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Summary

Face-to-face interactions in human gatherings have a significant impact in various
contexts, including disease spreading and opinion dynamics. In this thesis, we
investigate the temporal properties of group interactions in different settings using
data recorded using the SocioPatterns platform. Our analysis focuses on higher-
order structures, revealing that the distributions of group durations exhibit large
tails, indicating the absence of a typical time scale for higher-order interactions
in human gatherings. By examining the accompanying metadata associated with
the contact data, we explore the role of homophily, which refers to the tendency
of individuals to interact with others with whom share similar attributes, in face-
to-face interactions. Interestingly, our findings demonstrate that the presence of
higher-order homophily is possible even in social settings where the corresponding
low-order homophily is absent. To better understand these dynamics, we present
a simple model for human face-to-face interactions. This initial model fails to
accurately reproduce the higher-order temporal statistics observed in the data. As
a solution, we present a modified version of the model that successfully captures
both levels of the empirical temporal statistics. The insights gained from this
research provide a valuable foundation for future studies aiming to uncover the
fundamental properties of human interactions. The exploration of higher-order
structures and homophily holds great potential in deepening our understanding of
the complex dynamics inherent in face-to-face interactions.
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Chapter 1

Introduction

The complex nature of various biological, social, and technological systems stems
from the many interactions between their components [1]. In recent years, various
complex systems have been effectively characterized using network representations,
in which interconnected nodes represent interacting pairs of elements of the system.
The study of networks has a long history with roots in sociology [2, 3] and graph
theory [4, 5], over the last two decades, the interdisciplinary field of network science
has seen a significant expansion. Network science borrows from graph theory the
formalism to deal with the graphs drawn by the relations among the elements
of a system and from statistical physics the conceptual framework to deal with
randomness and seek universal organizing principles [6]. This approach allows us to
study the underlying network structure of different complex and disordered systems
in terms of fundamental laws that limit and determine their behaviour [7, 1].

The study of complex systems through network science has far-reaching im-
plications in various fields, including medicine, engineering, and economics. In
medicine, it has been used to identify key genes involved in disease modules and
pathways [8] and to predict the spread of infectious diseases [9, 10]. In engineering,
it has been used to study localized failures in communication networks and power
grids and design more robust and resilient technical systems that can withstand
disruptions [11, 12]. In economics, it has been used to model financial interactions,
such as co-ownership, and debtor-creditor relations, and leverage network scientific
tools to predict and mitigate financial risk [13, 14]. As such, Network Science
has become an important interdisciplinary field that is essential in understanding
complex systems and finding solutions to real-world problems.

The relation between network science and social sciences is twofold [15, 16].
Firstly, many of the fundamental concepts and tools used by scientists for studying
complex networks stem from social sciences. Straightforward examples of this
are different network measures such as node centrality or clustering coefficient
that were initially proposed in sociometry to quantify the social importance of
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each individual [17]. One of the first representations of a complex system using
the language of graph theory - predating its formal definition - is the so-called
sociogram, developed in the pioneering studies by Moreno and Jennings [2, 18],
to depict relations among a group of people graphically. Secondly, the study of
social networks is one of the most relevant applications of network science. The
topological structure of the graph drawn by the social interactions within a system
- that might be defined in different ways e.g. social proximity, exchange of emails,
engagements on social media... - has been proved to play a crucial role in the
dynamic of socially relevant dynamical processes occurring on the network. For
example in dynamical systems describing contagion processes the heavy-tailed
distribution in the number of contacts within a population causes the epidemic
threshold to vanish [9, 19] or the localized breakdown of a group of nodes can
cause systemic damages in large communication systems - modeling for instance
the World Wide Web - displaying processes known as cascading failures [11].

1.1 Temporal networks
As the field of network science has advanced, a growing necessity to move beyond
the conventional graph representation for networks has emerged. A significant
development in this regard is the introduction of temporal networks, which enable
the evolution of network’s topology over time [20].

Consider a system comprising of N individual nodes that engage in intermittent
dyadic interactions observed within a specific time frame ranging from t = tmin to
t = tmax. For instance, in a social network, these nodes could represent individuals,
in an ecological network they could describe species, and in a transport network, they
could denote different locations. A temporal network serves as our representation
of such observed interactions.

Definition 1 A temporal network GT = (VT , ET , T ) is defined by a set of nodes
{VT = 1, ..., N}, a set of contact events ET = e1, e2, ... and a time-window T .
A contact event e = (i, j, t, d) represents an interaction between nodes i, j ∈ VT

at time t which lasted for a duration d. The time window is defined so that for
all events in ET we have 0 ≤ t ≤ T and 0 ≤ d ≤ T .

Temporal networks offer a valuable framework for capturing the dynamic nature
of complex systems, allowing us to analyze the changes in connectivity patterns
and study the influence of time on network properties. By incorporating temporal
aspects, we gain a deeper understanding of the underlying mechanisms that shape
the network’s structure and behavior [21].

Temporal networks have found wide-ranging applications in various fields. For
instance, they have been employed to study human face-to-face interactions and
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1.2 – Higher-order structures in networks

physical proximity, allowing researchers to analyze the dynamics of social networks
and, for instance, gain insights into contagion phenomena [22, 23]. In neuroscience,
temporal networks have been instrumental in investigating functional connections
in the brain. By capturing the temporal dynamics of neuronal activity, researchers
gain insights into how different brain regions interact and form complex networks
underlying cognitive processes [24, 25]. Another notable application of temporal
networks is in the analysis of mobile phone calls and text messages. By consid-
ering the temporal ordering and patterns of communication, temporal networks
reveal valuable information about social relationships and communication dynamics
or insights in dynamical processes such as the spread of information within a
population [26, 27].

1.2 Higher-order structures in networks
An important limitation in the use of networks to model various complex systems
is that only pairwise interactions can be represented [28]. This means that the
evolution of the system under study can only come from dyads of elements influ-
encing each other. In this picture, interactions between groups of agents are either
neglected or projected down as combinations of pairwise interactions. Considering
a simple Ising model, a network can successfully represent a Hamiltonian of the
form:

H = −
Ø
i,j

Jijsisj (1.1)

In this case, the nodes of the networks would represent the spins, being in the two
possible states ↑= +1 or ↓= −1, and the weighted edges of the network would
represent the existence and strength of the interactions. If instead we consider an
Ising with plaquette (group) interactions between three elements, described by the
Hamiltonian:

H = −
Ø
i,j

Jijsisj −
Ø
i,j,k

Kijksisjsk (1.2)

we see that this system is impossible to represent as a network without assumptions
or loss of information on the plaquette interactions.

In several real-world systems, ranging from biology, neuroscience, ecology and
social sciences, group interactions are present and cannot be reduced to pairwise
relations [28, 29]. For instance, if we consider the interactions between different
scientists being co-authored papers, it is evident that a single paper with three
authors is a completely different entity with respect to three papers written by the
different pairs contained in the triplet [30]. In neuroscience, neuronal dynamics
display synergistic behaviors that require interactions among multiple neurons to
be predicted [31]. In ecosystems, three or more species routinely compete for food
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and territory in complex ecosystems [32]. The presence of a third species influences
the interaction between the other two, by affecting directly the interaction (the
link) rather than the species involved (the nodes).

In the context of social networks, when considering opinion formation, rumor
spreading and similar dynamics the role played by group interactions can be
significant [33].

Peer pressure (sometimes referred to in the literature as peer influence) is a
classic example that highlights the importance of studying group interactions in
the context of social networks. Peer pressure refers to the influence exerted by
a group of people on an individual’s thoughts, beliefs, and behaviors. It can
significantly impact decision-making processes, ranging from simple choices like
fashion preferences to more consequential decisions like substance abuse or academic
performance [34, 35].

In recent years there has been a growing interest of the network scientific commu-
nity towards finding and analyzing explicit representations of group interactions in
interconnected systems [36]. The natural candidates for providing such descriptions
are hypergraphs and simplicial complexes (see Figure 1.1).

Figure 1.1: Group interactions in complex systems are not taken into account
when representing systems as networks (left). Explicit representations of higher-
order interactions are provided by hypergraphs (center) and simplicial complexes
(right). From Battiston et al., 2021 [36].

Hypergraphs are the straightforward generalization of graphs, allowing to encode
interactions among arbitrary numbers of nodes.

Definition 2 A hypergraph is defined by a set V , whose elements are known
as vertices or nodes, and by a family E of subsets of V , known as hyperedges.
A hypergraph is denoted by H = (V, E).

