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Abstract

Spatial structure can play a pivotal role in defining an ecosystem’s biodiver-
sity, as well as its stability and adaptive capabilities. Emerging in the 1960s,
a new theoretical framework was developed in the field of ecology aimed at
describing island ecosystems [1], which quickly gained popularity and was
applied to a wide range of ecosystems and even influenced policy-making [2].
Despite its impact, it largely remained a theoretical framework and many of
its claims or hypotheses remained unverified experimentally [2, 3]. In fact,
later work pointed to some of the gaps in island theory and stressed the need
to couple ecological and evolutionary dynamics, as well as emphasizing the
relevance of the correct choice of scale in describing ecosystems [3]. More
recently, studies have emerged in the field of microbial ecology and evolu-
tion with an explicit focus on the effects of spatial structure [4]. Still, many
open questions remain regarding eco-evolutionary dynamics in systems with
a strong spatial dependence. In this work, we study a microbial ecosystem at
the micro-scale consisting of an elongated cavity with one open and one closed
end, whose tight spatial constraints confer it with very particular ecological
properties. We generalize the study of Karita et al. [5] of these microbial
communities by extending the study of a scale-dependent transition from a
gaseous to a jammed state for the case of non-exponential microbial growth,
in particular under the influence of resource depletion and an Allee-type co-
operation. We also developed a novel, individual-based model based on the
distinction between self-diffusion and collective diffusion. In particular, we
use the model to study the stability of band-like structures and the takeover
of cavities by strains with a high selective advantage, and we point to the
presence of pinning impurities as band stabilizers in cavities, showing good
agreement between the predictions of the simulations and experimental re-
sults. We also analyze Clone Size Distributions (CSD) in both jammed and
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gaseous cavities, uncovering fundamental differences in the dynamics leading
up to them and showing how the jammed state of larger cavities leads to
lower diversity than the gaseous state, in direct contrast with island theory.
Lastly, we discuss a novel mechanism, Invader-Sustained Jamming (ISJ), by
which an invading strain can stabilize the resident population of a cavity into
a jammed state without itself being able to take over the system, even for
large selection advantages. Our results support the view that the properties
of ecosystems can be highly sensitive to scale or spatial structure, especially
close to transitions like the one between gas and jamming. In particular, the
transition to jamming points to a tradeoff between stability and adaptation,
as it leads to stabler populations and increased levels of resistance against
invasion at the expense of a lower speed of adaptation.
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Chapter 1

Introduction

1.1 The theory of island biogeography.

In 1967, Robert MacArthur and Edward Wilson published the book The the-
ory of island biogeography [1]. In it, they emphasized the relevance of island
ecosystems in developing a theory of the laws of ecology and evolution. After
all, islands are well-defined spaces, with a numerable number of species and
a certain level of isolation that makes their interactions with other ecosys-
tems simpler than for continental ecosystems. Furthermore, MacArthur and
Wilson argued that the great diversity in island size, geographical position,
climate or isolation turns islands into effective replications of natural exper-
iments, upon which a potential theory of biogeography could be tested [1].
On top of that, systems of islands (archipelagos) are a convenient starting
point for the study of metapopulations and the role of migration between
ecosystems.

Although MacArthur and Wilson first presented their ideas in the context
of literal islands, they argued that the concept of ecological “island” extends
beyond the literal patch of land in the sea. Any ecosystem that is well-
defined in space, of a relatively small size, working mostly in isolation from
other systems but with a certain degree of connectivity to them, can be
understood as an ecological “island”. Particular examples include studies on
single plants, caves, natural reserves, lakes, ponds or mountain tops [1, 2].
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1.1. ISLAND BIOGEOGRAPHY CHAPTER 1. INTRODUCTION

One of the main ideas proposed by MacArhtur and Wilson is that the
diversity of species in an island is proportional to the island area following a
power law:

S = C · Az (1.1)

where S is the number of species, A the area of the island, C some biogeography-
dependent parameter, and z > 0 some scaling parameter (the number of
species grows as the area of the island grows). Figure 1.1 shows this relation
as presented in the original book by MacArthur and Wilson, for islands in
the Caribbean. This is a priori a sensible idea: a larger ecosystem might
allow for more ecological niches and thus lead to a larger number of potential
species.

Figure 1.1: Relation between island area and number of species in islands in
the Caribbean. Plot taken from the original publication by MacArthur and
Wilson [1].

Another key idea by MacArthur and Wilson was that the number of
species present in an island ecosystem is determined by a dynamical equi-
librium between immigration and extinction rates in the island (see Figure
1.2.A). The argument proposed is as follows: if the number of species in an
island grows then the rate of immigration of new species must decrease, as
the potential for unfilled ecological niches, as well as the resources available
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1.1. ISLAND BIOGEOGRAPHY CHAPTER 1. INTRODUCTION

in the island, decrease and as new immigrants are likely to be of an already-
present species. Conversely, as the number of species grows, so does the rate
of extinction, simply because there are more species that can go extinct and
because, for an island of a given area, a bigger total number of species must
imply a lower number of individuals per species, making extinction events
more likely.

Equally, MacArthur and Wilson postulated that the inter-island distances
are inversely correlated with immigration rates, that is, that if an island is
closer to some source region of individuals, then the rate of arrival of new
species is larger. On the other hand, they argued that the extinction rate in
islands is inversely proportional to the island area. If an island is smaller then,
for a given number of species, one might expect inter-species interactions to
be stronger (everyone is living closer together) leading to more extinction
events. Both arguments are illustrated in Figure 1.2.B.

Figure 1.2: Idea of dynamic equilibrium in island ecosystems, as presented
by MacArthur and Wilson [1]. A) Dynamic equilibrium. The crossing point
between the extinction rate and the immigration rate of species in an is-
land sets the steady-state number of species in it. The extinction rate is
directly proportional and the immigration rate is inversely proportional to
the number of species in the island. B) An increase in distance from the im-
migration source reduces the immigration rate of species (decreasing curves).
A decrease in island area increases the rate of extinction events (increasing
curves).

After MacArthur and Wilson published their book, their ideas gained
popularity in the study of ecosystems and they were also readily applied by
policy makers in the design of nature reserves [6]. In particular, the idea
that the size of an ecosystem patch or island is proportional to its number of
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1.1. ISLAND BIOGEOGRAPHY CHAPTER 1. INTRODUCTION

species led to the idea that a large reserve is better than a small one, as well
as that a single large reserve would be better than several small ones, for a
given total area [2].

Despite their novelty and potential, MacArthur’s and Wilson’s ideas were
not without criticism [6–8]. Their considerations and assumptions were con-
sidered too simplistic and heavily criticized by conservation biologists [8], as
well as being generally far removed from real ecosystem dynamics [2, 8] and
being intrinsically difficult to test experimentally. For instance, determining
experimentally the number of species present in an ecosystem is heavily de-
pendent on the method used and there is a large potential for undersampling.

In his seminal paper, The problem of pattern and scale in ecology [3], biolo-
gist Simon Levin expanded on the ideas of MacArthur and Wilson and argued
about the importance of choosing the right scale when studying ecosystems,
in particular if one is to produce the kind of predictive models necessary
in ecosystem management [3]. MacArthur and Wilson had presented their
theory in the highly specific context of islands and mostly for vertebrate
species (amphibians, reptiles, fish and birds), but there was no basis to think
that it might apply to these classes in different contexts or to species in
larger/smaller ecosystems. Levin argued that understanding ecosystems re-
quires an understanding of the underlying processes that occur at each scale,
as well as how the mechanisms at one scale produce effects at different scales.
In particular, Levin argued that the patchy (or island-like nature) of ecosys-
tems holds at different scales, and he advocated for a thorough study of
both the intra-island and inter-island dynamics for a full understanding of
an ecosystem [3]. Levin also argued that the correct study of ecosystems must
involve the coupling of ecological and evolutionary dynamics, something that
was mostly omitted in MacArthur and Wilson’s ideas.

The world of microbial populations is a potential test bed for all of the
previous discussions. In microbial communities, ecological and evolutionary
timescales can be comparable and experiments can be made in controlled
environments. They might thus enable to test the ideas of MacArthur and
Wilson in a quantitative manner. Additionally, in recent years, there has
been a surge in studies highlighting the importance of spatial structure in
microbial systems [4, 9–12]. After all, MacArthur and Wilson’s ideas neglect
the presence of spatial structure in ecological islands, but it is reasonable
to expect that a certain degree of spatial organization will affect the eco-
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1.2. CAVITY SYSTEMS CHAPTER 1. INTRODUCTION

evolutionary dynamics of an ecosystem.

In this thesis, we shall explore the properties of a particular type of mi-
crobial system at the micrometer scale, that of cavity-like environments. We
will discuss how some of their properties compare with the island theory
that we discussed here (in cavities diversity will be measured in strains or
lineages, not species), but they will also uncover other novel phenomena not
directly related to island theory that we will discuss in much more detail. In
the next sections we present the paper on which this thesis is based, that of
Yuya Karita and coauthors [5]. In particular, in Section 1.2 we will present
in more detail the cavity environment, as well as the experiments performed
in [5], which will serve as a starting point for the rest of the thesis.

1.2 Cavities and the panflute experiment

We can intuitively understand a cavity as a confined, mostly elongated space,
closed at one end but open at the other, where the cavity connects to some
outer world. Cavity-like environments are found in nature in a variety of
systems, including skin follicles and pores [13, 14] or intestinal crypts (see
Figure 1.3) [15, 16]. Cavities can easily be understood as islands in the
MacArthur-Wilson sense. They are environments in a well-defined position,
capable of sustaining a population within and which find themselves inside
a larger environment, allowing for migration into the cavity from any other
cavity or, more generally, from the larger environment outside the cavity
(e.g.: the lumen in the gut for a crypt or the air for a skin follicle). One very
particular aspect of this kind of cavities is their size: skin pores are about
60µm in diameter [17], and intestinal crypts in humans are about 50−70µm
in diameter [18]. For typical bacterial sizes of about 1µm, we can easily get
a grasp of just how tight these environments are: the amount of individuals
living in any given section of the cavity will typically be of a few tens, at
most a few hundreds. We might thus naturally expect that stochasticity
plays an important role and that spatial structure will key to understanding
their population dynamics.

In 2022, Karita and coauthors published a paper in which they set out to
study these kind of cavity systems using the bacterium A. Indionesiensis [5].
In their study, they devised the following experimental setup: a long channel

11



1.2. CAVITY SYSTEMS CHAPTER 1. INTRODUCTION

Figure 1.3: Examples of cavity-like environments in natural systems. A) Skin
follicles and pores. Taken from Kong&Segre, 2012 [13]. B) Small crypts in
the intestinal tract. Taken from Mowat&Agace, 2014 [16].

allows for the flow of fluid with nutrients and cells. Cavities of varying length
protrude from this channel, thus producing a setup that looks like a panflute
(see Figure 1.4). Cells are non-motile, they move passively by diffusion, and
they can enter the cavities and have the potential of colonizing them through
proliferation. In their experiments, the authors found that there are two
major transitions in the cavities. When a cavity is too short, diffusion is too
strong and the outwash of cells dominates proliferation, making impossible
the stable establishment of a bacterial colony inside a cavity (see cavity 1 in
Figure 1.4). If the cavity is long enough, then proliferation dominates and
the cavity can be colonized. The second transition occurs at a larger cavity
length. If a cavity is shorter than the critical length, then the population in
the cavity appears to be in a gaseous state with a high diffusion of individual
cells (see cavities 2-6 in Figure 1.4). If it is longer, then proliferation is
too large compared with the diffusion-driven outwash and the population
appears to be in a jammed state: cells have a very low self-diffusion, the
crowding limits their movement and they are essentially stuck in place by
the presence of neighboring cells (see cavities 7-8 in Figure 1.4). The authors
actually developed a theoretical reaction-diffusion model that predicts this
kind of transition in a one-dimensional cavity [5]. We shall go deeper into
it in Chapter 2 of the thesis, as we will use it throughout the thesis and its
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1.2. CAVITY SYSTEMS CHAPTER 1. INTRODUCTION

extension will lead to some new results.

Figure 1.4: Image taken from Karita et al., 2022 [5]. Experimental panflute
device. Cells and nutrients flow in the top channel, and cavities of different
lengths emanate from it. The length of the cavities determines whether cells
can colonize them or not: cavity 1 is too short and can only sustain an empty
steady state, cavities 2-6 can sustain a gaseous population, and cavities 7-8
are long enough that the population of cells jams.

The results of this study already support Levin’s claim that the correct
choice of scale is paramount in the study of an ecosystem. A change of less
than doubling the length of a cavity covers all three possible states of the
population (empty, gas and jammed) and the change from gaseous to jammed
is discontinuous and occurs for a change in cavity length of less than 5% [5].

A second result from the study is that populations in the jammed state are
very resistant to invasion, even against much-fitter invaders. To show this,
the authors in [5] introduced an antibiotic into the panflutes that reduced
the growth rate of the resident bacteria. This causes the jamming thresh-
old to move towards longer cavity lengths, unjamming some populations and
“gasifying” them. The authors then introduced an antibiotic-resistant bac-
terial strain. The resistant strain, despite holding a big selection advantage
over the resident strain, was able to invade only gaseous cavities. Figure 1.5
shows this process. In their discussion, the authors argue that the inability of
the fitter strain to invade is due to the inherent mechanical advantage of the
resident strain in the jammed state: the authors postulate that the dynamics
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1.3. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

Figure 1.5: Modified from [5]. Invasion in cavities. Antibiotic is introduced in
cavities, reducing the growth rate of the resident strain (grey). An antibiotic-
resistant strain (yellow) is then introduced into the cavity. Its selective ad-
vantage allows it to invade gaseous cavities, but jammed cavities remain im-
mune to jamming. The unfilled triangle marks the transition from gaseous to
jamming in the absence of antibiotic, and the filled triangle marks the same
in presence of antibiotic, for the resident strain. Notice in the cavity marked
with a red arrow, how once the invader strain has taken over the cavity, its
larger growth rate causes it to re-jam the cavity.

in a jammed cavity must be dominated by a small number of cells at the floor
(the closed end) of the cavity. A successful invading cell would then first have
to make its way to the floor in order to take over the cavity, an occurrence
that is practically impossible if the resident population is jammed. Jamming
can thus act as a stabilizing factor in cavity-like environments, a factor that
could help explain the high stability of some bacterial populations in the gut
or the skin despite their overall low numbers and the large fluctuations in
the environment around them [5, 19, 20].

1.3 Outline of the thesis

The previous discussions elucidate how the study of cavity environments can
uncover novel phenomena, and that they can be used to quantitatively test
the feasibility of some of the ideas about “island” ecosystems. In this thesis,
we shall further the study of cavity environments, progressing in the under-
standing of the different phases of the populations within, the transitions
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1.3. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

between them, and the ecological and evolutionary dynamics of the cells
living within.

Chapter 2 will be devoted to the 1D reaction diffusion system used by
Karita et al. [5]. We will reproduce some of the results from their study
and extend the model to study the effects of non-exponential growth on
the gas-jam transition. We will also probe the effects of different boundary
conditions on the system, which will uncover a new type of cooperation:
Invader-Sustained Jamming (ISJ). In Chapter 3, we will present different
models that allow the study of cell populations in cavities with individual-cell
resolution. Particular emphasis is placed on a new, individual-based model
that pivots on the distinction between self-diffusion and collective-diffusion,
which will be used in subsequent chapters to study population dynamics
inside the cavities. In Chapter 4, we will study the coexistence of strains in
cavities. In particular, we will focus on the coexistence of band-like structures
arising in jammed cavities, as first discovered in [5], and we will explore
competition quantitatively, probing some of our new theoretical predictions
with actual experimental data. In Chapter 5 we will study the diversity of
populations in cavities, in particular by looking at Clone Size Distributions
(CSDs) in both gaseous and jammed cavities. Lastly, in Chapter 6, we
will study in more detail the cooperation phenomenon of ISJ introduced in
Chapter 2. Chapter 7 will be devoted to a deeper discussion on the results
found throughout the thesis, a reflection on how they relate back to the
theory of island biogeography, as well as potential limitations and appealing
directions of future research.
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Chapter 2

One-Dimensional Model

By far the simplest approach to modeling a cavity-like environment is to
reduce it to a single dimension. Doing so allows one to obtain results, both
analytical and numerical, in a short time and to gain some intuition on the
dynamics of cell colony growth in cavities. Even though the power of such
simple models is obviously limited, they predict some very interesting phe-
nomena and give quantitative predictions that agree with much more complex
models. In this chapter, we will first motivate and present a one-dimensional
model used to explain the experimental results in [5]. We will recover some
of the results from that paper and extend the analytical study to arrive to
the first novel results in the thesis. In particular, we will see that the 1D
model correctly predicts a transition from a gas sate to a jammed state in
the density profile inside the cavity, as well as a possible involuntary cooper-
ation mechanism that confers a colony inside a cavity with some colonization
resistance against invasions.
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2.1. 1D REACTION-DIFFUSION SYSTEM CHAPTER 2

2.1 1D Reaction-Diffusion system

The elongated nature of a cavity makes the one-dimension assumption rea-
sonable, resting on two major assumptions. The first is that the observables
that describe the population, in particular the cell density, only change along
the length of the cave. The second is that the same must be true of any out-
side forces acting on the cell population, namely how the motion of the fluid
inside the cavity carries cells with it. The second assumption can be com-
pletely overlooked if one ignores the effect of advection altogether, which is
reasonable for some real systems under experimental conditions, whenever
the population grows far enough away from the mouth of the cave to be
unaffected by the flow from the fluid coming in from the main channel [5].

