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Abstract

Since the 2007 Chinese anti-satellite missile test, Space Debris has become a dominating

talking point within the space community, prompting initiatives like the European Space

Agency’s Space Situational Awareness (SSA) program – started in 2009 - to track and

catalogue fragments and leftover upper stage structures.

This study aims to develop a tool capable of simulating images of debris captured from a

satellite operating from a Sun-synchronous orbit, to develop software prior to launch that

enables the onboard processing of this particular image data.

To accomplish this objective, a Python-based tool was developed following an object-

oriented programming approach. The tool integrates crucial data sources, including the

GAIA Star Catalogue, which provides accurate positions and brightness information of

stars, and the SPOOK object propagator for synthetic debris objects. Realistic Cosmic Ray

maps were also derived from data on proton fluxes within the South Atlantic Anomaly.

The image simulator is designed for utilization of both CCD and CMOS sensors, tailored

for a Newtonian-type telescope. It incorporates a Point Spread Function to simulate

photon diffraction on the pixel wells of the sensor, and permits us to generate distinct

"point" and "streak" features. The simulator effectively accounts for various sources of

noise, including poissonian-like events such as atmospheric dispersion and straylight of

photon sources, as well as non-poissonian noises like readout and reset noise. This model

was compounded by an in-depth analysis and modelling of defective pixels, through reverse

engineering of data from both types of sensors. Finally, an optical performance model is

also integrated to predict and simulate photon collection from artificial objects based on

their albedo, size, shape, temperatures and dimensions.

The results demonstrate the effectiveness of the developed software through 15 valida-

tion scenarios, with an additional two scenarios recreating real-life pointing and tracking

situations for both CCD and CMOS sensors. These simulations have yielded significant

improvements in background noise modeling and Signal-to-Noise Ratio (SNR) approxi-

mation. The outcomes provide a foundation for the development of onboard software for

debris tracking and segmentation, which would enable Airbus’ projects to process data

directly onboard space-based telescope without the need to transmit large image files.
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Introduction

The Space Debris challenge

On June 29, 1961, 77 minutes after the separation of Transit-4A, the upper stage of the

Thor-Ablestar vector exploded, scattering almost 300 trackable fragments in MEO. To

this date, roughly two thirds of these fragments are still orbiting Earth, along with an

unknown number of uncatalogued debris. At the time, this single event more than tripled

the debris population orbiting Earth, and in 60 years of space endeavours this population

has risen to 56450 tracked objects, of which an approximate 28160 have not de-orbited

and are currently tracked by the US Space Surveillance Network.[1]

Figure 1: Distribution of debris on GEO, Credit: NASA ODPO

The Inter-Agency Space Debris Coordination Committee (IADC) provides a definition

for these kinds of space fragments, stating that ”Space debris are all man made objects

including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that

are non functional”. Thus, for space debris, we do not only consider fragmentation from

accidental explosions, but also leftover structures from spent upper stages or discarded

equipment. [2] Compounding these issues, three-body interactions resulting from luni-solar

influence, along with atmosphere drag, can shift the orbital parameters of these objects

leading to potential orbit safe-keeping risks.

Current tracking capabilities are limited to a 5 cm definition for LEO and 30 cm for GEO,

however ESA estimates show that even millimiter-size fragments can cause detrimental

damage to subsystems, and objects larger than 1 cm could cause break-up events of

satellites.[1] [3] These types of in-orbit collisions have devastating results on debris

populations, with the first-ever recorded case happening in 2009 and generating 2300
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trackable fragments (Iridium-33 and Kosmos2251 collision). Other worrying strategical

concerns arise from untracked spy satellites, and engagement demonstrations such as the

FengYun-1C intercept of 2007, which alone raised debris population by an estimated 25%.

Figure 2 shows this trend broken down into it’s contributing objects.

Figure 2: Evolution of tracked debris population as of February 2017 [3]

Were the debris population be left unchecked to rise, collisions would unavoidably rise,

potentially leading to the manifestation of what is known as the Kessler Syndrome, a

type of chain reaction where the rate of debris creation is self-sustained by the collisions

from the debris density itself.

Mitigating and preventive action has been undertaken to try and contain the issue, with

Europe leading the The Space Situational Awareness (SSA) Programme instituted in 2009

to combat the rise of debris population. Under the programme, ESA aims to acquire an

independent capability to overwatch "objects and natural phenomena that could harm

satellites in orbit or infrastructure such as power grids on the ground". To fulfill these

goals, the SSA programme has identified three core areas of research:

• Space Weather (SWE): to monitor and predict the interplanetary and planetary envi-

ronments which could affect the integrity or quality of human life.

• Near-Earth Objects (NEO): to detect natural asteroids that could potentially intercept

the Earth’s path.

• Space Surveillance and Tracking (SST): to oversee the orbital life of active and

inactive objects orbiting Earth.
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These topics are actively being developed in parallel, with significant contributions from

existing European collaborators such as Airbus. European accomplishments in the field

include (according to ESA Space Safety office):

• Research and development in satellite laser ranging

• Research and development in optical surveillance techniques

• Test and validation of radar detection techniques

• Development and installation of a monostatic test radar, Santorcaz, Spain

• Development and installation of a bistatic test radar, France

• Execution of multiple ’Collision Avoidance Manoevres’ from ESOC teams

As of 2019, the work of the Space Surveillance and Tracking segment has fallen under the

Space Debris Office, operational within the ESOC facility, headquartered at Darmstadt,

Germany.

With the recent surge of launches into outer space, mostly thanks to the 12000 planned

platforms for the Starlink constellation (shown in Figure 3), space surveillance has begun

to turn into both a safety and security concern.

Figure 3: Yearly number of objects launched into outer space
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Goals and Structure of the Thesis

The main objectives on which this thesis is built upon are outlined here:

• Study of Error sources that affect the astrometric measurements of optical sensors

• Evaluation of existing telescopic imagery to identify faults and apply image correction

techniques

• Enhancement of the Image Simulator modes and functionalities

• Definition of a validation pipeline for the implemented software

To properly reflect these goals, the thesis has been structured to provide the reader with

a comprehensive breakdown of the relevant phenomena:

• The current chapter introduces the orbital debris problem and provides an overview

of the thesis

• Chapter 1 introduces the relevant hardware and software utilized during the thesis,

and describes typical observation scenarios

• Chapter 2 dissects the error sources affecting the measurements

• Chapter 3 introduces the Image Simulator, broken down into its various modules

• Chapter 4 discusses validation scenarios and demonstrates procedures to validate

real-life images

• Chapter 5 provides an overview of the results and an outlook for future improvements

Further details regarding particular topics and techniques are grouped in an Annex chapter.
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1 Overview of hardware & software

1.1 ART and SBOC

The Airbus Robotic Telescope (ART) constitutes a key component in the validation

pipeline in the B2 phase of the Space-Based Optical Component (SBOC) project. Quoting

Cirillo2023 [4]: "SBOC is an optical payload, intended to be used as payload for the ESA

VISDOMS-mission (Verification of In-Situ De- bris Optical Monitoring from Space). The

main goal of this mission is to improve the knowledge on the distribution of small debris

in LEO, which cannot be detected by ground-based sensors." The planned mission places

the payload on a dawn-dusk sun-synchronous orbit, pointing towards anti-Sun direction.

Figure 4: Typical surveillance scenario from a Sun- synchronous orbit [4]

Deployed in June of 2018, ART is a 40 cm aperture Newtonian telescope located in

Extremadura Spain. Its deployement has enabled Airbus to perform tracking and sideral

observation and to develop its own end-to-end Processing Pipeline in the SST field. ART

provides the team with crucial image data for SSA development activities for participation

in international measurement campaigns. The location for the telescope has been selected

for its optimal observation conditions, with favourable enviromental and meteorogical

observations (low seeing effects and roughly 260 clear night per year)[5].

14



Figure 5: The Airbus Robotic Telescope

In January of 2023 ART has undertaken a significant upgrade, via installation of a new

camera with a large CMOS detector. This new hardware has enabled the telescope with

a wider FOV, higher sensitivity and higher frame rates, similar to the ones planned for

use within the SBOC flight model. The new hardware is capable of on-board binning of

images provided in the FITS data handle format.

Focal Lenght 960 mm
Aperture Diameter 400 mm

Readout times 2 Mhz, 12 Mhz
Wavelenght range 300 nm to 1000 nm panchromatic
Surveillance modes Sideral, Tracking

Detector type
Detector size
Field of View

CCD CMOS
4008 x 2672 pxl 14192 x 10640 pxl
2.15 x 1.43 deg 3.07 x 2.19 deg

Table 1: ART technical specifications [5]

The Newtonian-style telescope utilized features a two-mirror configuration of parabolic

reflectors, to collect photons at a 90° angle on a focal plane where the camera sensor is

placed. The primary mirror (objective) collects light from the enveloped FOV, and through

the use of the secondary mirror and baffles at the aperture it is possible to eliminate

most of unwanted straylight sources. Newtonian telescopes are a convenient solution when

performing astrometry, since they do not experience the chromatic aberration typical of

refracting telescopes, and they are less expensive than their comparable counterparts.
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Figure 6: ART’s internal double-mirror configuration

1.2 Tracking and Surveillance scenarios

A set of reaction wheels built into the gimbal mount of the telescope allow for 2 DOF

rotations in order to perform observations on varying RA/DEC coordinates. We define

as dRa/dDEC the velocities of the objects observed in this reference system: if these

values are known and already stored in the catalogue, we are able to perform a tracking

scenario by matching the rotation of the satellite with the relative position of the object

on the celestial sphere. In this scenario, only the tracked object appears as a point source,

whereas all other objects are seen as streaks due to the effects of motion blur.

In an ideal scenario, the aperture would be perfectly aligned with the light source during

tracking, and all the signal would be concentrated in one single pixel throughout the whole

exposure. In reality, diffraction effects create an "Airy disc" pattern on the pixel well, and

vibration phenomena during tracking compound this issue, effectively "de-focusing" the

point source.

Tracking is especially useful when computing operations such as: light-curves determina-

tion, telescope calibration, signal power analyses and astrophotography of LEO objects.

Typical exposure times range from 0.5 to 30 seconds, and known GPS satellite coordinates

are often used to calibrate the gimbal tracking controls of the mount.
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Figure 7: Tracking scenario on a Block IIF GPS object

Surveillance scenarios scenarios are the conventional fixed-view images of stars, constella-

tions, and faraway objects (Sideral observations). These observations are usually performed

at high exposure times (up to 300s) to calibrate the camera and at shorter exposure times

(0.5- to 5s) when scanning for potential debris across a determined FOV. In these scenarios,

stars and faraway galaxies often appear as still point sources, whereas rapidly moving

debris or satellites appear as long streak-like sources.

These streaks are helpful to perform Initial Orbit Determination (IOD), especially if we

are able to catch both ends of the streak within our FOV. When an unknown object is

recorded, it is added to the catalogue and scheduled for future observation to improve the

determination of its orbital parameters.

The total signal power of the object is spread thin along the entire streak, in addition to

the other diffraction phenomena mentioned prior. For these reasons, photometrists often

employ terms such as Full Width at Half Maximum, or Ensquared Energy, to define the

severity of the dispersive effects on these signal sources.

The following image displays an example of a sideral observation scenario where a single

streak source is detected crossing the entire field.
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Figure 8: 300s exposure of the M82-M81 "ballet" in the Ursa Major constellation

1.3 Sensor types

Optical sensors are key components in astrophotography, enabling the capture of light

from celestial objects. They convert the incoming light into electrical signals, which are

then processed and transformed into digital images. These sensors have to be highly

sensitive, allowing the detection of faint light sources and fine details in astronomical

objects.

Optical sensors come in different types, each with its own advantages and characteristics.

They enable long-exposure imaging to capture dim and distant objects, and their high

resolution provides detailed images of galaxies, nebulae, and other celestial phenomena.

Generally, optical sensors perform a four-phase process when capturing each frame:

1. Exposure: the sensor is exposed to light, and the photons captured interact with the

sensor’s light-sensitive elements generating electrical charges proportional to the intensity

of the incident source.

2. Readout: In this phase, the accumulated electrical charges or voltage in each pixel of the

sensor are sequentially read out. Analogue to digital conversion is then performed.

3. Reset: the pixel charges are reset to a baseline level, to avoid any residual charge from

influencing subsequent frames.
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4. Post-processing: a variety of processing steps can be applied to manipulate the digital

data, such as binning, salt-pepper noise reduction, stacking and signal amplification. The

image is then stored in an appropriate image format (such as .FITS).

In this section we shall discuss only the sensor types relevant for our criteria of use, but

they can come in a variety of configurations that suit a diverse range of applications.

1.3.1 CCD Sensors

CCD (Charge-Coupled Device) sensors are electronic optical devices used to capture and

digitalize light signals. They have a variety of employments in many imaging applications,

including astrophotography and astrometry. CCD sensors consist of a 2D array of pixel

wells that collect photons and convert them into electrical charges.

The CCD sensor operates on the principle of the photoelectric effect. Within each pixel

well a photosensitive element is contained, often some kind of silicone-based photo-diode.

