
POLITECNICO DI TORINO
Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

Transfer Learning strategies for time
robust neural decoding in a

Brain-machine interface

Supervisors

Dott. Paolo VIVIANI

Prof. Valentina AGOSTINI

Prof. Marco GHISLIERI

Candidate

Myriam LUBRANO

July 2023

Summary

Recent and continuous advancements in neuroengineering and Machine Learning
demonstrates the huge potential of Brain-machine interface in the field of neuro-
prosthetics. This rapidly evolving technology aims to provide innovative solutions
to people affected by disabilities, in order to restore motor, sensory, and cognitive
functions. This is the goal of B-Cratos project, whose purpose is the development of
a closed-loop neural interface for controlling a robotic hand prosthesis also capable
of providing sensory feedback to the patient. Neural decoding is possible thanks
to Deep Learning models trained using high-performance computing resources on
datasets acquired from the German Primate Center (Deutsches Primatenzentrum,
DPZ), that can classify signals recorded via implanted microelectrode arrays. DPZ
researchers recorded the neural activity of two macaque monkeys trained to per-
form a grasping task with a series of objects of different shapes and sizes. These
signals were pre-processed and used in previous works for the development of a
classifier. For this purpose, a Bidirectional Recurrent Neural Network was trained
to successfully identify the objects grasped by the monkeys, simulating a real-time
decoding.
In this work, different transfer learning strategies were implemented in order to
exploit the knowledge acquired by the pre-trained classifier in a model that can
be used on new recording sessions, subsequent to the first one. The possibility to
effectively transfer the information learned from a pre-trained model would repre-
sent a significant advantage in the use of BMIs, considering the high variability of
neural signals and the need to recalibrate the device to maintain high performance
over time. Before implementing the transfer learning, the two datasets used were
appropriately reduced, in order to present a common dimensionality: the differ-
ent dimensionality was due to the application of offline spike-sorting algorithms
independently on the two sessions. Feature extraction was performed through
different models and their performances were evaluated in terms of final accuracy
achieved after the fine-tuning. Furthermore great importance was attributed to a
convergence analysis: this analysis was conducted to evaluate the classifier’s ability
to quickly learn the neural patterns relevant for object classification.
Among all the models developed for the reduction and consequent classification, the

ii

Partial Reduction model showed the best results, consisting in a single dense layer,
with a latent space of the same dimension of the data from the first training session,
preceding the layers responsible for classification whose weights can be setting
as trainable or non-trainable parameters. This network showed to outperform a
classifier trained from scratch in the classification task involving 37 objects with
different shapes and sizes, both for the accuracy achieved and for the convergence
speed. Specifically, the variant with frozen layers reported an accuracy of 45%
and reached the 30% accuracy threshold in only 9 training epochs, compared to
the reference that achieved a 37% final accuracy and required 45 epochs in order
to get to the threshold. Despite the limitations presented by the datatset, this
work showed that an appropriate weights initialisation can contribute to better and
faster re-training, providing promising results for the implementation of transfer
learning strategies in neural decoding models.

iii

Table of Contents

Acronyms viii

1 Introduction 1
1.1 Basics of neuroanatomy and neurophysiology 2

1.1.1 Central and peripheral nervous system 2
1.1.2 Brain anatomy . 2
1.1.3 Neurons and synapses . 4
1.1.4 Action potential . 5

1.2 Brain-Machine Interfaces . 7
1.2.1 BMI classification . 8

1.3 B-Cratos project . 9
1.3.1 Related works and intent of this thesis 11

2 Prior knowledge 13
2.1 Artificial Neural Networks . 13

2.1.1 Recurrent Neural Network 15
2.1.2 LSTM networks . 16

2.2 Transfer learning . 16
2.2.1 Approaches . 18

2.3 Dimensionality reduction . 20
2.3.1 Feature selection and feature extraction 21
2.3.2 Linear techniques . 22
2.3.3 Non-linear techniques: the autoencoder 23

3 Dataset 26
3.1 Experimental setup . 26

3.1.1 Behavioral paradigm . 27
3.2 Pre-processing . 28

3.2.1 Pre-processing applied within this work 29

v

4 Methodologies 32
4.1 Definition of the Machine Learning problem 33
4.2 Developed models . 35

4.2.1 Simple autoencoder . 36
4.2.2 Convolutional autoencoder 37
4.2.3 Biased autoencoder . 39
4.2.4 Partial reduction . 40

4.3 Training strategies . 42
4.4 Evaluation metrics for multi-class classification 42

5 Results 47
5.1 Reference . 47
5.2 Simple task: selecting the model . 50
5.3 Complex task: final results . 56

6 Conclusion 61

A Structure and hyperparameters of the classifier 63

B Further results 64
B.1 Direct application of the pre-trained model 64
B.2 Confusion matrices of developed models 65

C HPC based model training 67

List of Figures 68

List of Tables 73

Bibliography 75

vi

Acronyms

AI
Artificial intelligence

AIP
Anterior intraparietal cortex

BMI
Brain-machine interface

BRNN
Bidirectional recurrent neural network

CAE
Convolutional autoencoder

CEC
Constant errror carrousel

CNN
Convolutional neural network

CNS
Central nervous system

DL
Deep learning

DNN
Deep neural network

viii

ECoG
Electrocorticography

EEG
Electroencephalography

FAT-IBC
Fat intra-body communication

FMA
Floating microelectode array

FN
False negative

DPZ
Deutsches Primatenzentrum

GPU
Graphics processing unit

HPC
High-performance computing

LDA
Linear discriminant analysis

LM
Language model

LSTM
Long short-term memory

M1
Primary motor cortex

MAE
Mean absolute error

ix

MEG
Magnetoencephalography

ML
Machine learning

MSE
Mean squared error

NHP
Non-human primate

NN
Neural network

NLP
Natural language processing

PA
Action potential

PCA
Principal component analysis

PMv
Ventral premotor cortex

PNS
Peripheral nervous system

ReLU
Rectified linear unit

RNN
Recurrent neural network

SCI
Spinal cord injury

x

SGD
Stochastic Gradient Descent

TL
Transfer learning

TN
True negative

TP
True positive

xi

Chapter 1

Introduction

There are several pathologies that lead to the loss of motor control and these
can have a significant impact on the quality of life for patients and their families.
Limited or absent motor functions can be caused by disorders affecting the nervous
system, such as cerebral palsy (CP) and neuromuscular diseases, as well as ampu-
tations or spinal cord injuries (SCI). These conditions can impair patients’ ability
to move, communicate, and participate in daily activities, making it difficult to
perform basic tasks and maintain independence.
Innovative technologies such as Brain-Machine Interfaces (BMIs) have been devel-
oped in order to improve the quality of life for patients with disabilities.

BMIs are devices that allow to translate brain activity into commands that
can be used to control external devices, such as prosthetic limbs or rehabilitation
orthoses. This type of technology represents a promising solution for rehabilitation,
aiming to restore lost functionalities and provide autonomy to the patient.
One of the main goals of neural interfaces used in the biomedical field is to
provide functional support systems for people with disabilities, for example for
controlling neuroprosthetics. In this field, neuroprosthetics aim to restore the
functions associated with voluntary movements, which can be compromised due
to various neuromotor pathologies, such as tetraplegia and amyotrophic lateral
sclerosis (ALS). In these subjects, the communication pathway between the motor
cortex and muscles is interrupted, so solutions like myoelectric prosthetics are not
applicable, however, the brain signal which constitutes the source of the missing
motor output can still be directly recorded.

Deep Learning (DL) has recently found wide use in the development of BMIs, due
to its ability to identify complex patterns within the data and for the possibility to
implement transfer learning. DL models also enhance performances in classification
tasks and allow to automate the feature extraction process [1].

1

Introduction

1.1 Basics of neuroanatomy and neurophysiology

1.1.1 Central and peripheral nervous system
The nervous system is the set of organs and structures that allow signals to be
transmitted between different parts of the body and to coordinate their actions
and functions [2]. It is divided into the Central Nervous System (CNS) and the
Peripheral Nervous System (PNS): the CNS is mainly made up of the brain and
spinal cord, which integrate the information coming from the other organs and from
the external environment and process appropriate reactions, while the PNS mainly
consists of nerves, which extend from the CNS and branch throughout the body.
Nerves are responsible for transmitting nerve signals between the brain and the rest
of the body, allowing to control muscle movements and receive sensory information.
Efferent neurons refers to the nerve connections that carry information relating
to movement or other functions from the CNS to the periphery, whereas afferent
neurons carry sensory signals from periphery to the CNS.

1.1.2 Brain anatomy
From an anatomical standpoint, brain is divided into two hemispheres and each of
them has four lobes:

• Frontal lobe, primarily responsible for the control of voluntary movements,
for personality and planning abilities;

• Parietal lobe, that contains areas dedicated to receiving somatosensory input
and proprioception;

Figure 1.1: Human nervous system. [3]

2

Introduction

Figure 1.2: Division of the cerebral cortex into four lobes by sulci. [4]

• Temporal lobe, that plays a key role in perception and interpretation of
auditory stimuli and language comprehension;

• Occipital lobe, that hosts the primary and secondary visual cortex, making it
responsible for the processing of visual signals.

The outer surface of the brain is the cerebral cortex, which presents numerous
grooves, identifying hundreds of sulci and gyri. These considerably increase the
surface of the cortex itself and help to identify the different aforementioned lobes:
the frontal lobe is immediately anterior to the central sulcus, while the parietal
lobe is located behind it. The temporal lobes lie on the lower side of the brain
and are separated from the parietal and frontal lobes by the lateral sulcus. Lastly,
the occipital lobe, at the back of the brain, is isolated from the others by the
parieto-occipital and temporal sulci.

In particular, the following areas will be of particular interest for the rest of this
work, as they will be the target of the BMI implant:

• The primary Motor cortex (M1) is located in the posterior part of the frontal
lobe, anterior to the central sulcus (green in Figure 1.3). From a functional
point of view, it is directly involved in the planning, control, and execution of
voluntary movements of the body [5] and, in particular, of fingers;

• The Anterior Intraparietal Cortex (AIP) is a region of the posterior parietal
cortex (in red in Figure 1.3). Beyond motor neurons, it has a prevalence of
visual neurons, which make it fundamental in the processing of visual and
spatial information relating to objects;

• The ventral Premotor Cortex (PMv) is located on the inferior lateral surface
of the frontal lobe, anterior to area M1 (in blue in Figure 1.3). Specifically,

3

Introduction

area F5 is connected to the previous AIP as it receives from it the visual
information it uses in coding the specific grip and manipulation of an object.
This information is then sent to the M1 cortex for execution [6].

1.1.3 Neurons and synapses
Neurons are the basic nerve cells of the nervous system and are responsible for
transmitting nerve signals between cells. Neurons are specialised to receive, process,
and transmit information in the form of electrical and chemical impulses [8].
They are composed of a cell body, called soma, and two types of cytoplasmic
extensions: dendrites propagate the afferent signals to the soma, while axons carry
the neuron’s signals towards other cells.
Functionally, neurons can be divided into three types:

1. Sensory or afferent neurons;

2. Motor or efferent neurons;

3. Interneurons, which connect the first two types and that can also communicate
with each other.

Communication between two neurons takes place at synapses, also known as
synaptic junctions. These represent the site where nerve impulses pass from a
pre-synaptic to a post-synaptic cell. The transmission of a nervous impulse can
occur electrically or chemically:

• In chemical synapses, the transmission of signals is mediated by neurotransmit-
ters because there is a discontinuity between the two cells. This extracellular
space between the pre-synaptic and post-synaptic membranes is called synaptic
cleft. Neurotransmitters can be both excitatory and inhibitory;

Figure 1.3: Activation pathway during grasping, involving M1, AIP, and F5 areas
of the cerebral cortex. [7]

4

Introduction

Figure 1.4: Neuron structure and synaptic junction between two nerve cells. [9]

• In electrical synapses, there is a direct current passage from one cell to another,
thanks to the proximity or cytoplasmic continuity between the pre-synaptic
and post-synaptic membranes. This type of transmission is faster.

1.1.4 Action potential
The Action Potential (AP), or neural spike, is a brief electrical impulse that occurs
in nerve cells, generated by a rapid change in the membrane potential.
During the resting state, neurons exhibit a separation of electric charges across the
cell membrane, consisting of an excess of positive charges on the outer surface. This
charge difference is due to the presence of ion channels in the membrane, which
regulate the passage of sodium and potassium, and is responsible for a resting
potential approximately equal to -70 mV. In these conditions both sodium and
potassium channels (voltage-gated channels) are closed and the concentration of
K+ ions is higher inside the cell, while the concentration of Na+ ions is higher
outside.
If the neuron is stimulated above the threshold potential of excitation, the membrane
potential undergoes a variation that occurs in three phases: depolarisation, followed
by repolarisation and a short period of hyperpolarisation:

• Depolarisation is caused by the opening of sodium channels, which allow the
entry of Na+ ions into the cell. As positively charged ions enter, the membrane
potential reverses its polarity. During this change in polarity the membrane
reaches a potential approximately equal to +40 mV;

• The repolarisation phase is caused by the closure of sodium channels and
the opening of potassium channels. As a results, the membrane becomes less

5

Introduction

permeable to sodium and this allows the Na+ ions to come out, until the
negative membrane potential is restored;

• Hyperpolarisation is the phase in which some potassium channels remain open,
causing an increased permeability to potassium. This permeability results in
a further reduction of the membrane potential, which reaches -90 mV. At this
voltage, also potassium channels close and the membrane potential returns to
its resting value.

