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Summary

Response evaluation is a crucial aspect in the field of oncology as it allows clinicians
to assess the effectiveness of anti-cancer treatments, make adjustments to manage-
ment plans, and determine the overall prognosis of patients. The widely adopted
quantitative tool for this purpose is the Response Evaluation Criteria In Solid
Tumors (RECIST), which classifies therapy response based on one-dimensional
diameter measurements of target lesions, categorizing them as partial response,
stable disease, or progressive disease. However, RECIST has certain limitations, in-
cluding inter- and intra- observer variability, as well as reliance on one-dimensional
measurements only. These limitations can impact the accuracy of assessments
and subsequently affect patient prognoses. Therefore, there is a need for a new
method to overcome these drawbacks. Inspired by the classic radiological reporting
approach that identifies all changes throughout the entire body, we can formulate
the problem as an image-to-image registration task using neural networks. In this
framework, anatomical changes between follow-up scans of the same patient are
represented as deformation fields, and these deformations are utilized to predict
survival, assuming that they hold valuable prognostic information. While this has
been proposed in a few pilot studies, yielding significant results, it remains unclear
whether the network’s ability to model deformation fields is directly correlated with
its ability to predict survival. This thesis aims to address this question through an
ablation study, wherein different components of the network architecture are re-
moved or modified to introduce variations in registration quality and examine their
impact on survival prediction. The study design includes four experiments, plus
an additional one, each analyzing different combinations of network components.
These include variations in network size, expressed as features number, inclusion
of skip layers, realism of reconstruction implemented via Generative Adversarial
Networks (GANs), representation via Vision Transformers, and influence of embed-
ding vectors via latent-space similarity. Survival prediction of the resulting models
has been applied to an internal dataset consisting of thoraco-abdominal CT scans
from patient who underwent immunotherapy between 01/01/2013 and 31/12/2018
at The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL;
Amsterdam, The Netherlands).
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Chapter 1

General clinical background

1.1 Cancer characteristics
A tumor, or neoplasm, is an abnormal mass of cells capable of growing and dividing
uncontrollably despite restriction of space, nutrients shared by other cells, or signals
sent from the body to stop reproduction [1]. Tumors can be categorized as benign
or malignant tumors according to their ability to migrate to distal sites, or creating
metastases. Benign tumors tend to grow slowly and do not generally invade the
neighbouring tissues remaining in their primary location [2]. Often, they have clear
distinct boundaries. Consequently to their characteristics, they are not particularly
harmful to the body, and surgery is commonly used for their removal [3].

Benign Tumor Malignant Tumor

Figure 1.1: Illustration of benign and malignant tumors

On the other hand, a malignant tumor, also called cancer, is able to evade its site
of origin, invading adjacent tissues, and migrate to distal sides via the bloodstream
or the lymphatic system. Often, malignant tumors grow much faster. This spread
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is called metastatic seeding, and it can occur anywhere in the body but it is most
commonly found in the liver, lungs, brain, and bones [3].

The appearance of cancers can be traced to genetic mutations in proliferation-
controlling genes, and the presence of environmental factors favourable to their
growth, known as the six hallmarks of cancer [4]. Eleven years after the first publi-
cation, in 2011, Hanahan and Weinberg updated it adding two emerging hallmarks,
and two enabling characteristics [5]. As a result, it is expected that these can grow
in the future to include more hallmarks, as our understanding of cancer biology
deepens [6]. The principal hallmarks indicated in [5] can be summarized as:

• Genome instability describing the increased tendency of the DNA genes to
mutate;

• Neo-angiogenesis describing the ability of the tumor to generate a new vascular
network for blood supply;

• Activating invasion and metastasis describing mechanism by which tumor
cells expand into nearby environments;

• Tumor-promoting inflammation describing the mechanism by which tumor
benefits from inflammatory actions, leading anti-cancer cells to secrete pro-
survival, pro-migration, and anti-detection factors;

• Enabling replicative immortality describing the ability of the tumor to replicate
unlimitedly;

• Avoiding immune destruction describing the mechanism by which tumors
hijack immune system detection and destruction actions, as the immune
checkpoint control;

• Evading growth suppressors describing the ability of the tumor to resist
inhibitory signals that might stop their growth;

• Sustaining proliferative signaling describing ability of the tumor to start the
proliferative cascade even without a growth-factor signal from neighboring
cells;

• Deregulating cellular energetics describing ability of the tumor to reprogram
cellular metabolism;

• Resisting cell death describing the ability of the tumor to evade apoptosis by
altering the proper signaling.

2
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Figure 1.2: Illustration of cancer hallmarks. Image created with Biorender.com
and adapted from [5]

1.2 Cancer epidemiology

Cancer remains among the leading causes of death worldwide and it is an important
barrier to increasing life expectancy [6]. The estimated number of new cancer cases
in 2020 in the European Union (+EFTA) was 2.76 million, with an estimated
1.29 million mortality. Moreover, according to the European Cancer Information
System (ECIS) the incidence is expected to increase by 12% and 21% in 2030 and
2040 respectively [7].

