
 

Politecnico di Torino  
 

Master’s degree in Computer Engineering 
Embedded Computing Systems 

 
 
 
 
 

Multi-dimensional exploration of the 
Minimum Energy Point for RISC-V 

subsystem in 22 nm FDSOI 
 
 
 
 
 
 
 
 
 

Supervisors: Candidate: 
Prof. Matteo Sonza Reorda 
Prof. Snorre Aunet 
Eng. Torbjørn Ness 

Daniel Guarecuco Aguiar 

 
 
 

June 2023 



ABSTRACT

Battery operated devices are highly constraint in energy budget, there is a need
for energy-efficient designs. Designing circuits to operate in the Minimum Energy
Point (MEP) yields great energy savings, by at least 20%, by reducing supply
voltage and operating frequency. The MEP is in the near or sub-threshold region,
such that the circuit becomes very sensitive to PVT variations.

This thesis proposes a methodology to study and locate the MEP and its re-
lationship with supply voltage, threshold voltage, channel length, body biasing,
temperature and process variations, for a RISC-V Ibex CPU synthesized with
standard cell libraries characterized for higher voltages with a commercially avail-
able 22 nm FDSOI technology. A critical path replica is converted into a ring
oscillator for running SPICE simulations. The simulations are used to estimate
the MEP of the CPU.

Results show that HVT and UHVT libraries are unfit for operating at the
MEP due to a huge gap between slow and fast corners. It is shown that SLVT
provides the best timing closure. The selection of threshold voltages becomes the
most important parameter, adjustments can be made later by selecting a proper
channel length and body-biasing voltages.
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CHAPTER

ONE

INTRODUCTION

In recent years, the field of embedded systems has experienced rapid develop-
ment and has become an integral part of our daily lives. These are specialized
computer systems designed to perform specific tasks in larger systems or devices
[1]. They are found in many applications, including consumer electronics (such as
smartphones, tablets, and smartwatches), automotive systems, medical devices,
industrial control systems, and Internet of Things (IoT) devices. As the demand
for these applications continues to grow, so does the need for efficient power uti-
lization.

Most microprocessors ever produced go into the field of embedded systems [1].
It has been estimated that there are about 16 billion mobile devices (phones and
tables) for the year 2023 [2],[3]. Other report forecasts 15 billion connected IoT
devices for this year [4]. It is difficult to pinpoint the exact number of embedded
systems currently available due to factors such as the variety of applications and
industries they serve. In addition, the definition of an embedded system can vary
depending scope of the classification.

One of the key challenges for embedded system designers is power consumption.
These systems are typically powered by batteries or other limited power sources, as
energy harvesting technologies. Their power requirements have a direct impact on
their functionality, reliability, and lifespan. In addition, many embedded systems
are deployed in remote or inaccessible locations, making it difficult or expensive to
replace or frequently recharge their power supplies. Therefore, optimizing power
consumption is extremely important to ensure sustainable systems.

To solve these power consumption challenges, various methods have been de-
veloped and implemented. These methods aim to reduce the energy consumption
at various levels, including hardware design, software optimization, and circuit

1



2 CHAPTER 1. INTRODUCTION

level. From an architectural perspective, RISC processors are increasingly used in
this domain due to their low power consumption and computing power. For low
power requirements, RISC is most suited that CISC architectures [5]. A promis-
ing development in this field is the RISC-V CPU architecture. Which provides
an open-source instruction set architecture (ISA) that is simple, flexible, modular
and extensible [6].

Meanwhile, from a circuit-level perspective, voltage scaling is a known method
to significantly reduce power and energy consumption, because of its square rela-
tionship with supply voltage [7]. There is an optimum supply voltage that yields
the most energy-efficient operation, called the Minimum Energy Point (MEP),
which is located in the sub-threshold region, and it is depend on the activity fac-
tor and threshold variations [8]. This region is ideal for applications where low
energy is the primary focus instead of performance.

1.1 Objectives

The aim of the thesis is to further research voltage scaling techniques in the near
and sub-threshold regions to find the Minimum Energy Point of a RISC-V CPU
subsystem. Many parameters are taken into considerations, such as the impact of
different threshold voltages, different transistors’ channel length, as well as process
and temperature variations. The design is synthesised in a commercially available
22 nm FDSOI technology with Synopsys Design Compiler. Analog simulations
are run with Cadence Virtuoso in order to vary PVT conditions.

1.2 Organization

The report is structured into four main chapters: theory, methods, results and
discussion. The theory chapter provides relevant basic theory that is important
to the thesis. The methods describes the techniques and tools used to generate
the data and results. The results extracted from the methods section are later
described. Finally, the discussion chapter serves as a platform for analysis and
comparison of the results with the theory.
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TWO

THEORY

This chapter gives an introduction to the theory supporting this study and some
terms used in later chapters. First, it is important to understand how power is
consumed in digital circuits and its relationship with energy. Later a common
power management technique is introduced. Finally, a summary of what has been
done in the field of Minimum Energy Point is given.

2.1 Power and energy

To fully understand the concept behind MEP it is important to have some basic
background knowledge in how energy is utilized in digital CMOS circuits, so that
low power optimizations can be targeted.

In an electric circuit, power P is the rate at which energy is transferred from
the power source (e.g., battery) to an electrical element [9]. The power consumed
at a given time is given by the product of the current through and the voltage
across such element [7], see Equation 2.1.

P (t) = I(t)V (t) (2.1)

The energy E consumed over a time interval is given by the accumulated power
[7], see Equation 2.2.

E =

Z t

0

P (t) dt (2.2)

3



4 CHAPTER 2. THEORY

In a digital circuit, if the average power is evaluated in a clock period, the
previous expression can be simplified as Equation 2.3, or 2.4 if the frequency is
used.

E = Pavg ∗ Tclk
(2.3)

E =
Pavg

fclk
(2.4)

2.1.1 Sources of power dissipation

It is of particular interest to study the sources of power dissipation, which for
CMOS technology can be divided mainly in two categories: the dynamic and
static power.

The dynamic power refers to the power consumed by a transistor when switch-
ing states. Its dissipation is due mainly to the charging and discharging of load
capacitances, this is also know as switching power. There is a second component
to the dynamic power consumption, the short-circuit power, which is due to a
direct short-circuit path between VDD and GND through the NMOS and PMOS
transistors as they are both partially active. Since the short-circuit contribution
is typically very small compared to the switching power, it can often be neglected.
So that the dynamic power can be expressed as the contribution of the switching
power, described by Equation 2.5 [7], [10].

Pdynamic ≈ Pswitching = αCfclkV
2
DD (2.5)

Where α refers to the activity factor, or the probability that a circuit node
transitions from low to high. The term C represents the loading capacitance. In
this study, the terms dynamic power and switching power might be use inter-
changeably. Figure 2.1.1 illustrates how the switching energy is consumed in an
inverter.
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Figure 2.1.1: Dynamic power dissipated by an Inverter.

The static power is the power consumed by the circuit irrespective of the
circuit state, even if it is not switching. This power loss is due to the non-ideal
conditions of real transistors, which do not behave completely as ON/FF switches.
The static power has multiple contributors, but the dominant source in modern
CMOS technology is the subthreshold leakage. The static power is characterized
by equation 2.6 and 2.7 [11]. This leakage is caused by a current flowing through
a transistor that is meant to be OFF, but it is not due to reduced threshold
voltages [12]. In this study, the terms static power and leakage power might be
use interchangeably.

Pstatic ≈ Psubth = IsubthVDD (2.6)

Isubth = µNCox
WN

LN

V 2
t e

VGS−Vth
nVt (1− e

−VDS
Vt ) (2.7)

Where µN is the electron carrier mobility, Cox is the gate capacitance per unit
area, WN is the channel width, LN is the channel length, Vt is the thermal voltage,
Vth is the threshold voltage and n is the inverse slope of the subthreshold current
[11]. Figure 2.1.2 shows how this type of energy is dissipated in an inverter.
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Figure 2.1.2: Static power dissipated by an Inverter.

Putting together the two main sources of power dissipation, Equations 2.8 and
2.9 are obtained.

Ptotal = Pdynamic + Pstatic (2.8)

Ptotal = αCfclkV
2
DD + IleakageVDD (2.9)

In terms of energy:

Etotal = Eswitching + Eleakage (2.10)

Etotal = αCV 2
DD +

IleakageVDD

f
(2.11)

2.2 Dynamic Voltage and Frequency Scaling (DVFS)

According to [13], there are two successful methods for reducing the dynamic
power, which becomes evident from Equation 2.5: activity (α) reduction and sup-
ply voltage (VDD) reduction. Due to the quadratic relationship between power
and supply voltage, reducing this term can lead to significant power savings. There
are two approaches to achieving supply voltage reduction while maintaining per-
formance: static and dynamic methods.

In the static supply voltage reduction method, multiple supply voltages are
utilized withing the same circuit. The higher supply voltage is employed for
performance-critical logic that requires higher speeds but consumes more power,
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and low supply voltages are used for non-critical paths, with lower speeds but
dissipating less power.

Alternatively, in dynamic supply voltage scaling, the logic chip is designed to
operate at its maximum performance level when supplied with the highest voltage.
However, when the performance demand is low, the chip can be operated at a lower
voltage, resulting in reduced performance but substantial power reduction.

This second method is often called Dynamic Voltage and Frequency Scaling
(DVFS), as the frequency often must scale down along with the supply voltage in
order to guarantee correct operation in synchronous systems [10]. Evidence sup-
ports the effectiveness of this technique, for instance, the study carried by [10] on a
9-processor JPEG application, using 1.3 V and 0.8 V for voltage scaling, achieved
a reduction of 48% energy consumption, while only diminishing performance by
8%, with an additional 12% area overhead for the DVFS circuit.

As voltage and frequency are both reduced, it can be seen from Equation 2.11
an opposing trend between the switching and leakage component of the energy.
The switching energy term is always decreasing by a square relationship on VDD,
while the leakage term is increasing due to slower operation times. At low supply
voltages, leakage energy takes dominance. Their balance define the MEP location.

Implementing a DVFS systems in a general-purpose microprocessor involves
three essential components: 1) An intelligent operating system capable of dy-
namically adjusting the processor speed. 2) A regulation loop that generates the
minimum required voltage for the desired speed. 3) A microprocessor designed to
function across a wide range of voltages. Software control is necessary as hard-
ware alone may not be able to differentiate between computationally intensive
tasks and non-speed-critical tasks. The supply voltage is regulated through a
frequency-voltage feedback loop, controlled by dedicated ring oscillator, which is
commonly used as a critical path replica. All chips within the system operate at
the same clock frequency and supply voltage given by the ring oscillator [14].

2.3 Process, Voltage and Temperature variations

By looking at the leakage current in the sub-threshold regime (Equation 2.7), it
can be seen that it is dependent on the threshold voltage, supply voltage and
temperature (PVT). Meaning that changes in any of these parameters will reflect
a variation in the drain current. According to [15], circuits are more sensitive to
operating conditions in this region. Energy and performance are highly impacted
due to process variations, operating temperatures and environment conditions.

The study also shows that an increased temperature improves speed, at the
expense of increased energy dissipation. The effect is due to an reduced threshold
voltage and an increased mobility at higher temperatures [8]. Temperature has
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a much greater impact in the sub-threshold region than in the strong inversion
region.

Moreover, due to manufacturing processes, transistors will show a random vari-
ation on the device length and width, that deviates the threshold voltage of each
device [16]. It has been studied [17] that the standard deviation of the threshold
voltage follows an inverse relationship with the square root of the transistor area.
Meaning that variation spreads are higher as the device dimensions are reduced.
From the same equation, in the sub-threshold regime, the threshold voltage has
exponential effects in the drain current.

The stated above shows how difficult it might be to operate with low supply
voltages in the sub-threshold region.

2.4 FDSOI

FDSOI is a planar process technology that provides an alternative solution to
overcome some of the limitations of bulk CMOS technology at reduced silicon
geometries, it stands for Fully Depleted Silicon on Insulator. The FDSOI process
has two distinct features. First, an ultra-thin buried oxide layer is placed on
the top of the base silicon. Second, a very thin silicon layer on top creates the
transistor channel. As the transistor channel layer is very thin, no channel doping
is required, which makes the transistor fully depleted [18].

FDSOI technology exhibits significantly improved electrostatic characteristics
of transistors compared to conventional bulk technology. The incorporation of a
buried oxide layer serves to decrease the parasitic capacitance between the source
and the drain. Moreover, it effectively confines the electron flow from the source
to the drain, resulting in a remarkable reduction in leakage currents that impair
performance [18]. Figure 2.4.1 shows the cross-section of both technologies.

(a) Bulk transistor. (b) FDSOI transistor.

Figure 2.4.1: Bulk (a) and FSDOI (b) CMOS transistors cross-section. Illustra-
tion from STMicroelectronics [18].

In this technology, the transistors possess four effective terminals: source,
drain, gate, and body, which refers to the volume beneath the conduction channel.
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In FDSOI, by applying a voltage bias to the body terminal, the transistor’s thresh-
old voltage can be effectively manipulated , controlling on the fly the threshold
voltage by software [19].

This boody-bias can be employed in two directions: forward body-bias (FBB)
and reverse body-bias (RBB). In FBB, the PMOS body terminal is driven to a
lower voltage than the source supply (VDD), while the NMOS body terminal
is driven to a higher voltage than the source supply voltage (typically ground).
This configuration lowers the device threshold voltage, thus incresing performance.
Conversely, in RBB, the PMOS body terminal is driven to a higher voltage than
VDD, while the NMOS body terminal is driven to a lower voltage than the supply
(often a negative voltage). This increases the threshold voltage with reduced
leakage [19].

In summary, the body-bias technique has different impacts on the MOS transis-
tor’s fundamental characteristics. Forward body-bias (FBB) is aimed at enhancing
performance by increasing mobility and reducing the threshold voltage (VT). On
the other hand, reverse body-bias (RBB) is suitable for mitigating leakage current
by increasing VT and improving the sub-threshold slope [19].

2.5 Ring oscillator

A ring oscillator is a digital oscillator created by connecting an odd number (n) of
inverters in a closed-loop cascade [20]. When each inverter has the same propaga-
tion delay (Ti), the oscillation frequency can be determined using Equation 2.12,
as illustrated in Figure 2.5.1.

FCLK =
1

n ∗ Ti

(2.12)

Figure 2.5.1: Schematic of a ring oscillator.

These oscillators are highly desirable due to their ease of design using CMOS
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technology. They can achieve oscillations at low voltages, offer electrical tuning,
and provide a wide range of tuning options [11]. Additionally, by adjusting the
supply voltage, a Voltage-Controlled Oscillator (VCO) can be obtained, allowing
an increase or decrease of the propagation delay in each gate. One common appli-
cation is incorporating them into a dynamic voltage scaling controller to regulate
the operating frequency based on the core’s performance [7].

2.6 Previous work

Studying low-power and low-energy techniques is not new. Minimum Energy Point
around the sub-threshold region has been researched before, both by mathematical
models, simulations and physical implementations.

In the study carried by [15], an optimal pair of VDD-Vth is explored with
simulations of 11-stage NAND ring oscillators with BSIM3 models (Berkeley Short
channel Insulated gate field effect transistor Model). It shows the effects of activity
factor and operating conditions, concluding that operating at the optimal point
can lead to an order of magnitude in energy savings.

Likewise, [16] studied the MEP in a 11-stage NAND ring oscillator with vari-
able activity factor. Later extending the simulations to CMOS SRAMs, showing
that the leakage energy increases and the dynamic energy reduces in a quadratic
manner as the supply voltage is reduced. Finally locating the MEP to be around
300 mV.

The MEP has been studied [21] for a 32-bit adder and 16-bit multiplier circuits
in 65 nm Silicon on Thin-BOX (SOTB) and bulk devices. The circuits were imple-
mented on chip using only 2-input gates. The results reveal that minimum energy
of SOTB is up to 49% smaller than bulk devices and that the MEP is proportional
to the temperature. The supply voltage for a minimum energy operation increases
linearly with temperature.

Finite impulse response (FIR) filters have been simulated and tested on chip to
examine the MEP in sub-threshold circuits, showing the dependence on technol-
ogy, design, temperature, duty cycle and workload. Variation in these parameters
require an adjustment of hundred of millivolts in the supply voltage, demonstrat-
ing the need for a MEP tracking mechanism. Moreover, the study confirms that
CMOS standard cells libraries are fit for sub-threshold operations [8].

According to [22], some algorithms have been developed previously to estimate
the MEP at run time, however they are time-consuming and not fit for real-time
operations. They proposed a real-time tracking algorithm based in predefined
MEP curves characterized at Slow-Slow (SS), Typical-Typical (TT), and Fast-
Fast (FF) conditions generated for a given chip during the boot phase. It was
tested with a 50-stage inverter chain designed with 55 nm deeply depleted channel
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(DDC) process. It demonstrates that this model can quickly track the MEP even
with wide PVT variations.

Finally, the Minimum Energy Point Exploration in a CPU Subsystem special-
ization project [23], carried in the fall semester 2022 at NTNU, also under Nordic
Semiconductor supervision is the precursor of the current thesis. The study was
limited to a single VT flavor (LVT) with a 24 nm channel length in a 22 nm FD-
SOI process. The results were obtained at 25℃, with a typical transistor model
and the body biasing recommended by the foundry.

This project provided a great opportunity for laying the foundations of the
current work, as much of the initial setup and debugging of new tools happened
during that time. Therefore, this specialization project enabled to extend the
scope of this thesis and explore various conditions that yield better estimations.
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CHAPTER

THREE

METHODS

The current thesis was conducted under the guidance of Nordic Semiconductor,
located in Trondheim, Norway, during the spring semester 2023. It is the con-
tinuation of the previous study, Minimum Energy Point Exploration in a CPU
Subsystem, carried in the fall semester 2022 [23].

This chapter presents the methodology and tools required to replicate the
study, so that it can be expanded to different designs and technologies. Although
there are many different tools, both licensed and freeware, the ones selected are
those widely used both by the industry and by Nordic Semiconductor.

The flow used to extract the MEP of a RISC-V CPU is illustrated in Figure
3.0.1, every step is described in detail in the following sections. An overview
of the methodology is as follows: The RTL design is simulated to extract the
switching activity. The design goes under a synthesis process taking the selected
standard cell library and the activity file as inputs. A gate-level netlist is obtained,
from which a power estimation is generated and the critical path extracted. The
critical path is used to build a ring oscillator that is simulated at the circuit-level
sweeping through different PVT corners. From the analog simulation results and
the original power report, the MEP for the selected conditions can be estimated.
The worst-condition of the MEP is used to generated valid biasing points that can
be feedback to the analog simulation to obtain better results through adaptive
body-biasing techniques.