These three events occur within a few milliseconds and represent a refractory
period. By definition, the refractory period is the period of time right after the
first AP during which a cell is incapable of generating a new one. There are two
types of refractory periods, the absolute refractory one, which corresponds to the
depolarisation and repolarisation of the membrane, and the relative refractory
one, which corresponds to the hyperpolarisation: while during the first period the
generation of a new PA is impossibile regardless of the intensity of the stimulus,
during the second one a new depolarisation is possible only with a higher level of
excitation. Consequently, neural spikes are isolated events that can’t be summed
and that can occur at a maximum frequency.

The action potential originates at the axon hillock and propagates along the
axon without attenuation. The amplitude of the action potential is independent
of the intensity of the stimulus, i.e., if the stimulus is high enough to exceed the
threshold, the PA is generated with constant amplitude and shape. Furthermore,
the shape of the PA is characteristic of each neuron.

Figure 1.5: Trend of the membrane potential during the generation of the action
potential. [10]

6

Introduction

1.2 Brain-Machine Interfaces

The term Brain-Machine Interface (BMI) refers to a system that enables direct
communication between the brain and an external device, bypassing the ordinary
peripheral channels and directly exploiting the recording of brain signals. A BMI
is therefore a system that measures the activity of the CNS and converts it into
artificial outputs that replace, restore, enhance, or integrate the natural outputs of
the CNS, allowing an individual to interact with the external environment [12].
One of the potential applications could be the restoration of a lost function due to
injuries or diseases: for example, a person who has lost control of his limbs could use
a BMI to drive a motorised wheelchair or move a robotic limb. Other applications
involve the improvement of natural functions (such as enhancing attention in people
driving a vehicle [13] or establishing the activation of an orthopedic device [14]) or
the integration of the same (as in the use of an exoskeleton for safety at workplace
[15]).

A BMI records the user’s brain signals, extracts from them specific features, and
translates those features into artificial outputs that act in the external world or on
the body itself, therefore it has three basic components: a signal acquisition block,
a signal processing block, and the output device (Figure 1.6). Signal acquisition
techniques depend on the signal monitored and on the invasiveness of the electrodes
used for the purpose: the type of acquisition allows to classify the BMI according
to the scheme shown in the following subsection (1.2.1).
The signal processing block involves the features extraction and the decoding of the
recorded signals, through a translation algorithm. Lastly, the output is represented
by the external device of the BMI, which constitutes the target of the decoding
but also a feedback that can be exploited by the brain or by the BMI itself [16].

Figure 1.6: Schematic representation of the components of a BMI for controlling
external devices. [11]

7

Introduction

1.2.1 BMI classification
During the signal acquisition stage, two types of brain activity can be monitored:
electrophysiological or hemodynamic brain activities.
Most BMIs exploit electrophysiological signals and, in this case, brain activity
can be measured non-invasively, by electroencephalography (EEG), or invasively
by electrocorticography (ECoG), with electrodes placed above or below the dura
mater or directly into the brain via intracranial electrodes. This difference allows
us to distinguish the BMIs into two classes (Figure 1.7):

• Non-invasive. They use sensors placed on the scalp in ordier to measure
brain’s electrical potentials (EEG) or magnetic field (MEG). Most recent BMIs
obtain relevant information from brain activity through electroencephalogra-
phy, which is widely used due to its high temporal resolution, relative low
cost, and minimal risks for users. However, EEG-based BMIs rely on surface
electrodes that lie on the scalp, thus, the quality of these signals is influenced
by interposed layers as well as by background noise. An example is shown in
Figure 1.8;

• Invasive. Due to the limitations of non-invasive acquisition, invasive record-
ing methods such as electrocorticography (ECoG) or intracortical electrode
recording have been introduced in an attempt to improve the quality of brain
signals monitored by BMIs.
Despite the need for high-resolution and low-interference signals, invasive
BMIs require implantation of microelectrode arrays into the skull through
surgery: this implies significant risks for the user, including the risk associ-
ated with surgery itself as well as issues related to infections or long-term

Figure 1.7: Comparison between neural signal acquisition techniques: EEG for
non-invasive modality, ECoG for partially invasive modality, and intracortical
microelectrodes implanted in the cortex for invasive modality. [17]

8

Introduction

bio-compatibility. All these disadvantages severely limit their use outside of
the experimental context.

A further classification of BMIs is based on the presence or absence of somatosen-
sory feedback, which allows them to be distinguished into mono-directional and
bi-directional.
In traditional mono-directional BMIs, the external device receives commands di-
rectly from signals deriving from the brain activity, without providing the user
with a feedback on the action performed (except for visual feedback).
On the other hand, bi-directional BMIs combine this communication channel with
a feedback loop that also allows information to flow from the external device back
to the brain. These are the so-called somatosensory neuroprostheses. Sensations
related to touch or proprioception constitute an important feedback, which can
be sent to the peripheral nerves or directly to the somatosensory cortex [18]. It’s
important to highlight that somatosensory feedback provides not only sensorimotor
but also cognitive benefits to users, as demonstrated by Klaes et al. [19] and by
Preatoni et al. [20].

Figure 1.8: Example of BCI with non-invasive acquisition system. [17]

1.3 B-Cratos project
This master thesis was carried out at the LINKS Foundation, a research institute
born from the collaboration between Compagnia di San Paolo and Politecnico di
Torino. LINKS operates in applied research, digital technology and innovation,
with active projects at national and international level.
This work is part of B-Cratos (Wireless Brain-Connect inteRfAce TO machineS), a
European project funded by the EU Horizon 2020 research and innovation program

9

Introduction

under grant agreement 965044, that aims to develop a wireless, bidirectional and
battery-free BMI to restore hand functionality and touch to subjects with paralysis
or amputation [21].
The main expected features and innovations are the following:

• Design a proof-of-concept high-channel, high-speed, wireless brain
implant capable of two-way communication without battery
The system features a battery-less, fully-implantable brain interface capable
of sensing high-resolution neural signals and precisely stimulating cortical
targets. The Utah Array is connected to a small biocompatible, hermetically-
sealed implant containing custom electronics to detect, amplify, and digitise
neuronal activity and deliver electrical stimulation. A wearable external
module designed by NTNU researchers uses a novel wireless transmission
technique to enable two-way (Figure 1.9);

• Develop a general-purpose, high-speed communications platform
technology through the fat tissue
Fat intra-body communication (FAT-IBC) is based on microwave propagation
confined to the subdermal body fat with minimal interference from external
electronic devices;

• HPC based AI computing
Machine learning (ML) and deep learning (DL) algorithms for arm control
and sensor stimulation will be implemented for pattern recognition and classi-
fication. Details are provided in Appendix C;

• Artificial skin
The sensory system will employ a novel combination of tribo-electric nanogen-
erators (TENGs) and graphene-based hydrogels to provide a time-dependent
force map in digital format;

• Biomechatronic prosthetic upper
B-CRATOS will use the 5-axis Mia robotic arm from Prensilia s.r.l., an
SME spin-off of Scuola Superiore Sant’Anna, which evolved (lighter, stronger,
improved speed and force) from the IH2 Azzurra and which is used in research
institutes worldwide (Figure 1.10).

B-Cratos’s BMI can be classified as invasive due to its use of intracortical mi-
croelectrode arrays (Blackrock Microsystems Utah Array), which are connected
to a biocompatible implant containing the electronics capable of processing the
neural activity and providing stimulation. Wireless communication is ensured by
an external wearable module, responsible for power supply and high-speed data
transfer, in a two-way direction. The AI module has the task of translating and

10

Introduction

transmitting signals between the brain and the prosthesis in both ways: decoding
neural signals taken from the implanted electrode arrays and, vice versa, encoding
input signals from the hand through the sensorised skin.

Figure 1.9: Schematic representation of the wireless communication between the
implanted electrodes and the external module. [21]

1.3.1 Related works and intent of this thesis
Regarding the AI module task managed by LINKS, the purpose of training the
Deep Learning models is to decode the neural activity from the motor cortex and
translate it into meaningful commands in order to control the robotic prosthesis.
In two previous thesis works [22, 23], starting from the neural signals acquired in a
grasping activity session performed by a Non-Human Primate (NHP), a classifier
was developed and trained to successfully predict the type of grip performed by
the subject, simulating a real-time decoding.

The present thesis work aims to investigate our capability to transfer the
information acquired by a classifier, pre-trained on a dataset acquired in a first
specific session, on a new dataset acquired in a different day. This investigation
is necessary because of the extreme variability of brain signals which, due to
neuroplasticity1, inflammatory processes or variations in the acquisition system,
may not be sufficiently similar to the model training data, resulting in a reduction
of the classifier performance through time.

1Neuroplasticity refers to the ability of the nervous system to reorganise its structure in response
to internal or external stimuli. Numerous rehabilitation protocols aim to promote neuroplasticity
through physical or cognitive exercises or through electrical and magnetic stimulation techniques.

11

Introduction

Figure 1.10: Mia Hand: robotic hand prosthesis developed by Prensilia. It allows
5 different types of grip, covering 80% of daily grips. [24]

Indeed, despite the numerous advances in the field of BMIs, most of the ap-
plications are still limited to experimental settings, because of the large amount
of data required for the initial training and the frequency of re-training, making
them hard to apply to everyday life: let us consider a user who intends to use
a neuroprosthesis, but is forced to often recalibrate his BMI daily for two hours,
possibly requiring assistance from a clinician, due to the variability of brain signals.
This would take away time from actual usage to collect sufficient data for the
neural network training. A more robust model or an appropriate transfer learning
strategy would allow a drastic reduction of preparation and training time, leaving
more time for utilisation. The intra-subject variability problem anticipates the
more complex problem of inter-subject variability, whose overcoming would make
it possible to reuse the previous knowledge acquired from one individual, adapting
the BMI to other users.

The organisation of this thesis can be outlined as following: Chapter 2 briefly
describes the concepts necessary for understanding the work; in Chapter 3 the
dataset used in the project is presented, including the experimental set-up and the
pre-processing techniques applied; Chapter 4 describes the methods and approaches
adopted; in Chapter 5 the research results are presented and analysed. Finally,
in the Chapter 6 a summary of the achieved results in the context of the work’s
objective is provided, along with the conclusions reached and any recommendations
for future researches.

12

Chapter 2

Prior knowledge

In this chapter basic notions are provided for understanding the work and the
techniques used and described in Chapter 4. Furthermore, the transfer learning
concept is introduced in the context of Machine Learning.

2.1 Artificial Neural Networks
In Deep Learning field, an Artificial neural network (abbreviated in ANN or simply
in NN for Neural Network) is a computational model composed of artificial neurons,
loosely inspired by the simplification of a biological neural network [26]. Just
as a biological one is made up of interconnected biological neurons, an NN is a
mathematical computing model based on interconnected artificial neurons, which
represent the nodes of the network itself.

Figure 2.1: Architecture of the simplest ANN, consisting of an input layer with
three neurons, a single hidden layer with four neurons and an output layer with
two neurons. All layers are "fully connected", i.e., composed by neurons connected
to all the neurons of the next layer. [25]

13

Prior knowledge

Figure 2.2: Structure of an artificial neuron. [27]

The basic structure of an NN consists of three layers: an input layer, a hidden layer,
and an output layer, as shown in Figure 2.1. Signals are presented to the input
layer nodes, each of which is connected with the next layer nodes. Every node
processes the received signals through an activation function, which determines
the output of the neuron itself, and transmits the result to the subsequent nodes
(Figure 2.2). A neuron’s input is therefore a weighted combination of the output
from the previous layer neurons. This basic structure can be suitably complicated
by varying the number of hidden layers and the number of nodes present on each
of them.
The activation function aims to limit the neuron’s output within a desired range
of values and to introduce non-linearity into the model. Without non-linearity,
the network would be unable to learn the more complex relationships in the data.
Some of the most commonly used non-linear activation functions are:

• Sigmoid
It restricts values in the range [0,1] and it is commonly used in the output
layer for binary classification problems. The function is the following:

S(x) = 1
1 + e−x

= ex

ex + 1 (2.1)

• Softmax
It is a generalisation of the logistic function, that maps a K-dimensional vector
x in a K-dimensional vector σ, whose values are in the range (0,1) and whose
sum is equal to 1. It’s mostly used in the output layer of multi-class classifiers.
The function is the following:

σ(xj) = exjqK
k=1(exk)

, per j = 1,...,K. (2.2)

14

Prior knowledge

• ReLU
Rectified Linear Unit activation function (ReLU) is a fast and efficient one as
it turns all the negative values to zero. It is generally chosen for hidden layers.
Its equation is:

S(x) = x+ = max(0, x) (2.3)

During the training phase, the neural network modifies its randomly initialised
weights based on the information it receives, in order to learn how to perform
the required task. The most common learning algorithm for training an NN
is the so-called Backpropagation [28], typically used in supervised learning, but
whose application can also be extended to unsupervised networks. This algorithm
compares, using a so-called loss function, the network’s output with the target
value and calculates the distance between the two. The resulting vector represents
the gradient of the loss function and it is used to drive the training of the network.
Thanks to the backpropagation algorithm this gradient is propagated backwards
to recursively update network’s weights, gradually converging the output values to
the target ones. The overall training process is typically a flavour of the classical
Stochastic Gradient Descent (SGD) [29].

The following sections provide a brief description of Recurrent Neural Networks
and, specifically, of Long Short-Term Memory (LSTM) networks, as this is the
model used to implement the classifier in the present work.