When a photon strikes a photo-diode, it generates an electric charge proportional to

the intensity of the incident light. This process effectively converts a photon signal into

"free-electron" signal, that is the number of released electrons detected in the readout

process. This conversion is not lossless, and wavelengths are converted differently from

eachother: these constitute an intrinsic sensor property known as Quantum Efficiency,

which is often provided as an interpolation of the sampled free-electrons at different

wavelengths.

Figure 9: Quantum efficiency curves for the MicroLine ML 11002 sensor

The charge is then trasfered across the sensor using a "charge-coupled" structure, that

is a series of capacitors that shifts accumulated charges in a line of pixels to an output

amplifier. At the readout, the amplifier convers the now-analog signal into digital values

(ADU), which are then stored as an uncompressed image file.
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Figure 10: CCD sensor readout process

CCD sensors have revolutionized the field of astrophotography and astrometry thanks to

their high sensitivity and low noise characteristics, compared to consumer-grade photogra-

phy systems. Thanks to their extremely low thermal leakages, they excel in long-exposure

settings, which are critical in astrophotography when capturing faint celestial objects.

ART hosted a MicroLine ML 11002 until January of 2023. ML 1002 is a type of high-

performance CCD with a 4008x2672 imaging array, low noise, and wide dynamic range;

making it especially suited for these kinds of applications.

1.3.2 CMOS Sensors

CMOS (Complementary Metal-Oxide-Semiconductor) sensors have recently gained massive

popularity in the space community, thanks to their massively improved performance in

readout speeds, lower power consumption, and cost-effectiveness.

The pixel array of a CMOS operates differently from a CCD, with photo-diodes, transistors

and amplifiers all embedded within each pixel well. This means that charge conversion

from photon to digital units takes place directly within the pixel itself, without the need

of charge transfer mechanisms. This peculiarity boosts significantly the readout speeds

and sensitivity, and makes these sensors particularly well-suited for capturing fast-moving

objects.
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Figure 11: CMOS sensor readout process

Some CMOS sensors employ back-side illumination (BSI) technology. In traditional

sensors, the circuitry is positioned between the light-sensitive surface and the incoming

light, causing some light to be blocked. BSI CMOS sensors address this issue by flipping

upside down the sensor and placing the circuitry on the backside, allowing more light to

reach the light-sensitive area. This enhances the sensor’s sensitivity, making it advantageous

for astrometric applications where capturing faint signals is crucial.

A critical characteristic of most CMOS sensor is the rolling shutter under which they

operate. Unlike the global shutters of CCD sensors, CMOS sensors readout images row by

row. This can lead to artifacts and distortions during relative motion, and some mitigation

techniques might be required to compensate for these effects. As of the time of this paper,

CMOS with built-in global shutters remain too expensive to be justified for some R&D

applications.

Since January of 2023, the ART has been upgraded with the Sony IMX411 camera sensor,

a high-performance CMOS sensor with back-side illumination featuring a 14192 x 10640

camera array, a larger FOV and extremely lower readout noise. However, due to the greater

density of amplifiers and smaller pixel sizes, the camera experiences greater charge leakage

and is more suited for shorter exposures.
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1.3.3 FITS images

Originally standardized in 1981 by NASA, the Flexible Image Transport System (FITS)

is a digital image format that supports inclusion of a variety of non-image data extensions.

The format is commonly used for astronomic purposes, and allows for storage of metadata

through Headers, included in a multi-table database of key-value pairs. These Headers

provide astronomers to a direct and readable access to commonly used parameters for

astrometric evaluations.The FITS format provides uncompressed data and supports up

to 64 signed integers and is maintained by the International Astronomical Union (IAU)

FITS Working Group, with Version 3 being published in 2010.

Figure 12: The AstroImageJ interface for the .fits image format

FITS files are supported by a large range of programming languages used for data analysis,

and programs such as AstroImageJ provide a useful GUI to perform a variety analyses

of without the need of writing ad-hoc code. For debris observation, performing rapidly

image stacking and gaussian filtering can prove particularly useful when trying to capture

faint objects while Tracking, and AstroImageJ supports for these operations. More details

regarding the technique of image stacking are provided in Annex I.
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2 Sources of error

Astrometric observations do not normally provide a direct means to access the signal we’re

interested in, but merely a function of it from which we need to perform a process known

as data reduction of observations. Through observable parameters and assumed statistical

properties, one can come up with mathematical approaches to treat the measures observed

and reconstruct the data we are actually interested in.

Data reduction thus constitutes an integral process to obtain positions, relative motion,

signal strength and most other astrometric and photometric properties of celestial bodies.

However, no observation is exempt from errors, which for the sake of clarity are defined

here to be affecting the uncertainty of a measurement. One should expect that if we

could evaluate all of these uncertainties and have their behaviour corrected, then our

measurements would improve. This assumption, however, is not necessarily true, and we

first need to distinguish between the various contributing uncertainties that affect the

confidence in our results:

• Random errors arise from unpredictable, or stochastic, variations of a parameter that

affect the measurement of a quantity. They exhibit fluctuating and agitated behavior and

cannot be corrected without degrading the quality of other measurements. These affect

the precision of a measurement.

• Systematic errors are unknown or unmodelled effects, which if corrected would im-

prove astrometric performance. They exhibit a consistent behaviour across observations

that requires estimation techniques to correct for. These errors affect the accuracy of a

measurement.

Combined, the estimates from these two families of errors provide us with the uncertainty

of a measurement. For astrometric data reduction, only systematic errors have to be

accounted for, but for the purposes of a image simulator knowledge on reconstruction of

random errors is also required.
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2.1 Projection method

Although not strictly a source of uncertainty, projection methods are a modelling approach

that needs to be accounted for. Since the observation is taking place at the focal plane of

the telescope, we are technically performing a geometric transform of the celestial sphere.

This type of projection (from standard world coordinates to relative pixel coordinates) is

known as Gnomonic projection, a type of central projection.

To perform this kind of projection, we select an image plane that is typically tangent to the

sphere, and a point known as the center of the projection. Then, to determine the image of a point,

we simply take the line passing through the point’s center and locate its point of intersection

with the plane.

Figure 13: Gnomonic Projection

Due to the geometry of the problem, we experience a combination of expansion and distortion

phenomena ad the edges of the projection, for which we model an expansion ellipse and observe

the two effects separately.

Figure 14: Expansion effects
Figure 15: Distortion effects
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Where r′ = r/ sin(ϕ) and r” = r/ sin2(ϕ). From Figure 16, which illustrates the expansion ellipse

for a non-central projection, we come to the conclusion how the method is not area preserving

and is not conformal, with distortion becoming greater at the edges of the projection on the focal

plane.

Figure 16: Expansion ellipse in the Gnomonic projection model

2.2 Systematic errors

2.2.1 Parallactic displacements

The position and relative velocity of the observer has a noticeable impact in these scenarios,

creating an apparent displacement w.r.t. our inertial reference system (ICRS). The position

of our telescope causes a parallax effect, whereas its velocity is responsible for the phenomena

known as aberration. Combined, they are responsible for the family of parallactic displacements.

For both of these we distinguish 3 different types:

1. Diurnal displacements are caused by the motion of the observer (when ground-based)

around Earth’s barycenter.

2. Orbital displacements are caused by the motion of the orbit of the observer (when

space-based) around Earth’s barycenter.

3. Annual (or Stellar) displacements are caused by revolution of the Moon-Earth system’s

COM around the Solar System’s barycenter.
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Figure 17: Aberration due to Earth’s motion

To summarize:

Parallax displacements are difference in an object’s apparent location when seen from two

separate lines of sight. This effect is much more prevalent for closer objects, and are zeroed-out

when observing at infinite distances.

Aberration displacements originate due to the time delays caused by the limitation of light-

speed signals. The apparent motion of the object we observe shall be corrected for this "lag"

caused by the relative motion between observer-target.

The magnitude of these effects greatly vary on observation scenarios, but generally aberration

phenomena are much greater than parallax. [6]
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2.2.2 Relativistic effects

According general relativity, light tends to follow the curvature of spacetime, hence when pho-

tons graze a massive object, they are bent toward a different direction. This effect, known as

Gravitational lensing is caused by the gradient of gravitational potential of the object, and

the bending angle θ depends on the mass of the object and the minimum distance from the

photon path to the planetary body.

One can calculate this angle using the formula:

θ =
4GM

rc2
(1)

Where for a sun-grazing object the angle of deflection is found to be a mere 1.75", and is

completely negligible for all other celestial bodies in the Solar System.

Figure 18: Gravitational lensing - schematic

Relativistic Aberration, similarly to the parallactic displacements, causes a change of the

direction of a light ray when observed from inertial reference frames close to the speed of light.

Its effects are described by Einstein’s special theory of relativity, but the relevancy of such an

effect is extremely minor.

Doppler effects, similarly to sound waves, cause a frequency shift for rapid relative radial

movement. The effect is also known as redshifting, and has known widespread recognition for

being utilized to prove the expansion of the universe. Some Doppler detection techniques utilize

reflected signals to perform initial orbit determination, maneuver detection, and to perform

satellite status characterization and anomaly detection.

27



2.2.3 Atmospheric effects

For objects in LEO and MEO, atmospheric refraction from the Earth’s atmosphere can cause

significant displacements. In a similar fashion to parallactic effects, atmospheric displacement

strongly depends on the object’s distance and the zenith angle.[7]

The effect is caused by the gradient in air density, which decreases at higher altitudes and with

therefore decreasing index of refraction.

Figure 19: Atmospheric refraction of starlight - schematic

This kind of phenomena can be described through planar-stratified layers where one applies

Snell”s law at the interfaces:

n sin(z′) = sin(z) (2)

where z and z’ are the unrefracted and refracted zenith angles, with z′ < z.

Kaplan(2014)[7] has shown that though a simple single-slab model, refraction is entirely dependent

on height and elevation. The problem is shown to be entirely geometric, with faraway objects

such as stars not experiencing any refraction in terms of and demonstrates that the error increases

with higher zenith angles and lower height.

In the report, the solution for this problem is shown to be (in degree terms):

∆z = (n− 1) tan z′
( s
h

)
(e−h/s − 1) (3)

Where s is the height of the homogeneous atmosphere.

Results show that displacements for LEO and MEO objects are relevant (in the order of a few

arcseconds), thus these type of phenomena should be accounted for.
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2.2.4 Sensor-related errors

In the event of rolling shutter, exposure is performed sequentially line by line with a slight delay

between line readout. While the exposure time for each line is the same, the mid-exposure times

vary based on the coordinates of the line.

Figure 20: Readout timing for rolling and global shutter

Rolling shutters are known to cause a variety of image artifacts, of which we distinguish four

different types:

• Wobble/Jello Effect: in the event of vibrations during exposure, straight lines will be

represented as stretched and curved unpredictably.

• Skew: during rapid camera rotation, straight line angles are modified, causing vertical

lines to appear as diagonal.

• Spatial and Temporal aliasing: in case of horizontal rolling shutter, vertically adjacent

pixels will are sampled sequentially, causing smear for rapidly moving or rotating objects.

Mid-exposure timing will also vary as a function of pixel position.
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• Partial Exposure: in the event of steep brightness gradients or uneven flash exposure,

sections of the image will experience different illumination conditions.

Wobble and Spatial aliasing are particularly relevant in the case of space debris observation,

since any minor change in the energy content of the streak will affect OD techniques.

Amplifier Glow, colloquially known as "amp-glow", is a electroluminescence phenomena caused

by voltage and temperature spillage from the readout circuitry. The effect is akin to a light

source, or "glow", often located at the edges of the image. The behaviour is different between

sensors, with CCD glow being associated with the amplifier of the serial shift register, while

CMOS glow is caused by the integrated amplifiers in each pixels.

2.2.5 Platform-related errors

Calibration is an essential step in obtaining reliable astrometric data. Normally calibration

for RA/DEC pointing and time correction is carried out by observing GNSS (GPS, Galileo or

GLONASS) constellations, of which their ephemerides are readily available with their positions

accurate to the centimeters scale. The ephemerides also contain reliable timing data which can

be used to correct for time bias. Normally this is done by comparing the mid-exposure time-tag

across a large number of GPS imagery, and interpolating the results to match those of the

ephemerides.

Errors in sensor location, especially for Space-based observers, can also cause significant

issues during operation. Usage of differential GPS is advisable to achieve a positioning accuracy

that does not interfere significantly with the results.

Figure 21: Examples of radial lens distortion

Other relevant issues that characterize the telescope hardware include lens distortion, a type

of optical aberration where lines at the edges of the focal field are not projected straight.
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2.3 Random errors

Figure 22: Taxonomy of noise sources

2.3.1 Atmospheric effects

Earth’s atmosphere has proven to be a problematic interference both to ground-based and

space-based astrometric operations.

The upper atmosphere absorbes most wavebands outside of radio, visible and near ultraviolet.

Much of the infrared (21 mm to 1 mm) suffers from absorption. When using certain filters this

effect has a considerable effect (for example when working with a R-I passband).