The simplest one-dimensional model rests on treating the cell population
as a continuous medium, characterized by the density of cells, ρ, in cells per
unit length. The dynamics of the microbes in a cavity of length L are thus
given by the following reaction-diffusion equation

∂tρ(y, t) = −∂y(j(y, t)) + b(ρ(y, t))

j(y, t) = −D(ρ)∂yρ(y, t)
(2.1)

corresponding to Fick’s 2nd Law with a birth term, b(ρ(y, t)) , due to cell
growth, where j(y, t) is the current of density given by Fick’s 1st Law,
D(ρ(y, t)) is the diffusivity, which is in general a function of the density,
t is the time variable and y the position from the floor of the cavity. In the
discussions that follow, we will simplify the notation ρ(y, t) to ρ for brevity,
making the dependence on space and time explicit only when necessary. Note
that the dependence of the diffusivity D on the density ρ will be crucial to
understand the behavior of the gas and jammed states, something that will
be discussed in much more detail in Section 2.2.

Equation 2.1 is solved with the following boundary conditions:

j(0, t) = 0, ∀t
ρ(L, t) = ρL, ∀t

(2.2)

corresponding to zero-flux at the floor of the cavity and a fixed density value
at the mouth of the cavity, respectively. The first boundary condition is
motivated by the fact that cells cannot cross the cavity wall at the floor.
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2.1. 1D REACTION-DIFFUSION SYSTEM CHAPTER 2

The second stems from the fact that the density of cells in the main channel
from which the cavity protrudes is kept more or less constant. In particular,
we will work with the condition ρL = 0, corresponding to a channel which is,
for all practical purposes, empty. This condition will be relaxed in Section
2.4, giving rise to an interesting type of cooperation effect.

In the rest of this section and all of the following section, we will work
with a birth term of the type

b(ρ) = b · ρ (2.3)

where b is the growth rate of the microbes in units of 1/t. This implies that
microbes in the system always grow exponentially, a very strong assumption
but which is compatible with the experimental results from [5]. In section
2.3 we will relax this condition and explore the effects of different kinds of
microbial growth.

Figure 2.1 shows an illustration of a cavity and a typical density profile
in the gaseous phase, under the simplification to one dimension.

Figure 2.1: Left: Example of a cavity in a panflute setup. The panflute has
a main channel where fluid with cells and nutrient flows. Cavities stem out
of the main channel and microbes can accumulate in them and proliferate,
forming colonies and accumulating near the bottom of the . Right: Illustra-
tion of the cell density profile under the simplification to one dimension. The
density satisfies the no-flux condition at the floor and can be assumed to be
0 at the mouth, since the number of cells in the main channel is very low.

The system presented in Equations 2.1, 2.2 and 2.3 has a steady state
that undergoes two transitions. The first one is the establishment transition.
For cavity lengths under some establishment length Lest, the cavity cannot
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2.2. NEWTONIAN ANALOGY CHAPTER 2

sustain a stable steady state population, and the only stable solution to the
system is ρ = 0 everywhere in the cavity (see Figure 2.2). If, instead, the
length of the cavity is such that L > Lest, the cavity is able to sustain a
non-zero population. It can be shown using linear stability analysis (see
Appendix A.1 for a detailed derivation, taken from [5]) that the transition
occurs at the establishment length:

Lest =
π

2

√
D0

b
(2.4)

where D0 ≡ D(0) is the value of the diffusivity at zero cell density.

For values of L slightly above the establishment length, and as long as
the diffusivity increases with sufficiently with ρ, the cavity supports a stable
microbial population in what we shall call a gas or gaseous state, character-
ized by a low cell density and in which the density profile is cosine-shaped
(see Figure 2.2), in agreement with experiments [5].

At some other critical length, L∗ > Lest, the system undergoes a second
transition from the gas-like state into a jammed state in which the density of
cells is really high and the profile looks almost flat near the floor of the cavity
and is then gas-like near the mouth (see Figure 2.2). The jammed phase
occurs when the cell density is increased above some jamming threshold,
ρjam, at which points the cells are in physical contact with each other and
movement in the cavity comes mostly not from Brownian motion but from
excluded-volume repulsion between cells [5].

In the next section, we shall discuss in detail an analogy to a Newtonian
problem that can be used to derive the steady-state value of the density
at the floor of the cavity from Equation 2.1. This will be useful to discuss
in more detail the establishment and jamming transitions presented in this
section.

2.2 Newtonian analogy

In steady state, Equation 2.1 can be easily rewritten as

0 = ∂y

(
D(ρ)∂yρ(y)

)
+ b · ρ(y) (2.5)
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2.2. NEWTONIAN ANALOGY CHAPTER 2

Figure 2.2: Simulated packing-fraction profiles using the 1D reaction-
diffusion system for different reduced lengths, l = L/Lest, obtained by varying
the actual length of the cavity. For l < lest ≡ 1, the steady state solution is
an empty cave (red). For lest < l < l∗, the profile is typical of a population in
a gaseous state (orange) [5] and can be well-approximated by a cosine profile
(dotted green line). For l > l∗, the population enters the jammed phase, with
a flat profile saturated around the jamming packing fraction (dotted black
line) close to the floor and a gas-like phase closer to the mouth of the cavity
(blue).

where the density profile is now independent of time.

Now consider a basic one-dimensional Newtonian problem of the type

ẍ = −∂xU(x) (2.6)

representing an object of unitary mass falling due to some potential U(x),
where x is the particle’s position with zero initial velocity. If the particle
moves from an initial position x0, conservation of energy implies that

U(x0)− U(x(t)) =
1

2
v(x(t))2 (2.7)

where v(x(t)) is the velocity of the particle in position x(t) at time t. The
total time, T , taken for the particle to reach some final position xf , xf > x0,
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2.2. NEWTONIAN ANALOGY CHAPTER 2

is thus

T =

∫ T

0

dt =

∫ xf

x0

1

v
dx =

∫ xf

x0

1√
2(U(x0)− U(x))

dx (2.8)

and it can be easily calculated by computing the integral analytically or nu-
merically. If xf < x0, then Equation 2.8 has a negative sign or, equivalently,
the limits of integration are exchanged; this small correction simply comes
from the ambiguity in the sign of the velocity that results from Equation 2.7.

It turns out that, as shown by Yuya Karita et al. in [5], it is possible to
recast Equation 2.5 into a Newtonian equation like Equation 2.6 where the
position y plays the role of time, such that the total length of the cavity is
akin to T and can be calculated using Equation 2.8.

This can be done by introducing the following variable

Π(ρ) =

∫ ρ

0

D(ρ′)dρ′ (2.9)

and the potential

U(Π(ρ)) =

∫ Π(ρ)

0

b(ρ(Π′))dΠ′

=

∫ ρ

0

b(ρ′)D(ρ′)dρ′

≡ U(ρ)

(2.10)

such that we are left with the equation

∂2
yΠ = −∂ΠU(Π) (2.11)

which is evidently like Equation 2.6 with y taking the role of time.

Then, using Equation 2.8, the length of the cavity can be calculated as

L =

∫ ρ(y=0)=ρ0

ρ(L)=0

D(ρ)√
2(U(ρ0)− U(ρ))

dρ (2.12)

Before we proceed to the evaluation of Equation 2.12, it is important to
discuss two elements: the distinction between density and packing fraction,
and the form of D(ρ).
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The packing fraction, Φ, is the ratio between the area/volume occupied
by the cells and the area/volume of the space that they live in, in two/three
dimensions, respectively. For a given cell density (in number of cells per unit
area/volume), the conversion between density and packing fraction is simply

ρ = Φ · A, in 2D

ρ = Φ · V, in 3D
(2.13)

where A/V is the area/volume of a single cell. ρ and Φ can be used indistin-
guishably for most practical purposes. The jammed state is more naturally
described in terms of the packing fraction, since it is the physical limit to
how closely-packed the cells can be, and it is independent of the area/volume
of a single cell. On the other hand, when talking about cell populations in
a cavity, it is more natural to speak about cell density. In this manuscript
both terms shall be used indistinguishably (and the same is true about their
symbols), but with some general trend: the rest of this first chapter will see
a heavier use of the term “packing fraction”, whereas in all the chapters that
follow we shall talk almost exclusively about “density”.

Regarding the diffusivity function, in the entirety of this manuscript we
shall use the diffusivity of hard spheres in three dimensions as in [5], stemming
from the equation of state for hard spheres as given by the Carnahan-Starling
(CS) Equation [21] (see Figure 2.3). This is only done for consistency and
to facilitate the comparison with known results from [5], but the results
presented in this thesis should not heavily depend on the exact shape of the
function as long as it has the following two main traits: a positive slope in
the region near zero packing fraction, followed by a strong enough negative
slope in the regions of high packing fraction. This shape is what confers it
the ability to stabilize a gaseous population at low packing fractions, as well
as yielding the fold-bifurcation that gives rise to the gas-jam transition [5]. A
second point to be made about the diffusivity function is its behavior above
the jamming threshold when trying to solve the reaction diffusion system in
Equation 2.1 by numerical integration. Ideally, wherever the system is in the
jammed state the diffusivity is infinite (i.e.: a cell would respond immediately
to a change in density caused by the movement or growth of cells around
it), or at least orders of magnitude higher than in the gas state. One way
to implement this behavior approximately in a numerical simulation is by
adding a linear, strongly growing, term to the diffusivity for values above the
jamming threshold, such that it mimics the expected behavior without losing
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Figure 2.3: Diffusivity function for hard spheres from the Carnahan-Starling
Equation (blue), with a correction to account for the transition to the jam-
ming phase (orange). The positive slope for low packing fractions (Φ) allows
the stabilization of a gaseous phase, while the negative slope at higher pack-
ing fractions promotes the transition to jamming.

numerical stability. The resulting diffusivity function is shown in Figure 2.3.

Going back to Equation 2.12, by evaluating it at different values of ρ0,
we can construct a bifurcation diagram for the one-dimensional model which
tells us what is the packing fraction at the floor of the cave, Φ0, as a function
of the length of the cave, L. The resulting bifurcation diagram is shown
in Figure 2.4. For lengths below the establishment length, the only stable
solution is the empty state. For lengths above some critical value L∗, the
empty state is unstable and the density grows until the packing fraction hits
its maximum allowed value, corresponding to the jamming transition (in this
case we use the value for random close packing of hard spheres, Φjam ≈ 0.64
[22], but once again, the general dynamics observed in the models used in
this thesis should not heavily depend on its exact value).

Let us consider the reduced length

l =
L

Lest

=
2L

π

√
b

D0

(2.14)
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such that lest = Lest/Lest ≡ 1. For reduced lengths between lest and l∗

(corresponding to L∗ at the jamming transition), the resulting curve from
Equation 2.12 shows that it is possible to have a steady state population in
a gas phase (see the curve of positive slope between l = lest = 1 and the
saddle-node bifurcation in Figure 2.4).

Figure 2.4: Bifurcation diagram for the packing fraction, Φ0, at the floor
of the cavity as a function of its reduced length, l = L/Lest. Solid/dashed
curves indicate stable/unstable fixed points, respectively. Φ0 can be used as
a measure of the state of the population: if Φ0 = 0 the cavity is empty, if
Φ0 = Φjam the population is jammed and if Φ ∈ (0,Φjam) the population is
in a gaseous state.

From the bifurcation diagram in Figure 2.4, we can see that the system
allows for hysteresis. There is a region of bistability between lest and l∗

where the steady state can either be gaseous or jammed, depending on its
history. If the system comes from low l, it stays in the gas state. If l keeps
increasing, at some point it encounters the fold bifurcation at l∗ and jumps
to the jammed state. If l is then reduced, the system will stay in the jammed
state until some lower threshold is reached, at which point it jumps down
again to a gaseous state. Note that it makes sense to speak about time-
changing reduced lengths because the reduced length l depends not only on
the length of the cavity, but also on the diffusivity and the cell birth rate.
Its change in time can thus be achieved via alterations to the birth rate,
for instance through the use of antibiotics [5]. The ability of the system to
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present hysteresis was numerically tested, with results being represented by
the colored dots in Figure 2.5.

Figure 2.5: Bifurcation diagram as in Figure 2.4, with the results from the
hysteresis test shown as dots. The test was performed by numerically in-
tegrating Equation 2.1 until a stable state was reached, then varying the
reduced length of the system and repeating the process. The order of the
simulations is given by the color of the dots: from fairest to darkest. Here,
bistability is shown for l = L/Lest ≈ 1.09. The system can be in a stable gas
phase, if one comes from smaller l (light red), or a stable jammed phase, if
coming from a l corresponding to a jammed state (dark red).

This section served to introduce the tools necessary to quantitatively pre-
dict the steady state of the microbial population in the cavity. The results
presented in this section reproduce those found in [5] and are useful to give
some intuitive understanding as to what happens in these cavity environ-
ments. In the next two sections, we shall use the tools presented here to
find novel results, some of which have interesting ecological and evolutionary
consequences.

2.3 Non-exponential population growth

In the previous two sections, we assumed that the birth rate of the cells in the
system was a constant (see Equation 2.3). It is natural to ask what happens
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if that assumption is lifted. Two phenomena stand out as prime candidates
for this extension and they are the ones that we will consider: logistic growth
and the Allee effect.

Logistic growth is the typical kind of growth experienced by populations
whose environment supports a limited number of individuals. It is typical
of microbial populations [23], but has even found use (and was actually first
introduce to describe) human population growth [24]. Under logistic growth,
a population N(t) grows in time according to the differential equation

∂tN(t) = bl(N) ·N = b(1− N

K
)N (2.15)

where bl(N) is the growth rate of the system, given by b, the exponential
growth rate, and K, the carrying capacity of the system. A population
following logistic growth will saturate at its carrying capacity, with a growth
rate that is positive and maximum at zero population and slowly decreases
as the population approaches K. Logistic growth is a most natural way to
model resource scarcity in a well-mixed system: a population cannot sustain
exponential growth indefinitely in a system with limited resources, and its
ability to grow will be reduced as resources become scarce. Given the spatial
constraints in a cavity and the fact that nutrients are introduced via the
mouth of the cavity (and must thus first reach the floor for microbes living
there to be able to grow), it is reasonable to introduce it in our study to
study its possible effects.

On the other hand, the Allee effect is an effect opposite to logistic growth.
It is the effect by which the growth rate of a population increases as the
population itself grows (typically at low population densities) [25]. The Allee
effect is representative of the phenomenon of cooperation, that by which the
presence of nearby individuals enhances one’s ability to reproduce or grow.
microbes are known to be susceptible to the Allee effect [26–28], and it is
thus reasonable to ask what its effect might be on a cavity-like system.

There exists a distinction between a “weak” and a “strong” Allee effect.
In a weak Allee effect, the growth rate is always positive, such that the
empty/dead state is always unstable (as is the case under regular exponential
growth or logistic growth). In a strong Allee effect, on the other hand,
the growth rate is initially negative for low population densities and only
becomes positive above some population threshold, making the empty state
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metastable (if the density is below the threshold, it goes to zero, but will
grow if above the threshold). Even though the strong Allee effect might
potentially also occur in microbial systems [26, 28], here we shall focus on
the simpler case of a weak Allee effect. A population N(t) growing under a
weak Allee effect will grow in time according to

∂tN(t) = bA(N)N = b(1 +BN)N (2.16)

where bA(N) is the growth rate due to the Allee effect, dependent on the
exponential growth rate, b, and the strength of the Allee effect, B.

Considering both effects, the birth term in Equation 2.1 can be replaced
by

b(ρ) = bρ(1− kρ)(1 +Bρ) (2.17)

where k sets the strength of the logistic effect and B of the Allee effect. This
general form of the birth function also allows us to study the effects of one
type of growth, ignoring the other, by simply setting k = 0 or B = 0.