Simplicial complexes offer another approach. Although more constrained than
hypergraphs - all subfaces of a simplex (for example, the edges of a triangle) need
to be included -, they provide access to powerful mathematical formalisms coming
from algebraic topology.
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Definition 3 A k-simplex σ is a set of k + 1 nodes σ = [p0, p1, ..., pk].

Definition 4 A simplicial complex K on a given set of nodes V , with
|V | = N is a collection of simplices with the additional condition:

σ ∈ K → ∀ν ⊂ σ, ν ∈ K

where ν is a sub-simplex of σ.

In this thesis, we will use the less constrained representations of systems with
group interactions given by hypergraphs.

Previous studies have demonstrated that higher-order interactions can greatly
influence the behavior of networked systems, from diffusion and synchronization
to social contagion and consensus emergence processes, potentially resulting in
explosive phase transitions between states [37, 38, 39, 40]. These transitions, driven
by interactions and connectivity, can lead to sudden and significant changes in the
behavior and functioning of these systems. Particularly interesting to our scope is
the cases of social contagion.

Phenomena that can be described as social contagions are widely present in
nature and in human societies: examples of such phenomena are information
diffusion and the propagation of social behaviors. These social contagion phenomena
have been modeled on simplicial complexes [39] and the same model has been
later extended to hypergraphs [41]. In these models, the standard susceptible-
infected-susceptible (SIS) model for contagion [10] is extended to account for
group interactions. In the SIS model on a network, the agents of a population
are modeled as the nodes of a network, accordingly, the edges of the network
represent the interactions among the agents. The nodes of the network can be
in two states: susceptible or infected. Susceptible agents become infected with a
certain probability per unit of time if in contact with at least one infected agent,
while infected agents recover independently with a certain probability per unit of
time. The extension of this model to higher-order structures is straightforward:
if an agent participates in a group interaction (simplex or hyperedge depending
on the model) of a certain order where all the other nodes are infected it gets
infected with a certain probability per unit of time which depends on the order
of the interaction. The striking result in these model is that when the effect of
the group interactions is strong enough (i.e. above a certain value of the infection
probability of the groups) the transition between the disease-free state (i.e. the
stationary state of the model where the fraction of infected agents is zero) and the
endemic state (i.e. the stationary state with a finite fraction of infected agents)
becomes discontinuous. The distinction between the second-order phase transition
observed in the simple dyadic model and the first-order phase transition found
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in the higher-order model is of critical importance. The presence of an abrupt
phase transition means that infinitesimal changes in the parameter controlling the
infectivity of the spreading process can lead to finite changes in the stationary
state reached by the system under study. Moreover the study of social contagion
phenomena is important not only in the context of social sciences but also when
considering biological pathogens - usually described with simple contagion models
- as a simple spreading process if driven by a higher-order one can display the
macroscopic features of a complex contagion [42].

1.3 Homophily in human gatherings
Homophily is a commonly observed phenomenon in social networks where inter-
actions occur frequently among individuals that share common features [43, 44].
This phenomenon can be determined by the individuals’ personal preferences to
make contact with similar others (choice homophily), structural opportunities to
interact with similar others (induced homophily), or a combination of these two
types of causes. A simple example of choice homophily is the fact - statistically
observed by Stehle et al., 2013 [45] - that for temporally strong ties students in
primary schools display gender preference that increases with grade, i.e. boys tend
to interact more with boys than they do with girls and viceversa, and this tendency
increases with the grade they are in.

Homophily might play an important role also when considering dynamical
processes on networks such as social contagion. The presence of homophily implies
that cultural, behavioral, or material information that flows through networks
will tend to be localized. Another consequence of homophily is that distance in
terms of social characteristics translates into network distance, the number of
relationships or interactions through which a piece of information must travel to
connect two individuals. Homophily also implies that any social entity that depends
to a substantial degree on networks for its transmission will tend to be localized in
social space [43].

An important example of how homophily might play an important role in
social systems modeled as networks is given by Ref. [46]. The authors showed
using a social network model with tunable homophily that homophily can put
minority groups at a disadvantage by restricting their ability to establish links with
a majority group or to access novel information.

1.4 Outline of the thesis
In this thesis, we propose a novel analysis of the temporal properties of face-to-
face interactions in human gatherings. This kind of analysis is possible thanks
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to the high temporal resolution of the measurements of face-to-face interactions
performed using the SocioPatterns platform [47, 48]. Previous works have studied
the probability distributions of contact duration in several contexts, ranging from
scientific conferences [49] to workplaces [50], hospitals [51] and schools [52, 53],
and have shown that the shape of this distribution is the same across the great
variety of contexts under study. The robustness of this probability distribution
over several empirical datasets uncovers some universal features of face-to-face
interactions. Our analysis is focused on group or higher-order interactions that are
overlooked when considering only the pairwise interactions. We investigate, thanks
to the rich metadata accompanying some of the contacts datasets, the role played
by homophily in face-to-face contacts. We show that in some of the datasets it
is possible to observe higher-order homophily (i.e. homophily at the group level)
not encoded at the level of simple, pairwise contacts between the participants.
Afterward, we present an existing simple stochastic model [54] able to reproduce
some of the temporal properties obtained from the empirical temporal network. We
show the limitations of this model in reproducing the temporal statistics of group
interactions and homophily effects. Finally, we explore some modifications of the
model aiming to reproduce the higher-order structures observed in the empirical
datasets.

This thesis is articulated as follows:

• In Chapter 2 we present the datasets that have been used in our work and
discuss the results obtained in the empirical analysis.

• In Chapter 3 we present and discuss the concept of higher-order homophily
and present the results on this subject obtained in our datasets.

• In Chapter 4 we present an existing stochastic model for face-to-face interac-
tions in human gatherings, present the results obtained with this model and
discuss its limitations in describing the temporal properties of group inter-
actions and the homophily effects observed in the empirical measurements.
We propose a modified version of the model that successfully reproduces the
higher-order temporal properties of the data and present a modified version
of the model accounting for homophily effects.

• Finally, in Chapter 5 we summarise the work and the major contributions of
the thesis.
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Chapter 2

Measuring social interactions

A social network is defined as a set of actors and their relationships of various
kinds. The actors can represent individuals or social groups, while the relationships
that define the edges of the network can take different forms, such as friendships,
business or political relations, sexual encounters, local proximity, or social media
interactions.

In this thesis, we focus on the social network that describes face-to-face in-
teractions among people in different contexts of human gatherings. Following
the approach used in measurements that follow the SocioPatterns platform (see
further in §2.1) we define a face-to-face interaction between two individuals as
occurring when they are physically closer than a certain distance (in our case,
approximately 1.5 meters) and facing each other. This SocioPatterns infrastructure
uses radio-frequency devices with short-range signals, which are screened by the
human body. Thus, an interaction event is recorded only when the above conditions
for defining a face-to-face interaction are met.

The study of social interactions has a long history in sociology and anthropol-
ogy [15], starting from the already cited pioneering contributions predating the
formal mathematical definition of graph theory [2]. Nevertheless, historically the
findings were drawn from data collected via subjective reports (i.e. the subjects of
the study reporting their interactions or their relations) or via external observations.
For example in the previously cited seminal work by J. L. Moreno, the author
studied the networks of friendships between children from kindergarten through
eighth grade by interviewing the children and observing and annotating their
interactions over a certain period of time.

In recent years, the study of social networks has seen significant progress due
to the availability of large amounts of data on human interactions recorded in a
variety of contexts: phone calls, social media interactions, co-location recorded
using Bluetooth and Wi-fi technologies etc. [55]. For face-to-face interactions, the
state of the art for collecting data with high spatial and temporal resolution is
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represented by measurements performed using the SocioPatterns platform [47, 48].
This recording framework uses unobtrusive wearable devices that are able to track
close (≲ 1.5 m) face-to-face contacts between the participants with a temporal
resolution of 20 s, and have been deployed in a wide variety of contexts. The
availability of such datasets has allowed researchers to uncover and model various
properties of face-to-face interactions [56, 45, 57, 58].

Studying the network of face-to-face interactions in human gatherings is impor-
tant, for instance, in the context of epidemiology, specifically for understanding
the diffusion of respiratory diseases transmitted through close contact [59, 60].
By examining the patterns of interactions and connections between individuals,
researchers can gain insights into how diseases like COVID-19 or influenza spread
within communities. For example, analyzing the network of contacts at a workplace
can help to identify employees who are more likely to transmit a disease due to their
high number of close contacts [50]. This knowledge can inform targeted interven-
tion strategies such as implementing quarantines, promoting hygiene practices, or
prioritizing vaccination efforts to mitigate the spread of the disease under study [61,
62].