2.1.1 Recurrent Neural Network
A Recurrent Neural Network (RNN) is a type of artificial neural network that has
a cyclic architecture, with neurons connected in a way that a node’s output is the
input of the same node, but in a subsequent time iteration (Figure 2.3). Therefore,

Figure 2.3: Diagram depicting the cyclic structure of an RNN: on the left
the folded structure, on the right the unfolded structure, expanded through the
procedure known as backpropagation through time. [30]

15

Prior knowledge

each neuron has the same weights in every time step, but the values of these weights
are updated during the training of the network. The feedback transmits the output
of a node back to its input forming a cycle and it allows the network to develop a
short-term memory of information from previous time steps and use it to make
decisions in the future. Indeed, these networks are widely used to process data
sequences in applications such as natural language processing, speech recognition,
machine translation, and other applications involving sequential data flows.

RNNs can also be bidirectional (BRNN): while traditional RNNs can recognise
correlations between elements of a time sequence only in one direction (e.g., past),
BRNNs can search for correlations in both temporal directions, in order to improve
prediction.
Thus theoretically, traditional (or vanilla) RNNs can track long-term dependencies
in input sequences. However, they present one computational limitation: when
training a vanilla RNN using backpropagation, long-term gradients that are back-
propagated can "vanish" (i.e., exponentially approach zero, stopping the network
from further training) or "explode" (i.e. they can exponentially approach infinity),
due to the accumulation of small/large gradients [31]. In order to mitigate these
vanishing/exploding gradient effects more complex neurons, such as LSTM neurons,
can be chosen.

2.1.2 LSTM networks
Long Short-Term Memory (LSTM) networks are a class of RNN networks capable
of learning long-term and short-term dependencies [32]. The LSTM neuron has
gates that control the information flowing into and out of the neuron itself, with
the purpose of storing what is considered relevant for the task’s resolution and must
therefore be kept and what, on the contrary, it can be forgotten. The information is
then filtered by the gates and the network learns the dependencies, both short-term
and long-term, of the input sequences. LSTM networks can also solve the vanishing
gradient problem, through a unit inside the cell called Constant Error Carrousel
(CEC) [33], although the issue of exploding gradient problem still remains.

2.2 Transfer learning
Although Deep Learning models allow to solve extremely complex problems, the
development of such models, especially in certain fields, requires the deployment
of vast computing resources and time, as well as a huge amount of training data.
For instance, as highlighted by Bender et al. [35], the training of large-scale
language models (LMs) for natural language processing (NLP) entails the need
for an assessment of environmental and economic impacts, focusing on the energy
efficiency of the developed models.

16

Prior knowledge

Figure 2.4: LSTM cell. It consists of an input gate, a forget gate, a Constant
Error Carrousel (CEC), which stores information based on the value of the forget
gate, and an output gate. [34]

This problem can be partially solved through transfer learning. In Deep Learning,
the term transfer learning (TL) refers to a strategy employed to exploit a pre-trained
neural network model on a large-scale dataset, in order to perform a new task,
similar to or related to the one for which it was created. The goal is therefore
to reuse knowledge from a model already trained or use it as a starting point
for customisation and adaptation to new purposes. Thanks to this approach, it
is possible to significantly optimise the already available resources, compared to
creating and instructing a new model whenever there is a new requirement to
satisfy.

This strategy is generally adopted in a supervised learning context and is widely
used in image classification: for instance, a model designed to recognise a set of
visual characteristics with the aim of discriminating between dogs and cats, can be
further trained to discriminat two other categories, such as insects and fishes, but
more quickly and effectively in terms of required amount of data and computational
cost. The intuition behind is that if a model is trained on a sufficiently large and
general dataset, it will effectively serve as a generic model for visual features and
this allows to leverage the learned general feature maps without having to train
a new model from scratch. However, to utilise transfer learning it is necessary to
select a suitable pre-trained model as a starting point. Depending on the specific
task, it may be appropriate making some changes to the model, such as fine-tuning
the weights or freezing certain layers, in order to adapt it to the new specific task.

17

Prior knowledge

Figure 2.5: Comparison between traditional learning approach and transfer
learning approach, which allows to transfer the acquired knowledge from Model 1
to Model 2, usable on a new dataset. [36]

Origins of transfer learning and today’s applications

Despite the concept of transfer learning dates back to the 1970s (Bozinovski and
Fulgosi, 1976) [37] and its modern definition was introduced in the 1990s, it is
only with the advent of contemporary Machine Learning and the access to vast
amounts of data that TL has become a popular and widely used strategy. Today,
it is successfully applied in several areas, thanks to the increased computing power
and the availability of libraries and DL models, which make it potentially accessible
to everyone. Transfer learning algorithms are now frequently used, for example, in
the following fields [38]:

• Computer vision, for object detection or image classification;

• Natural Language processing, for information extraction from text or machine
translation;

• Speech recognition and automatic transcription;

• Medicine, in radiomics or diagnostic support.

2.2.1 Approaches
The two main strategies that can be applied to reuse a pre-trained model in order
to transfer previous knowledge are as follows:

1. Feature extractor
The pre-trained neural network is leveraged to effectively extract the most
significant features from new input data by reusing its generally useful layers.

18

Prior knowledge

It’s then sufficient adding downstream of that model a new classifier, which is
trained from scratch specifically for the new task. An example can be found in
computer vision, where the convolutional layer base of the pre-trained network
is retained in order to extract features, while fully-connected layers of the
classifier downstream of the model are replaced and trained from scratch;

2. Fine-tuning
This involves customising a pre-trained network by keeping some layers fixed
and selectively modifying the weights of other layers through a new training
on a small amount of data. Freezing some layers allows to reduce training
time and processing power [39], but this represents a complex technique.

These strategies can be implemented when it’s not possible directly applying the
pre-trained model on new data, due to their insufficient similarity to original
dataset. The choice of the most suitable technique always depends on the specific
application and the quality and quantity of available data.

Benefits

As anticipated, transfer learning offers many advantages over training a neural
network from scratch, including:

• Saving time and computational resources: if the new task is similar to the
original one, the pre-trained model can provide a good starting point, with a

Figure 2.6: Fine-tuning strategies of a pre-trained model. [40]

19

Prior knowledge

number of already optimised parameters, reducing the time and computational
resources required to train one from scratch;

• Access to high-quality models: it’s possible to leverage other researchers’s
work and use high-quality models already trained on large amounts of labeled
data;

• Performance improvement: transfer learning can help enhancing the perfor-
mance of a model, especially when the new task is different but similar to the
original task;

• Increased generalisation and reduction of overfitting: transfer learning can
improve the model’s ability to generalise, reducing the risk of overfitting.

As a result, transfer learning represents a huge opportunity to optimise deep
learning processes, saving both time and energy.

Challenges and limitations

Despite the many advantages, transfer learning also presents some limitations and
challenges, such as the choice of the starting model: if this model is too specific, it
may not adapt well to the new task and the same would happen if, vice versa, it’s
too generic. Therefore, selecting the right starting model requires some experience
and knowledge of the new task’s features. Another challenge is the potential need
to adapt the starting model for the new purpose. For example, it may be necessary
to remove some layers of the initial model or add new ones. This operation requires
a certain expertise in the manipulation of neural networks, too.
The main limitation of transfer learning lies in the fact that starting models are
often trained on very large datasets, which may make it difficult using them in
situations where only a small amount of labeled data is available. Finally, transfer
learning may not be appropriate if the new task is significantly different from the
original model’s one: for instance, a model trained to recognise images of animals
may not be effective in plant recognition.

2.3 Dimensionality reduction
In the Machine Learning field, many interesting problems exhibit a high dimen-
sionality and this leads to several challenges. When dealing with high-dimensional
datasets, it becomes difficult to identify patterns among the data under analysis and
the problem known as curse of dimensionality indicates that the amount of samples
needed to describe a dataset grows exponentially with the input dimensionality (i.e.,
the number of input features) [41]: the larger the volume and complexity of data,

20

Prior knowledge

the more time and memory the algorithm takes to process them. Furthermore,
in common experience we are accustomed to visualising data in two or three di-
mensions, while increasing dimensionality makes visualisation complex and hinders
effective analysis. To overcome this problem, several researchers have devised
techniques to reduce the size of datasets, making them more easily representable
and, in some cases, computationally more manageable.

The reduction of dimensionality represents one of the data pre-processing op-
erations used in the context of machine learning and it is exploited in order to
eliminate from the dataset redundant (highly correlated), less or not important
information for solving the problem. Thus this operation allows to synthesise the
available information into a size suitable for the specific task and to represent the
data in a lower and more interpretable dimensionality (e.g., to visualise the data in
a 3D or 2D plot). It’s important to highlight that, while dimensionality reduction
allows to compress the volume of data, reducing computational time and memory
necessary for the storage, on the other hand this can degrade the information and
the predictive performance of the learning algorithm [42].

2.3.1 Feature selection and feature extraction
Dimensionality reduction methods are commonly divided into feature selection and
feature extraction (Figura 2.7):

• Feature selection techniques enable to identify, from the overall set of starting
features, a smaller subset to be used in the development of the model;

• Feature extraction transforms data from a high-dimensional space to smaller

Figure 2.7: Comparison between two dimensionality reduction techniques: on
the left the feature extraction, on the right the feature selection. [43]

21

Prior knowledge

space. This transformation can be linear, such as in Principal Component
Analysis (PCA) or Linear Discriminant Analysis (LDA), but there are also
non-linear techniques for performing dimensional reduction.

So, in conclusion, feature selection consists of simply selecting given features from
the original features set without changing them, while the second one is about
deriving information from these in order to create a new features subset.

2.3.2 Linear techniques
The main linear feature extraction techniques are Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA).
PCA is the most widely used feature extraction algorithm and is an unsupervised
approach. It aims to identify the directions of highest variability and project the
data into the new coordinate system defined by these orthogonal axes. The new
axes (i.e., principal components) constitute a linear combination of the original
features and represent the maximum variance directions of the entire dataset.
LDA, unlike PCA, is a supervised algorithm mainly used in clustering and classifi-
cation problems. Its goal is to search for a linear combination of features that best
enables to discriminate data into two or more classes by projecting the data in a
way that maximises inter-class variance and minimises intra-class variance.
Both strategies only investigate linear combinations of the original data, so they
are both unable to capture non-linear relationships among the features, and assume
that the data has a Gaussian distribution, which is an often unverified condition.
Differences between the two techniques can instead be visualised with a graphical
example, such as the one in Figure 2.8.

Figure 2.8: Comparison between the two linear feature extraction techniques:
on the left the data whose we want to identify a significant dimensionality, in the
center PCA reduction, on the right LDA reduction. [44]

22

Prior knowledge

2.3.3 Non-linear techniques: the autoencoder
Autoencoders are artificial neural networks based on unsupervised learning, whose
main objective is to compress the input data and reconstruct them as output
starting from the compressed information. They can be used to perform non-linear
feature extraction and are typically employed to reduce data’s dimensionality
when the relationship among features is described by a non-linear function. The
architecture of an autoencoder is often symmetric and it always consists of three
parts, as shown in Figure 2.9:

• The encoder synthesises the input data information in a latent space of lower
dimension z ;

• The bottleneck (or code layer) represents the vector of compressed features.
It forces the network to learn a compressed representation of meaningful
attributes of the original data;

• The decoder attempts to recreate the original data using the features identified
in the central code layer.

Figure 2.9: Example of an autoencoder architecture, with the three blocks
(encoder, latent layer and decoder) in evidence. The vectors x and x̂ respectively
represent the input and the reconstruction of the same provided as output. [45]

The output of an autoencoder is therefore its prediction of the input, with a certain
reconstruction error. In this way, during the training, the code layer learns to
extract the most representative and generalisable information from the network’s

23

Prior knowledge

input vector and synthesise it into a smaller number of neurons. In the context of
feature extraction, the vector of interest is then extracted at the bottleneck.
Both the encoder and the decoder are feedforward neural networks, with input and
output layers having the same number of neurons, determined by the size of the
input data. The bottleneck is instead a single layer of desired size z, smaller than
the input size.
A number of autoencoder variants have been developed, such as convolutional
autoencoders (CAE) or variational autoencoders (VAE), each optimised for a
specific task. In general, these networks are mainly used for anomaly detection,
data denoising or image compression [46].

Hyperparameters

For the development of an autoencoder model, it is necessary to define the following
hyperparameters:

• Number of layers, which determines the depth of the network and depends on
the complexity of the problem:

• Sizes of the intermediate layers, which is the number of nodes in each layer of
the encoder and decoder;

• Size of the code layer, that is the number of nodes at the bottleneck, on which
the low-dimensional representation depends;

• Activation function for each layer, such as those described in the Section 2.1;

• Loss function, the function to minimise during the training. In the case of
an AE it is based on the reconstruction error calculation, i.e. the difference
between the input and the obtained output. An example of loss function,
often used when inputs are real numbers, is the "Mean Squared Error" (MSE),
which evaluates the average of the squared errors between the input x and its
reconstruction x̂. The MSE formula is:

MSE = 1
n

nØ
i=1

(x̂i − xi) (2.4)

• Optimization method, which aims to minimise the loss function. The most
commonly used algorithm is ADAM (Adaptive Moment Estimation): this is
an advanced extension of the Stochastic Gradient Descent algorithm (SGD)
that adapts learning rates individually for each weight of the model [47]. This
algorithm allows to achieve a faster and more stable convergence during the
model training;

24

Prior knowledge

• Regularization techniques, which improve generalisation of the model by
penalising its complexity.

The choice of hyperparameters depends on the data and the purpose of the network
and can impact the model’s performance. The set of optimal hyperparameters can
be chosen manually, but it’s also possible to perform a tuning thanks to optimisation
tools, in order to find the best combination of hyperparameters.