Now, we can solve Equation 2.12 with the new birth term to obtain an
updated bifurcation diagram. Intuitively, we might expect logistic growth to
stabilize the gas phase and push back the onset of jamming, since it reduces
the growth rate at higher densities. On the other hand, the Allee effect
promotes cell birth and thus is expected to induce jamming earlier than for
simple exponential growth. Figure 2.6.A shows the bifurcation diagram when
logistic growth is present (k ̸= 0) in the absence of an Allee effect (B = 0).
Note how the establishment length is unchanged, since near Φ = 0 the effect
of the reduction in the growth rate due to k is negligible. Notice also how, as k
grows, the curve for Φ0 is slowly pulled to the right of the bifurcation diagram,
until for some critical value k∗ the fold bifurcation from the gaseous to the
jammed state disappears and the system presents a transcritical bifurcation,
changing continuously from gas to jammed as l is increased, confirming that
intuition that logistic growth “gasifies” cavities.

Figure 2.6.B shows the effects of an Allee-type growth (B ̸= 0) for no
logistic growth (k = 0). In this situation the establishment length is also
unchanged and for the same reason, because near Φ = 0 the effect of the
term +BΦ is negligible. As expected, the curve in the diagram is now pulled
to the left as B increases. Now the fold bifurcation does not disappear, but
the part of the curve with positive slope, corresponding to the stable gaseous
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Figure 2.6: Bifurcation diagrams for the packing fraction, Φ0, at the floor of
the cavity as a function of the reduced length, l = L/Lest, in the presence
of logistic growth or an Allee effect. For reference, the control case without
any of the two effects is shown in blue. In all cases, the establishment length
remains unchanged. Solid/Dashed curves are stable/unstable steady states,
respectively (the horizontal lines corresponding to the empty and jammed
states do not show this distinction for ease of plotting). A) Effect of logistic
growth in absence of an Allee effect. The curve obtained from Equation 2.12
is shifted to the right for stronger logistic growth, and eventually the bistabil-
ity region and the saddle-node bifurcation disappear and the transition from
gaseous to jammed is continuous, allowing also the gaseous state in a larger
range of reduced lengths. B) Effect of an Allee effect in the absence of logistic
growth. The curve obtained from Equation 2.12 is shifted to the left as the
Allee effect grows stronger. Eventually, the stable gas phase disappears and
the only allowable non-empty stable state is in the jammed phase. Note how
the Allee effect permits the presence of populations below the establishment
length l = 1.

phase, gets smaller. For some critical value, B∗, the gas phase disappears
altogether from the bifurcation diagram. This implies that, if the system is
in a non-empty steady state, it must correspond to a jammed state. Note
also how, when the Allee effect is strong enough, the system allows for stable
jammed states even for l < lest, as long as these are reached continuously
from a jammed state at l > lest thanks to the hysteresis cycle.

It is important to stress this last point, that the Allee effect has the
potential to stabilize jammed populations in caves even as the exponential
growth rate b of the cells in the cavity falls below the establishment threshold.
This can potentially have important ecological consequences. Imagine two
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harmful strains of microbes, identical in every way except for the fact that
one presents an Allee effect and the other does not. Using an antibiotic
that decreases the growth rate of both strains below establishment would
potentially be enough to get rid entirely of Allee-free strain, while being
practically useless against the strain with the Allee effect.

Figure 2.7: Bifurcation space for cavity systems. Each colored region corre-
sponds to a bifurcation diagram showing a distinct set of bifurcations. The
orange region (marked “GJ”) corresponds to the existence of the fold bifurca-
tion, as in Figure 2.4. The yellow region (“G”) corresponds to the continuous
gas-jam transcritical bifurcation, as in Figure 2.6.A. The red region (“J”) cor-
responds to the bifurcation diagram where there is no stable gas phase, as in
Figure 2.6.B. The green region (“GJjam”) corresponds to the region where
the fold bifurcation should exist but the system instead shows a continuous
transition due to the presence of the jamming threshold, Φjam (see main text
for details). The blue dot marks the tricritical point.
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Figure 2.7 shows the complete bifurcation space of the cavity in the gen-
eral case (k,B) ̸= (0, 0). The bifurcation diagrams presented in Figure 2.6.A
and Figure 2.6.B correspond to the x-axis and the y-axis, respectively. The
term phase here is used to refer to which kind of bifurcation the system
presents. It can present the fold bifurcation, such that there are a stable gas
phase and jammed phase separated by a discontinuous jump in density at l∗,
denoted GJ in the diagram. It can present a stable gas and a stable jammed
phase but with a continuous transition between the two as per the effect of
logistic growth, denoted G in the diagram. Or, alternatively, it can present
no stable gas phase, only the jammed one, as per the result of the Allee
effect, denoted J. The fourth region in the diagram, denoted GJjam refers to
the case in which the system would naturally present a fold bifurcation, as in
GJ, but instead presents a continuous transcritial bifurcation due to hitting
the jam packing fraction, Φjam. That is, if we were to calculate the curve in
the diagram using Equation 2.12 for Φ ∈ [0, 1], it would appear to suggest
the existence of a fold bifurcation at l∗, corresponding to some Φ∗; yet, it will
not show that because Φ∗ > Φjam and thus the system jams without ever
reaching Φ∗.

The phase diagram suggests two further things. The first one is the
existence of a tricritical point, (Btri, ktri) = (1.89, 0.753) where all of the pre-
viously discussed effects come together at once. The resulting phase diagram
is surprisingly simple: the curve obtained from Equation 2.12 is simply a
vertical line at l = lest = 1 implying that, at the establishment transition,
any steady state value of Φ up to Φjam is a possible solution (although the
relevance of this in a real system is almost none since any small fluctua-
tion might drive it away from lest). The second one is that, although the
experimental setup in [5] is compatible with simple exponential growth, as
implied in the paper, it is also compatible with any set of parameters (k,B)
in the GJ phase. This means that the microbes in the experimental system
might potentially show either the Allee effect or the effects of nutrient de-
pletion without it affecting the overall results of the study, but the effects of
non-exponential growth could prove crucial in more critical conditions.

In this section we studied the effects of non-exponential growth on the
steady state of the population inside the cavity. Until now, we have kept the
condition that the density of cells at the mouth of the cave be equal to zero.
In the next section, we shall relax this condition and explore what effects it
might have on the steady state of the population.
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2.4 Non-zero boundary conditions

So far, we have used the condition that the density of cells at the mouth
of the cave is zero (see the discussion around Equation 2.2). We shall now
relax this condition and study what happens when there is a constant but
non-zero number of cells at the mouth of the cavity.

The first result we shall discuss is that of the indistinguishability of den-
sity profiles. Suppose we have two density profiles in steady state, ρ1(y) and
ρ2(y). Suppose that both have the same value at the floor of the chamber,
that is, ρ1(0) = ρ2(0) = ρ0. Assuming that b and D0 are the same in both
cavities, suppose now that the length of cavity 1 is shorter than that of cavity
2, that is, L1 < L2. Then, allowing for a non-zero boundary condition at
the mouth of the cave, if ρ1(L1) = ρ2(L1) = ρL1 , the two density profiles
are indistinguishable in the interval y ∈ [0, L1]. This result is obvious if
one considers the reaction-diffusion system from Equation 2.1 in the interval
[0, L1] with the boundary condition at L1 to be ρ(L1) = ρL1 . Since both
system 1 and 2 satisfy the boundary condition and follow the same equa-
tion, not only must they have the same ρ0 at the floor, but also everywhere
in [0, L1]. Figure 2.8 shows an example of three indistinguishable density
profiles for increasing cavity lengths. This property of indistinguishability
has one important consequence: every steady-state density profile, ρ(y) with
the boundary condition at the mouth ρ(L) = ρL ̸= 0 can be mapped to a
single density profile of length L′ > L with the zero-boundary condition at
the mouth, simply by extending the curve of ρ(y) from L to L′.

The second consequence of having non-zero boundary conditions at the
mouth of the cavity is that the establishment length is always equal to 0.
This can be seen from the indistinguishability property, but can more easily
be understood in intuitive terms. If one has ρ(L) = ρL ̸= 0 at the mouth,
then the mouth of the cavity acts, not as a drain of cells, but as a reservoir.
If the density in the cavity falls below ρL, then cells will be supplied from
the mouth until the density is, at least, ρL everywhere in the cavity. In
particular, this implies that the density at the floor of any cavity, in steady
state, will satisfy

ρ(y = 0) = ρ0 > ρL = ρ(L), L > 0

lim
L→0

ρ(y = 0) = ρL
(2.18)
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Figure 2.8: Indistinguishability of profiles for ΦL ̸= 0. A profile with some
non-0 ΦL at the mouth of the cavity is equivalent to the profile of some longer
cave with a lower value of ΦL, in particular one with ΦL = 0. See main text
for further discussion.

where L is the length of the cavity.

We can still use Equation 2.12 to predict the value of ρ0 at the floor
of the cavity for a given ρL at the mouth for different cave lengths. The
resulting curves, plotted for a range of values of ρL, are shown in Figure 2.9,
in the kind of bifurcation diagrams discussed in Section 2.3. The fact that
the establishment is brought to 0 can easily be observed in the diagrams: a
cavity that would have been empty in the case of zero density at the mouth
will now always be populated with microbes in steady state. In particular,
as ρL grows, it will even push a cavity into the jammed state that would
otherwise be empty (or in a gaseous state) if the density at the mouth were 0.
This phenomenon we shall call “Outsider-Induced Population” or “Outsider-
Induced Jamming”, since outsider cells coming in from the mouth produce a
stable population in the cavity, either in the gas or jammed state. We note
also that the density at the mouth needed for jamming to occur need not be
disproportionately large.
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Figure 2.9: Bifurcation diagrams for non-zero packing fractions at the mouth
of a cavity. A) Diagram in the absence of logistic growth or an Allee effect.
B) Diagram for a strong Allee effect, in the absence of logistic growth. Col-
ormap is as in C. C) Diagram for a strong logistic growth, in the absence of
an Allee effect.

Outsider-Induced Population has one deep ecological and evolutionary
consequence: Invader-Sustained Jamming. Imagine the following situation:
there is a cavity, short enough that it would not be able to hold a steady state
population of microbes on its own. Imagine now that there is a (more or less
constant) density of cells at the mouth of the cave that populates the cavity
and causes it to be in the jammed state (for example, the cavity might be a
small crypt in the intestine and there might be a significant amount of cells
in the intestinal lumen causing this jamming). We shall call this strain A.
If, for some reason, cells were to be washed out from the mouth of the cave,
then the population inside the cavity would become unstable and it would
empty out. Imagine instead that a different strain, B, substitutes strain A at
the mouth of, but not inside, the cave (this might occur in the example of the
intestine if an invader microbes enters the lumen and drives out the resident
strain, populating the lumen by itself), with a similar concentration. This
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will keep the remaining cells of strain A inside the cavity in a jammed state.
Since the population of A remains jammed, the probability that strain B
invades the cavity is practically zero (this is one of the main results from [5],
see the Introduction for a deeper discussion). But the fact that B is present
at the mouth is precisely what is stabilizing strain A inside the cavity! The
invader sustains the jamming state of the resident strain, which causes the
resident strain to become practically immune to invasion.

This Invader-Sustained Jamming has some deep ecological consequences,
because it suggests that a strain with a very low fitness for a given envi-
ronment can potentially survive for long periods by being sustained inside a
cavity by other, much fitter, strains while having a low risk of being invaded.
If the conditions then change in the system to make the unfit strain become
fitter, it could potentially repopulate again the medium outside the cavity
and dominate the system. This might have potential consequences in the use
of antibiotics, where an invading population that is susceptible to antibiotics
might survive inside cavities, only to thrive again the moment the antibiotic
is pulled out of the system.

In the following chapters, we will make use of more complex models that
will allow us to test and validate the phenomenons of Outsider-Induced Pop-
ulation and Invader-Sustained Jamming.
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Chapter 3

Two-Dimensional Models

In the previous chapter, we saw a one-dimensional approach to studying mi-
crobial populations in cavity-like environments, which we used to study the
different states of the system and the transitions between them, as well as pre-
dicting novel phenomena, particularly that of Invader-Sustained Jamming.
Perhaps the biggest limitation of the reaction-diffusion approach is that the
population of cells is reduced to a single observable, the density, assumed
to be continuous in space. While this might be sensible at higher densities,
it becomes misleading at very low densities, when stochasticity and the dis-
creteness of the cells cannot be neglected. Moreover, the reaction-diffusion
model cannot distinguish any phenomena at the single-cell level. In this chap-
ter we will present more complex models capable of resolving these issues,
and we will present them in their two-dimensional version, a more realistic
approach to studying the cavities. We will consider three different models:
a soft-disk model, a 2D reaction diffusion system and an individual-based
model with point-like cells, with a special focus on the latter, since it will
serve as the main model used in subsequent chapters. These models will
allow us to look at the coexistence of different strains in a cavity (Chapter
4), as well as to study general properties of microbial populations (Chapter
5) and the phenomenon of invasion (Chapter 6).
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3.1 Soft-Disk Model

A sensible approach to modeling the microbial population in a cavity is to
model each individual cell separately, a so-called individual-based model. In
this section, we will briefly cover an approach based on soft proliferating
disks, and we will use it to qualitatively test Outsider-Induced Population.

Following [5], we might model the particles as purely repulsive disks,
whose interactions upon contact with one another are given by the repulsive
potential

UWCA(rij) =

 4ϵ

[(
σij

rij

)12

−
(

σij

rij

)6
]
+ ϵ if rij < 21/6σij

0 else
(3.1)

for any two cells, i and j, where rij is the interparticle distance, σij =
(σi + σj)/2, where σi is the size of cell i (idem for j), and ϵ is some char-
acteristic energy scale. This potential is known as the Weeks-Chandlers-
Andersen (WCA) potential, and simply corresponds to the repulsive part of
a Lennard-Jones potential [29]. The corresponding curve for UWCA(rij) is
shown in Figure 3.1.

Figure 3.1: WCA Potential with ϵ = 1, σ = 0.1
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On top of the WCA potential, cells give birth to daughters via budding.
The mother-daughter pair are kept together via a Hookian spring

Umd =
κ

2
(rij − bij)

2 (3.2)

where κ is the strength of the spring, and the spring’s rest length, bij, grows
with constant growth rate k until bij = σi ≡ σ (where σi is the size of the
mother, and a cell is considered mature at size σ), at which point the link
between the mother and daughter is severed. The daughter itself also grows
in size at rate k, until it reaches maturity at size σ.

Cells in this system move following Brownian motion of variance 2 · D
(D being the diffusion coefficient), and the interactions with the walls are
repulsive of the type

Uwall = A · e−d/ζ (3.3)

where A is the amplitude of the potential, ζ its characteristic length scale
and d the distance beyond the wall reached by the particle, as measured from
its center. This confining potential is applied at the floor of the cave and at
the side walls, but crucially not at the mouth, where cells are allowed to exit.

The model described above shows an overall behavior that is consistent
with the 1D reaction-diffusion system and experiments [5]. It can present an
empty cave if the reduced length,l, is small enough (Figure 3.2.A), a gaseous
phase for small but higher reduced lengths (Figure 3.2.B), and a jammed
phase for large l (Figure 3.2.C), with a discontinuous transition between the
two akin to the fold bifurcation described in the previous chapter [5].

This model can be used to test the hypothesis of Outsider-Induced Pop-
ulation and Invader-Sustained Jamming. By introducing cells at the mouth
of the cave at different rates, we can mimic the effect of ρL ̸= 0, as described
in Section 2.18. In a cave that would naturally be unable to support a stable
resident (blue) population (see Figure 3.3.A), introducing invaders (yellow)
at a small rate will stabilize a population in the gas state (see Figure 3.3.B),
and if the rate of cell input is high enough, the population inside the cavity
starts to behave as in the jammed phase (see Figure 3.3.C). Note also how
the introduction of invaders seems to push some of the resident cells into the
floor of the cavity. This slows down their exit from the cave as, in order to
reach the mouth, they must overcome a series of collisions against incoming
particles (it must be noted, though, that this effect is exaggerated here by the
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Figure 3.2: Cavities simulated using the soft-disk model in 2 dimensions. A)
Cavity with reduced length below establishment. Shows an empty steady
state. B) Cavity in a gaseous steady state. The cells reproducing via bud-
ding, and the buds can be appreciated in the image (light blue disks) C)
Cavity in a jammed state. Notice the tight packing of the disks, how they
are in contact with others and how the packing fraction is considerably higher
than for a gaseous cavity.

small number of cells and their relatively big size with respect to the cave, a
constraint imposed by computational power, or lack thereof, as it constrains
the simulations to small systems).