3.1 List of tools

• Mentor QuestaSim 10.7c_3.

13
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Figure 3.0.1: Minimum Energy Point exploration flow.

• Synopsys Verdi 2021.09-sp2-2
• Synopsys Design Compiler 2020.09.
• Synopsys PrimePower 2019.12-SP5.
• Cadence Virtuoso ICADVM20.1
• Python 3.6.8 and 3.11.1

3.2 The RTL design: Ibex RISC-V Core

The very first step when studying the Minimum Energy Point is to have a design
that can benefit from this technique. In particular, processors can profit greatly
from Dynamic Voltage and Frequency Scaling (DVFS) and from threshold voltage
scaling [22].

The choice of the Ibex RISC-V Core for the MEP exploration was based on
several factors. It is based on a reduced instruction set computer (RISC) ar-
chitecture, which simplifies the processor design. These type of architecture is
incredible popular. According to RISC-V International, there are more than 10
billion RISC-V cores in the market, and tens of thousands of engineers working on
RISC-V initiatives globally. They have seen more than 26% membership growth
year-over-year, with over 3,180 members across 70 countries [24].

The Ibex Core is an open-source project targeted for embedded applications
and has been thoroughly tested. It contains all the necessary modules for a mini-
mum working CPU subsystem and offers integration with various simulation and
synthesis tools. Additionally, it provides a framework for building and simulating
designs, along with extensive documentation [25].
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According to the Ibex group [25], the Ibex Core is a 32-bit production qual-
ity CPU based on the RISC-V architecture. It is implemented in SystemVerilog
and maintained by lowRISC. The developers state that this core is specifically
designed for embedded control applications. It has undergone extensive verifica-
tion and supports various RISC-V extensions such as Integer, Embedded, Integer
Multiplication and Division, Compressed, and Bit Manipulation extensions.

The project repository provides a Simple System, which integrates the Ibex
Core with a basic system for simulations. The Simple System includes the follow-
ing components:

• Ibex Core.
• Single memory for instructions and data.
• Basic peripheral for writing ASCII output to a file and halting the simulation.
• Basic timer peripheral capable of generating interrupts.
• Software framework for program development.

The Ibex Core RTL source files are actively under review and development
by the community in a public repository. Many changes have been pushed since
the beginning of this thesis. The CPU design used in this study was released in
October 14th, 2022.

3.2.1 Building the software

To test the capabilities of the Simple System, a hello_test.c file is also provided.
This file contains instructions for printing strings to a log file based on a peri-
odic timer. The source file was compiled using the developers’ provided Make
executable. The resulting binary was then dumped into a Verilog Memory file
(vmem) following the memory organization of the Simple System. This allows the
instructions to be fetched by the Ibex core.

The Simple System binary was built using FuseSoc, a package manager and set
of build tools for HDL [26]. FuseSoc allows the passing of parameters to build the
final RTL design. For this study, the following parameters were used: RV32MFast
(fast multiply extension), RV32BNone (no bit manipulation extension), RegfileFF
(register file based on flip-flops), and the path to the memory file (vmem) con-
taining the software code. These parameters are the standard recommendations
according to the Ibex documentation for a simple system.

3.2.2 RTL simulation

Once a design has been selected for the study, the next step in the MEP exploration
process is to extract the switching activity through RTL simulations. According
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to the Synopsys PrimePower user guide [27], three main components are required
to obtain an accurate power estimate from a design:

• Gate-level netlist describing the design.
• Power characterization of cells in a standard library.
• RTL simulation traces.

The gate-level netlist is obtained after synthesis, and the power characteriza-
tion is already available in the library. However, the RTL simulation traces need
to be extracted at this stage to provide the switching activity of the design under
a specific workload defined by the firmware running on the core.

To extract the RTL simulation traces, the Simple System design, with the soft-
ware loaded into the instruction memory, was simulated using Mentor QuestaSim
10.7c_3. The simulation was executed using the make run instruction provided
by the Ibex framework. The Makefile takes care of loading all source RTL files in
the correct order using TCL scripts.

The primary focus at this stage is the extraction of the switching activity.
As a result, all signals were stored in a Fast Signal Database (FSDB) during the
simulation, allowing their utilization in the subsequent estimation phase. The
clock period specified in the testbench was continuously fine-tuned within the
exploration loop to achieve an optimal value for each corner. It is crucial for the
clock speed used during synthesis to match the simulated clock in order to obtain
the most accurate estimation. Failing to do so could potentially impact the toggle
rates [28].

3.3 The synthesis

In accordance with a standard synthesis flow [29], the Ibex Simple System under-
went synthesis using a 22 nm FDSOI library in Synopsys Design Compiler 2020.09.
It was synthesized with different transistor flavors and different channel length:
SLVT (20 to 36 nm), LVT (24 to 36 nm), HVT (20 to 28 nm) and UHVT (28 to
36 nm). The synthesis process was carried out through TCL scripting (refer to
Appendix .6). The flow for synthesis is outlined below:

First, a 22 nm FDSOI 8-track standard cell library was selected for the syn-
thesis process. The available libraries are listed below.

1. SLVT : in 20, 24, 28, 32, 36 nm characterized at 0.4V.

2. LVT: in 24, 28, 32, 36 nm characterized at 0.4V.

3. HVT: in 20, 24, 28 nm characterized at 0.8V.

4. UHVT: in 28, 32, 36 nm characterized at 0.8V.
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Additionally, the RTL source files were loaded in the same hierarchical order
as done during simulation. All files related to the testbench are excluded from the
synthesis.

To ensure accurate power analysis, the switching activity needed to be reported
in a Switching Activity Interchange Format (SAIF) file. This involved associat-
ing the design objects with their corresponding gate-level netlist elements. In
other words, mapping RTL names to their gate-level counterparts. During syn-
thesis, the switching activity was included in the FSDB file, and a name mapping
database was created. The FSDB file was then converted into a SAIF file using
the fsdb2saif command provided by Synopsys Verdi 2021.09-SP2-2.

A clock constraint was set, and its value was determined through a manual
iterative loop. The loop continued until the critical path achieved a slack value of
zero, or slightly negative. So that it is operating at its maximum speed. During
this loop, new RTL simulations are obtained with the corresponding clock value
(section 3.2.2), so that all clocks match.

The synthesized gate-level netlist, the Synopsys Design Constraint (SDC) file
and the name mapping database were exported to be consumed in the following
step.

3.4 Power estimation

An average power analysis was performed using a TCL script (refer to Appendix
.7) in PrimePower 2019.12-SP5 on the gate-level netlist generated by Synopsys
Design Compiler in the previous step. To enhance accuracy, the analysis utilized
the SDC file (constraints), SAIF file (containing switching activity), and an RTL-
to-gate mapping file.

It is crucial for the power estimation to be reliable that close to 100% of
the switching activity is properly annotated. This verification can be carried
out using the report switching activity -list not annotated command to
identify any unannotated switching activity.

A power report is generated for the Ibex Simple System. The report includes
information about dynamic power (reported by Synopsys as Net Switching and
Cell Internal), static power (Cell Leakage), and the total power consumption. The
energy per cycle can be obtained by multiplying by the clock frequency used as a
synthesis constraint. The report is only generated at typical corner characterized
by the library (0.4 V/0.8 V, 25℃, Typical-Typical). There is no way of obtaining
the MEP from this report. However, it will serve as a reference for extrapolating
the power corners from a ring oscillator, for those corners not characterized in the
library.
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Figure 3.5.1: Diagram of a testbench for ring oscillator.

3.5 Building a ring oscillator

The power estimation conducted in the previous section 3.4 is limited to the char-
acterized corners of the library. Specifically, the Typical-Typical (TT) process
corner offers supply voltages of 0.4 V, 0.5 V, 0.6 V, and 0.8 V. Power estimation
below 0.4 V cannot be performed using PrimePower, because the tool can only
properly estimate the power consumption for the library corners, defined through
liberty files. These files establish timing and power characteristics at a defined
voltage for every cell in the library. These values are unknown for supply voltages
not defined by the foundry. Instead, an analog simulation can be executed on
the same transistor model with a lower supply voltage (or different VT flavor,
temperature, or body biasing).

Due to the complexity and time-consuming task of running a SPICE simulation
of the entire Ibex Core, only the critical path is simulated, as it is considered a
representative sample. But also because this is the path that has the least slack
and the one that requires the highest speeds. Using a replica of the critical path
as a ring oscillator is a very common practice to regulate the speed and supply
voltage of the main circuit [7], [22], [30].

The critical path is dumped into a SPICE netlist via the write_spice_deck
command provided by Synopsys PrimePower. The netlist includes the cells in
the path, resistors, ground capacitors, and coupling capacitors [27]. The circuit
described by the netlist is converted into a ring oscillator by fixing the inputs that
do not belong to the critical path either to VDD or VSS, such that the main input
of the critical path can be observed at the output. Figure 3.5.1 illustrates this
idea.

Using Python scripting (refer to Appendix .9), the exported SPICE netlist
was modified to adhere to the Cadence Virtuoso simulator syntax. Additionally,
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the initial and final sequential elements in the path were removed since only the
combinational logic is of interest for building a ring oscillator. For each cell in the
critical path there are individual voltage sources (VDD, VSS, VPW_P, VNW_N),
they were removed, and respective pins were connected together and set as output
ports of the critical path subcircuit. This reduces circuit complexity and allows
values to be changed through a design variable in a testbench. A testbench circuit
was created by instantiating the critical path subcircuit, a four-pole single-throw
switch, all power supplies, and an ideal inverter (derived from a voltage-controlled
voltage source).

After the critical path netlist has been parsed and cleaned it is converted into
a SPICE subcircuit (SUBCKT), named CRITICAL_PATH, which makes the ring
oscillator circuit. A proper testbench is created, instantiating the subcircuit, the
voltages sources and the 4-input switch. The testbench netlist is described in
Listing 3.1.

Listing 3.1: SPICE testbench
.include netlist_critical_path.spi

vvdd vdd 0 vdd
.global vss
vvss vss 0 0
.temp 25
vvnw_n vnw_n 0 vnw_n
vvpw_p vpw_p 0 vpw_p

xtop_01 vdd vss vnw_n vpw_p A Z CRITICAL_PATH

* Input A is connected to a sp4tswitch. Inputs are VSS , VDD , Z or !Z
* Switch is controlled via sw_pos variable

einverter nZ vss vdd Z 1
simulator lang=spectre
S0 (A vss vdd Z nZ) sp4tswitch paramTyp=string tranPosition_str=sw_pos model=switch
simulator lang=spice

.end

The four-pole single-throw switch is connected in the following manner, shown
also in Figure 3.5.1:

• Input 1 is connected to VDD.
• Input 2 is connected to VSS.
• Input 3 is connected to Z (output of ring oscillator).
• Input 4 is connected to !Z (inverted output of ring oscillator).
• Output 1 is connected to A (input of ring oscillator).

It can be decided which switch configuration to use at simulation time by means
of a design variable. Configurations 1 and 2 will not make the circuit oscillate due
to their static behavior, therefore this will yield the static power information.
Either configuration 3 or 4 generates an oscillatory response on the circuit. If
the ring oscillator has an odd number of inverter-like gates, then configuration 3
makes the circuit oscillate. In the case when the number o inverter-like gates is
odd, an additional inverter is needed to make the circuit oscillate, in this case,
configuration 4 is needed.
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The number of inverter-like gates in the netlist can be counted by studying the
type of cells and their inputs-outputs paths, but it is very complex operations since
there are near 1000 cells per library. Instead, it was decided that it is much easier
to simulate for both possible conditions, and take the results of the oscillatory
case.

3.5.1 Analog simulation of RO

The testbench and critical path netlists from the previous section, and the transis-
tor models are imported into Cadence Virtuoso ICADVM20.1 from command line
by using Spice In. It creates a schematic of the circuit that can later be simulated.
The import command is [31]:

spiceIn -netlistFile netlist_testbench.spi -outputLib $TESTBENCH
-language SPICE -refLibList "cmos22fdsoi analogLib" -devMapFile
devMapping.file

,→

,→

Where netlist_testbench.spi is the netlist described in Listing 3.1, which is
instantiating the critical path by means of the .include directive. Output files
are located in the directory pointed by $TESTBENCH, and the devMapping file
contains the device mapping information (such as resistor = res).

All SPICE simulations were performed using OCEAN scripts. The graphical
user interface (GUI) was only used for the initial setup and understating how
the tool works, everything was moved later to OCEAN scripting because of the
amount of simulations and corners needed. This also allows greater automation
during the exploration flow. See Appendix .8 for the script file.

The Open Command Environment for Analysis (OCEAN) is the scripting lan-
guage used by Cadence Virtuoso Analog Design Environment to set up, simulate
and analyze circuit data from command line without starting the GUI. Script files
and simulations were design according to the recommended instructions [32], [33].
Initially, a basic simulation can be set up through the GUI and the configurations
exported into an OCEAN file, that works as a baseline for designing more complex
simulations.

The simulation time must be enough to accommodate a few cycles on the
slowest corner. But because there is a huge difference in speed between the slowest
and fastest corner, this time cannot be a fixed value, or it would be unfeasible to
get results in a timely manner. For instance, ten cycles in the slowest corner could
mean one million cycles in the fastest corner (five orders of magnitude greater) for
a fixed stop time, creating huge amount of data with a big impact on computing
resources. An optimization is therefore required.

The problem is that the frequency of oscillation is not know beforehand and
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cannot be calculated until the simulation has finished and the simulation time can-
not be defined until the oscillation frequency is known, in other words, a chicken
or egg dilemma is faced. To circumvent this problem, a big enough fixed simula-
tion time is used, and a counter written in Verilog-A (refer to Appendix .11) is
instantiated so that the current analysis can be stopped dynamically once a given
number of cycles have been obtained. The transient simulation will then continue
with the following corner. The finish_current_analysis(0) command achieves
the desire behavior.

Once the testbench, critical path, cell and transistor models are imported into
Virtuoso, OCEAN scripts are used to simulate the circuit in all four possible
switch cases: 1) connected to VDD, 2) connected to VSS, 3) connected to Z, 4)
connected to !Z. All simulation parameters are described in the script, such as:
supply voltage, temperature, transistor model, biasing voltages. The simulations
can be started from the command line with the command:

virtuoso -nograph -restore script.ocn

The most important results are extracted using the script with the following
directives:

• The frequency of oscillation is measured as the frequency of the voltage
signal Z, after removing the first half of the simulation. This ensures that
any transitory behavior is discarded.

frequency(clip(VT(\\"/Z\\") (lastVal(VT(\\"/Z\\")) / 2)
lastVal(VT(\\"/Z\\")))),→

• The power consumed by the circuit is equal to the average of the current
signal through the VDD port, times the voltage value of VDD. First half of
the simulation is also discarded (P = IDD ∗ VDD).

average(clip((VAR(\\"vdd\\") * IT(\\"/xtop_01/VDD\\"))
(lastVal(VT(\\"/Z\\")) / 2) lastVal(VT(\\"/Z\\")))),→

• The duty cycle is given by the time it takes the voltage signal Z to cross half
VDD on both edges.

dutyCycle(VT(\\"/Z\\") ?mode \\"user\\" ?threshold
(VAR(\\"vdd\\") / 2) ?xName \\"time\\" ?outputType
\\"average\\")

,→

,→

All data is dumped into CSV files automatically once the simulations are fin-
ished. Columns represent the simulated corner and rows contain the results of the
previous expressions (frequency, power, duty cycle).
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P V T(℃) VNW_N(V) VPW_P(V)
TT 0.20 25 0.8 -1.067
TT 0.21 25 0.8 -1.067
TT 0.22 25 0.8 -1.067
TT 0.23 25 0.8 -1.067
TT 0.24 25 0.8 -1.067
TT 0.25 25 0.8 -1.067
TT 0.26 25 0.8 -1.067
TT 0.27 25 0.8 -1.067
TT 0.28 25 0.8 -1.067
TT 0.29 25 0.8 -1.067
TT 0.30 25 0.8 -1.067
TT 0.31 25 0.8 -1.067
TT 0.32 25 0.8 -1.067
TT 0.33 25 0.8 -1.067
TT 0.34 25 0.8 -1.067
TT 0.35 25 0.8 -1.067
TT 0.36 25 0.8 -1.067
TT 0.38 25 0.8 -1.067
TT 0.40 25 0.8 -1.067
TT 0.50 25 0.542 -0.632
TT 0.60 25 0.346 -0.210
TT 0.80 25 -0.024 0.020

Table 3.5.1: Simulation corners for SLVT and LVT on typical conditions.

3.5.1.1 Simulation corners

The following tables show all the parameters that were set for the analog simu-
lations. PVT refers to Process (SS, TT, FF), Voltage (supply voltage) and Tem-
perature. VNW_N and VPW_P refers to the biasing voltages, used for forward
body-biasing (FBB). Reverse body-bias (RBB) is not studied in this thesis.

Table 3.5.1 contains the corners used to extract the MEP with SLVT and LVT
libraries at typical conditions and fixed body biasing. For voltages 0.4, 0.5, 0.6 and
0.8 V, the biasing voltages used are the ones recommended by the foundry. Under
0.4 V the libraries are undefined, and it was decided to replicate the same values
used for 0.4 V. In the case of HVT and UHVT libraries, FBB is not supported,
so their biasing voltages are always zero, this is illustrated in Table 3.5.2. This is
the first approximation on studying the MEP: only typical conditions and fixed
body-biasing, so that supply voltage, threshold voltage and channel length are
studied. In this way 22 corners are studied per VT and channel length, yielding a
total of 330 corners.

The study is extended to different PVT conditions (slow and cold, slow and
hot, fast and cold, fast and hot) with fixed body-bias. The corners for SLVT
and LVT are shown in Table 3.5.3. Since HVT and UHVT do not support FBB,
the corners are the same as Table 3.5.3 but with zero bias voltages. Now the
exploration is expanded to 110 corners per VT and channel length, giving a total
of 1650 corners studied.
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P V T(℃) VNW_N(V) VPW_P(V)
TT 0.20 25 0 0
TT 0.21 25 0 0
TT 0.22 25 0 0
TT 0.23 25 0 0
TT 0.24 25 0 0
TT 0.25 25 0 0
TT 0.26 25 0 0
TT 0.27 25 0 0
TT 0.28 25 0 0
TT 0.29 25 0 0
TT 0.30 25 0 0
TT 0.31 25 0 0
TT 0.32 25 0 0
TT 0.33 25 0 0
TT 0.34 25 0 0
TT 0.35 25 0 0
TT 0.36 25 0 0
TT 0.38 25 0 0
TT 0.40 25 0 0
TT 0.50 25 0 0
TT 0.60 25 0 0
TT 0.80 25 0 0

Table 3.5.2: Simulation corners for HVT and UHVT on typical conditions.