Among all types of cancer, lung cancer is recognized as the fourth most frequently
occurring cancer in European countries after breast, colon-rectum and prostate
cancer. In 2020, 326 thousand of all newly diagnosed cancer were lung cancer, and
its incidence is projected to increase by 23% in 2040. More importantly, it accounts
approximately for the 23% and the 15% of all cancer mortality respectively in male
and female patients; it represents the most lethal type of cancer disease, with an
expected increase of almost 27% of mortality rate during the next 20 years [7].
According to [7], the incidence of kidney, liver, pancreas and stomach cancer is
between 3.5 and 5 times less that the already mentioned lung cancer, and their
expected rates in 2040 will increase by 20 to 30%.
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Figure 1.3: Overview of the expected incidence of cancer by year in EU-27
countries. Image adapted from [7]

1.3 Cancer treatment methods

Cancer treatment is the process of using surgery, radiotherapy, medical drugs, or
other novel treatment options to cure, shrink, or stop the progression of cancer [6].
Prescribing the appropriate treatment option by the treating physician depends
on several factors, such as the type and stage of the cancer, its location, its size
and extent, and the presence of any comorbidity, as well as the wish of the patient
[8]. Treatments can be broadly divided into two sub-categories: local and systemic
therapies.

1.3.1 Local therapy

The most widespread techniques are surgery and radiotherapy. Surgery entails
the removal of the tumor, as well as, when feasible, a part of the surrounding
tissue, called margin, which should be clear of cancer cells to reduce the chances of
recurrence [9].
Radiation therapy, or radiotherapy, on the other hand, leverages the interaction
between high-energy photons or particles (as protons, neutrons or electrons) and
the target. Using either photons or charged particles, the purpose is to damage the
DeoxyriboNucleic Acid (DNA) of cancer cells leading to cellular death, i.e apoptosis
[10].

4



General clinical background

1.3.2 Systemic therapy
Contrary to local therapy, a systemic treatment does not focus on a single specific
target area but aims to eliminate cancerous cells affecting the whole body, therefore
trying to counteract any active process of seeding of the tumor, as well as distal
metastases in the same way as the primary tumor [11]. There are various types of
systemic treatment available.
Chemotherapy is the most common treatment, based on the administration of
drugs that can interfere with the mechanisms of cell proliferation. The majority of
anti-neoplastic drugs used in this kind of treatment act specifically in processes
such as DNA synthesis, or block the synthesis of DNA precursors or damage the
integrity of DNA and prevent its transcription [12]. Chemotherapy acts on cells
with a high rate of proliferation, a key feature of cancer cells. It however does not
have the ability to distinguish between healthy and cancerous cells. As a result,
healthy cells with high replication rates, such as hair bulbs, mucous membranes
and bone marrow are also affected. The main side-effects of this therapy, in fact,
are hair loss, anemia and digestive disorders such as nausea and vomiting [13].

Another branch of systemic treatments are the targeted therapies, which act
selectively on molecular pathways of proliferation [14]. This is the chain of proteins
in the cells that controls when and if the cells should replicate. Gene mutations
cause change in the protein, which disrupts the signaling pathway, and pushes the
cell to uncontrolled proliferation [15]. Targeted therapies are molecules developed to
interrupt this pathway, stopping the cell from replicating [16]. In a similar fashion,
other signaling pathways can be targeted other than the proliferation pathway, as
the neo-angiogenesis signaling pathway [17].

Immunotherapy is a type of treatment that uses the patient’s own immune system
to fight the spread of cancer, preventing the tumor from inhibiting anti-cancer
activity carried out from the immune system [18]. There are different types of
immunotherapy mechanisms available [19]. For example, by increasing the ability
of immune cells to present tumor antigens to the immune system [20]; blocking
the pathway that tumor cells used to disable immune cells [20]; promoting the
proliferation of certain immune cells, like T-helper and B cells [21]; or increase the
cytotoxic activity of effector cells such as natural killer cells [20]. Several types
of immunotherapy are already used in clinical practice for different cancers as
melanoma, Non-Small-Cell Lung Cancer (NSCLC) and bladder cancer, commonly
treated with antibodies for inhibitory immune checkpoints CTLA-4 and PD-1 [22].
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1.4 Treatment monitoring

After the diagnosis, and the treatment start, the patient is monitored, in a process
commonly referred as follow-up: it aims to observe and evaluate structural, func-
tional, physiological and biochemical changes in the disease over time. In this way
it is possible to understand whether the current treatment is giving the expected
results, and consequently to take the appropriate countermeasures promptly [23].
Medical imaging plays an integral part during monitoring, diagnosis, and treatment
planning [24]. The increasing relevance of medical imaging is due to the possibility
of providing a more comprehensive view of the body, and therefore of the entire
tumor burden, in a minimally-invasive fashion.
There are different imaging modalities, which differ mainly for the physical princi-
ples underlying the creation of the image, and for the quantification of anatomical
structures or physio-functional maps [25]. A description of Computed Tomography
technology is given in the following subsection, being the type of oncological image
used in the proposed work.

1.4.1 Computed Tomography

Computed Tomography (CT) is a X-ray-based imaging technique which uses a
motorized X-ray source that rotates around the circular opening of a donut-shaped
structure called a gantry [25].

