation of the objective function is termed a "trial." Optuna 

incrementally constructs the objective function through interactions with the trial 
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object. The trial methods dynamically establish search spaces during the runtime 

of the objective function. To generate hyperparameters for each trial, users employ 

the 'suggest API' within the objective function, which statistically samples 

hyperparameters based on the history of prior trial evaluations. This process 

enables users to express a broad range of parameter spaces using standard 

Python syntax, employing loops and conditional statements. This mechanism 

allows for the representation of even complex parameter spaces in a 

straightforward and intuitive manner (Akiba, Sano, Yanase, Ohta, & Koyama, 

2019). 

The benefits provided by Optuna's hyperparameter optimization encompass the 

straightforward determination of optimization duration and seamless integration of 

outcomes. It efficiently conserves computational resources by early pruning of trials 

with below average performance. Additionally, its ease of implementation and 

compatibility with various machine learning frameworks make it a preferable choice 

for utilization in this research (Ekundayo, 2020). 

In this ongoing research, the Optuna optimizer is employed to explore a potentially 

effective collection of hyperparameters for LightGBM regression. These 

encompassed parameters like 'num_leaves', 'max_depth', 'min_data_in_leaf', 

'feature_fraction', 'bagging_fraction', 'bagging_freq', 'lambda_l1', 'lambda_l2', and 

'max_bin', and the exploration spanned across 500 trials. Furthermore, a pruning 

callback is strategically implemented within the optimization loop to bolster the 

precision and efficiency of the tuning process. 

 

3.4. Energy saving scenario 
The UBEM in this study is applied across three distinct time-based stages. Initially, 

the analysis embarked on an examination of the existing status of the DH system, 

focusing on the buildings already connected, to determine the most efficient UBEM 

approach. Moving to the second phase, the study delved into evaluating the near-

term potential for expanding the district heating system, with a specific emphasis 

on optimizing the utilization of CHP capacity without necessitating additional 

enlargement of the DHN. Finally, in the third phase, the investigation shifted 
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towards assessing the viability of long-term DHN expansion, considering the 

expansion of the network through the incorporation of new pipes, while ensuring 

maximum coverage of the CHP capacity. 

Returning to the concept of exploring the feasibility of expanding the DHN in the 

case study, the retrofitting methods adhered closely to Minergie's established 

guidelines outlined in Figure 3.3 Minergie presents a streamlined and simplified 

procedure for validating the energy retrofitting of residential structures, utilizing five 

distinct system approaches that facilitate the attainment of Minergie certification 

with minimal complexity. All variations offer the additional benefits inherent in 

Minergie's approach: the elimination of reliance on fossil fuels, enhanced energy 

efficiency, and elevated comfort standards. Furthermore, most regions provide 

incentives to encourage the adoption of these practices. These technologies 

introduced on various typologies of buildings, categorized by their ages, with the 

primary aim of enhancing the heat transmission of at least one component of the 

buildings, through the strategic application of technology. 

 

Figure 3.3. Minergie modernization system for energy retrofitting of residential buildings8 

 

                                            
8 https://www.minergie.ch/it/standard/ammodernare/ammodernamento-di-sistema/ 
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In the pursuit of finding the best incentives for retrofitting that would result in the 

most efficient use of energy, this study employed a promising approach to create 

a roadmap for the ideal expansion of DHN by the year 2050. 

This approach centered on introducing energy saving scenario for individual 

buildings taking into account their connection status, together with the socio-

economic status of the context. It also factored in a worst-case scenario 

characterized by the peak demand of the buildings based on their scope of 

renovation. This demand is then compared against the network's maximum 

capacity to support HD during that specific hour, with the most favorable scenario 

being selected based on the premise that the existing CHP infrastructure along 

with pipes could accommodate the maximum feasible number of connectable 

buildings. 

To achieve abovementioned goal, a grid network with mesh dimensions of 500m 

by 500m established. Within this framework, the energy intensity of the buildings 

situated in each mesh is computed on an hourly basis, coupling with the density of 

the buildings in each mesh. Afterward, meshes were given priority to determine the 

direction of DHN expansion. The buildings that could be connected within each 

mesh were also selected randomly, and following this selection process, while 

considering an annual renovation rate of 1%, the optimal buildings to be connected 

were identified within three-year intervals. 

To find the promising retrofitting scenario, a total of 5 distinct scenarios are 

introduced, guided by the following principles aimed at determining the peak HD of 

buildings. 

• The initial scenario involved connected buildings without retrofitting 

alongside connectable buildings that were also not retrofitted. 

• The second scenario consisted of connected buildings without retrofitting 

paired with connectable buildings that underwent retrofitting. 

• In the third scenario, connected buildings underwent retrofitting while the 

connectable buildings remained non-retrofitted.  

• The fourth scenario encompassed connected buildings that were retrofitted 

alongside connectable buildings that also underwent retrofitting. 
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• Lastly, the fifth scenario investigated an extreme situation involving both 

connected buildings and those that could be connected, all of which had 

undergone global retrofitting. 
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4. DISCUSSION 
4.1. Introduction 
This research endeavors to leverage the capabilities of Machine Learning (ML) 

techniques to enhance the predictive accuracy of energy demand models. The 

focus is on utilizing ML's potential for superior performance in predicting energy 

usage patterns. However, to extract the maximum benefits from ML techniques, 

certain preliminary measures are essential to ensure their optimal functioning. 

These preparatory steps are crucial to attain the highest predictive performance 

levels. 

Moreover, the application of ML techniques extends the horizons of energy use 

models, enabling the development of comprehensive approaches to devise 

energy-saving scenarios. By integrating ML, the research aims to create a more 

encompassing methodology that offers a broader perspective on energy 

conservation. 

The primary objective of this chapter is to introduce a strategic pathway that 

capitalizes on the comprehensive approach employed in this research. It 

emphasizes the significance of aligning with the prerequisites of ML techniques to 

yield more accurate and meaningful results. This strategic alignment ensures that 

the full potential of these advanced techniques is harnessed, leading to a nuanced 

understanding of energy demand patterns and the formulation of effective energy-

saving strategies. 

 

4.2. Case study 
Established in 1972 and operational since 1976, Satom SA is an energy company 

that stands as a trailblazer in its field. Recently, it has introduced a groundbreaking 

and eco-conscious initiative at its Monthey and Villeneuve sites. This innovative 

approach taps into the potential of biomass waste from the Monthey location and 

plastics from the Villeneuve site. By transforming this substantial waste material 

into water vapor, the company propels a steam turbine to produce clean, 

renewable electricity. This not only addresses the negative environmental 
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consequences of waste disposal but also plays a significant role in shaping a more 

sustainable energy trajectory. 

A central component of Satom's energy strategy involves their waste heat recovery 

mechanism. In traditional setups, a significant amount of valuable heat would 

escape into the environment during electricity generation. However, Satom has 

innovatively developed a thermal network that captures steam drawn from the 

turbine and collected from emissions. This network effectively redirects this 

otherwise lost heat. Through the utilization of this thermal network, the recuperated 

waste heat is efficiently directed into neighboring buildings, providing them with an 

eco-conscious heating alternative. This approach not only maximizes energy 

efficiency but also markedly curbs the collective carbon footprint of the local 

community. 

Satom has established an extensive underground network designed strategically 

to distribute thermal energy, covering a substantial area that includes the 

municipalities of Collombey-Muraz and Monthey. This impressive subterranean 

infrastructure empowers Satom to deliver heating services to numerous residential 

areas, spanning several kilometers and effectively meeting the heating demands 

of a significant population. 

Satom's energy system is technically characterized by injecting 91 GWh of energy 

into the network annually. This network consists of 79 kilometers of pipes, including 

484 operational substations. With this considerable capacity, Satom SA is capable 

of heating a total living space of 850,000 m². The research involved addressing a 

primary limitation which is economic factors. To address economic constraints, the 

study included residential buildings with S/V values under 0.8 m-1 and non-

residential buildings with volume over 600 m3. In the targeted municipalities, a total 

of 2603 buildings were investigated (around 8.74 Mm³), out of which 2283 

(approximately 7.37 Mm³) were economically viable for network connection. The 

building types based on usage are presented in figure 4.1, and the distribution of 

buildings' ages is shown in figure 4.2. Within this eligible cluster, there were 2057 

residential buildings (about 5.88 Mm³) and 226 non-residential buildings 

(approximately 1.49 Mm³), with 370 (around 2.74 Mm³) and 61 (approximately 0.54 

Mm³) successfully connected, respectively (Shown in Figure 4.3). When combined, 
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the annual heating demand for all connected buildings of both types, totals about 

80.57 GWh/Y. 

 

Figure 4.1. Classification of land use for the sampled buildings. 

 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Emphasizing the significance of the matter, it should be noted that the volume 

distribution of residential structures was subjected to statistical analysis, leading to 

the classification of the buildings into two distinct groups. The initial group 

comprises 2018 buildings as normal buildings, collectively encompassing a volume 

 

Figure 4.2. Construction period categories for the sampled buildings. 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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of approximately 4.98 Mm³. The second group involves 39 residential buildings 

classified as abnormal, which are mainly multifunction skyscrapers or towers, with 

a combined volume of 0.9 Mm³. These unconventional buildings will be addressed 

separately when making predictions regarding HD. 

 

Figure 4.3. Spatial distribution of connected and connectable buildings. 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Furthermore, considering that diverse information from multiple databases is 

employed to construct the physical models of buildings, variations arise in terms of 

accessible dependent variables. The key factor distinguishing these variables is 

the availability of data regarding building occupants. Within this context, residential 

and nonresidential buildings themselves are segregated into distinct clusters. 

Consequently, they are treated independently when forecasting energy demand. 

There is a disparity in the occurrence of available occupancy profiles for residential 

and nonresidential buildings. Specifically, there are 1026 residential buildings and 

179 nonresidential buildings with these profiles accessible. Correspondingly, there 

are 1031 residential buildings and 47 nonresidential buildings that lack occupancy 

profile data. 

 

4.3. Buildings’ physical model 
A crucial aspect of adopting urban building energy models is the development of a 

comprehensive physical representation of buildings, encompassing their distinctive 

attributes. This aspect gains even greater significance when integrating black-box 

methodologies into these models. This is due to the strong reliance of such 

techniques on historical data for approximating overall HD. It's evident that, in this 

scenario, having a wealth of data to inform the analysis would substantially 

enhance the precision of constructed urban energy models. Consequently, this 

heightened accuracy would lead to more closely aligned predictions of future 

heating demands with real-world outcomes. 

Keeping this perspective in mind, the aim was to integrate and compile data from 

various comparable sources to validate the accuracy of the physical model of the 

buildings. To be more precise, this involved procuring data pertaining to the 

buildings' geometric attributes, including factors like “Gross heated volume”, 

“Gross heated Surface”, and “Compactness Ratio”. The main input data 

contributed in predicting energy use model of buildings in current research is listed 

in table 4.1. 