To further expand the study, different body-bias voltages are used, this is
explained in section 3.7.

3.6 Estimating MEP from RO

Four CSV files are obtained from the simulation ran for the ring oscillator, de-
scribed in the previous section, one for each switch case. They yield the following
results: 1) static power on high input, 2) static power on low input, 3) total power
and frequency, 4) total power and frequency (either 3. or 4. have valid data
depending on the amount of inverters in the path).

The static power consumed by the ring oscillator is calculated as the average
between the static power when input is high and when input is low. This is the best
approach as it takes into consideration both equally possible cases. The dynamic
power, due to switching state of transistors, can be computed as the subtraction
between the total power and the average static power.

The energy per cycle is obtained by dividing the total power, dynamic power,
and static power by the frequency of oscillation of the ring oscillator for each
corner. By locating the lowest total energy consumption, the MEP is obtained for
the RO. However, the focus of this study lies on finding the MEP of the original
design, the Ibex core.
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P V T(℃) VNW_N(V) VPW_P(V) P V T(℃) VNW_N(V) VPW_P(V)
SS 0.20 -40 0.8 -1.067 SS 0.31 -40 0.8 -1.067
SS 0.20 125 0.8 -1.067 SS 0.31 125 0.8 -1.067
TT 0.20 25 0.8 -1.067 TT 0.31 25 0.8 -1.067
FF 0.20 -40 0.8 -1.067 FF 0.31 -40 0.8 -1.067
FF 0.20 125 0.8 -1.067 FF 0.31 125 0.8 -1.067
SS 0.21 -40 0.8 -1.067 SS 0.32 -40 0.8 -1.067
SS 0.21 125 0.8 -1.067 SS 0.32 125 0.8 -1.067
TT 0.21 25 0.8 -1.067 TT 0.32 25 0.8 -1.067
FF 0.21 -40 0.8 -1.067 FF 0.32 -40 0.8 -1.067
FF 0.21 125 0.8 -1.067 FF 0.32 125 0.8 -1.067
SS 0.22 -40 0.8 -1.067 SS 0.33 -40 0.8 -1.067
SS 0.22 125 0.8 -1.067 SS 0.33 125 0.8 -1.067
TT 0.22 25 0.8 -1.067 TT 0.33 25 0.8 -1.067
FF 0.22 -40 0.8 -1.067 FF 0.33 -40 0.8 -1.067
FF 0.22 125 0.8 -1.067 FF 0.33 125 0.8 -1.067
SS 0.23 -40 0.8 -1.067 SS 0.34 -40 0.8 -1.067
SS 0.23 125 0.8 -1.067 SS 0.34 125 0.8 -1.067
TT 0.23 25 0.8 -1.067 TT 0.34 25 0.8 -1.067
FF 0.23 -40 0.8 -1.067 FF 0.34 -40 0.8 -1.067
FF 0.23 125 0.8 -1.067 FF 0.34 125 0.8 -1.067
SS 0.24 -40 0.8 -1.067 SS 0.35 -40 0.8 -1.067
SS 0.24 125 0.8 -1.067 SS 0.35 125 0.8 -1.067
TT 0.24 25 0.8 -1.067 TT 0.35 25 0.8 -1.067
FF 0.24 -40 0.8 -1.067 FF 0.35 -40 0.8 -1.067
FF 0.24 125 0.8 -1.067 FF 0.35 125 0.8 -1.067
SS 0.25 -40 0.8 -1.067 SS 0.36 -40 0.8 -1.067
SS 0.25 125 0.8 -1.067 SS 0.36 125 0.8 -1.067
TT 0.25 25 0.8 -1.067 TT 0.36 25 0.8 -1.067
FF 0.25 -40 0.8 -1.067 FF 0.36 -40 0.8 -1.067
FF 0.25 125 0.8 -1.067 FF 0.36 125 0.8 -1.067
SS 0.26 -40 0.8 -1.067 SS 0.38 -40 0.8 -1.067
SS 0.26 125 0.8 -1.067 SS 0.38 125 0.8 -1.067
TT 0.26 25 0.8 -1.067 TT 0.38 25 0.8 -1.067
FF 0.26 -40 0.8 -1.067 FF 0.38 -40 0.8 -1.067
FF 0.26 125 0.8 -1.067 FF 0.38 125 0.8 -1.067
SS 0.27 -40 0.8 -1.067 SS 0.40 -40 0.8 -1.067
SS 0.27 125 0.8 -1.067 SS 0.40 125 0.8 -1.067
TT 0.27 25 0.8 -1.067 TT 0.40 25 0.8 -1.067
FF 0.27 -40 0.8 -1.067 FF 0.40 -40 0.8 -1.067
FF 0.27 125 0.8 -1.067 FF 0.40 125 0.8 -1.067
SS 0.28 -40 0.8 -1.067 SS 0.50 -40 0.542 -0.632
SS 0.28 125 0.8 -1.067 SS 0.50 125 0.542 -0.632
TT 0.28 25 0.8 -1.067 TT 0.50 25 0.542 -0.632
FF 0.28 -40 0.8 -1.067 FF 0.50 -40 0.542 -0.632
FF 0.28 125 0.8 -1.067 FF 0.50 125 0.542 -0.632
SS 0.29 -40 0.8 -1.067 SS 0.60 -40 0.346 -0.210
SS 0.29 125 0.8 -1.067 SS 0.60 125 0.346 -0.210
TT 0.29 25 0.8 -1.067 TT 0.60 25 0.346 -0.210
FF 0.29 -40 0.8 -1.067 FF 0.60 -40 0.346 -0.210
FF 0.29 125 0.8 -1.067 FF 0.60 125 0.346 -0.210
SS 0.30 -40 0.8 -1.067 SS 0.80 -40 -0.024 0.020
SS 0.30 125 0.8 -1.067 SS 0.80 125 -0.024 0.020
TT 0.30 25 0.8 -1.067 TT 0.80 25 -0.024 0.020
FF 0.30 -40 0.8 -1.067 FF 0.80 -40 -0.024 0.020
FF 0.30 125 0.8 -1.067 FF 0.80 125 -0.024 0.020

Table 3.5.3: Simulation corners for SLVT and LVT on SS, TT and FF conditions.
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By utilizing the power report generated by PrimePower for the TT corner,
the energy per cycle of the Ibex core can be calculated by multiplying it by the
clock period. Subsequently, the ratio of leakage energy between the ibex core and
the ring oscillator can be determined at the typical corner (TT, 25℃, 0.4 V for
SLVT and LVT, 0.8 V for HVT and UHVT). Since the critical path (RO) is only a
subcircuit of the entire design, this ratio is expressing how much bigger is the core
compared to the critical path. Although the ratio is only calculated at a single
corner point, it will be considered a fixed value since it is expected that the ibex
core scales in the same magnitude as the ring oscillator. Therefore this ratio is
used for extrapolating the leakage energy at all corners.

In that sense, the static energy of the core at a given supply voltage equals
that of the critical path times the leakage ratio:

Estatic(VDD) = EstaticCP (VDD) ∗Ratio

The switching energy at any supply voltage is computed mathematically con-
sidering it has a square relationship with VDD, using as a baseline the energy
obtained from the PrimePower report. In this case a ratio between the ibex core
and ring oscillator is not used, because the RO has a 100% toggle rate, which is
not true for the original circuit.

For SLVT and LVT:

Edynamic(VDD) =
Edynamic(0.4V )

(0.4V )2
∗ V 2

DD

For HVT and UHVT:

Edynamic(VDD) =
Edynamic(0.8V )

(0.8V )2
∗ V 2

DD

Finally, the total energy represents the contribution of the previous two com-
ponents.

Etotal(VDD) = Edynamic(VDD) + Estatic(VDD)

The Minimum Energy Point is located at the global minimum of the Etotal

signal as the supply voltage scales down.

3.6.1 Excluding worst performing cells

Standard libraries contain hundreds of cells, somewhere between 400 and 1000
cells in the libraries used on this study. Typically, synthesis tools pick the best
cells for a given design such that it meets the deadlines and constraints, and is
still power-efficient. Nonetheless, this is only optimized at the corner where the
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Combination Timing Typical Case Timing Worst Case Ratio Worst ratio
A->Z 1 3 3 3
B->Z 1 2 2 -
C->Z 1 2 2 -

Table 3.6.1: Timing ratio between typical and worst case for a NAND3 example.

library is characterized, for instance, typical case, 0.4 V, 25℃. It is possible that
cells do not scale equally as the supply voltage is lowered and closest to the MEP.
It means that there are good performing cell at typical corner, that behave poorly
at low voltages. Being able to exclude these cells opens another degree of freedom
in the MEP exploration domain.

In order to tell which cells can be excluded, a ranking of all available cells is
needed. This is obtained by looking at the timing information on the library file
in the typical-case, 0.4 V at 25℃ (0.8 V at 25℃ for HVT and UHVT), and the
same information on the library file in the worst-case, 0.36 V at -40℃ (0.72 V at
-40℃ for HVT and UHVT). The ratio between both measurements represents the
scaling factor. The cells with the biggest scaling factor are those that scale poorly
from the typical to worst-case condition.

A python script is used for such task (refer to Appendix .10). It goes through
the entire library file and extracts the average between rise and fall time for all
input-output combinations for every cell, on both typical and worst case condi-
tions. Then, for every cell and every matching pair of input-output combinations,
the ratio is calculated, but only the worst is taken.

For instance, table 3.6.1 illustrates this with a NAND3 example. The average
timing from A to Z at typical conditions is 1, and for the worst condition is
3, so that the ratio between worst and typical is also 3. Therefore the A to Z
combination has the worst ratio of the three possible cases, this value is taken to
build a weighted ranking. For the ranking, the cells are evaluated against all other
cells, and not against cells with similar logic function. For instance, a NAND3 is
not compared against a NAND2 and NAND3 with different driving strength to
choose the best, but compared globally with all other cells. Excluding only high
fan-in cells was not studied here.

Once a ranking is obtained in a CSV format, a TCL script can be generated
containing cell that are meant to be excluded from the synthesis. For this purpose,
Synopsys provides the command set_dont_use. It means that the tools will not
used any of the cells listed. The command can be used in the following way:

set sdc_version 2.1
set_dont_use [get_lib_cells */NAND3X010]
set_dont_use [get_lib_cells */NOR3X010]

To avoid running into synthesis errors due to lack of compatible library cells,
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not able to find replacements for registers, all D-Flip-Flops are in a "do not touch"
list. Meaning that these type of cells are always allowed to be used by the tool.

3.6.2 Scaling the leakage power

It results of interest to study how the MEP shifts as the leakage power of a
given circuit changes but the switching power remains the same. For instance,
if peripherals are added or removed, the leakage power will undoubtedly change
as long as they are a powered-up, but the switching power will remain the same
if they are not in used. Since this is a very real case, it becomes important to
understand where the MEP lies and how to optimise for it.

The flow is exactly the same as described in previous sections. Since the
switching activity remains unchanged, there is no need to rerun the entire process.
However, the leakage power obtained from section 3.5.1 can be scaled by any factor.
For this thesis, it was studied at 0.5 and 2 times the leakage.

3.7 Estimating MEP body-biasing corners

Different MEP can be obtained for different biasing-body pair values (VNW_N
and VPW_P), as body-biasing techniques allow to dynamically change the tran-
sistor’s VT, making them faster or slower, and with greater or less leakage. SLVT
and LVT technologies allow only Forward Body-Biasing (FBB), in the following
rage, VNW_N: 0 to 2 V, VPW_P: -2 to 0 V. That is, applying a positive voltage
to the NMOS transistors, and a negative voltage on PMOS transistors. UHVT
and HVT support only RBB, but it is not explored in this thesis.

There are infinite values in the range described before, and only a subset of
them are considered valid. To limit the scope, the valid range of biasing points
that can be applied to the circuit are those that give a near-symmetric response
in rising and falling times of the basic gates NAND3, NOR3 and INV at the
slow corner. The threshold for deciding whether the points are allowed or not is
extracted from the liberty file.

This is an iterative process. First, the MEP is extracted by using the corners
described in Table 3.5.3, where the biasing voltages are fixed. Later, the three gates
are simulated in Virtuoso, such that the PVT conditions can be controlled, while
at the same time sweeping through the entire range of VNW_N and VPW_P,
every 100 mV. The PVT condition are those of the slow corner (SS, -40℃ at -10%
VDD of the MEP). From the simulation, the rising and falling time are extracted.

Figure 3.7.1 shows the schematic of the testbench used to run these simulations
(netlist available in Listing 3.2). Three INV gates are used as loads, connected to
the output port of each DUT. The INV, NAND3 and NOR3 under test have their
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VNW_N and VPW_P ports connected to a voltage source which is controlled
through a design variable, such that all values can be swept. To get the worst-
case scenario results, port A of NAND3 (which is the closest to VSS) is used as
the switching input, similarly port A of NOR3 (which is the closes to VDD) is
used for simulation. All other remaining inputs are fixed either to VDD or VSS
respectively.
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Figure 3.7.1: Testbench for simulating basic gates with body bias (netlist in
Listing 3.2).

Listing 3.2: Testbench netlist for simulating basic gates
simulator lang=spectre
vvdd (vdd 0) vsource dc=vdd type=sine
vvss (vss 0) vsource dc=0 type=sine
vvpw_p (vpw_p 0) vsource dc=vpw_p type=sine
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vvnw_n (vnw_n 0) vsource dc=vnw_n type=sine
vin (VIN 0) vsource type=pulse val0=0 val1=vdd period=period \

delay =50n rise =10n fall =10n width=period /2 - 10n

* pins: .Z .VDD .VNW_N .VPW_P .VSS .A .B .C
NAND (NAND_Z vdd vnw_n vpw_p vss VIN vdd vdd) NAND3X010
* pins: .Z .VDD .VNW_N .VPW_P .VSS .A
INV (INV_Z vdd vnw_n vpw_p vss VIN) INVX010
* pins: .Z .VDD .VNW_N .VPW_P .VSS .A .B .C
NOR (NOR_Z vdd vnw_n vpw_p vss VIN vss vss) NOR3X010

* Loads
LOAD1 (net28 vdd vnw_n vpw_p vss NOR_Z) INVX010
LOAD2 (net40 vdd vnw_n vpw_p vss INV_Z) INVX010
LOAD3 (net34 vdd vnw_n vpw_p vss NAND_Z) INVX010



CHAPTER

FOUR

RESULTS

This chapter presents the results on how the Minimum Energy Point is affected
by different parameters. The role of supply voltage, threshold voltage, channel
length, temperature and body biasing voltage is studied. The design under test
is an Ibex Core CPU, it remains unchanged for all simulations. It follows the
methodology presented in Chapter 3.

The study starts with a single degree of freedom, the supply voltage. This
is shown on section 4.4. Progressively more parameters are added to the study.
Later on section 4.5 the study is repeated for cold and hot, and slow and fast
corners.

The study ends with the exploration of the MEP taking into account the effect
of body biasing voltages, this is shown on section 4.6. It is limited only to two
different VT flavors: SLVT and LVT, which showed the best performance.

4.1 RTL simulation

Since the RTL Ibex Core is already given, the first step is obtaining the switching
activity. This is done through an RTL simulation with a proper testbench. All
signals are saved in a FSDB file. Figure 4.1.1 shows a visual representation of
these signals. This dump can initially help identify if the simulation was properly
set, that signals are properly recorded and that the clock period matches the one
set as constraint. But its main use is to serve as input parameter during synthesis.

31
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Figure 4.1.1: Simulation traces captured in FSDB file.

4.2 Synthesis and power estimation

The RTL design is synthesized for all of the 15 standard cell libraries available
(see 3.3). It takes the RTL source files and the FSDB as inputs. For each li-
brary, the following files are obtained: a synthesized netlist described in verilog
(ibex_top_map.v), the design constraints (ibex_top_sdc.sdc) and a name map-
ping file (ibex_top_name_mapping.tcl). Listings 4.1, 4.2 and 4.3 show a partial
example for a select library.

Listing 4.1: Synthesized netlist for a SLVT technology in 36 nm
/////////////////////////////////////////////////////////////
// Created by: Synopsys DC Expert(TM) in wire load mode
// Version : U-2022.12 - SP2
// Date : Tue Apr 18 10:12:36 2023
/////////////////////////////////////////////////////////////

module prim_generic_clock_gating_0_1 ( clk_i , en_i , test_en_i , clk_o );
input clk_i , en_i , test_en_i;
output clk_o;
wire N1 , en_latch;

SLVT36_LHNQX010 en_latch_reg ( .CN(clk_i), .D(N1), .Q(en_latch) );
SLVT36_AND2X010 U2 ( .A(en_latch), .B(clk_i), .Z(clk_o) );
SLVT36_OR2X005 U3 ( .A(en_i), .B(test_en_i), .Z(N1) );

endmodule

module prim_clock_gating ( clk_i , en_i , test_en_i , clk_o );
input clk_i , en_i , test_en_i;
output clk_o;

Listing 4.2: Synopsys Design Constraints for a SLVT technology in 36 nm
###################################################################

# Created by write_sdc on Tue Apr 18 10:12:37 2023

###################################################################
set sdc_version 2.1

set_units -time ns -resistance MOhm -capacitance fF -voltage V -current uA
create_clock [get_ports clk_i] -name CLK -period 6 -waveform {0 3}

Listing 4.3: Name mapping file for a SLVT technology in 36 nm
# Primepower name mapping file
# created using Synopsys Power Compiler U-2022.12 - SP2 */
# design ibex_top
#
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set_rtl_to_gate_name -rtl {core_busy_q} -gate [get_cell {core_busy_q_reg }]
set_rtl_to_gate_name -rtl {gen_regfile_ff.register_file_i/g_rf_flops [7]. rf_reg_q [4]} \

-gate [get_cell {gen_regfile_ff.register_file_i/g_rf_flops [7]. rf_reg_q_reg [4]}]
set_rtl_to_gate_name -rtl {gen_regfile_ff.register_file_i/g_rf_flops [3]. rf_reg_q [4]} \

-gate [get_cell {gen_regfile_ff.register_file_i/g_rf_flops [3]. rf_reg_q_reg [4]}]
set_rtl_to_gate_name -rtl {gen_regfile_ff.register_file_i/g_rf_flops [7]. rf_reg_q [19]} \

-gate [get_cell {gen_regfile_ff.register_file_i/g_rf_flops [7]. rf_reg_q_reg [19]}]
set_rtl_to_gate_name -rtl {gen_regfile_ff.register_file_i/g_rf_flops [28]. rf_reg_q [4]} \

-gate [get_cell {gen_regfile_ff.register_file_i/g_rf_flops [28]. rf_reg_q_reg [4]}]

Following the methods described in 3.4, a power estimation is obtained for each
synthesized netlist. It consumed the inputs described earlier and outputs a power
estimation report, a timing report, a SPICE netlist of the critical path and a not
annotated switching activity report (refer to Appendix .2 for the activity report).