Visible light is more readily scattered from dust and mist (Mie scattering) and partly from

small molecules (Rayleigh scattering). Scattering causes the electromagnetic radiation to be

redirected from its original path. This effect is more known as Air Glow, and its resulting stray

light has a significant effect on optical performance.

Figure 23: Scattering phenomena from small particles - schematic
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Akin to Atmospheric refraction, variations of density within the atmosphere cause both intensity

fluctuations and refractive index variations. Combined, these two effect cause smearing and

shifting of apparent position, and are known as Seeing phenomena.

Combined, these three effects form the Scintillation phenomena, which results in a degree of

unpredictability when measuring apparent magnitudes, colour, and positions of celestial objects.

2.3.2 Sensor-related errors

Digital imagers are affected by a variety of noise sources that significantly affect performance and

need to be addressed. A comprehensive list of these effects would include (Per Konnik 2014 [8]):

• Shot noise: the photon-capture process within the photo-diode has an inherent uncertainty

due to the random fluctuations of photon arrival events. This effect is particularly important

for low-light conditions.

• Readout noise: is caused on the amplifiers that convert the stored charge of each photo-

diode pixel into an analog voltage. This noise is compounded by reset noise, dark current

noise and fixed pattern noise.

• Reset noise: this effect is caused by the uncertainty of the reference voltage at which the

sense node capacitor is set to prior to performing the pixel’s charge packet measurement.

• Dark Current (DC) noise: also known as thermal noise, this effect is randomly generate

by the thermal spillage in the pixel well, which releases a higher number of free electrons

proportionally to the sensor temperature and exposure time.

• Fixed Pattern Noise (FPN): this effect is caused by minute differences in sensitivity

across the pixel array, and is composed by a the dark signal non-uniformity (DSNU) and

photo response non-uniformity (PRNU) components.

• Quantization noise: this error is artificially introduced in the digitization of the analogue

signal, and is caused by the data discretization to fit within the integer limit.

We shall analyze these effects further by isolating them through calibration imagery in section

3.6.5.

Individual pixel defects are also commonly witnessed in COTS hardware with longer life cycles,

especially if often exposed to high-energy particle events. A comprehensive breakdown and

analysis of these defects is presented in Section 3.7.
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2.3.3 Scenario-related errors

Background noise is commonly used to refer to the incoming light from an apparently empty

section of the night sky. Even though no astronomical objects are detected in the FOV, we

detect a baseline signal amounting to around 22 in the apparent magnitude scale. This signal is

a compound phenomena made up of multiple sources, including:

• Air Glow due to the diffusive and scattering presence of the atmosphere

• Light Pollution from man-made sources

• Zodiacal Light caused by diffuse sunlight scattered by interplanetary dust.

• Undetectable point-like sources such as faint asteroids, galaxies or stars.

In optical system’s design,Stray Light is any light source that was not intended for capture. These

photons are usually reflected off of atmosphere or planetary bodies, with the highest contributors

being the Moon and Jupiter. In some situations, the Earth itself can be a considerable staylight

source, especially for space-based sensors orbiting over the polar regions, where albedo is higher.

Straylight from air glow or the sun is also extremely relevant and require dedicated hardware and

software suppression techniques. Much of telescope system design is oriented in the prevention

of this straylight, often resulting in multiple-mirror designs supplemented by baffles, which help

to significantly attenuate this phenomena.

Figure 24: Baffle design for Stray Light suppression (from Marcinian 2014 [9])

33



3 Image Simulator

3.1 Overview

In this chapter we shall discuss the implementation of the Image Simulator developed to test the

on-board software for the SBOC project. Within this chapter we will go over the methodology,

the architecture and the models of the simulator to provide the reader with a full run down of

the logic behind its development.

For the image simulator we have outlined the following design drivers:

1. Modular design

2. Flexibility in feature implementation

3. Realistic simulation

4. Statistically-driven

5. Cross-validated through ART imagery

These drivers shall be kept into consideration throughout the entire development, to facilitate

their implementation.
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3.2 Architecture

To comply with the first two requirements, the simulator features a Object Oriented Programming

approach, where input parameters and functions are grouped together into different classes.

We identify the following classes within the architecture:

1. Main Synthetic Image class: is responsible to handle the main image assembly process

and contains essential data for output data generation.

2. Detector Parameters subclass: contains and processes data for process noise, defective

pixels, timing errors and QE conversion.

3. Telescope Parameters subclass: contains the intrinsic properties of the telescope, and is

responsible for generating vignette and distortion maps.

4. Observation Scenarios subclass: processes the star and object catalogue data and

contains necessary input data to represent these features according to FOV and exposure

time.

5. Platform Parameters subclass: handles data to simulate vibration of the gimbal during

tracking and surveillance scenarios.

Inputs for these classes are stored in an internal .json file.

External software data is collected from the internal Airbus’ TRACES tool for generating cosmic

ray maps, the GAIA DR2 catalogue of visible stars and the SPOOK feature propagator (proposed

for a future upgrade). The image below displays a comprehensive breakdown of the class structure

within the simulator.

35



Figure 25: Class system breakdown of the image simulator

Relevant python packages featured in the model include scipy for statistical processing of

noise data and astropy.WCS, used extensively for reference systems conversion across multiple

standards.
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3.3 Modelling approach

The image simulator operates on the philosophy of reconstructing all phenomena affecting the

path of a photon as they appear in real life. This "photon-path approach" allows us to segmentate

the phenomena in a sequence, since order of application matters in terms of obtaining a final

result consistent with real imagery.

We have distinguished seven critical steps that affect image reconstruction:

1. Projection method

2. Source phenomena

3. Atmospheric effects

4. Telescopic interactions

5. Exposure phase

6. Conversion phase

7. Post processing phase

From these, we can identify and insert error sources according to their position within this

analysis method.

Figure 26: Block representation of the modelling principle for the Image Simulator
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Reconstruction of these phenomena is possible through a backwards analysis of these effects,

where we start from the image output, and build our model retracing the steps back to the

original source.

To handle the variety of inputs a pipeline for data handling has been implemented, with the

following structure:

1. Raw object data: containing inputs regarding object and telescope position, distances and

phase angle.

2. Magnitudes: provided as an input, is used to represent star and sky background data.

3. Signal Power [photons]: star data is processed through exposure time and star temperatures,

with straylight data also being introduced in this step.

4. Total Signal Power [photons]: previous sources are converted utilizing pixel dwell time, and

poissonian noise sources are applied.

5. Total Signal Power [electrons]: utilizing quantum efficiency curves, intrinsic sensor noises

are introduced.

6. Pixel Signal [electrons/pixel]: signals are converted to fit within the 2D focal plane array,

by introducing FWHM/EE conversions for PSF application.

7. ADU: all signals are converted into digital units, with bias and pixel defects being imple-

mented.

8. ADU correction: final adjustments are performed based on binning requests and bit depth

(to perform ADU threshold for saturation). The image is then saved according to the

provided file format.
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Figure 27: Process flowchart for simulation input data handling
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3.4 Feature representation

To create both point and streak features, it’s necessary to define a method to convert celestial

coordinates onto the sensor’s focal plane.

To achieve this, we define the point source coordinates through RA/DEC coordinates in the

ICRS coordinate frame system, where we convert them to the GCRS frame (which considers

earth’s centers of mass instead of the solar system’s barycenter) to correct for aberration and

parallax displacements. This operation is entirely performed by the astropy.wcs package, which

contains multiple utilities for coordinate conversion and focal plane representation.

At this point we have to consider that when performing observations on point sources, a diffraction

and aberration pattern will be produced on the sensor matrix. This series of concentric rings

around a central brightly illuminated region is known as an Airy disc pattern. The energy

distribution within this pattern can be modelled through Point Spread Function (PSF), a more

general term to describe the sensors’ impulse response for a single point source.

Figure 28: Airy disc representation using Jinc function, log-normed color scale

Within the image simulator, an approximation for the Airy pattern must be modelled in order

to represent both streaks and stars. More complex modelling through the first-order Bessel

functions can be computationally intensive, so a compromise must be reached by only modelling

the central lobe of the distribution through the use of a Gaussian 2D distribution. To find the
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right parameters, we utilize the definition of FWHM addressed in annex II, to calculate the STD

of the distribution:

σnormal =
FWHM

2
√
2 ln 2

(4)

With these initial assumptions we can begin working with stars, which within our model we

assume to be point-like sources.

3.4.1 Star representation

The GAIA database, curated by the European Space Agency, provides astrometric, photometric

and spectroscopic data on almost 2000 million stars in the Milky Galaxy and other extra-galactic

objects. The objects’ information is sorted by position, parallaxes, relative motion and apparent

magnitude measurements. By filtering through the database for RA, DEC, and a limit magnitude

for which SNR = 1, we store the data in a smaller local database of almost 30k stars, with

magnitudes ranging from 20 (faintest) to 5 (brightest). For calibration and conversion purposes,

brightness is calibrated using the Vega star as a magnitude zero baseline. To avoid using an

excessive number of barely visible stars, for testing purposes we usually limit the lower bound to

a magnitude of 18.

In addition to magnitude data, we store the effective temperature values provided from the GAIA

catalogue. Alternatively, these can be obtained from Ballestero’s formula under the black body

hypothesis:

Teff = 4600K

(
1

0.92(BV ) + 1.7
+

1

0.92(BV ) + 0.62

)
(5)

Where B-V is defined as the range of wavelengths between the blue and visual magnitudes in

the spectrum.

We apply Planck’s law to model stars as black bodies, which allows to calculate the spectral

radiance emitted at a determined temperature and frequency.

Bλ(λ, T ) =
2hc2

λ5
1

exp( hc
λkBT )− 1

(6)

41



Figure 29: Spectral irradiance and its blackbody approximation, from T.C1 of [10]

From Figure 29 we can evaluate the quality of the black body approximation, which must return

the same total emissive power as the Sun spectrum. By integrating across the visible range

spectrum, we obtain the effective irradiance of a given star Lstar,eff in
[

W
sr·m

]
. At this point, one

can calculate the signal, that is the electrons detected by the sensor across the entire pixel range,

as:

Ne(λ, T ) =
Lstar,eff cos (LOS)Aaperture(

hc
tint

) τ0Ωstar−obs (7)

Where we take into account the aperture, the LOS angle w.r.t. the stellar body, the integration

time, the transmissivity τ0 and the solid angle Ωstar−obs.

3.4.2 Streak representation

When a signal is moving across the focal plane during the exposure phase, a streak-like image

is picked up on the output. Real streaks are often completely straight, with non-linearities

introduced from gimbal vibrations during tracking. Integration time, focal plane velocity and

signal intensity consistently affect how the streak is rendered.[11]

Figure 30: Streak affected by vibrations during tracking
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To represent linear and curved streaks, we utilize the discretized streak positions to interpolate a

cubic spline, from which it is possible to sample any intermediate position on which to apply our

PSF. After an adequate number of intervals is established, the PSF is applied to the edges and

centers of these linear segments, creating a semi-continuous set of diffusion models.

Figure 31: Streak representation - schematic

The denser the discretization, the smoother is the final result. Since streak energy is conserved,

the diffusion models are summed additive for each time frame they are rendered, as shown in

Figure 32.

Figure 32: Overlap phenomena in PSF application - schematic
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For the diffusion diffusion model, we shall use again 2d normal distribution to approximate the

Airy disc pattern, using the formula:

f(x, y) =
Ne√
2πσ

exp

(
−(x− x0)2 + (y − y0)2

2σ2

)
(8)

Where x0, y0 are the center coordinate values of the distribution, obtained by evaluating the

spline function at the various intervals, and Ne is the star flux of electron numbers detected on

the imaging detector, calculated by integrating across the visible bandwidth:

Ne =

∫ λ2

λ1

τ0 ·Mλ ·Aaperture ·QE · tint · dλ (9)

Win Mλ being the star radiation within the provided wavelength range and τ0 is the transmissivity

of the entire optical system.

3.4.3 Rolling shutter corrections

The shutter of a camera is the component that allows light to enter within the aperture. Shutter

controls the exposure time of the image and, in the case of most CMOS sensor this exposure

takes place sequentially, one row at a time.

Consequently, during the integration time of the sensor, moving objects experience a shift in

their centroid position and length, depending on angle and apparent focal plane velocity.

In the case of sequential row readout, horizontal streaks will not experience any length variation,

because the readout happens to "catch" the entire streak during at the same time, whereas vertical

streaks experience the most offset in centroid position since the readout process encounters them

at varying time intervals.

If we segmentate the streak on multiple time intervals, we can operate directly on the centroids

associated with each interval. Two main approaches are known to be utilized to correct for the

centroid shift, both explored within Kukić2018 [12]:

• Spatial corrections require estimation of angle and focal plane velocity prior to the

rolling shutter effects. In this case one can perform a correction on the location of the

centroids of the streaks, but not on the time of integration.