Despite the fact that the soft-disk model is capable of resolving questions
at the single-cell level, we would like to construct a model simpler in design,
dependent on just a few parameters, that is also useful to extract data at the
single-cell level but which also keeps some of the macroscopical properties of
the one-dimensional reaction-diffusion model. This will be the object of the
next section, and it will serve as the main model in subsequent chapters of
this thesis.

3.2 The two-diffusivities model

In this section, we shall describe a novel model that will serve as the main
in-silico test-bed for the properties of cave-like systems addressed in the next
chapters of this thesis. But before we present the model, we need to discuss
the distinction between self-diffusion and collective diffusion.
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Figure 3.3: Outsider-Induced Population in a soft-disk model of proliferating
cells. Three simulations are shown (A,B,C). The initial resident population
is marked blue, and the outsider cells are marked yellow. Time increases
from left to right, and the density of cells at the mouth of the cave increases
from top to bottom. A) Zero density of cells at the mouth, ρL = 0. The
cavity cannot support a stable population and is emptied out eventually.
Notice also the budding process by which cells reproduce in this model (light
blue buds) in the center panel. B) Non-zero density at the mouth. Invaders
eventually colonize the cavity and stabilize it in a gas phase. C) Non-zero
density at the mouth, higher than in B. The stabilized population is now in
a state similar to the jammed case.

3.2.1 Self-diffusion vs. collective diffusion

Consider a single Brownian particle moving according to the overdamped
Langevin equation in one dimension:

ẋ =
√
2Dζ(t) (3.4)

where x is the position of the particle, D the diffusion coefficient and is
constant and ζ(t) Gaussian white noise. It is well-known that the probability
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distribution to find the particle at position x at time t follows the Fokker-
Planck equation

∂tP (x, t) = D∂2
xP (x, t)

= −∂xj
(3.5)

equivalent to Fick’s 2nd Law, where

j = −D∂xP (x, t) (3.6)

is the current of probability. The diffusion coefficient appears both in Equa-
tion 3.4 and Equation 3.5, and can be interpreted in two ways. In Equation
3.4, the diffusion coefficient measures the size of the individual “jumps” per-
formed by the Brownian walker at every time step. We shall refer to this
diffusion coefficient as the self-diffusion coefficient or self-diffusivity of a par-
ticle. On the other hand, the diffusion coefficient as it appears in Equations
3.5 and 3.6 can be understood macroscopically as the coefficient of propor-
tionality that relates gradients in probability (or concentration/density) to
the macroscopic currents generated from those gradients. Will shall from
now on refer to this “macroscopic” diffusion coefficient as the collective dif-
fusivity. Of course, in the simple situation presented here, the self-diffusion
coefficient and the collective diffusivity are constant and exactly the same.
But this can be generalized to a situation where the self-diffusivity and the
collective diffusivity are density-dependent and in general not equal to one
another.

In particular, consider the diffusivity function used throughout Chapter
2. This is indeed a collective diffusivity, since it relates gradients in density
to the currents of cells that they generate. It has the characteristic shape dis-
cussed in Figure 2.3, and above the jamming threshold it shoots up by orders
of magnitude (ideally to infinity), as any gradient in density is immediately
smoothed by the particles pushing on each other.

On the other hand, one can also consider a self-diffusivity that is density-
dependent. In general, we might expect that the size of the jumps performed
by an individual Brownian particle will decrease as the density of particles
around it increases and it has less space available. In particular, when the
system hits the jamming density, the self-diffusion of an individual cell will
suddenly be reduced by several orders of magnitude and be close to zero: the
cell cannot jump around because it is constrained in position by all of the
neighboring cells.
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This difference in behavior of the self and collective diffusivities is found
both in experimental systems of cells in cavities [5] and in soft disk simu-
lations like the ones discussed in the Section 3.1 [5], and it highlights the
conceptual differences between the two. It also points out to the need to
distinguish them at or near the jamming phase, when the density of cells is
very high and the two diffusivities behave in opposite ways, a difference that
can be (and is generally) ignored in very dilute systems.

3.2.2 The model

Our aim is to build an individual-based model where the two main inde-
pendent parameters are the self-diffusivity, Ds, and the collective diffusivity,
Dc. We shall model cells as point-like particles that do not interact with
each other directly in a pairwise manner as in the soft-disk model. Instead,
we want this interaction to occur indirectly via the density, where each cell
is pushed/pulled in a given direction by the gradient in the density with
a magnitude that is controlled by the collective diffusivity. At the same
time, each individual cell will perform a Brownian motion with a jump size
mediated by self-diffusivity, in accordance with the expected behavior de-
scribed in Section 3.2.1. Avoiding the calculation of pairwise interactions
greatly simplifies the model, both numerically and analytically. One further
restriction we want to impose on our model is that the macroscopic currents
come strictly from the collective diffusivity, that is, that self-diffusion should
generate no macroscopic currents.

The equation of motion for each individual cell in the system, in this
model is

ẋi =
√

2Ds(ρ) · ζi(t) + vdrift
i , i = {1, ..., N(t)}

vdrift
i = (Ds(ρ)−Dc(ρ))∇ ln(ρ) +∇Ds(ρ)

(3.7)

where N(t) is the total number of cells in the system at time t, Ds and Dc

are the self and collective diffusivities, respectively, for the cell density ρ ≡
ρ(xi, t) measured at the position, xi, of the particle at time t, and where all
the gradients are with respect to the spatial coordinates. The corresponding
drift term, vdrift

i , ensures that any macroscopic current is exclusively driven
by Dc. Indeed, the corresponding diffusion equation followed by the total

41



3.2. THE TWO-DIFFUSIVITIES MODEL CHAPTER 3

particle density is

∂tρ(x, t) = ∇ (Ds(ρ)∇ρ+ (Dc(ρ)−Ds(ρ))∇ρ) + bρ

= ∇(Dc(ρ)∇ρ) + bρ
(3.8)

where the birth term is added ad-hoc to account for cell proliferation. On top
of the movement of cells as per the equations described above, each cell has
a birth rate b. For a time step ∆t, any cell in the system has a probability
P (birth) = b∆t to give birth to a new cell and, at least on average, the rate
of change of the density due to births will be given by +bρ. In the model,
whenever a cell is born, the daughter is initialized in a random position close
to the mother and assigned a tag that identifies it as belonging to the same
lineage of the mother. This will become useful when looking at population
distributions and strain coexistence. As with the reaction diffusion system
discussed in Chapter 2, the population will be stabilized because proliferation
of cells will be compensated by outflow at the mouth of the cave.

Note that we shall simulate Equation 3.7 plus stochastic proliferation, and
thus we expect the density profile measured in the system to follow Equation
3.8, but we do not simulate Equation 3.8 directly.

The particular shape of Ds(ρ) and Dc(ρ) used in the simulations of this
model can be seen in Figure 3.4. Once again, though, it must be noted
that the exact form of these functions does not affect many of the results,
as long as their overall shape and behavior is maintained (in particular,
the sharp change in behavior in the jammed phase). Note also that, as
discussed in Section 2.2, the packing fraction is the observable ultimately
used to determine Ds, Dc and the jamming transition. Therefore, to use
density in our simulations, we have given cells a nominal diameter of 1,
which brings the jamming transition to ρjam = 0.815 cells/area.

As for the boundary conditions used in this model, elastic collisions with
the walls were used. A relevant point needs to be made regarding the nu-
merical treatment of the cell density, ρ(x, t). The simplest way to implement
it is to divide the space of the cavity into a square grid. Ideally, one would
have a very fine mesh (let ∆x be the side length of one square in the mesh)
such that the effect of the density on a cell’s movement can be measured at
the cell’s position with a precision of order ∆x. But this carries with it a
problem, since bringing ∆x close to 0 causes the density to end up binarized:
in a really fine mesh, most squares will be empty, and a few will have a
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Figure 3.4: A) Plot of the self-diffusivity, Ds, and the collective diffusivity,
Dc, as a function of cell density. Note that, at the jamming transition ρjam =
0.815, Dc increases by orders of magnitude and Ds drops down to almost
zero. B) Ratio of diffusivities as a function of cell density. Note how, in the
jammed phase, the ratio Ds/Dc drops to nearly 0.

very high value of the density, corresponding to one cell in the very-small
space ∆x2. This problem is solved by using a fine mesh but then smoothing
the density profile out using a low-pass filter. Note also that the boundary
conditions from Equation 2.2 still need to be satisfied by the density profile.

With all the previous considerations taken into account, Equation 3.7 can
be numerically integrated, with the addition of birth processes, for as long
as one wishes, yielding the natural evolution in time of an initial population
of cells in a cavity.

Figure 3.5 shows two examples of simulations of cavities in 2 dimensions.
Figure 3.5.A-C shows a gaseous cavity. The profile shows the characteristic
cosine shape, as in the 1D Reaction Diffusion system (green curve in Figure
3.5.B). The cell density at the base is clearly under the jamming threshold
and satisfies the no flux boundary conditions at the walls (Figure 3.5.C).
Figure 3.5.A shows a snapshot of the actual simulation: each individual dot
represents a cell in the system in a similar size to the nominal one used
in simulations (needed for the calculation of the packing fraction, from the
density). Figure 3.5.D-F, on the other hand, shows a jammed cavity. Note
how the density profile is much flatter, and saturated around the jamming
density and the density has smaller fluctuations than in the gas cavity (Figure
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Figure 3.5: Simulations of cavities. A,D) Snapshots of a cavity in the gaseous
and jammed state, respectively. B,E) Density profile in the cavities. The
projections show the averaged profile along the length of the cavity. The
green curve shows a cosine profile in the gas cavity. The blue rectangles with
arrows indicate the projections on which the snapshots and floor-profiles are
taken. C,F) Density profiles at the floor of the cavities. The jamming density
is shown with the orange arrows and drawn as a dashed line. Note how the
density at the floor is well below the jamming threshold in the gas cavity and
above it in the jammed phase.
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3.5.E). In the jammed cavity, the density in the jammed phase is slightly
above the jamming density ((Figure 3.5.E-F).

In the next section, we will briefly discuss a reaction diffusion model that
is simpler than the model presented here, but can still be used to distinguish
cell populations with multiple strains present.

3.3 RD System with mixing

Under some conditions, one might want to study the coexistence of two
strains in the system, but with resolution only at the level of density, not the
single cell. This is particularly relevant for caves in the jammed phase and
to study the coexistence of bands (a phenomenon that will be described in
much more detail in Section 4.2), when the density is high and it is sensible
to use the continuous approximation. In this section we briefly present a
reaction-diffusion model that allows for the inclusion of various strains as
well as the distinction between self and collective diffusion. This model is,
at the time of writing, being used to study strain coexistence in the jammed
phase and, although it yielded no direct results for this thesis, it is useful to
understand intuitively the dynamics of strain coexistence in a cavity.

Modifying Equation 3.8, the density ρi(x, t) ≡ ρi of strain i in a cavity
evolves according to the following equation

∂tρi = ∇
(
Ds(ρ)∇ρi +

ρi
ρ
(Dc(ρ)−Ds(ρ))∇ρ+ bρi

)
+ bρi (3.9)

where ρ =
∑

j ρj is the total density, coming from all strains in the system
(including i). Note that if strain i is the only one present in the system
(ρi = ρ), then Equation 3.9 falls back to Equation 3.8, as expected. Similarly,
in the case of many strains, the equation for the total density, given by

∂tρ =
∑
j

∂tρj (3.10)

also follows Equation 3.8, as expected.

Looking at Equation 3.9, we can gain some more intuitive understanding
of the roles of Ds and Dc. The self-diffusion is one which, by construction,
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will not yield any macroscopic current in the total density. But that is not
true for a single strain within a multi-strain population. In fact, one can see
that the terms in Ds do not cancel out in Equation 3.9. In a system like
this, Ds controls the strength of mixing currents: even for zero gradient in
the total density, if a system has a higher presence of strain i than j in one
region and the opposite happens in another region, the gradients in ρi and ρj
will cause them to mix until the system is perfectly well mixed. On the other
hand, one can understand the second term, with (Dc − Ds), as producing
deterministic collective currents: if Ds gives some current due to randomness
and mixing, then the term (Dc − Ds) gives the extra bit of current that
comes from deterministic forces (i.e. some difference in pressure), dependent
on the gradients in total density and felt by all strains proportionally to their
relative presence in the system.

These points are exemplified in Figure 3.6, where Equation 3.9 is solved
in one dimension for a system composed of two different strains/densities,
colored red and blue, in the absence of proliferation, in a system closed on
both sides. In Figure 3.6.A, collective diffusion is turned off. Initially, the
mix of red and blue is heterogeneous (left panel). As the system evolves, Ds

causes the mixing of both densities until, in the end, they are both perfectly
mixed (right panel). But, because Dc = 0, the total density profile remains
unchanged (right panel). On the other hand, in Figure 3.6.B, self-diffusion is
turned off. In this situation, and with the same initial profile (see left panel),
the total density profile is smoothed out by generating global currents, but
in such a way that the two colors will not mix once those global currents
disappear (right panel).

There is one important conclusion that we can take from Figure 3.6.B.
In a real system where each density represents one strain of microbes, as
small as Ds might be, it will never be exactly zero. This will have important
consequences in the coexistence of different microbial strains in cavities, as
it will make mixing inevitable. We will discuss this in more detail in the
following chapter.
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Figure 3.6: Effects of collective and self-diffusion in the creation of currents
in a two-density system (painted red and blue; total density colored black).
A) If collective diffusion is turned off, then self-diffusion only creates mixing
currents that do not change the total density profile of the system (no change
in the total density profile between the left and right panels). B) If self-
diffusion is turned off, collective diffusion ensures the total density profile
is smoothed out, and once that happens the system remains stable and the
different colors do not mix (no mixing of red and blue in the right panel).
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Chapter 4

Strain Coexistence in cave-like
Environments

In this chapter, we will explore the behavior of caves in both the gaseous and
jammed regime using the two-diffusivities, individual-based model presented
in Section 3.2. In particular, we will discuss how populations in jammed caves
are dominated by the offspring of a few lucky individuals stuck to the floor
of the cavity. We will then spend the rest of the chapter discussing strain
coexistence in jammed caves. We will focus on the coexistence of bands in
various regimes: first under neutral competition, then under the effect of
selection and lastly under the effect of pinning.
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4.1 Jammed vs. Gaseous caves

We saw at the end of Section 3.2.2 what caves in the gas and jammed regimes
look like, and pointed out to some of the major differences between them in
terms of the density profile they present. In this section, we will discuss how
those differences affect ecological dynamics inside them.

When a cavity is jammed, cells within the jammed phase undergo a gen-
eralized directed motion from the floor to the mouth of the cavity, as a result
of the proliferation of cells nearer to the floor of the cavity. Let us see why.
If a cell gives birth in the jammed phase, the tight packing means that cells
around it have to move in order to make the space required for the child.
Since, movement towards the floor and sides of the cavity is limited by the
presence of walls, the only way in which the space can be accommodated is
by cells moving towards the mouth of the cavity. Since all cells in the cavity
keep reproducing, this produces a general flow of cells from the floor to the
mouth. This has one very important consequence: virtually any cell in the
cavity will be systematically pushed out of the cave by the cells behind it,
which leads to the extinction of almost all lineages in the cavity. The only
exception to this rule is of course for the cells living at the floor of the cavity.
These few lucky cells are in a very privileged position: since they only have
the wall behind them, when they reproduce, either they push the child away
from the wall and they stay at it or, if they get popped out by the child, then
the child itself stays by the wall and inherits the lucky position, meaning
the lineage can continue to thrive for a very long time. This phenomenon
is observed experimentally [5, 12], and also reproduced in our individual-
based model. One consequence of this behavior is that it greatly limits the
diversity of a jammed cave, since the diversity outside the floor of the cavity
is pushed out, and at the floor the number of cells (and thus the allowed
diversity) is very small. Another consequence is that it protects a jammed
population from invasion [5]: an invader would have to not only make it into
the crowded region of the cavity, but all the way to the floor if it is to have
any hope of taking over the entire cavity. The probability of such an event
is exponentially small in the length of the jammed phase [5], which protects
the resident population from invasion (as we will see in Chapter 6, this holds
even when the invader has a huge selection advantage).

Gas cavities, on the other hand, and despite the effects of density dif-
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ferences, are not affected by this phenomenon. A cell far from the floor of
the cavity can still, through random motion, move away from the mouth,
increasing its likelihood of having a higher number of offspring.

In the next section, we will consider one way in which different lineages,
or strains, of microbes, can potentially coexist in a jammed cave.

4.2 Bands in a jammed cave

We saw in the previous section how populations in the jammed cave are
dominated by a few lucky cells at the floor of the cavity. The question we
try to address here is: how can different strains coexist in a jammed cavity?