Listing 4.4 contains the power report for a given library. In this report, Net
Switching Power and Cell Internal Power are both components of the dynamic
power. While Cell Leakage Power refers to the static power.

Listing 4.4: PrimePower average power report
****************************************
Report : Averaged Power
Design : ibex_top
Version: Q-2019.12 - SP5
Date : Sun Feb 26 20:09:14 2023
****************************************

Attributes
----------

i - Including register clock pin internal power
u - User defined power group

Internal Switching Leakage Total
Power Group Power Power Power Power ( %) Attrs
--------------------------------------------------------------------------------
clock_network 3.264e-05 3.064e-05 2.028e-10 6.328e-05 (92.22%) i
register 1.420e-07 4.554e-08 1.321e-06 1.508e-06 ( 2.20%)
combinational 6.420e-07 7.306e-07 2.456e-06 3.829e-06 ( 5.58%)
sequential 0.0000 0.0000 0.0000 0.0000 ( 0.00%)
memory 0.0000 0.0000 0.0000 0.0000 ( 0.00%)
io_pad 0.0000 0.0000 0.0000 0.0000 ( 0.00%)
black_box 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

Net Switching Power = 3.142e-05 (45.79%)
Cell Internal Power = 3.342e-05 (48.71%)
Cell Leakage Power = 3.777e-06 ( 5.50%)

---------
Total Power = 6.862e-05 (100.00%)

In order to validate the results, a not annotated switching activity report is
generated, this is shown in Appendix .2, where it has been highlighted in a grey
box that all activity is properly mapped from the activity file.

Table 4.2.1 shows the number of standard cells used in the synthesized netlist
and the critical path. It also shows the number of unique cells in both cases.
In the case of SLVT32 and LVT24, the critical path is dominated by the use of
half-adders, causing a very low count on the number of unique cells.
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Total cells Unique cells
SLVT20 Ibex Core 13489 189
SLVT20 Critical Path 77 (0.57%) 40 (21.2%)
SLVT24 Ibex Core 13300 165
SLVT24 Critical Path 58 (0.44%) 29 (17.6%)
SLVT28 Ibex Core 13268 189
SLVT28 Critical Path 71 (0.54%) 11 (5.9%)
SLVT32 Ibex Core 13099 165
SLVT32 Critical Path 65 (0.50%) 5 (3.0%)
SLVT32 Ibex Core 13528 199
SLVT32 Critical Path 58 (0.43%) 27 (13.6%)
LVT24 Ibex Core 12738 186
LVT24 Critical Path 64 (0.50%) 6 (3.2%)
LVT28 Ibex Core 12775 186
LVT28 Critical Path 62 (0.49%) 40 (21.5%)
LVT32 Ibex Core 12839 191
LVT32 Critical Path 62 (0.48%) 43 (22.5%)
LVT36 Ibex Core 12700 181
LVT36 Critical Path 54 (0.43%) 33 (18.2%)
HVT20 Ibex Core 16059 297
HVT20 Critical Path 54 (0.34%) 28 (9.4%)
HVT24 Ibex Core 16043 298
HVT24 Critical Path 58 (0.36%) 29 (9.7%)
HVT28 Ibex Core 16369 280
HVT28 Critical Path 58 (0.35%) 27 (9.6%)
UHVT28 Ibex Core 16004 193
UHVT28 Critical Path 59 (0.37%) 28 (14.6%)
UHVT32 Ibex Core 16803 193
UHVT32 Critical Path 67 (0.40%) 31 (16.1%)
UHVT36 Ibex Core 15693 185
UHVT36 Critical Path 62 (0.40%) 33 (17.8%)

Table 4.2.1: Cell comparison between Ibex Core and Critical Path.

4.3 The testbench

Both the testbench and critical path subcircuit are imported into Virtuoso along
the standard cell libraries and transistor models. Figure 4.3.1 shows the imported
testbech circuit. A counter block described in Verilog-A is also istantiate manually
to interrupt the simulation after 10 cycles have been calculated per corner. Figure
4.3.2 shows an example of a critical path replica that will work as a ring oscillator,
an example of the netlist is available in Appendix .1.
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Figure 4.3.1: Testbench for ring oscillator.
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Figure 4.3.2: Critical path replica subcircuit, complete netlist available in Ap-
pendix .1.
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To this point the Ibex Core has been simulated at RTL level and synthesized.
A power estimation has been obtained and the critical path replica converted into
a ring oscillator. A SPICE testbench has been built to run analog simulation on
this replica. The sections that follows explore these simulations and their results.

4.4 MEP by sweeping supply voltage

This first section explores the relationship between Minimum Energy Point and
voltage scaling. Starting the study with one degree of freedom allows to get the
basic background on MEP, to establish a baseline for the results and to verify all
scripts and flow are properly set. Further studies with more complex parameters
stack upon these results.

The most important parameters used during these simulations are the follow-
ing:

• A 22 nm FDSOI process.
• Room temperature (25℃).
• Fixed body biasing voltages, as suggested by the foundry.
• Multiple threshold voltages: SLVT, LVT, HVT, UHVT.
• Different channel length: 22, 24, 28, 32 and 36 nm.
• Typical-Typical (TT) condition: Both NMOS and PMOS operate in typical

corner.
• See Table 3.5.1 and Table 3.5.2 for detailed PVT corners.

Initially, the Ibex Core is synthesized on typical conditions with a LVT library
characterized at 0.4 V, with a 28 nm channel length. From the synthesized netlist,
the critical path is extracted and converted into a ring oscillator. The ring oscil-
lator is on typical conditions while lowering the supply voltage from 0.8 V down
to 0.2 V. A finer-grain step of 10 mV is used in the range between 0.2 to 0.36 V,
as the MEP is expected to be in the sub-threshold zone.

The leakage power and total power are extracted from the simulation. The
leakage power is obtained when the ring oscillator is not oscillating (see Appendix
.3.1 for example), so there is no change in state of the transistors. Whilst the total
power measurement results from the oscillatory behavior (see Appendix .4.1 for
example). The switching power is computed as the subtraction of the total power
minus the leakage power. Finally the energy is calculated as the power divided by
the frequency of oscillation.

As described ins section 3.6, the RO results are extrapolated to the entire Ibex
Core by multiplying the leakage energy by a proper scaling factor. Figure 4.4.1
shows the main components of energy consumption of the entire Ibex Core. The
blue curve represents the leakage energy, which increases as the supply voltage
scales down. The orange curve represents the switching energy decreasing with a
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square relationship on the supply voltage. Finally, the green line represents the
total energy of the circuit, which is the results of the sum of the previous two. In
dotted red lines, the Minimum Energy Point is marked at (0.31 V, 0.96 pJ). It
shows how the MEP is located at the lowest point of the convex function described
by the total energy function.

Figure 4.4.1: MEP for a 22 nm FDSOI process, TT, LVT, 28 nm channel length
at 25℃.

Table 4.4.1 shows some valuable points for analysis, including supply voltage,
frequency and energy consumed. The data show that operating at the MEP is
saving 23% energy when compared to the 0.4 V corner, but with a 83% decrease
in speed. If compared against the 0.8 V corner, it yields a saving of 79% in energy
with a 98% reduced speed. If the 0.2 V corner is analyzed, it can be seen it
consumes almost twice the energy that the 0.4 V corner, but 90 times slower.

VDD (V) Total Energy (pJ) Frequency (MHz)
0.20 2.25 0.32
0.28 1.02 2.33
0.31 (MEP) 0.96 4.81
0.34 1.00 9.45
0.40 1.24 28.77
0.80 4.67 284.50

Table 4.4.1: Energy and frequency comparison at different supply voltages for
LVT28.

In order to study the effect of the threshold voltage on the MEP, the simulations
are repeated under the same condition but with different VT. These results are
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shown on Figure 4.4.2. In particular, the circuit was synthesized with SLVT, LVT,
HVT and UHVT libraries, all at 28 nm.

Figure 4.4.2: Total Energy for SLVT, LVT, HVT and UHVT with 28 nm channel
length, TT at 25℃.

The study is expanded to different VT and different channel length, all other
parameters are maintained. That is, the simulations are repeated for all possible
VT and channel length combinations that are available. This is illustrated in
Figure 4.4.3.
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Figure 4.4.3: Total Energy for all VT and all channel length at typical conditions,
25℃.

To be able to analyze the results in a more intuitive way around the MEP,
the plots are changed from Energy Vs VDD, to Frequency Vs Energy. This is
how results are presented from now on. Three points are plotted per curve: The
center point is located at the MEP, and the end points represent the frequency
and energy pair located at ± 10% of the supply voltage of the MEP. So the plots
can give an idea on how the frequency and energy shift as a 10% margin is given
to the supply voltage.

In this sense, Figure 4.4.4 represents the same data plotted in Figure 4.4.3 but
in a more useful manner. In this type of plot, top-left corner is the ideal case:
high frequency and low energy consumption. Bottom-right corner is the opposite:
low frequency and high energy consumption.
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Figure 4.4.4: MEP for all VT and channel length, TT at 25℃.

In Figure 4.4.5 the frequency vs leakage energy can be observe. This is im-
portant for analysis as the leakage energy plays a key role in the location of the
MEP.

Figure 4.4.5: Leakage at MEP for all VT and channel length, TT at 25℃.



42 CHAPTER 4. RESULTS

4.4.1 MEP excluding worst performing cells

Following section 3.6.1, a set of standard cells are excluded from the synthesis
process to evaluate how the new circuit would perform. A list of 20% to 50% of
the worst performing cells in the libraries are excluded. The results are show in
4.4.6.

Figure 4.4.6: MEP for all VT and channel length excluding worst cells, TT at
25℃.

4.5 MEP by sweeping supply voltage and temper-
ature

This section presents the results of the Minimum Energy Point exploration under
the following PVT conditions:

• A 22 nm FDSOI process.
• Different process variations: SS, TT, FF.
• Cold, room and hot temperatures (-40, 25, 125℃).
• Fixed body biasing voltages, as suggested by the foundry.
• Multiple threshold voltages: SLVT, LVT, HVT, UHVT.
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• Different channel length: 22, 24, 28, 32 and 36 nm.
• See Table 3.5.3 for detailed PVT corners.

The evaluation is started with a single VT flavor on 28 nm tested at -40, 25
and 125℃ for a TT process variation, so that the effect of temperature can be
observed. Figure 4.5.1 shows the total energy as voltage is scaled down, at three
different temperatures. The MEP is pointed with a red dot. Notice how it shifts
into higher voltages and energy as the temperature increases.

Figure 4.5.1: Total energy for SLVT28 at -40, 25 and 125℃. Note that the
strange shape is due to different biasing voltages at 0.4, 0.5, 0.6 and 0.8 V as
suggested by the foundry.

Figure 4.5.2 demonstrates the key effect of the temperature in the leakage
energy. As the temperature rises, more leakage energy is consumed.
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Figure 4.5.2: Leakage energy for SLVT28 at -40, 25 and 125℃.

The study is extended to slow and fast conditions. To clearly visualize the
results, frequency against energy is plotted in semi-log or log-log graphs. Each
series plotted represents a given technology forming a triad. The center point of
each series is the MEP found at typical-typical, 25℃ condition. The other two
points are those found at +10% of VDD at MEP, at the fast corner (FF process at
-40 or 125℃, whatever is fastest), and -10% of VDD at MEP, at the slow corner
(SS process at -40 or 125℃, whatever is slowest).

Figure 4.5.3 shows the results of all four VT flavors on a same channel length,
so that comparison becomes easier. It is important to note that UHVT (orange
line) is plotted only with two points since the RO does not oscillate at the slow
corner. Table 4.5.1 illustrate this results in tabular form.
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Figure 4.5.3: MEP for SLVT, LVT, HVT, UHVT 28 nm center at typical con-
dition at 25℃, slow corner: -10% VDD, SS, -40℃; and fast corner: +10% VDD,
FF 125℃. Note:UHVT (orange) does not oscillate at slow corner.

Library Slow (-10% VDD) Typical Fast (+10% VDD)
SLVT28 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
HVT28 0.27 V at SS -40℃ 0.3 V at TT 25℃ 0.33 V at FF 125℃
UHVT28 - 0.32 V at TT 25℃ 0.35 V at FF 125℃

Table 4.5.1: MEP conditions for all VT for 28 nm.

The results are expanded to SLVT and LVT technologies on all possible channel
length. This is plotted in Figure 4.5.4 with the resulting conditions available in
Table 4.5.2.
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Figure 4.5.4: MEP for SLVT and LVT all channel length center at typical
condition at 25℃, slow corner: -10% VDD, SS, -40℃; and fast corner: +10%
VDD, FF 125℃.

Library Slow (-10% VDD) Typical Fast (+10% VDD)
SLVT20 0.31 V at SS -40℃ 0.34 V at TT 25℃ 0.38V at FF 125℃
SLVT24 0.3 V at SS -40℃ 0.33 V at TT 25℃ 0.36V at FF 125℃
SLVT28 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34V at FF 125℃
SLVT32 0.27 V at SS -40℃ 0.3 V at TT 25℃ 0.33V at FF 125℃
SLVT36 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34V at FF 125℃
LVT24 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35V at FF 125℃
LVT28 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34V at FF 125℃
LVT32 0.27 V at SS -40℃ 0.3 V at TT 25℃ 0.33V at FF 125℃
LVT36 0.27 V at SS -40℃ 0.3 V at TT 25℃ 0.33V at FF 125℃

Table 4.5.2: MEP conditions for SLVT and LVT for all channel length.

Finally, the simulations are extended to all VT flavors (SLVT, LVT, HVT,
UHVT) on all possible channel lengths. This is illustrated in Figure 4.5.5 and the
conditions shown on Table 4.5.3. It is worth noting that UHVT does not oscillate
for the slow corner for any channel length, so that only two points are available
in the figure.
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Figure 4.5.5: MEP for all VT and all channel length center at typical condition
at 25℃, slow corner: -10% VDD, SS, -40℃; and fast corner: +10% VDD, FF
125℃.

Library Slow (-10% VDD) Typical Fast (+10% VDD)
SLVT20 0.31 V at SS -40℃ 0.34 V at TT 25℃ 0.38 V at FF 125℃
SLVT24 0.30 V at SS -40℃ 0.33 V at TT 25℃ 0.36 V at FF 125℃
SLVT28 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
SLVT32 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
SLVT36 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT24 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35 V at FF 125℃
LVT28 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT32 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
LVT36 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
HVT20 0.30 V at SS -40℃ 0.33 V at TT 25℃ 0.36 V at FF 125℃
HVT24 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35 V at FF 125℃
HVT28 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
UHVT28 - 0.32 V at TT 25℃ 0.35 V at FF 125℃
UHVT32 - 0.36 V at TT 25℃ 0.40 V at FF 125℃
UHVT36 - 0.38 V at TT 25℃ 0.42 V at FF 125℃

Table 4.5.3: PVT variations around MEP for all VT and all channel length with
fixed body-bias.

4.5.1 Scaling leakage power

For SLVT and LVT technologies, the experiments are repeated considering the
leakage power scales by x0.5 or x2. For all cases the simulations are run only at
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TT, 25℃ conditions. Figure 4.5.6 shows the results in a manner that is easy to
compare. The center point is the MEP found at the nominal leakage power, and
the border points are those where the MEP is found if the leakage increases or
decreases by a factor of two. That is, the MEP is always recomputed for every
case.

Figure 4.5.6: MEP for x0.5, x1 and x2 leakage.

4.6 MEP by sweeping supply voltage, temperature
and body biasing

The results presented here are a continuation over those presented in the previous
section 4.5. However, only technologies SLVT and LVT allow forward body biasing
techniques. Moreover, only 28 nm is selected for these new simulations to reduce
complexity and simulation times.

The main parameters for simulation are:

• A 22 nm FDSOI process.
• Cold, room and hot temperatures (-40, 25, 125℃).
• Forward body biasing.
• Two threshold voltage: SLVT, LVT.
• Single channel length: 28 nm.
• See Table 3.5.3 for detailed PVT corners. Columns VNW_N and VPW_P

use a value extracted from the simulation of basic gates, presented also in
this section.
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In order to find the MEP when using forward body biasing techniques, a list
of biasing points is needed. These points are extracted from the valid points of
the simulation of three basic gates (INV, NOR and NAND).

The SPICE simulation of these gates are swept through the entire range of
valid forward biasing voltages: VNW_N: 0 to 2 V, VPW_P: -2 to 0 V. The PVT
condition used are those extracted from table 4.5.1 at the slowest point. So that
0.28 V at SS, -40℃ is used for both SLVT and LVT simulations.

4.6.1 SLVT

Figures 4.6.1, 4.6.2, 4.6.3 show the result of sweeping through VNW_N and
VPW_P at 0.28 V at SS, -40℃ for an NOT, NAND and NOR gates of SLVT
28 nm technology. The results are plotted against rising time (a) , falling time
(b) , and the average relative difference between rising and falling time (c) is
computed .

(a) Rising time. (b) Falling time. (c) Difference (%) between
rising and falling time.

Figure 4.6.1: INVX010: Sweeping biasing voltages for SLVT, 28 nm, at the slow
condition, -40℃, SS at 0.28 V.

(a) Rising time. (b) Falling time. (c) Difference (%) between
rising and falling time.

Figure 4.6.2: NAND3X010: Sweeping biasing voltages for SLVT, 28 nm, at the
slow condition, -40℃, SS at 0.28 V. Inputs B and C are fixed to vdd.
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(a) Rising time. (b) Falling time. (c) Difference (%) between
rising and falling time.

Figure 4.6.3: NOR3X010: Sweeping biasing voltages for SLVT, 28 nm, at the
slow condition, -40℃, SS at 0.28 V. Inputs B and C are fixed to gnd.

Figures 4.6.1, 4.6.2, 4.6.3 (c) show the relative difference between rising and
falling time, so that a symmetric response is represented by 0%. A set of biasing
points is allowed such that the difference is between ±threshold. The threshold is
defined for each gate by looking at the liberty file, and computing the difference
betwen rising and falling times decribed in the document.

(a) INV. Threshold: 5% (b) NAND. Threshold: 38% (c) NOR. Threshold: 24%

Figure 4.6.4: Skew between rising and falling time for SLVT28 basic gates.