 



54 
 

Table 4.1. Main input parameters in building of energy-use models 

Input data Source Tools 
Construction period The surveyor’s data GIS 

Use type The surveyor’s data GIS 

Building’s volume Calculated GIS 

Building’s surface Calculated GIS 

S/V ratio Calculated GIS 

Building’s occupants XML file for SATOM None 

Wall thickness XML file for SATOM None 

U roof, U wall, U slab, U Window XML file for SATOM None 

 

As indicated within table 4.1, the primary databases employed for extracting the 

physical dimensions of buildings consist of surveyor's data, 

swissBUILDINGS3D_2.0, and swissBUILDINGS3D_3.0 beta. The surveyor's data 

was present in the shapefile format and contained details regarding the 

construction period, land usage of buildings, and most crucially, a unique identifier 

for each plot of land, which served as the central point for attaching supplementary 

information to the dataset. On the other hand, swissBUILDINGS3D_2.0 and 

swissBUILDINGS3D_3.0 beta are multi-patch files that store 3D information in a 

collection of patches, summarizing the boundaries of a 3D object in a single record. 

The ArcGIS software furnished a specialized toolkit that greatly facilitated the 

manipulation and extraction of information from such databases. 

Since multi-patch files offer better precision and versatility in extracting the physical 

geometries of buildings, it is valuable to examine the techniques and software 

employed for calculating the gross heated volume and surface of buildings. In 

terms of volume computation, the 3D representation of the buildings' roofs shown 

in figure 4.4 created, which follows a specific sequence (“multi-patch to raster 

(Conversion)”, “raster to point (Conversion)”, and “create TIN (3D Analyst)”). 

Afterward, the "add z information (3D Analyst)" function is applied, assigning the 

minimum z value of buildings to the layer representing their footprints. In the final 

stage, a specialized feature within ArcGIS, known as the "polygon volume" tool, is 

employed to determine the volume of buildings. The computation process of this 

tool involves initially identifying the shared boundaries between the building's 

footprint and its 3D roof model, followed by calculating the enclosed volume 

situated between the footprint and the roof surface. This particular tool proves 
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highly effective in accurately computing the gross heated volume of all buildings, 

especially those with multiple levels and varying configurations. Moreover, this tool 

is intuitively designed to also calculate in this case the roof surface of buildings 

using the provided TIN data. By incorporating the footprint surface, the total 

building surface can be computed, contingent upon the prior calculation of wall 

surfaces. This semi-automated approach to volume and surface calculation results 

in remarkably precise estimations of these parameters. 

 

Figure 4.4. Representation of buildings’ 3D roof model 

 

When determining the surface area of building walls, it's essential to consider that 

for buildings with recesses, as depicted in figure 4.4, a portion of the wall surface 

can be automatically calculated if it's visible in the 3D representation of the 

building's roof surface. To prevent redundant computations in such instances, it's 

sufficient to compute the wall surface only for the sections of walls that are in 

contact with the outer perimeter of the buildings. This can be achieved by assigning 

the maximum z value of the buildings to the outer walls, which can be derived from 

the points obtained by converting the raster model of the roof surface. 

The information about building occupants, wall thickness, and U-values for various 

building components was obtained directly by parsing in “XM  file for the buildings 

in Satom." Subsequently, this data was linked to the building footprint layer through 

the utilization of the unique key identifier. 
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XML (Extensible Markup Language) is a file format that is commonly used for 

storing and structuring data in a hierarchical format. It employs a set of tags to label 

and organize pieces of data, making it easily readable for both humans and 

machines. In this context, the XML file serves as a primary input within CitySim Pro 

software and contains specific information about the buildings neatly organized 

within relevant tags, and by parsing it, relevant data can be extracted and utilized 

for various purposes, such as energy modeling or analysis. 

Prior to any analysis being conducted on the sample dataset, the dataset needs to 

be cleaned of any outliers that could hinder the precision of the analysis and future 

predictions. Therefore, in this initial phase, buildings were first examined based on 

their “Compactness Ratio”. The relation between the S/V ratio and building 

typology is such that high-rise buildings are characterized by a lower S/V ratio, 

while buildings in the form of detached houses for single families have a higher S/V 

ratio. To ensure that the connection of potentially connectable buildings adds value 

to the DHN expansion from an economic perspective, constraints were introduced 

for both residential and nonresidential buildings based on the S/V ratio. In this light, 

residential buildings with an S/V ratio above 0.8 were deemed unfeasible for 

connection to the system and were consequently excluded from the analysis. As 

for nonresidential buildings, this constraint was applied to buildings with a volume 

of less than 650 m3, taking into consideration both the compactness ratio and the 

volume of connected buildings. 

Furthermore, the distribution of buildings based on their volume was analyzed for 

both residential and nonresidential categories. As shown in Figure 4.5, there are 

outliers that should be excluded to avoid potentially negative impacts on the final 

precision of the energy use model. 

For non-0residential buildings, outliers were excluded since none of the abnormal 

non-residential buildings were already connected to the DHN. Conversely, 

concerning abnormal residential buildings, there were a total of 39 buildings, out of 

which 31 were already connected, and only 8 were not yet connected. These 

buildings mainly have a dual purpose, serving both residential and commercial 

activities. Considering the majority were already connected, they were grouped 
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under a specific category labeled as "multifunctional buildings," and their energy 

use model was also trained using machine learning models. 

 

 

Figure 4.5. (A) The distribution of “Residential” buildings by volume (B) The distribution of “Non-residential” 

buildings by volume 

 

Ultimately, it's worth noting that the surveyors' database and, in a corresponding 

manner, the XML file for buildings in Satom primarily encompassed buildings 

situated in proximity to the existing DHN. To analyze the potential expansion of the 

DHN in the distant future, buildings were inserted from swissBUILDINGS3D_3.0 

beta. As a result, buildings near the network had occupancy profiles, as the XML 

file contained information regarding the number of occupants. However, this critical 

information, which serves as a pivotal dependent variable in building energy use 

models, was unavailable for buildings sourced from swissBUILDINGS3D_3.0 beta. 
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Consequently, since machine learning model architectures depend on both 

dependent variables and sets of hyperparameters, there were two subsamples for 

each cluster of residential and nonresidential buildings in energy use modeling: 

one with information about occupants and one without such information. 

Consequently, there were a total of five building subsamples in energy use 

modeling, as illustrated in Figure 4.6. 

 

Figure 4.6. Spatial distribution of building subsamples in the analysis 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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4.4. Black-box method 
4.4.1. Dataset preparation 

Prior to exploring the black-box methods employed in the present study, the initial 

step involved simulating the heating demand of buildings using CitySim Pro. To 

execute this simulation, it was imperative to adjust the XML file to match the 

measured data provided by Satom SA. The measured data encompassed various 

substations, each potentially serving one or more buildings, and was collected at 

different time intervals, typically in 3-hour increments. However, for the purposes 

of this study, it was crucial to have hourly HD data for buildings since energy-saving 

scenarios required considering the peak demand within an hour. 

Returning to this concept, as illustrated in Figure 4.7, the XML file was calibrated 

on a building-by-building basis. The calibrated parameters included “Air changes 

per hour” and the “Minimum outside temperature”, both adjusted within the XM  

file based on the calibration results. This calibration process enabled the 

subsequent simulation of buildings in CitySim Pro, allowing for the extraction of 

their hourly energy requirements for the year 2021, serving as the benchmark for 

further analysis. 

It's important to highlight that, in certain subsets of buildings, particularly 

multifunctional and nonresidential ones, the number of buildings connected to the 

network was limited. This limitation had a significant impact on the predictive 

accuracy of the machine learning models. In the instance of multifunctional 

buildings, where only 31 were connected, it wasn't even statistically significant to 

train an energy use model. This situation was exacerbated by the necessity in ML 

models to split data into training and testing datasets, resulting in an extremely 

limited number of buildings included in the training set. 

To address this limitation and expand the dataset used to train energy demand 

models, an approach was employed. This approach involved introducing various 

retrofitting technologies to the buildings and then pairing the connected buildings 

without renovations to the same buildings that had undergone different retrofitting 

measures within each subset. The rationale behind this approach stemmed from 

the fact that, in each retrofitting scenario, there was at least one dependent 
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variable, namely the U-value determined by the retrofitting technology, together 

with the independent variable that differed from the other scenarios. Implementing 

this initiative allowed for a significant increase in the size of the training dataset 

and effectively enhanced the accuracy of the predictive models. 

 

Figure 4.7. Calibration of XML file building-wise according to measured data 

 

The current research incorporates various retrofitting scenarios, including Roof 

Insulation, Slab Insulation, Wall Insulation, Windows Insulation, and Global 

Retrofitting. These scenarios are introduced following the guidelines provided by 

Minergie, as previously depicted in figure 3.30. According to the table, Minergie 

offers five renovation systems. System 1 is recommended for buildings that have 

not undergone significant renovation since their initial construction or have only 

undergone superficial improvements. The primary objective here is to ensure 

proper thermal insulation. Systems 2, 3, and 4 are suitable for relatively newer or 

previously renovated buildings. The distinction between these systems lies in the 

specific combination of thermal insulation values applied to the roof and the exterior 

Building: CM140  Building: CM149  Building: CM162  

Building: CM1192  Building: CM1524  Building: CM4538.1  

Building: CM4538.2  Building: CM4538.3  Building: CM4553  
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walls. System 5 is intended for buildings that directly about neighboring structures, 

and where the existing facade should remain unaltered either due to design 

considerations or practical constraints. 

As depicted in table 4.2, considering the construction period of the buildings and 

the extent of renovation outlined in the XML file for the buildings in Satom, Minergie 

systems were applied to different clusters of buildings. This was done in a manner 

ensuring that at least one component of the buildings experience an enhancement 

in their thermal insulation. Subsequently, based on the U-values presented in table 

4.2 (B), adjustments were made to the XML file. For each energy-saving scenario, 

simulations were conducted using CitySim Pro to estimate the HD of connected 

buildings that had undergone renovation. 

Gathering detailed heating demand information from renovated buildings made the 

dataset for training the ML model much bigger and more detailed. This dataset 

grew not just in size but also included many important details. As a result, it gave 

the ML model the precise information it needed to learn well and accurately predict 

energy usage. 

Table 4.2. (A) The thermal conductivity of different building elements before retrofitting. (B) The thermal 
conductivity of different building elements after retrofitting. 