• Temporal correction: operates solely on the time stamps of each centroid, by performing

a correction on the time of integration and associating this time variation to a spatial

variation on the Y axis.
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The latter method is much more straightforward, and requires only that we calculate a time offset

relative to the reference time stamp. If we assume the middle of integration (for an individual

streak interval), we can calculate the time delay between the start of an individual time frame

(shown here as t′frame) as[12]:

t′frame = tframe − trow − tf =
1

FPS

(
iframe −

yi
nrows

− f
)

(10)

where f is defined as f = texposureFPS and tf represents the time bias.

A mock model to implement these corrections has been developed, with results shown in the

image below.

Figure 33: Synthetic images with Global Shutter (left) and Rolling Shutter (right) [4]

As predicted, the horizontal streaks remain unaffected in terms of length, with the two vertical

streaks (No.6 and 7) being the ones affected the most.[4]
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3.5 Cosmic representation

For space-based observers, one of the most relevant effects is caused by stray cosmic rays hitting

the sensor. These high-energy particles (usually atomic nuclei or protons) mostly originate from

outside the solar system and can cause an ample spectra of problems. In the case of imaging

sensors, the most relevant phenomena is the creation of bright pixel features during the exposure

and A/D conversion phases: the particle interacts with the sensor when crossing it, depositing

some of its energy within it and excite additional electrons.

To model the energy loss of the particles we use a simplified version of the Bethe Bloch equation

for heavy particles, in our case only the protons:

S(E) = −dE
dx

= 2Kρ
Z

A

z2

β2

{
ln

(
2mec

2β2γ2

I

)
− β2

}
(11)

where E is the kinetic energy of the particle, S(E) is its stopping power, Z and A are the atomic

properties of the absorbing material, ρ is its density, z is the charge of the particle (=1) and K is

K = 2πNar
2
emec

2 (12)

with β = v
c and γ = 1√

1−β2
, Na being the Avogadro number and c the speed of light.

From the formula one can observe how the stopping power is entirely dependent from the

properties of the material encountered and by the type of particle. For a LEO object the source

of particles originates from the Van Allen radiation Belts, which contain charged particles carried

from solar winds that become trapped via the influence of Earth’s magnetic field. In the case of

the inner belt, the heavy particles are mostly protons, and this belt can extend down to 200 km

orbits in proximity of the South Atlantic Anomaly. In this area, ionizing radiation and flux of

energy particles are significantly increased, and LEO satellites are exposed to their effects.

After integrating the deposited energy within the size of a single pixel, it’s possible to determine

the voltage offset using the conversion efficiency:

Vpix =
CeffEdep,pix

w
(13)

where w is the energy necessary to create one electron-hole pair. This voltage offset influences

the A/D conversion and causes higher ADU values in output.
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To simulate shielding, we simply replace the material properties of silicon with those of either

aluminium or copper, and begin our calculation by initially subtracting the stopping power

integrated over the width of the shield.

Figure 34: Generated cosmics maps under intense flux conditions inside the SAA

3.6 Optical performance model

Solid-state photosensors such as CMOS or CCDs are subject to a multitude of noise sources,

both originating from atmospheric effects or from sensor imperfections. To limit and estimate

the impact of these noises on the sensor, we simulate this effects within the pipeline. It is

important to distinguish in two categories these phenomena: event-dependent Poisson noises and

event-independent Gaussian noises. If we classify a photon entering a pixel well as an event, we

can identify potential sources for our optical performance model.

DISCRETE SOURCES

• Stars, brighter than a magnitude threshold

• Radiance from Planets and Planetoids

• Reflected and thermally emitted light from Satellites

Discrete sources constitute a severe limitation when observing in anti-sun and anti-planetary

directions (angle of LOS < 90°), and while baffle design can help mitigate the phenomena, the

effects can still have a serious impact on SNR calculations.

CONTINUOUS SOURCES

47



• Zodiacal Light, sunlight scattered by interplanetary dust on the ecliptic plane in proximity

of the Sun

• Galaxies, assumed as a continuous source due to their large number and angular dimension

• Airglow, caused by chemiluminescent reactions occurring within the Thermosphere.

• Scattered light, i.e. the radiance from planets or stars scattered by atmospheric molecules.

These sources, while easier to approximate, can be very hard to model individually, so for the

purposes of this simulator they will be treated as background continuous sources, taking only

their absolute magnitude into account.[13]

3.6.1 SNR model

SNR can serve as a useful parameter to determine signal detection in astrometric imagery. SNR

can be simply represented as:

SNR =
Nsignal√

Nsignal +Nstraylight +Nnoise

(14)

This will serve as the basis for the model, and we shall investigate how to determine both operands.

For the signal power component, we must determine the signal entering a single pixel. This signal

can be divided in two: reflected and thermal.

The thermal signal component is simply the emitted range of electromagnetic radiation from a

body in thermal equilibrium. If we consider the object to be a black body, we can calculate the

updwelling radiance by integrating Planck’s law across the whole range of visible wavelengths:

Bλ(λ, T ) =
2hc2

λ5
1

exp( hc
λkBT )− 1

(15)

For an object in LEO, which we consider to be at a temperature of 290K, the radiance emitted

is almost negligible, whereas the dominant effect is represented by the reflected radiance.

We can calculate the solid angle by dividing the disc area of the sun by the square of the distance

to the object:

Ωsun−obj =
Asun

R2
sun−obj

[sr, steradian] (16)

One can calculate the reflected energy from the sun irradiance Lsun calculated through the same

technique as above:

Ereflected = Lsun(λ) · Ωsun−obj · Ωobs−obj · p · θF (17)
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Where p is the albedo of the object and θF is the phase integral function [13] provides functions

for a diffuse-specular model for a sphere, where through the use of a mixing coefficient β one

can determine the surface response for reflection. These models are expanded upon in Annex III,

along with phase functions for a tumbling plate-like object.

We can now compute the powers transmitted across the whole aperture:

Preflected,aperture = Ereflected ·Aaperture · cos(angleLOS) (18)

Pthermal,aperture = Ethermal ·Aaperture · cos(angleLOS) (19)

and sum them together to obtain the Ptot,aperture. This power can be reduced by the trasmittivity

factor τ0, and we deduce the deposited energy from:

Edeposited,aperture = τ0Ptot,aperture · tpixeldwell (20)

An approximation for the pixel dwell time is provided in Annex VI. At this point it is straight-

forward to compute the number of photons (i.e. the signal) by dividing the deposited energy by

the energy carried by a single photon:

Nphotons =
Edeposited

Ephoton
=
Edeposited(

hc
λops

) (21)

3.6.2 Stray light model

Suppression of unwanted sources (Stray Light) is a critical topic in telescope design, since these

sources will reduce the image quality and contrast. So-called "baffles" are conical structures

designed to prevent unwanted photons from entering the sensor, through shading, occulting and

shielding direct radiation for off-axis angles. For large off-axis angles, "vanes" play a critical role

in reducing the scatter characteristics of the baffle, and are mounted directly on the interior of

the baffle. Proper design and combined use of these two structures can help reduce straylight by

several orders of magnitude.[14]

To estimate straylight within our model, we must calculate the irradiance at the operating

wavelenght that is hitting the telescope:

E0,sun(λ) = Lsun(λ) · Ωsun−obs (22)
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From which we can calculate the signal power hitting the baffle, if LOS with the sun is smaller

than 90 degrees (anti-sun pointing).

Pstraylight =

Abaffle · E0(λ) · cos(LOS), if LOSsun < 90,

0, otherwise.
(23)

The same equations can be used for other celestial bodies, using their albedo and disc area

to calculate the reflected light. For example, using the formulas seen in 3.6.1 and III, one can

calculate the irradiance projected off the Moon and include it within the model. To extrapolate

data necessary for the noise simulation, it’s necessary to include the baffle mitigation and calculate

the average number of photons entering each pixel:

Pstraylight,pxl =
Pstraylight

Npix,xNpix,y
· τbaffle (24)

Where τbaffle is the stray light attenuation factor of the baffle. To find the number of photons,

this time we utilize the integration time (instead of dwell time) and we divide by the energy of a

single photon.

Np,straylight =
Pstraylight,pxl · tint

hc
λop

[
photons

pixel

]
(25)

3.6.3 Background noise model

Background noise will constitute a major noise source, but it is extremely difficult to model

efficiently. Unlike straylight, it’s impossible to point to a unique contributor for the whole phenom-

ena, and instead there are multiple atmospheric phenomena that might cause it, such as Zodiacal

light, Air Glow, Light pollution or other atmospheric disturbances. Accurate representation would

require real-time overhead data on most layers of the atmosphere, which is not available for ART.

At any rate, such a model would go beyond the requirements of the project, so we decide to

provide as an input either background magnitude or irradiated energy. For the latter, we can

obtain the magnitude:

mbackground = m0,sun − 2.5 log
Ebackground

E0,earth
(26)

Instead, if the magnitude of the background is provided as input -such is the case within the

image simulator- the irradiance at observer aperture can be calculated:

Eaperture = E0,earth · 10
(

mbkg−m0,sun
−2.5

)
(27)
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where the apparent magnitude of the sun viewed from Earth is equal to m0,sun = −26.74. Again,

we compute the number of photons entering the aperture:

Np,aperture =
Eaperture

Ephoton
=
Eaperture

hc
λop

[
photons

m2 · s · arcsec

]
(28)

Finally, we need to account for transmissivity losses and convert the dimensions into photons

per pixel:

Np,background = Aaperture · τ · IFOV 2 ·Np,aperture

[
photons

pixel

]
(29)

3.6.4 Noise model

Now that there is an established algorithm to compute photon counts, we can introduce a model

for these event-dependent noise sources. We shall utilize the Poisson PDF:

f(k;λ) =
λke−λ

k!
(30)

Which in python can be applied through the method numpy.random.RandomState.poisson(),

after we initialize a seed. Using Quantum Efficiency for a specific operating wavelength, the

conversion to electrons is straightforward:

Ne(λ) = Nph ·QEλ (31)

At this point, one can begin introducing the noise sources intrinsic to the sensor, which scale

independently from the pointing scenario. Normally, Readout (RO), Dark-Current (DC) and Fixed-

Pattern (FP) noise estimates are provided by the manufacturer, or can otherwise be estimated

through calibration images. These sources are normally provided in standard deviations of [ e−
pixel ],

except for DC-rates, which are provided in [ e−
pixel·s ], since they scale proportionally to exposure

time. If not expressly indicated within the user manual, these values and their distributions can

be approximated as in section 3.6.5, through analysis of calibration frames.

In the case of quantization noise, it’s effect is easily replicable, since it’s caused by truncation

and rounding errors when performing A/D conversion. We can derive the STD from the formula:

σquantization =
Nfullwell

2n
√
12

(32)

Where n is the bit depth of the system.
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Finally, for brief exposure times, a type of white noise known as reset noise might be relevant, if

correlated double sampling techniques are not implemented. The readout diode is brought to a

specific reference voltage before reading out the packet, creating an artificial noise: [15]

σreset =

√
kb · T
CSN

(33)

CSN represents the sense node capacitance [F] of the readout diode. These noise sources can be

combined to obtain the global noise of the system in electrons at readout:

σtot =
√
σ2RO + σ2reset + σ2quantization + σ2FPN +DCrate · texp (34)

It’s important to note that the only outlier is represented by the dark current (thermal) noise,

since it’s the only system noise that scales with exposure time, and the DC rate itself can vary

greatly under different cooling conditions.

3.6.5 Calibration frames analysis

So far the noise model has been implemented under the assumption that the distributions acting

on the electrons are normal. To verify these claims we shall conduct a brief characterization of

the sensor, through analysis of the calibration frames.

Figure 35: Taxonomy of Image Types

We distinguish a variety of frames used for astrophotography calibration purposes[16]:

• Bias frames: Captured at the lowest possible exposure time, with the shutter closed.

They represent the sensor response in the readout phase, in absence of any signal.
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• Dark frames: Can be taken on a variety of timed exposures and temperatures, with the

shutter closed. They permit the measurement of the dark current response due to thermally

released electrons during exposure.

• Flat frames: Through use of a diffuse and uniform light source in the FOV, flat frames

are taken at various exposure times and with the shutter open. They can help calibrate

the photosensitivity of individual pixels and determine the associated noise.

Through these calibration frames, one can characterize the sensor behaviour to improve quality

of photometric data for our Science Images. However, Flat frames are difficult to replicate and

require specialised facilities, so for the purposes of this project they will not be available.

Starting from the bias frames, which are captured at 0.01 seconds of exposure time, we produce an

analysis for both the CCD and CMOS sensors. Results show clearly how the newer CMOS sensor

considerably outperforms the CCD. The reduction in readout noise is especially considerable

when plotting both distributions against each other:

Figure 36: CCD vs CMOS bias frames comparison

The STDs from these calibration frames confirm the manufacturer’s specifications, which are

actually about 10% larger than the results calculated.