Figure 1.4: Example of a CT scanner. Image retrieved from [26]
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Image Acquisition

During image acquisition, the patient lies on the bed, and slowly moves through
the gantry. In the gantry the emitter (X-ray tube) revolves around the patient,
emitting a collimated beam of rays, that passes through the patient’s body and is
collected by digital detectors. To date, most CT scanners have an array of detectors
that can cover the entire ring, so as to always ensure the presence of sensors
contralateral to the X-ray tube [27]. The movement of the emitter is continuous
and is ensured by the slip ring technology: the current and voltage supply is given
by the circular track on which the tube rotates, whereas the contact friction and
the electromagnetic disturbances are minimized. Once hit by the incident rays, the
sensors produce a signal proportional to the photons’ intensity [25]. The denser
the material in the middle, the less photons make it through to the detector. In
particular, the attenuation follows Lambert-Beer law which relates the variation in
the number of X-photons, after hitting a material, with a specific linear attenuation
coefficient:

N = N0 · e−µx (1.1)

where N represents the number of photons emitted by the source, N0 is the number
of photons after passing through the material, x is the width of the material and,
finally, µ represent the attenuation coefficient.
In Equation 1.1 µ is assumed constant along the line that connects source and
detector, but in reality it is variable and the exponent of Lambert-Beer law is equal
to the following integral: Ú

scan−line
µ(x, y) · ds (1.2)

Therefore, the final image will be dependent on the attenuation coefficient, or
radio-density, of the points belonging to the anatomical areas scanned.
As can be seen from the above equation, with a single scan it is not possible to
trace the radio-densities of the individual pixels; for this reason angular sampling
is used, by radiating the region of interest from different angles.
Next, Filtered Back-Propagation (FBP) algorithms are used to assess the µ function,
and therefore to know the attenuation coefficient of individual points of interest.
These algorithms rely on the calculation of the Radon transform (which is equal to
Equation 1.2), on its inversion and on the application of convolutional filters to
minimize noise in the final reconstruction [28].

As mentioned above, the patient-support moves through the gantry to acquire the
volume of interest, so this process is not limited to the reconstruction of a single
slice but extends to a 3-Dimensional (3D) space. Typically 30 to 40 slices of the
patient are acquired during an exam, of thickness of 0.5 mm. Obviously, for really
big volumes (as in the Full-body CT scan) the thickness of the single slice can be
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higher or it’s possible to increase the gap between adjacent slices, also called pitch
factor ; these strategies aim to reduce the radiation dose to which the patient is
subjected.
Finally, the radio-densities are normalized and expressed in Hounsfield Units (HU):

µ(HU) = 1000 · µ − µH20

µH20
(1.3)

where µH20 represents the linear attenuation coefficient of water, and µ the one
of a generic biological tissue. This scale is adimensional, starts from the negative
value of -1000, representative of the air, and it is unbounded at the top.

Image interpretation & read-out

Once the CT scan is acquired, the radiologist extracts semantic information from
it, e.g. whether there is a tumor, where it is located, how big it is, what are the
risk for the patient if the tumor were to grow, etc. This is done qualitatively,
by scrolling through the scan and assessing the structures seen. In this case, the
radiologist will have to adjust the visualization settings, as the windowing: it is an
essential operation to highlight particular structures and eliminate the not relevant
biological tissues.

Figure 1.5: Application of different windows to a chest CT. Image retrieved from
[29]

Generally the screen visualization is limited by the available grey-levels (typically
256, if 8 bits are assigned to each pixel). Windowing, on the other hand, helps
the read-out by selecting the range of interest in HU and redistributing the grey
tones only in the chosen window. The key parameters for the visualization are the
Window Level (WL) and the Window Width (WW): the first is the mean value of
the range, and the second is the number of HU contained in the same range.
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1.4.2 Clinical decision making
As mentioned in the beginning of this section, medical imaging plays a key role in
the evaluation of anti-cancer therapies and, therefore, in clinical decision making.
In fact, the response evaluation criteria, used by radiologists in the follow-up phase
to quantify the response to treatment, rely on repeated acquisitions over time, such
as those of CT or MRI. In particular, the most used and recognized criteria are
the Response Evaluation Criteria in Solid Tumors (RECIST), developed in 2000
[30], and the following updates and variants published over time, such as RECIST
1.1 and iRECIST (specifically adapted for immunotherapy).

Response Evaluation Criteria in Solid Tumors

RECIST uses different image acquisitions overtime and 1-Dimensional (1D) mea-
surements to estimate the total tumor burden and to categorize the response to
treatment.
As first step, the operator has to distinguish between measurable and non-measurable
lesions. Measurable lesions are lesions with a maximal diameter of at least 10 mm
and should allow reproducible and repeated measurements, or lymph nodes if their
maximum short axis diameter exceeds 15 mm. Non-measurable lesions are defined
as the smallest ones or as lymph nodes with a short axis diameter between 10
and 15 mm [31]. Then, they have to distinguish between target and non-target
lesions on the axial plane. Target lesions should be chosen based on their size,
representing all affected organs, and should also be suitable for consistent and
repeatable measurements [32]. A maximum of 5 lesions in total, and of maximum
2 per organ can be selected as target. Then, the Sum of the longest Diameter
(SoD) for the target lesions is calculated and reported. SoD functions in this case
as estimate of the total tumor burden.
The measurement is repeated for the baseline scan, which should be performed as
close as possible to the treatment start and not more than 4 weeks before, and for
each follow-up scan, usually acquired 4 weeks after the previous one [32]. To assess
the response to treatment the SoD over time is observed:

• if it is increased by at least 20%, or new lesions are detected, it is progressive
disease (PD);

• if it is decreased by at least 30% and no new lesions are detected, it is partial
or complete response to treatment (PR);

• in neither, the disease is stable (SD).