Since the biasing points must be valid for these three gates, the results from
Fig 4.6.4 are superposed in Figure 4.6.5 and their intersection is taken as valid.
In other words, the biasing points where all three gate intersect are points that
give a timing response that is under the desired threshold. The intersection is
illustrated in Figure 4.6.6, where a line has been used to extend the biasing points
in a symmetric manner, such that it is possible to test weak and strong biasing
voltages. The points described by the line are printed in Table 4.6.1. They will
be used later to obtain new MEP under those biasing pairs.
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Figure 4.6.5: SLVT28 superposed skew results.

Figure 4.6.6: SLVT28 skew intersection.
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VNW_N VPW_P
2.0 -2.0
1.9 -1.9
1.8 -1.8
1.7 -1.7
1.6 -1.6
1.5 -1.5
1.4 -1.4
1.3 -1.3
1.2 -1.2
1.1 -1.1
1.0 -1.0
0.9 -0.9
0.8 -0.8
0.7 -0.7
0.6 -0.6
0.5 -0.5
0.4 -0.4
0.3 -0.3
0.2 -0.2
0.1 -0.1
0 0

Table 4.6.1: SLVT28 biasing points.

4.6.2 LVT

The exact same process is also repeated for LVT28. In this case, the results do not
intersect, and so the line described by the INV is taken as valid, as it is symmetric
between the NAND and NOR results.

(a) Rising time. (b) Falling time. (c) Difference between rising
and falling time.

Figure 4.6.7: INVX010: Sweeping biasing voltages for LVT, 28 nm, at the slow
condition, -40℃, SS at 0.28 V.
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(a) Rising time. (b) Falling time. (c) Difference between rising
and falling time.

Figure 4.6.8: NAND3X010: Sweeping biasing voltages for LVT, 28 nm, at the
slow condition, -40℃, SS at 0.28 V. Inputs B and C are fixed to vdd.

(a) Rising time. (b) Falling time. (c) Difference between rising
and falling time.

Figure 4.6.9: NOR3X010: Sweeping biasing voltages for LVT, 28 nm, at the
slow condition, -40℃, SS at 0.28 V. Inputs B and C are fixed to gnd.

(a) INV. Threshold: 13% (b) NAND. Threshold: 83% (c) NOR. Threshold: 60%

Figure 4.6.10: LVT28 INV, NAND, NOR: Skew between rising and falling time
under a given threshold.



54 CHAPTER 4. RESULTS

Figure 4.6.11: LVT28 superposed skew results.

VNW_N VPW_P
1.0 -2.0
0.9 -1.9
0.8 -1.7
0.7 -1.6
0.6 -1.5
0.5 -1.3
0.4 -1.2
0.3 -1.0
0.2 -0.9
0.1 -0.7
0 -0.6

Table 4.6.2: LVT28 biasing points.

The entire exploration flow is repeated for SLVT28 and LVT28, using the PVT
corners described in Table 3.5.3, with the biasing points described in Tables 4.6.1
and 4.6.2. These results are plotted in Figure 4.6.12, where the value in parenthesis
are the VNW_N and VPW_P points described by the aforementioned tables. All
three points for each series (Slow, Typical and Fast) are simulated under the same
fixed biasing voltages. Each series uses a different biasing pair.
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Figure 4.6.12: MEP for SLVT28 and LVT28 with different fixed body-bias.
Biasing pair in parenthesis (VNW_N,VPW_P).

The resulting PVT conditions around the MEP for every single case are listed
in Table 4.6.3.



56 CHAPTER 4. RESULTS

Library Slow (-10% VDD) Typical Fast (+10% VDD)
SLVT28 (2.0,-2.0) 0.32 V at SS -40℃ 0.35 V at TT 25℃ 0.38 V at FF 125℃
SLVT28 (1.9,-1.9) 0.32 V at SS -40℃ 0.35 V at TT 25℃ 0.38 V at FF 125℃
SLVT28 (1.8,-1.8) 0.32 V at SS -40℃ 0.35 V at TT 25℃ 0.38 V at FF 125℃
SLVT28 (1.7,-1.7) 0.31 V at SS -40℃ 0.34 V at TT 25℃ 0.38 V at FF 125℃
SLVT28 (1.6,-1.6) 0.31 V at SS -40℃ 0.34 V at TT 25℃ 0.38 V at FF 125℃
SLVT28 (1.5,-1.5) 0.31 V at SS -40℃ 0.34 V at TT 25℃ 0.38 V at FF 125℃
SLVT28 (1.4,-1.4) 0.30 V at SS -40℃ 0.33 V at TT 25℃ 0.36 V at FF 125℃
SLVT28 (1.3,-1.3) 0.30 V at SS -40℃ 0.33 V at TT 25℃ 0.36 V at FF 125℃
SLVT28 (1.2,-1.2) 0.30 V at SS -40℃ 0.33 V at TT 25℃ 0.36 V at FF 125℃
SLVT28 (1.1,-1.1) 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35 V at FF 125℃
SLVT28 (1.0,-1.0) 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35 V at FF 125℃
SLVT28 (0.9,-0.9) 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35 V at FF 125℃
SLVT28 (0.8,-0.8) 0.29 V at SS -40℃ 0.32 V at TT 25℃ 0.35 V at FF 125℃
SLVT28 (0.7,-0.7) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
SLVT28 (0.6,-0.6) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
SLVT28 (0.5,-0.5) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
SLVT28 (0.4,-0.4) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
SLVT28 (0.3,-0.3) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
SLVT28 (0.2,-0.2) 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
SLVT28 (0.1,-0.1) 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
SLVT28 (0.0,0.0) 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
LVT28 (1.0,-2.0) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.9,-1.9) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.8,-1.7) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.7,-1.6) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.6,-1.5) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.5,-1.3) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.4,-1.2) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.3,-1.0) 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
LVT28 (0.2,-0.9) 0.28 V at SS -40℃ 0.31 V at TT 25℃ 0.34 V at FF 125℃
LVT28 (0.1,-0.7) 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃
LVT28 (0.0,-0.6) 0.27 V at SS -40℃ 0.30 V at TT 25℃ 0.33 V at FF 125℃

Table 4.6.3: PVT variations around MEP with FBB for SLVT and LVT28.
Biasing pair in parenthesis (VNW_N,VPW_P)

4.6.3 Adaptive Body-Biasing

Figure 4.6.12 presented in previous section show a big spread between slow and fast
corners, simulated at the same biasing voltages. To flatten the curve, to be able to
close timing, different FBB can be used at slow, typical and fast corners. This is
illustrated in Figure 4.6.13. The strongest biasing is applied to the slowest corner,
while the weakest one is applied to the fast corner. The biasing for the typical
corner is chosen to be somewhere in between. The results are compared against
the green line, which represents the operating point characterized by the library
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at 0.36 V (-40℃) 0.4 V (25℃) and 0.44 V (125℃) using the biasing suggested by
the foundry.

The results in 4.6.13 cannot be directly compared with 4.6.12 for a same pair
of body-bias voltages, because the frequencies and energy would not match. This
is because the MEP is located at the typical case, and then the supply voltages
of the slow and fast corners are computed. So that they are operating at different
supply voltages. For instance, the slow corner of the SLVT28 curve with biasing
(2,-2) in Figure 4.6.12, is located at 70 MHz and 0.32 V, because the MEP was
located at 0.35 V. But when the new MEP is computed using biasing (0.8,-0.8) the
MEP is shifted to 0.32 V, and so the slow corner (with bias 2,-2) is now located
at 0.29 V running at 40 MHz. The drop in frequency is explained by the drop in
supply voltage to accommodate for the new MEP.

Figure 4.6.13: MEP for SLVT28 and LVT28 using Adaptive Body-Bias. Biasing
pair in parenthesis (VNW_N,VPW_P).

Library Slow (-10% VDD) Typical Fast (+10% VDD)
SLVT28 (ABB) 0.29V at SS -40℃(2,-2) 0.32V at TT 25℃ (1,-1) 0.35V at FF 125℃ (0,0)
SLVT28 (At lib corners) 0.36V at SS -40℃(1.408,-2.073) 0.40V at TT 25℃ (0.8,-1.067) 0.44V at FF 125℃ (0.08,0.02)
LVT28 (ABB) 0.28V at SS -40℃(1,-2) 0.31V at TT 25℃ (0.5,-1.3) 0.34V at FF 125℃ (0,-0.6)

Table 4.6.4: PVT variations around MEP with ABB for SLVT28 and LVT28.
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DISCUSSION

The first thing to notice is that the critical path replica, used as a ring oscillator
to estimate the MEP, is bound to impose limitations on the results. As it is shown
in Table 4.2.1, the RO does not use more than 23% unique cells compared against
the synthesized Ibex Core. It means that the majority of the standard cells are not
evaluated through analog simulations. Moreover, in some particular cases only 3%
of the cells are simulated, because the critical path is composed mainly by half-
adders that are part of a counter module. In these cases, the analog simulation
is basically evaluating how a chain of half-adders are affected by DFVS and PVT
variations. Nonetheless, the critical path was considered a representative sample.

5.1 MEP and voltage scaling

The results provided in section 4.4 are very interesting, as they provide the basic
foundations on the theory of Minimum Energy Point. It is demonstrated that
operating at the MEP provides great opportunities for energy savings. In this
particular RTL design, 23% reduced energy if compared against the typical corner
where the LVT library is characterized (0.4 V), but even greater savings, more
that 80%, if compared against that 0.8V corner (where the HVT library is char-
acterized). However, it is shown that this does not come for free, the reduction
in energy is paid by an even higher reduction in speed. It also becomes clear
that operating under the MEP supply voltage is of no benefit at all. The leakage
energy is so high, and the frequency of operation so slow, that it is worse than
operating at high voltages. That is, for voltages below the MEP, voltage scaling
is counterproductive.

Section 4.4, specifically Figure 4.4.4 contains some surprising findings. UHVT
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technology is the worst performing of all. It might seem counter intuitive because
UHVT transistor are designed to have low leakage currents. But they are also
know to be slower. In fact, they are so slow near the MEP, that the reduced
power dissipated is contrasted with longer times per operation, so that the energy
consumption is higher. It can be seen that this technology is about 1000 times
slower, and consuming almost as twice as the LVT technology. This figure also
shows that HVT, although superior to UHVT, is still inferior both in speed and
energy savings compare to SLVT and LVT. Meanwhile, both SLVT and LVT show
good results, the first one can be use to target higher speeds, while the former to
aim for greater energy savings.

It was initially thought that excluding from the synthesis flow the cells that
scale poorly with voltage might bring benefits in regards the MEP, so that this
could be an promising research area. However, section 4.4.1 shows that excluding
cells from synthesis does not produce any significant saving in energy, or increase
in speed. On the contrary, in most of the cases, limiting the options to the syn-
thesis tool would yield worse results. There are some conditions where the design
cannot even be synthesized due to lack of proper gates that implement a given
functionality. The study can be repeated by limiting the fan-in to a maximum of
two, as suggested by [21], [34], as they show better stability at ultra-low voltages.

5.2 MEP and temperature

In section 4.5, the effect of temperature was studied, in particular Figure 4.5.1 is
showing that the MEP is forced to move to higher supply voltages with higher
energy consumption as the temperature is increased. This is consistent with the
results presented at [21], studying the MEP of an adder and multiplier with SOTB
technology.

Also in section 4.5, the impact of temperature and process variation was ex-
plored. It can be deduced from Figure 4.5.4 and Table 4.5.2 that as the channel
length of the transistor increases, it pushes the MEP down in the energy, frequency
and voltage scales. But what is really important in this section is to study the
spread between slow and fast conditions. As a circuit must be able to operate in
a wide range of environments, these type of figures show how hard it is to comply
with timing constraints around the MEP. LVT libraries show almost two orders
of magnitude difference in speed, while SLVT shows a three orders of magnitude
difference between the slow and fast corners. For instance, if the design was to be
synthesized with a LVT36 technology and operated around the MEP, at the slow
condition (-10% of VDD, SS process at -40℃), the clock would run at 20 kHz, but
if it was operating under a fast condition (+10% of VDD, FF process at 125℃),
the clock would run at 30 MHz. So that the designers must take into account this
huge difference in the clock speed and design accordingly.

When the study is expanded to HVT and UHVT technologies, the situation
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is even worse, this is shown in Figure 4.5.5. The critical path replica does not
oscillate for any of the UHVT libraries at the slow condition, making this tech-
nology completely useless in this particular case. An Ibex Core synthesized with
this technology and operating at slow condition of the MEP would not properly
work. The circuit synthesized with HVT libraries does work, but with an even
higher spread, about four orders of magnitude difference in speed. Based on these
results, these two technologies were dropped from any further research.

It is interesting to think in what would happen if peripheral are connected to
or disconnected from the original core, such that when the peripherals are in idle
state, the switching energy remains the same, but the leakage energy changes.
In such case, what would happen with the MEP. Figure 4.5.6 sheds some lights
about it. The first observation is that as the leakage increases, the tendency is
that the MEP is forced to move into the upper-right corner. That is, the total
energy consumed increases, due to a higher leakage energy dissipation. The supply
voltage that targets a MEP must also be raised, because the leakage energy takes
dominance at supply voltages higher than before. With higher supply voltages,
the frequency increases as well. In summary, adding components that do not
contribute to the switching power, will push the MEP into higher energy, supply
voltage and frequency scales. It is also important to notice in this figure that the
relative position is kept between each MEP with different libraries and channel
length. It means that once the best library is selected (either targeting speed or
energy saving), it can be expected to remain the best library even if additional
peripherals are added.

5.3 MEP and FBB

Section 4.6 goes into the exploration of the MEP with different body biasing. The
first thing to highlight here is the selected threshold for deciding whether or not a
biasing pair (VNW_N, VPW_P) is valid to be used in the MEP exploration flow.
The threshold is extracted from the liberty file according to the timing matrix
defined by the foundry at their recommended biasing points. But is is unknown
what was the performance metric they used to select the biasing points they
recommend, because it was verified they do not target neither symmetrical rising
and falling time, nor 50% duty cycle. Nonetheless, the threshold will be considered
as valid, as it is the same used by the commercial available libraries. Moreover, the
valid biasing points were extracted from simulating only three basic gates (NAND,
NOR, INV), so that there is already a limitation due to unrepresented cells.

With these new biasing voltages, the MEP is recomputed and show in Figure
4.6.12. It can be clearly seen that increasing a FBB will push the MEP into higher
frequencies and energy consumption, both slow and fast corner also become faster
with higher leakage. This effect is explain due to a lowered VT when applying a
FBB technique.
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A clear separation between LVT and SLVT is visible. Not even a circuit
synthesized with LVT with the strongest bias can reach the speed of a circuit
synthesized with SLVT with a weak bias (zero bias). Moreover, if the spread
between slow and fast corners is analyzed, it can be seen that SLVT has a flatter
response compared to LVT, meaning that it is easier to meet timing constraints
with a SLVT technology. So that the selection of VT becomes a key parameter at
design time.

In order to flatten the curve and close the gap between slow and fast conditions,
Adaptive Body-Biasing (ABB) can be used. In such case a strong bias is applied
to the slow corner to raise the speed, while a weak bias is applied to the fast corner
to keep the frequency low. The typical point is selected to be somewhere in the
middle, this is illustrated in Figure 4.6.13. There is a limitation imposed by the
technology on how strong the biasing can be, the range is up to 2 V and -2 V.
It can be seen that the purple curve (SLVT) has a much more flatten behavior
than the blue one (LVT). For the SLVT case, the spread is less than one order
of magnitude, whilst LVT shows almost a two order of magnitude difference. It
can be concluded, that SLVT becomes the best performing library near the MEP,
even when it consumes more energy, because it is easier to use to close timing
constraints. Although ABB is introduced in this thesis, this work is not studying
how to implement an ABB loop to adapt to PVT variations, but rather just
exploring the effect of FBB and locating some valid biasing points.
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CONCLUSIONS

This thesis presented a methodology to obtain the Minimum Energy Point (MEP)
of any RTL design by means of SPICE simulations, where the impact of supply
voltage, threshold voltage, channel length, temperature, process variations, and
body biasing was analyzed.

The study has shown the advantage of operating at the MEP, more than 20%
of energy can be saved when compared to the typical point for the available LVT
library at 0.4 V. However, it has also been stated that PVT variations have great
impact around MEP voltages, causing difficulties for timing closure. It was de-
duced that SLVT libraries are the best suited for operation near the MEP, due
to higher speeds and closer gap between slow and fast corners. Whilst HVT and
UHVT are so slow and have such a huge timing gap that its usage is unfeasible.
It was also concluded that the main parameter when targeting for MEP operation
is selecting the right VT flavor, later a proper channel length selection can be
used to target a more specific range of frequencies and energy. Through Adaptive
Body-Biasing (ABB), it is possible to compensate at the slow and fast corners to
get closer spreads in frequency.

These results add to the expanding field of low-energy designs by showing a
basic guideline to locate the MEP when using commercial standard cell libraries
characterized for higher voltages.

6.1 Future work

In order to test the results provided in this thesis, some further work is needed. A
new library can be characterized around the MEP point, including worst, typical
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and best conditions. With this new library, the Ibex Core can be fully synthesized
again an cross-check the results against the power estimation and timing analysis
extracted from PrimePower. The circuit can then be implemented in hardware
and put to test under the same conditions.

The MEP exploration can also be extended to a Multi-VT circuit, that is,
using different VT flavors within different cells in the same circuit, and studying
how it affect the Minimum Energy Point.

Lastly, since this is a very iterative process, all the different scripts and tools
should be fully automated and optimized to converge to the results in a timely
manner.
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A - REPORTS

.1 Critical path netlist

There is a different critical path for every synthesized circuit with different thresh-
old voltage, channel length and number of cells excluded. That is, more than 30
netlists. Due to their size, they cannot be printed here, instead, an example is
provided in a zip file with the submission of this thesis.

The file critical_path_netlist.spi contains the entire netlist, including capaci-
tors and voltage sources for wire renaming. timing_report_critical_path.txt con-
tains the timing report, only showing the input and output of each cell in the
path.