Sensor Calculated STD Declared STD
ML 11002 12.98469 14
IMX411 2.35492 2.4

Table 2: Standard deviations for 0.01s bias frames

Additionally, we can test these distributions for normality using the Jarque-Bera, Shapiro-Wilk and

Kolmogorow-Smirnow tests (on both sensors). These algorithms operate on the null hypothesis
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that the sample has been generated from a normal distribution. The p-value of these tests -i.e. the

level of marginal significance within a statistical hypothesis test- allows us to assess weather our

image sample set has passed the test or not. If p ≥ 0.05, we fail to reject the null hypothesis, and

we assume that the distribution is normal. For performance necessities, we reduce the data-set

to 5000 representative samples, and we obtain the following statistics:

Test Statistic p-value
Shapiro-Wilk 0.99814 0.29343

Kolmogorow-Smirnow 0.41422 ≈ 0.0
Jarque-Bera 1.15100 0.56242

Table 3: Normality test results for CMOS reduced data-set (N=5000)

Both the Shapiro-Wilk and Jarque-Bera reject the null hypothesis and indicate normality, however

the dataset does not pass the Kolmogorow-Smirnow test. To understand why the latter test is

rejecting our dataset, we can visually analyse the data on a QQ (Quantile-Quantile)-plot, where

we plot our data against the theoretical expected results of a normal distribution:

Figure 37: Quantile-Quantile plot

The linearity of the plot suggests that the data is indeed normally distributed, with only a few

outliers not falling into that category. These outliers are likely causing the KS test to reject our

hypothesis, since it tends to be a much more sensitive test for sample sizes such as ours.

We can then conclude that using a normal model for readout noise distribution is appropriate,

and we can continue the analysis by tackling Dark Frames.
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As mentioned before, dark frames allow us to determine the dark current response when working

with a variety of temperatures and exposure times. In this paper we shall perform analyses on

the CMOS sensor at -5,-15 and -25°C cooling conditions, from 5s to 300s of exposure times.

Texp : 5s 10s 30s 60s 120s 300s
σdark@− 25◦C: 2.38 2.55 3.41 4.99 7.85 17.86
σdark@− 15◦C: 2.56 3.03 5.40 8.75 14.13 24.32 ADU/pxl
σdark@− 5◦C: 3.18 4.45 9.33 14.95 22.51 37.49

Table 4: STDs of CMOS calibration dark frames

From the table it becomes noticeable how the standard deviations are heavily influenced by these

two parameters, and by plotting the data for 300 seconds into histograms, it is noticeable how

the distribution is no longer purely Gaussian, but is now heavy-tailed on the right tail.

Figure 38: Long tail phenomena in dark frame imagery

Another way to visualize the phenomena, is to plot the data in another QQ-plot, where it becomes

clear the skewed-ness of the normal distribution, and the anomalies present for higher ADU

values. These outliers are caused by pixel defects which lead to higher dark current rates, and

are thoroughly analysed within section 3.7.1.
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Figure 39: Quantile-Quantile plot of ADU values in a 300s dark frame

In this following paragraph, we shall define as "inliers" the pixel values with ADU ≤ N ·σbiasframe

and construct the following hypothesis:

HYPOTHESIS: The dark current rate of inlier pixels remains constant at different exposure

times, and the average ADU offset produced shall scale linearly with exposure time, skewing the

distribution.

To validate the statement, we conduct an analysis on the following procedure:

1. Sample data from Bias Frames

➝ Compute and store Average

➝ Compute and store Bias

➝ Compute and store STD

2. Evaluate data from Dark Frames

➝ Subtract Average and Bias to center distribution

➝ Flag pixel values < limit*STD [limit = 3÷10] as inliers

➝ Compute pixel average on inlier pixels for each dark frame

➝ Perform linear regression on averages vs Texp
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Figure 40: Linear regression on average ADUs @-5°C cooling

Where, in Python, we utilized the method from scipy.stats.linregress() to perform a least-squares

regression and display the fitted line.

We find that the linear fit is very accurate, and our hypothesis of evaluating averages on inliers

is appropriate. The slope of the fitted line corresponds to the dark-current rate (in ADU), which

we can evaluate against temperature and sampling conditions:

STD limit
3σ 5σ 10σ

T [°C]
-25 0.003300 0.003399 0.003479
-15 0.003463 0.003577 0.003685

[
ADU
pix·s

]
-5 0.004168 0.004309 0.004440

Table 5: Dark Current rate results for varying cooling and sampling conditions

Through quantum efficiency we can convert these rates into electrons to find that the values are

very close to the declared rate of 0.006
[

e−

pix·s

]
.
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3.7 Defective pixels

Experimental results from [17] have demonstrated that CMOS and CCD sensors are affected

by a variety of pixel defects, with defect density scaling linearly with time immediately after

production. These faults are often caused by high-energy particles, manufacturing and storage

processes, and charge leakage. At higher ISO settings and long exposures, these defects become

significant enough that they cannot be ignored, and can often result in the saturation of ADU

values.

Normally, the behaviour of an ideal good pixel can be modelled simply as a measure of incident

illumination which is represented as:

Ipix(Rphoto, Texp) = m(Rphoto · Texp) (35)

Where Rphoto represents the incident illumination rate, Texp is the exposure time, and m is

amplification due to ISO setting. However, in the case of defective pixels, additional terms on

dark current rate (Rdark) and dark offset (b) are now present:

Ipix(Rphoto, Rdark, Texp, b) = m(Rphoto · Texp, Rdark · Texp, b) (36)

To evaluate the behaviour of these faulty pixels, it is necessary to distinguish the different types

of defects:

• Warm pixels have an illumination-independent component that increases linearly with

exposure time, which results in a higher proportional scaling when capturing dark frames.

Rdark values are non-zero and scale with exposure time, whilst b is still zero.

• Stuck (Warm) pixels have both non-zero Rdark and b values, and these two terms create

a signal that is added on top of the incident illumination. If the offset b is greater than the

maximum values determined by the bit-depth of the sensor, then these defects are called

Hot pixels.

• Dead pixels are permanently damaged pixels that do not receive any power and register

0 free electrons. ADU values might not necessarily be set at 0 if bias is applied in post

processing.
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Experimental results from [18] show that the Hot Pixels to Stuck Hot Pixels distribution is roughly

54/46%. If ADU values are normalized against dark current, and we indicate as 1 saturated

values, it is possible to observe the slope characterizing the behaviour of these pixels.

Figure 41: Dark response of defective pixels from [18], upscaled

For what concerns the image simulator, these pixel defects are essential to model, since they

can result in a large number of false positives when performing image segmentation for streak

identification. Manufacturers normally produce an upper range for the defect density, which can

be used to directly simulate worst-case scenarios.

In the model implemented for the simulator we accept as inputs:

• Warm Pixel Density: 1-0 float

• Stuck Pixel Density: 1-0 float

• Dead Pixel Density: 1-0 float

• Time-to-Double (T2D)[s]: max and min int values

• Offset (b)[ADU]: max and min int values
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We can model the behaviour of these pixels by directly operating on the ADUs values, where we

randomize pixel position, T2D values and ADU offsets. Using ideal pixel values before applying

sensor bias, we calculate the defective ADU values:

ADUdefect = ADUideal · (1 +
Texp
T2D

) + boffset (37)

If values of ADU surpass the bit-depth maximum limit, values are automatically assigned as

saturated and set the maximum value. An explanation of the Seed-based randomization technique

used is included in Annex IV. Upon generation of the defective pixel, 3 .txt files are generated

containing the coordinates and values associated with each type of defective pixel, along with

the original values that have been replaced.

3.7.1 Defective Imagery Analysis for T2D modelling

In order to accurately identify and estimate defective pixels within calibration imagery, we can

conduct a similar procedure to the one seen previously:

1. Sample data from Bias Frames

➝ Compute and store Average

➝ Compute and store Bias

➝ Compute and store STD

2. Sample data from 300s Dark Frame

➝ Subtract Average and Bias to center distribution

➝ Flag pixel values > limit*STD [limit = 3÷10]

➝ Save pixel coordinates

3. Sample data from all Dark Frames

➝ Subtract Average and Bias to center distribution

➝ Save pixel values from flagged pixels

➝ Evaluate T2D in flagged pixels

We can expand on this process by repeating steps 2 and 3 for "ideal" pixels, i.e. pixels that on

300s exposure times have a photoelectric response similar to those of the bias frame (and thus

have close to zero dark current values).
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Results for the CCD sensor:

Data shown on Figure 43 demonstrates an expected behaviour, with ADU offsets always contained

within 3σ on all exposure times. These offsets are likely caused by the inherent noise sources

of the electronics, and fall within the expected range. Data displayed on Figure 42, however,

displays a stark different behaviour: the outlier pixels are scaling linearly with exposure time,

with proportionally different dark currents.

Figure 42: Outlier pixels ADUs Figure 43: "Ideal" pixels ADUs

One can visualize how closely correlated are the results if we utilize the (37) T2D definition used

earlier. If we plot the data of 60s and 300s Dark Frames against each other and represented as

T2Ds, it is visibly noticeable the strong correlation for low T2Ds (strong proportional scaling),

while results become loosely correlated for higher T2Ds as they are affected by noise.

Figure 44: Comparison of T2Ds between 60s and 300s Dark Frames
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Interestingly, there is a smaller "fan" of data that seems to scale proportionally differently to the

rest. Although statistically small compared to the main distribution, this phenomena is likely

due to an amplification gain defect in a part of the sensor.

By comparing between High-gain and Low-gain mode, we notice that the number of outliers

does not vary significantly, unless if we set the threshold to 3-sigma. In that case, the thermal

noise from the signal interferes with the outlier detection and generates inconsistent results.

frequency[MHz] σbiasframe[pxl] > 10σ[#] > 5σ[#] > 3σ[#]
12 12.98469 7667 13805 40586
2 12.98164 8237 13818 117412

Table 6: Outlier pixel behaviour at 300s Dark Frames

To properly model the T2Ds within the simulator, an appropriate distribution must be identified.

Histogram data from outlier analysis can come in useful to test the fit of existing PDFs for

random variable generation. Accordingly, we can plot the ADU offsets in such an histogram:

Figure 45: Histogram of ADU offsets for 120s Dark Frame

However the data for modelling requires that we remove the exposure time dependency of the

ADU values, so conversion to T2D values is necessary. We can calculate the T2D values from

equation (37):

T2D(x, y) =
texp ·ADUbias

ADUcentered(x, y)
(38)
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And now can we plot their histograms according to exposure time and appreciate the variations

in the distributions:

Figure 46: Histograms of T2Ds across exposure time

It is immediately noticeable how the distribution is skewed and restricted to a smaller domain as

exposure time decreases, with a higher occurrence of T2Ds close to 0 as exposure time decreases.

After performing a variety of fitting tests with Exponential, Rayleigh, Weibull and Gumbel

distributions, the Exponential PDF is chosen for modelling the phenomena, since defective pixel

T2Ds are independent of each other, and this distribution is of the memory-less type.

f(x, λ) =

λe
−λx, if x ≥ 0,

0, if x < 0.
(39)

Where λ is the sole parameter of the distribution, also known as rate parameter. The distribution

is bounded to the interval [0,∞). In Python, we utilize the numpy.random.exponential() method

to generate a list of random variables for the T2D values.
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Results for the CMOS sensor:

By performing the same analysis on the recently installed IMX 411 CMOS sensor, we can

compare the performance relative to the 5-year old CCD sensor. At identical cooling and

exposure conditions, we can compare data on cumulative outlier pixels:

Outliers [num]: 5s 10s 30s 60s 120s 300s
ML11002@− 25◦C: 865 2253 7599 7602 7792 13805
IMX411@− 25◦C: 4711 5223 7019 10472 17017 40567

Table 7: Outlier count for varying exposure times

Results show that at 300 seconds of exposure, roughly 0.1289 % of the CCD pixels (1 in 776) are

flagged as defective, compared to the 0.0268 % (1 in 3731) of the 1-year old CMOS sensor. Data

from [17] suggests that defective pixel density would scare proportionally with lifetime, but more

data across multiple sensor’s lifetimes would be required to definitely come to such a conclusion.

The same linearity of ADU offsets can be noticed on the CMOS sensor, with ideal pixels

experiencing offsets within a reasonable range.

Figure 47: Outlier pixels ADUs Figure 48: "Ideal" pixels ADUs

T2D correlation across exposure times is much more accurate, thanks largely to the heavily

reduced dark-current rate and readout noise. Data at 120 seconds of exposure time scales almost

identically to those at 300 seconds, proving that the dark current rate of those defective pixels

remains practically constant during dark frames exposures.
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Figure 49: Comparison of T2Ds across exposure times on CMOS Dark Frames

Finally, we plot the histogram of the T2D data acquired from equation 37. In this case, the

distribution peak is no longer at the origin, indicating that the average dark current rate of the

defective pixels is lower to those of the CCD.

Figure 50: Weibull fit on sampled dark frame data at 120s exposure time

In this case, it was found to be more appropriate to model the phenomena using a Weibull

distribution, since defect rates and proportionality are documented to have a loose connection

with sensor life [17]. Weibull distributions are normally used to model reliability and life data

analyses, so its use in this context can be justified as appropriate. We represent the Weibull PDF

as:

f(x, λ, k) =


k
λ

(
x
λ

)k−1
e−(x/λ)k , if x ≥ 0,

0, if x < 0.
(40)
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Where λ represents the "scale parameter", and k constitutes the "shape parameter". This

distribution can be made identical to that of exponential if the shape parameter is set at 1.