(A) Before renovation 
Period of 

construction Roof (Wm-2K-1) Wall (Wm-2K-1) Slab (Wm-2K-1) Window (Wm-2K-1) 

Before 1919 0.7 1.22 1.6 1.7 - 2.3 
1919-1945 0.7 1.22 1.6 1.7 - 2.3 
1946-1960 0.7 1.53 1.5 1.7 - 2.3 
1961-1970 0.65 1.02 1.3 1.7 - 2.3 
1971-1980 0.6 0.87 1.1 1.7 - 2.3 
1981-1990 0.43 0.89 0.68 1.7 - 2.3 
1991-2000 0.31 0.69 0.49 1.7 - 2.3 
2001-2010 0.25 0.51 0.35 1.7 - 2.3 
After 2010 0.22 0.51 0.25 1.7 - 2.3 

 

(B) After renovation 
Period of 

construction 
Retrofitting 

system Roof (Wm-2K-1) Wall (Wm-2K-1) Slab (Wm-2K-1) Window (Wm-2K-1) 

Before 1919 System 1 0.17 0.25 0.25 1 
1919-1945 System 1 0.17 0.25 0.25 1 
1946-1960 System 1 0.17 0.26 0.25 1 
1961-1970 System 4 0.17 0.72 0.25 1 
1971-1980 System 4 0.17 0.72 0.25 1 
1981-1990 System 4 0.17 0.72 0.25 1 
1991-2000 System 3 0.25 0.51 0.25 1 
2001-2010 System 2 0.25 0.4 0.25 1 
After 2010 System 2 0.22 0.4 0.25 1 
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4.4.2. Tuning hyperparameters 

To determine the annual HD of individual buildings and the combined energy needs 

at the urban scale, two machine learning algorithms were selected for 

implementation. The chosen algorithms for this study are LightGBM and RF 

regression. The reason for employing both of these ML algorithms is to evaluate 

their performance and select the most effective energy use model for accurate HD 

predictions. However, as explained in the methodology section, there are critical 

preliminary steps when using ML algorithms that must be taken into account to 

ensure optimal performance while preventing overfitting. 

The crucial preliminary step in preparing ML algorithms for training is tuning of their 

hyperparameters. In this study, the Optuna optimizer for tuning the 

hyperparameters of LightGBM and the GA optimization algorithm for RF regression 

is employed. Since hyperparameters govern the architecture of ML models and 

different subsets of buildings exhibit distinct energy behaviors along with specific 

characteristics introduced through dependent variables, it is essential to fine-tune 

the hyperparameters of each algorithm separately for each subset of buildings. 

Tables 4.3 and 4.4 provide detailed information on the tuned hyperparameter sets 

for LightGBM and RF regression, the range of values explored for each 

hyperparameter, and the optimized values for each. 

It's important to highlight that in the process of tuning the hyperparameters of the 

ML algorithms, 80% of the datasets were allocated for training purposes, while the 

remaining was set aside for testing. Additionally, the random state for both training 

and testing data was specifically set to 42. The choice of random state 42 ensures 

that the data split into training and testing sets remains consistent each time the 

process is repeated. This helps maintain the reproducibility of the results and 

allows for a fair comparison of different hyperparameter configurations. 

Additionally, to fine-tune the hyperparameters effectively, a 5-fold cross-validation 

technique is implemented. This involves partitioning the dataset into separate 

'folds,' training the model on various fold combinations, and then evaluating its 

performance, as explained in the methodology chapter. This method brings several 

advantages, including the elimination of the requirement for a dedicated validation 

set, the ability to assess the model's generalization across different data partitions, 
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a reduction in the risk of overfitting, and the provision of a more dependable 

estimate of model performance, all of which play a crucial role in hyperparameter 

tuning. Furthermore, the effectiveness of hyperparameter tuning were assessed by 

evaluating the Root Mean Square Error (RMSE), as indicated in tables 4.3 and 4.4. 

This evaluation helped to measure the accuracy of the model's predictions. 

Table 4.3. Hyperparameters of LightGBM model 
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 Dataset size: 2034 Tuning time: 123.36s RMSE: 1.11 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 
num_leaves 50 - 100 66 bagging_freq 1 – 10 1 
max_depth 1 – 5 5 lambda_l1 0 – 0.6 0.1 

min_data_in_leaf 1 - 10 1 lambda_l2 0– 0.6 0.04 
feature_fraction 0.4 – 1 0.99 max_bin 500 - 1000 821 
bagging_fraction 0.4 – 1 0.66    
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Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 
num_leaves 50 - 100 87 bagging_freq 1 – 10 4 
max_depth 1 – 5 5 lambda_l1 0 – 0.6 0.21 

min_data_in_leaf 1 - 10 1 lambda_l2 0– 0.6 0.54 
feature_fraction 0.4 – 1 0.42 max_bin 500 - 1000 798 
bagging_fraction 0.4 – 1 0.8    
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Hyperparameter Tested 
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Value Hyperparameter Tested 
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Optimized 

value 
num_leaves 50 - 100 82 bagging_freq 1 – 10 3 
max_depth 1 – 5 4 lambda_l1 0 – 0.6 0.04 

min_data_in_leaf 1 - 10 2 lambda_l2 0– 0.6 0.41 
feature_fraction 0.4 – 1 0.8 max_bin 500 - 1000 501 
bagging_fraction 0.4 – 1 0.88    
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 Dataset size: 366 Tuning time: 129.48s RMSE: 2.99 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 
num_leaves 50 - 100 85 bagging_freq 1 – 10 4 
max_depth 1 – 5 5 lambda_l1 0 – 0.6 0.39 

min_data_in_leaf 1 - 10 2 lambda_l2 0– 0.6 0.26 
feature_fraction 0.4 – 1 0.57 max_bin 500 - 1000 631 
bagging_fraction 0.4 – 1 0.94    
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 Dataset size: 366 Tuning time: 120.17s RMSE: 2.75 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 
num_leaves 50 - 100 58 bagging_freq 1 – 10 8 
max_depth 1 – 5 5 lambda_l1 0 – 0.6 0.15 

min_data_in_leaf 1 - 10 1 lambda_l2 0– 0.6 0.51 
feature_fraction 0.4 – 1 0.49 max_bin 500 - 1000 767 
bagging_fraction 0.4 – 1 0.77    
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Based on the findings presented in tables 4.3 and 4.4, it's evident that the Optuna 

optimizer considerably outperformed the Genetic Algorithm in terms of 

hyperparameter tuning speed. This outcome is consistent with the expected 

performance difference, as Genetic Algorithms are typically known for their 

computational intensity and prolonged execution times. The speed advantage of 

Optuna in this context is particularly beneficial, as it streamlines the 

hyperparameter tuning process, reducing computational resources and time 

requirements. 

Table 4.4. Hyperparameters of RF regression model 
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 Dataset size: 2034 Tuning time: 728.68s RMSE: 3.55 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 

N_estimators 100 - 150 106 min_samples_split 
 2 - 5 2 

max_depth 10 - 15 15 Min_samples_leaf 
 2 - 5 2 
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 Dataset size: 2034 Tuning time: 123.36s RMSE: 5.78 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 

N_estimators 100 - 150 108 min_samples_split 
 2 - 5 3 

max_depth 10 - 15 14 Min_samples_leaf 
 2 - 5 2 

M
ul

tif
un

ct
io

n 
bu

ild
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Dataset size: 186 Tuning time: 218.16s RMSE: 2.19 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 

N_estimators 100 - 150 137 min_samples_split 
 2 - 5 2 

max_depth 10 - 15 12 Min_samples_leaf 
 2 - 5 2 
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 Dataset size: 366 Tuning time: 234.66s RMSE: 4.92 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 

N_estimators 100 - 150 110 min_samples_split 
 2 - 5 3 

max_depth 10 - 15 12 Min_samples_leaf 
 2 - 5 2 
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 Dataset size: 366 Tuning time: 257.03s RMSE: 5.58 

Hyperparameter Tested 
range 

Optimized 
Value Hyperparameter Tested 

range 
Optimized 

value 

N_estimators 100 - 150 146 min_samples_split 
 2 - 5 3 

max_depth 10 - 15 12 Min_samples_leaf 
 2 - 5 2 
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4.4.3. Annual heating demand processing 

In preparation for training the energy use model with ML algorithms, a sensitivity 

analysis was carried out using the 'feature_importances_' method offered by both 

'LGBMRegressor' and 'RandomForestRegressor' as part of efforts to enhance the 

utility of ML models. This allowed for the assessment of the significance of 

individual input variables in the ML model training process. Through the 

implementation of this analysis, insignificant input variables were identified and 

removed in the context of training energy use models for specific building subsets. 

This action contributed to the improvement of model efficiency and the 

incorporation of the most relevant features in the model training process, ultimately 

resulting in more accurate and insightful outcomes. 

With the optimized hyperparameters and the validation of significant variables to 

construct energy use models, ML models were successfully trained for each subset 

of buildings. As shown in Figure 4.8, both ML models exhibited exceptional 

performance in predicting energy intensity and heating demands at building scale 

for residential buildings with occupancy profile. 

 
Figure 4.8. Performance of LightGBM and RF Regression in predicting (A) Energy Intensity and (B) Heating 

Demands at building scale in Residential Buildings with Occupancy Profile 

(A) 

(A) 

(B) 

(B) 



66 
 

LightGBM achieved an impressive RMSE of 1.04 for energy intensity prediction, 

while RF demonstrated an RMSE of 3.58. When it came to predicting heating 

demand, LightGBM and RF regression achieved high accuracy with R-squared 

values of 0.9991 and 0.9779, respectively. It's noteworthy that these outstanding 

performances were achieved with minimal computational time, as LightGBM 

required only 1.06 seconds for analysis, while RF regression took just 1.004 

seconds. 

The features used for training LightGBM included ‘Construction period’, ‘S/V’, 

‘Occupants’, ‘Wall thickness’, ‘U-Roof’, ‘U-Wall’, ‘U-Slab’, ‘U-Window’, ‘Gross 

heated volume’, and ‘Gross heated surface’. Similarly, for RF, the selected features 

were ‘Construction period’, ‘S/V’, ‘Occupants’, ‘Wall thickness’, ‘U-Wall’, ‘U-Slab’, 

‘U-Window’, ‘Gross heated volume’, and ‘Gross heated surface’. 

Figure 4.9, showcasing the performance of ML models in predicting energy 

intensity and HD for residential buildings without occupancy profiles, clearly 

demonstrates the substantial impact of individual variables on the performance of 

ML models in building energy use prediction. 

 

Figure 4.9. Performance of LightGBM and RF Regression in predicting (A) Energy Intensity and (B) Heating 
Demands at building scale in Residential Buildings without Occupancy Profile 

(B) 

(B) (A) 

(A) 
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In this scenario, the input variables were consistent for both models, including 

‘Construction period’, ‘S/V’, ‘Wall thickness, ‘U-Roof’, ‘U-Wall’, ‘U-Slab’, ‘U-

Window’, ‘Gross heated volume’, and ‘Gross heated surface’. As shown in Figure 

4.9, LightGBM maintained its impressive performance in predicting energy 

intensity for buildings, achieving an RMSE of 1.57, even when a significant variable 

was absent. However, the situation was different for RF regression. In this case, 

RF regression had an RMSE of 5.99 for energy intensity prediction, and there was 

a noticeable drop of approximately 0.5 in the R-squared precision compared to the 

previous model in HD prediction. Nevertheless, the results remain substantial and 

reliable. 