In the following section, first we present in detail the SocioPatterns measuring
platform and the datasets employed in the thesis. Then we outline how we move
from the pairwise description of human interactions to the underlying higher-order
structure and present our results regarding the empirical time distributions of
groups in human gatherings.

2.1 The SocioPatterns platform
The structure of the network representing the interactions between individuals
participating in a human gathering has a direct impact on the diverse phenomena
that can take place on top of it. This interplay between structure and dynamics
of human contacts is not only interesting from the physical and network scientific
point of view but has crucial importance in various research areas. Straightforward
examples of this come from epidemiology, where the mixing patterns among
individuals determine the transmission of infectious diseases by the respiratory
or close-contact route, and social sciences, where in-person interactions between
individuals can shape the emergence of collective opinions or the spreading of
rumors, trends and fake news.

An important contribution to the availability of representative data of such face-
to-face interactions has been conducted over the last 15 years by the SocioPatterns
collaboration [47, 48]. The datasets used in this thesis consist of longitudinal
data on the physical proximity and face-to-face contacts of individuals in diverse
real-world environments collected following the SocioPatterns infrastructure.

10



2.1 – The SocioPatterns platform

A social interaction can include several different human behaviors, such as
conversation, and physical or eye contact. The SocioPatterns platform is based on
the broader and more straightforward definition of a contact as physical proximity
event between two individuals.

The equipment for the SocioPatterns measurements consists of sensors attached
to the participants’ chests (e.g. on their name tags in the case of scientific confer-
ences) and antennas to collect contact data from the sensors covering the area of
the venue where the experiment takes place. Each sensor carries an RFID (Radio
Frequency IDentification) chip that can detect other sensors in the vicinity within
a distance of ∼ 1.5 m. The human body blocks the emitted signal, hence the
detection occurs only when two individuals are facing each other (see Figure 2.1).
Detected events are defined as contacts. Contacts are recorded with a 20 s temporal
resolution. The antennas are required to collect data from the sensors continuously
as their memory is limited.

Figure 2.1: Schematic illustration of the RFID sensor system. RFID chips are
worn as badges by the individuals participating in the deployments. A face-to-
face contact is detected when two persons are close and facing each other. The
interaction signal is then sent to the antenna. Figure from Cattuto et al., 2015 [48].

The data resulting from measurements performed using the SocioPatterns
platform is in the form of a temporal network in which the nodes are the participants
in the gathering and the links represent contacts, appearing and disappearing as
time passes. In the traditional network formalism the interaction between two
agents a and b at time t, which lasted for a duration d is represented by a temporal
link e = (a, b, t, d). The sequence of contact events builds a temporal network
GT = (VT , ET , T ), where VT is the set of agents (i.e. the nodes), ET is the set of
contact events (i.e. the temporal edges) and the graph evolves in a time-window T
so that 0 ≤ t ≤ T and 0 ≤ d ≤ T . As the contacts are recorded with a temporal
resolution of 20 s the temporal network evolves in discrete time.
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2.2 Overview of the datasets
Six different datasets have been used in this thesis. The first one (from now on
primaryschool) regards the contacts in a primary school (6–12 years old children)
in France [52]. The second one (thiers2011) contains the temporal network of
contacts between students in a high school in Marseilles, France [53]. The other four
datasets (WS16, ICCSS17, ECSS18 and ECIR19) are more recent [49] and have been
collected in the context of international scientific conferences. The four datasets
about the scientific conferences collected by Génois et al., 2022 [49] are accompanied
by rich metadata about the socio-demographical characteristics of the participants
(e.g. gender, age, academic seniority, country of origin and several others), as
well as survey answers about their perception of the conference and about their
motivations to participate and several other potentially relevant aspects. The
richness of this metadata is described in depth in the original paper [49]. Part of
the socio-demographical metadata has been employed in our analysis of higher-order
homophily in human gatherings (see Chapter 3).

In Figure 2.2 we display the evolution in time of the number of interactions
between the participants. This evolution is similar for all the datasets: we observe a
circadian rhythm, with active days and inactive nights. In addition to the circadian
alternation of days and nights, we see the alternation of high and low-activity
periods. It is intuitive that for the conferences’ datasets high-activity periods
are “social times” such as registration, coffee/lunch breaks, or poster sessions and
low-activity periods are talk sessions. Note that the plenary/parallel talk sessions,
where in general the majority of the participants sit in rows facing a distant speaker,
are not expected to produce a lot of face-to-face close contact activity as the
human body screens the signal of the RFID sensor. Analogously for the two school
datasets the high-activity periods correspond to break times while low-activity
periods correspond to class hours.

In the following subsections, we present the analysis of the aggregated networks
and the study of the contact statistics obtained from the data.

2.2.1 Aggregated network analysis
The first analysis of each dataset that can be carried out is a simple analysis of the
aggregated network resulting from the data. The aggregated network is obtained
by flattening the temporal network described in §2.1 along the temporal dimension.
We obtain a network in which nodes are the participants, and a link exists between
two nodes if the participants have interacted at least once during the event.

For each dataset, we explore the following basic properties of the aggregated
network:

• Number of participants, N .
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Figure 2.2: Total number of contacts occurring in each 20-second time-step.

• Total number of instantaneous contacts recorded, C.

• Density of the aggregated network, ρ, (i.e. the fraction of possible connections
that occurred during the recording). This quantity is given by the formula:

ρ = 2m

N(N − 1) (2.1)

where m is the number of edges in the aggregated network.
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• Average degree of the aggregated network, ⟨k⟩, (i.e. the average number of
persons one participant met during the event). This quantity is given by the
formula:

⟨k⟩ = m

N
(2.2)

• Average clustering of the aggregated network, ⟨c⟩. This quantity describes on
average the ratio between the number of triangles a node participates in and
the number of all possible triangles. The clustering coefficient of a node u is
given by the formula:

cu = 2Tu

ku(ku − 1) , (2.3)

where Tu is the number of triangles node u participates in and ku is the degree
of node u.

The basic properties of each aggregated network are displayed in Table 2.1

primaryschool thiers201l WS16 ICCSS17 ECSS19 ECIR19
N 242 126 138 274 164 172
C 125773 28540 153371 229536 96362 132949
ρ 0.285 0.217 0.794 0.495 0.567 0.550

⟨k⟩ 68.7 27.1 108.7 135.2 92.4 94.1
⟨c⟩ 0.526 0.576 0.868 0.694 0.717 0.746

Table 2.1: General properties of the aggregated contact networks

These basic properties of the datasets and of the aggregated networks described
by them are in general heterogeneous, reflecting the different situations in which
the face-to-face interaction data have been recorded.

2.2.2 Contact statistics
To explore the fundamental dynamical features of the datasets we evaluate two
basic statistics regarding the contacts (see Figure 2.3).

We define any instantaneous contact occurring sequentially without in-between
gaps as a continuous contact with a duration of τ (i.e. an interaction). With this
definition, we can then explore the overall temporal properties of the interactions.
Additionally, we can examine the inter-contact durations, denoted ∆τ , between
two consecutive interactions between the same participants. These two quantities
are relevant for the study of causal processes that can occur on the dynamical
contact network, such as for example information diffusion or epidemic spreading.

Analyzing the empirical distributions of these variables, we find well-known, large-
tail-shaped distributions. These results suggest that the majority of contacts and
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2.3 – Temporal higher-order social interactions

inter-contact intervals last for 20 seconds, meaning that most pairs of participants
interact only once and for a duration of 20 seconds. However, there are instances
where each of these properties lasts for an extremely long time with a small
but noteworthy probability, as evidenced by the power-law-like aspect of the
distributions. This behavior describing the bursty nature of human interactions
is observed in all 6 datasets. Moreover, the shape of the two distributions is very
robust as observed in previous works [63, 48]. This robustness over several empirical
datasets uncovers a universal nature of face-to-face interactions. The behavioral
data on face-to-face proximity lack any intrinsically characteristic time scale, i.e.,
no typical duration can be defined for any type of contact.
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Figure 2.3: Distributions of the temporal features of contacts. τ (left) are the
contiguous contact durations; ∆τ (right) are the inter-contact durations.

2.3 Temporal higher-order social interactions
As outlined in §1.2 networks are limited to represent dyadic interactions. However,
individuals might interact in larger groups of 3 or more individuals and the presence
of such higher-order interaction calls for a different representation.