25

Chapter 3

Dataset

The dataset used in this work was created and provided by the German Primate
Centre, one of the partners of the B-Cratos project.
Two macaque monkeys (Macaca mulatta) participated in the study: subject Z, a
female, and subject M, a male, were trained to grasp a series of objects of equal
weight, but different in shape and size. During the task execution the neural
activity was recorded using Floating Microelectrode Arrays (FMAs1) permanently
implanted in the AIP, F5 and M1 cortical areas. Simultaneously the kinematics of
arm and hand were acquired thanks to an instrumented glove with electromagnetic
tracking on the contralateral limb of the observed hemisphere (Figure 3.2) [49].
Two datasets were used in this research, both corresponding to subject M: these
represent two different and successive recording sessions and are referred to as
MRec40 and MRec41, respectively.

3.1 Experimental setup
The discussed experiment is described in the article by Schaffelhofer et al. [49].
During the behavioral training and experiments, the monkey sat in a customised
primate chair with its head fixed. The graspable objects were presented to the
animal at a distance of 25 cm at chest level thanks to a rotating table. Overall,
in each session 48 different objects including rings, cubes, spheres, cylinders,
and bars (Figure 3.1b), were presented and grabbed by the animal grabbed in a
pseudo-random order until all objects were successfully grabbed at least 10 times.
Additionally, power and precision grips were performed on a graspable handle

1Each FMA consisted of 32 monopolar platinum-iridium electrodes (impedance equal to
300-600 kΩ at 1 kHz) with different lengths in the range [1.5 mm, 7.1 mm] to adapt them to the
morphology of the sulci [48].

26

Dataset

Figure 3.1: Monkey executing the grasping task during the experiment. a)
Monkey grasping objects from a turntable; b) Wide range of objects presented to
the subject during the experiment; c) Handle for power and precision grips. [50]

equipped with two touch sensors to detect animal’s thumb and forefinger contact
during precision grips and a pulling force sensor for power grips (Figure 3.1c).

3.1.1 Behavioral paradigm
Monkeys were trained to grasp and hold objects according to a precise behavioral
paradigm, which can be described by the following summary steps:

• Fixation epoch (500-800 ms)
While in complete darkness, the animal started a trial by pressing a button
near its chest. Then, he had to fixate a red LED light while keeping its hand
on the button for a variable time;

• Cue epoch (700 ms)
A spotlight illuminated the graspable object;

• Planning epoch (600-1000 ms)
With the spotlight was off, the animal had to wait until the LED blinked;

• Movement epoch
The blinking of the LED indicated the animal to grab and lift the object;

• Hold epoch
This phase required maintaining the grip for 0.5 seconds;

27

Dataset

Figure 3.2: Instrumented fingerless glove for small primates equipped with seven
electro-magnetic sensors located on each finger, on hand’s dorsum and wrist. It
allowed monitoring the animal’s hand and arm kinematics in 27 DOF, at a sampling
rate of 100 Hz. [51]

• Reward epoch
The subject received a reward (a small amount of juice) for each correctly
grasped item, while unsuccessfully completed trials were aborted without
providing a reward.

Each phase, including the movement epoch, was performed in the dark, except for
the cue epoch [48], as shown in Figure 3.3.

After the behavioral training, the animal was implanted with six FMAs, after
the identification of anatomical landmarks via 3D anatomical MRI scan of skull
and brain. Specifically, two FMAs were inserted in each area AIP, F5 and M1,
consisting of 32 monopolar electrodes. Neural activity was recorded from a total of
192 electrodes and sampled at 24 kHz with a resolution of 16 bit.

3.2 Pre-processing
The original signals were filtered with an offline bandpass filter (0.3 - 7kHz) [6] and
two spike sorting algorithms were applied, one automatic and one manual, both
offline and independently on each session. Spike sorting enabled to detect and sep-
arate spikes corrisponding to different neurons, identifying the activation patterns
of specific neurons and reassigning each spike to a different channel, starting from
the 192 physical acquisition channels. For this purpose, the spike sorting algorithm
perform an extraction of relevant features and a clustering.
Considering the two datasets under examination, these algorithms recognised the
following number of neurons, which we will refer to as channels. The number of
channels in each dataset is shown in the Table 3.1. However, after the application of

28

Dataset

Figure 3.3: Main epochs of the execution of each trial, performed in darkness,
except for the cue epoch, when the objects were illuminated: at the top, phases
relating to the grasp of the objects, at the bottom, those relating to the grasp of
the handle. [49]

this algorithm there is no information about the relationships between the channels
extracted in the two sessions.
The dataset is composed of trials, each one corresponding to the grasp of a specific
object, identified by an integer code, performed with an interval of about 1 second
between them. A trial thus consists of a multichannel spike-train (Figure 3.4,
top), which represents the activations (spikes) of each neuron over time. The two
datasets present a different number of trials and a different number of channels
(i.e., neurons), determined by the spike-sorting procedure applied to the sessions
independently. The dimensions of the datasets are shown in the Table 3.1.

Dataset n. trials n. channels
MRec40 745 552
MRec41 757 568

Table 3.1: Table showing the number of trials and channels for both datasets
belonging to subject M.

3.2.1 Pre-processing applied within this work
Datasets were provided by the partner already filtered and pre-processed with the
spike-sorting algorithms described above and were further reworked by the authors
of previous theses. The techniques applied are described below:

29

Dataset

1. Time-binning
The temporal axis was discretised into time bins of 20 ms. Every bin contains,
for each channel, the number of spikes that occurred within the corresponding
time interval (Figure 3.4, bottom plot).

2. Sequence creation and labeling
In each trial the signal was decomposed by a sliding window of 24 time-bins,
which slides over the signal one bin at a time. This windowing allows to
present to the classifier a signal that evolves over time in order to simulate a
real-time decoding of neural activity.
The windows are 2D matrices of size channels x window length and, throughout
the duration of the trial, only the windows with the last bin contained in the
"Hold" phase were kept. Moreover, each sequence is assigned the obj_id code
which allows to keep track of the grasped object in the original trial.

Figure 3.5 shows the output of the pre-processing of each trial. Finally, since the
kinematic information wasn’t made available, it was not considered in this study.

Figure 3.4: Example of a trial signal for subject M, session MRec41. In the
top plot, the multi-channel spike-train; in the bottom plot, the intensity map of
the same signal after time-binning. The color of each bin represents the number
of spikes counted in the interval of discretisation, with intensity increasing from
purple to yellow.

30

Dataset

Figure 3.5: Example of dataset after time-binning and sequence creation to
simulate on online decoding by decomposing the signal into overlapped windows of
24 bins. Each sequence is associated with the obj_id relating to the belonging trial.

31

Chapter 4

Methodologies

The purpose of the present work is to investigate the possibility to successfully
transfer information learned from a model trained on the data of a first session,
to a model usable for a subsequently acquired session, exploiting the concept of
transfer learning.
The main challenge arises from the different number of features of the two datasets:
as mentioned in Section 3.2 and reported in Table 3.1, the two datasets have a
different number of channels, respectively equal to 552 for MRec40 and 568 for
MRec41, due to the application of spike-sorting algorithms in a dedicated way for
each session. This represents an issue when the classifier is trained on the first
session dataset and has to be reused on the data from the second session. For this
reason, several deep learning models have been developed and tested to perform
dimensionality reduction and bring the two datasets to the same number of channels.
These models are described in Section 4.2. The structure and hyperparameters of
the classifier were obtained from a previous work [22] through a heuristic search
in the space of architectures and hyperparameters. In particular, a bidirectional

Figure 4.1: Architecture of a BRNN network: it includes a forward line A that
transmits information in one direction and a corresponding backward line A’ that
transmits information in the opposite direction. [52]

32

Methodologies

LSTM (Figure 4.1) was used, whose parameters can be found in Appendix A.

Previous strategies

In a previous work [23], also conducted in the context of B-Cratos project, a linear
dimensionality reduction approach was attempted by separately applying PCA
and LDA to extract a fixed number of features and bring the two sessions to have
a common number of channels. Since linear approaches yielded promising but
not entirely satisfactory results and considering that the correlation between the
channels of the two sessions is unknown, it was decided to investigate non-linear
approaches. As we can see in Figure 4.2, a non-linear approach can perform a
better reduction when data exhibit complex non-linear structures or when in a
classification task classes are non-linearly separable.

Figure 4.2: Example of a linear dimensionality reduction, performed through
PCA, and a non-linear reduction, by an autoencoder. The second one can allow
to capture more complex patterns and dependencies, providing a more faithful
representation. [53]

4.1 Definition of the Machine Learning problem
In order to explore the feasibility of transfer learning in this context, we identified
two specific machine learning problems, referred to as simple task and complex
task. The distinction is based on how the available objects in the datasets, shown
in Figure 3.1, are considered. Besides, out of the total represented objects in figure
3.1, only the first six columns were used, while the so-called special objects and the
handle were excluded from the datasets due to the lack of samples.

33

Methodologies

• Simple task
The objective is to classify the objects organised into 7 classes, according to
their similarity in shape, size and type of grip performed by the monkey, as
shown in Figure 4.3. This division into classes was developed in collaboration
with the partner responsible for conducting the original experiment. This first
and simpler classification was defined in order to evaluate and compare the
performance of different neural networks, with the aim of selecting the most
suitable model for the purpose.

• Complex task
The final goal involves the classification of the 37 objects considered individ-
ually, which is a major challenge even on a single session due to the high
similarity among adjacent objects in the dataset. We refer to 37 objects
because, despite the 42 represented, the first column includes five objects that
are already present in the other columns.

Below are shown the occurrences for each object in the complex task (Figure 4.5)
and for the simple task (separated by class, as shown in Figure 4.4). In both cases,
the number of trials for each grasped object is the same one in the two recording
sessions.

Figure 4.3: Objects from the datasets used during the grasping task. The seven
classes identified for the simple task are represented in different colors. The first
column, called Mixed, contains five objects already present in other columns, which
have been remapped with the identification code of the objects in the specific
columns.

34

Methodologies

Figure 4.4: Simple task. Distribution of occurrences of the target objects grouped
into the seven classes for the two sessions: classes are identified by numbers between
0 and 6.

Figure 4.5: Complex task. Occurrence of target objects in the two session
datasets: each object is identified by a two-digit obj_id. The most numerous
objects correspond to the duplicates found in the first column of the dataset and
remapped with the specific identification code.

4.2 Developed models
Considering that the different dimensionality of the two datasets represents a
problem for the implementation of transfer learning, several models have been
developed in order to homogenise the number of channels. All the models were

35

Methodologies

developed starting from the structure of the autoencoder described in Section
2.3.3. These models are presented in the following subsections and summarised in
Table 4.5 at the end of this section, while the results obtained from dimensionality
reduction and fine-tuning are shown and discussed in Chapter 5. All the models
were developed using Keras1.

4.2.1 Simple autoencoder
The initial idea was to perform a feature extraction on both datasets, using an
autoencoder with a latent space dimension z. The two datasets were reduced
separately by applying the autoencoders at different times.
In order to establish the most suitable z value for the purpose, three simple
autoencoders (Simple AE) were developed, with code layer dimensions shown in
Table 4.1.
Except for the number of hidden layers and the dimension of the latent space, the
structure of the three models and hyperparameters set are the same (see Listing
4.1 and Table 4.2).

Simple AE n. hidden layers Latent space dimension z
n. 1 2 128 channels
n. 2 1 256 channels
n. 3 1 350 channels

Table 4.1: Table reporting the number of hidden layers and the dimension of the
latent space, i.e. the number of neurons in the code layer, for each Simple AE
model.

1 input_s ize = X_train_scaled . shape [1]
2 interm_size = 256
3 code_size = 128
4 output_size = input_s ize
5

6 # Layers d e f i n i t i o n
7 input_layer = keras . Input (shape=(input_size ,))
8 drop_layer = l a y e r s . Dropout (. 2) (input_layer)
9 encod_layer1 = l a y e r s . Dense (interm_size , a c t i v a t i o n=" r e l u ") (

drop_layer)
10 code = l a y e r s . Dense (code_size , a c t i v a t i o n=" r e l u ") (encod_layer1)
11 decod_layer1 = l a y e r s . Dense (interm_size , a c t i v a t i o n=" r e l u ") (code)

1Keras is an open-source library for Deep Learning written in Python. It allows to build Deep
neural networks (DNNs) with a simple language quickly [54].

36

Methodologies

12 output_layer = l a y e r s . Dense (output_size , a c t i v a t i o n=" sigmoid ") (
decod_layer1)

13

14 model_autoencoder = keras . Model (input_layer , output_layer)
15 model_autoencoder . summary ()

Listing 4.1: Code example for the creation of a 128 channels Simple Autoencoder
with Keras.

4.2.2 Convolutional autoencoder
A Convolutional Autoencoder (Convolutional AE or CAE) is a type of autoencoder
that presents convolutional layers within its architecture. Specifically, the one-
dimensional convolutional autoencoder (1D) is a network that uses one-dimensional
convolution to learn main features from a 1D sequence of data, such as a time
series. The network still consists of an encoder and a decoder, but characterised by
the presence of 1D convolutional layers (Figure 4.6).
A one-dimensional convolutional layer is composed of a set of convolutional filters,
or kernels, that are applied to the input and slide along a direction of the input
sequence’s lenght, whether spatial or temporal. Each filter has a fixed size and
returns a so-called feature map. Each layer typically applies more filters, providing
more feature maps. The convolutional operation is followed by a non-linear trans-
formation through an activation function, usually the Relu function [55].
Each convolutional layer is followed by a pooling layer, whose function is to reduce
the size of the feature maps and keep only the most significant information, without
adding further weights to the model: the convolutional layer then identifies the
features in the input data, while the pooling layer is responsible for selecting the
most relevant ones [56]. Since the structure of an autoencoder is symmetric, in
the decoder component the opposite operation to pooling is carried out by the
deconvolution or upsampling layer, which restores the reduced dimensions to the

Hyperparameters - Simple AE and CAE
Activation functions ReLU in hidden layers, sigmoid in output layer
Loss function Mean squared error (MSE)
Optimizer Adam
Learning rate 0.0002
Dropout Dropout layer
Scaler MinMaxScaler

Table 4.2: Hyperparameters set for the three Simple AE variants.