Figure 1.6 shows a possible application of RECIST criteria: the areas in light-blue
represent the target lesions while those in violet the non-target ones. Some lesions
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Baseline

Follow-up

Sum of diameters = S0

Sum of diameters = S1

Figure 1.6: Application of RECIST criteria

increased their size between baseline and follow-up, while for others the maximum
diameter decreased. In this example there are no new lesions and the sum of the
diameters (S1) is smaller than the reference (S0), so it can be either a stable or
in-response disease.

Limitations

Since target lesions are selected and uni-dimensional longest diameters are measured
manually, discrepancies within multiple readings or between different individuals
can cause inconsistency in response categorisation [33]. In fact, finding the maxi-
mum dimension of a tumor can be difficult, especially in irregularly shaped lesions,
resulting in different measurements of the same lesion; different operators may end
up choosing different target lesions, which might respond different to treatment,
resulting in different outcome classes - the same patient classified as PD and PR
depending on the operator who is doing the readout [33].
In addition, RECIST criteria are intrinsically constrained by relying on uni-
dimensional measures relating exclusively to the lesions selected. In this way,
many (potentially prognostic) imaging features are ignored. For example, in the
case of a disease evolving in multiple distal sites, tumors with different locations
may be characterized by a different microenvironment. In turn, different microen-
vironments may affect differently the response to treatment. RECIST chooses
the target lesions regardless of their location, and by studying only the tumor
diameter cannot take into account this additional information. On the contrary, a
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method that does not choose a priori the lesions to be monitored, but quantifies
all morphological changes over time, could also take into account factors external
to the tumor, as angiogenesis or lymphocytic infiltrations [34].
Finally, selecting and measuring all the target lesions result in a time consuming
task being completely manual.
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Chapter 2

General technical
background

2.1 Artificial Intelligence

Marco Somalvico, one of the pioneers of Artificial Intelligence in Italy, defines it as:
"the discipline belonging to computer science that studies the theoretical foundations,
the methodologies and techniques that allow the design of hardware and software
systems capable of providing the computer with performance that, to a common
viewer, would seem to be of exclusive pertinence to human intelligence" [35]. By
this definition, the first attempts tried to emulate the processes of human reasoning
for solving certain tasks by the computer. The attempt to schematize human
decision-making in a series, albeit complex, of logical conditions and mathematical
operations proved to be unsuccessful especially in complex and open contexts.
Therefore, this discipline begins to impose itself and develop when the underlying
paradigm changes: the goal is not to decipher the human mental process and
make it available to the machine, but that the machine itself can develop its own
decision-making process.
This concept is the basis of Machine Learning (ML), which was born using a large
number of examples (consisting of both input data and expected responses) to
generate its own rules of learning, then applicable to new data to produce new
responses [36]. Going down through the hierarchy showed in Figure 2.1 we have
Deep Learning (DL), a subfield of ML, based on Artificial Neural Networks.
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Deep LearningMachine LearningArtificial Intelligence

Figure 2.1: Relation between Artificial Intelligence, Machine Learning and Deep
Learning

2.2 Machine Learning
Machine Learning is a sub-field of AI and comprises all the techniques, based on
statistical learning, which aims to learn a function/task from input data, without
being programmed to do so [37]. Although learning is done automatically, solely
based on the patterns that the data contains, human intervention plays a crucial
role. In fact, in traditional ML methods the input to the model is structured data:
the developer has to "clean up" the data and provide only the information deemed
necessary for the task.

Once the data is structured, the algorithm learns to build a function that minimises
the error (loss function) between output and expected results. This particular
type of learning, where the outcome variable is known, is called supervised. If
the outcome variable is not known, the model learns a representation of the data
instead, in a procedure called unsupervised learning [38].
The most common architectures are the Artificial Neural Network (ANN), decision
tree, genetic algorithm, the Bayesian Network and the support-vector machine.

2.3 Deep Learning
Deep Learning has emerged as a prominent field within Machine Learning, Artificial
Intelligent, data science, and analytics, due to its remarkable ability to learn from
available data and extract valuable insights [39].
The first major innovation underlying DL is the automation of manual operations:
while input data in ML is carefully studied and structured before being provided
to the model, DL algorithms receive raw data (such as images or text) and inde-
pendently recognize the features and patterns useful to the task. In addition, DL
algorithms outperform traditional ML on large volumes of data [39].
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Similar to other Machine Learning models, Deep Learning networks are based on
ANNs: they are a family of computational models that mimic the behavior of
biological neurons during the learning phase. A biological neuron can communicate
with the others of the network through its terminations, called dentrities and axon:
the first are tiny fibers where the electrical signals come from the surrounding
space, the second is that part of the neuron that carries the output signal away.
Between dendrites and axon, the nucleus receives the current, elaborates the output
and allows the propagation of the signal (i.e of the information) outwards.