The straightforward generalization to account for higher-order social interaction
is to consider a temporal hypergraph whose building blocks are known as temporal
hyperedges. A n-hyperedge, or hyperedge of size n, describes the group interaction
between n agents. A temporal n-hyperedge at time t and of duration d is then
defined as en = (i1, ..., in, t, d).

In the considered datasets each interaction is stored only through simple links.
Nevertheless, those dyadic interactions intuitively represent only the low-order
projection of group interactions. In order to study the temporal properties of group
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interactions it is necessary to attempt at reconstructing the original higher-order
features of the social interactions. Following Cencetti et al., 2021 [57] we construct
the temporal hypergraph from the dyadic structure in the following way: if at time
t there are n × (n + 1)/2 dyads between the members of a set of n nodes such that
they form a fully connected clique, we promote the group of n × (n + 1)/2 links to
a n-hyperedge (see Figure 2.4).

Figure 2.4: Promotion of cliques to hyperedges. This and all the following
drawings of higher-order structures are drawn using the XGI Python library [64].

A simple example of the complete pipeline that translates the SocioPatterns
data into a temporal hypergraph is displayed in Figure 2.5. We can see that the
contact between Node 1 and Node 2 lasts for the first six time-steps, first as a
group of size 3 and then as part of a group of three agents. We can also see that the
group of four agents present time-step 8 is destroyed as soon as one of the contacts
composing it (namely the contact between Node 1 and Node 2) disappears.

It is important to notice that with this formalization of the notion of group
interactions a group of two people (i.e. a 2-clique in the temporal network) is
different from the contact between them (i.e. a link in the temporal network).
Hence we expect the dynamical features of these two types of events to be different.

In Figure 2.6 we show the timely occurrences of group interactions of sizes 2, 3
and 4 in the ECIR19 dataset (similar patterns are observed across different days
and different datasets). It is possible to observe that the emergence of higher-order
structures is strongly heterogeneous in time, with the alternation between high
and low-activity periods. This visualization highlights the existence of bursty
patterns in higher-order interactions that are not independent among various
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1 2 3 4 5 6 7 8 9 10 11

Figure 2.5: From SocioPatterns data to higher-order temporal structures. Exam-
ple of higher-order interactions among four people. The horizontal lines represent
the temporal behavior of each individual.

orders. This result is not unexpected since higher-order events are in our case face-
to-face interactions constructed from lower-order structures. Nevertheless, their
heterogeneous dynamics and short-term recurrence are far from being obvious. In
the following sub-section, we will provide a more formal inspection of these features
by analyzing the distributions of durations of such higher-order interactions.

2.3.1 Statistics of higher-order interactions
Similarly to what has been done in §2.2.2, we study the distributions of durations
of groups of different sizes. We define any instantaneous interaction between a
group of size n occurring sequentially without in-between gaps as a continuous
group interaction of size n with duration τn.

The distributions of the durations of groups of different sizes (see Figure 2.7)
display fat-tail shapes, similar to power-law distributions.

For all different sizes the majority of groups last 20 s, but the fat-tail distributions
show that groups can last much longer - up to around 15 minutes for groups of 2
and 3 people and up to around 7-8 minutes for groups of 4 people. Also in this
case it is possible to recognise some regularity in the shape of distributions of
durations of groups of different sizes. It is worth noticing that the results obtained
for the distributions of groups durations in Figure 2.7 seem to be less robust
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Figure 2.6: Timely occurrences of interactions of sizes 2, 3 and 4 in the ECIR19
dataset. It is clearly possible to identify the four different days of the conference.
The other datasets display similar behavior.
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Figure 2.7: Distributions of the durations of groups of size 2 (left), 3 (center) and
4 (right).

across the datasets than the shapes of distributions P (τ) and P (∆τ) displayed
in Figure 2.3. While we are unable to say whether this is due to the fact that
contact interactions are caused by underlying mechanisms that are common in
human gathering across a great variety of contexts and group interactions are not
we put forward the hypothesis that this effect might also be related to finite size
effects. The way in which we define the higher-order structures from the pairwise
dyadic contact events poses some combinatorial limits to the number of these
structures that can be observed in limited datasets. In Table 2.2 we present for
all six of the datasets under study the total number of instantaneous contacts
recorded, C, and three other quantities C2, C3 and C4 where Ck, with k = 2,3,4, is
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the total number of instantaneous groups of size k recorded. We speculate that
some of the heterogeneity observed in the distributions of group durations for the
different datasets might be ascribed to the limited number of such groups that are
observed empirically. This is particularly evident for the groups of size 4 in the
primaryschool and thiers2011 datasets that also display different shapes of the
distribution in Figure 2.7.

primaryschool thiers201l WS16 ICCSS17 ECSS19 ECIR19
C 125773 28540 153371 229536 96362 132949
C2 96954 25141 63414 142270 54908 84733
C3 9257 983 21575 25194 11092 13625
C4 471 75 5723 3299 1934 1782

Table 2.2: Counts of the total number of instantaneous groups event recorded
for the different datasets. Ck, with k = 2,3,4, is the total number of instantaneous
groups of size k recorded.

The shape of these distributions, compatible with power-law-like functions,
makes it evident that there is no characteristic time scale for the duration of groups.
This fact might play a significant role in the dynamic of processes in which the
presence and duration of group contact events play a significant role. Examples of
such phenomena are the aforementioned social contagion and consensus emergence
processes.

Comparing the P (τ) distributions for the groups of different sizes of the same
dataset (see Figure 2.8 for the ECIR19 dataset, the data recorded in the other
venues display the same behavior) we observe that there is no clear difference
between the slopes of the power-law describing the distribution. The only apparent
feature is that the cut-off time (i.e. the duration over which we do not empirically
observe groups with that duration) is larger for groups of size 2 (∼ 2 × 103 s) and
smaller for groups of size 3 (∼ 9 × 102 s) and 4 (∼ 6 × 102 s).

Zhao et. al., 2011 [56] observed that like pairwise contacts also higher-order
social interactions have a power-law duration with an exponent that is steeper the
larger the dimension of the interacting group. In the original paper, they showed
that this phenomenology is captured by the simple model of higher-order temporal
social network proposed by the same authors in an earlier contribution [65]. They
argued that the higher volatility of social interactions involving larger groups is
explained by the fact that in larger groups of people, the size of the group changes
if any one of its members leaves the group. Therefore assembles that involve more
individuals have a steeper distribution of contact duration than gatherings involving
fewer people. Although this explanation is sound we were not able to reproduce
the empirical result of groups of increasing size displaying increasing power-law
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exponents. The difference between our results and those of the above-mentioned
paper might be related to slight differences in the way group interactions are
defined from the recorded pairwise contacts or to the preprocessing of the data
(e.g. some kind of triadic closure at the contact level before extracting the cliques).
Nevertheless, we speculate that the interpretation of large groups being more fragile
than small groups is present also in our results, explaining the decreasing cut-off
durations in the distributions.
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Figure 2.8: Distributions of the durations of groups of size 2, 3 and 4 for the
ECIR19 dataset. We also display (in gray) the distribution of contact durations.
The different datasets display the same behavior.
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Chapter 3

Higher-order homophily in
human gatherings

Homophily is the sociological principle that describes the tendency of individuals
to form social connections and interact with other individuals who share similar
characteristics or attributes [43, 44]. The concept of homophily has been extensively
studied in sociology and network analysis as it is considered to be an important
factor that shapes human relationships and social connections.

As discussed in §1.3, gender homophily has been observed in primary school
contacts, where students tend to form friendships with others of the same gender [45].
However, homophily extends beyond just gender and has been shown to be correlated
with other demographic factors such as age, ethnicity, and socioeconomic status.
Furthermore, acquired characteristics such as education level, political affiliation,
and religion have also been found to be important determinants of homophily.

Overall, homophily is a key guiding principle in sociological research and network
analysis, as it helps to explain the patterns of social connections and interactions
among individuals. By understanding the mechanisms underlying homophily,
researchers can gain insight into how social networks form and evolve, and how
social inequality and segregation can arise as a result [43].

Despite the evidence that group interactions are ubiquitous in social settings and
play a significant role in dynamical processes on networks such as contagion or opin-
ion formation (see §1.2) the more commonly used measures of homophily rely only
on dyadic representations. In order to measure group homophily these approaches
reduce group participation to pairwise relationships based on co-participation in
groups.

Following what has been proposed by Veldt et al., 2023 [66] we consider a
way to measure explicitly higher-order homophily, i.e. homophily defined at the
hypergraph level. Using this framework we show that in our datasets we find that
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it is possible to observe higher-order homophily in the absence of the corresponding
low-order homophily.