.2 Not annotated switching activity report

This section present the not annotated switching activity report extracted from
PrimePower. Gray box shows 100% of annotated activity from the activity file
extracted from RTL simulations. See next page.
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Listing 1: Not annotated switching activity report
****************************************
Report : Switching Activity

-list_not_annotated
Design : ibex_top
Version: Q-2019.12 - SP5
Date : Sun Feb 26 20:09:11 2023
****************************************

Switching Activity Overview Statistics for "ibex_top"
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

From Activity From From From From From Not
Object Type File (%) SSA (%) SSA Force (%) SSA Force (%) SCA (%) Clock (%) Default (%) Propagated (%) Implied (%) Annotated (%) Total

Annotated Implied
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Nets 2388(100.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 2388

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Nets Driven by
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Primary Input 379(100.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 379
Tri -State 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Black Box 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Sequential 2009(100.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 2009
Combinational 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Memory 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Clock Gate 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Static Probability Overview Statistics for "ibex_top"

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
From Activity From From From From From Not

Object Type File (%) SSA (%) SSA Force (%) SSA Force (%) SCA (%) Clock (%) Default (%) Propagated (%) Implied (%) Annotated (%) Total
Annotated Implied

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Nets 2388(100.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 2388

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Nets Driven by
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Primary Input 379(100.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 379
Tri -State 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Black Box 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Sequential 2009(100.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%) 2009
Combinational 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Memory 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
Clock Gate 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

List of nonannotated nets :
1
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.3 Data extracted from ring oscillator with open-loop: input to VDD

This sections presents an example on the data extracted from the ring oscillator simulation and saved in a CSV file when the switch is
connected to VDD, such that there is no oscillation, notice the eval err in the Frequency row. The simulation is run at 25℃, TT model,
with vdd sweeping from 0.2 V to 0.8 V for a LVT28 library. The Power row represents the static power consumption. Some parameters
have been redacted to protect sensitive information. Likewise, some columns were removed so that the table can fit in one page.

Parameter tc.2_25 tc.21_25 tc.22_25 tc.23_25 tc.24_25 tc.25_25 tc.26_25 tc.27_25 tc.28_25 tc.29_25 tc.3_25
process TT TT TT TT TT TT TT TT TT TT TT
temperature 25 25 25 25 25 25 25 25 25 25 25
vdd 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
vnw_n 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
vpw_p -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067

Test Output tc.2_25 tc.21_25 tc.22_25 tc.23_25 tc.24_25 tc.25_25 tc.26_25 tc.27_25 tc.28_25 tc.29_25 tc.3_25
LVT28 Frequency eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err
LVT28 DutyCycle eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err
LVT28 Power 12.0E-9 12.9E-9 13.8E-9 14.7E-9 15.7E-9 16.7E-9 17.8E-9 18.8E-9 20.0E-9 21.2E-9 22.4E-9
LVT28 Delay 1.7E-6 1.3E-6 1.0E-6 801.7E-9 624.0E-9 485.6E-9 377.9E-9 294.3E-9 229.6E-9 179.5E-9 140.8E-9
LVT28 SimTime 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3

Parameter tc.31_25 tc.32_25 tc.33_25 tc.34_25 tc.35_25 tc.36_25 tc.38_25 tc.4_25 tc.5_25 tc.6_25 tc.8_25
process TT TT TT TT TT TT TT TT TT TT TT
temperature 25 25 25 25 25 25 25 25 25 25 25
vdd 0.31 0.32 0.33 0.34 0.35 0.36 0.38 0.4 0.5 0.6 0.8
vnw_n 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.542 0.346 -0.024
vpw_p -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -0.632 -0.21 0.2

Test Output tc.31_25 tc.32_25 tc.33_25 tc.34_25 tc.35_25 tc.36_25 tc.38_25 tc.4_25 tc.5_25 tc.6_25 tc.8_25
LVT28 Frequency eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err
LVT28 DutyCycle eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err eval err
LVT28 Power 23.7E-9 25.0E-9 26.3E-9 27.8E-9 29.2E-9 30.8E-9 34.0E-9 37.5E-9 29.1E-9 24.2E-9 28.2E-9
LVT28 Delay 110.9E-9 87.9E-9 70.1E-9 56.3E-9 45.6E-9 37.3E-9 25.6E-9 18.3E-9 7.2E-9 3.9E-9 1.8E-9
LVT28 SimTime 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3 400.0E-3

Table .3.1: Data from ring oscillator in open-loop: LVT28, TT, 25℃, input to VDD.
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.4 Data extracted from ring oscillator with closed-loop

This sections presents an example on the data extracted from the ring oscillator simulation and saved in a CSV file when the switch is
connected to !Z, such that there is an oscillatory behavior. The simulation is run at 25℃, TT model, with vdd sweeping from 0.2 V to 0.8
V for a LVT28 library. The Power row represents the total power consumption. Some parameters have been redacted to protect sensitive
information. Likewise, some columns were removed so that the table can fit in one page.

Parameter tc.2_25 tc.21_25 tc.22_25 tc.23_25 tc.24_25 tc.25_25 tc.26_25 tc.27_25 tc.28_25 tc.29_25 tc.3_25
process TT TT TT TT TT TT TT TT TT TT TT
temperature 25 25 25 25 25 25 25 25 25 25 25
vdd 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
vnw_n 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
vpw_p -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067

Test Output tc.2_25 tc.21_25 tc.22_25 tc.23_25 tc.24_25 tc.25_25 tc.26_25 tc.27_25 tc.28_25 tc.29_25 tc.3_25
LVT28 Frequency 315.2E+3 403.7E+3 517.8E+3 665.0E+3 854.7E+3 1.1E+6 1.4E+6 1.8E+6 2.3E+6 3.0E+6 3.8E+6
LVT28 DutyCycle 53.48 53.5 53.52 53.54 53.55 53.55 53.54 53.52 53.48 53.43 53.36
LVT28 Power 18.2E-9 21.8E-9 26.5E-9 32.7E-9 41.1E-9 52.4E-9 67.7E-9 88.3E-9 116.2E-9 153.6E-9 203.6E-9
LVT28 Delay 1.7E-6 1.3E-6 1.0E-6 801.7E-9 624.0E-9 485.6E-9 377.9E-9 294.3E-9 229.6E-9 179.5E-9 140.8E-9
LVT28 SimTime 31.7E-6 24.8E-6 19.3E-6 15.0E-6 11.7E-6 9.1E-6 7.1E-6 5.5E-6 4.3E-6 3.4E-6 2.6E-6

Parameter tc.31_25 tc.32_25 tc.33_25 tc.34_25 tc.35_25 tc.36_25 tc.38_25 tc.4_25 tc.5_25 tc.6_25 tc.8_25
process TT TT TT TT TT TT TT TT TT TT TT
temperature 25 25 25 25 25 25 25 25 25 25 25
vdd 0.31 0.32 0.33 0.34 0.35 0.36 0.38 0.4 0.5 0.6 0.8
vnw_n 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.542 0.346 -0.024
vpw_p -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -1.067 -0.632 -0.21 0.2

Test Output tc.31_25 tc.32_25 tc.33_25 tc.34_25 tc.35_25 tc.36_25 tc.38_25 tc.4_25 tc.5_25 tc.6_25 tc.8_25
LVT28 Frequency 4.8E+6 6.1E+6 7.6E+6 9.5E+6 11.7E+6 14.2E+6 20.6E+6 28.8E+6 72.4E+6 133.4E+6 284.5E+6
LVT28 DutyCycle 53.27 53.17 53.06 52.94 52.81 52.68 52.42 52.17 51.55 51.15 50.4
LVT28 Power 269.8E-9 356.7E-9 469.4E-9 613.8E-9 796.4E-9 1.0E-6 1.6E-6 2.5E-6 10.0E-6 26.8E-6 104.3E-6
LVT28 Delay 110.9E-9 87.9E-9 70.1E-9 56.3E-9 45.6E-9 37.3E-9 25.6E-9 18.3E-9 7.2E-9 3.9E-9 1.8E-9
LVT28 SimTime 2.1E-6 1.6E-6 1.3E-6 1.1E-6 858.6E-9 703.0E-9 485.0E-9 347.7E-9 138.2E-9 75.0E-9 35.2E-9

Table .4.1: Data from ring oscillator in closed-loop: LVT28, TT, 25℃, input to !Z.
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B - SCRIPTS

Most important scripts are presented here. Some directories and library names
have been redacted to protect sensitive information.

Files are included in zip file together with this document.

.5 Main script

Most of the flow is automated and is run from here.

1 #!/bin/bash
2
3 # Author: Daniel Guarecuco Aguiar <deaguiar@stud.ntnu.no>
4 # <daniel.aguiar@nordicsemi.no>
5 # This is the main script
6 # 1.Build Ibex Software
7 # 2.Run RTL simulation
8 # 3.Run Synthesis
9 # 4.Run Power estimation, export netlist

10 # 5.Clean netlist and create testbenches
11 # 6.Import netlist and run analog Simulation
12 # # ---------------------------------------------------------------------------
13
14 # Library name and Period in ps
15 # SLVT20 3000
16 # SLVT24 4000
17 # SLVT28 4000
18 # SLVT32 5000
19 # SLVT36 6000
20 # LVT24 15000
21 # LVT28 18000
22 # LVT32 24000
23 # LVT36 28000
24 # HVT20 1760
25 # HVT24 2040
26 # HVT28 2300
27 # UHVT28 6000
28 # UHVT32 7150
29 # UHVT36 8900
30
31
32 arg_lib=$1 #Library name
33 arg_period=$2 #Period
34 exclude_cells=$3 # % to exclude (0,20,30,40,50)
35 arg1=$4 #Options: syn import analogSim
36 #**************************************************************************************
37 # EDIT THIS ACCORDINGLY
38 #**************************************************************************************
39 array_lib=(
40 "${arg_lib} ${arg_period}"
41 )
42
43 project_path="/my_path/mep_thesis"
44 make_sw_path="${project_path}/design/ibex/examples/sw/simple_system/hello_test"
45 build_path="${project_path}/build/lowrisc_ibex_ibex_simple_system_0/sim-modelsim"
46
47 #Matches SLVT and LVT
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48 regex1='(.*)_([a-zA-Z]+VT[0-9]+)_(.+)_0d([0-9]+)(V_m?[0-9]+C)(.+)\s+(\w+)'
49 #Matches HVT and UHVT lib
50 regex2='(.*)_([a-zA-Z]+[0-9]+[a-zA-Z]+)(_TT_0P)([0-9]+V).+(_[0-9]+C)(.+)\s+(\w+)'
51
52 #**************************************************************************************
53 # Setting environment
54 module load synopsys/verdi/2021.09-sp2-2
55
56 export PATH=$PATH\:$HOME/.local/bin
57 export PATH=$PATH\:$HOME/lowrisc-toolchain/bin
58 export ARCH=rv32imc
59 export MODEL_TECH=/path_tool/questasim/2022.3/questasim/bin
60
61
62 export exclude_cells=$exclude_cells
63 #125, 25, m40
64 temp=25
65 #**************************************************************************************
66 # Starts here
67
68 # Loop through libraries
69 for i in "${array_lib[@]}"
70 do
71 #Evalute lib file name against regex
72 if [[ "$i" =~ $regex1 ]]; then
73 echo "Matches lib"
74 PERIOD=$(( ${BASH_REMATCH[7]}/1000 ))
75 echo "Period is ${PERIOD} ns"
76 elif [[ "$i" =~ $regex2 ]]; then
77 echo "Matches lib"
78 PERIOD=$(( ${BASH_REMATCH[7]} ))
79 echo "Period is ${PERIOD} ps"
80 else
81 echo "No Match - Library name invalid"
82 exit
83 fi
84 #Get lib name
85 LIB_NAME="${BASH_REMATCH[2]}_0d${BASH_REMATCH[4]}${BASH_REMATCH[5]}_${exclude_cells}"
86 #Set output directory (e.g /my_path/mep_thesis/syn_out/LVT24_25C)
87 OUT_DIR="${project_path}/analysis/syn_out/$LIB_NAME"
88
89 #Set env variable used by tcl scripts
90 export OUT_DIR=$OUT_DIR
91 #Example LVT24
92 TECH_CHAN="${BASH_REMATCH[2]}"
93 export TECH_CHAN=$TECH_CHAN
94 TESTBENCH="${TECH_CHAN}_Testbench"
95 stringarray=($i)
96 #Example lib_name.nldm.db
97 export TECH_LIB=$stringarray
98 export PERIOD=$PERIOD
99 SIM_PERIOD=$(( ${BASH_REMATCH[7]} ))

100
101 echo "**************************************************************************************"
102 echo "RUNNING FLOW USING $i"
103 echo "**************************************************************************************"
104
105 current_dir=$PWD
106 cd $project_path
107
108 if [ "$arg1" = "syn" -o "$arg1" = "all" ];
109 then
110 ## Make software
111 echo "Making software"
112 make -C $make_sw_path
113 ## Generate VMEM from binary
114 echo "Generating VMEM"
115 hexdump -v -e '1/4 "%08x " "\n"' $make_sw_path/hello_test.bin > $make_sw_path/hello_test.vmem
116 ## Build Simulation
117 echo "Building Simulation"
118 fusesoc --cores-root=. run --target=sim --tool=modelsim --setup --build lowrisc:ibex:ibex_simple_system --RV32E=0

--RV32M=ibex_pkg::RV32MFast --SRAMInitFile="${make_sw_path}/hello_test.vmem" --Period=$SIM_PERIOD,→
119 ## Run simulation
120 echo "Running Simulation"
121 cd $build_path
122 make run
123 echo "Simulation Log:"
124 cat ibex_simple_system.log
125 cd $current_dir;
126 ## Create output directory
127 mkdir -p $OUT_DIR
128 ## Copy FSDB
129 cp "${build_path}/ibex_simple_system.fsdb" ${OUT_DIR}
130
131 ## Run sythesis
132 echo "STARTING DC_SHELL..."
133 dc_shell -f syn.tcl -o $OUT_DIR/compile.log
134
135 ## Export histogram
136 echo "EXPORTING CELL HISTOGRAM..."
137 grep "LVT_\|HVT_" $OUT_DIR/ibex_top_map.v | awk '{print $1}' | sort | uniq -c | sort -nr | awk '{print $2 "," $1}' >

$OUT_DIR/cell_histogram_ibex_$LIB_NAME.csv,→
138
139 ## Run power stimation
140 echo "STARTING PT_SHELL..."
141 pt_shell -f power.tcl
142 fi
143
144 if [ "$arg1" = "import" ];
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145 then
146 cd $project_path/analysis
147 ## Build SPICE testbench
148 echo "Building spice testbench"
149 python3 generate_testbench.py $OUT_DIR
150
151 ## Build OceanScript for simulation
152 python3 generate_ocn.py $OUT_DIR $TECH_CHAN $temp
153
154 ## Importing to Virtuoso
155 cd $project_path/virtuoso
156 echo "Importing netlist to Virtuoso"
157 echo "************************************Creating Testbench"
158 spiceIn -netlistFile $OUT_DIR/netlist_testbench.spi -outputLib $TESTBENCH -language SPICE -refLibList "cmos22fdsoi

analogLib" -devMapFile /my_path/mep_thesis/virtuoso/mapping,→
159 fi
160
161 if [ "$arg1" = "analogSim" ];
162 then
163 temp=25
164 echo "Simulating for 25C"
165 cd virtuoso
166 echo "Simulating for input connected to gnd"
167 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_1.ocn
168 echo "Simulating for input connected to vdd"
169 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_2.ocn
170 echo "Simulating for input connected to Z"
171 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_3.ocn
172 # Run next simulation if previous one didnt oscillate
173 if grep "Frequency" ./results/${TECH_CHAN}_${temp}C_*_top_results_3.csv | grep -q "eval err" ;
174 then
175 echo "Simulating for input connected to !Z"
176 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_4.ocn
177 fi
178
179 temp=m40
180 echo "Simulating for -40C"
181 echo "Simulating for input connected to gnd"
182 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_1.ocn
183 echo "Simulating for input connected to vdd"
184 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_2.ocn
185 echo "Simulating for input connected to Z"
186 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_3.ocn
187 # Run next simulation if previous one didnt oscillate
188 if grep "Frequency" ./results/${TECH_CHAN}_${temp}C_*_top_results_3.csv | grep -q "eval err" ;
189 then
190 echo "Simulating for input connected to !Z"
191 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_4.ocn
192 fi
193
194 temp=125
195 echo "Simulating for 125C"
196 echo "Simulating for input connected to gnd"
197 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_1.ocn
198 echo "Simulating for input connected to vdd"
199 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_2.ocn
200 echo "Simulating for input connected to Z"
201 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_3.ocn
202 # Run next simulation if previous one didnt oscillate
203 if grep "Frequency" ./results/${TECH_CHAN}_${temp}C_*_top_results_3.csv | grep -q "eval err" ;
204 then
205 echo "Simulating for input connected to !Z"
206 virtuoso -nograph -restore $OUT_DIR/top_sim_${temp}C_Excluding_${exclude_cells}%_4.ocn
207 fi
208 fi
209
210 done
211
212
213 echo "All done"
214 echo
215
216 exit

.6 Synthesis script

Script used for synthesizing the RTL design using DesingCompiler

1 # Author: Daniel Guarecuco Aguiar <deaguiar@stud.ntnu.no>
2 # <daniel.aguiar@nordicsemi.no>
3 # This script synthesizes RTL design, exports timing report
4 # Usage: Intented to be called from main.sh
5 # dc_shell -f syn.tcl
6 # # ---------------------------------------------------------------------------
7
8 # Get library name from env varible defined in bash script
9 set TECH_LIB $env(TECH_LIB)
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10 # Get relevant name to be used for saving all files
11 set OUT_DIR $env(OUT_DIR)
12 exec mkdir -p $OUT_DIR
13 # Get period
14 set PERIOD $env(PERIOD)
15 # Get exlude_cells flag
16 set exclude_cells $env(exclude_cells)
17 set TECH_CHAN $env(TECH_CHAN)
18
19 suppress_message LINT-52
20 suppress_message LINT-31
21 suppress_message LINT-29
22
23 # ############### Specify Libraries # ##########################
24 set LIB_PATH "/library_path"
25
26 set ADDITIONAL_SEARCH_PATH [list {*}[subst {
27 [glob $LIB_PATH/path_to_library]
28 [glob ./]
29 [glob $OUT_DIR]
30 }]] ;
31
32 set search_path ""
33 append search_path " $ADDITIONAL_SEARCH_PATH"
34
35 set link_library "*"
36 lappend link_library $TECH_LIB
37
38 set target_library $TECH_LIB
39
40 # ############### Read Design # ###############################
41 # Define workpath
42 define_design_lib -path ./work WORK
43
44 # Read verilog source files
45 source -echo -verbose ./design.tcl
46
47 set DESIGN_NAME "ibex_top"
48
49 # Initialize name mapping database
50 set hdlin_enable_upf_compatible_naming true
51 saif_map -start
52
53 analyze -library WORK -format sverilog -vcs ${RTL_SOURCE_LIST}
54 set top_entity ${DESIGN_NAME}
55
56 # Elaborate design
57 elaborate ${DESIGN_NAME}
58
59 # Convert FSDB to SAIF
60 sh fsdb2saif $OUT_DIR/ibex_simple_system.fsdb -o $OUT_DIR/ibex_top.saif -flatten_genhier
61 # Map RTL simulation names to RTL design
62 saif_map -create_map -source_instance ibex_simple_system/u_top/u_ibex_top -input $OUT_DIR/ibex_top.saif
63
64 # ############### Set Design Constraints # ######################
65 create_clock clk_i -name "CLK" -period $PERIOD
66
67 if {$exclude_cells != 0} {
68 source -echo -verbose $OUT_DIR/../${TECH_CHAN}_exclude_cells_${exclude_cells}.tcl
69 }
70
71 # ############### Optimize Design # #############################
72 # Compile design
73 compile -exact_map
74
75 # ############### Save Design # #################################
76 write_file -hierarchy -format verilog -output $OUT_DIR/ibex_top_map.v ibex_top
77 write_file -format svsim -output $OUT_DIR/ibex_top_wrapper.sv
78 write_file -hierarchy -format ddc -output $OUT_DIR/ibex_top_map.ddc
79 write_sdc $OUT_DIR/ibex_top_sdc.sdc
80 saif_map -write_map $OUT_DIR/ibex_top_name_mapping.tcl -type primepower
81
82 # Full. Include name of input pin in the cell
83 report_timing -input_pins > $OUT_DIR/report_timing_full.txt
84 # Input-to-Register
85 report_timing -from [all_inputs] -to [all_registers -data_pins] > $OUT_DIR/report_timing_in_reg.txt
86 # Register-to-Register
87 report_timing -from [all_registers -clock_pins] -to [all_registers -data_pins] > $OUT_DIR/report_timing_reg_reg.txt
88 # Register-to-Output
89 report_timing -from [all_registers -clock_pins] -to [all_outputs] > $OUT_DIR/report_timing_reg_out.txt
90 # Input-to-Output
91 report_timing -from [all_inputs] -to [all_outputs] > $OUT_DIR/report_timing_in_out.txt
92
93 quit