For modelling and providing a more comprehensible input, we can utilize the Median Value,

defined as Median = λ(ln 2)1/k. Figure 50 displays the fitted distribution on our data, which

was estimated using the Python package scipy.stats.weibull_min.fit() and generated through the

method numpy.random.weibull().

3.8 SIP distortion

Distortion constitutes an intrinsic characteristic of the camera array and lenses that should

be taken into account. These phenomena can be corrected within the data processing tools if

this distortion information is modelled as a function of pixel position. The Simple Imaging

Polynomial convention used in the Spitzer Space Telescope allows to calculate this distortion

data via 2d polynomials and can be stored as a set of parameters within the FITS header.[19]

The SIP coefficients are supported within the WCS methods, and even in scenarios where the

polynomial coefficients can vary from one image to the other, such as with a moving scan mirror

position, the distortion can be rapidly estimated.

Implementing this method calls for a set of relative pixel coordinates (u,v) with origin at CRPIX1,

CRPIX2, provided within the header, and physically located on the focal plane. We define the set

of angular coordinates (x,y) having origin at CRVAL1, CRVAL2, expressed as RA/DEC values.

Then these "intermediate world coordinates", expressed in degrees, are uniquely determined on

the plane-of-projection as: x
y

 =

CD1,1 CD1,2

CD2,1 CD2,2

u+ f(u, v)

v + g(u, v)

 (41)

The CD-matrix values store information on skew, rotation and scaling, whereas f(u,v) and g(u,v)

represent the distortion polynomials defined as:

f(u, v) =
∑
p,q

Ap,qu
pvq, p+ q ≤ AORDER[2− 9] (42)

g(u, v) =
∑
p,q

Bp,qu
pvq, p+ q ≤ BORDER[2− 9] (43)

With A and B matrices storing the distortion coefficients. If any of the latter are not expressely

indicated, they can be set as 0. Results from work carried out on the Spitzer Infrared Array

Camera have demonstrated that cubic coefficients are sufficient to correct for distortions of up
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to 2-3 pixels. Furthermore, Spitzer provides reverse coefficients to perform fast inversion to find

the original pixel coordinates: U
V

 = CD−1

x
y

 (44)

U and V are the "corrected pixel coordinates", and original coordinates can be found by summing

them to the reverse polynomials:

u = U + F (U, V ) = U +
∑
p,q

APp,qU
pV q, p+ q ≤ APORDER[2− 9] (45)

v = V +G(U, V ) = V +
∑
p,q

BPp,qU
pV q, p+ q ≤ BPORDER[2− 9] (46)

For the necessities of the image simulator, we shall perform these reverse transformations to

simulate image distortion. However, these reverse polynomials are not necessarily always included

within the FITS data, and they must be approximated through iterative inversion techniques.

The pseudocode for such an approximation goes as follows:

Algorithm 1 Pseudocode
1: procedure Reverse SIP
2: (u,v)← RA/DEC coordinates
3: N,M = APorder, BPorder
4: Create a grid of points
5: Compute corrected coordinates U,V for each point
6: loop:
7: for N×M matrix do
8: Populate matrices A,B with forward coefficients.
9: close;

10: for UxV matrix do
11: udiff = u-U.
12: vdiff = v-V.
13: close;
14: udiff,vdiff.flatten()
15: A = A,B
16: b = udiff, vdiff
17: Perform least-squares solution of Ax = udiff
18: Perform least-squares solution of By = vdiff
19: APcoeff = x
20: BPcoeff = y
21: Extract AP and BP coefficients into N×N, M×M matrices

Using the forward coefficients provided in the Spitzer image headers, we can validate our algorithms

by comparing the results obtained:
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Coefficient Tabulated Value Approximated Value
AP01 3.6698E-06 2.6805E-06
AP02 -9.1825E-06 -9.2695E-06
AP03 -3.8909E-09 -3.8356E-09
AP10 -2.0239E-05 -1.9749E-05
AP11 -4.8946E-05 -4.8915E-05
AP12 1.7951E-07 1.7946E-07
AP20 -2.8622E-05 -2.8697E-05
AP21 -2.9553E-08 -2.9419E-08
AP30 1.9119E-07 1.9116E-07

Table 8: Reverse coefficients of AP matrix

Clearly, this method is only an approximation of the distortion, and leads to a 5% maximum

error (or about 0.1 pixels) when computing pixel distortion for the Spitzer camera array.

If we decide to plot the RMS distortion of x and y in a heat map, we notice that for this case the

maximum distortion is taking place at the edges of the pixel array, where the maximum offset is

roughly 2.5 pixels.

Figure 51: RMS distortion from approximated reverse coefficients on the Spitzer Infrared
Array Camera

The implementation of these functionalities are included in the Astropy.WCS methods

all_world2pix and all_pix2world which permit the simultaneous use of SIP and core WCS

corrections.
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4 Validation & results

4.1 Scenario selection

A set of 15 scenarios have been outlined to validate the models introduced in the image simula-

tor. These scenarios are characterized by an increasing complexity, starting from the simplest

calibration images and ending into the most complex tracking scenario. This way it’s possible

to gradually introduce the different effects being simulated and comment how they affect the

output.

Images are produced both unbinned and with a 4x4 binning, saved into the .FITS format and

evaluated using external scripts.

A comprehensive breakdown of the scenarios is provided in the following table:

ID Scenario Effects simulated
1 Bias Frame @0.01s RO, FPN noise
2 Dark Frame @5s RO, FPN noise, DC rate, Defective pixels
3 Dark Frame @300s RO, FPN noise, DC rate, Defective pixels
4 Empty Sky RO, FPN noise, DC rate, Defective pixels, background

photons
5 Stars - Low Mag RO, FPN noise, DC rate, Defective pixels, FWHM, Stars

(Filtered), background photons
6 Stars - All RO, FPN noise, DC rate, Defective pixels, FWHM, Stars

(ALL), background photons
7 Object - SNR:20 RO, FPN noise, DC rate, Defective pixels, FWHM, Ob-

ject(Arbitrary), background photons
8 Object - Simulated RO, FPN noise, DC rate, Defective pixels, FWHM, Ob-

ject(Simulated), background photons
9 Sideral - Low SNR RO, FPN noise, DC rate, Defective pixels, FWHM, Object,

Stars, background photons
10 Sideral - High SNR RO, FPN noise, DC rate, Defective pixels, FWHM, Object,

Stars, background photons
11 Sideral + Cosmics RO, FPN noise, DC rate, Defective pixels, FWHM, Object,

Stars, background photons, cosmics
12 Sideral + Straylight RO, FPN noise, DC rate, Defective pixels, FWHM, Object,

Stars, background photons, straylight photons
13 Tracking RO, FPN noise, DC rate, Defective pixels, FWHM, Object,

Stars, background photons, Tracking
14 Tracking + Straylight RO, FPN noise, DC rate, Defective pixels, FWHM, Ob-

ject, Stars, Background and Straylight photons, Tracking,
Vignetting

15 Tracking - FULL RO, FPN noise, DC rate, Defective pixels, FWHM, Ob-
ject, Stars, Background and Straylight photons, Cosmics,
Tracking, Vignetting, Pointing Error

Table 9: Scenario selection effects breakdown
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4.1.1 Scenarios 1-3: Calibration Frames

SCENARIO 1 - BIAS FRAME

The simplest scenario we shall generate is the Bias Frame taken at 0.01 seconds of exposure time.

We produce both binned and 4x4 binned results, where the only effects introduced are bias, RO

and FPN noise. In this and all subsequent scenarios we shall collect statistical information on

mostly unbinned images, but for this section binned images will also be evaluated.

Bin type σ Median µ
Unbinned Image 3.91 1002 1002.54

4x4 Binned Image 1.02 1002 1002.07

Table 10: Bias frame results

Table 10 displays the effect of binning on images, that is mostly noticeable in a drastic reduction of

STD by an order comparable of that of the bin size. Average values are also reduced significantly.

We can produce a surface plot on obtained results to visualize the typical noise pattern that will

characterize most of the results.

Figure 52: Surface plot of readout noise background

SCENARIO 2 & 3 - DARK FRAMES

For scenarios 2 and 3, we simulate dark frames across a variety of exposure times for binned and

unbinned imagery. We introduce defective pixels and dark current rate phenomena to generate

these results, with 10.000 hot pixels ranging from a minimum of T2D: 2 and a median of T2D:

217. Dark current rate is set to a conservative 0.0006 ADU/pxl, for ideal −35 deg C cooling

conditions.
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Bin Type σ Median µ
Unbinned 5s 3.92 1002 1002.54

4x4 Binned 5s 1.02 1002 1002.07
Unbinned 300s 5.28 1002 1002.73

4x4 Binned 300s 1.35 1002 1002.26

Table 11: Simulated dark frames results

Table 11 displays the results obtained on 5 and 300 second scenarios. The 300 second scenario

allows us to appreciate the same long-tail distribution phenomena seen in real calibration imagery.

These defective pixels are particularly noticeable when 3d plotting these values, and can be easily

identified on unbinned imagery.

Figure 53: Surface plot of a simulated 300s dark frame

However, a typical sideral scenario rarely surpasses the 5 seconds of integration time, and never

exceeds 30 seconds. For these types of scenarios, the defective pixels are barely noticeable,

especially in binned imagery where their effect is greatly mitigated. Table 12 displays STD and

outlier analysis results (with the same approach from section 3.7.1) obtained on binned imagery.

Dark Frame σ(unbinned) Detected outliers
4x4 Binned 5s 1.02(3.92) 56
4x4 Binned 10s 1.02(3.93) 100
4x4 Binned 30s 1.03(3.95) 402
4x4 Binned 60 1.05(4.02) 857

4x4 Binned 120s 1.09(4.21) 1705
4x4 Binned 300s 1.35(5.28) 3997

Table 12: Outlier counts for binned imagery
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Even at 300 seconds, with a 5-sigma tolerance, not even half of the defective pixels can be resolved,

thanks to the improved performance of the CMOS sensor and the mitigating effects of binning.

We also produce the same scatter plots on outliers, along with a linear regression on inlier values

to confirm the validity of the results:

Figure 54: Outlier pixel ADUs Figure 55: DC rate linear fit

4.1.2 Scenario 4: Empty Sky

With Scenario 4 we are able to introduce the first of the Poisson-distributed noise sources, that

is the photons incoming from the background noise. Applying the model developed in section

3.6.3, we can calculate the photons entering our sensor based on a 22 magnitude background

sky. Simulations show that about 3 billion photons would be hitting the sensor wells across

5 seconds, with an approximate number of 19-20 photons per pixel well. These photons are

modelled through a Poisson distribution, which increases the overall STD of our distribution,

and biases the mean and median values:

Scenario σ Median µ
2 - Dark Frame @5s 3.92 1002 1002.54
4 - Empty Sky @5s 7.46 1014 1013.69

Table 13: Empty sky scenario results

Comparing the results with the 5 seconds Dark Frame, clearly the effect of background noise

is more degenerative than defective pixels in terms of signal resolution for low exposures, and

this effect will be permanently modelled in Sideral and Tracking scenarios. The following graph

displays the distribution change generated, typical of a Poissonian-like PDF.
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Figure 56: Histogram comparison of simulated sky frame

4.1.3 Scenarios 5-6: Stars

In Scenarios 5 and 6, we introduce the GAIA star catalogue, and stars are represented as point-

like features as in a Sideral scenario (without the target object). We utilize a catalogue of

approximately 30k stars ranging from 18 to 5 magnitude for Scenario 6, but we limit the range of

stars between 18 and 17 to identify the fainter stars that constitute the majority of the database

in Scenario 5.

Scenario σ Median µ
4 - Empty Sky @5s 7.46 1014 1013.69

5 - Stars (Low Mag) @5s 7.68 1014 1013.73
6 - Stars (All) @5s 285.56 1014 1016.71

Table 14: Results from star representation scenarios

Results from table 14 demonstrate how higher magnitude stars have an exponentially greater

impact on standard deviation and mean values, and magnitudes closer to 5 can almost saturate

the pixel well, when the photoelectric response to excitation becomes non-linear and difficult to

model. Table 15 provides some further insight on the optical performance model when representing

these two Scenarios:

Scenario Mag. Range Visible Stars Median SNR
5 - Stars (Low Mag) @5s 18-17 5352 4.10

6 - Stars (All) @5s 18-5 14545 10.39

Table 15: Star representation data
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The distributions are also quite different, with fainter stars only providing a signal sufficient for

a maximum of 150 ADUs, whereas the other scenario has a full range of values ranging from

1000 ADUs (bias offset) to saturation values at 65535 ADUs.

Figure 57: Histogram comparison between magnitude ranges

The following image shows results obtained at FWHM of 2.75 pixels, with a Fire LUT color map

and on a full range of stars.