The answer, as observed in experiments [5, 12] is the formation of bands.
When two strains of microbes are introduced into a system with many cavi-
ties, it will sometimes happen that each of the strains occupies a significant
fraction of the floor of a cavity. When this happens, the offspring produced
by each of the strains will fill the cavity lengthwise giving rise to bands per-
pendicular to the floor (see Figure 4.1).

In our individual-based model, generating systems with those kind of
bands is extremely simple: one only needs to take a cavity in a jammed
state, and assign all cells on one side of a position threshold with one label,
and all those on the other side with a different label.

In the next sections, we will address the question of stability of these
bands, as well as what happens if we are not in a case of neutral competition
and one of the strains has a selective advantage.

4.2.1 Coexistence in the neutral case

Imagine a jammed cavity where two bands have just recently formed from
two different strains, occupying half of the cavity each. If the strains are
neutral, that is, if both have the same birth rate, ¿will they stably coexist?

The answer is, in general, no. Or at least that is what is predicted by
models. To understand why, we must turn to the role of stochasticity and
self-diffusion. If we recall the discussion on the reaction-diffusion system in
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Figure 4.1: Modified from [5]. Experimental cavities with two strains. A)
Well-mixed gaseous cavity. B) This cavity is in the jammed state and shows
the presence of bands.

Section 3.3, as long as Ds ̸= 0, the densities of different strains in a cavity
will eventually mix (think of the density profiles in Figure 3.6 as showing a
transversal section of a cave). Since that mixing occurs also at the floor, then
the bands are eventually destroyed. If one is not satisfied with the continuous
picture, we might turn to the individual-based approach to understand this
destruction of bands. Even if one were to completely remove the random drift
associated to the presence of self-diffusion, whenever a birth occurs at the
floor of the cavity, there is always the possibility that it causes a cell at the
boundary between the two bands to be popped out of the floor, thus moving
the boundary by about one cell diameter. If there is nothing stopping this
drift from happening, then the boundary can be understood as performing
some kind of one-dimensional random walk along the floor, which of course
leads to the eventual destruction of one of the bands and the fixation of one
strain. Figure 4.2 shows a simulation of bands in a jammed cavity under
neutral competition, showcasing their natural instability.

Although bands are expected to be unstable, the timescale of their dis-
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Figure 4.2: Bands in jammed cavities are naturally unstable. Pictured here:
a jammed cavity with two bands of strains with the same birth rate. Even
in this neutral case, given enough time, the bands mix and whichever strain
dominates the floor (in this case blue; see in the center panel how, even
if in total the proportion of green vs. blue appears around 50/50, blue is
dominating the floor of the cavity.) ends up dominating in the cavity.

appearance is long in the neutral case. In the following sections, we shall
explore the effects of selection on band stability and discuss the existence of
mechanisms that can stabilize bands.

4.2.2 Selection effects: logistic takeover

Until now, we only considered a neutral situation in which the two coexisting
strains have the same birth rate. A natural extension is to consider the case
where one strain has a selective advantage over the other. Understanding
this setting is particularly relevant for the study of antibiotics, as they might
have different effects on the birth rates of strains that are otherwise neutral.
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Consider a cavity with two bands of different microbial strains, where one
is resistant to antibiotic and the other not. If antibiotic is introduced, one
might (correctly) predict that the antibiotic-resistant strain takes over the
cavity. But the relevant question is ¿how does the takeover process happen?
Figure 4.3 shows this takeover in a real experiment where in the initial setup,
before antibiotic is added, columns are jammed and forming two bands, one
for each strain (Figure 4.3.A, antibiotic-resistant is colored green). After the
antibiotic is introduced, there is a rapid process of unjamming of the cavities
driven by the reduction in the birth rate of the antibiotic-susceptible microbes
(Figure 4.3.B). Meanwhile, the higher relative growth rate of the resistant
microbes makes it take over the entire population (Figure 4.3.C). Once it has
taken over, and since its growth rate is not much reduced from the antibiotic,
it grows rapidly enough to re-jam the cave (Figure 4.3.D, right).

Figure 4.3: Rapid takeover of a cavity by an antibiotic resistant strain, in the
presence of antibiotic, destroying the bands present. A) Initial state. Both
cavities present two bands. B) Initial unjamming of the cavities due to the
introduction of antibiotic. C) At some point, green has taken over most of
the cavity, which is still in the unjammed/gaseous state. D) As the resistant
microbes proliferate, they re-jam the cavity (visible on the right cavity).

Note in Figure 4.3.C, how the left column seems to have unjammed com-
pletely, whereas the right column still appears to show some jamming near
the floor of the cavity (noticeable by the brighter and more homogeneous flu-
orescent color). This leads to the first important question: for a cave initially
showing bands, where one strain is antibiotic-resistant and the other is not,
¿is there a way to determine when there is complete or partial unjamming
in a cave when antibiotic is introduced? And, ¿is there the possibility that a
cavity will remain jammed even in the presence of antibiotic?
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Whether a cavity unjams or not during the process of takeover can have
significant ecological consequences. Imagine a situation where the microbes
susceptible to antibiotic are pathogenic and one wishes to remove them from
the system, while the resident strain is resistant to the specific antibiotic
used. If the antibiotic is pulled out of the system before the pathogens have
been driven out completely, whether a cavity gasified or remained jammed
might have opposite consequences. If it gasified, then the resident strain will
most likely repopulate the entire floor of the cavity, pushing the pathogen
out as it rejams the system. If the cavity did not fully unjam, on the other
hand, then whatever bands remain at the floor will simply regrow and, even
in the case of neutral competition, the pathogen might end up taking over
the entire cave thanks to drift. Understanding when a cavity unjams and
when it does not in the presence of antibiotic is thus a relevant question to
consider.

Although there is no formal argument to justify this result yet, one finds
that the average birth rate of all cells in the system right after the introduction
of antibiotic,

⟨b⟩ = 1

N

N∑
n=1

bn (4.1)

where N is the total number of cells in the system and bn is the birth rate
of any given cell, is a good empirical indicator of what will be the effect of
antibiotics on the unjamming of the cavity. The effects can be summarized
as follows:

⟨b⟩ =


≪ best ⇒ Full unjamming

≲ best ⇒ Partial unjamming

> b∗ ⇒ No unjamming

(4.2)

where, for a fixed cavity length, and following our usual notation, best and b∗

are the birth rates at establishment and jamming, respectively.

Let’s try to understand Equation 4.2. A given ⟨b⟩ points to a certain
steady state as per the discussions in Chapter 2. But, since ⟨b⟩ itself depends
on time, the dynamics become slightly more involved. In a system with a
fraction xG(t) = NG/N of antibiotic-resistant cells at time t (denoted G for
“Green” in reference to their color in figures), the average growth rate is

⟨b⟩(xG(t)) = bGxG(t) + bB(1− xG(t))

= bB + brxG(t), br = bG − bB
(4.3)
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where bG is the growth rate of antibiotic-resistant cells and bB is the growth
rate of the strain susceptible to antibiotic (denoted B for “Blue/Black”, as in
the figures) and br is the difference in growth rate between both strains. The
fraction of antibiotic-resistant cells, xG(t), is expected to be a monotonically
increasing function of time after the antibiotic is introduced (at least on aver-
age), and therefore so is ⟨b(xG(t))⟩. If, upon introduction of antibiotic in the
cavity, the average growth rate is larger than b∗, it will remain so for the dura-
tion of the experiment, implying that the cavity will stay jammed throughout
(third case in Equation 4.2). If, right after the introduction of antibiotic, the
average growth rate is much smaller than the establishment threshold, the
cavity will fully unjam because the unjamming process happens in a much
smaller time frame than the time it takes for ⟨b⟩ to recover to a value above
b∗ (first case in Equation 4.2). Only when the growth rate falls slightly below
best will one have partial unjamming: the system initially tends to unjam,
but the average growth rate grows beyond b∗ in a short enough time, re-
jamming the cavity before it has time to fully unjam. The individual-based
model is capable of reproducing all three situations discussed above. Figure
4.4 shows three simulations showing no unjamming (Figure 4.4.A), partial
(Figure 4.4.B) and total unjamming (Figure 4.4.C) upon antibiotic introduc-
tion, each with the corresponding value of ⟨b⟩ immediately after antibiotic
introduction.

The dependence of ⟨b⟩ on xG(t) raises a question on the possibility to
quantify how the antibiotic-resistant strain takes over a cavity, that is, un-
derstanding the dynamics of xG(t). The resulting form, given in the following
statement, is likely to be the most significant quantitative result of this thesis:

In a jammed cavity containing bands belonging to two different strains of
microbes, one of which is resistant to antibiotic and the other not, and if
there is no physical element preventing the boundary that separates the bands
from moving, then the fraction of resistant microbes in the cave, xG, will
grow in time upon the introduction of antibiotic according to the following
logistic differential equation:

∂xG(t)

∂t
= brxG(t)(1− xG(t)), br = bG − bB (4.4)

where br is the difference in growth rate between that of the resistant strain,
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Figure 4.4: Unjamming dynamics of cavities upon introduction of antibiotic.
A) No unjamming. The resistant strain takes over the cavity and the inter-
band boundary remains mostly parallel to the length of the cavity. B) Partial
unjamming. The cavity unjams but not totally, and the takeover near the
floor happens at the edge between the jammed and gas phases. C) Full
unjamming. The cavity first unjams, then takeover happens in the gas phase,
and finally cell proliferation re-jams the cavity.

bG, and the susceptible strain, bB. The solution of the previous equation is

xG(t) =
1

1 + 1−x0

x0
e−br(t−t0)

(4.5)

for an initial fraction xG(t0) = x0.
This kind of growth will occur, regardless of the state of the cavity with regards
to jamming, after the antibiotic is introduced.

There are two interesting observations regarding Equation 4.4. The first is
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that this is the same result as one would expect from a well-mixed population
in which one strain has a significant selection advantage, even though a cavity
has a clear spatial structure and the population inside is far from being well-
mixed. The second is that this logistic growth occurs regardless of whether
the cavity unjams or not after the antibiotic introduction, once again pointing
to the irrelevance of the spatial structure of the bands.

Figure 4.5: Heuristic argument for the logistic takeover of the cave by the
resistant strain. If the fraction of resistant cells, xG, in any section of the
cavity is, on average, the same and equal to the total fraction of resistant
cells in the cavity, then the outflux of cells at the mouth does not change xG

and the change must come from the difference in birth rates, yielding logistic
takeover.

There is a simple way to justify the form of Equation 4.4, illustrated in
Figure 4.5. Imagine a cavity with two bands where the resistant strain takes
up a total fraction xG in the number of cells. If the boundary that separates
the bands is parallel to the length of the cavity, then any transversal section
of cave also contains a fraction xG of resistant cells. Closer to the mouth of
the cavity, where the population is in a gas state, one might expect to find a
situation that is approximately well-mixed, and therefore there should also be
a fraction xG of green cells. This means that the proportion of resistant cells
that exits the cave through the mouth is, at least on average, also expected to
be xG. This implies that the outflow of cells does not affect the fraction xG of
resistant cells inside the cavity.The only way in which xG can change in time
is thus due to birth rate differences, and the curve for logistic growth duly
follows. Figure 4.6 shows the curves for xG(t) in the same three simulations,
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with no unjamming (Figure 4.6.A), partial unjamming (Figure 4.6.B) and
total unjamming (Figure 4.6.C), shown in Figure 4.4. The prediction of
logistic growth matches exactly the empirical behavior. Comparisons with
experimental data will be done in Section 4.4.

Figure 4.6: Growth curves for the fraction of resistant cells, xG, and the
average birth rate, ⟨b⟩, in cavities, upon the introduction of antibiotic. The
curves correspond to the same simulations shown in Figure 4.4. A) Cavity
where no unjamming occurs. B) Cavity with partial unjamming. C) Cavity
with complete unjamming.

The fact that takeover by the antibiotic resistant strain is logistic is also
useful because it has a predictable timescale, implying that one can estimate,
a priori, how long antibiotic must be present in a cavity for the resistant strain
to take over.

The natural question that follows from the expectation of logistic growth
is to ask if there is any situation in which it fails and, if so, which one and how
does it affect the takeover process by the resistant strain. In the following
section we will explore one such instance.

4.3 Stabilization of bands by pinning

Even if the prediction of logistic takeover by the antibiotic-resistant strain
in a cavity holds in some experimental situations, it is to be expected that
it will break down at some point. One such situation (not treated in this
thesis) is if the birth rate difference between the two strains is not sufficiently
large for the deterministic approximation to hold, in which case stochastic
effects will play a relevant role and the disappearance of bands will be akin
to the one described in the neutral case in Section 4.2.1. Another is if there
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is some external factor preventing the takeover process from occurring as the
theory predicts.

Despite the general instability of bands observed in experimental setups,
there are cases in which bands remain stable for a significant amount of
time [5], even in the presence of antibiotic and for significant growth rate
differences. ¿What drives such stability?

We have seen so far that the formation of bands is dominated by a few
cells at the floor of a cavity, and that their instability is (selection effects
aside) mainly due to the effects of stochasticity at the floor (see Section
4.2.1). The natural assumption is thus that a band-stabilizing mechanism
must act at the floor of the cavity. One such possibility is that the microbes
in the cavity develop a biofilm and stick to the walls either naturally or
because of the presence of antibiotic, a phenomenon that is well-known to
occur when microbes are put under stress [30, 31]. A different possibility
altogether is that impurities at the floor of the cavity form a physical barrier
that cells would have to cross in order for a band to take over.

In this section, we shall investigate this impurity-driven pinning of bands
in a cavity using the individual-based simulations. Possibly the simplest pin-
ning mechanism is a one-dimensional wall (or “pin”) of length Lw, sticking
out from the floor of the cavity at the boundary separating the two strains,
where the usual no-flux boundary conditions are applied (i.e.: cells are ex-
plicitly forbidden from crossing the pin).

Figure 4.7 shows the results from a simulation with two strains, with one
that is antibiotic-resistant, in which the length of the pin, Lw, is equal to one
cell diameter. Such a small pin is enough to stabilize bands temporarily, even
if one of the strains has a significant selective advantage. The corresponding
curve for the growth in time of the fraction of antibiotic-resistant cells, xG(t)
is plotted in Figure 4.7.C. Notice how the fraction of resistant cells initially
grows in time following the expected logistic curve until it suddenly stops,
very abruptly, corresponding to the pinning of the growing band into a stable
shape. One might be surprised that the antibiotic resistant fraction of the
population grows according to the logistic equation in the beginning, despite
being prevented from flowing across the pinning impurity at the floor. This
suggests that small deviations from the straight boundary assumption do not
greatly affect the prediction of logistic growth. Notice also how, eventually,
the resistant cells at the floor of the cavity overcome the pinning boundary,
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overflowing it and getting back into the takeover phase, once again following
the logistic growth curve. If instead, one places a longer pinning impurity,
then the expectation might be that that is enough to prevent overflow by
the resistant strain and the complete takeover of the cave. This is shown in
Figure 4.7.B, for an impurity with length Lw five times a cell diameter, along
with the growth curve for the fraction of resistant strain (Figure 4.7.D). In
this case, the boundary reaches some stable shape and remains there, and
any attempts by the resistant strain to overflow it are pushed back by the
antibiotic-suscecpitble cells growing from the floor of the cavity.

There is, in fact, an analytical prediction for the expected shape of the
boundary separating the two strains in the presence of pinning (see Appendix
A.2, full credit goes to Dr. Valentin Slepukhin for this analytical result),
given by:

log(y) =
blow
br

log

(
x

1− x

)
+ C (4.6)

where y(x) is the corresponding boundary curve (y is the position along the
length of the cavity, x along the width and x ∈ [0, 1] is normalized with
respect to the cavity width), blow = bB is the growth rate of the antibiotic
susceptible strain, br = bG− bB is their difference in growth rates, and C is a
constant dependent on boundary conditions. Figure 4.8 shows a simulation
with bands pinned by the same impurity as in Figure 4.7.B, along with the
prediction for the curve of the boundary between the bands, shown in red.

One interesting question that arises from this pinning analysis, which
will not be covered in this thesis, is the study of how the resistant cells
might overcome the pinning barrier. The process is likely to be dominated
by stochasticity, and a sensible first approach would be to consider the pin
as a potential barrier that a given cell might overcome through fluctuations:
the longer the pin, the larger the potential barrier and the less likely that
a cell will jump across it at any one given time. If one could accurately
describe this phenomenon, one might be able to give a complete description
of the band takeover of cavities, one that includes both the deterministic
part associated to the logistic curve and the stochastic part associated to the
barrier-overcoming process.
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Figure 4.7: Simulations of cavities with pinning at the floor (shown as orange
rectangles in A and B, the width is exagerated to enhance visibility), which
difficults the takeover by the resistant strain. A) Pinning boundary of one
cell diameter. The resistant strain initially starts to take over. At some
point it stops due to the pin. Eventually, it overflows the pin and continues
to take over. B) Pinning boundary of five cell diameters. The pin is large
enough to prevent complete takeover by the resistant strain. C) Empirical
growth curves for the average birth rate (blue) and the fraction of resistant
cells (black), and logistic predictions (dashed red lines), for the simulation in
A. D) Similar to C, for the simulation in B.