Figures 4.10 and 4.11 depict the performance of LightGBM and RF regression 

models for nonresidential buildings, with a similar distinction as were for residential 

buildings, where one set of buildings lacks occupancy profile information. As 

anticipated, the performance was relatively better for buildings with available 

occupancy data.  

 

Figure 4.10. Performance of LightGBM and RF Regression in predicting (A) Energy Intensity and (B) 
Heating Demands at building scale in Non-residential Buildings with Occupancy Profile 
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For instance, in the case of LightGBM, the RMSE for energy intensity prediction 

was 3.45 for buildings with occupants' information, compared to 3.42 for those 

without such information. For RF regression, the corresponding accuracy check 

was 4.87 compared to 6.09, respectively. Additionally, as evident from the figures, 

the accuracy in computing HD is consistently high and remarkable. For buildings 

with occupancy profiles, the R-squared values were 0.9946 for LightGBM and 

0.9804 for RF regression. In the case of the other subset of nonresidential 

buildings, these values were 0.9931 and 0.9560, respectively. 

 

Figure 4.11. Performance of LightGBM and RF Regression in predicting (A) Energy Intensity and (B) 
Heating Demands at building scale in Non-residential Buildings without Occupancy Profile 

 

For nonresidential buildings with occupancy profiles, the dependent variables for 

LightGBM included ‘ and use’, ‘S/V’, ‘Occupants’, ‘Wall thickness’, ‘U-Roof’, ‘U-

Wall’, ‘U-Slab’, ‘Gross heated volume’, and ‘Gross heated surface’. For RF 

regression, these variables were ‘ and use’, ‘S/V’, ‘Occupants’, ‘Wall thickness’, 

‘U-Slab’, ‘U-Window’, ‘Gross heated volume’, and ‘Gross heated surface’. In cases 

where nonresidential buildings lacked occupancy information, the dependent 

variables remained the same as the previous model, with the addition of 

‘Construction period’ for RF regression. 

(B) 
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It's worth noting that comparing the size of datasets used for prediction between 

nonresidential and residential buildings highlights the remarkable capability of ML 

models. The dataset size for residential buildings was 2034, whereas for 

nonresidential buildings, it was 366. Despite the significant gap in dataset sizes, 

the performance of ML models showed a relatively consistent level of accuracy. 

The final group of buildings for which we trained energy use models consists of 

multifunctional buildings. Remarkably, despite the relatively small dataset size of 

just 186, as illustrated in Figure 4.12, ML algorithms once again proved highly 

effective in predicting their energy patterns. 

 

Figure 4.12. Performance of LightGBM and RF Regression in predicting (A) Energy Intensity and (B) 
Heating Demands at building scale in Multifunction Buildings with Occupancy Profile 

 

For LightGBM, the independent variables used to predict the energy use model 

included 'S/V,' 'Occupants,' 'Wall thickness,' 'U-Roof,' 'U-Wall,' 'U-Slab,' 'U-

Window,' 'Gross heated volume,' and 'Gross heated surface.' These variables 

yielded an accuracy of RMSE 1.62 for energy intensity prediction and an R-

squared value of 0.9869 for heating demand prediction. Meanwhile, RF regression 

employed 'Construction period,' 'S/V,' 'Occupants,' 'Wall thickness,' 'U-Roof,' 'U-

Wall,' 'U-Slab,' 'U-Window,' 'Gross heated volume,' and 'Gross heated surface' as 
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independent variables, resulting in an RMSE of 2.26 for energy intensity prediction 

and an R-squared value of 0.9615 for heating demand prediction in multifunctional 

buildings. 

In a comprehensive evaluation of all energy use models developed for diverse 

building subsets, it is clear that integrating LightGBM provided a significant 

advantage over RF regression. This superiority was evident both in the context of 

hyperparameter tuning and in the creation of energy use models. Optuna, which 

was used to fine-tune LightGBM's hyperparameters, demonstrated greater 

computational efficiency compared to the Genetic Algorithm (GA) utilized for RF 

regression. Consequently, LightGBM emerged as the favored algorithm at first 

glance. 

Additionally, LightGBM consistently exhibited exceptional performance across the 

energy use models, consistently outperforming RF regression with higher 

precision. The clear superiority of LightGBM over RF regression is also apparent 

in table 4.5, where HD predictions are compared for different energy-saving 

scenarios at the urban scale. It is important to highlight that in this table, both 

varieties of residential and nonresidential buildings are combined. This consistent 

reliability and superior performance made LightGBM the unequivocal and preferred 

choice for subsequent analyses and model development. 

Table 4.5. Comparing LightGBM and RF regression performance in predicting Urban-Scale heating demand 
with different renovation technologies 

Buildings not retrofitted 
Type of 
buildings 

 Model Whole 
buildings 

Connected 
buildings 

Connectable 
buildings 

Residential 
buildings 

No. -- 2018 339 1679 
Volume (Mm3) -- 4.98 2.02 2.96 
Share of volume (%) -- 100 16.8 83.2 
HD (GWh/Y) CitySim Pro -- 52 -- 

LightGBM 138.86 51.86 (-0.27%) 87 
RF 129.97 50 (-3.85%) 79.97 

Multi-
functional 
buildings 

No. -- 39 31 8 
Volume (Mm3) --- 0.89 0.72 0.17 
Share of volume (%) - 100 80.90 19.1 
HD (GWh/Y) CitySim Pro -- 13.98 -- 

LightGBM 17.6 13.96 (-0.14%) 3.64 
RF 17.08 13.57 (-2.93%) 3.51 

Non-
residential 
buildings 

No. -- 226 61 165 
Volume (Mm3) -- 1.49 0.54 0.95 
Share of volume (%) -- 100 27 73 
HD (GWh/Y) CitySim Pro -- 14.6 -- 

LightGBM 37.12 13.89 (-4.86%) 23.23 
RF 36.9 13.8 (-5.48%) 23.1 
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Buildings underwent roof insulation 
Type of 
buildings 

 Model Whole 
buildings 

Connected 
buildings 

Connectable 
buildings 

Residential 
buildings 

No. -- 2018 339 1679 
Volume (Mm3) -- 4.98 2.02 2.96 
Share of volume (%) -- 100 16.8 83.2 
HD (GWh/Y) CitySim Pro -- 50.15 -- 

LightGBM 134.09 50.12 (-0.05%) 83.97 
RF 130 50.05 (-0.2%) 79.95 

Multi-
functional 
buildings 

No. -- 39 31 8 
Volume (Mm3) --- 0.89 0.72 0.17 
Share of volume (%) - 100 80.90 19.1 
HD (GWh/Y) CitySim Pro -- 13.32 -- 

LightGBM 16.69 13.31 (-0.08%) 3.38 
RF 16.92 13.42 (+0.75%) 3.5 

Non-
residential 
buildings 

No. -- 226 61 165 
Volume (Mm3) -- 1.49 0.54 0.95 
Share of volume (%) -- 100 27 73 
HD (GWh/Y) CitySim Pro -- 13.5 -- 

LightGBM 36.24 13.52 (+0.15%) 22.72 
RF 36.9 13.8 (+2.22%) 23.1 

Buildings underwent slab insulation 
Type of 
buildings 

 Model Whole 
buildings 

Connected 
buildings 

Connectable 
buildings 

Residential 
buildings 

No. -- 2018 339 1679 
Volume (Mm3) -- 4.98 2.02 2.96 
Share of volume (%) -- 100 16.8 83.2 
HD (GWh/Y) CitySim Pro -- 48.58 -- 

LightGBM 129.36 48.55 (-0.06%) 80.81 
RF 126.71 48.93 (+0.72%) 77.78 

Multi-
functional 
buildings 

No. -- 39 31 8 
Volume (Mm3) --- 0.89 0.72 0.17 
Share of volume (%) - 100 80.90 19.1 
HD (GWh/Y) CitySim Pro -- 12.92 -- 

LightGBM 16.48 13.03 (+0.85%) 3.45 
RF 16.53 13.09 (+1.32%) 3.44 

Non-
residential 
buildings 

No. -- 226 61 165 
Volume (Mm3) -- 1.49 0.54 0.95 
Share of volume (%) -- 100 27 73 
HD (GWh/Y) CitySim Pro -- 12.59 -- 

LightGBM 34.11 12.55 (-0.32%) 21.56 
RF 33.9 12.65 (+0.48%) 21.25 

Buildings underwent wall insulation 
Type of 
buildings 

 Model Whole 
buildings 

Connected 
buildings 

Connectable 
buildings 

Residential 
buildings 

No. -- 2018 339 1679 
Volume (Mm3) -- 4.98 2.02 2.96 
Share of volume (%) -- 100 16.8 83.2 
HD (GWh/Y) CitySim Pro -- 48.61 -- 

LightGBM 128.05 48.57 (-0.08%) 79.48 
RF 125.66 49.02 (+0.84%) 76.64 

Multi-
functional 
buildings 

No. -- 39 31 8 
Volume (Mm3) --- 0.89 0.72 0.17 
Share of volume (%) - 100 80.90 19.1 
HD (GWh/Y) CitySim Pro -- 13.33 -- 

LightGBM 16.71 13.33 (0%) 3.38 
RF 16.79 13.33 (0%) 3.46 

Non-
residential 
buildings 

No. -- 226 61 165 
Volume (Mm3) -- 1.49 0.54 0.95 
Share of volume (%) -- 100 27 73 
HD (GWh/Y) CitySim Pro -- 13.79 -- 

LightGBM 36.42 13.7 (-0.65%) 22.72 
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RF 36.45 13.77 (-0.15%) 22.68 
Buildings underwent window insulation 

Type of 
buildings 

 Model Whole 
buildings 

Connected 
buildings 

Connectable 
buildings 

Residential 
buildings 

No. -- 2018 339 1679 
Volume (Mm3) -- 4.98 2.02 2.96 
Share of volume (%) -- 100 16.8 83.2 
HD (GWh/Y) CitySim Pro -- 42.99 -- 

LightGBM 114.08 42.95 (-0.09%) 71.13 
RF 117.15 43.29 (+0.7%) 73.86 

Multi-
functional 
buildings 

No. -- 39 31 8 
Volume (Mm3) --- 0.89 0.72 0.17 
Share of volume (%) - 100 80.90 19.1 
HD (GWh/Y) CitySim Pro -- 12.1 -- 

LightGBM 15.48 12.29 (+1.57%) 3.19 
RF 16.01 12.65 (+4.55%) 3.36 

Non-
residential 
buildings 

No. -- 226 61 165 
Volume (Mm3) -- 1.49 0.54 0.95 
Share of volume (%) -- 100 27 73 
HD (GWh/Y) CitySim Pro -- 13.01 -- 

LightGBM 37.12 13.89 (+6.76%) 23.23 
RF 35.01 12.98 (-0.23%) 22.03 

Buildings globally retrofitted 
Type of 
buildings 

 Model Whole 
buildings 

Connected 
buildings 

Connectable 
buildings 

Residential 
buildings 

No. -- 2018 339 1679 
Volume (Mm3) -- 4.98 2.02 2.96 
Share of volume (%) -- 100 16.8 83.2 
HD (GWh/Y) CitySim Pro -- 34.29 -- 

LightGBM 87.26 34.36 (+0.2%) 52.9 
RF 87.83 35.65 (+3.97%) 52.18 

Multi-
functional 
buildings 

No. -- 39 31 8 
Volume (Mm3) --- 0.89 0.72 0.17 
Share of volume (%) - 100 80.90 19.1 
HD (GWh/Y) CitySim Pro -- 9.78 -- 

LightGBM 12.99 10.36 (+5.93%) 2.63 
RF 14.02 11.05 (+12.99%) 2.97 

Non-
residential 
buildings 

No. -- 226 61 165 
Volume (Mm3) -- 1.49 0.54 0.95 
Share of volume (%) -- 100 27 73 
HD (GWh/Y) CitySim Pro -- 9.02 -- 

LightGBM 25.47 9.24 (+2.44%) 16.23 
RF 29.35 10.86 (+20.4%) 18.49 

 

4.5. DHN’s optimal expansion 
In the present study, an approach has been employed to establish an optimal 

energy-saving plan and the ideal expansion of the District Heating Network. This 

approach entails gaining a thorough understanding of the context and aims to chart 

a roadmap for maximizing network expansion and connecting new buildings over 

the next 30 years. In this endeavor, a wide range of factors, including the socio-

economic status of the context, technical aspects of the operating District Heating 

Network, and the physical conditions of individual buildings, have been considered. 