37

Methodologies

original ones.
Only one CAE model was designed, with a convolutional layer after the input
and one preceding the output. Dimensionality reduction was set to 350 channels
and the number of convolutional filters was set equal to 10. The hyperparameters
defined for the development of the CAE model are similar to those used for the
Simple AE (Table 4.2). The Keras model summary is shown in Figure 4.7.

Figure 4.6: Scheme of a simplified 1D CAE architecture. [57]

Figure 4.7: Summary of the CAE model realised with Keras.

38

Methodologies

4.2.3 Biased autoencoder

As mentioned in the previous chapter, the training of a simple autoencoder is
unsupervised, hence the autoencoder could learn to synthesise in the latent space
unuseful information for the classification task under consideration: the network is
trained to identify the most significant features for the input reconstruction, but
no information is provided about the class or object corresponding to the signal
itself. Therefore it was thought to create a biased autoencoder. This name refers to
a network consisting of the encoder and the code layer typical of an autoencoder,
in which the decoder component is replaced directly by the classifier itself. In this
way the training of the encoder is driven by the final task and the features that
best distinguish the objects are identified in the code layer [58]. Two variants of
Biased Autoencoders were realised, both with a code layer size corresponding to
350 channels, but differing only for the update of the weights in the classifier layers
during fine-tuning on the dataset MRec41: in the first variant, the LSTM classifier
weights are free to be updated, while in the second variant these weights are frozen,
that is, they were defined non-trainable parameters and therefore not modified
during fine-tuning (Listing 4.2).

1 input_s ize = X_train . shape [2]
2 code_size = 350
3

4 # Encoder
5 model_encoder = Sequent i a l ()
6 model_encoder . add (Input (shape =(24 , input_s ize)))
7 model_encoder . add (Dense (code_size , a c t i v a t i o n=" r e l u "))
8

9 # Model d e f i n i t i o n
10 mode l_c la s s i f i e r_ load . t r a i n a b l e = True/ Fal se
11 model = Sequent i a l ()
12 model . add (Input (shape =(24 , input_s ize)))
13 model . add (model_encoder)
14 model . add (mode l_c l a s s i f i e r_ load)
15 model . summary ()

Listing 4.2: Code example for the creation of a Biased Autoencoder: setting
trainable to "False" freezes the layer’s weights of the classifier.

The Table 4.3 describes the hyperparameters chosen for the model and used for
both variants. In the output layer, representing the output of the classifier, the
activation function softmax was used: this function is in fact commonly placed at
the output of multi-class classifiers. Finally, validation accuracy was monitored for

39

Methodologies

the definition of an early stopping 2 and for learning rate reduction through the
callback ReduceLROnPlateau by Keras [60].

Figure 4.8: Block diagram of the Biased Autoencoder model applied on the two
datasets. These networks reduce their dimensionality through the encoder block
consisting of a dense layer and prepare them for classification.

Hyperparameters - Biased AE
Activation functions ReLU in hidden layers, softmax in output layer
Loss function Categorical crossentropy
Optimizer Adam
Learning rate 0.001 and ReduceLROnPlateau Keras callback
Dropout 0.6
Regularization L2 and Early stopping
Scaler StandardScaler

Table 4.3: Hyperparameters set for the two variants of Biased AE.

4.2.4 Partial reduction
The so-called Partial reduction model re-proposes the structure of the biased
autoencoder, but differs from the models described above because it’s applied
only to the MRec41. The idea behind is to not reduce the dimensionality of both

2Early stopping is a strategy applied in order to prevent overfitting in an NN. It involves
training interruption when the monitored metric shows no further improvement [59].

40

Methodologies

datasets to a common size, but to reduce only MRec41, to bring it to the original
size of MRec40. In this way, the performance deriving from the initial training on
MRec40 (the not reduced dataset) could be superior and allow the fine-tuning to
reach greater accuracy, reducing the overall complexity.
In this case, the classifier is initially trained directly on the dataset related to the
first session, maintaining 552 channels, then to perform the fine-tuning on the
second session’s dataset a dense layer was added to the classifier, to bring the 568
channels of MRec41 to be synthesised in 552 channels (Figure 4.9).
Also in this case, as in the previous one, two variants of the same Partial Reduction
model were developed, one with the classifier weights free to be updated and
one with the classifier layers frozen, while the hyperparameters differ only for the
dropout value (Table 4.4). In Table 4.5, the models presented in the section are
summarised, together with their dimensions and variants.

Figure 4.9: Block diagram of the Partial reduction model applied on MRec41.
The dense layer reduces its dimensionality to that of MRec40, accepted by the
classifier.

Hyperparameters - Partial reduction
Activation functions ReLU in hidden layers, softmax in output layer
Loss function Categorical crossentropy
Optimizer Adam
Learning rate 0.001 and ReduceLROnPlateau Keras callback
Dropout 0.8
Regularization L2 and Early stopping
Scaler StandardScaler

Table 4.4: Hyperparameters set for the two variants of Partial reduction.

41

Methodologies

Models Latent space dimension z Variants
Simple AE 128 channels
Simple AE 256 channels
Simple AE 350 channels
Convolutional AE 350 channels
Biased AE 350 channels Free weights
Biased AE 350 channels Frozen weights
Partial reduction 350 channels Free weights
Partial reduction 350 channels Frozen weights

Table 4.5: Table summarising the models described in the section, with their
variants.

4.3 Training strategies
After the dimensionality reduction, for each model a pre-training and a fine-tuning
of the pre-trained network were conducted, in order to adapt it for classifying data
belonging to the new session. The steps involved in the process applied for the first
three models are shown in Figure 4.10a, while Figure 4.10b illustrates the steps for
the implementation of the Partial reduction model.

Pre-training is performed on 80% of MRec40 dataset, which includes both the
training set and the validation set (training set: 64% of the total amount; validation
set: 16% of the total amount), while fine-tuning is carried out on the remaining 20%
of MRec41 dataset, still intended as sum of training set and validation set (training
set: 10% of the total amount; validation set: 10% of the total amount). This dataset
split is shown in Figure 4.11. This split was achieved using the train_test_split
function from Scikit Learn, by imposing a stratification based on each trial’s labels
(intended as obj_id in both tasks), ensuring a balanced subdivision for training and
testing sets. The split was performed directly on the trials before the extraction of
the sliding windows, in order to prevent the model from memorising adjacent and
partially overlapped sequences of each trial.

4.4 Evaluation metrics for multi-class classifica-
tion

Evaluation metrics are used in Machine Learning to estimate the performance of
an algorithm. Choosing the most appropriate metric is fundamental to assess its
effectiveness and to improve its performance. In this specific work, the results

42

Methodologies

(a) (b)

Figure 4.10: Step summarising the processes: a) Dimensionality reduction for
both dataset and training and fine-tuning for the classifier, valid for Simple AE,
CAE and for Biased AE. b) Dimensionality reduction for dataset MRec41 and
training and fine-tuning for the classifier, valid for the Partial Reduction model.

Figure 4.11: Pie charts showing the proportions of training set, validation set, and
test set compared to the total dataset: on the left the percentages for pre-training
on MRec40, on the right the percentages for fine-tuning on MRec41.

obtained by each model were observed and compared in terms of accuracy and
convergence rate.
Accuracy is one of the most common metrics in the field of multi-class classification,
especially in the case of balanced classes. It indicates the percentage of correct
preditions out of the total elements (samples) classified by the network, therefore

43

Methodologies

it represents the probability that the model’s prediction is correct [61].

Accuracy = Correctly predicted elements
Total predicted elements

A graphical representation of accuracy is provided by the confusion matrix. The
confusion matrix is an NxN cross table, with N corresponding to the number of
classes or outputs in the classification task [62]. This table provides additional
information on the amount of correct and incorrect predictions for each class, as
its rows display the real values and the columns stand for predicted values: on
the main diagonal are shown the correctly classified elements, while outside this
diagonal the incorrectly classified elements are shown. The following accuracy
numbers always refer to the final value reached by the network on the test set.

Other metrics characteristic of multi-class classification borrow their definition
from the metrics for binary classification, where the elements correctly classified as
positive are defined True Positives (TP), True Negatives (TN) are the correctly
classified negative elements, while False Positives (FP) and False Negatives (FN)
represents the incorrectly predicted positive and negative elements, respectively.
Starting from these definitions it’s possible to convert a multi-class problem into a
binary problem for each class [63] and calculate the following metrics:

• Precision indicates the fraction of predicted positives that are actually positive.
It has to be maximised if a minimisation of the number of false positives is
desired.

Precision = TP

TP + FP

• Recall indicates the fraction of positive elements correctly classified. It has to
be maximised if a minimisation of the number of false negatives is desired.

Recall = TP

TP + FN

• F1-score indicates the harmonic mean of the precision and recall, representing
both of them in a single metric in the range between [0,1]. It allows to minimise
incorrect predictions.

F1 − score = 2 ∗ precision ∗ recall
precision + recall

These metrics are calculated for each class and then averaged through one of the
following techniques: macro average, simple arithmetic mean of the calculated
metrics, suitable in case of balanced datasets, and weighted average, that takes into

44

Methodologies

Figure 4.12: Confusion matrix for binary classification, which highlights the
elements used to calculate precision (blue) and recall (green) [63].

account the number of examples in each class and assign them a weight. The latter
is used when the dataset is unbalanced.

In addition to accuracy, a convergence analysis was performed for some models.
The convergence rate is here expressed by the number of epochs that the model needs,
during the training phase, for reaching a certain threshold of accuracy, calculated
on the validation set. The fewer the epochs needed to converge, the faster the
model’s training speed. This metric is considered of remarkable importance in
the current research, as a faster training enables to save valuable time during
re-training for operational scenarios: it’s possible to benefit from the acceleration
of this re-training phase both during the experiments themselves, avoiding long
waitings and distractions for the NHP while the DL model updates, and during the
final use of a BMI. When calculated, the speed is defined by the number of epochs
required to achieve a 90% accuracy on validation set for the simple task and a 30%
accuracy on validation set for the complex task. The number of epochs reported
in the following tables is calculated as an average over 10 repetitions, considering
only the repetitions that reached the defined accuracy threshold: the number of
epochs, over 10 repetitions, which didn’t reach the threshold was also considered
in the final evaluation of the results.

For the Simple AE and Convolutional AE models, we also evaluated the recon-
struction errors of the output. In order to perform the dimensionality reduction,
each autoencoder was trained in an unsupervised manner to reproduce the vector
provided in input as output. The reconstruction error on the test set was calculated
using the Mean Absolute Error (MAE) committed by each channel:

MAE(y, ŷ) =
qnsamples

i=1 |yi − ŷi|
nsamples

,

45

Methodologies

where y indicates the actual value and ŷ represents the corresponding predicted
value.
For each model, the average MAE committed by all channels and reported in
Section 5 is compared to the range of values of the test set before normalisation,
which is 8 for MRec40 and 12 for MRec41, in order to provide a percentage indica-
tion of the reconstruction error. Once the autoencoder was trained, the reduced
dataset was extracted from the code layer and saved, with the original information
compressed in the desired size, to be provided as input to the classifier.

1 # D e f i n i t i o n o f the encoder
2 model_encoder = keras . Model (input_layer , code_layer)
3

4 # Feature e x t r a c t i o n from code l a y e r
5 X_train_reduced = model_encoder . p r e d i c t (X_train_scaled)
6 X_val_reduced = model_encoder . p r e d i c t (X_val_scaled)
7 X_test_reduced = model_encoder . p r e d i c t (X_test_scaled)

Listing 4.3: Python code for features extraction from code layer.

46

Chapter 5

Results

This chapter presents the main results, obtained from the training of the classifier
on dataset MRec40 and its fine-tuning on dataset MRec41, for each model described
in the previous chapter. The results are divided according to the task, simple or
complex, as defined by the definitions given in 4.1. Beside the fine-tuning approach,
also a direct application of the pre-trained model has been tested, with poor results
reported in Appendix B.

5.1 Reference
In order to carry out a meaningful comparison and an appropriate evaluation of the
performances reached by every developed fine-tuning model, below it’s provided
what was assumed as a reference and its performances are described. In the present
work, the reference is represented by the proposed classifier trained from scratch
directly on 20% of dataset MRec41, without pre-training the model on the data
from the first session MRec40. The weights are randomly initialised and the model
has no prior knowledge of the task. The accuracy values and the rapidity necessary
for its reaching are considered as the performances to exceed in order to speak
of real success of transfer learning. Below are shown the results obtained by the
reference, divided by task and summarised in Table 5.1.

Simple task

The reference achieved a final accuracy of 93%, with the 90% accuracy threshold
reached in 21 epochs1.

1The number of epochs is calculated as an average over 10 training repetitions, considering
only the repetitions that reached the accuracy threshold defined for the task.

47

Results

Figure 5.1: Simple task: confusion matrix of the classification results for the test
set, using the reference model.