61



4.4. COMPARISON WITH EXPERIMENTS CHAPTER 4

Figure 4.8: Simulation of a takeover process with a pin of length equal to
five cell diameters, as in Figure 4.7.B. The red solid line is the prediction of
the stable inter-strain boundary under pinning, from Equation 4.6.

4.4 Comparison with experiments

So far, all of the ideas discussed in Sections 4.2.2 and 4.3 stemmed from the
dynamics of the individual-based model and were only applied and tested on
it. The natural extension is to study how well these predictions apply to real
experimental data, if they apply at all.

Fortunately, we received a set of experimental recordings of cavity sys-
tems, in the shape of panflutes, made by Dr. Yuya Karita, showing this
phenomenon of cavity takeover by one of two strains after the introduction
of antibiotic. Two snapshots of the experimental setup can be seen in Figure
4.9.A, at the initial and final frames of the recording. The panflute systems
displayed here show a very diverse cavity behavior. In particular, we analyzed
six caves (labeled in white in Figure 4.9.B; the antibiotic resistant strain is
fluorescent and shown in white color), to test the hypotheses presented in
the previous sections.

To carry out the analysis, we used the Software ImageJ [32]. We used
the images in black and white from Figure 4.9.B. We considered the aver-
age brightness of a jammed, white cavity (i.e.: completely taken over by
the antibiotic-resistant strain), Imax, to correspond with a fraction of resis-
tant/fluorescent cells xf = 1, and estimated the value of xf (t) at other times
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Figure 4.9: Experimental system with three panflutes containing caves of
different lengths, shown at the initial (left) and final (right) time of recording.
The cavities used in the analysis are shown inside the colored squares.A)
System as seen through an optical microscope. B) Same images as in A, but
with the antibiotic resistant strain enhanced in white (the rest, including the
other strain, is colored black). The cavities used for the analysis are labeled
in white.

from the relative intensity of the white-colored region:

xf (t) =
I(t)

Imax

(4.7)

where the intensity, I(t), is taken to be the averaged RGB value of all pixels
in the cavity, in the usual RGB scale from 0 to 255. This analysis relies on
the assumption of a linear relation between the number of resistant cells in
the cavity and the intensity measured in RGB. Linearity will of course break
at some point, in particular for high values of I, when the light intensity is
expected to saturate. Regardless, in the images from Figure 4.9 the maximum
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measured intensity is (in RGB) Imax ∼ 100, less than a third of the maximum
allowed value of 255, making the linear assumption plausible.

Figure 4.10 shows the results of the analysis for all caves labeled in Figure
4.9.B. We shall start discussing the analysis of the cavity labeled “PT”,
corresponding to “Parallel Takeover” by the resistant strain, where “Parallel”
implies that the inter-band boundary remains straight and parallel to the
sidewalls of the cavity throughout the experiment (Figure 4.10.A). Takeover
in this cavity occurs completely in the jammed phase and the corresponding
curve for xf (t) is consistent with the logistic growth curve of Equation 4.5.
Figure 4.10.B shows a cavity where the boundary that separates the resistant
and susceptible strains appears to be curved (“CT” for curved takeover). The
discussion on pinning made in Section 4.3 makes this a prime candidate to
test for pinning at the floor, which we shall explore in the next section.
Indeed, the experimental growth curve appears to follow a similar pattern to
that observed in pinned boundaries in simulations (see Figure 4.7), where it
initially follows logistic growth but at some point suddenly plateaus. Figures
4.10.C, 4.10.D and 4.10.F all show cavities in which takeover happens initially
in the gas phase, followed by eventual jamming. The curves of all three
cavities appear to show a significant deviation from logistic growth, where
the resistant strain appears to take over faster than the prediction. The
reason this happens is precisely because of the jamming wave, and we will
discuss this in more detail later in this section. Finally, the cavity shown in
Figure 4.10.E shows takeover fully in the gas phase: the initial fraction of
resistant cells is almost zero, and by the time the experiment is ended it is
not yet high enough to cause jamming in the cavity. Still, the agreement with
logistic growth is very good, consistent with a large growth rate difference
between the two strains in the cavity.

One remark about all the cavities in Figure 4.10 is that, early on in
the experiment, they all appear to grow slower than the logistic prediction.
Although experimental recordings were started 2 hours after antibiotic in-
troduction to allow for thermal equilibration, it is very likely that the effects
of antibiotic set in gradually and that it takes longer than the equilibration
time for it to have the full effect. To compensate for this, all fits in Figure
4.10 were done from 3h45min after the initial time of recording.
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Figure 4.10: Examples
of logistic takeover.
Cavity snapshots at
different times are
shown on the left, and
the growth curves for
the fraction, xf (t), of
antibiotic-resistant cells
inside the cavity on the
right (black: experi-
mental; green: logistic
fit); errors in the growth
rates are estimates.
Cavity labels are the
same as in Figure 4.9.B.
A) Parallel takeover,
without pinning. B)
Curved takeover, with
pinning. C-D,F)
Takeover in the gas
phase. Columns show
increase in takeover rate
with respect to logistic
growth due to a jamming
shockwave. E) Takeover
fully in the gas phase.
Does not reach jamming
in experimental time.

65



4.4. COMPARISON WITH EXPERIMENTS CHAPTER 4

4.4.1 Pinning in experimental cavities

As discussed earlier, the curved shape of the inter-band boundary in Figure
4.10.B and the deviation of the growth curve from the logistic expectation
suggest that there might be pinning affecting the movement of cells at the
floor of the cavity.

To test such a possibility, we tracked the wavefront of the inter-band
boundary for the cavity with curved takeover at two different points in the
cavity: near the floor of the cavity, where we can check if there is pinning;
and halfway through the cavity, which we can use as a control (see Figure
4.11.A) since we don’t expect pinning to occur there. We also applied the
same analysis to the “PT” cavity, where pinning would not be expected at all,
as a further control (see Figure 4.11.B). The tracking of the moving wavefront
was achieved by binarizing the intensity readings in the recorded cavities and
tracking the point of transition in colro from black to white. The resulting
curves seem to indicate that there is some pinning in the case of the curved
boundary, as its movement near the floor of the cavity stops completely at
around t ≈ 7.5h, which does not happen at the midwave. It only seems to
start moving again at the floor around t ≈ 16h (a fact that is backed up
by video recordings of the cavity). This final movement might correspond to
the overflow of the cells over the pinning barrier at the floor of the cavity,
as discussed in Section 4.3. Also, the pinning of the floor occurs 1 to 2h
before the logistic growth curve in Figure 4.10.B starts to plateau. Although
a reliable quantitative analysis is difficult, the observation is qualitatively
consistent with the analysis from the individual-based model in Section 4.3,
in which takeover is expected to be logistic even in the presence of pinning
until the stable curve of the boundary is reached, at which point growth it
is expected to stop.

4.4.2 Jamming wave

The cavities in Figure 4.10.C, D and F show a significant deviation from the
expected logistic growth curve, with a growth rate that is faster than the
prediction. One hypothesis is that this increase in growth rate is caused by
the transition from a gaseous to a jammed population in the cavity during
the takeover process, which we shall now discuss.
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Figure 4.11: Analysis of pinning behavior for the “CT” and “PT” cavities,
as labeled in Figure 4.9. A) Analysis of the cavity “CT”, whose curvature of
the inter-band boundary is indicative of the presence of pinning. Left : snap-
shots of the takeover process by the resistant strain. The analyzed positions
along the middle and the floor of the cavity are colored orange and blue, re-
spectively. Right : Position (in pixels with respect to the rightmost recorded
position) of the inter-band-boundary with time, at the two colored positions.
Notice how the wave along the floor (blue) stops moving at t ≈ 7.5h, even
as the boundary keeps moving at its center (orange). B) Same setup as in
A, for the “PT” cave, which presents an inter-band boundary that is always
parallel to the length of the cave, indicating that there is no pinning present.
Left : Same as in A. Right : Same as in A. In this instance, there is no pinning
of the boundary at the floor of the cavity: the wave at the floor never stops
moving, and slow-down only happens as it reaches the rightmost wall, as
with the marker at the midwave.

We already saw in Section 4.2.2 that, when the presence of antibiotic-
resistant cells at the floor of the cavity is large enough, they will cause the
population inside the cave to jam. When the jamming occurs, the growth

67



4.4. COMPARISON WITH EXPERIMENTS CHAPTER 4

from the cells in the jammed phase from the floor of the cavity will physically
push out of the cavity the cells nearer to the mouth. If the jamming transition
occurs when there are still antibiotic-susceptible cells in the cavity, then their
disappearance from the cavity will be driven by this jamming wave instead
of the selection process. Since the the jamming wave phenomenon occurs
much faster than the takeover due to selection effects, this translates into a
growth curve with a much steeper slope.

To test this hypothesis, one can compare the growth of the resistant
strain in the entire cavity with that near the floor. Close to the floor, the
effects of the jamming wave are minimized, and therefore one would expect
that there the takeover happens as per the logistic prediction. The result
of such analysis on cave “Cav3” is shown in Figure 4.12. After correcting
for the effect of this jamming wave, the takeover process agrees with the
expectation of logistic growth. Similar results are found for the other two
cavities affected by this phenomenon (figures not shown).

It would be reasonable to wonder why this jamming wave was not pre-
dicted in the individual-based model. The reason is simply that, in the one
simulation in the model that shows complete unjamming, the re-jamming of
the cave occurs once the antibiotic-resistant strain has taken over the entire
cavity, at which point there are no susceptible cells left that can be pushed
out. The jam wave occurs just the same, but it mostly pushes resistant cells,
and since the cavity is already taken over by them, the fraction they represent
inside the cavity does not change.

In the following section, we shall make some final remarks regarding the
phenomenon of takeover by logistic growth.

4.4.3 Final remarks on Logistic takeover

So far, the only aspect of the logistic growth that we have not covered in
the experimental curves is the actual value of the difference in growth rate,
br, between the antibiotic-resistant and susceptible strains resulting from the
fitting process, once artifacts are corrected for. The values are summarized
in Table 4.1. In their experimental work in [5], the authors measure a growth
rate for the microbes, in absence of antibiotic, of 0.33 ± 0.01h−1. Although
the values in Table 4.1 are not perfectly consistent with the experimental
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Figure 4.12: Analysis of the jam wave during takeover of the cavity by the
antibiotic-resistant strain. Left: Snapshots of the takeover process in the cav-
ity “Cav3”, as labeled in Figure 4.9. The approximate front of the jamming
wave is pictured in orange. The two alternatives for the growth analysis,
taking the entire cavity or the region near the floor, marked in cyan and
red, respectively. Right: Growth curves for the fraction, xf (t), of antibiotic
resistant (fluorescent) cells in the cavity. When the effect of the jam wave is
minimized by considering only the region near the floor, takeover dynamics
follow the expected logistic curve (red) and do not show the artifact resulting
from the jam wave (cyan).

value from [5], they are of the correct order of magnitude, a positive outcome
given how crude the image analysis of the cavities is. On top of that, the
experimental value from [5] was taken in different experimental conditions
from the ones analyzed here, such that the actual value might differ.

Also, conversations with Dr. Yuya Karita (who performed both the ex-
periments in [5] and the ones analyzed here) indicated that there might be
variation in birth rates across different panflutes. That is, that the levels of
antibiotic that reach two cavities within a panflute will be the same, but these
will be different in two different panflutes. Such a hypothesis is compatible
with the results from Table 4.1, since the values of br are significantly closer
within a panflute than across different panflutes. Still, further analyses of
experimental data and possibly further experiments would be needed to de-
termine with greater precision both the natural growth rate of the microbes
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PT CT Cav3 Cav4 Cav5 Cav6
br ± 0.05 (h−1) 0.39 0.41 0.43 0.49 0.32 0.30

Table 4.1: Estimations of br from the fits to the logistic growth curve, for the
different analyzed cavities. Cavities from different panflutes are separated
by a double vertical line, with two cavities per panflute. The error is an
estimation.

in the cavities as well as the growth rates in the presence of antibiotic.
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Chapter 5

Population Distributions in
Cave-like Environments

In previous chapters, we studied the spatial dynamics of microbial popula-
tions in cavities and how living in a crowded environment shapes the popula-
tion inside the cavity. We also explored coexistence in a simple environment,
for two strains, where one has a significant selective advantage over the other.

This sets the stage for more complex situations. After all, the population
in a cavity is made up of hundreds - even thousands - of cells, and the “Who
wins?” question becomes a much more complex one to answer. In particular,
mutations regularly introduce new lineages in a population. These might
go extinct in a short time, or grow to take up a significant fraction of the
population, even fixating. One can therefore ask questions like how many
clonal individuals an original ancestor will produce in a population, or what
fraction a given lineage might occupy of the total population. The answers to
these questions can be highly dependent on the system being studied [12, 33–
39]. In this chapter, we will explore these questions for cavity-like systems,
both in the jammed and in the gaseous regime.
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Figure 5.1: Schematics for measuring the clone size. For a given initial indi-
vidual (green circle), the clone size is the total number of direct descendants
from it (the total number of red crosses).

5.1 Clone-Size Distribution

In this section, we shall consider the Clone-Size Distribution (CSD) of a
population in a cavity-like environment. The word “clone” in the context
of population genetics refers to the group of individuals sharing the same
genetic material with a common ancestor, i.e.: all of the direct descendants
from that common ancestor. The word “size” refers to the total number of
individuals in the clone. In a growing population where death is negligible,
the CSD might refer to the number of individuals from a lineage at a given
time, whereas in a population of constant size, where individuals can die, the
CSD can be used to speak about the total number of individuals that ever
existed from a given lineage. In both cases, measuring the clone size amounts
to counting the total number of distinct individuals from a given lineage in
a population (see Figure 5.1 for schematics). In the context of cavities the
CSD is better understood in the second sense, as the total population in the
cave is more or less constant (apart from fluctuations) and individuals and
entire lineages are continuously pushed out of the cavity.

In many situations, the CSD follows a power law, such that the probability
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that a clone has size n is of the form

P (n) ∼ 1

nα
(5.1)

where α is the characteristic exponent of the power law. For example, for an
initial mutant growing exponentially within an exponentially-growing popu-
lation, the CSD is known to follow a power-law with exponent α = 2[35, 38,
39].

It follows from Equation 5.1 that the cumulative CSD, that is the proba-
bility that a clone has size equal or larger than n, follows a power-law of the
type

P (clone size ≥ n) ∼ 1

nα−1
(5.2)

Throughout the rest of the manuscript, we shall often consider the cumulative
CSD (as in Equation 5.2), particularly in figures.

For microbial populations in cavities, we will have to distinguish jammed
and gaseous cavities.

5.1.1 Jammed cavities

Understanding the CSD in jammed cavities is motivated by the unique dy-
namics induced by the jamming transition. As we saw in Section 4.1, pop-
ulations in jammed cavities are dominated by a few lucky cells living at the
floor of the cavity, whose offspring continuously pushes out all the other cells
from the cavity. We shall in the rest of this section, refer to these few lucky
cells as “surfers” and to cells in the bulk as “non-surfers”. The reason will
become apparent later on.

In a jammed cavity, the time taken for a non-surfing cell to be pushed out
at the mouth is essentially a deterministic process. Imagine a cell initially at
a distance d(t = 0) = λ from the floor of a jammed cavity of length L. Let
all cells in the cavity have birth rate b. After a time τ = 1/b, on average,
all the cells in the cavity will have reproduced. In particular that will be
true for all cells between the floor of the cavity and our marked cell. Our
cell will thus find itself, at time τ , a distance d(τ) = 2λ away from the floor
because all the cells behind it will have also reproduced. Furthermore, it will
have given birth to a new cell, such that its lineage will have size 2. After a
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second reproductive cycle τ , using the same argument, the original cell will
find itself at distance d(2τ) = 4λ from the floor, and have a clone size of
4 (since both itself and the first daughter gave birth). The general trend is
thus

d(t) = kλ ⇒ Clone Size = k (5.3)

and so the total clone size will be given by determined by when the mother
cell arrives at the mouth of the cavity, or equivalently, how many times we
can divide the total length of the cavity into the cell’s initial position:

Clone Size ≡ n =
L

λ
(5.4)

where we assume that we can talk about the original mother cell or the entire
lineage indistinctly since they all move in unison and will leave the cavity at
around the same time. The probability that a cell yields a clone size larger
than n is thus the probability that it was born a distance smaller than λ
from the floor of the cavity

P (Clone Size ≥ n) = P (initial dist. from floor < λ) ∼ λ

L

=
1

n

(5.5)

from which it follows that the CSD is

P (n) ∼ 1

n2
(5.6)

a power-law with exponent α = 2.