The fundamental artificial neuron used in the ANNs, also called perceptron, recre-
ates this structure. The electrical signal is here replaced by the input value, which
is connected with the perceptron through a weight, which measures its signifi-
cance. Once all inputs are been multiplied by their weights, a weighted sum is
operated to obtain an activation-value; according to its activation function and to
the activation-value, the perceptron can either output a signal or stay silent.

f
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w1

w2

∑

x0

x1

x2

wnxn

y

Artificial Neuron

WeightsInputs

Output signal

Figure 2.2: Schematic overview of a single artificial neuron

Since the inputs and the activation function are determined before the training
phase, the only parameters that can actively change to obtain a change in the
output signal are the weights. Hence, neural networks are adaptive systems we
modify their structure during training to minimize the error between output and
desired value. A single neuron is not suitable to solve complex tasks, so the common
ANNs are composed of multiple neurons, divided into several layers.
Each neuron in the input layer receives input data from outside and sends the
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output to each neuron in the next layer. Then there are the hidden layers, the
number of which varies from case to case. Finally, the output layer contains a
number of neurons dependent on the specific problem being addressed.
For example, in a classification problem with two classes, a single output neuron
is enough: if the input belongs to the first class (codified with the value 0), the
output value will be 0, otherwise it will be 1.

Input 
Layer

Hidden Layers Output 
Layer

Figure 2.3: Schematic overview of a generic Artificial Neural Network

Another difference between the networks of ML and DL lies in the number of hidden
layers: the greater this number, the greater the depth of the model, the greater the
describable patterns present in the data. Hence the name Deep Learning.

2.4 Convolutional Neural Networks
Convolutional Neural Network (CNN) is another class of Deep Learning model,
which is designed to deal with input on a regular grid, such as an image, where
different objects are present, and processed focusing on each one of them individually,
a concept inspired by animal visual cortex [40]. A digital image is nothing more
than a matrix of pixels that indicate the color intensity of the various points of the
image. The value of each pixel, therefore, represents an input data.
With this type of data, the use of neural networks described above (i.e ANN)
is sub-optimal. In fact, having to associate for each pixel a neuron in the input
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layer, it would end up in a excessively high number of nodes. As a result, the
number of connecting weights between the input layer and the hidden layer would
also increase dramatically. Furthermore, considering each pixel as a separate and
independent value leads to the loss of the spatial hierarchies of features contained
in the data. It is precisely the relationship between adjacent points that allows
a correct analysis, interpretation and extraction of patterns in an image. These
limitations are overcome by CNNs thanks to their characteristic convolutional
layers: they use the linear operation of convolution to extract relevant features in
the image.

Input Output

Pooling Layer Convolutional Layer Fully-connected Layer 

Figure 2.4: General architecture of a Convolutional Neural Network

2.4.1 Layers
Similar to ANNs, CNNs are also divided into input, hidden and output layers.
Here, the hidden layer is replaced by a block generally composed of 4 levels: a
convolution layer, an activation layer, a pooling layer and a normalization [41].
Commonly, in classification tasks, the network ends with a fully connected layer,
which receives the features extracted in the previous steps and maps them to final
outputs [40].

Convolutional layer

The convolutional layer is the core element of CNNs and aims to extract relevant
patterns in the image. To this end, a small array of numbers, called a kernel,
usually small in spatial dimensionality, spreads along the entirety of the depth of
the input [41]. In particular, the input is element-wise multiplied with the kernel
and then summed, and its result is put at the corresponding position in the output
tensor.

16



General technical background

This process is visualized in Figure 2.5 for a better understanding: in the figure it
is shown the application of the kernel only on the first upper-left set of pixels, but
the procedure is repeated until every pixel is considered.
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0 80 6957 115

0 -1 0

-1 5 -1

0 -1 0
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Element-wise product & sum-up:
(0∙0) + ((-1)∙0) + (0∙0) + ((-1)∙0) + (5∙60) + ((-1)∙113) + (0∙0) + ((-1)∙73) + (0∙121) = 

= (5∙60) - (1∙113) - (1∙73) =
= 114

KernelInput tensor Output tensor

Figure 2.5: Visualization of the convolution operation between the input and the
kernel

The most important hyperparameters, which actually define the size of the output,
are the kernel size, the stride, the number of kernels and the zero-padding. The
first is typically 3x3. The number of kernels determines the depth of the resulting
feature maps. The stride is the distance between two successive kernel positions;
its most common value is 1, even if it can be larger to achieve downsampling of the
feature maps. Finally, the zero-padding is a technique that addresses the loss of
information at the edges of the matrix occurring when a kernel is applied: rows and
columns of zeros are added on each side of the input tensor, so as to fit the center
of the kernel on the outermost element and keep the same in-plane dimension [40].

Activation Layer

The activation layer typically follows the convolutional layer and it is essential to
introduce a non-linear component in the model and, therefore, to aid the network to
solve complex tasks. The most common activation function is Rectified Linear Unit
(ReLU): it sets the negative values to 0 and leaves the positive values unchanged
following the Equations 2.1 and 2.2.