73 
 

The aim is to establish a framework that can facilitate the development of an annual 

action plan for guiding optimal expansion. It's worth noting that still there is room 

for this framework to be further enhanced through the integration of more complex, 

physics-based network analysis. 

Integral to advancing the analysis of energy conservation was the computation of 

peak heating demand for individual buildings within the case study. This peak 

demand corresponds to the highest HD during the coldest hour of the year, 

specifically in the targeted year of 2021. To achieve this, as previously explained, 

the XML file for buildings in Satom was fine-tuned based on measured data to 

obtain hourly HD data for buildings. As a result, through simulating the HD of 

connected buildings in CitySim Pro, it was established that the aggregated peak 

demand for buildings in Satom in 2021 occurred on January 11th at 5 a.m. 

Subsequently, the HD of buildings during this specific hour was utilized as a 

reference point for predicting the peak demand of connectable buildings. This 

prediction task was exclusively carried out using the LightGBM algorithm, which 

exhibited superior predictive performance compared to RF regression in the 

current research. 

When using LightGBM to forecast peak HD for buildings, it involved applying all 

the earlier introduced preparatory measures and training procedures, such as 

hyperparameter tuning, sensitivity analysis for the selection of statistically 

significant independent variables, and the training of the energy use model. Once 

again, these methods were systematically implemented on different building 

subsets, each characterized by specific attributes that influenced the architecture 

of the ML model for predicting the energy use model. 

The core concept behind the energy-saving scenario was to assess the maximum 

capacity of the Combined Heat and Power (CHP) generator and supply pipes to 

meet the heating demands of buildings. The central heating station of Satom SA 

features two 45 MW trash ovens, 5 MW of heat recovery from fumes, and dual 12.5 

MW fuel-based systems for peak demands, totaling 95 MW in normal operation, 

with an additional 25 MW as backup capacity. Furthermore, as depicted in figure 

4.13, a simplified model of the existing District Heating Network was constructed 

in ArcGIS to determine the maximum pipe capacity for heat transfer. 
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In this simplified model, the main supply pipes were retained, while secondary 

branches were removed. Pipes with similar diameters were grouped together to 

eliminate divergence points. After building this physical DHN model, the maximum 

load on each branch was assigned based on buildings already connected, 

considering all potential retrofitting scenarios. The cumulative load from outer 

branches towards the heating station provided the existing maximum load on the 

network. By subtracting this load from the maximum capacity of each branch 

according to its diameter, the remaining capacity of each branch to accommodate 

and serve additional buildings was calculated. Detailed information about the 

maximum load and remaining capacity of each branch can be found in Appendix 

E. 

 

Figure 4.13. Simplified model of existing District Heating Network (DHN) 
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Utilizing the remaining capacity of the District Heating Network for accommodating 

additional buildings, a comprehensive methodology was employed to strategically 

select buildings for connection until the capacity was reached and could no longer 

support further connections. This methodology began by identifying neighborhoods 

that were most suitable for connection, thus allowing for the expansion of the DHN 

into those areas. 

To achieve this, the study area was divided into a grid of meshes, each measuring 

500m by 500m in dimension, as depicted in figure 4.14. Subsequently, the average 

energy intensity and building density within each mesh were calculated and 

assigned to the respective mesh. 

 

Figure 4.14. Building density and energy intensity of buildings within each mesh 
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In the prioritization of meshes, factors such as building density and energy intensity 

were considered. However, building density held a greater weight in the 

prioritization process compared to energy intensity. This emphasis on building 

density stems from the general feasibility of connecting compact, high-rise 

buildings to the network, even though they may exhibit similar energy intensity as 

two-family buildings. The prioritization of neighborhoods is visually depicted in 

figure 4.15, and based on this prioritization, buildings within each mesh were 

examined sequentially. 

 

Figure 4.15. Mesh prioritization for optimal DHN expansion 
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Five scenarios were considered to explore the potential of the District Heating 

Network with different combinations of retrofitting technologies. These scenarios 

are outlined below: 

• The first scenario included connected buildings without retrofitting, paired 

with connectable buildings that were also not retrofitted. 

• In the second scenario, connected buildings without retrofitting were 

combined with connectable buildings that had undergone retrofitting. 

• The third scenario involved retrofitting for connected buildings while the 

connectable buildings remained non-retrofitted. 

• The fourth scenario encompassed connected buildings that were 

retrofitted, alongside connectable buildings that had also undergone 

retrofitting. 

• Finally, the fifth scenario explored an extreme condition where both 

connected buildings and potential connectable buildings had undergone 

global retrofitting. 

With the exception of the fifth scenario, which explores an extreme condition where 

both connected and connectable buildings are assumed to be globally renovated, 

the other scenarios consider windows substitution as the renovation technology for 

connected buildings. This choice is based on the understanding that connected 

buildings, already linked to a renewable energy resource, may have a reduced 

incentive for extensive renovations. 

In contrast, the selection of retrofitting technology for connectable buildings is 

determined by their socio-economic status. To achieve this, information regarding 

the value of one square meter of land is collected and spatially allocated to the 

buildings. The range from maximum to minimum values is divided into categories 

corresponding to the five available renovation technologies. Consequently, each 

category is associated with a specific renovation technology, serving as a 

compelling incentive for building owners to connect their properties to the District 

Heating Network. Figure 4.16 provides detailed information regarding the 

renovation technologies assigned to each building based on this socio-economic 

status. 
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Figure 4.16. Distribution of retrofitting technologies for connectable buildings considering socio-economic 
status of context 
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until the network reached its maximum capacity. Table 4.6 presents the maximum 

number of buildings that can be connected to the DHN for each of the energy-

saving scenarios. It also indicates the projected timeframe for connecting the 

selected buildings to the network, taking into account each of the scenarios. Figure 

4.17 provides a visual representation of the spatial distribution of feasible buildings 

suitable for network expansion in each scenario. It's worth noting that in this figure, 

the buildings added in each scenario should be combined with those from previous 

scenarios. 

Table 4.6. Maximum real connectable buildings considering various energy-saving scenarios  

Scenario Connected Connectable 
Real 

connectable 
buildings 

Total 
buildings 

connected 

Expansion 
timeframe 

(Year) 
Scenario 1 Not-retrofitted - - 431 - 
Scenario 2 Not-retrofitted Not-retrofitted 139 (7.5%) 570 - 
Scenario 3 Not-retrofitted Retrofitted 146 (7.9%) 577 7 
Scenario 4 Retrofitted Not-retrofitted 209 (11.3%) 640 20 
Scenario 5 Retrofitted Retrofitted 236 (12.7%) 667 31 
Extreme 
Scenario 

Globally 
retrofitted Globally retrofitted 705 (38.1%) 1136 52 

 

To assess the compatibility of the HD of connected buildings with the capacity of 

the DHN, the “Network simplex” algorithm was employed. The simplex algorithm is 

an iterative mathematical optimization technique used to solve linear programming 

problems. In this context, it was applied to ensure that the HD of connected 

buildings did not exceed the capacity of the DHN. 

In pursuit of this objective, a tree graph representing the DHN was constructed 

using the “Networkx algorithm”. The graph consisted of edges representing pipes 

with their respective heat transfer capacities and nodes representing buildings with 

their heating demands. To establish connections between buildings and the 

network, a near table was generated using ArcGIS to calculate the distances of 

buildings from the network's barycenter’s. Subsequently, individual buildings' 

heating demands were allocated to the nearest barycenter. 

Table 4.6 makes it clear that retrofitting connected buildings, while challenging, has 

a significant impact on reducing peak demand and enables the connection of a 

substantially larger number of buildings compared to retrofitting connectable 

buildings. However, retrofitting connectable buildings also creates additional 
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opportunities to supply more buildings with renewable energy resources. Despite 

these facts, it's evident that the existing network lacks the capacity to 

accommodate a large number of buildings. In the best-case scenario, Scenario 5, 

only 12.7% of connectable buildings can be connected. Achieving higher capacity 

would require global retrofitting, which is not a feasible or realistic scenario. 

 

Figure 4.17. Real connectable buildings considering different retrofitting scenarios 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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Scenario 5, as highlighted earlier, stands out as the most advantageous energy-

saving approach for prospective DHN expansion. In this regard, Figure 4.18 

provides a graphical representation of the stepwise integration of feasible buildings 

into the DHN over the upcoming 30 years, divided into 3-year intervals. 

 

Figure 4.18. Expansion roadmap of district heating network over next 30 years in 3-year intervals 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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To formulate a strategy for building renovations, a random selection process was 

employed to determine which connected buildings would undergo the retrofitting 

procedure, specifically involving window substitution, as previously outlined. It is 

worth emphasizing that the annual renovation rate remained consistent at 1% 

collectively for both connected and connectable buildings, accumulating over the 

years. 

With the presence of the existing DHN and actual connectable buildings, an 

algorithm was created to identify the shortest routes for connecting buildings to 

their nearest barycenter based on their centroid coordinates. Figure 4.19 depicts 

the optimized pathways for expanding the District Heating Network under the 

optimal energy-saving scenario. 

To develop this algorithm, a networkx-based tree graph was employed to generate 

all potential routes between barycenter and their nearest buildings. The “Minimum 

Spanning Tree (MST)” technique was then applied to identify the shortest route in 

this graph. Additionally, the “Heapq” library was integrated to consistently select 

the nearest building among all possible routes from a given individual building to 

its neighboring structures. 