Figure 5.2: Simple task: history of the training from scratch, using the reference
model. Trend of the loss function (left) and accuracy (right) in the epochs, both
for training set and validation set.

48

Results

Complex task

The final accuracy achieved by the reference is equal to 37%, with the 30% accuracy
threshold reached in 45 epochs1.

Figure 5.3: Complex task: confusion matrix of the classification results for the
test set, using the reference model.

Figure 5.4: Complex task: history of the training from scratch, using the reference
model. Trend of the loss function (left) and accuracy (right) in the epochs, both
for training set and validation set.

49

Results

Task Final accuracy N. epochs to threshold
Simple task 93% 21
Complex task 37% 45

Table 5.1: Performance of the reference (i.e., the model trained from scratch on
a small percentage of dataset MRec41) for both tasks. The threshold value is an
accuracy on the validation set of 90% and 30%, respectively.

As we can see in the confusion matrix related to the complex task (Figure 5.3),
most of the incorrectly predicted elements lie very close to the main diagonal. Since
in the complex task adjacent objects in the dataset are similar to each other and
are also adjacent in the confusion matrix, it’s possible to conclude that most of the
samples are misclassified by the model mainly for their dimension and not for their
shape. In addition, in Figure 5.4 we can notice a significant overfit, which can be
attributed to the limited information available during the training, due to the use
of a small portion of the dataset MRec41. The observed results for the complex
task are consistent with previous works [23][64].

5.2 Simple task: selecting the model
This section discusses the performance of all the models in the simple task of
classification, that is the task involving the objects grouped in 7 classes. The results
were evaluated in terms of final accuracy achieved on test set, while the convergence
rate was quantified for only those models that demonstrated to reach a higher
accuracy value than the others and comparable with the reference trained from
scratch. The application of this first simple task allows therefore to identify, among
all the developed networks, the so-called best model to employ in the resolution of
the complex task.

Simple autoencoder

We evaluated the training of the three Simple AE models through the MAE analysis.
Figure 5.2 shows the histograms of MAE values of the different channels for the
350-channels Simple AE. The distribution of reconstruction errors on the test set
presents similar trend and range values in the three models, but the only difference
is the mean on 552 channels: the calculation of average percentage MAE across
channels shows that in all three analysed models this error is below 39% for the
first session and 35% for the second session, decreasing as the size of the latent
space z increases (Table 5.2).

50

Results

Simple AE Average % MAE across channels
MRec40 MRec41

n. 1 - 128 channels 0.39% 0.35%
n. 2 - 256 channels 0.35% 0.35%
n. 3 - 350 channels 0.33% 0.33%

Table 5.2: Average percentages MAE across MRec40 and MRec41 channels for
the three Simple AE models.

Figure 5.5: Reconstruction errors distribution on MRec40 test set (left) and
MRec41 test set (right) for Simple AE n.3.

Figure 5.6: Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through Simple AE n.3 (350 channels).

51

Results

Table 5.3 lastly reports the final accuracy values achieved by the classification
following the dimensionality reduction of both datasets using the three Simple
AE models. As well as in the reconstruction error, also in the performance of the
classifier we can see an improvement as the number of extracted channels in the
autoencoder-based feature extraction phase increases, although the final accuracy
value obtained from the fine-tuning remains below the reference.

Simple AE Final accuracy
MRec40 MRec41

n. 1 - 128 channels 87% 72%
n. 2 - 256 channels 94% 88%
n. 3 - 350 channels 96% 89%

Table 5.3: Performance in terms of accuracy of the three Simple AE models in
the simple task, both for pre-training on MRec40 and for fine-tuning on MRec41.

Convolutional autoencoder

The training of the CAE was also evaluated using the Mean Absolute Error
committed by channels, reported in Figure 5.4 for both datasets. It’s evident that
the distribution of the reconstruction error across the channels is similar to that
of Simple AE models, except for the range of values: Convolutional AE training
shows significantly lower average percentage MAE values compared to the previous
models (Table 5.4). In addition to the classification performance shown in Table
5.5, Figure 5.8 reports the confusion matrix obtained from fine-tuning. Despite the
better reconstruction of the test set achieved by the CAE, the classifier provides a
lower accuracy compared to the ones observed with the Simple AE, for the same
number of extracted channels (namely for the same final dimensionality).

Convolutional AE Average % MAE across channels
MRec40 MRec41

CAE - 128 channels 0.08% 0.23%

Table 5.4: Average percentages MAE across MRec40 and MRec41 channels for
CAE model.

52

Results

Figure 5.7: Reconstruction errors distribution on MRec40 test set (left) and
MRec41 test set (right) for Convolutional AE.

Convolutional AE Final accuracy
MRec40 MRec41

CAE - 350 channels 95% 85%

Table 5.5: Performance in terms of accuracy of the CAE model in the simple task,
both for pre-training on MRec40 and for fine-tuning on MRec41.

Figure 5.8: Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through the 350-channels CAE.

53

Results

Biased autoencoder

The results obtained using the Biased Autoencoder model show an improvement in
the classification of the first session dataset, with a 98% accuracy on the test set.
As regards the fine-tuning performance, the first variant of this model (the one
with weights free to be updated) reports a slightly lower accuracy compared to the
one obtained using the previously discussed autoencoders, while the variant with
frozen layers reaches a slightly higher final accuracy than the previous models. In
both cases, the developed Biased AE model didn’t allow to exceed the performance
of the reference classifier.

Biased AE Final accuracy
MRec40 MRec41

n.1 - Free layers 98% 87%
n.2 - Frozen layers 98% 91%

Table 5.6: Performance in terms of accuracy of the Biased AE model in the simple
task, both for pre-training on MRec40 and for fine-tuning on MRec41.

Figure 5.9: Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through the Biased AE model n.2 (frozen layers).

54

Results

Partial reduction

As observed from the values reported in Table 5.7, the Partial reduction model is
the one that shows the best results in terms of final accuracy, both on MRec40
dataset and after fine-tuning on MRec41 dataset. For this reason this model was
selected as best model for the simple task was implemented, with its two variants,
also for the complex task. In addition to the confusion matrix (Figure 5.10), Figure
5.11 shows the training history of the model on the second session data and this
allows to graphically visualise the trend of loss function and accuracy for training
set and validation set over the epochs. By observing these curves it’s evident how
the network exhibits a high convergence rate: 90% of accuracy is achieved in 8
epochs by the variant with free weights and in 14.5 epochs by the variant with
frozen weights1.

Figure 5.10: Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.1 (free layers).

1The number of epochs is calculated as an average over 10 repetitions of training, considering
only the repetitions that reached an accuracy of 90%.

55

Results

Figure 5.11: Simple task: history of the training for the Partial reduction model
n.1 (free layers). It’s possible to compare this chart with the one of the reference
in Figure 5.2.

Partial reduction model Final accuracy
MRec40 MRec41

n.1 - Free layers 99% 93%
n.2 - Frozen layers 99% 92%

Table 5.7: Performance in terms of accuracy of the Partial reduction model in
the simple task, both for pre-training on MRec40 and for fine-tuning on MRec41.

5.3 Complex task: final results
This section addresses the complex task, which represents the ultimate goal of the
research, and shows the performance of the neural network selected as best model
of the simple task, namely the Partial reduction model.

Partial reduction

Table 5.8 shows the final accuracy values reached by the two best model variants on
the second session data (MRec41) and their respective convergence rates2. Both
variants have proven to outperform the reference classifier, in terms of final accuracy
and convergence speed. In particular, especially positive results are observed for

2The number of epochs is calculated as an average over 10 repetitions of training, considering
only the repetitions that reached an accuracy of 30%.

56

Results

variant n.1, that is the Partial reduction model with classifier weights free to be
updated. It achieves a 30% accuracy in just 9 epochs (compared to the 45 epochs
of the reference) and a final accuracy of 45% (compared to 37% of the reference).
A further observation allows stating that, while the reference showed to achieve the
accuracy threshold only in 8 repetitions over 10, the best model variants reached the
defined value in all 10 repetitions. These numbers can vary due to the stochastity
of training process, anyway this shows that fine-tuning provided consistent results.
In the charts in Figure 5.13 the curves are interrupted around the twentieth epoch
due to the use of an early stopping imposed on the accuracy of the validation set.

Partial reduction model Final accuracy N. epochs to threshold
n.1 - Free layers 45% 9
n.2 - Frozen layers 39% 12

Table 5.8: Performance of the Partial reduction model in the complex task.

Figure 5.12: Complex task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.1 (free layers).

57

Results

Figure 5.13: Complex task: history of the training for the Partial reduction
model n.1 (free layers). It’s possible to compare this chart with the one of the
reference in Figure 5.4.

Figure 5.14: Complex task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.2 (frozen layers).

58

Results

Figure 5.15: Complex task: history of the training for the Partial reduction
model n.2 (frozen layers). It’s possible to compare this chart with the one of the
reference in Figure 5.4.

Finally, the reports of the two best model variants are presented, containing the
main classification metrics for a more detailed analysis (Tables 5.9 and 5.10).

Precision Recall F1-score
Accuracy 0.45
Macro avg 0.47 0.41 0.38
Weighted avg 0.48 0.45 0.40

Table 5.9: Partial reduction model’s report in the complex task for the variant
n.1 (free layers).

Precision Recall F1-score
Accuracy 0.39
Macro avg 0.43 0.36 0.34
Weighted avg 0.44 0.39 0.36

Table 5.10: Partial reduction model’s report in the complex task for the variant
n.2 (frozen layers).

59

Results

From the comparison with the classification report obtained by the reference
classifier (Table 5.11), it emerges that the best model exceeds its performance also
in terms of precision, recall and F1-score.

Precision Recall F1-score
Accuracy 0.37
Macro avg 0.39 0.33 0.30
Weighted avg 0.41 0.37 0.33

Table 5.11: Reference’s report in the complex task.

60

Chapter 6

Conclusion

The present work was interested in investigating the possibility of reusing infor-
mation learned by a trained classifier also in subsequent sessions, in relation to
the same task. The effectiveness of this operation would represent an important
contribution within the field of BMI research. Indeed, transfer learning has proven
to be extremely useful for neural decoding tasks related to BMIs, as the one B-
Cratos project aims to realise: this strategy would help to deal with the variability
of brain signals used in neural decoding models, which constantly evolve because of
neuroplasticity, reducing time and resources required to maintain high performance
in a long-term usage perspective.

For this purpose, several neural networks were developed and compared in
order to perform an appropriate feature extraction that would allow to apply the
same classifier to recording sessions of different dimensionality. This preliminary
procedure was necessary because of the different number of channels (i.e., active
neurons) identified by the spike-sorting algorithms applied separately on the two
datasets. Specifically, starting from the structure of a classic autoencoder, the
feature extractor’s architecture was then modified, exploring supervised reduction.
The choice of the most suitable network was made by comparing the performance of
each of the developed models in the context of the so-called simple task: this choice
was guided only by the evaluation of the final accuracy, as was previously done in
the work of Gesmundo [23]. At first, a worsening relative to feature extraction and
classification was observed, as the selected dimensions for the latent space decreases,
showing that a higher number of channels can better represent the information
useful for decoding. Finally, between all the developed models, the Partial reduction
model was identified as the best model in the task in question, reporting the best
results and exceeding the performance of the reference. This model showed to
outperform the classifier trained from scratch also in the application of the complex
task: specifically, the best result was obtained by setting the weights of the classifier
layers as training parameters (variant n.1), achieving a 45% accuracy.

61

Conclusion

This research also focused on a convergence analysis that showed that the fine-
tuning of the pre-trained classifier allows to reach the final performance significantly
faster than the training from scratch. This is of considerable importance as, while
accuracy values may be limited by the amount of information contained in 20%
of MRec41 dataset, a rapid convergence would distinctly reduce the time needed
to re-training the network, with advantages both in terms of research and greater
usability by the user. Indeed, as previously discussed, users can benefit from BMIs,
especially in order to restore lost functionality, but the extreme variability of neural
signals results in the need of frequent data acquisition and re-training of the device,
leading to a great effort for patients and clinicians. Even in the context of the
experiments themselves, a significant reduction of the time needed to recalibrate
the decoding model could improve the NHPs behavior management, reducing their
anxiety or irritability associated with participating in the experiment. An important
observation that could be made is that, despite the positive results obtained from
the conducted fine-tuning, missing information about the correspondence between
channels of the two datasets prevents from stating that a transfer of knowledge
between the neural decoding models occurred: it’s in fact possible that the higher
performance resulting from the fine-tuning of the pre-trained classifier are due only
to the better initialisation of the weights of the model. This more appropriate
initialisation allows to reach the results more quickly. This can also justify the
poor performance observed after the direct application of the pre-trained classifier
on new data, since an explicit mapping between channel is missed.

This work provided promising results regarding the implementation of transfer
learning strategies in neural decoding models, however, several limitations emerged
by using the mentioned dataset, which contains a reduced number of recording
sessions (three sessions in total, of which only the first two used in the present
work), without any indication about the time distance between them. Moreover,
access to only spike-sorted signals doesn’t allow to have datasets with the same
number of physical channels and makes it necessary, as seen, a feature extraction
carried out without a known correspondence between channels of the different
sessions, limiting the transfer of knowledge.

Potential future research may consider using datasets containing this information
about time distribution and correspondence between channels. Moreover, while
this study focused on a multi-class classification task, B-Cratos project’s goal is the
implementation of a model for real-time continuous control of robotic prostheses,
so future works should explore the application of transfer learning to this type
of task. Lastly, once the robustness of the model to intra-subject neural signal
variations is verified, it would be interesting to attempt an inter-subject transfer
of knowledge. This further step represents a major challenge in the field of BMIs,
due to the high customisation required in the adaptation of models to the neural
characteristics of different subjects.