ReLU(x) = max(0, x) (2.1)
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d

dx
(x) = {1 if x > 0, 0 otherwise} (2.2)

x

ReLU(x)

0

Figure 2.6: Visualization of the ReLU function

Pooling Layer

The pooling layer provides a downsampling operation which reduces the in-plane
dimensionality of the feature maps, unchanging their depth. Its goal is to cut spatial
information to force it to be semantic, by decreasing the number of subsequent
learnable parameters and by keeping only the essential features extracted. It uses a
filter that spreads along the input matrix, but does not contain any learnable param-
eters. The result of the process depends on the filter size, the stride and the padding.

The dimensionality reduction is commonly done either through the max-pooling
filter or the global-average-pooling filter. A max-pooling layer, with a typical
filter size of 2x2 and a stride of 2, divides the input in patches and outputs the
maximum value in each patch [40]. A global-average-pooling layer operates an
extreme reduction, producing a 1x1 array just taking the average of all the elements
in each feature map.

Fully connected Layer

The fully connected layer, also called a dense layer, is typically used at the end
of CNNs to map the output of previous steps to the final outputs of the model.
Before applying it, the last feature maps of convolutional or pooling layers have to
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Figure 2.7: Visualization of max-pooling layer

be flattened. It comprises a series of layers of artificial neurons, where each unit
is connected to all the neurons in the previous and next layer. So given all the
connections, this layer is computationally very expensive [42]. One of its most used
versions is the Multi-Layer Perceptron.

Normalization Layer

Normalization is a processing technique used to standardize data, in order to make
the network unbiased to outliers, to speed up the learning [43] and to help the
algorithm convergence.
The most widespread method is the Batch Normalization (BN), which normalizes
features by mean and variance of a batch, and performs better with large batch
sizes. On the other hand, Group Normalization (GN) works within groups of
channels. GN’s computation is independent of batch sizes, and its accuracy is
stable in a wide range of batch sizes [44]. In Figure 2.8 N is the batch axis, C is
the channel axis and H, W are the height and width of the tensor.

2.4.2 Training
The training of a CNN, or in general of a Neural Network, is an optimization-
problem based process: given a set of inputs and the desired outputs, the goal of
the model is to minimize the difference between the real and the predicted outcome.
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Figure 2.8: Difference between Batch and Group Normalization. Image adapted
from [44]

To measure this difference a loss function is used, and its choice is strictly dependent
on the specific task. For example, cross-entropy loss is suggested for multi-class
classification problems, while mean squared error loss is the gold-standard for
regression tasks [40]. As mentioned in 2.3, training is an iterative process where
the weights are actively adjusted, at each iteration, to reach a minimum of the loss
function. It is commonly characterized by two main steps: feed-forwarding and
back-propagation.
Feed-forwarding is based on the calculation of neurons activation with the current
value of weights and biases, and it proceeds from the input layer to the end of the
model, outputting the predicted outcome.
Back-propagation proceeds from the output backwards, and minimises the loss
of the prediction following the gradient (i.e derivative) of the loss function with
reference to the weights of the network. This algorithm is known as gradient
descent.

2.4.3 Applications in medical imaging

Recently, CNNs are being widely used by the medical imaging research community
because of their outstanding performance in medical image analysis, and the advent
of Graphics Processing Unit (GPU) [45].
The use of automatic systems in clinical practice has several advantages, such as
the consistency of the result in the presence of the same input data, independence
from human factors such as fatigue, and the possibility of being trained with a wide
amount of images. For these reasons, their application can benefit the different
stages of oncology practice, i.e diagnosis, follow-up and prognosis. To date there
are artificial intelligence systems that, despite their limitations, have performance
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comparable to that of a specialist [46].
The commonly addressed tasks by CNN models in medical imaging can roughly
be divided into accomplishing the four main tasks – classification, detection,
segmentation and registration [45]. We are going to address image registration in
detail, for the purpose of this thesis.

2.5 Image Registration
Various clinical applications involving disease diagnosis and monitoring, image-
guided treatment delivery, and post-operative assessment, utilise Image Registration
(IR) [47]. It is the process of identifying a spatial transformation that maps two
(or more) images to a common co-ordinate frame or, in other words, a voxel-
wise correspondence. Considering two input images, I1 and I2, the goal of image
registration is to find a displacement field f12 such that:

I1(x) ≈ I2(x + f12(x)) (2.3)

The field f12 defines a function where each voxel in I1 is in I2. I1 and I2 are re-
spectively called fixed and moving image, suggesting that the latter is transformed
during the process to minimize the differences with the former.
Defining warp(I2, f)(x) = I2(x + f(x)) as the moving image warped according to
f , the goal can be rephrased as finding f maximizing the similarity between I1 and
warp(I2, f) [48].