While the developed algorithm yielded promising results in identifying the optimal 

routes for DHN expansion, there is still potential for improvement. The algorithm, 

as currently implemented, utilized a cloud of points as barycenter and distributed 

connectable buildings spatially without constraints on connections, which 

occasionally resulted in intersections with the existing network, leading to 

inefficiencies. To mitigate this issue, the optimal solution could involve mapping the 

networkx graph onto the urban pathway morphology and determining the shortest 

expansion route. However, it's essential to note that there are highly intricate 

algorithms designed specifically for finding the shortest paths without crossing 

other edges, although they can be computationally intensive. 

To achieve this objective, it becomes imperative to concurrently incorporate the 

existing network within the graph and pursue the optimal expansion of the network 

towards all connectable buildings simultaneously. To accomplish this, the 

integration of advanced algorithms such as the “Traveling Salesman” becomes 

indispensable. The Traveling Salesman algorithm is a renowned optimization 
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technique employed to find the most efficient route that visits a set of given 

locations and returns to the starting point while minimizing the total distance 

traveled. This endeavor can significantly elevate the complexity involved in 

advancing the algorithm. 

 

Figure 4.19. Optimal expansion pathway for District Heating Network to connect feasible buildings 

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community
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As per the proposed optimal network expansion plan, which leverages a highly 

efficient algorithm to connect buildings through the shortest feasible routes, the 

expansion project will require approximately 8 kilometers of additional piping. This 

is to be added to the existing network, which already spans a length of 79 

kilometers 

Following the optimal energy-saving scenario, the annual HD and maximum peak 

demand of buildings are computed at the urban scale. The calculations are 

presented in Table 4.7.  

Table 4.7. The annual heating demand and peak demand of buildings connected after DHN expansion 

Type of buildings  Model Annual Demand 
(GWh/Y) 

Peak Demand 
(MWh) 

Residential 
buildings No. -- 538 

 Volume (Mm3) -- 2.48 
 HD LightGBM 56.19 19.9 
Multi-functional 
buildings No. -- 37 

 Volume (Mm3) --- 0.85 
 HD (GWh/Y) LightGBM 14.57 5.41 
Non-residential 
buildings No. -- 92 

 Volume (Mm3) -- 0.64 
 HD (GWh/Y) LightGBM 16.42 5.12 

 

When considering the capacity of the CHP generator, it becomes evident that it 

holds substantial potential to serve a considerably larger number of buildings. 

However, this potential can only be fully harnessed if the heat transfer capacity of 

the network is substantially improved. To tackle this challenge, there are several 

viable scenarios worthy of consideration. 

One viable strategy entails the installation of new pipes and the resizing of existing 

ones within the network. This approach would necessitate a significant 

infrastructural adjustment to ensure it can adequately handle the increased 

demand for heat transfer. 

Alternatively, another feasible option is to seek support from a new or existing CHP 

plant that comes equipped with its own well-established piping infrastructure. By 

leveraging the capabilities of such a plant and integrating it into the existing 

network, the limitations of the current system could be effectively overcome. 
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Both of these strategies present promising avenues for expanding the network's 

capacity and ensuring that it can fully meet the heating demands of an expanded 

user base. 

Furthermore, taking into account the statistical projection that over the next three 

decades, the frequency of buildings connected to the network will increase by 55% 

(equivalent to a 21% increase in the volume of buildings), the annual heating 

demand has only experienced a modest 8.2% increase, rising from 80.57 (GWh/Y) 

to 87.18 (GWh/Y). This notable achievement can be attributed to the effectiveness 

of energy-saving scenarios that incorporate various renovation technologies. In 

this light, it becomes imperative to incentivize property owners to undertake 

renovations and thereby tap into additional renewable energy resources.  

The benefits of such a proactive approach are multifaceted. Firstly, it contributes 

to the reduction of greenhouse gas emissions, playing a pivotal role in combating 

climate change. Secondly, the expansion of the District Heating Network paves the 

way for a more sustainable and eco-friendlier urban environment, leading to 

cleaner air quality and reduced pollution. Furthermore, as the DHN grows, it offers 

a reliable and cost-effective solution for meeting the heating needs of a burgeoning 

population of connected buildings. 

In conclusion, the combined efforts of expanding the DHN and promoting energy-

saving renovations hold significant promise for contributing to improvements in 

climate conditions. 

 

 

 

 

 

 

 



86 
 

5. CONCLUSION 
The research undertaken in this thesis, has unveiled a comprehensive exploration 

of advanced methodologies aimed at enhancing our understanding of urban 

building energy dynamics. By amalgamating the principles of Urban Building 

Energy Modeling (UBEM) with the potency of Machine Learning (ML) techniques, 

the study has made notable strides in assessing the potential for energy savings 

and harnessing renewable energy resources within the context of Satom. 

Fundamental to the study was the development of a solid model of buildings. This 

was done carefully using Geographic Information System (GIS) software. This step 

not only made the modeling process more accurate but also made it easier to 

gather important information in the GIS database. By adding geographical details 

to the model, we got a better understanding of building features and where they 

are located, making our findings stronger. 

The incorporation of LightGBM and Random Forest, both cutting-edge ML 

algorithms, has introduced a new era of Data-driven analysis. These techniques, 

leveraged through a bottom-up approach, have demonstrated remarkable 

predictive capabilities, enabling precise estimations of energy demand patterns 

and revealing insights into optimal utilization of renewable energy sources. The 

integration of state-of-the-art ML techniques has enabled a thorough assessment 

of building energy dynamics, leading to a more comprehensive view of energy 

efficiency. 

The strength of the methodologies employed lies in their complementary nature. 

The harmonious interplay of data-driven techniques with a physically grounded GIS 

model has generated a comprehensive analytical approach that effectively 

captures the intricacies of urban building energy dynamics. The proficiency 

showcased by LightGBM and Random Forest, has unveiled a multifaceted 

perspective on heating demand patterns, potential energy savings, and the 

feasibility of renewable energy integration. However, in the context of this research, 

LightGBM outperforms RF in terms of both computational speed and accuracy, 

whether at the Building-scale or the Urban-scale. Consequently, the utilization of 
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LightGBM proved advantageous in predicting peak demand for buildings, which in 

turn facilitated the analysis of potential DHN expansion. 

Moreover, the research has embarked on an innovative journey, constructing a 

forward-looking roadmap for the next 30 years within a case study focused on 

exploring energy-saving possibilities within buildings. This proactive initiative 

intricately intertwined investigations into the physical characteristics and energy 

efficiency of structures with a consideration of the socio-economic context of the 

surrounding environment. By introducing custom renovation scenarios tailored to 

each building and subsequently assessing post-renovation energy demands, a 

careful and thoughtful selection process took place, designating specific buildings 

for integration into the district heating network. 

The true strength of this initiative lies in its iterative nature, manifesting through a 

recurring cycle, progressively optimizing the network's capacity to accommodate 

connectable buildings. This comprehensive endeavor exemplifies a pioneering 

approach that harmoniously balances technological innovation, environmental 

considerations, and infrastructural planning, ultimately paving the way towards a 

harmonious and sustainable urban energy ecosystem in the years to come. 

To sum up, as long as cities continue to face the challenge of increasing energy 

needs, these approaches provide valuable instruments to shape policy creation, 

infrastructure design, and the sustainable growth of urban areas. They point the 

way toward a future marked by efficient energy use and a strong commitment to 

environmental well-being. 

 

5.1. Limitations of the Study 
The current study faced several limitations, with the primary constraint being the 

scarcity of data within the context of the case study. The methodology employed 

heavily relies on Data-driven models, and the availability of data is a critical factor 

in the development of highly effective energy use models. Specifically, the lack of 

socio-economic information, often deemed confidential or private, posed a 

significant challenge, as it hindered the ability to incorporate occupants' behavior 
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into the Data-driven models. Furthermore, the limited richness of available physical 

data, which serves as the foundational data source for energy use models, 

presented obstacles in advancing predictive models. These data limitations 

underscore the need for more comprehensive and diverse datasets to enhance the 

accuracy and applicability of future research efforts in this domain. 

Another significant constraint revolved around the researcher's limited proficiency 

in deploying advanced and complex machine learning (ML) algorithms. While the 

ML methods employed in this study exhibited considerable predictive power, it is 

apparent that more complex ML approaches, such as elaborate ensemble models, 

artificial neural networks, or deep learning methodologies, have the capacity to 

achieve even greater predictive accuracy. These sophisticated ML techniques 

often entail intricate architectures, multiple layers, and intricate mathematical 

computations, allowing them to capture subtle data patterns and intricate 

relationships, which can result in more precise predictive outcomes. 

Furthermore, the building energy use models developed for predicting peak 

demand and evaluating the potential network expansion are constructed based on 

simplified assumptions regarding the physical model of the district heating network 

(DHN) and the willingness of property owners to adopt retrofitting technologies. 

Any deviations or oversimplifications in these underlying assumptions have the 

potential to introduce inaccuracies into the models. Real-world conditions 

frequently encompass a wide range of diverse factors that may not perfectly 

conform to the assumptions made in the models, ultimately impacting the reliability 

of energy demand predictions.  

Last but not least, the study proposed a forward-looking roadmap for district 

heating network (DHN) expansion, it primarily focuses on the technical aspects of 

expansion. In reality, DHN expansion is a multifaceted process that involves 

navigating a complex landscape of regulatory requirements, financial 

considerations, and political dynamics. Issues related to permitting, securing 

funding, and gaining community and stakeholder support can pose substantial 

challenges. The study doesn't delve into these intricate complexities, which could 

impact the feasibility and timeline of implementing the proposed DHN expansion 

strategies. 
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5.2. Recommendation for future research 
To address the limitations of the current research, while still taking advantage of 

its methodological approach, future research should focus on collecting more 

comprehensive and diverse datasets. This could be done by partnering with other 

organizations that have access to relevant data, such as utility companies or 

government agencies. Additionally, researcher could develop new methods for 

extracting information from existing datasets. 

In addition, future research on DHN expansion should develop a more 

comprehensive methodology that uses a hybrid model. This model would integrate 

data-driven predictive algorithms for energy use models with process-driven 

models. Process-driven models are based on physical principles that govern the 

flow of energy through a system. These models can be used to perform detailed 

analysis of the network without having to simplify it, however they can be 

computationally expensive. This would allow for more accurate and 

comprehensive planning of DHN expansion. 

Ultimately, future research on DHN expansion should focus on developing more 

accurate models that take into account a wider range of factors. This could be done 

by conducting more detailed surveys of property owners to understand their energy 

usage habits, their willingness to adopt energy-saving measures, and their financial 

constraints. Additionally, more sophisticated Machine Learning techniques could 

be used to identify patterns in the data and to make predictions about future energy 

use. Mutually, future research should consider the regulatory, financial, and 

political factors that could impact DHN expansion. By understanding these factors, 

researcher could develop more realistic and feasible roadmaps for DHN 

expansion. 
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APPENDIX A 

The code block tunes LightGBM’s hyperparameters utilizing Optuna optimizer. 