3.1 Higher-order affinities
To introduce in all generality our measure of higher-order homophily, we consider
a hypergraph H = (V, E), where the set of nodes V represents the agents of
a population and the hyperedges in E represents the group interactions among
members of the population. We want to quantify to which extent the nodes
belonging to a class X ⊆ V tend to interact among themselves in group settings.
The class X ⊆ V represents all the nodes sharing a certain feature of interest, for
example age or gender.

The standard pairwise affinity measure is based on the relative importance of
in-class connections over all the connections displayed by the members of the class.
For example, the graph homophily index is defined by Altenburger & Ugander,
2018 [44] as:

ĥX =
q

i∈X di,inq
i∈X di,in + q

i∈X di,out
(3.1)

where di,in denotes the observed in-class degree and di,out denotes the out-class
degree. Veldt et al., 2023 [66] have generalized this concept to group interactions of
size k (i.e. k-hyperedges) by defining for each positive integer t ∈ 1, ..., k a so-called
type-t affinity score. This affinity score expresses the extent to which individuals
in class X participate in groups of size k where exactly t members of the group are
in the class. The type-t affinity score is defined by the formula:

hk
t (X) = Dk

t (X)
Dk(X) =

q
v∈X dk

t (v)q
v∈X dk(v) (3.2)

where dk(v) is the total number of k-hyperedges to which node v participates and
dk

t (v) is the number of k-hyperedges with exactly t nodes belonging to class X to
which node v participates. It is straightforward to see that for k = t = 2 the type-t
affinity index in Eq. 3.2 reduces to the graph homophily index in Eq. 3.1.

3.1.1 Null model for group affinities
In order to quantify the relevance of a measurement obtained using the type-t
affinity score (Eq. 3.2) we need to compare it with a baseline score representing a
null probability for type-t interactions in groups of size k. If the observed hk

t (X) is
larger than the corresponding baseline we will have that type-t group interaction
are overexpressed for class X.
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At the graph level, several null models have been proposed, thus several gen-
eralizations to higher-order structures are possible. Following again Veldt et al.,
2023 [66], we define the simplest possible null model that takes into account only
the fraction of nodes belonging to the class α = |X|/|V |. In this uniform null
model, the baseline type-t affinity score is given by the probability that a node of
class X participates in a group of size k where exactly t members are from X if
the other k − 1 nodes in the group are selected uniformly at random:

bk
t =

1
|X|−1

t−1

21
n−|X|

k−t

2
1

n−1
k−1

2 (3.3)

where n is the total number of agents in the population under study. The baseline
score in the above equation is the type-t affinity score for a class X ⊆ V in a
complete k-uniform hypergraph H∗

k,n of n nodes - i.e. a hypergraph with n nodes
where all the possible k-hyperedges are present.

3.2 Higher-order homophily in scientific confer-
ences

The WS16, ICCSS17, ECSS18 and ECIR19 are accompanied by rich metadata about
participants1. Upon registration at the conference venue the participants were
informed about the planned SocioPatterns data recording session and asked whether
they were willing to participate, participants were also asked to fill out a survey. In
such survey participants were asked for socio-demographical pieces of information,
such as their age, gender, country of origin, academic status etc., questions about
their role in the conference, their perception of the crowd and questions useful to
reconstruct some of their psychological traits.

Thanks to the socio-demographic metadata accompanying the contact datasets
it is possible to explore higher-order homophily using the formalism presented in
§3.1. The procedure we follow is very simple. Considering a single contact dataset
we filter out short interactions by constructing from the temporal hypergraph
described in §2.3 an aggregated hypergraph containing all the groups with a total
duration larger than a certain cut-off. On the aggregated hypergraph it is then
possible to perform the analysis described in §3.1 considering classes of participants
looking at different entries of the metadata. The choice of the cut-off threshold is
arbitrary but the results we present below have shown to be relatively robust with
respect to variations of this choice.

1The metadata and the questionnaires are described in detail in the original paper Ref. [49] and
are available upon request at https://search.gesis.org/research_data/SDN-10.7802-2352.
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We are also interested in exploring the relation between low-order homophily,
i.e. homophily at the contact level, and higher-order homophily, i.e. homophily
at the level of groups. To this goal, we also apply Eq. 3.1 to quantify the graph
homophily in the aggregated network of contacts. Again we filter out short contacts
by setting a cut-off duration and keeping in the aggregated network only contacts
with a duration larger than the cut-off.

Our results show that higher-order homophily can be observed also in the absence
of the corresponding homophily. Nevertheless, comparing the four different datasets
we recognize that the results regarding higher-order homophily are not at all robust
across different venues and across different sizes. This shows that higher-order
homphily is very context-dependent and cannot be considered a general feature of
face-to-face interactions in human gatherings.

In the following two subsections, we present our results for higher-order gender
and age homophily. The results for other socio-demographical features are presented
in Appendix A.

3.2.1 Higher-order gender homophily
In Table 3.1 we display the results for the graph gender homophily in the ECIR19
for different values of the cut-off for the duration. The other datasets display
similar behavior.

20 s 60 s 120 s 180 s 300 s
Male 1.01 1.02 1.02 1.00 0.98

Female 0.97 0.91 0.91 0.91 0.91

Table 3.1: Graph gender homophily indices (see Eq. 3.1) for the ECIR19 dataset,
at different cut-offs of the duration of the edges. The other datasets display similar
behavior.

We see that there is no homophily effect at the level of contacts as the graph
homophily indices are very close to the value 1 corresponding to the absence of
homophily. The only noticeable feature is a little heterophily effect for women
at larger values of the cut-off. This result confirms a known fact in sociology for
which while there is an evident gender homophily effect in kids [67, 45], this effect
disappears in adults [68].

In Figure 3.1 we show the results for the higher-order gender homophily in the
four scientific conferences. Each plot refers to a group of a specific size for a given
dataset. For each size k we can compute the type-t affinity scores for t = 1, ..., k
that quantify the extent to which individuals in a given class X participate in
groups of size k where exactly t members of the group are in the class. The shaded

24



3.2 – Higher-order homophily in scientific conferences

areas are the 95% confidence intervals obtained with a bootstrap procedure [69].
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Figure 3.1: Ratio between the type-t affinity score and the baseline to quantify
higher-order gender homophily in the WS16, ICCSS17, ECSS18 and ECIR19 (from
top to bottom) datasets. The aggregated hypergraph over which we compute the
affinity scores is obtained aggregating the temporal hypergraphs keeping only the
groups with an aggregated duration ≥ 60 s, similar results are obtained varying
this cut-off threshold. The highlighted plots are those displaying higher-order
homophily.
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We see that the different datasets and different group sizes show different
behaviors. We have highlighted the plots displaying a significant higher-order
homophily effect, where for a given class in groups of size k the ratio between
the type-t affinity and the baseline at t = k is above 1 and larger than the same
quantity for values of t < k. For example in the second plot from the left in the
bottom row of Figure 3.1 we display the ratio between the type-t affinity score and
the baseline for the ECIR19 dataset, there we see that women display a higher-order
homophily effect for groups of size 3. This means that, in that specific dataset,
women despite showing a little heterophily effect at the level of contact (see Table
3.1), in groups of size 3 they tend to participate more than expected in group
interactions of size 3 where the majority of the participant are women as well and
this propensity increases as the group in completely formed by women.

3.2.2 Higher-order age homophily
In table 3.2 we display the results for the graph age homophily in the ECIR19 for
different values of the cut-off for the duration. The other datasets display similar
behavior. In Figure 3.2 we show the results for the higher-order gender homophily
in the four scientific conferences.

20 s 60 s 120 s 180 s 300 s
< 30 y.o. 0.99 0.99 1.01 1.01 1.05
30-39 y.o. 0.96 0.96 0.96 0.97 0.96
> 40 y.o. 0.97 0.83 0.74 0.67 0.65

Table 3.2: Graph age homophily indices (see Eq. 3.1) for the WS16 dataset, at
different cut-offs of the duration of the edges. The other datasets display similar
behavior.