62

Appendix A

Structure and
hyperparameters of the
classifier

1 # Model d e f i n i t i o n
2 model = Sequent i a l ()
3 model . add (B i d i r e c t i o n a l (LSTM(40 , return_sequences=True , dropout =0.8 ,

k e r n e l _ r e g u l a r i z e r=’ l 2 ’ , r e c u r r e n t _ r e g u l a r i z e r=’ l 2 ’) , input_shape
=(X_train . shape [1] , X_train . shape [2])))

4 model . add (B i d i r e c t i o n a l (LSTM(un i t s =40, return_sequences=False ,
dropout =0.8 , k e r n e l _ r e g u l a r i z e r=’ l 2 ’ , r e c u r r e n t _ r e g u l a r i z e r=’ l 2 ’))
)

5 model . add (Dense (y_train . shape [1] , a c t i v a t i o n=" softmax "))
6 model . summary ()
7

8 # Compl i lat ion
9 opt = t f . op t im i z e r s .Adam(l ea rn ing_rate =0.001)

10 model . compi le (opt imize r=opt , l o s s=" ca t ego r i c a l_c ro s s en t r opy " , met r i c s
=[" accuracy "])

11 c a l l b a c k = keras . c a l l b a c k s . ReduceLROnPlateau (monitor=" val_accuracy " ,
f a c t o r =0.5 , pa t i ence =5, min_lr =0.00005)

12 ca l l back2 = keras . c a l l b a c k s . EarlyStopping (monitor=" val_accuracy " ,
pa t i ence =40, restore_best_weights=True)

13

14 # Training
15 h i s t o r y = model . f i t (X_train , y_train , epochs =70, batch_size =256 ,

va l idat ion_data=(X_val , y_val) , c a l l b a c k s =[ca l lback , ca l l back2] ,
use_mult iproces s ing=True)

Listing A.1: Code example for the creation of the BRNN.

63

Appendix B

Further results

B.1 Direct application of the pre-trained model

Figure B.1: Simple task: confusion matrix of the direct application of the pre-
trained classifier on the MRec41 test set, after its dimensionality reduction through
the 128-channels Simple AE.

64

Further results

B.2 Confusion matrices of developed models

Below are the confusion matrices resulting from the fine-tuning on MRec41 for the
models described in Chapter 4.

Figure B.2: Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through the Simple AE n.1 (128 channels).

Figure B.3: Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through the Biased AE model n.1 (free layers).

65

Further results

Figure B.4: Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through the Partial reduction model n.2 (frozen layers).

66

Appendix C

HPC based model training

High-performance computing (HPC) refers to the ability to process large amounts
of data and perform complex high-speed calculations, leveraging computer clusters
and parallel computing. HPC is today widely used in several fields of research and
data analysis and allows the implementation of artificial intelligence algorithms and
the high-speed training of Deep Learning models. The high-performance computing
infrastructure used for this work is managed by Cineca, an inter-university consor-
tium and major Italian computing center, which hosts Marconi100 supercomputer.
Marconi100 consists of a cluster of 980 computational nodes equipped with GPUs
that accelerate the training of deep neural networks, providing a computational
capacity of approximately 32 PFlops.

Marconi100 technical specifications
Nodes 980
Processors 2x16 cores IBM POWER9 AC922 at 3.1 GHz
Accelerators 4 x NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB
Cores 32 cores/node
RAM 256 GB/node
Peak Performance ~32 PFlop/s

Table C.1: Technical specifications from [65].

67

List of Figures

1.1 Human nervous system. [3] . 2
1.2 Division of the cerebral cortex into four lobes by sulci. [4] 3
1.3 Activation pathway during grasping, involving M1, AIP, and F5

areas of the cerebral cortex. [7] . 4
1.4 Neuron structure and synaptic junction between two nerve cells. [9] 5
1.5 Trend of the membrane potential during the generation of the action

potential. [10] . 6
1.6 Schematic representation of the components of a BMI for controlling

external devices. [11] . 7
1.7 Comparison between neural signal acquisition techniques: EEG for

non-invasive modality, ECoG for partially invasive modality, and
intracortical microelectrodes implanted in the cortex for invasive
modality. [17] . 8

1.8 Example of BCI with non-invasive acquisition system. [17] 9
1.9 Schematic representation of the wireless communication between the

implanted electrodes and the external module. [21] 11
1.10 Mia Hand: robotic hand prosthesis developed by Prensilia. It allows

5 different types of grip, covering 80% of daily grips. [24] 12

2.1 Architecture of the simplest ANN, consisting of an input layer with
three neurons, a single hidden layer with four neurons and an out-
put layer with two neurons. All layers are "fully connected", i.e.,
composed by neurons connected to all the neurons of the next layer.
[25] . 13

2.2 Structure of an artificial neuron. [27] 14
2.3 Diagram depicting the cyclic structure of an RNN: on the left the

folded structure, on the right the unfolded structure, expanded
through the procedure known as backpropagation through time. [30] 15

2.4 LSTM cell. It consists of an input gate, a forget gate, a Constant
Error Carrousel (CEC), which stores information based on the value
of the forget gate, and an output gate. [34] 17

68

List of Figures

2.5 Comparison between traditional learning approach and transfer
learning approach, which allows to transfer the acquired knowledge
from Model 1 to Model 2, usable on a new dataset. [36] 18

2.6 Fine-tuning strategies of a pre-trained model. [40] 19
2.7 Comparison between two dimensionality reduction techniques: on

the left the feature extraction, on the right the feature selection. [43] 21
2.8 Comparison between the two linear feature extraction techniques:

on the left the data whose we want to identify a significant dimen-
sionality, in the center PCA reduction, on the right LDA reduction.
[44] . 22

2.9 Example of an autoencoder architecture, with the three blocks
(encoder, latent layer and decoder) in evidence. The vectors x and x̂
respectively represent the input and the reconstruction of the same
provided as output. [45] . 23

3.1 Monkey executing the grasping task during the experiment. a)
Monkey grasping objects from a turntable; b) Wide range of objects
presented to the subject during the experiment; c) Handle for power
and precision grips. [50] . 27

3.2 Instrumented fingerless glove for small primates equipped with seven
electro-magnetic sensors located on each finger, on hand’s dorsum
and wrist. It allowed monitoring the animal’s hand and arm kine-
matics in 27 DOF, at a sampling rate of 100 Hz. [51] 28

3.3 Main epochs of the execution of each trial, performed in darkness,
except for the cue epoch, when the objects were illuminated: at the
top, phases relating to the grasp of the objects, at the bottom, those
relating to the grasp of the handle. [49] 29

3.4 Example of a trial signal for subject M, session MRec41. In the
top plot, the multi-channel spike-train; in the bottom plot, the
intensity map of the same signal after time-binning. The color of
each bin represents the number of spikes counted in the interval of
discretisation, with intensity increasing from purple to yellow. . . . 30

3.5 Example of dataset after time-binning and sequence creation to sim-
ulate on online decoding by decomposing the signal into overlapped
windows of 24 bins. Each sequence is associated with the obj_id
relating to the belonging trial. 31

4.1 Architecture of a BRNN network: it includes a forward line A that
transmits information in one direction and a corresponding backward
line A’ that transmits information in the opposite direction. [52] . . 32

69

List of Figures

4.2 Example of a linear dimensionality reduction, performed through
PCA, and a non-linear reduction, by an autoencoder. The second
one can allow to capture more complex patterns and dependencies,
providing a more faithful representation. [53] 33

4.3 Objects from the datasets used during the grasping task. The seven
classes identified for the simple task are represented in different colors.
The first column, called Mixed, contains five objects already present
in other columns, which have been remapped with the identification
code of the objects in the specific columns. 34

4.4 Simple task. Distribution of occurrences of the target objects grouped
into the seven classes for the two sessions: classes are identified by
numbers between 0 and 6. 35

4.5 Complex task. Occurrence of target objects in the two session
datasets: each object is identified by a two-digit obj_id. The most
numerous objects correspond to the duplicates found in the first
column of the dataset and remapped with the specific identification
code. 35

4.6 Scheme of a simplified 1D CAE architecture. [57] 38
4.7 Summary of the CAE model realised with Keras. 38
4.8 Block diagram of the Biased Autoencoder model applied on the

two datasets. These networks reduce their dimensionality through
the encoder block consisting of a dense layer and prepare them for
classification. 40

4.9 Block diagram of the Partial reduction model applied on MRec41.
The dense layer reduces its dimensionality to that of MRec40, ac-
cepted by the classifier. 41

4.10 Step summarising the processes: a) Dimensionality reduction for
both dataset and training and fine-tuning for the classifier, valid for
Simple AE, CAE and for Biased AE. b) Dimensionality reduction
for dataset MRec41 and training and fine-tuning for the classifier,
valid for the Partial Reduction model. 43

4.11 Pie charts showing the proportions of training set, validation set, and
test set compared to the total dataset: on the left the percentages for
pre-training on MRec40, on the right the percentages for fine-tuning
on MRec41. 43

4.12 Confusion matrix for binary classification, which highlights the
elements used to calculate precision (blue) and recall (green) [63]. . 45

5.1 Simple task: confusion matrix of the classification results for the
test set, using the reference model. 48

70

List of Figures

5.2 Simple task: history of the training from scratch, using the reference
model. Trend of the loss function (left) and accuracy (right) in the
epochs, both for training set and validation set. 48

5.3 Complex task: confusion matrix of the classification results for the
test set, using the reference model. 49

5.4 Complex task: history of the training from scratch, using the refer-
ence model. Trend of the loss function (left) and accuracy (right) in
the epochs, both for training set and validation set. 49

5.5 Reconstruction errors distribution on MRec40 test set (left) and
MRec41 test set (right) for Simple AE n.3. 51

5.6 Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through Simple AE n.3 (350 channels). . . 51

5.7 Reconstruction errors distribution on MRec40 test set (left) and
MRec41 test set (right) for Convolutional AE. 53

5.8 Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through the 350-channels CAE. 53

5.9 Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through the Biased AE model n.2 (frozen
layers). 54

5.10 Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.1
(free layers). 55

5.11 Simple task: history of the training for the Partial reduction model
n.1 (free layers). It’s possible to compare this chart with the one of
the reference in Figure 5.2. 56

5.12 Complex task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.1
(free layers). 57

5.13 Complex task: history of the training for the Partial reduction model
n.1 (free layers). It’s possible to compare this chart with the one of
the reference in Figure 5.4. 58

5.14 Complex task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.2
(frozen layers). 58

5.15 Complex task: history of the training for the Partial reduction model
n.2 (frozen layers). It’s possible to compare this chart with the one
of the reference in Figure 5.4. 59

B.1 Simple task: confusion matrix of the direct application of the pre-
trained classifier on the MRec41 test set, after its dimensionality
reduction through the 128-channels Simple AE. 64

71

List of Figures

B.2 Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through the Simple AE n.1 (128 channels). 65

B.3 Simple task: confusion matrix of the classification results for the test
set, after fine-tuning through the Biased AE model n.1 (free layers). 65

B.4 Simple task: confusion matrix of the classification results for the
test set, after fine-tuning through the Partial reduction model n.2
(frozen layers). 66

72

List of Tables

3.1 Table showing the number of trials and channels for both datasets
belonging to subject M. 29

4.1 Table reporting the number of hidden layers and the dimension of
the latent space, i.e. the number of neurons in the code layer, for
each Simple AE model. 36

4.2 Hyperparameters set for the three Simple AE variants. 37
4.3 Hyperparameters set for the two variants of Biased AE. 40
4.4 Hyperparameters set for the two variants of Partial reduction. . . . 41
4.5 Table summarising the models described in the section, with their

variants. 42

5.1 Performance of the reference (i.e., the model trained from scratch on
a small percentage of dataset MRec41) for both tasks. The threshold
value is an accuracy on the validation set of 90% and 30%, respectively. 50

5.2 Average percentages MAE across MRec40 and MRec41 channels for
the three Simple AE models. 51

5.3 Performance in terms of accuracy of the three Simple AE models in
the simple task, both for pre-training on MRec40 and for fine-tuning
on MRec41. 52

5.4 Average percentages MAE across MRec40 and MRec41 channels for
CAE model. 52

5.5 Performance in terms of accuracy of the CAE model in the simple
task, both for pre-training on MRec40 and for fine-tuning on MRec41. 53

5.6 Performance in terms of accuracy of the Biased AE model in the
simple task, both for pre-training on MRec40 and for fine-tuning on
MRec41. 54

5.7 Performance in terms of accuracy of the Partial reduction model in
the simple task, both for pre-training on MRec40 and for fine-tuning
on MRec41. 56

5.8 Performance of the Partial reduction model in the complex task. . . 57

73

List of Tables

5.9 Partial reduction model’s report in the complex task for the variant
n.1 (free layers). 59

5.10 Partial reduction model’s report in the complex task for the variant
n.2 (frozen layers). 59

5.11 Reference’s report in the complex task. 60

C.1 Technical specifications from [65]. 67

74

Bibliography

[1] Wonjun Ko, Eunjin Jeon, Seungwoo Jeong, Jaeun Phyo, and Heung-Il Suk.
«A survey on deep learning-based short/zero-calibration approaches for EEG-
based brain–computer interfaces». In: Frontiers in Human Neuroscience 15
(2021), p. 643386 (cit. on p. 1).

[2] https://www.humanitas.it/enciclopedia/anatomia/sistema-nervoso/ (cit. on
p. 2).