# Importing libraries 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import LightGBM as lgb 
from sklearn import linear_model 
from sklearn.model_selection import train_test_split, KFold 
from sklearn.metrics import mean_squared_error 
import optuna 
import time 

# Readeing the dataset 
directory = r"C:\example" 
df = pd.read_csv(directory + r"\Database.csv") 
 
# Setting the value for x and y 
X = df[['Age', 'Land use', 'S/V', 'Occupants', 'Wall thickness', 'U Roof', 'U Wall', 'U 
Slab', 'U Window']] 
 
y = df['EP (kWh/m3/Y)'] 
 
# Splitting the dataset into train and test set 
X_train, X_test, y_train, y_test = train_test_split(X, y ,test_size=0.2, 
random_state=42) #TODO adjust test size based on the frequency of samples 

# Start timer 
start = time.time() 
 

# Define the objective function for Optuna 
def objective(trial): 
 
    param = { 
        'objective': 'regression', 
        'metric': 'rmse', 
        'verbosity': -1, 
        'boosting': 'gbdt', 
        'force_col_wise': True, 
        'num_leaves': trial.suggest_int('num_leaves', 50, 100), 
        'max_depth': trial.suggest_int('max_depth', 1, 5), 
        'min_data_in_leaf': trial.suggest_int('min_data_in_leaf', 1 , 10), 
        'feature_fraction': trial.suggest_float('feature_fraction', 0.4, 1.0), 
        'bagging_fraction': trial.suggest_float('bagging_fraction', 0.4, 1.0), 
        'bagging_freq': trial.suggest_int('bagging_freq', 1, 10), 
        'lambda_l1': trial.suggest_float('lambda_l1', 0.0, 0.6), 
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        'lambda_l2': trial.suggest_float('lambda_l2', 0.0, 0.6), 
        'max_bin': trial.suggest_int('max_bin', 500, 1000), 
    } 
 
    # Perform K-Fold CV 
    n_fold = 5 #TODO adjust No. Folds based on the frequency of samples 
    rmse_scores = [] 
    kf = KFold(n_splits=n_fold, shuffle=True, random_state=42) 
    for train_index, valid_index in kf.split(X_train): 
        train_x, valid_x = X_train.iloc[train_index], X_train.iloc[valid_index] 
        train_y, valid_y = y_train.iloc[train_index], y_train.iloc[valid_index] 
 
        train_dataset = lgb.Dataset(train_x, label=train_y) 
        valid_dataset = lgb.Dataset(valid_x, label=valid_y) 
 
        pruning_callback = optuna.integration.LightGBMPruningCallback(trial, 
'rmse') 
 
        lgbr = lgb.train(param, train_dataset, valid_sets=[valid_dataset], 
callbacks=[pruning_callback]) 
        pred = lgbr.predict(valid_x) 
        rmse_score = np.sqrt(mean_squared_error(valid_y, pred, squared=False)) 
        rmse_scores.append(rmse_score) 
 
    return np.mean(rmse_scores) 
 
 
# Create LightGBM regressor 
study = optuna.create_study(direction='minimize') 
study.optimize(objective, n_trials=500) 
 
# Stop timer 
stop = time.time() 
 
# Get the best parameters and best score 
print('Best hyperparameters: {}'.format(study.best_params)) 
print('Best RMSE: {}'.format(study.best_value)) 
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APPENDIX B 

The code block trains energy-use model using LightGBM and tuned 

hyperparameters and makes prediction for unseen data. 

# Importing libraries 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import LightGBM as lgb 
from sklearn import linear_model 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error, r2_score 
import time 

 # Readeing the dataset 
directory = r"C:\example" 
df = pd.read_csv(directory + r"\Database.csv") 
 
# Setting the value for x and y 
X = df[['Age', 'Land use', 'S/V', 'Occupants', 'Wall thickness', 'U Roof', 'U Wall', 'U 
Slab', 'U Window']] 
 
y = df['EP (kWh/m3/Y)'] 
 
# Splitting the dataset into train and test set 
X_train, X_test, y_train, y_test = train_test_split(X, y ,test_size=0.2, 
random_state=42) #TODO adjust test size based on the frequency of samples 

# Define the LightGBM hyperparameters 
params = { 
    'objective': 'regression', 
    'metric': 'rmse', 
    'verbosity': -1, 
    'boosting': 'gbdt', 
    'force_col_wise': True, 
    'num_leaves': 53, 
    'max_depth': 5, 
    'min_data_in_leaf': 1, 
    'feature_fraction': 0.84, 
    'bagging_fraction': 0.8, 
    'bagging_freq': 8, 
    'lambda_l1': 0.01, 
    'lambda_l2': 0.1, 
    'max_bin': 807 
} 
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# Create dataset for training 
train_data = lgb.Dataset(X_train, label=y_train) 
 
# Start timer 
start = time.time() 
 
# Train the model 
model = lgb.train(params, train_data, num_boost_round= 1000) 
 
# Stop timer 
stop = time.time() 
 
# Make predictions on the testing set 
y_pred = model.predict(X_test) 
 
# Evaluate the model 
RMSE = np.sqrt(mean_squared_error(y_test, y_pred)) 
print('RMSE - testing set: {}'.format(RMSE)) 
 
y_prediction = model.predict(X) 
RMSE = np.sqrt(mean_squared_error(y, y_prediction)) 
print('RMSE - all dataset: {}'.format(RMSE)) 
print("Training time: {}s".format(stop - start)) 
 
df['Prediction_LightGBM'] = y_prediction 
df.to_csv(directory + r"\Database.csv") 
 
# Regression performance 
new_y = y[:, None] 
 
regr = linear_model.LinearRegression() 
regr.fit(new_y, y_prediction) 
line = regr.predict(new_y) 
r2 = r2_score(new_y, y_prediction) 

# Predicting unseen data 
df = pd.read_csv(directory + r"\Unseen.csv") 
 
# Setting the value for x and y 
X = df[['Age', 'Land use', 'S/V', 'Occupants', 'Wall thickness', 'U Roof', 'U Wall', 'U 
Slab', 'U Window']] 
 
# Prediction 
prediction = model.predict(X) 
df['Prediction_lightGBM'] = prediction 
df.to_csv(directory + r"\Unseen.csv") 
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APPENDIX C 

The code block tunes Random Forest (RF) regression’s hyperparameters utilizing 

Genetic Algorithm (GA). 

# Importing libraries 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.model_selection import train_test_split, KFold 
from sklearn.metrics import mean_squared_error 
from sklearn import linear_model 
import random 
import time 

# Readeing the dataset 
directory = r"C:\example" 
df = pd.read_csv(directory + r"\Database.csv") 
 
# Setting the value for x and y 
X = df[['Age', 'Land use', 'S/V', 'Occupants', 'Wall thickness', 'U Roof', 'U Wall', 'U 
Slab', 'U Window']] 
 
y = df['EP (kWh/m3/Y)'] 
 
# Splitting the dataset into train and test set 
X_train, X_test, y_train, y_test = train_test_split(X, y ,test_size=0.2, 
random_state=42) #TODO adjust test size based on the frequency of samples 
 
# Define the Genetic Algorithm parameters 
population_size = 20 
num_generations = 10 
mutation_rate = 0.1 

# Define the range of values for the hyperparameters 
param_ranges = { 
    'n_estimators': (100, 150), 
    'max_depth': (10, 15), 
    'min_samples_split': (2, 5), 
    'min_samples_leaf': (2, 5) 
} 
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# Define the fitness function 
def evaluate_fitness(individual): 
    # Create a Random Forest with the hyperparameters specified in the individual 
    rf = RandomForestRegressor( 
        n_estimators=individual[0], 
        max_depth=individual[1], 
        min_samples_split=individual[2], 
        min_samples_leaf=individual[3], 
    ) 
 
    n_fold = 5 #TODO adjust No. Folds based on the frequency of samples 
    acc = [] 
    kf = KFold(n_splits=n_fold, shuffle=True, random_state=42) 
    for train_index, valid_index in kf.split(X_train): 
        train_x, valid_x = X_train.iloc[train_index], X_train.iloc[valid_index] 
        train_y, valid_y = y_train.iloc[train_index], y_train.iloc[valid_index] 
 
        rf.fit(train_x, train_y) 
        accuracy = rf.score(valid_x, valid_y) 
        acc.append(accuracy) 
 
    return np.mean(acc) 
 
# Define the genetic operators 
def create_individual(): 
    return [np.random.randint(param_ranges[param][0], param_ranges[param][1] + 
1) for param in param_ranges] 
 
def crossover(parent1, parent2): 
    child = [] 
    for i in range(len(parent1)): 
        if np.random.random() < 0.5: 
            child.append(parent1[i]) 
        else: 
            child.append(parent2[i]) 
    return child 
 
def mutate(individual): 
    for i in range(len(individual)): 
        if np.random.random() < mutation_rate: 
            for key in param_ranges.keys(): 
                individual[i] = np.random.randint(param_ranges[key][0], 
param_ranges[key][1] + 1) 
    return individual 
 
# Start timer 
start = time.time() 
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# Initialize the population 
population = [create_individual() for _ in range(population_size)] 
 
# Start the evolution process 
for generation in range(num_generations): 
    # Evaluate the fitness of each individual 
    fitness_scores = [evaluate_fitness(individual) for individual in population] 
 
    # Select the fittest individuals for reproduction 
    selected_indices = np.argsort(fitness_scores)[::-1][:int(population_size/2)] 
    selected_individuals = [population[idx] for idx in selected_indices] 
 
    # Create the next generation through crossover and mutation 
    offspring = [] 
    while len(offspring) < population_size: 
        i = random.randint(0, len(selected_individuals) - 1) 
        j = random.randint(0, len(selected_individuals) - 1) 
        parent1 = selected_individuals[i] 
        parent2 = selected_individuals[j] 
        child = crossover(parent1, parent2) 
        child = mutate(child) 
        offspring.append(child) 
 
    # Replace the old population with the new generation 
    population = offspring 
 
# Select the best individual from the final population 
best_individual = max(population, key=evaluate_fitness) 
best_accuracy = evaluate_fitness(best_individual) 
 
# Stop timer 
stop = time.time() 
 
print("Best Hyperparameters:", best_individual) 
print("Best Accuracy:", best_accuracy) 
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APPENDIX D 

The code block trains energy-use model using Random Forest regression and 

tuned hyperparameters and makes prediction for unseen data. 