The considerations to be made on these results are analogous to the ones
concerning gender homophily. Apart from the effect of heterophily in the 30 − 39
y.o. and > 40 y.o. groups there are no relevant effects at the contact level. Despite
this absence of low-order homophily effects for some sizes and some datasets
(highlighted in the figure), we can observe some effects of higher-order homophily.
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Figure 3.2: Ratio between the type-t affinity score and the baseline to quantify
higher-order age homophily in the WS16, ICCSS17, ECSS18 and ECIR19 (from top to
bottom) datasets. The aggregated hypergraph over which we compute the affinity
scores is obtained aggregating the temporal hypergraphs keeping only the groups
with an aggregated duration ≥ 60 s, similar results are obtained varying this cut-off
threshold. The highlighted plots are those displaying higher-order homophily.
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Chapter 4

Attractiveness model for
face-to-face interactions

The complex dynamic of face-to-face interactions has been shown to have a profound
impact on the properties of the temporal evolving network defined by the pairwise
contacts and has been proven to affect also the behavior of dynamical processes
taking place on top of those networks. Understanding the origin and development
of such characteristics and effects requires the development of theoretical models
able to reproduce them.

4.1 Random walkers biased by attractiveness
In this work, we present and follow a simple model of mobile agents proposed by
Starnini et al. [54]. This model is based on two aspects influencing the dynamic
of human interactions. The first aspect takes into consideration the fact that -
as observed in several cases - different individuals have different degrees of social
appeal or attractiveness. This attractiveness might be related to the personality
traits of the individuals, their social status or the role they play in the social
gathering under study. The effect of this social appeal will be to bias in some way
the interactions in which the particular individual takes part. The second aspect
of human interactions taken into account in the model is the fact - evident from
the recordings performed with the SocioPatterns platform (see §2.1) - that not all
participants in a human gathering are always present at the same time in the venue
in which the gathering takes place. The propensity of each individual to be present
or absent in the social event might be related to complex socio-demographic or
psychological characteristics distinguishing each person and influencing the overall
interaction dynamic in the gathering.

The model (see Figure 4.1) is defined as follows. N different agents are placed
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Attractiveness model for face-to-face interactions

Figure 4.1: Drawing of the dynamics of the attractiveness model. Blue-colored
agents are active, and gray-colored agents are inactive meaning that they do not
move nor interact. Interacting agents, within a distance d are connected by a link.
Each agent is characterized by its attractiveness. The probability for the central
agent to move is p = 1 − 0.6 = 0.4 as the inactive agent with an attractiveness of
0.8 is not taken into account. Figure from Starnini et al., 2013 [54].

in a square box of side L with periodic boundary conditions. Each agent i is
characterized by its attractiveness ai ∈ [0,1] which is a random variable extracted
from a distribution η(a). Whenever two agents are at a distance smaller than d
they interact and the interaction lasts as long as the mutual distance is smaller
than d, the distance d is a parameter of the model. The free motion of each agent
(i.e. its motion when they are not interacting with any other agent) is modeled
as a random walk where at each time-step each agent picks a direction ξ ∈ [0,2π)
at random and moves in that direction with a step of length v. The effect of the
interactions is that the random walk of each agent is biased by the presence of the
most attractive individual present in the neighborhood of radius d surrounding
their position - i.e. the most attractive individual with whom they are interacting;
this is taken into account introducing a moving probability given by:

pi(t) = 1 − max
j∈Ni(t)

î
aj

ï
(4.1)

With the complementary probability 1−pi the agent does not move. To consider the
individuals’ inclinations to be active in the social gathering we further characterize
each agent with a second random variable - representing their activeness - ri ∈ [0,1]
sampled from a distribution ζ(r). At each time step an inactive agent i becomes
active with a probability ri, and an active agent j, if isolated (i.e. not in contact
with any agent), becomes inactive with a probability 1 − rj. Only active agents
perform the random walk and take part in the interaction dynamic.

In the model described above each one of the N agents performs a random
walk in a two-dimensional space, this random walk is interrupted by the possible
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4.1 – Random walkers biased by attractiveness

interactions with the other agents and eventually by the de-activation of the
agent. In order to mimic as accurately as possible the recording procedure of
the SocioPatterns measurements (see §2.1) in the simulation of the attractiveness
model the movement of the agents is performed in parallel, meaning that at each
time-step each one of the active agents performs the routine depicted in Figure 4.2.

Figure 4.2: Diagram depicting the routine performed by each agent in the
attractiveness model at each time step.

It is straightforward to recognize that the model is Markovian: at each time step
the agents do not have any memory of their previous movements and interactions.
The dynamic of the model is completely encoded by the collision probability, given
by:

pc = ρπd2 (4.2)

where ρ = N/L2, the attractiveness distribution η(a) and the activeness distribution
ζ(r).

The appeal that a person might have to other people when participating in
a human gathering - represented in our model by the attractiveness parameter
ai - is a relational variable that might depend on the unknown combination of
different psychological, socio-demographic and environmental factors that vary
among different situations and different persons. The same can be said about the
propensity of each person to be active at different times in the gathering - modeled
with the activeness parameter ri. Moreover, those quantities and the factors that
shape them are hardly accessible empirically and cannot be measured. For these
reasons, in order to avoid any speculation on these factors and mechanisms, we
assume the attractiveness distribution η(a) and the activeness distribution ζ(r) to
both be uniform distributions over the interval [0,1].
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Attractiveness model for face-to-face interactions

In the following sections we will present the results of the numerical simulations
of the model contrasted with the results from the empirical datasets (see §2.2).

4.2 Contact statistics of the attractiveness model
The temporal properties of contacts between the agents are the most distinctive
feature of empirical face-to-face interactions. In §2.2.2 we have shown that the
distribution of the duration τ of contacts and that of the duration of intervals
between consecutive contacts ∆τ uncover the bursty dynamics of human interaction.
These distributions have fat-tailed forms that can be described in terms of power-
law functions. Moreover, it is striking how the shape of these distributions is very
robust across different datasets, recorded in different conditions and in different
social contexts. This robustness across different datasets hints in the direction
of some kind of universal nature of the mechanisms governing the dynamic of
face-to-face interactions.

Another interesting feature of a temporal network describing face-to-face in-
teractions in human gathering resides in the distribution of links’ weights in the
aggregated network. The data measured with the SocioPatterns platform (see §2.1)
is naturally described by a temporal network where links describe the interactions
between the people participating in the gathering. Those interactions evolve in time
and thus at different time steps, the corresponding links are present in the temporal
network accordingly. Integrating the information contained in the instantaneous
networks over a given time window (in our case this is always gonna be the whole
duration of the recording session), we obtain an aggregated weighted network. In
this aggregated network the weight wij of the link between nodes i and j is given
by the total duration of the contacts between agents i and j.

If Figure 4.3 we show the results obtained with the attractiveness model for
the distributions of contact durations, intercontact durations and weights in the
aggregated network. The model has been simulated by choosing the parameters
v = d = 1, L = 100 and N = 200. At the beginning of the simulation, the agents
are placed at randomly chosen positions and are active with probability 1/2.

The numerical and experimental results match. This is a striking result, a model
based on two simple assumptions on the mechanisms regulating human face-to-face
interaction is able to reproduce with great accuracy the statistical properties - at
least at the level of contacts - of complex social phenomena.

The distribution of links’ weights in the aggregated network is - as observed
before for the other two distributions considered - broad. This result demonstrates
that the heterogeneity in the duration of individual contacts, which was initially
observed through analyzing the distribution of contact durations, persists when
the duration of a single contact is aggregated over a more extended period of time.
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Figure 4.3: Distribution of the contact durations (left), intercontact durations
(right) and weights (right) for the datasets and the attractiveness model. The
numerical results are obtained with a single simulation with v = d = 1 and L = 100
and of duration T = 2 × 104 time-steps..

4.2.1 Role of the density of agents

The numerical results obtained for the attractiveness model are rather robust with
respect to variations in the collision probability pc defined by Eq. 4.2. In Figure
4.4 we display the numerical results of the attractiveness model for different values
of the density of agents ρ = N/L2 obtained by varying the number of agents.
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Figure 4.4: Distribution of the contact durations (left), intercontact durations
(right) and weights (right) for the attractiveness model for various densities of
agents. The numerical results are obtained with a single simulation with v = d = 1
and L = 100 and of duration T = 2 × 104 time-steps.

The fact that the numerical results are roughly independent of the collision
probability pc suggests that the relevant mechanisms in the model are the other
two ingredients governing the dynamic of the model, namely the attractiveness
distribution η(a) and the activeness distribution ζ(r).
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4.3 Failure of the attractiveness model in repro-
ducing group duration statistics

Performing the same analysis done in §2.3 on the results of the simulation of the
attractiveness model we obtain the results displayed in Figure 4.5.
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Figure 4.5: Distributions of the durations of groups of size 2, 3 and 4 for the
attractiveness model. The numerical results are obtained with a single simulation
with v = d = 1 and L = 100 and of duration T = 2 × 104 time-steps.