.7 Power estimation script

Script used for obtaining power estimation using PrimePower
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1 # Author: Daniel Guarecuco Aguiar <deaguiar@stud.ntnu.no>
2 # <daniel.aguiar@nordicsemi.no>
3 # This script reports power and timing from synthesized design
4 # Generates spice netlist of critical path
5 # Usage: Intented to be called from main.sh
6 # pt_shell -f power.tcl
7 # # ---------------------------------------------------------------------------
8
9 # Get library name from env varible defined in bash script

10 set TECH_LIB $env(TECH_LIB);
11 # Get relevant name to be used for saving all files
12 set OUT_DIR $env(OUT_DIR)
13 set TECH_CHAN $env(TECH_CHAN)
14
15 suppress_message CMD-041
16
17 # ############### Specify Libraries # ##########################
18 set LIB_PATH "/library_path"
19 set ADDITIONAL_SEARCH_PATH [list {*}[subst {
20 [glob $LIB_PATH/path_to_library]
21 [glob ./]
22 }]] ;
23 set search_path ""
24 append search_path " $ADDITIONAL_SEARCH_PATH"
25
26 set link_library "* "
27 lappend link_library $TECH_LIB
28
29 set power_enable_analysis true
30 set case_analysis_propagate_through_icg true
31 set power_analysis_mode averaged
32
33 read_verilog "$OUT_DIR/ibex_top_map.v"
34 current_design ibex_top
35 link_design
36 read_sdc "$OUT_DIR/ibex_top_sdc.sdc"
37
38 set_power_analysis_options -through_mode
39
40 update_timing -full
41
42 check_power
43
44 source $OUT_DIR/ibex_top_name_mapping.tcl
45 read_saif -strip_path "/ibex_simple_system/u_top/u_ibex_top" $OUT_DIR/ibex_top.saif
46
47 report_switching_activity -list_not_annotated -include_only {rtl} > $OUT_DIR/not_annotated.txt
48
49 update_power
50 report_switching_activity -list_not_annotated -include_only {rtl} > $OUT_DIR/not_annotated_post.txt
51
52 report_power > $OUT_DIR/report_power.txt
53 report_timing > $OUT_DIR/report_timing_pt.txt
54
55 #Finding CDL file path
56 set curr_lib_path [which $TECH_LIB]
57 regsub {liberty\/nldm} $curr_lib_path "cdl" cdl_path
58 regsub {_TT\w+.db|_abblvt\w+.nldm.db} $cdl_path ".cdl" cdl_path
59
60 # Writing SPICE netlist
61 write_spice_deck \
62 -output $OUT_DIR/netlist_critical_path.sp [get_timing_paths] \
63 -sub_circuit_file "$cdl_path"
64
65 quit

.8 Build Ocean script

This script is used to build Ocean scripts by means of print statements. Ocean
scripts are used for analog simulations.

1 # Author: Daniel Guarecuco Aguiar <deaguiar@stud.ntnu.no>
2 # <daniel.aguiar@nordicsemi.no>
3 # This script generates four oceanScript files to run analog simulations on virtuoso
4 # These four simulations are: Input to gnd, to vdd, to Z and to !Z
5 # All four top schematics must be first imported by SpiceIn
6 #
7 # Usage: Intented to be called from main.sh
8 # python3 generate_ocn.py syn_out/LVT24_25C LVT24
9 # # ---------------------------------------------------------------------------

10
11 import sys
12 import time
13 import pandas as pd
14 import os
15
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16 def write_ocn(sw_pos):
17 ocean_file = dir_path + '/' + "top_sim_"+ str(temp_str) + "C_Excluding_" + str(exclude_cells) + "%_"+ sw_pos+".ocn"
18 if (exclude_cells == "0"):
19 result_file = "./results/" + tech +'_'+ str(temp_str) + "C_" +vnw_name + vpw_name +"_"+ current_time +"_top_results_"+

sw_pos+".csv",→
20 else:
21 result_file = "./results/" + tech +'_'+ str(temp_str) + "C_Excluding_"+ str(exclude_cells) + "%_" +vnw_name + vpw_name

+"_"+ current_time +"_top_results_"+ sw_pos+".csv",→
22 maestro = "maestro_top_" + current_time
23
24 original_stdout = sys.stdout # Save a reference to the original standard output
25 with open(ocean_file, 'w') as f:
26 sys.stdout = f # Change the standard output to the file we created.
27 print(';Script generated by generate_ocn.py')
28 print(';====================Set to Maestro mode explorer =============================')
29 print('ocnSetXLMode("explorer")')
30 print('ocnxlProjectDir( "/my_path/work/daag/virtuoso" )')
31 print('ocnxlTargetCellView( "'+testbench+'" "top" "'+maestro+'" )')
32 print('ocnxlResultsLocation( "" )')
33 print('ocnxlHistoryPrefix("sw_pos_'+sw_pos+'")')
34 print('ocnxlSimResultsLocation( "" )')
35 print('ocnxlMaxJobFail( 20 )')
36 print('')
37 print(';====================== Tests setup ============================================')
38 print('')
39 print(';---------- Test "'+testbench+'_top_1" ------------- ')
40 print('ocnxlBeginTest("'+testbench+'_top_1")')
41 print('simulator( \'spectre )')
42 print('design( "'+testbench+'" "top" "schematic")')
43 print('modelFile( ')
44 print(')')
45 print('analysis(\'tran ?stop "'+sim_stop+'\" ?errpreset "conservative" )')
46 print('desVar( "vdd" 0.4 )')
47 print('desVar( "vnw_n" 0.4 )')
48 print('desVar( "vpw_p" 0 )')
49 print('desVar( "sw_pos" '+sw_pos+')')
50 print('envOption(')
51 print(' \'analysisOrder list("pz" "dcmatch" "stb" "tran" "envlp" "ac" "dc" "lf" "noise" "xf" "sp" "pss" "pac" "pstb"

"pnoise" "pxf" "psp" "qpss" "qpac" "qpnoise" "qpxf" "qpsp" "hb" "hbac" "hbstb" "hbnoise" "hbxf" "sens" "acmatch") '),→
52 print(')')
53 print('saveOption( ?infoOptions list(list("modelParameter" "models" "rawfile" "" "" "" t) list("element" "inst" "rawfile"

"" "" "" t) list("outputParameter" "output" "rawfile" "" "" "" t) list("designParamVals" "parameters" "rawfile" "" ""
"" t) list("primitives" "primitives" "rawfile" "" "" "" t) list("subckts" "subckts" "rawfile" "" "" "" t)
list("asserts" "assert" "rawfile" "" "" "" nil) list("extremeinfo" "all" "logfile" "" "yes" "" nil) list("allcap"
"allcap" "file" "" "" "" nil) list("<Click_To_Add>" "none" "rawfile" "" "" "" nil) ) )')

,→
,→
,→
,→

54 print('save( \'v "/A" "/Z" )')
55 print('save( \'i "/xtop_01/VDD" )')
56 print('temp( '+str(temp)+' ) ')
57 print('ocnxlOutputSignal( "/A" ?plot t ?save t)')
58 print('ocnxlOutputSignal( "/Z" ?plot t ?save t)')
59 print('ocnxlOutputExpr( "frequency(clip(VT(\\"/Z\\") (lastVal(VT(\\"/Z\\")) / 2) lastVal(VT(\\"/Z\\"))))" ?name

"Frequency" ?plot t ?evalType \'point)'),→
60 print('ocnxlOutputExpr( "dutyCycle(VT(\\"/Z\\") ?mode \\"user\\" ?threshold (VAR(\\"vdd\\") / 2) ?xName \\"time\\"

?outputType \\"average\\")" ?name "DutyCycle" ?plot t ?evalType \'point)'),→
61 print('ocnxlOutputExpr( "average(clip((VAR(\\"vdd\\") * IT(\\"/xtop_01/VDD\\")) (lastVal(VT(\\"/Z\\")) / 2)

lastVal(VT(\\"/Z\\"))))" ?name "Power" ?plot t ?evalType \'point)'),→
62 print('ocnxlOutputTerminal( "/xtop_01/VDD" ?save t)')
63 print('ocnxlOutputExpr( "delay(?wf1 VT(\\"/A\\") ?value1 (VAR(\\"vdd\\") / 2) ?edge1 \\"either\\" ?nth1 1 ?td1 0.0 ?tol1

nil ?wf2 VT(\\"/Z\\") ?value2 (VAR(\\"vdd\\") / 2) ?edge2 \\"either\\" ?nth2 1 ?tol2 nil ?td2 nil ?stop nil ?multiple
nil)" ?name "Delay" ?plot t ?evalType \'point)')

,→
,→

64 print('ocnxlOutputExpr( "lastVal(VT(\\"/Z\\"))" ?name "SimTime" ?plot t ?evalType \'point)')
65 print('ocnxlEndTest() ; "'+testbench+'_top_1"')
66 print('')
67 print(';====================== Sweeps setup ===========================================')
68 print('')
69 print(';====================== Model Group setup ==========================================')
70 print('')
71 print(';====================== Corners setup ==========================================')
72
73 for vdd in corners:
74 print('ocnxlCorner( "tc_'+vdd+'_'+str(temp_str)+'"')
75 print(' \'(')
76 print(' ("variable" "vdd" "'+vdd+'")')
77 print(' ("variable" "vnw_n" "'+str(corners_df[vdd].loc['vnw_n'])+'")')
78 print(' ("variable" "vpw_p" "'+str(corners_df[vdd].loc['vpw_p'])+'")')
79 print(' ("variable" "temperature" "'+str(temp)+'")')
80 print(' ("model" "HERE GOES TRANSISTOR MODEL" ?section "\\"tt\\" \\"ff\\" \\"ss\\"")')
81 print(' ("modelGroup" "")')
82 print(' )')
83 print(')')
84 print('')
85 print(';====================== Checks and Asserts setup ============================================')
86 print('ocnxlPutChecksAsserts(?netlist nil)')
87 print('')
88 print(';====================== Job setup ==============================================')
89 print('ocnxlJobSetup( \'(')
90 print(') )')
91 print('')
92 print(';====================== Disabled items =========================================')
93 print(';ocnxlDisableCorner("tc_0.80_25") **This disables a corner')
94 print('ocnxlSetAllParametersDisabled(t)')
95 print('')
96 print(';====================== Run Mode Options ======================================')
97 print('')
98 print(';====================== Starting Point Info ======================================')
99 print('')

100 print(';====================== Run command ============================================')
101 print('printf("*********************************************************************************************\\n")')
102 print('printf("Running simulation with switch position = '+sw_pos+'\\n")')
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103 print('printf("*********************************************************************************************\\n")')
104 print('ocnxlRun( ?mode \'sweepsAndCorners ?nominalCornerEnabled nil ?allCornersEnabled t ?allSweepsEnabled t)')
105 print('ocnxlOutputSummary(?exprSummary t ?specSummary t ?detailed t ?wave t)')
106 print('ocnxlExportOutputView("'+result_file+'" "Detail")')
107 print('ocnxlOpenResults()')
108 print('')
109 print(';====================== End XL Mode command ===================================')
110 print('ocnxlEndXLMode("explorer")')
111 print('exit()')
112 print('')
113
114 sys.stdout = original_stdout # Reset the standard output to its original value
115
116 print('Simulation file saved in '+ ocean_file)
117
118
119 dir_path = sys.argv[1]
120 #tech = "LVT24"
121 tech = sys.argv[2]
122 testbench = tech + "_Testbench"
123 temp_str = sys.argv[3]
124 temp = int(temp_str.replace('m', '-'))
125
126 exclude_cells = os.getenv('exclude_cells') # Percetage excluded
127
128 t = time.localtime()
129 current_time = time.strftime("%H%M%S", t)
130
131 sim_stop = '400m'
132
133 #corner_csv = dir_path +'/../'+tech+'_'+str(temp_str)+'C_corners.csv'
134 corner_csv = dir_path +'/../'+tech+'_'+'25C_corners.csv'
135 corners_df = pd.read_csv (corner_csv,index_col=0)
136 print(corners_df)
137 vnw_name = str(corners_df.iloc[0,0])
138 vpw_name = str(corners_df.iloc[1,0])
139 vpw_name = vpw_name.replace('-', 'm')
140 corners = corners_df.columns.values
141
142 print('Generating OCN scripts.')
143 write_ocn("1")
144 write_ocn("2")
145 write_ocn("3")
146 write_ocn("4")
147 print('Done...')

.9 Build testbench script

This script cleans the spice netlist generated by Synopsys and builds the testbench.

1 # Author: Daniel Guarecuco Aguiar <deaguiar@stud.ntnu.no>
2 # <daniel.aguiar@nordicsemi.no>
3 # Created Date: 14/02/2023
4 # This script cleans the spice netlist generated by PrimeTime.
5 # Generates four testbenches, where input is connected to gnd, vdd, Z and !Z.
6 # Generates four spiceIn.params
7 #
8 # Usage: Intented to be called from main.sh
9 # python3 generate_testbenches.py /my_path/master_thesis/analysis/syn_out/LVT24_25C LVT24_Testbench

10 # # ---------------------------------------------------------------------------
11
12 import fileinput
13 import re
14 import shutil
15 import os
16 import sys
17
18 def copy_file(dest_path,spice_file_source,spice_file):
19 if not os.path.exists(dest_path):
20 os.mkdir(dest_path)
21 shutil.copy(spice_file_source, spice_file)
22
23 # Append current line to previous one if it starts with +
24 def remove_break(file_path):
25 previousLine = ""
26 # Read spice file line by line
27 for line in fileinput.input(file_path, inplace=True):
28 if line.startswith("+"):
29 previousLine = previousLine.replace("\n","") + line.replace("+","")
30 else:
31 print('{}'.format(previousLine), end='')
32 previousLine = line
33
34 # Return a list of cell names in the critical path, obtained from the timing report
35 def get_all_cell_names(file_path):
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36 with open(file_path, 'r') as file:
37 # read all content of the file
38 content = file.read()
39 names = re.findall('\s+(.+)\/\w+ \(.+\)',content)
40 # remove duplicates (input + output)
41 res = []
42 res_prev = ""
43 for i in names:
44 if (i != res_prev):
45 res_prev = i
46 res.append(i)
47 return res
48
49 def remove_cell(file_path, cell_name):
50 # Read spice file line by line
51 for line in fileinput.input(file_path, inplace=True):
52 # Check if cell_name is in the line and remove it
53 if (line.find(cell_name) != -1):
54 newline = "* LINE REMOVED: " + line
55 print('{}'.format(newline), end='')
56 else:
57 # Do nothing, keep the same line
58 print('{}'.format(line), end='')
59
60 def get_cell_pins(file_path, cell_name):
61 with open(file_path, 'r') as file:
62 # read all content of the file
63 pins = []
64 content = file.read()
65 pins = re.findall('\s+(' + re.escape(cell_name) + '\/\w+) \(.+\)',content)
66 return pins
67
68 def append_to_file(file_path, string):
69 # Open a file with access mode 'a'
70 with open(file_path, "a") as file_object:
71 # Append string at the end of file
72 file_object.write(string)
73
74 def replace_slash(file_path):
75 # Read spice file line by line
76 for line in fileinput.input(file_path, inplace=True):
77 # Do nothing if it stats with a .
78 if line.startswith("."):
79 print('{}'.format(line), end='')
80 else:
81 line = line.replace('/', '_')
82 print('{}'.format(line), end='')
83
84 def replace_brackets(file_path):
85 # Read spice file line by line
86 for line in fileinput.input(file_path, inplace=True):
87 # Do nothing if it stats with a .
88 if line.startswith("."):
89 print('{}'.format(line), end='')
90 else:
91 line = line.replace('[', '_')
92 line = line.replace(']', '_')
93 print('{}'.format(line), end='')
94
95 def replace_parenthesis(file_path):
96 # Read spice file line by line
97 for line in fileinput.input(file_path, inplace=True):
98 # Do nothing if it stats with a .
99 if line.startswith("."):