Surfer cells, originally at the floor of the cavity, on the other hand, are
expected to yield much larger clones, since they will keep producing new
offspring for as long as they or any of their direct descendants remain at
the floor. Only when the entire lineage is detached from the floor will it be
doomed to extinction, by which time the number of produced offspring can be
orders of magnitude higher than for a non-surfing cell. Figure 5.2.B shows the
resulting cumulative CSD for a jammed cavity, distinguishing surfers from
non surfers. The trend ∼ 1/n is also plotted, showing the agreement with
the argument made above.

Remarkably, the argument used above applies to a completely different
cellular system. It was in fact first introduced by the authors of [12] to
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explain the CSD of cells at the front of expanding populations. For a jammed
population of microbes expanding in space (where the jamming might occur
due to factors other than spatial constrictions, like stickiness between cells in
a biofilm), individuals can grow and reproduce for as long as they have access
to nutrients. A simple situation is to assume that they can access nutrients if
they are within a distance L of the expanding edge. One can thus define the
expansion front of the population as the region less than L away from the
expanding edge. Any cell in the expansion front will eventually be pushed
away from it by the cells proliferating in front of it, following the argument
made before and yielding a CSD with exponent α = 2 as in Equation 5.6. On
the other hand, a few lucky cells at the edge of the expansion front will create
a lineage that “surfs” along the edge of the front (hence the term “surfers”)
and yield a very large clone, much like the cells living at the floor of a cavity.
For comparison with the cavity systems (Figure 5.2.B), the results from [12]
are shown in Figure 5.2.A.

5.1.2 Gas Cavities

Having studied the CSD for a jammed cavity, the natural extension is to now
study the case of a population in a gaseous phase.

The kind of argument used in the previous section to arrive to the CSD
does not work for a gas population. The self-diffusion of the microbes is
comparable to their collective diffusion, and thus movement is not approxi-
mately deterministic: a lucky cell near the mouth of the cavity might drift
back into the floor and proliferate, whereas a very unlucky cell initially at
the floor of the cavity can drift out of the cavity before it had the chance to
have offspring.

Another question at hand is whether there is any kind of universality for
gas caves the same way that there is for jammed ones. In a jammed cave,
the CSD (see Equation 5.6) is independent of the length of the cavity. In
previous chapters we saw that most of the dynamics in a cavity with respect
to cell movement were given by the reduced length

l =
L

Lest

=
2L

π

√
b

D0

as first introduced in Equation 2.14. For the study of the CSD, on the other
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hand, it is not a given that the reduced length will be enough. In particular,
imagine two gaseous caves with the same reduced length but where one is
much longer than the other (therefore microbes in the shorter cavity have a
much larger birth rate). For instance, since the diffusion dynamics are the
same in both, then a cell born some distance away from the mouth in the
short cavity has a much better chance of producing offspring (because it has
a larger birth rate) before being out-washed than an equivalent cell in the
longer cavity

To explore the possible effects of such differences, we simulated two gas
cavities at the same reduced length, one four times longer than the other
(L = 200 vs L = 50 in system units). We shall discuss two similar approaches
(and comment briefly on a third one) to predicting the CSD. We shall first
discuss the different models and then conclude by comparing their predictions
to the empirical distributions found in the simulations.

The unbiased Random Walk with a constant diffusion coefficient

The first approach is to assume that the probability, P (n|x), that a cell yields
a total clone size n from an initial position x with respect to the mouth of
the cavity follows a master equation given by

P (n|x) =
[1
2
P (n|x+∆x) +

1

2
P (n|x−∆x)

]
(1− b∆t)

+ b∆t
n−1∑
k=1

P (n− k|x)P (k|x)
(5.7)

where b is the cell’s birth rate, and ∆t and ∆x are the discretized time
and space steps, respectively. The first term in the equation marks the
probability that a cell does not reproduce in a given time step, that instead
it moves one position closer or away from the mouth, then yields a clone
size n. The second term represents all possible combinations in which a cell
gives birth in the current time step, such that the sum of the clone sizes of it
and its daughter add up to n− 1 (since the daughter already counts towards
the clone size). Note also that we completely ignore cell movement in the
direction perpendicular to the length of the cavity.
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The boundary conditions for Equation 5.7 are

P (1|0) = 1, P (n|0) = 0 ∀n > 1

∂xP (n|x)
∣∣
L
= 0, ∀n

(5.8)

where L is the length of the cavity. The first condition relates to the fact
that a cell is considered “dead” to all effects if it leaves the cave: if a cell
is exactly at the mouth of the cavity, then it exits the cavity without any
offspring and can thus only produce a clone size of 1 (itself and no children).
Strictly speaking the cell would have to be at position x = −ϵ, ϵ > 0 to be
considered out of the cavity, but we can simply take the ϵ → 0 limit. The
second condition means that there is no flux of probability across the floor
for the cavity.

In the continuous limit, Equation 5.7 can be rewritten as

0 = −P (n|x) + D

b
∂2
xP (n|x) +

n−1∑
k=1

P (n− k|x)P (k|x) (5.9)

where D is a diffusion coefficient defined as

D = lim
∆x,∆t→0

∆x2

2∆t
(5.10)

Since the random walk presented here and the physical movement of the
cells in the system must obviously be related, the diffusion coefficient must
in some way relate to the self-diffusion of the cells used in the simulations
of the individual-based model. Since here we assume D to be a constant,
we will use the value of the self-diffusion at 0 cell density, D0 = 1, which
coincides with the collective diffusion (see Figure 3.4 in Section 3.2 for a
deeper discussion on the subject).

To find the CSD, we must only solve Equation 5.9 for increasing n and
then integrate over the normalized density profile

P (n) =

∫ x=L

x=0

P (n|x)ρ(x)
Z

dx (5.11)

where Z =
∫ x=L

x=0
ρ(x)dx is the corresponding normalization factor and, since

the population is in a gaseous state, we assume the density profile to be
well-approximated by a sine function[5]

ρ(x) = ρ0 sin
(π
2

x

L

)
(5.12)
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as discussed in Section 2.1 (note the profile is now a sine instead of a cosine
because we measure position from the mouth of the cavity, not the floor),
with ρ0 the value of the density at the floor of the cavity.

The special case where a cell yields a clone of total size 1 (i.e.: it does
not reproduce) poses a simpler question than that of the entire CSD, and
treating it separately can help us gain an intuition on the dynamics inside
the cavity.

In particular, one can imagine that a cell that exits the cavity without
children is likely to have performed a very unlucky random walk, with most
steps falling in the direction of the mouth of the cavity and where the cell
did not reproduce at any of those steps. If the reproduction event at each of
those steps follows a Bernoulli distribution with probability of success equal
to b∆t, then the probability that a cell did not reproduce in any of the N
steps it took to exit the cavity is given by a binomial distribution

P (n = 1|N steps) = (1− b∆t)N (5.13)

Assuming that the number of steps N is large, one can imagine that the
initial position of the cell with respect to the mouth of the cavity, x, can be
approximately described by the root-mean-squared distance of an unbiased
random walk

x2 ≈ 2DN∆t (5.14)

Introducing Equation 5.14 into 5.13 one finds that the probability of yield-
ing a clone sized 1 given an initial position x is given by

P (n = 1|x) ≈ (1− b∆t)
x2

2D∆t

= (1− b∆t)
1

−b∆t
−bx2

2D

≈ e
−bx2

2D

(5.15)

where we approximated the Bernoulli distribution with an exponential one
in the last step due to the fact that b∆t ≪ 1.

Alternatively, one can try to work directly with Equation 5.9. The case
for size-1 clones can be treated analytically, since then the summation term
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in Equation 5.9 vanishes and the equation can be solved, yielding

P (n = 1|x) =
cosh

(√
b
D
(x− L)

)
cosh

(√
b
D
· L

) (5.16)

From the simulations, we can easily obtain the distribution of initial po-
sitions of the cells with clone size 1, that is, P (x|n = 1). To compare the
results from Equations 5.15 and 5.16 with the empirical distribution, we can
make use of the properties of conditional probabilities, from which

P (x|n = 1) = P (n = 1|x) · ρ(x)
Z

· 1

P (n = 1)
(5.17)

where ρ(x) is the cosine profile from Equation 5.12 and Z its normalization
constant, as described in 5.11. P (n = 1) is estimated simply as the number
of clones with size 1 divided by the initial number of cells in the simulation.

The comparison of the model predictions with the empirical distribution
from simulations is found in Figure 5.3, both for a short cavity (Figure 5.3.A)
and a long cavity (Figure 5.3.B). Notice how, although the exponential ap-
proximation yields an overall distribution that resembles the empirical one,
the hyperbolic cosine solution of the random walk does a better job at cap-
turing the empirical distribution, in particular its flatness close to the floor of
the cavity, a phenomenon which is much more apparent for the longer cavity.

Inputting the solution for P (1|x) from Equation 5.16 into Equation 5.9,
we can iteratively obtain the solutions distributions for larger clone sizes,
P (n|x) and obtain the CSD using Equation 5.11. Although one could, in
theory, obtain some of the P (n|x) analytically from P (1|x), doing so becomes
extremely impractical and difficult beyond n = 2 (and even for n = 2 it
requires a certain degree of self-hatred to obtain all the terms by hand). In
practice, it is enough to solve the problem numerically to calculate the P (n),
which we have done using Mathematica [40]. The resulting CSD is shown in
Figure 5.4, along with results from the other approaches and the empirical
distribution for both the long and short cavities.
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The biased Random Walk with density-dependent diffusivities

The second approach to the CSD is an extension of the unbiased random
walk. Since the cells in the cavity do, in principle, feel density gradients, it
seems natural to modify Equation 5.7 to make the random walk biased:

P (n|x) =
[
qP (n|x+∆x)+(1−q)P (n|x−∆x)

]
(1−b∆t)+b∆t

n−1∑
k=1

P (n−k|x)P (k|x)

(5.18)
where q is the parameter that controls the bias. Again, taking the continuous
limit leads to

0 = −P (n|x)+v(ρ)

b
∂xP (n|x)+D(ρ)

b
∂2
xP (n|x)+

n−1∑
k=1

P (n−k|x)P (k|x) (5.19)

where the diffusion coefficient is given by

D(ρ) = lim
∆x,∆t→0

∆x2

2∆t
(5.20)

and the drift term by

v(ρ) = lim
∆x,∆t→0

−(1− 2q)∆x

∆t
(5.21)

and in both cases we have generalized their form to be density-dependent. In
fact, using the same arguments as in the unbiased model, that the diffusion
coefficient and the drift term should be related to the movement in space
of the cells in the individual-based model, the natural approach is to let
D(ρ) ≡ Ds(ρ) the self-diffusion shown in Figure 3.4 and the drift term to
be given by v(ρ) ≡ vdrift(ρ) = (Ds(ρ) − Dc(ρ))∇ ln(ρ) + ∇Ds(ρ) from the
Langevin equation in the individual-based model (see Equation 3.7).

Once again, the CSD can be found by first finding P (1|x), then obtaining
the distributions for higher n iteratively from equation 5.19, and finally using
Equation 5.11 to obtain the P (n). The resulting CSD is shown in Figure 5.4
along with the empirical distribution obtained from simulations.

Well-mixed model

A third possible approach is to simply consider the CSD obtained by assum-
ing the cells in the system go through a birth-death process in a well-mixed
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population. We will not do a full derivation here (see Appendix A.3 for a
full derivation, all credit goes to Dr. Valentin Slepukhin for this analytical
result). In this approach, the CSD is given by

P (n) =
1

2
·
(
1

4

)n−1

· Cn−1 (5.22)

where Ck is the k-th Catalan number (any similarity with the author’s home
region is purely coincidental). The reason Catalan numbers show up at all
has to do with the form of the recursion that connects P (n) for a given n
with all the P (k) with k < n (see Equation 5 in [41]).

The resulting distribution is shown in Figure 5.4, along with the previous
models and the empirical distribution from simulations, for both a long and
a short cavity.

Comparison with Simulations

Figure 5.4 shows the empirical CSD obtained from simulations, as well as the
predictions obtained from the three models discussed in the previous pages,
both for a long (L = 200 in system units) and a short (L = 50 in system
units) gas cavities.

Although all three models predict similar clone size distributions for a
very small number of clones, they diverge with respect to each other as n in-
creases. In particular, the model for the unbiased RW tends to overestimate
large clone sizes with respect to the empirical distribution and the other two
models, indicating that the density-dependence is a necessary introduction
to the model. Still, the behavior of the two cavities seems to be distinctively
different. The CSD in the long cavity (Figure 5.4.B) follows almost to per-
fection the prediction by the model of the biased random walk. On the other
hand, the CSD in the short cavity (Figure 5.4.A) initially drops off like the
prediction of the unbiased random walk and then starts dropping off faster,
approaching the well-mixed prediction. It is hard to point out, exactly, what
causes the difference in behavior, or if it is caused by physical phenomena at
all or is simply due to uncertainty.

Although the empirical measurements of the CSD were both made when
some lineages were still extant in the cavities, in all cases these remaining
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lineages had clone sizes larger than the maximum clone size shown (200
individuals), so they would only add to the tail of the distribution and should
not affect the interval of the CSD shown in the figures.

In any case, both the predictions and the empirical distributions indicate
that the cumulative CSD drops off slower than the 1/n law, whereas the CSD
for jammed cavities initially drops like 1/n and then is even steeper, until
the contribution of surfer cells becomes significant. The fact that clones in
gaseous cavities are of larger size indicates greater diversity than in jammed
ones, where non-surfer lineages are killed fast, leading to a lower overall
number of strains, consistently with the observation that the population in
jammed cavities is almost exclusively driven by the lineages present at the
floor of the cavity.
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Figure 5.2: Similar cumulative CSD for two different systems. L is the
total length of the expanding front in A (the jammed cavity in B) and λ
the distance from the edge of the expanding front in A (distance from the
floor of the cavity in B) A) Modified from [12] Simulation of an expanding
population (top) and the corresponding cumulative CSD (bottom). Non-
surfers at the expanding front follow the CSD described by Equation 5.5 in
the main text, whereas surfers follow a slower-decreasing power-law. B) Part
of a simulated jammed cavity (top) and the corresponding cumulative CSD
(bottom). A non-surfing clone is highlighted in green. The distribution is
comparable to that of A. The lower presence of surfers with respect to A
has two causes: non-sampling of extant surfing lineages and a larger jammed
phase with respect to the nominal cell diameter.
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Figure 5.3: Distribution of initial positions, with respect to the mouth of the
cavity, of cells with a clone size of 1. The empirical distribution obtained
in simulations is shown in blue. The results obtained, using Equation 5.17,
of the exponential approximation (Equation 5.15) and the hyperbolic cosine
solution of the unbiased random walk (Equation 5.16) are shown in orange
and green, respectively. A) Distribution for a short cavity (L = 50 system
units). B) Distribution for along cavity (L = 200 system units).

Figure 5.4: Cumulative CSD for gaseous cavities. The models discussed in
the text are shown in dashed, colored lines (yellow for the unbiased random
walk, brown for the well-mixed model and dark blue for the biased random
walk with density-dependence). Grey dashed line shows the 1/n trend for
reference. The empirical distribution is shown in solid green. A) Short
gaseous cavity (L = 50 units). B) Long gaseous cavity (L = 200 units)

84



Chapter 6

Invasion and Fixation in
Cave-like Environments

So far in this thesis, the only way in which we have considered coexistence
of different strains was in the very-specific environment of bands in jammed
cavities, in which we studied their dynamics both in the neutral case and in
the case of a very strong advantage by one of the two strains, representing
the addition of an antibiotic in the system. We also saw, back in Chapter
2, how a non-zero density of cells at the mouth of the cavity can populate
a system that would otherwise be empty and even jam it, a hypothesis that
we qualitatively tested in Section 3.1. In this chapter, we shall investigate
this Outsider-Induced Population (OIP) of cavities in a quantitative manner.
We shall also study one of its consequences, the almost paradoxical Invader-
Sustained Jamming (ISJ), introduced also in Chapter 2, whereby an outsider
population of invading cells is capable of stabilizing a resident population in
a jammed sate.