Over the last decades many different techniques have been proposed, as B-splines
and radial basis functions [49], commonly described by a set of parameters and
iteratively updating it following a transformation quality metric. These methods,
also called traditional, are computationally heavy and take a long time to produce
the result. Deep Learning models can also be used for registration, and they can
be broadly divided into supervised and unsupervised networks. The first category
requires ground-truth fields, and their quality and availability directly affect the
result, being dense and ambiguous quantities that are almost impossible to be
labeled manually [48]. In general, target values are obtained by either estimating
them using traditional registration methods or using simulated images with known
ground-truth fields. As such, supervised methods are hardly applicable.
On the other hand, unsupervised methods overcome the limitation of obtaining
plausible ground-truth transformations [47] and are trained to maximize a similar-
ity metric between the input images. These metrics can also be accompanied by
regularization terms, so that the obtained deformation field meets certain criteria,
such as invertibility or smoothness.
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Introduction

3.1 Problem Statement

To address the limitations of the current response evaluation criteria (i.e RECIST),
highlighted in Section 1.4.2, novel methods are currently under research. While
there have been attempt to automatise RECIST via computer algorithms, either by
computer assisted measurements [50] or by tumor burden Artificial Intelligence (AI)
- based segmentation [51], these would always fall short of the standard radiologist’s
work up.
In the pursue to imitate classical radiological reporting, the concept of Prognostic
AI Monitoring (PAM) has been studied by Trebeschi, Loohuis, van der Loo et al.
in [34], [51], [37], [52]. It is an AI tool that aims to estimate treatment response
overtime and to predict survival, using longitudinal CT-imaging of patients. The
modelling of changes that occur during follow-up is performed via unsupervised
image registration. The output of this operation is a vector representation of
morphological changes over time, which is then used for prognostication through a
classifier, assuming that these changes hold an important prognostic value, often
ignored by the methods currently in use in clinical practice [34].

The already mentioned pilot studies yielded significant results, but it is yet not
clear whether the ability of the network to model the deformation field is directly
proportional to the ability of the network to predict survival. This thesis aims
to answer this question via an ablation study, where different components of the
network architecture are removed or replaced, to monitor their impact on survival
prediction. Figure 3.1 shows the basic components of PAM model, i.e the image
registration (affine and elastic networks) and the prognostication modules.Figure
3.1 shows the basic components of PAM model, i.e the image registration (affine
and elastic networks) and the prognostication modules.
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Figure 3.1: Representation of Prognostic AI-monitoring framework

3.2 Research question

The objective of this thesis is to investigate the relationship between the ability of
the network to model the deformation field and its ability to predict survival, or,
in other words, the impact that the vector representation of treatment response
has to the survival prediction of oncological patients.

To do that, this research is designed as an ablation study, to investigate the
contribution of the single components to the overall system. The experimental
design involves the definition of different registration models: they share the basic
architecture but differ from each other in the use of specific strategies, such as
attention mechanism (via Vision Transformer), and adversarial loss (via Generative
Adversarial Networks or GANs).
In particular, four experiments are executed, and each is performed via three sub-
experiments, that test different size (number of filters) and capacity (skip layers) of
the elastic network. Details of all the experiments are listed in Section 3.3, while
size and capacity parameters of individual sub-experiments are shown in Table
3.1. As visible from the table, the elastic network of the first two sub-experiments
follows a U-Net shape [53], implementing skip connections, whereas in the last one
it takes up the structure of an autoencoder.
By performing several sub-experiments and by implementing different strategies, it
is possible to highlight any registration performance trend, quantified via quality
metrics such as Dice Similarity Coefficient, Normalized Surface Distance or Struc-
tural Similarity Index. Then, prediction and analysis of survival are performed by
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Elastic network version Set of filters Skip layers
Big [16, 32, 64, 128, 256] yes
Small [4, 8, 16, 32, 64] yes
Big-no-skip [16, 32, 64, 128, 256] no

Table 3.1: Elastic network parameters in different sub-experiments

extracting the trained features of the different models and by leveraging predictive
and associative methods such as Random Survival Forest or Cox Time-Varying
Regression model. Finally, by evaluating prognostication quality via C-index metric,
it is possible to highlight any predictive performance trend and to link registration
and prognostication abilities for the different experiments.

3.3 Thesis structure
This thesis resumes the work accomplished at the Radiology department of Nether-
lands Cancer Institute (Amsterdam, NL), between October 2022 and June 2023,
under the supervision of Stefano Trebeschi and Laura Estacio Cerquin, within
the department of Radiology, chaired by Prof. Regina Beets-Tan. The work is
structured as follows:

• Chapter 1, General clinical background, introduces the reader to the clinical
context in which the proposed work fits. In particular, it focuses on the
anatomy and epidemiology of tumors, on the most widespread oncological
therapies and on treatment monitoring.

• Chapter 2, General technical background, introduces the preliminary technical
concepts necessary for a complete understanding of the following experiments,
focusing on Deep Learning and Image Registration.

• Chapter 3, Introduction, introduces the Prognostic AI Monitoring project,
which serves as the basis for all the following experiments.

• Chapter 4, Varying Model Size and Capacity, explains in detail the registration
and prognostication modules contained in the baseline model, and reports the
results of Experiment 1.

• Chapter 5, Implementing the Adversarial Learning via Generative Adversarial
Network, explains in detail the integration of Adversarial Learning in the
model, and reports the results of Experiment 2.
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• Chapter 6, Implementing the self-Attention Mechanism via Vision-Transformer,
explains in detail the integration of Vision-Transformer in the model, and
reports the results of Experiment 3 and Experiment 4.