[3] https://www.my-personaltrainer.it/fisiologia/sistema-nervoso.html (cit. on
p. 2).

[4] https://brainintraining.it/corteccia-cerebrale/ (cit. on p. 3).
[5] https://it.wikipedia.org/wiki/Corteccia_motoria (cit. on p. 3).
[6] Veera Katharina Menz, Stefan Schaffelhofer, and Hansjörg Scherberger. «Rep-

resentation of continuous hand and arm movements in macaque areas M1, F5,
and AIP: a comparative decoding study». In: Journal of neural engineering
12.5 (2015), p. 056016 (cit. on pp. 4, 28).

[7] Giulia Malfatti. «New evidence of functional interactions within the hand
motor system». PhD thesis. University of Trento, 2019 (cit. on p. 4).

[8] https://it.wikipedia.org/wiki/Neurone (cit. on p. 4).
[9] Luigia Canonico. «THE ROLE OF CONNEXINS IN THE PATHOGENESIS

OF CHARCOT-MARIE-TOOTH DISEASE». PhD thesis. Università degli
studi di Napoli (cit. on p. 5).

[10] https://teachmephysiology.com/nervous-system/synapses/action-potential/ (cit.
on p. 6).

[11] Anderson Mora-Cortes, Nikolay V Manyakov, Nikolay Chumerin, and Marc M
Van Hulle. «Language model applications to spelling with brain-computer
interfaces». In: Sensors 14.4 (2014), pp. 5967–5993 (cit. on p. 7).

[12] Valentina Agostini. Neuroengineering (cit. on p. 7).

75

BIBLIOGRAPHY

[13] Seonghun Park, Min-Su Kim, Hyerin Nam, and Chang-Hwan Im. «Devel-
opment of an In-Car Environment Control System Using an SSVEP-based
BCI with Visual Stimuli Presented on a Head-Up Display». In: 2022 10th
International Winter Conference on Brain-Computer Interface (BCI). 2022,
pp. 1–2. doi: 10.1109/BCI53720.2022.9734982 (cit. on p. 7).

[14] Corentin Piozin, Gabriela Herrera Altamira, Catherine Simon, Brice Lavrard,
Jean-Yves Audran, Florian Waszak, and Selim Eskiizmirliler. «Motion pre-
diction for the sensorimotor control of hand prostheses with a brain-machine
interface using EEG». In: 2022 10th International Winter Conference on
Brain-Computer Interface (BCI). 2022, pp. 1–8. doi: 10.1109/BCI53720.
2022.9734823 (cit. on p. 7).

[15] https://germanbionic.com/en/solutions/exoskeletons/apogee/ (cit. on p. 7).
[16] Marcello Sicbaldi. «Brain-Computer Interface per riabilitazione motoria e

cognitiva». PhD thesis. Alma Mater Studiorum - Università di Bologna, 2019
(cit. on p. 7).

[17] https://www.paradromics.com/blog-post/enabling-connection-ii-bci-for-assistive-
communication (cit. on pp. 8, 9).

[18] Ankur Gupta, Nikolaos Vardalakis, and Fabien B Wagner. «Neuroprosthetics:
from sensorimotor to cognitive disorders». In: Communications Biology 6.1
(2023), p. 14 (cit. on p. 9).

[19] Christian Klaes, Ying Shi, Spencer Kellis, Juri Minxha, Boris Revechkis,
and Richard A Andersen. «A cognitive neuroprosthetic that uses cortical
stimulation for somatosensory feedback». In: Journal of neural engineering
11.5 (2014), p. 056024 (cit. on p. 9).

[20] Greta Preatoni, Giacomo Valle, Francesco M Petrini, and Stanisa Raspopovic.
«Lightening the perceived prosthesis weight with neural embodiment promoted
by sensory feedback». In: Current Biology 31.5 (2021), pp. 1065–1071 (cit. on
p. 9).

[21] https://www.b-cratos.eu/ (cit. on pp. 10, 11).
[22] Elios Ghinato. «Robust Classification of a Neuromuscular Signal for Real-

Time Control of a Prosthetic Hand». PhD thesis. Torino, Italy: Polytechnic
of Turin, Dec. 2022 (cit. on pp. 11, 32).

[23] Ilaria Gesmundo. «Real-Time Classification of Neural Signal from Motor
Cortex through Multiple Recording Sessions». PhD thesis. Torino, Italy:
Polytechnic of Turin, Mar. 2023 (cit. on pp. 11, 33, 50, 61).

[24] https://www.prensilia.com/mia-hand-ricerca/ (cit. on p. 12).
[25] https://bsj.berkeley.edu/how-artificial-neural-networks-work-from-the-math-up/

(cit. on p. 13).

76

https://doi.org/10.1109/BCI53720.2022.9734982
https://doi.org/10.1109/BCI53720.2022.9734823
https://doi.org/10.1109/BCI53720.2022.9734823

BIBLIOGRAPHY

[26] https://it.wikipedia.org/wiki/Rete_neurale_artificiale (cit. on p. 13).
[27] https://www.intelligenzaartificialeitalia.net/post/spiegazione-della-pi%C3%B9-

semplice-rete-neurale-per-principianti-con-codice-implementazione-python (cit.
on p. 14).

[28] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. «Learning
representations by back-propagating errors». In: nature 323.6088 (1986),
pp. 533–536 (cit. on p. 15).

[29] Herbert Robbins and Sutton Monro. «A stochastic approximation method».
In: The annals of mathematical statistics (1951), pp. 400–407 (cit. on p. 15).

[30] https://it.m.wikipedia.org/wiki/Rete_neurale_ricorrente (cit. on p. 15).
[31] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. «On the difficulty of

training recurrent neural networks». In: International conference on machine
learning. Pmlr. 2013, pp. 1310–1318 (cit. on p. 16).

[32] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 16).

[33] Felix Gers. «Long short-term memory in recurrent neural networks». PhD
thesis. Verlag nicht ermittelbar, 2001 (cit. on p. 16).

[34] Xin Wang, Yuanchao Liu, Chengjie Sun, Baoxun Wang, and Xiaolong Wang.
«Predicting Polarities of Tweets by Composing Word Embeddings with Long
Short-Term Memory». In: Jan. 2015, pp. 1343–1353. doi: 10.3115/v1/P15-
1130 (cit. on p. 17).

[35] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. «On the Dangers of Stochastic Parrots: Can Language Models Be
Too Big?» In: Proceedings of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency. FAccT ’21. Virtual Event, Canada: Association
for Computing Machinery, 2021, pp. 610–623. isbn: 9781450383097. doi:
10.1145/3442188.3445922. url: https://doi.org/10.1145/3442188.
3445922 (cit. on p. 16).

[36] https://data-science-blog.com/blog/2022/04/11/how-to-choose-the-best-pre-
trained-model-for-your-convolutional-neural-network/ (cit. on p. 18).

[37] Stevo Bozinovski. «Reminder of the first paper on transfer learning in neural
networks, 1976». In: Informatica 44.3 (2020) (cit. on p. 18).

[38] https://www.bnova.it/intelligenza-artificiale/transfer-learning-cose-i-modelli-
e-quando-utilizzarlo/ (cit. on p. 18).

[39] https://www.ai4business.it/intelligenza-artificiale/transfer-learning-cose-come-
funziona-e-applicazioni/ (cit. on p. 19).

77

https://doi.org/10.3115/v1/P15-1130
https://doi.org/10.3115/v1/P15-1130
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922

BIBLIOGRAPHY

[40] https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
(cit. on p. 19).

[41] Lei Chen. «Curse of Dimensionality». In: Encyclopedia of Database Systems.
Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US, 2009,
pp. 545–546. isbn: 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-
9_133. url: https://doi.org/10.1007/978-0-387-39940-9_133 (cit. on
p. 20).

[42] https://www.andreaminini.com/ai/machine-learning/riduzione-dimensionalita-
dati (cit. on p. 21).

[43] Ye Ding, Kui Zhou, and Weihong Bi. «Feature selection based on hybridization
of genetic algorithm and competitive swarm optimizer». In: Soft Computing
24 (2020), pp. 11663–11672 (cit. on p. 21).

[44] https://nirpyresearch.com/classification-nir-spectra-linear-discriminant-analysis-
python/ (cit. on p. 22).

[45] Youngrok Song, Sangwon Hyun, and Yun-Gyung Cheong. «Analysis of au-
toencoders for network intrusion detection». In: Sensors 21.13 (2021), p. 4294
(cit. on p. 23).

[46] https://atcold.github.io/pytorch-Deep-Learning/it/week07/07-3/ (cit. on p. 24).
[47] https://atcold.github.io/pytorch-Deep-Learning/it/week05/05-2/ (cit. on p. 24).
[48] S Schaffelhofer and H Scherberger. «From vision to action: a comparative

population study of hand grasping areas AIP, F5, and M1». In: Bernstein
Conference 2014. 2014 (cit. on pp. 26, 28).

[49] Stefan Schaffelhofer, Andres Agudelo-Toro, and Hansjörg Scherberger. «De-
coding a wide range of hand configurations from macaque motor, premotor,
and parietal cortices». In: Journal of Neuroscience 35.3 (2015), pp. 1068–1081
(cit. on pp. 26, 29).

[50] S Schaffelhofer, M Sartori, H Scherberger, and D Farina. «Musculoskeletal
representation of a large repertoire of hand grasping actions in primates». In:
IEEE Transactions on Neural Systems and Rehabilitation Engineering 23.2
(2014), pp. 210–220 (cit. on p. 27).

[51] Stefan Schaffelhofer and Hansjörg Scherberger. «A new method of accurate
hand-and arm-tracking for small primates». In: Journal of neural engineering
9.2 (2012), p. 026025 (cit. on p. 28).

[52] https://www.easy-tensorflow.com/tf-tutorials/recurrent-neural-networks/bidirectional-
rnn-for-classification (cit. on p. 32).

[53] https://www.jeremyjordan.me/autoencoders/ (cit. on p. 33).
[54] https://it.wikipedia.org/wiki/Keras (cit. on p. 36).

78

https://doi.org/10.1007/978-0-387-39940-9_133
https://doi.org/10.1007/978-0-387-39940-9_133
https://doi.org/10.1007/978-0-387-39940-9_133

BIBLIOGRAPHY

[55] Xingchen Liu, Qicai Zhou, Jiong Zhao, Hehong Shen, and Xiaolei Xiong.
«Fault diagnosis of rotating machinery under noisy environment conditions
based on a 1-D convolutional autoencoder and 1-D convolutional neural
network». In: Sensors 19.4 (2019), p. 972 (cit. on p. 37).

[56] Jannick Kuester, Wolfgang Gross, and Wolfgang Middelmann. «1D-convolutional
autoencoder based hyperspectral data compression». In: The International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sci-
ences 43 (2021), pp. 15–21 (cit. on p. 37).

[57] Diana Marcela Martinez Ricardo, German Efrain Castañeda Jimenez, Janito
Vaqueiro Ferreira, Euripedes Guilherme de Oliveira Nobrega, Eduardo Ro-
drigues de Lima, and Larissa M de Almeida. «Evaluation of Machine Learning
Methods for Monitoring the Health of Guyed Towers». In: Sensors 22.1 (2022),
p. 213 (cit. on p. 38).

[58] Lemuel Puglisi. «Autoencoder per la riduzione della dimensionalità di dataset
molecolari e conseguente predizione di dati clinici». PhD thesis. Università
degli studi di Catania (cit. on p. 39).

[59] https://keras.io/api/callbacks/early_stopping/ / (cit. on p. 40).
[60] https://keras.io/api/callbacks/reduce_lr_on_plateau/ (cit. on p. 40).
[61] Margherita Grandini, Enrico Bagli, and Giorgio Visani. «Metrics for multi-

class classification: an overview». In: arXiv preprint arXiv:2008.05756 (2020)
(cit. on p. 44).

[62] https://www.analyticsvidhya.com/blog/2021/06/confusion-matrix-for-multi-
class-classification/ (cit. on p. 44).

[63] https://towardsdatascience.com/comprehensive-guide-on-multiclass-classification-
metrics-af94cfb83fbd (cit. on pp. 44, 45).

[64] Federico Fabiani. «Brain-machine interface for bionic prosthetic arm actu-
ation». PhD thesis. Torino, Italy: Polytechnic of Turin, Oct. 2021 (cit. on
p. 50).

[65] https://www.hpc.cineca.it/hardware/marconi100 (cit. on p. 67).

79

	Acronyms
	Introduction
	Basics of neuroanatomy and neurophysiology
	Central and peripheral nervous system
	Brain anatomy
	Neurons and synapses
	Action potential

	Brain-Machine Interfaces
	BMI classification

	B-Cratos project
	Related works and intent of this thesis

	Prior knowledge
	Artificial Neural Networks
	Recurrent Neural Network
	LSTM networks

	Transfer learning
	Approaches

	Dimensionality reduction
	Feature selection and feature extraction
	Linear techniques
	Non-linear techniques: the autoencoder

	Dataset
	Experimental setup
	Behavioral paradigm

	Pre-processing
	Pre-processing applied within this work

	Methodologies
	Definition of the Machine Learning problem
	Developed models
	Simple autoencoder
	Convolutional autoencoder
	Biased autoencoder
	Partial reduction

	Training strategies
	Evaluation metrics for multi-class classification

	Results
	Reference
	Simple task: selecting the model
	Complex task: final results

	Conclusion
	Structure and hyperparameters of the classifier
	Further results
	Direct application of the pre-trained model
	Confusion matrices of developed models

	HPC based model training
	List of Figures
	List of Tables
	Bibliography