100 print('{}'.format(line), end='')
101 else:
102 line = line.replace('(', '_')
103 line = line.replace(')', '_')
104 print('{}'.format(line), end='')
105
106 def remove_vsource(file_path, string):
107 # Read spice file line by line
108 for line in fileinput.input(file_path, inplace=True):
109 # Do nothing if it stats with a .
110 if line.startswith("v"):
111 if (line.find(string) != -1):
112 line = "* LINE REMOVED: " + line
113 print('{}'.format(line), end='')
114
115 def replace_input(file_path, string):
116 # Read spice file line by line
117 for line in fileinput.input(file_path, inplace=True):
118 if line.startswith("x"):
119 # If _VDD
120 if (line.find(string) != -1):
121 if (string == "_VDD"):
122 list_line = re.search('(^x.+)(\s\S+_VDD)(.+)',line)
123 line = list_line.group(1) + " vdd" + list_line.group(3) + "\n"
124 elif (string == "_VNW_N"):
125 list_line = re.search('(^x.+)(\s\S+_VNW_N)(.+)',line)
126 line = list_line.group(1) + " vnw_n" + list_line.group(3) + "\n"
127 elif (string == "_VPW_P"):
128 list_line = re.search('(^x.+)(\s\S+_VPW_P)(.+)',line)
129 line = list_line.group(1) + " vpw_p" + list_line.group(3) + "\n"
130 elif (string == "_VNW_P"):
131 list_line = re.search('(^x.+)(\s\S+_VNW_P)(.+)',line)
132 line = list_line.group(1) + " vnw_n" + list_line.group(3) + "\n"
133 elif (string == "_VPW_N"):
134 list_line = re.search('(^x.+)(\s\S+_VPW_N)(.+)',line)
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135 line = list_line.group(1) + " vpw_p" + list_line.group(3) + "\n"
136 print('{}'.format(line), end='')
137
138 def unify_vdd(file_path):
139 # Read spice file line by line
140 for line in fileinput.input(file_path, inplace=True):
141 if line.startswith("vvdd"):
142 # Extract value of vdd
143 vdd_value = re.search('^vvdd\s+vdd\s+\d\s+(\d+\.\d+)',line).group(1)
144 line = "vvdd vdd 0 vdd\n"
145 elif line.startswith("v"):
146 if (re.match('^v\S+\s+\S+\s+0\s+' + vdd_value, line)):
147 newline = re.search('(^v\S+\s+\S+\s)+0\s+' + vdd_value,line).group(1)
148 line = newline + "vdd 0\n"
149 print('{}'.format(line), end='')
150
151 def lower_case_vss(file_path):
152 # Read spice file line by line
153 for line in fileinput.input(file_path, inplace=True):
154 line = line.replace('VSS', 'vss')
155 print('{}'.format(line), end='')
156
157 # Remove stimulus, vvdd, vvss, .temp, .global
158 def remove_stim(file_path):
159 # Read spice file line by line
160 for line in fileinput.input(file_path, inplace=True):
161 # Remove the following line
162 if line.startswith(".include"):
163 if (re.match('^^\.include\s+\S+stim\.sp\S', line)):
164 line = "* LINE REMOVED: " + line
165 print('{}'.format(line), end='')
166
167 def remove_corners(file_path):
168 # Read spice file line by line
169 ret_text = ""
170 for line in fileinput.input(file_path, inplace=True):
171 # Remove the following lines
172 if line.startswith("vvdd vdd"):
173 ret_text += line
174 line = "* LINE REMOVED: " + line
175 elif line.startswith(".global vss"):
176 ret_text += line
177 line = "* LINE REMOVED: " + line
178 elif line.startswith("vvss vss"):
179 ret_text += line
180 line = "* LINE REMOVED: " + line
181 elif line.startswith(".temp"):
182 ret_text += line
183 line = "* LINE REMOVED: " + line
184 print('{}'.format(line), end='')
185 return ret_text
186
187 def creat_subckt(file_path):
188 # Read spice file line by line
189 for line in fileinput.input(file_path, inplace=True):
190 # Append subcircuit definition after .temp
191 if line.startswith(".temp"):
192 subckt="\n.SUBCKT CRITICAL_PATH VDD VSS VNW_N VPW_P A Z\n"
193 line = line + subckt
194 print('{}'.format(line), end='')
195
196 def connect_ext_pins(spice_file, outer_in, outer_out):
197 conn_str = "\n* CONNECTION TO EXTERNAL PINS\n\
198 vext_vdd VDD vdd 0\n\
199 vext_vss VSS vss 0\n\
200 vext_vnw_n VNW_N vnw_n 0\n\
201 vext_vpw_p VPW_P vpw_p 0\n\
202 vext_in A "+ outer_in + " 0\n\
203 vext_out Z "+ outer_out + " 0\n\
204 .ENDS"
205 # Append line to spice file
206 append_to_file(spice_file, conn_str)
207
208
209 def write_to_file(file_path, content):
210 f = open(file_path, "w")
211 f.write(content)
212 f.close()
213
214 def write_testbench(file_path, content):
215 tb_path = file_path + '/netlist_testbench.spi'
216 feedback_str = content + "\n* Input A is connected to a sp4tswitch. Inputs are VSS, VDD, Z or !Z\n\
217 * Switch is controlled via sw_pos variable\n\n\
218 einverter nZ vss vdd Z 1\n\
219 simulator lang=spectre\n\
220 S0 (A vss vdd Z nZ) sp4tswitch paramTyp=string tranPosition_str=sw_pos model=switch\n\
221 simulator lang=spice\n\n\
222 .end"
223 write_to_file(tb_path, feedback_str)
224 print('File ' +tb_path+ ' created.')
225
226
227 ####################################################################################
228 #dir_path = "/my_path/mep_thesis/analysis/syn_out/LVT24_25C"
229 # Path taken from argument, set at main.sh
230 dir_path = sys.argv[1]
231 spice_file_source = dir_path + "/netlist_critical_path.sp"
232 report_file = dir_path + "/report_timing_full.txt"
233

82



234 dest_path= dir_path
235 spice_file_name = "netlist_critical_path.spi"
236 spice_file = dest_path + "/" + spice_file_name
237
238 ####################################################################################
239
240 # Copy netlist to spice directory
241 copy_file(dest_path,spice_file_source,spice_file)
242
243 # Gather data from timing report
244 # Get all cell names in critical path
245 list_cells = get_all_cell_names(report_file)
246 # Get name of input pin. Used for feedback
247 outer_in = get_cell_pins(report_file, list_cells[1])[0]
248 # Get name of output pin. Used for feedback
249 outer_out = get_cell_pins(report_file, list_cells[-2])[1]
250
251
252 # Processing netlist to be imported by Virtuoso
253 # Remove line breaks when line is too long. Easier to process
254 remove_break(spice_file)
255 # Remove first FF. Interested only in combinational circuits between two FF
256 remove_cell(spice_file, list_cells[0])
257 # Remove last FF
258 remove_cell(spice_file, list_cells[-1])
259 # Remove all individual vsource used for VDD, VNW_N, VPW_P
260 remove_vsource(spice_file, "_VDD")
261 remove_vsource(spice_file, "_VNW_N")
262 remove_vsource(spice_file, "_VPW_P")
263 remove_vsource(spice_file, "_VNW_P")
264 remove_vsource(spice_file, "_VPW_N")
265
266 replace_input(spice_file, "_VDD")
267 replace_input(spice_file, "_VNW_N")
268 replace_input(spice_file, "_VPW_P")
269 replace_input(spice_file, "_VNW_P")
270 replace_input(spice_file, "_VPW_N")
271 # Instead of having multiple vsource with same value as vdd, short-circuit them to vdd
272 unify_vdd(spice_file)
273 # Replace all VSS with vss
274 lower_case_vss(spice_file)
275
276 # Create subckt definition after .temp
277 creat_subckt(spice_file)
278
279 # Remove stimulus. Not needed
280 remove_stim(spice_file)
281 # Remove vvdd, vvss, .temp, .global. To be declared outside in testbench
282 corners=remove_corners(spice_file)
283
284 # Remove final .end. So we can append connecting signals
285 remove_cell(spice_file, ".end")
286 # Connect to external pins and add .ENDS
287 connect_ext_pins(spice_file, outer_in, outer_out)
288 # Replace slash / by _. To avoid issues with Virtuoso
289 replace_slash(spice_file)
290 # Replace [] by _. To avoid issues with Virtuoso
291 replace_brackets(spice_file)
292 # Replace () by _. To avoid issues with Virtuoso
293 replace_parenthesis(spice_file)
294
295
296 # Create testbench
297 content = ".include " + spice_file_name + "\n\n" + corners + "vvnw_n vnw_n 0 vnw_n\n"\
298 + "vvpw_p vpw_p 0 vpw_p\n"\
299 + "\nxtop_01 vdd vss vnw_n vpw_p A Z CRITICAL_PATH\n"
300 write_testbench(dest_path, content)
301
302 print('Done')

.10 Extract timing from liberty

This script is used to extract timing information from liberty files and build a
ranking list of worst performing cells.

1 import re
2 import os
3 import csv
4 import gzip
5 import sys
6
7 #lib_file_tc = "/library_path/HVT36_tc.lib"
8 #lib_file_wc = "/library_path/HVT36_wc.lib"
9

10 '''
11 In a text such like this, return value in the middle
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12
13 "0.0137688, 0.0150271, 0.0173965, 0.0219685, 0.0319864, 0.0548207, 0.106199, 0.197879",\
14 "0.0152693, 0.0165209, 0.0188896, 0.023457, 0.033496, 0.0563155, 0.107772, 0.199596",\
15 "0.0182839, 0.0195251, 0.0218886, 0.02647, 0.036507, 0.0593427, 0.11078, 0.202579",\
16 "0.0237705, 0.0250312, 0.0274031, 0.0319726, 0.042035, 0.0649499, 0.11637, 0.208143",\
17 "0.0311124, 0.032437, 0.0348371, 0.0394019, 0.049505, 0.0724021, 0.123879, 0.215561",\
18 "0.0412562, 0.042758, 0.0453693, 0.0499858, 0.0600137, 0.0829246, 0.134398, 0.226131",\
19 "0.0544402, 0.0562811, 0.0594323, 0.0644088, 0.0744447, 0.0972843, 0.148712, 0.240422",\
20 "0.0711327, 0.0734402, 0.0771574, 0.0832997, 0.0937454, 0.116406, 0.167798, 0.2595"
21
22 returns 0.049505
23 '''
24 def get_timing_value(string):
25 #split into a list when \ is encounter, remove any \n, space and "
26 value_list = string.replace('\n', '').replace(' ', '').replace('"', '').split(",\\")
27 # Build list of list
28 value_list_list = []
29 for row in value_list :
30 row_split = row.split(",")
31 value_list_list.append(row_split)
32
33 value = value_list_list[int(len(value_list_list)/2)][int(len(value_list_list[0])/2)]
34 return value
35
36 def get_all_timing_values(library):
37 regex_cell = r'\s*cell\s*\((\w+)\)'
38 #regex_timing = r'\s*timing\s*\(\)\s*\{[^{]*\s*(?:cell_fall|cell_rise)\s*\(\w+\)\s*\{(?:[^v]*)values\s*\(([^)]*)[^{]*\s*(?:ce⌋

ll_rise|cell_fall)\s*\(\w+\)\s*\{(?:[^v]*)values\s*\(([^)]*)',→
39 regex_fall = r'\s*related_pin\s*:\s*\"(\w+)\"(?:.|\n)*?\s*cell_fall\s*\(\w+\)\s*\{(?:[^v]*)values\s*\(\s*\\*\s*([^)]*)'
40 regex_rise = r'\s*related_pin\s*:\s*\"(\w+)\"(?:.|\n)*?\s*cell_rise\s*\(\w+\)\s*\{(?:[^v]*)values\s*\(\s*\\*\s*([^)]*)'
41
42 # Extract all cells and their attributes from the library by trasversing the curly braces. Saved in data_from_lib
43 countBraces = 0
44 data = ""
45 data_from_lib = []
46 if library.endswith('.gz'):
47 with gzip.open(library,'rt') as f:
48 for line in f:
49 if (countBraces == 0) :
50 if (re.search(regex_cell, line) ):
51 cell_name = re.search(regex_cell, line).group(1)
52 countBraces = 1
53 else:
54 data += line
55 if ('{' in line) :
56 countBraces +=1
57 elif ('}' in line) :
58 countBraces -=1
59 if (countBraces == 0) :
60 data_from_lib.append([cell_name, data])
61 data = ""
62 else:
63 with open(library, 'r') as f:
64 for line in f:
65 if (countBraces == 0) :
66 if (re.search(regex_cell, line) ):
67 cell_name = re.search(regex_cell, line).group(1)
68 countBraces = 1
69 else:
70 data += line
71 if ('{' in line) :
72 countBraces +=1
73 elif ('}' in line) :
74 countBraces -=1
75 if (countBraces == 0) :
76 data_from_lib.append([cell_name, data])
77 data = ""
78
79
80 # Extract timing value for each cell
81 list_cell_timing = []
82 for cell in data_from_lib:
83 cell_name = cell[0]
84 cell_attributes = cell[1]
85 countBraces = 0
86 data = ""
87 timing_list = []
88 #Extract all timing attributers by trasversing the curly braces
89 for line in cell_attributes.splitlines():
90 if (countBraces == 0) :
91 if (re.search(r'\s*timing\s*\(\)', line) ):
92 countBraces = 1
93 else:
94 data += line
95 if ('{' in line) :
96 countBraces +=1
97 elif ('}' in line) :
98 countBraces -=1
99 if (countBraces == 0) :

100 timing_list.append(data)
101 data = ""
102
103 pin_results = []
104 for timing in timing_list:
105 result_fall = re.findall(regex_fall, timing)
106 result_rise = re.findall(regex_rise, timing)
107
108 #Go to next if no timing attributes
109 if(not result_fall and not result_rise):

84



110 continue
111
112 #If both exist, take the sum
113 elif (result_fall and result_rise):
114 related_pin = result_fall[0][0]
115 related_pin_r = result_rise[0][0]
116 #Making sure they are the same pin. They should be
117 if (related_pin == related_pin_r):
118 timing_matrix_f = result_fall[0][1]
119 timing_matrix_r = result_rise[0][1]
120 cell_value_f = get_timing_value(timing_matrix_f)
121 cell_value_r = get_timing_value(timing_matrix_r)
122 cell_value = float(cell_value_f) + float(cell_value_r)
123 # rise-fall / (rise+fall)/2
124 timing_diff = 100*(float(cell_value_r) - float(cell_value_f))/((float(cell_value_r) + float(cell_value_f))/2)
125
126 elif(not result_fall):
127 related_pin = result_rise[0][0]
128 timing_matrix_r = result_rise[0][1]
129 cell_value = float(get_timing_value(timing_matrix_r))
130
131 elif(not result_rise):
132 related_pin = result_fall[0][0]
133 timing_matrix_f = result_fall[0][1]
134 cell_value = float(get_timing_value(timing_matrix_f))
135
136 pin_results.append([related_pin,cell_value,timing_diff])
137 list_cell_timing.append([cell_name,pin_results])
138
139 return list_cell_timing
140
141
142 #********************************************************************************************
143 threshold = int(sys.argv[1])
144 lib_file_wc = sys.argv[3]
145
146 # Get timing for typical and worst case
147 print("Extracting data from typical case lib")
148 tc_value = get_all_timing_values(lib_file_tc)
149 print("Extracting data from worst case lib")
150 wc_value = get_all_timing_values(lib_file_wc)
151
152
153 #Matches LVT
154 regex1=r'_([a-zA-Z]+VT[0-9]+)_'
155 #Matches HVT
156 regex2= r'_([a-zA-Z]+[0-9]+[a-zA-Z]+)_TT_0P'
157
158 #Extract technology name from file
159 path, filename = os.path.split(lib_file_tc)
160 if (re.search(regex1, filename) ):
161 TECH_CHAN = re.search(regex1, filename).group(1)
162 elif (re.search(regex2, filename) ):
163 TECH_CHAN = re.search(regex2, filename).group(1)
164 else:
165 TECH_CHAN = ""
166
167 cell_time_scaling = []
168 #Go through all cells in Typical case
169 for cell_tc in tc_value:
170 cell_name = cell_tc[0]
171 pin_list = cell_tc[1]
172 worst_ratio = 0
173 worst_diff = 0
174 #Go through all cell in worst case
175 for cell_wc in wc_value:
176 #If they are the same cell
177 if (cell_name == cell_wc[0]):
178 for (pin,pin_wc) in zip(pin_list, cell_wc[1]):
179 if (pin[0] == pin_wc[0]):
180 timing_ratio = pin_wc[1]/pin[1]
181 if (worst_ratio < timing_ratio ):
182 worst_ratio = timing_ratio
183
184 if (abs(worst_diff) < abs(pin_wc[2])):
185 worst_diff = pin_wc[2]
186
187 cell_time_scaling.append([cell_name,worst_ratio,worst_diff])
188
189 # Order from worst to better
190 cell_time_scaling.sort(reverse=True,key=lambda x:x[1])
191
192 csv_filename = TECH_CHAN + "_time_scaling.csv"
193 # Save file
194 with open(csv_filename, "w", newline="") as f:
195 writer = csv.writer(f)
196 writer.writerows(cell_time_scaling)
197
198
199 dont_touch_list = ['DF']
200
201 cell_time_scaling_new = []
202 #Build new list NOT containing any cell in the dont_touch_list
203 for cell in cell_time_scaling:
204 found = False
205 for i in dont_touch_list:
206 if (i in cell[0]):
207 found = True
208 break
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209 if (found == False):
210 cell_time_scaling_new.append(cell)
211
212 num_cell_to_exclude = int((threshold/100)*len(cell_time_scaling))
213 #If the numbers of cells to be excluded is greater that the actual number of available cells:
214 if(num_cell_to_exclude > len(cell_time_scaling_new) ):
215 num_cell_to_exclude = 0
216
217 tcl_filename = TECH_CHAN + "_exclude_cells_"+str(threshold)+".tcl"
218 original_stdout = sys.stdout # Save a reference to the original standard output
219 with open(tcl_filename, 'w') as f:
220 sys.stdout = f # Change the standard output to the file we created.
221 print('# ####################################################################')
222 print('')
223 print('# Script created by extract_timing_lib.py')
224 print('# Excluding ' + str(threshold)+ '% of cells')
225 print('')
226 print('# ####################################################################')
227 print('')
228 print('set sdc_version 2.1')
229 print('')
230 for i in range(num_cell_to_exclude):
231 cell = cell_time_scaling_new[i][0]
232 print('set_dont_use [get_lib_cells */'+cell+']')
233 sys.stdout = original_stdout # Reset the standard output to its original value
234
235
236 print("Finished\n")

.11 Verilog-A Counter

This is a Verilog-A counter used to stop simulation after 10 cycles.

1 // VerilogA for counting number of cycles of signal and stop simulation
2 // Counter counts as signal cross 0
3 //Code partially taken from

https://www.edaboard.com/threads/transient-simulation-termination-by-veriloga-model-in-cadence-virtuoso.399898/,→
4 `include "constants.vams"
5 `include "disciplines.vams"
6
7 module counter (clk,vdd);
8 inout clk;
9 electrical clk;

10 inout vdd;
11 electrical vdd;
12 parameter real vtol = 0; // signal tolerance on the clk
13 parameter real ttol = 0; // time tolerance on the clk
14
15 integer cnt=0;
16
17 analog begin
18 @(cross(V(clk)-(V(vdd)/2),1,vtol,ttol))
19
20 begin
21
22 cnt=cnt+1;
23 if( cnt == 10) begin
24 $finish_current_analysis(0); //command to stop the current simulation
25 end
26 end
27 end
28 endmodule
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