Figure 58: Overlay of Fire LUT map on simulated star sensing imagery

4.1.4 Scenarios 7-8: Target object

For Scenarios 7-8 we shall represent a lone Object in absence of stars. We utilize the approach

seen in section 3.6.1 to calculate Peak and Total signal emitted by an object with the following

properties:

• Distance to observer: 42.000.000 m (GEO)

• Object LOS w/ sun: 40deg
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• Ω (Relative Velocity): .15 deg/s

• Temperature: 290 K

• Radius: .7 m

• Observer-Object LOS: 0 deg

• Surface: Purely Diffusive

We obtain an SNR of 1.49, with a 44 photon signal peak. This type of signal would be barely

noticeable and hard to detect, since it could be easily mistaken with signal noise or defective

pixels. To simulate across a variety of SNR, we calculate signal strenght based on SNR and

provide it as an input within our models.

SNR Peak Signal (ph) Total Signal (ph)
1 29 87

1.5 44 131
3 95 286
5 174 526
10 441 1333
20 1322 3989

Table 16: Theoretical Signal strenght from SNR for FWHM = 2.75 pixels

Applying the theoretical photon counts into our model produces images with SNR ratios very

close to theoretical values, and objects with SNRs larger than 5 show as clearly detectable

Figure 59: Detectability of simulated sources based on SNR
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4.1.5 Scenarios 9-12: Sideral

Scenarios 9 to 12 constitute Star Sensing scenarios, also known as fixed Sideral pointing scenarios,

in which we introduce a debris object with a relative velocity with respect to the focal plane. In

this way, the energy deposited within the sensor wells is spread across a larger number of pixels,

and since total energy should be conserved, one should expect to see decreasing SNRs as streak

size increases.

Scenario 9 simulates that specific topic, by utilizing the same signal seen in the static object case

to generate a streak with dRa = 0.002 deg/s and dDEC = -0.005 deg/s.

Scenario 10 performs the same simulation, with an increase of photon count to 15000 photons.

Scenario Signal Power Object SNR Peak ADU
8 - Static Object - Simulated @5s 1322 21.73 297

9 - Sideral - Low SNR @5s 1322 1.49 29
10 - Sideral - High SNR @5s 15000 21.64 303

Table 17: Results for sideral scenarios

Figure 60: Faint Streak Figure 61: Bright Streak

Scenario 11 introduces Medium-intensity Cosmics, introduced as a voltage offset that is introduced

as ADU offsets. The scenario being simulated is taking place at a 800 km Sun-syncronous orbit,

right on the edge of the SAA at Latitude: 2.36 deg and Longitude: -27.69 deg. We are

simulating a total of 63570 proton-encounter events for an unshielded telescope.

76



Figure 62: Simulated location on the SAA

Scenario σ Median µ
10 - Sideral - High SNR @5s 285.56 1014 1016.71
11 - Sideral + Cosmics @5s 379.51 1014 1019.34

Table 18: Comparison of results with the addition of cosmics

While SNR values remain constant, STDs and image quality as a whole is massively depreciated,

with a considerable density of single defective pixels, and a problematic number of linear series

of pixels being affected by cosmic ray effects. These series of pixels could easily be misidentified

for debris streaks and pose a real problem for our IOD solutions.

Figure 63: Simulated cosmic ray damage to series and groups of pixel wells

Finally, Scenario 12 represents an unlikely scenario where the telescope is accidentally pointing

with a 70 deg LOS w.r.t. the Sun. Accounting for baffle attenuation, this effect produces roughly

200 additional incident photons per pixel. In reality, such a scenario could massively degrade the
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sensor and potentially render it unusable if exposed for long exposure times. Reflected straylight

is also a considerable concern for other celestial bodies, especially the moon, and contributes

significantly to the deposited photon count.

Scenario Signal Power σ Median µ
10 - Sideral - High SNR @5s 15000 285.56 1014 1016.71
12 - Sideral + Straylight @5s 15000 379.17 1159 1165.02

Table 19: Comparison of results with the addition of straylight

As shown in the Figure 64, the introduction of an additional Poissonian noise source introduces

a bias and increase of STD similar to Scenario 4, albeit with much more dramatic results.

Figure 64: Distribution offset due to straylight

Star-identification capabilities are also greatly reduced, with the majority of the population

now becoming undetectable, this kind of scenario could possibly compromise performance of

orbital attitude determination using star tracking techniques. Object detection is also greatly

compromised, with a 15.000 photon-strong signal becoming undetectable amidst the noisy

background.

Scenario Signal Power Object SNR Median Star SNR # Visible Stars
10 @5s 15000 21.64 10.39 14645
12 @5s 15000 <1 0.89 6807

Table 20: Comparison of results between sideral and tracking scenarios
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4.1.6 Scenarios 13-14: Tracking

Scenario 13 simulates a tracking scenario, and the focal velocity of the object across the telescope’s

focal plane is close to none. In this scenario, all the energy of the object is focused in its centroid,

and pixel dwell time of that centroid is identical to the exposure time of our image. This process

results in two noticeable differences:

• Object SNR is greatly improved, since the same pixels are exposed continuously to the

same point-like source

• Star SNR is greatly reduced, since they are now represented as streaks with energy being

dispersed across a wider array of pixels

We can visualize these effects by displaying the surface plot of the results obtained:

Figure 65: Surface plot of signal from tracked object

As expected, the object signal power is represented almost identically to the static object simula-

tion, with slight differences caused by poisson-like scintillation effects simulating atmospheric

turbulence in the upper regions.

Scenario Signal Power Object SNR Peak ADU
8 - Static Object - Simulated @5s 1322 21.64 297

9 - Sideral - Low SNR @5s 1322 1.49 29
13 - Tracking @5s 1322 22.86 303

Table 21: Results for object SNR determination

The following figures display a heatmap plot of the results obtained, along with the log-normed

histogram distribution.
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Figure 66: Tracking scenario imagery and distribution

Finally, Scenario 14 introduces vignetting, which is applied at the end of the simulation pipeline,

more precisely at the ADU data manipulation phase before performing thresholding. The method

described in Annex V allows us to model both behaviour of vignetting displayed in our sensors:

• CCD imagery displays vertical vignetting, with a central foci and a 10% field coverage.

ADU offsets are also of a greater magnitude.

• CMOS imagery displays corner vignetting, with a shifted foci and a 30% coverage.

Our implementation allows us to simulate both of these effects, with are applied as a matrix

subtraction during ADU conversion.

The results from this simulation can be easily validated by displaying surface plots across the

entire image, with significant mesh smoothing. For CCD-like vignetting, the effect at the edges

now becomes apparent along with their magnitude and relative coverage.

Figure 67: Scenario vignetting under different mesh smoothing
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4.1.7 Scenario 15: Full Tracking

Scenario 15 models an extreme scenario where we are simulating all of the implemented function-

alities at once. This type of simulation can be treated as an extreme worst-case scenario, used to

simulate the upper bounds of detectable signals.

As seen in the previous sun-pointing scenario, object detection is impossible with such high

values of standard deviation for the background. The same phenomena manifests within the Star

catalogue representation, with a large majority of the catalogue being undetectable amongst the

noise, and only 1517 stars having detectable SNR counts.

Figure 68: Full tracking scenario with imagery and distribution

Results remain somewhat similar to the previous scenario, apart from cosmic ray contributing to

a large number of false-positives for streaks and defective pixels.

Scenario Signal Power Object SNR σ Median µ
14 @5s 15000 <1 235.09 1159 1161.98
15 @5s 15000 <1 342.70 1159 1164.61

Table 22: Tracking scenarios results

These 15 scenarios have proven useful to demonstrate the individual effects implemented, along

with their stack-ability and reconfiguration. A table with all relevant results is provided in Annex

VII.
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4.2 Real vs Synthetic imagery CMOS

The final step in the validation process consists in replicating real imagery from the ART by

simulating both the signal received and all the layers of phenomena affecting the image. For the

purposes of simulation, input data was either derived from the manufacturer’s specification or

direct observation through reverse-engineering.

The process to replicate Real-life imagery can be summarised as follows:

1. Select a real tracking scenario

➝ From NORAD, extrapolate object size and orbit data

➝ From HEADER, save Observation parameters

➝ From Seeing Profiles, compute FWHM

2. Perform theoretical SNR and Signal calculation

➝ Compute equivalent exposed surface area

➝ Return Peak and Total signal in photons

3. Generate Star database from real pointing scenario

➝ Provide magnitude range

4. Simulate synthetic scenario

5. Compare results with real scenario

➝ Iterate with step 4 to adjust for background magnitude

The tracking scenario in question involves a satellite belonging to the Fourth generation of the

Navstar Global Positioning System constellation. These satellites are placed in semi-synchronous

MEOs, and are observed daily for telescopic calibration and error compensation.

Due to the large amount of available imagery, detailed time and positioning data on these objects,

they have proved to be an important asset for synthetic image simulation and validation.
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Figure 69: Block IIF GPS render

Object Properties
Name: Navstar 71 (USA 256)

NORAD: 40105
Semi-Major Axis: 26559 km

Dimensions: 2.49 X 2.03 X 2.22 m

Table 23: Navstar 71 properties

FWHM values are extrapolated by visualizing the seeing profile of real streaks though AstroImageJ.

While FWHM is not constant and varies between 5 and 3.5 pixels, faint streaks generally have

values around 4.5 pixels, and constitute the majority of observed phenomena.

Figure 70: Seeing profile of a faint streak Figure 71: Seeing profile of a bright streak
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The Optical Performance Model implemented within our simulator, allows to calculate hypo-

thetical signal strength to be used as input for the PSF. We utilize an equivalent-area spherical

model to represent the object, with a reflectance of 0.65 for anodized aluminum. FWHM values

also come into play here, when estimating peak and total signal.

Radius 1.393 m
SNR 11.90

Peak Signal 2856 photons
Total Signal 13836 photons

Table 24: Synthetic object parameters

Finally, scenario parameters are extrapolated and used as input for the image simulator.

Scenario parameters - CMOS
Exposure time: 2 s

Binning: 2x2 pixels
FOV: 3.07 x 2.19 deg
RA: 120.95115 deg

DEC: -29.25022 deg
dRA: 0.008558 deg/s

dDEC: -0.005486 deg/s
Pixel FOV: 0.79 arcsec

Table 25: Scenario parameters - CMOS

Finally, we also simulate the vignetting effect shown in the CMOS science images. This effect is

much fainter than the CCD’s and is only noticeable in the corners but, for the sake of completeness,

is being applied accordingly.

Figure 72: Corner vignetting on CMOS image
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In the case of CMOS imagery, images are binned to optimize for storage, with an averaging

binning technique being utilized (although additive can also be sometimes used).

Figure 73: Synthetic image results on CMOS imagery

Comparing the results obtained, hypothetical ADU signal values are quite accurate, however

standard deviation values are consistently higher.

Image σ Median µ ADU peak
Real @2s 91.66 538 541.28 768

Synthetic @2s 138.50 539 545.45 740

Table 26: Real vs Synthetic table of results - CMOS

Comparing the distributions of ADU values, the main peaks for background noise are almost

identical, The deviations in STDs are attributed to wider long tails from the star representation.

Since many dispersive atmospheric effects and cloud coverage are reducing the intensity of

brighter objects, we consistently notice that brighter stars are being represented with higher

ADUs than in real life. Overall, out of 29143 stars sampled, 20452 stars fall into frame and are

being simulated.

Figure 74: Real vs Synthetic histograms
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All the input parameters used for the simulation are shown below. Note how the defective pixel

values were reverse engineered from the characterization process illustrated in Section 3.7.1, and

background magnitude has been determined through a couple of iterations.

Telescope Parameters
Exposure time: 2 s

Binning: 2x2 pixels
dRA: 0.008558 deg/s

dDEC: -0.005486 deg/s
Pixel FOV: 0.79 arcsec

Feature Representation
Signal Power: 2856 photons

FWHM: 4.5 pixels
Back. Magnitude: 19.72
Star Mag. Range: 18 to 5

Noise Parameters
Bias: 494 ADU

RO Noise: 4.8 e−/pixel
DC Rate: 0.01 e−/pixel/s

Defective Pixels
Hot Pixels: 10000 #

Median T2D: 217 s
Minimum T2D: 0.5 s
Weibull Shape: 1.7

Vignette Parameters
Correlation: 1
Max Value: 10
Coverage: 30%
Offset x: 400 pixels
Offset y: 0 pixels
Sensor Parameters

Bit Depth: 16 bits%
Full Well: 45000 e−

Pixel Size: 3.76 µm

Table 27: Simulation Parameters - CMOS

4.3 Real vs Synthetic imagery CCD

A similar scenario can be replicated for CCD imagery. Furthermore, for this pointing scenario

there synthetic images produced before this collaboration’s implementations to which we can

compare the improvements in performance. Again, we utilize the calibration imagery from Navstar

67 (another Block IIF GPS platform) to derive the necessary data.

Object Properties
Name: Navstar 67 (USA 239)

NORAD: 38833
Semi-Major Axis: 26560 km

Dimensions: 2.49 X 2.03 X 2.22 m

Table 28: Navstar 67 properties

With corresponding spherical synthetic object having the following properties:

Radius 1.393 m
SNR 33.79

Peak Signal 3084 photons
Total Signal 6946 photons

Table 29: Synthetic object properties
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In this case, images are unbinned and except from 16bit thresholding, no further post-processing

is necessary. Note how Pixel FOV is much greater due to the reduced pixel array with respect to

the corresponding FOV.