It is evident that these results are not reproducing what has been observed in
the empirical data. We see that the shapes of the three probability distributions
are broad and well-described by power-law-like functions. As seen in Figure 4.5 it
appears that if we were to write the probability distributions in the form:

P (τ) ∝ τ−α (4.3)

the exponent α would be decreasing with the size of the groups. This is the opposite
of what is observed in the data and in the model proposed by Zhao et al., 2011 [56],
where large groups are more fragile than small groups as in larger groups of people,
the size of the group changes if any one of its members leaves the group.

The inadequacy of the attractiveness model in reproducing the statistics of the
temporal durations of groups observed in the data hints in the direction that even
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if empirically we build the groups from pairwise interactions the group structures in
the face-to-face interactions are related to higher-order mechanisms not reducible to
the composition of pairwise effects. This is because the rules in the attractiveness
model are based only on pairwise interactions - as the moving probability is
controlled only by the attractiveness of the most attractive neighbor. We have
seen that this pairwise-based model reproduces correctly the low-order temporal
features of the datasets - namely the statistics of contact and intercontact durations
and the weight distribution - but not the statistics of the durations of higher-order
structures. This suggests that the higher-order structures of face-to-face interaction
detected with the procedure proposed by Cencetti et al., 2021 [57] that we have
followed in §2.3 are not reducible to the composition of low-order features.

4.4 Modified attractiveness model
The fact that the distribution of durations shows smaller exponents for larger groups
(see Figure 4.5) due to the phenomenon - observed in the numerical simulation -
that in the attractiveness model there is a tendency to form clusters of agents in the
vicinity of highly attractive agents. Intuitively this phenomenon is not natural for
group interactions in the context of face-to-face interactions in human gatherings.
Especially in the context of scientific conferences, we could argue that in informal
settings - such as coffee breaks or poster sessions - there is an interplay between the
benefit of interacting with highly attractive agents and the drawbacks of interacting
in a group that is too large.

In order to account for this interplay between group size and attractiveness and
reproduce the statistic of group duration we modify the moving probability given
by Eq. 4.1 and propose a modified version of the attractiveness model. In our
modified version the moving probability is given by:

pi(t) = 1 − max
j∈Ni(t)

aj

|Nj(t)|γ
(4.4)

We have introduced a new parameter γ that controls how much large groups are
penalized in the modified version of the attractiveness model. For γ = 0 we recover
the probability of moving of the original attractiveness model.

If Figure 4.6 we show the results for the distributions of the contact durations,
intercontact durations and weights for the modified attractiveness model and the
datasets.

We can see that the numerical results of the model are in good agreement with
the empirical data. The fact that minor modifications in the rule controlling the
probability of moving do not compromise the results for the statistics of contacts
is in agreement with what is presented by Starnini et al., 2013 [54] in the original
paper presenting the attractiveness model. The authors argued that the key feature
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Figure 4.6: Distribution of the contact durations (left), intercontact durations
(right) and weights (right) for the datasets and the modified attractiveness model.
The numerical results are obtained with a single simulation with v = d = 1, γ = 0.1,
L = 100 and N = 400 of duration T = 4 × 104 time-steps.

of the model is the heterogeneity in the distribution of attractiveness, and minor
modification in the moving probability such as considering the average of the
attractiveness of the neighbors lead substantially to the same behavior produced
by Eq. 4.1.

In Figure 4.7 we show the results for the analysis of the statistics of group
durations obtained with the modified attractiveness model. Comparing the P (τ)
distributions for the groups of different sizes we see that there is no clear difference
between the slopes of the power-law describing the distribution. The only feature
is that the cut-off time (i.e. the duration over which we do not empirically observe
groups with that duration) is larger for groups of size 2 and smaller for groups of
size 3 and 4. This is the same behavior that we observed in the empirical dataset
in §2.3.

In Figure 4.8 we show the empirical distributions of group durations and the
numerical results of the modified attractiveness model. There is a good agreement
between the model and the datasets. This result suggests that the modified rule
for the probability of moving reproduces more realistically the formation and
disgregation of groups in human interactions such as scientific conferences or
schools.

4.5 Homophily in the attractiveness model
The original attractiveness model [54] shows limitations in reproducing some com-
plex features of face-to-face interaction networks that are present in the empirical
data. We have pointed out how - in its original formulation - it fails to reproduce
the distribution of durations of group interactions.
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Figure 4.7: Distributions of the durations of groups of size 2, 3 and 4 for the
modified attractiveness model. The numerical results are obtained with a single
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Figure 4.8: Distributions of the durations of groups of size 2 (left), 3 (center) and
4 (right) for the modified attractiveness model for various densities of agents. The
numerical results are obtained with a single simulation with v = d = 1, γ = 0.1,
L = 100 and N = 400 of duration T = 4 × 104 time-steps.

Oliveira et al., 2022 [58] have explored how the attractiveness model can be
modified in order to reproduce the degree inequalities that are sometimes present
in the aggregated network of SocioPatterns measurements. What is observed in
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the empirical data is that different classes of agents (e.g. men and women) if
represented in different numbers in the gathering - hence allowing for the definition
of a minority in the social gathering - show different values of average degree in the
aggregated network. Though this degree inequality is present in the empirical data,
the attractiveness model fails to explain the group differences because it ignores
group mixing in social gatherings. In the original paper, the authors define group
mixing as the systematic preference of group members to interact with individuals
from specific social groups. This definition includes both homophily, as we have
defined it §1.3, and heterophily i.e. the tendency of a specific class of interacting
more with members of other classes.

The paper’s authors argued that the attractiveness paradigm fails to generate
group mixing due to its absence of relational attributes. This means that differences
in individual attractiveness alone cannot account for the observed degree inequality
and group mixing in the data.

To replicate the degree inequalities found in the data, the authors suggested
an altered version of the attractiveness model. This revised model, referred to
as the attractiveness-mixing model, incorporates both the intrinsic attractiveness
of individuals and the relational attributes between groups. Additionally to the
other features already present in the attractiveness model, in the modified model
an individual i is also characterized by a group label bi ∈ [0, B − 1], where B is
the number of groups. The mixing patterns in the system are encoded in a B × B
mixing matrix H. Each row of H can be seen as a probability mass function that
weighs the likelihood of group interaction. The dynamic of the model is the same
as in the original version described in §4.1 except for the fact that when agent
i does not move it interacts with its neighbors of highest mixing likelihood with
probability:

βi(t) = max
j∈Ni(t)

{hbi,bj
} (4.5)

where hbi,bj
is an element of the matrix H that encodes the mixing probability

between the group to which agents i and j belong.
In the original paper, the authors show the rich dynamic of the attractiveness-

mixing model and argue that the two ingredients of individual attractiveness and
relational attributes between groups are sufficient to explain the degree inequality
observed in social dynamics with minority groups.

An alternative - and complementary - approach to what has been proposed by
Oliveira et al., 2022 [58] to have the original attractiveness model displaying some
homophily effect is to explore the relationship between individual attractiveness
and group membership. This would imply that individuals belonging to different
social classes (that may be defined in different ways e.g. gender, age, country of
origin, etc.) have different dynamics of interactions. A possible way of doing this
is to divide the agents in the attractiveness model into two groups depending on
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their attractiveness.
In Figure 4.9 we show the results for the higher-order homophily in the attrac-

tiveness model constructing a high-attractiveness class and a low-attractiveness
one. The high-attractiveness (low-attractiveness, respectively) class is constituted
by all the agents with attractiveness > 0.5 (< 0.5, respectively).
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Figure 4.9: Ratios between the type-t affinity scores and the baselines to quantify
higher-order attractiveness homophily. The numerical results are obtained with
a single simulation with v = d = 1, γ = 0.1, L = 100 and N = 400 of duration
T = 4 × 104 time-steps. The high-attractiveness (low-attractiveness, respectively)
class is constituted by all the agents with attractiveness > 0.5 (< 0.5, respectively).

Interestingly, our findings regarding higher-order attractiveness homophily align
with the expectations set by the model. It is observed that agents with high
attractiveness tend to attract a significant number of other agents, irrespective
of their attractiveness levels, resulting in the formation of large groups. This
phenomenon elucidates why, in small-sized groups (consisting of 2 or 3 individuals),
the effect of homophily is predominantly exhibited by low-attractiveness agents,
while high-attractiveness individuals do not demonstrate a pronounced homophily
effect.