The second part of the chapter will be dedicated to invasion and fixation
processes in gaseous cavities, that is, the study of the fate of an initial mu-
tant appearing somewhere in the cavity as a function of its position and its
selective advantage with respect to the rest of the cells in the cavity.
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6.1 Outsider-Induced Population

Back in Section 2.4, we discussed the effects of having a non-zero density
of cells at the mouth of the cavity, which can produce a population inside
the cavity that can be either in the gas or the jammed state (the OIP). We
saw that the one-dimensional reaction diffusion system discussed in Section 2
could be used to make quantitative predictions for the density of cells at the
floor of the cavity as a function of the density of cells at the mouth and could
be used to plot the corresponding bifurcation diagram for the establishment
and the gas-jam transition (see Figure 2.9 in Chapter 2).

Figure 6.1: Test of Outsider-Induced Population (OIJ). Bifurcation diagram,
similar to those shown in Chapter 2, with the expected packing fraction at
the floor of the cavity, Φ0, as a function of the reduced length of the cavity,
for different values of the packing fraction at the mouth of the cavity, ΦL

(the colormap is in logarithmic scale for better color visualization). The
colored dots are the result of simulations of cavities using the individual-based
model to test the hypothesis of OIJ. The colored curves are the expected
bifurcation diagrams for the ΦL from the simulations (shaded regions indicate
one standard deviation from the measured ΦL value in the individual-based
simulations).

In Chapter 3, we introduced a soft disk model that could be used to qual-
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itatively test OIP (see Section 3.1). Here, we use the individual-based model
with two diffusivities introduced in Section 3.2 to test OIP in a quantitative
manner.

Figure 6.1 shows the value of the packing fraction expected at the floor of
the cavity as a function of the reduced length of the cavity and the packing
fraction of cells at the mouth. The colored dots are the results of numerical
simulations for different values of packing fractions at the mouth. We can see
that agreement is good between the predictions of the 1D reaction-diffusion
model and the 2D individual-based model, despite their very different nature.

This result mainly serves to check that the two models agree with each
other, and thus the 1D reaction-diffusion model can be reliably used to set
the desired behavior in the 2D individual-based model.

6.2 Invader-Sustained Jamming

One natural consequence of OIP, as discussed in Section 2.4, is the phe-
nomenon of Invader-Sustained Jamming (ISJ), whereby a population of in-
vader cells can sustain the resident population of a cavity in a jammed state
such that the jamming prevents the invader itself from taking over. In this
section, we show that ISJ occurs, not only for the case of neutral competition,
but also if the invader has a significant selection advantage.

Let b be the birth rate of a given cell. Another cell is said to have a
selective advantage s if its birth rate is bs = b · (1 + s). Figure 6.2 shows
snapshots of simulations showing ISJ, for invading populations with different
selective advantages, from the neutral case, s = 0, to a very high selective
advantage, s = 5. In all cases, the invader strain is unable to invade the
cavity in the duration of the simulation. In fact, the strain is barely able to
penetrate into the jammed phase of the resident strain. This showcases just
how resilient a jammed population is, even in the presence of an ecological
adversary whose fitness is huge in comparison. For context, when studying
the takeover of a cavity presenting bands by an antibiotic resistant strain, the
resistant strain had a selective advantage s = 0.43 and the dynamics in the
cavity were essentially deterministic, with it taking over the entire system.
In contrast, a strain with a selective advantage an order of magnitude larger
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can barely scratch the surface of a jammed population when invading from
outside. One wonders if, in the context of populations of cavities, the well
known “survival of the fittest” could appropriately be replaced by “survival
of the jammed”, such is the power of jamming.

Figure 6.2: Invader Sustained Jamming. The resident strain is shown in blue,
the invader in yellow. The figure shows snapshots of a cavity under various
conditions. If the density of cells at the mouth of the cavity is set to 0, the
cavity eventually empties out (first from left). If it is non-zero, then the
outsider population can populate the cavity and even bring it to a jammed
state (second from left). If the outsider population changes from the resident
strain to an invader, then the invader sustains the resident population in the
jammed state without being able itself to invade the cavity, and this is so
for a large range of selective advantages (three rightmost cavities). s is the
relative selective advantage of the invader, with binvader = bresident(1 + s)

While altruism and cooperation are not rare in biology [42], there is usu-
ally some mutual benefit for the parties involved, and so perhaps the most
surprising thing of ISJ is that the invader gains absolutely nothing from the
interaction. And we should recall that without its presence the population
of resident cells would not even stably exist!

ISJ has potential consequences at different scales. In the context of dis-
ease control, for example, it might allow a pathogen in the intestine to remain
“hidden” at the bottom of cavities, when put under the influence of antibi-
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otic, by another microbial strain that is native to the gut and resistant to the
antibiotic. In the context of evolution, on the other hand, ISJ could poten-
tially imply a decrease in the speed of evolution, since it allows very underfit
strains to survive in an environment for long periods of time. Or maybe it
can be seen as a potential source of diversification, since it might allow a
large number of unfit populations to remain blocked at the floor of cavities,
ready to blossom if the conditions outside the cavities suddenly change.
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Discussion

In this section, we shall discuss in more detail the results presented through-
out the thesis, discussing also their relevance to the topic of island biogeog-
raphy and presenting potential future paths of research.

We have seen that cavity-like systems can be described using a wide
array of models, from continuous models (the 1D reaction-diffusion system
or the 2D reaction-diffusion system with two diffusivities) to individual-based
models of different kinds (the soft-disk model and the model of point-like cells
with two diffusivities).

The prediction from the one-dimensional reaction-diffusion model that
resource-depletion stabilizes the gaseous phase and cooperation promotes
jamming are consistent with the intuitive expectation. The apparently strong
stability of microbial populations in cavity-like systems [13, 14, 19] indicates
that jamming is likely prevalent in real systems [14]. This could indicate that
resource depletion is negligible in real cavities. After all, in the idealized case
of hard spheres there is still around 36% of empty space in the jammed phase,
and even if real cells differ from the hard sphere assumption (which they
certainly do), either by differences in shape or in squishiness (thus allowing
cells to compact closer together), one might expect that there is still enough
space for nutrients to flow along the cavity. Most likely, though, especially
if nutrients only enter the cavity from the mouth, resource depletion will be
significant closer to the floor of the cavity as it gets used up by cells near
the mouth. In that case, even if resource depletion is very strong, one might
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still expect to find jammed cavities as long as the region near the mouth
where resource-depletion is weak is long enough for jamming to occur. In
that scenario, one might find that the region near the bottom of the cavity
is filled with dead or frozen (non-proliferating) cells. In our model we have
neglected any spatial dependence of the logistic effect, and one possible area
of future research would be to study such spatial dependence.

Regarding the Allee effect, we have seen that it can act as a potential
stabilizer of the jammed phase, thus contributing to the stability of popu-
lations in cavity-systems. Although it cannot cause jamming to arise (see
Figure 2.6, the establishment length is independent of the Allee effect be-
cause it relies on the dynamics at zero-density) it can prevent gasification of
cavities under adverse conditions. One aspect left untouched in this thesis
is the treatment of cooperation at the individual-based level. A given mi-
crobe is expected to interact with its neighbors (directly through contact,
or effectively, for example through the presence of some secreted substance).
This opens up the possibility of inter-strain (even inter-species) cooperation,
and the possible density profiles and spatial structures that would arise from
such interactions and how they could be compatibilized with the floor-driven
dynamics in jammed cavities is for now a complete unknown. Regardless,
experimental results point to cavities mostly occupied by single microbial
strains [14], implying that inter-strain cooperation is a rather exotic event.

The discovery of Invader-Sustained Jamming (predicted by the 1D reaction-
diffusion system and confirmed in the individual-based model) as a novel
cooperation effect could potentially play a significant role in shaping the
ecological landscape of a system full of cavities. In particular, it can allow
underperforming strains to survive in the system for long periods of time
being supported by the stronger strains outside a cavity. This can have a
positive effect for rediversification after extreme events, since it might allow
for a pool of different microbial strains to be ready to thrive if conditions in
the system change dramatically. On the other hand, it can potentially have
negative consequences, as it might allow a pathogen to survive unnoticed
for a long time, being ready to thrive in much the same manner. It must be
noted, though, that invader-sustained jamming is studied here in the simplest
of cases. Hydrodynamical interactions between cells have been completely
neglected in this thesis, as well as the dynamics of the fluid around them.
These could prove potentially disruptive to the stability of the jammed, un-
derfit population, as currents might help flush out the strain inside the cavity
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and allow the fitter strain to take over. In fact, the introduction of fluid dy-
namics in the present models would be a natural extension of the research
presented here. It is known from experiments that taller cavities (properly
three dimensional, larger in the dimension that we have ignored throughout
this thesis) sometimes present vortices in the interior, at least in the gaseous
phase. Furthermore, although advection can safely be neglected far from the
mouth of the cavity under some conditions, it is generally not the case close
to it [5]. It would thus seem reasonable to include advection and hydrody-
namic interactions in our models and study their potential effects (applied
to ISJ but also in general to other phenomena), even if this would naturally
increase the computational cost of the models.

Regarding the stability of bands in jammed cavities it is important to
underline the overall good agreement, between the theory and experiments,
of the prediction that the fitter strain will take over the cavity via logistic
growth in the absence of pinning phenomena. The relevance of this result
lies in that it shows that the takeover process is, in principle, quantitatively
predictable. Naturally, the result presented here is only a first step towards
a more complete theory of competition processes in crowded environments.
In particular, although we also show that the presence of pinning barriers
prevents logistic takeover from occurring, even if only temporarily, we do
not give a precise theory of how the pinning barrier might potentially be
overcome (something that is observed both in simulations and experimental
recordings). We also did not discuss in detail the speed of the jamming waves
that sometimes occur during the takeover process. These are clear directions
of future research. That is specially so with regards to the pinning, since
in real systems one might expect that the kind of impurities that difficult
the takeover are commonplace. If a more complete statistical theory were
developed, it might open up the possibility of understanding the dynamics
in systems comprising of many cavities, maybe uncovering novel phenomena.

The results in this thesis also point out some of the fundamental differ-
ences in behavior between gas and jammed cavities. In particular, the study
of the Clone Size Distribution (CSD) of cavities shows the decrease in lin-
eage size in cavities upon jamming, and points to a general loss of diversity
in jammed cavities, a view that is backed up by other results of this thesis:
the fact that jammed dynamics are dominated by a few cells at the floor of
the cavity or the resistance to invasion conferred to the resident population
by jamming being two examples. The sharp change in dynamics at the jam-
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ming threshold supports the idea of Levin that scale plays a central role in
ecosystem dynamics. What is more, the drop in diversity in jammed cavities
directly contradicts one of the pillars of island theory, that the number of
species in an ecosystem scales in proportion to the system’s physical size. Our
results show that an increase in system size can lead to a sudden change in
system behavior that has the opposite effect to the prediction by MacArthur
and Wilson. Similarly, the potential for immigration of strains into cavities is
neutralized by the colonization resistance of the jammed state, even though
in such a cavity the number of strains is minimum (likely to be one, maybe
more if stable pinning allows it), in contradiction with island theory.

That said, we do not intend to say that the results of this thesis inval-
idate island theory. MacArthur and Wilson’s ideas served as the breeding
ground for new concepts in biology, like the r/K selection theory (the idea
that some species focus on high birth rate and mortality while others have
very low birth rates but in which individuals take great care of offspring to
ensure they reach reproductive maturity with a high probability), or have
been useful in gaining insight to problems like maintaining high diversity in
the presence of the competitive exclusion principle (see [43] as an example).
In fact, some of our results agree with island theory: extinction rates of lin-
eages in the short (small) gaseous cavity were significantly higher than in
the long (large) gaseous cavity, and the rate of extinction did gradually drop
as the number of lineages remaining in the cavity diminished. Our other re-
sults only point out to the need to take utmost care when considering simple
ecological models without much consideration. Here we only studied a very
particular ecosystem, one that is surely not representative of every ecosystem
in the natural world. Regardless, it is an ecosystem whose properties some-
times contradict expectations, one that points to the importance of scale in
ecology.
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Appendix

A.1 Establishment length

This derivation follows closely that found in the Supplementary Information
of [5].

Recall that the 1D reaction-diffusion system is given by

∂tρ(y, t) = −∂y(j(y, t)) + b(ρ(y, t))

j(y, t) = −D(ρ)∂yρ(y, t)
(A.1)

with boundary conditions

j(0, t) = 0, ∀t
ρ(L, t) = ρL, ∀t

(A.2)

where ρ(y, t) is the density at position y (with respect to the floor of the
cavity) and t is the time, D(ρ) is the diffusivity, j is the current of density
and b(ρ) the birth term due to cell proliferation.

Given the no-flux boundary conditions at the floor and zero-density bound-
ary conditions at the mouth, it makes sense to expand the density profile as
a sum of cosine modes:

ρ(y, t) =
∑
n=1

an(t) cos(kny), kn = (2n+ 1)
π

2L
(A.3)
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where the dependence on time is in the amplitude of each mode.

Around ρ ≈ 0, Equation A.1 then reduces to an equation for each mode.
The diffusivity reduces to D0 ≡ D(0) at zero density and the birth function
reduces to an exponential growth term (any effect of logistic growth or Allee
is at least order O(ρ2)). The equation for a given mode is then

∂tan(t) · cos(kny) = an(t)D0 · (−k2
n) · cos(kny) + ban(t) cos(kny) (A.4)

The cosine drops out and we are left with

∂tan(t) = (−D0k
2
n + b)an(t) (A.5)

for each of the modes’ amplitudes.

For each of the modes, the zero-amplitude state is unstable and the am-
plitude grows if −D0k

2
n+ b > 0. On the other hand, it to 0 if −D0k

2
n+ b < 0.

When the empty state of the lowest mode, n =, changes, all higher modes
still go to zero because kn > k0 ∀n > 0. The stability of the empty state is
then given by this lowest mode and the empty state becomes unstable overall
when

b = k2
0 ·D0 =

(
π

2Lest

)2

D0 =⇒ Lest =
π

2

√
D0

b
(A.6)

where Lest is thus the establishment of the cavity, and the expression corre-
sponds to that in Equation 2.4 in the main text.

A.2 Inter-band boundary under pinning.

Let ŷ be the direction along the length of the cavity and x̂ the transversal
direction, with the origin in the region of higher growth rate. The heuristic
of logistic growth discussed in the main text, when applied to a point (x, y)
along the boundary between two bands, leads to

ẋ ≡ dx

dt
= brx(1− x) (A.7)

in the x̂-direction, where br = bhigh − blow is the difference in growth rates
between the two strains. Note that x is normalized with respect to the width
of the cavity, i.e. it goes from 0 to 1.
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In the ŷ-direction, on the other hand, the velocity of a cell (or equivalently,
of a point in space) is driven by the growth of the cells behind it, beginning
at the floor, and is exponential in the number of cells behind it, leading to a
velocity in the ŷ-direction given by

ẏ ≡ dy

dt
= blowy (A.8)

where the growth rate is that of the weaker strain, since we expect that the
boundary curves towards the region of the weaker strain and so the space
between the boundary curve and the wall is expected to be filled with cells
of the lower growth rate.

The curve of the inter-band boundary is thus described by the following
equation:

dx

dy
· dy
dt

=
dx

dt
(A.9)

which using the above expressions can be rewritten as

dx

brx(1− x)
=

dy

blowy
(A.10)

the solution of which is, by integration,

blow
br

log

(
x

1− x

)
= log(y(x)) + C (A.11)

which is the same result as in Equation 4.6 in the main text. The constant
of integration can be set from the boundary conditions, in particular that:

y0 = Lw ⇐⇒ x0 = 0.5 (A.12)

where Lw is the length of the pinning impurity.

A.3 Well-mixed approach to the CSD

Take a birth-death process where a cell reproduces with birth rate b and dies
with rate d. The probability that a cell yields a clone of size n, following the
same recursive approach used in the main text, is given by

P (n) =
b

d+ b

n−1∑
k=1

P (k) · P (n− k) (A.13)
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for n > 1. P (n = 1), which is simply the probability that a cell dies without
reproducing, is given by

P (n = 1) =
d

d+ b
·K1 (A.14)

where K1 is some arbitrary prefactor.

Looking at the first few terms, we can quickly see a recurrence relation,
yielding that the probability to give a clone size of n is

P (n) =
d

d+ b

(
b

d+ b
· d

d+ b

)n−1

Kn, Kn =
n−1∑
i=1

KiKn−i (A.15)

The recursion can be mapped to the recursive expression of the Catalan
numbers, using Kn → Cn−1.

In order to have a stable steady-state population, the only possibility is
that d = b = 1/2. This leads to

P (n) = 1/2 · (1/4)n−1 · Cn−1 (A.16)

as in the main text.
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