Scenario parameters - CCD
Exposure time: 2 s

Binning: None
FOV: 2.10 x 1.41 deg
RA: 276.81949 deg

DEC: 55.61763 deg
dRA: 0.01736 deg/s

dDEC: 0.004122 deg/s
Pixel FOV: 1.894 arcsec

Table 30: Scenario Parameters - CCD

We perform a visual inspection on results across the 3 images, and note down the SNRs obtained.

Results show that the new imagery displays improved fidelity in both SNR representation and

background noise. Under the same contrast ratio, old synthetic imagery appears much dimmer,

with much lower average background values.

Plotting the distribution of ADUs helps to highlight the discrepancy between the three dis-

tribution, with new synthetic and real imagery almost perfectly overlapped, and old imagery

experiencing a considerable bias and shape discrepancy.

Figure 75: Comparison of real vs synthetic imagery - CCD

87



Figure 76: Comparison of Real vs Synthetic distributions - CCD

Image σbackground Median µ
Real @2s 14.64 1067 1070.24

Old Synthetic @2s 30.42 1002 1005.57
New Synthetic @2s 14.72 1068 1076.54

Table 31: Real vs Synthetic (old and new) table of results - CCD

Due to the smaller FOV, only 20011 stars are sampled, with 9876 stars falling into frame.

The input parameters utilized for the new simulation are displayed below. As per the previous

example, defective pixel values were reverse engineered from the sensor’s characterization process.

Telescope Parameters
Exposure time: 2 s

Binning: None
dRA: 0.01736 deg/s

dDEC: 0.004122 deg/s
Pixel FOV: 1.894 arcsec

Feature Representation
Signal Power: 3084 photons

FWHM: 2.0 pixels
Back. Magnitude: 20
Star Mag. Range: 18 to 5

Noise Parameters
Bias: 921 ADU

RO Noise: 10.64 e−/pixel
DC Rate: 0.0006 e−/pixel/s

Defective Pixels
Hot Pixels: 5000 #

Median T2D: 42 s
Minimum T2D: 2 s
Weibull Shape: 1.2

Vignette Parameters
Correlation: 100
Max Value: 8
Coverage: 10%
Offset x: 0 pixels
Offset y: 0 pixels
Sensor Parameters

Bit Depth: 16 bits
Full Well: 60000 e−

Pixel Size: 9 µm

Table 32: Simulation parameters - CCD
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5 Conclusion

Within this thesis, a variety of improvements have been introduced to the Image Simulator:

• An optical performance model has been introduced, with the capability of simulating

synthetic features based on orbital, object and telescope parameters.

• A detailed noise model, along with the introduction of a novel characterization of pixel

defects, has been developed and integrated both within the simulator and as a separate

script.

• Custom functions have been introduced to simulate a variety of effects, most notably on

cosmic rays, vignetting, lens distortion, and straylight phenomena.

• Streamlined validation and image recreation procedures have been detailed, providing a

foundation for SBOC’s software tests.

• Improvements to input and output formats, along with conversion between FWHM and

EE, have been put in place.

Synthetic image recreation results also ostensibly demonstrate significant improvements in SNR

determination, with improvements in both feature and background noise representation for both

CCD and CMOS sensors.

These outcomes laid the groundwork for the development of onboard software for debris tracking

from a space-based telescope, to help Airbus’ enable the processing data directly onboard.

Further work to improve the functionalities of the image simulator might cover:

• Defective pixel identification directly from science images

• Bolometric corrections for star signals

• Variational tumbling phase functions

• Optimization in sampling conditions from the GAIA database

• Improvements to vibration simulation and atmospheric dispersion model
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Annexes

I Image Stacking

Image stacking is commonly used in astrophotography to improve observations through this

post-processing step. The stacking procedure computes the median or average of each pixel

across a multitude of images, creating a new 2D array. This effectively improves the SNR of

the observation, without increasing the exposure time. Since mean calculations are sensitive to

outliers, stacking procedures are generally performed with the median.

Figure 77: Single frame vs Stacked sky images

However, median computations in python require the simultaneous storage of all the images in

memory, in a process that can easily require significant resources. We can in fact calculate the

memory required using the formula:

M = Nimages ·Nbands ·Nbits · (Height ∗Width) (47)

If we were to stack just 20 images for our CMOS sensor array (14192x10640 pixels, 16bits,

monochrome), this process would require roughly 45 gigabytes of RAM. It’s quite easy to see

that an alternative, procedural method should be implemented to save memory usage.

A median approximation algorithm has been developed by Tibshirani2008 [20], that effectively

counts a "running median" by dividing the data into bins and counting them until half of all the

numbers are accounted for. At this point, one can approximate that the median is located at the

half-point of the bin where we stop our algorithm.

90



Algorithm 2 Pseudocode
1: procedure BinApprox Algorithm
2: (µ, σ)← Mean/Standard Deviation
3: Set the bounds:
4: minval = µ− σ
5: maxval = µ+ σ
6: Ignore values >= maxval
7: Set bin width:
8: width = 2σ/B
9: (ignoreBin)← if value < minval

10: Count and add the bin counts until (N+1)/2:
11: for n in B do
12: Bcounts[n] = B.count(minval <= value < minval + width.
13: minval += width.
14: for n in Bcounts do
15: RunningCount += Bcounts[n]
16: if RunningCount >= (N+1)/2 then
17: Return midpoint of B[n]
18: else
19: Continue

For our purposes, bins do not need to be stored after being counted, and the memory allocated

for those is freed up. Thus this method does not suffer from the common memory problems that

characterize regular median stacking methods.

The downside of using this algorithm is that the precision of the answer is accurate to σ
B , when

using a B number of bins, thus using a sufficiently large number of bins is critical to obtain

reliable results.

II FWHM and EE

In signal theory and optics, FWHM and EE are often used interchangeably to characterize lens

and detector performance.

Full Width at Half Maximum (FWHM) is the width of a distribution curve between the

points at half of the maximum amplitude. FWHM proves useful in image processing since it’s a

convenient way to define in terms of pixels the drop-off of a certain diffraction pattern.

Ensquared and Encircled Energy (EE), are a measurement concept of concentration of energy

within a region of an optical image. When measured from the centroid of a PSF, one can calculate

the enveloped energy within a given radius (Encircled Energy) or within a given side of a square

(Ensquared energy).
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Figure 78: EE in the centroid pixel compared to FWHM

It is possible to calculate EE and FWHM interchangeably by making the three following assump-

tions:

1. The PSF is located in the centroid of the pixel

2. The PSF is modelled as a 2D Gaussian distribution

3. σx = σy

Under the second assumption, FWHM and σ are linked from the following relationship:

FWHM = 2σ
√
2 ln 2 ≈ 2.355σ (48)

Through the definition of error function:

erf(z) =
2√
π

∫ z

0
e−t2dt (49)

If FWHM is known, we can convert to EE, using the same σ as calculated in equation (48).

EE = erf

(
a

σ
√
2

)
(50)

That is a probability of the energy residing between -a and +a (where a = half window size).

In absence of the first and third assumptions (PSF located at any position), the EE of a given

pixel range is determined as:

EEx =
1

2

(
erf

(
Lb,x − µx√

2σ

)
− erf

(
La,x − µx√

2σ

))
(51)

EEy =
1

2

(
erf

(
Lb,y − µy√

2σ

)
− erf

(
La,y − µy√

2σ

))
(52)

Where Lb and La are respectively the distance to the upper and lower pixel bounds of the window

(not necessarily square).
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III Phase function models

The function for a perfectly diffuse (lambertian) sphere is:

θF,1(ϕ) =
2

3π2
[(π − ψ) cosψ + sinψ] (53)

Where ψ is the object-sun phase angle. For the perfectly specular model we use the formula:

θF,2(ϕ) =
1

4π
(54)

We represent the diffuse-specular model as a linear combination of these two functions:

θF (ϕ) = βθF,1 + (1− β)θF,2 (55)

For tumbling plate-like objects, we integrate across all possible orientations of a plate-like

object and we calculate an averaged reflective phase function.

θF (θ) =
sin (ψ) sin (ψ + θ) cos2(χ)

π
(56)

Figure 79: Permissible attitudes for light scattering

We can compute the average illuminated surface as:

Iavg =
1

π2

∫ π

0

∫ π−θ

0
θF (θ) dψdχ

=
1

π3

∫ π

0

∫ π−θ

0
sin (ψ) sin (ψ + θ) cos2(χ), dψdχ.

(57)
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Figure 80: Geometry of a tumbling plate facing the Sun

IV Randomization techniques

For the purposes of an image simulator, replicability of consistent imagery is essential to evaluate

software performance. To attain such a goal, utilization of a seed-based generation is necessary for

all pseudo-random processes. Luckily this constitutes a common problem in the image-processing

community, and there are multiple packages available on python to solve this issue. The methods

offered in numpy.random are more than sufficient, and we utilize random.seed and random.randint

functions to obtain consistent results. However, a procedural pixel-by-pixel randomized generation

is not possible due to concerns related to the Birthday Paradox, a vericidal statistical paradox

which demonstrates how a very low number of permutations can have a very high probability to

be repeated.

For example, if we generate 10.000 defective pixels across a 4008x2672 pixel grid (N = 10.709.376

total pixels), we can calculate the probability that duplicates will occur if we cumulate all the

individual probabilities of overlap:

P (n) = (1−
10000∏
n=1

(1− n

N
)) · 100 = 99.062679% (58)

Where N is the total number of pixel, and n represents the current defective pixel position being

randomized. Evidently, we must allocate some memory to store a set of non-duplicated values

through permutation. For these purposes we use the random.RandomState method, and we index

the pixel positions by collapsing and flattening the 2d grid into a 1d list. This list can then be
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Figure 81: Flattening of 2D grid for unique index referencing

easily used for logging in output pixel data on original ADU values, pixel positions and ADU

offset and proportional increase.

It is also important to note that seeds utilized for pixel defects and noise within a sequence

of images should differ. The seed assigned to noise should change on every subsequent image,

and no two noises should share the same seed (to avoid superimposition). For pixel defects,

however, we shall utilize the same seed across all images, since these defects constitute an

intrinsic characteristic of the hardware itself, and will always retain the same properties.

V Vignette generation

Some images captured by the telescope exhibit a reduction in image brightness at the peripheral

regions of the field of view. This effect could be caused by light path obstructions or improper

mirror design. There are multiple types: mechanical, optical, natural, pixel, and artificial vignetting

are some examples, but for the purposes of the simulator it is not necessary to distinguish between

the different types, instead one must construct a model that can simulate any vignette shape as

it becomes necessary.

The vignetting we experience on the ART affects mostly the left and right sides of the image,

and median values along the rows of the images remain unaffected. The data of the columns,

however, experiences a gradient in decrease of brightness that begins in proximity of the edges.

We can obtain a visual representation of the data if we superimpose the median of values of the

columns on top of the image itself:
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Figure 82: Vignetting phenomena on ART imagery

We can distinguish two regions within the image: the central region maintains roughly the same

ADU values, with the exception of some single columns that are affected by column defects. The

peripheral regions are affected directly by the vignetting, experiencing an average decrease of

almost 40 ADU at the very edge.

To properly replicate the variety of possible vignetting that might arise, it was chosen to use the

bivariate normal distribution PDF:

[H]

f(x, y) =
1

2π(1− ρ2)1/2σxσy
exp

[
− 1

2π(1− ρ2)

(
x− µx
σx

)2

−2ρ
(
x− µx
σx

)(
y − µy
σy

)
+

(
y − µy
σy

)2] (59)

In addition to the PDF parameters, the implementation within the simulator also accepts the

following values:

• Correlation ρ: determines the shape and orientation

• Standard deviations σx & σy: determine the shape

• Offset x & y: modify values of µx & µy, determines the foci of the vignette

• Peak Value: determines the maximum value at the edge
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• Coverage: determines spread of covered area by the vignette

These parameters allow the user to replicate a variety of gradient maps that can be used to

replicate both vignetting (when subtracting the maps) or amp-glow (when adding the maps).

Some examples of the maps generated are shown below:

Figure 83: Types of synthetic vignettes

Where in the left image: σy = 100σx. Middle: offset x,y; Right: ρ = 1

Figure 84: Synthetic image with 40 ADU peak side vignetting
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VI Pixel dwell time

For SNR estimation in both Sideral and Tracking scenarios, it’s necessary to estimate the

deposited energy of signal sources. If there is no relative movement between the sensor and signal

source, the solution is trivial and the integration time of the sensor is identical to the dwell time.

However, for surveilance scenarios, this is not often the case and one must calculate the relative

velocity when the signal is projected on the image focal plane.

If we assume a circular orbit, we can calculate the tangent velocity of the object as vt = ω ∗R.

We can determine the velocity within the focal plane as:

vfocalplane =
vt
R
∗ f (60)

Calculating the pixel dwell time is now straightforward:

tdwelltime =
Apixel

vfocalplane
(61)
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VII Scenarios Results
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