This observation can be explained by considering the inherent nature of high-
attractiveness agents. It is highly improbable for a highly attractive individual to
remain isolated in pairs or triplets, as they are more likely to gravitate towards
forming larger groups. Conversely, it is more common for low-attractiveness agents
to remain in small groups due to the relative absence of attractiveness-driven social
interactions.

Although these preliminary results concerning higher-order homophily in terms
of attractiveness are promising, further exploration with a refined and rigorous
approach is warranted. For instance, it would be valuable to investigate how different
attractiveness distributions or alternative criteria for constructing the classes of
agents might influence the results. By considering such variations, we can delve
deeper into the mechanisms underlying social interactions in human gatherings,
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potentially uncovering additional insights into the dynamics of attractiveness-based
homophily in human gatherings.
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Chapter 5

Conclusions

This thesis has delved into various aspects of face-to-face interactions in human
gatherings, shedding light on important findings and uncovering novel insights.

By examining the temporal dynamics of social interactions in different empirical
datasets, we have reaffirmed previously known results regarding the shape of
empirical distributions of contacts and intercontact durations.

Our exploration was focused on higher-order structures the statistics of group
interactions, which are often overlooked when relying on the dyadic-only representa-
tion of complex systems given by networks. The results regarding the distribution
of group durations have unveiled the absence of a typical time scale for higher-order
interactions of different sizes. The shape of these distributions is robust across
different datasets recording face-to-face interactions in different social contexts
and the cut-off in the durations decreases as the group size increases. The higher
volatility of social interactions involving larger groups is explained by the fact that
in larger groups of people, the size of the group changes if any one of its members
leaves the group.

We have presented a method to quantify higher-order homophily by comparing
the generalization of graph homophily to hypergraphs with a baseline model Our
results have demonstrated that higher-order homophily can be achieved even in
the absence of the corresponding low-order homophily. However, we have also
discovered that higher-order homophily is not a universal feature of face-to-face
interactions, as its presence depends heavily on contextual factors and on the size
of the groups that are considered.

To better understand and replicate the observed empirical data, we have pre-
sented an existing simple stochastic model for face-to-face interactions in human
gatherings. This model is based on the pivotal role played by each individual’s
attractiveness in the interaction dynamic. While this model successfully repro-
duces some of the low-order statistics of face-to-face interaction temporal networks,
namely the contact durations, intercontact time duration and aggregated weight
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distribution, it falls short in capturing the temporal dynamics of group interactions.
In response, we have proposed a modified version of the model that not only pre-
serves its efficacy at the contact level but also replicates the higher-order features
observed in the empirical data. Additionally, we have also presented an existing
modified version of the model that accounts for group mixing, further enhancing
its ability to capture the complexity of face-to-face interactions and reproducing
the degree inequalities observed in face-to-face gatherings with minorities. As a
preliminary result, we have put forward a way to encode homophily in the original
attractiveness model by linking attractiveness and class membership.

In conclusion, this comprehensive study contributes to our understanding of face-
to-face interactions in human gatherings by investigating their temporal dynamics,
higher-order structures, and homophily effects. The insights gained from this
research provide a valuable foundation for future studies in this field, enabling us
to unravel the intricacies of face-to-face social interactions and their implications
in various contexts.
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Appendix A

Higher-order homophily in
scientific conferences -
additional material

We present in the following tables and figures the results for the graph homophily
and the higher-order homophily based on different categories present in the metadata
accompanying the contact data of the four scientific conferences WS16, ICCSS17,
ECSS18 and ICCSS17 [49].

In the absence of corresponding graph homophily, our findings demonstrate the
presence of higher-order homophily is possible (highlighted plots). However, upon
comparing the distinct datasets, we observe that the results regarding higher-order
homophily lack consistency across various venues and sizes. This indicates that the
concept of higher-order homophily is highly dependent on the context and cannot
be regarded as a universal characteristic of face-to-face interactions in human
gatherings.

Where only three datasets (WS16, ECSS18 and ECIR19) are shown it is because
in the fourth dataset (ICCSS17) the possible answers of the survey were organized
differently hence not allowing the comparison with the other datasets.
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Higher-order homophily in scientific conferences - additional material

20 s 60 s 120 s 180 s 300 s

WS16
Language 1 0.96 0.95 0.96 0.99 0.96
Language 2 0.95 0.94 0.93 0.89 0.95

Others 1.01 1.03 1.04 1.06 1.07

ECSS18
Language 1 0.96 0.95 0.95 0.97 0.97
Language 2 1.11 1.17 1.20 1.02 1.04

Others 0.98 0.93 0.91 0.91 0.89

ECIR19
Language 1 1.10 1.17 1.19 1.17 1.24
Language 2 0.84 1.06 0.80 0.98 1.31

Others 0.98 0.97 0.97 0.96 0.98

Table A.1: Graph language homophily indices for different datasets at different
cut-offs of the duration of the edges.
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Figure A.1: Ratio between the type-t affinity score and the baseline to quantify
higher-order language homophily in the WS16, ECSS18 and ECIR19 (from top to
bottom) datasets. The aggregated hypergraph over which we compute the affinity
scores is obtained aggregating the temporal hypergraphs keeping only the groups
with an aggregated duration ≥ 60 s, similar results are obtained varying this cut-off
threshold. The highlighted plots are those displaying higher-order homophily.
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Higher-order homophily in scientific conferences - additional material

20 s 60 s 120 s 180 s 300 s

WS16

Social/Political sciences 1.00 0.99 0.96 0.94 0.95
Comp./Inform. science 0.96 0.94 0.96 0.97 0.98

Math/Physics 1.02 1.09 1.03 0.87 0.96
Media/Comm. science 1.00 1.13 1.26 1.44 1.39

ICCSS17

Social/Political sciences 1.02 1.02 1.07 1.04 1.05
Comp./Inform. science 0.99 0.93 0.91 0.87 0.83

Math/Physics 0.94 0.81 0.74 0.77 0.81
Media/Comm. science 0.92 0.99 1.02 1.13 1.14

ECSS18

Social/Political sciences 0.99 1.01 1.02 1.03 0.98
Comp./Inform. science 1.01 0.99 0.96 1.00 0.97

Math/Physics 1.08 1.41 1.67 1.93 2.38
Media/Comm. science 0.94 0.89 0.87 0.99 1.10

ECIR19

Social/Political sciences / / / / /
Comp./Inform. science 1.02 1.02 1.02 1.03 1.02

Math/Physics / / / / /
Media/Comm. science 1.06 1.07 1.01 0.91 0.99

Table A.2: Graph discipline homophily indices for different datasets at different
cut-offs of the duration of the edges.
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Figure A.2: Ratio between the type-t affinity score and the baseline to quantify
higher-order scientific discipline homophily in the WS16, ICCSS18, ECSS18 and
ECIR19 (from top to bottom) datasets. The aggregated hypergraph over which
we compute the affinity scores is obtained aggregating the temporal hypergraphs
keeping only the groups with an aggregated duration ≥ 60 s, similar results are
obtained varying this cut-off threshold. The highlighted plots are those displaying
higher-order homophily.
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20 s 60 s 120 s 180 s 300 s

WS16

BA./MA./PhD student 0.94 0.89 0.86 0.87 0.88
Postdoc./Senior researcher 1.06 1.11 1.15 1.17 1.23
Ass./Assoc. prof./Lecturer 0.99 1.10 1.29 1.27 1.28

Full prof./Chair 1.07 0.97 0.91 0.83 0.96

ECSS18

BA./MA./PhD student 0.94 0.92 0.91 0.90 0.92
Postdoc./Senior researcher 1.07 1.07 1.03 0.96 0.96
Ass./Assoc. prof./Lecturer 1.14 1.21 1.22 1.13 1.19

Full prof./Chair / / / / /

ECIR19

BA./MA./PhD student 1.00 1.02 1.01 1.00 1.01
Postdoc./Senior researcher 0.95 0.98 1.02 1.17 0.83
Ass./Assoc. prof./Lecturer 1.11 1.23 1.23 1.08 0.98

Full prof./Chair 1.08 1.10 1.08 1.03 1.06

Table A.3: Graph academic status homophily indices for different datasets at
different cut-offs of the duration of the edges.
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Figure A.3: Ratio between the type-t affinity score and the baseline to quantify
higher-order academic status homophily in the WS16, ECSS18 and ECIR19 (from
top to bottom) datasets. The aggregated hypergraph over which we compute the
affinity scores is obtained aggregating the temporal hypergraphs keeping only the
groups with an aggregated duration ≥ 60 s, similar results are obtained varying
this cut-off threshold. The highlighted plots are those displaying higher-order
homophily.
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