# Importing libraries 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
from sklearn import linear_model 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error, r2_score 
import time 

# Readeing the dataset 
directory = r"C:\example" 
df = pd.read_csv(directory + r"\Database.csv") 
 
# Setting the value for x and y 
X = df[['Age', 'Land use', 'S/V', 'Occupants', 'Wall thickness', 'U Roof', 'U Wall', 'U 
Slab', 'U Window']] 
 
y = df['EP (kWh/m3/Y)'] 
 
# Splitting the dataset into train and test set 
X_train, X_test, y_train, y_test = train_test_split(X, y ,test_size=0.2, 
random_state=42) #TODO adjust test size based on the frequency of samples 

# Define the RandomForestRegressor hyperparameters 
params = {'n_estimators': 130, 
          'max_depth': 12, 
          'min_samples_split': 4, 
          'min_samples_leaf': 2, 
          'bootstrap': True, 
          } 
 
# Start timer 
start = time.time() 
 
# Train the model 
model = RandomForestRegressor(**params) 
model.fit(X_train, y_train) 
 
# Stop timer 
stop = time.time() 
# Make predictions on the testing set 
y_pred = model.predict(X_test) 
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# Evaluate the model 
RMSE = np.sqrt(mean_squared_error(y_test, y_pred)) 
print('RMSE - testing set: {}'.format(RMSE)) 
 
y_prediction = model.predict(X) 
RMSE = np.sqrt(mean_squared_error(y, y_prediction)) 
print('RMSE - all dataset: {}'.format(RMSE)) 
print("Training time: {}s".format(stop - start)) 
df['Prediction_RF'] = y_prediction 
df.to_csv(directory + r"\Database.csv") 
 
# Regression performance 
new_y = y[:, None] 
 
regr = linear_model.LinearRegression() 
regr.fit(new_y, y_prediction) 
line = regr.predict(new_y) 
r2 = r2_score(new_y, y_prediction) 

# Predicting unseen data 
df = pd.read_csv(directory + r"\Unseen.csv") 
 
# Setting the value for x and y 
X = df[['Age', 'Land use', 'S/V', 'Occupants', 'Wall thickness', 'U Roof', 'U Wall', 'U 
Slab', 'U Window']] 
 
# Prediction 
prediction = model.predict(X) 
df['Prediction_RFR'] = prediction 
df.to_csv(directory + r"\Unseen.csv") 
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APPENDIX E 
The table provides comprehensive data regarding the current network, including 

pipe codes, maximum capacity, and the existing load on each branch, considering 

various scenarios that account for connected buildings. All heating demand values 

in the table are expressed in the unit of watt-hours (WH). 
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300/560 A36 A38 31796000 1166252.75 1109285.375 1099630.75 1115889.25 1003486.188 810728.4375 

300/560 A32 A35 31796000 16220395 15521010 15356562 15465106 14370029 11500573 

300/560 A3 A21 31796000 22041590 21145300 20976290 21121782 19513334 16017678 

300/560 A3 A20 31796000 61886.87109 62680.92188 59477.96094 62276.69141 59718.99609 52360.59766 

300/560 A2 A3 31796000 22734186 21832474 21664242 21813114 20156156 16625853 

300/560 A2 A4 31796000 4554414 4345890 4324493 4393961 4067559 3274550 

300/560 A1 A2 31796000 27590144 26478718 26285708 26505358 24521646 20189192 

100/250 A74 A76 1975000 295375.125 282689.5625 279438.7813 286997.3438 253470.0625 209011.8438 

100/250 A61 A63 1975000 88464.51563 85114.875 84859.00781 76601.00781 73757.82813 54910.10156 

100/250 A60 A62 1975000 236901.6406 231142.6094 229367.8125 222078.375 212464.5313 162690.9219 

100/250 A57 A59 1975000 136632.625 130829.3047 126993.1484 123553.2031 117995.9375 94473.34375 

100/250 A65 A68 1975000 238563.2344 234656.6406 230721.7969 231866.875 201544.6563 178943.2813 

100/250 A56 A58 1975000 249133.7031 235580.1094 229266.8906 231753.2813 240738.2188 155197.8125 

100/250 A51 A53 1975000 694633.8125 671495 667443.125 659671.875 572588.9375 482148.6875 

100/250 A13 A14 1975000 896991.0625 857712.4375 848555.125 858402.5 756693 627657.6875 

100/250 A10 A12 1975000 60958.17969 52050 50092.96094 59665.80078 60958.17969 22981.67969 

100/250 A29 A30 1975000 476485.75 429385.4063 414390.4063 469932.4063 476485.75 314416.2813 

125/280 A69 A71 3398000 365174.4375 339964.5938 333737.5625 340897.3438 332414.9375 238555.8125 

125/280 A66 A70 3398000 552260.0625 534330.375 542336.25 540714.6875 519174.2188 498252.2188 

125/280 A55 A64 3398000 58699.8125 53941.64844 53125.90234 53535.01563 50616.66406 32166.97266 

125/280 A44 A45 3398000 355216.5 333628.4063 329020.2813 338242.9063 305835.9375 232572.2969 

125/280 A38 A40 3398000 207690.8281 197475.0156 195093.8594 196905.9844 176971.75 145393.9219 

125/280 A5 A7 3398000 907691.125 894997.9375 888660.875 894870.25 849342 755247.8125 

125/280 A32 A34 3398000 771653.25 749398.75 748965.75 744702.3125 665742.1875 591025.6875 

125/280 A22 A33 3398000 209017.8281 209820.2031 206128.0156 196956.1563 203122.0781 189496.1719 

150/315 A48 A49 6600000 269134.3125 259295.8906 252029.3125 257932.125 238192.9219 185649.1406 

150/315 A60 A61 6600000 88464.52344 85114.88281 84859.00781 76601.00781 73757.82813 54910.10156 

150/315 A48 A50 6600000 301270.3438 297929.1875 294448.5938 295883.5313 264335.2188 213332.1563 

150/315 A55 A65 6600000 507850.9375 484311.0938 481570.5 486696.4063 436489.75 339653.5625 

150/315 A57 A60 6600000 781076.5 746324 732765.1875 722636.9375 693160.5625 512271.75 

150/315 A56 A57 6600000 1175935.25 1124909.375 1102937.625 1081852.125 1047230.5 782296.9375 

150/315 A17 A19 6600000 127528.1094 124142.8672 121477.1563 131932.2813 125973.0781 83518.55469 

150/315 A15 A16 6600000 296840.5625 269350.7813 266156.0313 254961.1875 251941.3594 156304.375 

150/315 A46 A48 6600000 1203022.625 1175764.75 1147148 1132734.25 1079454.25 783094.5 

150/315 A46 A47 6600000 301379.1875 288042.75 283452.5313 286663.9688 255209.8594 199594.3906 

150/315 A51 A54 6600000 204170.5781 204991.5469 184030.6875 194432.6875 198687.625 120207.3906 

150/315 A37 A44 6600000 2120867 2052561.5 2016244.5 2014782.25 1889042.75 1408309.75 
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150/315 A8 A11 6600000 541888.5625 503093.5313 520577.4375 538533.3125 515634.0313 410586.0938 

150/315 A13 A15 6600000 698408.375 648304.625 632334.625 634467.125 648121.875 407215.0625 

150/315 A6 A9 6600000 195646.9219 187989.5781 188861.4219 189318.7813 166907.2031 147163.5313 

150/315 A6 A8 6600000 3151960.5 2978317.5 2961482.75 3021746 2800969 2164174.25 

150/315 A5 A6 6600000 3484348.5 3295296.5 3279821.75 3342279 3080108.25 2401200.5 

150/315 A41 A42 6600000 449802.5625 432806.125 429521.2188 430077.1875 389733.75 322800.875 

150/315 A23 A24 6600000 456539.8125 438199.8125 430663.625 438908.375 408939.4063 322627.4688 

150/315 A25 A26 6600000 1485469 1485256.75 1484060.875 1459879.5 1313780.625 1288258 

150/315 A29 A31 6600000 285347.3438 274755.4688 273476.5313 279612.7188 250311.2031 205693.1719 

200/400 A72 A74 11146000 1270610.25 1221151.875 1220222 1234925.5 1100369.375 956448.3125 

200/400 A72 A73 11146000 42374.80859 44796.94922 43591.52344 43751.26172 42374.80859 38635.67188 

200/400 A69 A72 11146000 1435744 1378223.375 1378700.625 1391503.875 1247296.25 1066069 

200/400 A52 A56 11146000 2957786.75 2829629.25 2765537.5 2793130 2700499 2079282.5 

200/400 A17 A18 11146000 0 0 0 0 0 0 

200/400 A4 A5 11146000 4554413.5 4345890 4324493 4393961 4067559.25 3274549.5 

250/500 A52 A55 20224000 5223174 4991982 4990023 4971909.5 4623860 3782894.25 

250/500 A43 A52 20224000 9487805 9005028 8934846 8992995 8456270 6736617.5 

250/500 A36 A37 20224000 14686924 14050802 13896990 13994191 13058425 10408417 

250/500 A39 A41 20224000 784628.6875 744021.3125 738564.5 752906.3125 679586.4375 538481.6875 

250/500 A23 A25 20224000 3259388 3178663.5 3148087.5 3189482.75 2906566.75 2590958.75 

250/500 A27 A28 20224000 0 0 0 0 0 0 

250/500 A27 A29 20224000 847468.375 789776.1875 773502.1875 833118 798577.3125 589979.125 

150/315 A8 A10 6600000 2443945 2316918 2282577.5 2324826 2148694.25 1638306.875 

150/315 A10 A13 6600000 2052599.625 1950226.875 1920557.875 1940210.25 1804537.375 1383127.125 

150/315 A15 A17 6600000 401567.7813 378953.875 366178.5938 379505.9063 396180.5313 250910.6875 

150/315 A65 A67 6600000 155620.6406 142489.9531 145347.6406 151389.8438 140078.2813 94916.67969 

200/400 A55 A66 11146000 4166336.75 3979936.25 3986792.5 3988433.25 3710025 3096111.25 

200/400 A66 A69 11146000 2791018 2660436.5 2656142.5 2670609.5 2438535.5 1986437.25 

200/400 A74 A75 11146000 216907.6563 204659.4375 206017.6875 207800.2344 187891.0469 154906.3438 

150/315 A43 A51 6600000 1412720.75 1370518.75 1339140.125 1355446 1216321.25 968999.3125 

250/500 A37 A43 20224000 11583892 11028679 10918755 11013884 10297801 8217429.5 

150/315 A44 A46 6600000 1615851.5 1578987.75 1543181.125 1532237.75 1446113.125 1068736 

250/500 A35 A36 20224000 16135364 15436001 15272199 15381835 14297268 11430124 

300/560 A21 A22 31796000 17495440 16772908 16603920 16690138 15477736 12504386 

250/500 A25 A27 20224000 1013142.188 955185.8125 937756.5625 993737.1875 939401.6875 724364.3125 

250/500 A21 A23 20224000 4387922 4269432 4217854.5 4278476 3900796.75 3392617.25 

300/560 A22 A32 31796000 17286422 16563088 16397792 16493182 15274614 12314890 

300/560 A38 A39 31796000 860976.3125 820348.5 811947.375 826260 742945.5625 596137.4375 

 