• Chapter 7, Additional Experiment: Enforcing Similarity in the latent-space,
explains in detail the modifications applied to the baseline model to enforce
the latent-space similarity, and reports the results of Experiment 5.

• Chapter 8, Linking registration to prognostic performance, resumes the achieved
results, outlines the relationship between image registration and survival
prediction tasks, and highlights the limitation of this work and potential
further improvements.
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Chapter 4

Varying Model Size and
Capacity

4.1 Introduction
This chapter contains the description of the Experiment 1, where the response-to-
treatment modeling is performed using the so-called baseline model, inspired by
the one in [34].
Since the impact of image registration quality on survival prediction performance
has not yet been established, the experiment studies this correlation by defining
three different models. The size of the network, here parameterised by the number
of features, and its capacity, here defined as the presence of skip-layers in the U-Net
architecture (elastic sub-network, Figure 3.1), are the aspects under investigation.
We expect that higher capacity and size of the network will lead to higher registra-
tion quality, which will lead to higher ability of modeling deformations, which will
lead to higher survival prediction performance.
More specifically, the lower the number of features, the lower the number of ab-
stractions the network is able to extract from data; consequently, by decreasing
them, a greater difficulty in modeling the deformation field is expected. Similarly,
worse registration performance is expected if skip-connections are not included in
the architecture: their implementation help to recover the spatial information lost
during down-sampling and to stabilize training.
Once obtained the registration trend, we want to verify whether this is also reflected
in the predictive ability of the model.

The first section of the chapter is dedicated to the description of the dataset
used for the two different tasks; the second includes the explanation of the sub-
networks and, finally, the last one shows and comments on the results of the
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registration and survival prediction tasks. These results will serve as a reference
for subsequent experiments, which are described in detail in Chapters 5 and 6.

4.2 Materials

4.2.1 Image Registration dataset
The registration network is trained with a large dataset from The Cancer Imaging
Archive (TCIA). All available datasets that could contain CT scans were extracted
from the TCIA, resulting in a set with tens of thousands of scans. To clean it up
and maintain only qualitative scans, including the desired anatomical regions, a
filtering was applied. First only the scans with more than 50 slices and with a
difference between first and second axial coordinates in the range [0.1, 5.0] mm
were selected. After that, only scans that actually contained entirely thorax and
abdomen were retained. To automatically extract all slices between the lower-neck
and the lowest part of the pelvis, the method of Zhang et al. was used [54]. Finally,
the volumes were resampled to 2x2x2 mm voxels, cropped to a final dimension of
192x192x300, and clipped between -120 (fat) and 300 (cancellous bone) HU to help
reduce computational memory [52].

4.2.2 Prognostication dataset
All patients that started immunotherapy between 01/01/2013 and 31/12/2018 at
The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL;
Amsterdam, The Netherlands) were included. Immunotherapy was defined as any
treatment including anti-PD1, PDL1, or CTLA4. The dataset was first filtered, to
retain only the scans with more than 50 slices and with a slice thickness below 1
mm; then it was processed following the same protocol used for TCIA dataset.
For each patient included in the study, scans were paired (obtaining prior and
subsequent scans) if acquired over a period of time between 30 and 120 days.

4.3 Methods

4.3.1 Image Registration module
The PAM model uses image registration to assess all morphological changes that
occur between two follow-up images of the same patient during treatment, as shown
in Figure 3.1. Specifically, the images are CT volumes, therefore featured by the
height and width of each slice, and the number of slices. The registration module
consists of two sub-networks, i.e the affine and the elastic network.
The first is the affine, whose goal is to roughly align the patient between the two
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Figure 4.1: Architecture for the affine (on the left) and the elastic (on the right)
networks, adapted from [34]

scans, and correct for different positions they might have assumed during acquisition
[52], making use of translation, rotation, shearing, scaling, and reflection.
It includes six convolutional blocks followed by a fully connected layer, which
regresses the 12 parameters of the affine transform between fixed and moving image
[34]. These parameters represent a 3 × 3 transform matrix A and a 3-dimensional
displacement vector b. Then, the affine transform is applied to the moving image
via a spatial transformation layer (implementation taken from [55]), obtaining the
affinely warped image.

The elastic sub-network takes in input the fixed image and the output of the
previous network, and aims to identify morphological changes during the course
of the treatment (i.e., longitudinal tracking) [34]. It follows a U-Net architecture,
which can be divided into two parts: the encoding, or contracting, path and the
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decoding, or expanding, path. Skip-connections are added to concatenate the
feature maps resulting from the encoder to the corresponding decoder layer [56].
There are respectively five down- and four up-sampling layer, and a single deconvo-
lution block. Each encoding block consists of a convolutional layer, a GN layer and
a ReLU activation function. In the decoding path, each block consists of concate-
nation, deconvolution, GN and ReLU function. Finally, the single deconvolution
block will output the dense flow field, a volume feature map with three channels
(x, y, z displacements) of the same size as the input [48].

Both affine and elastic sub-networks are trained together in an unsupervised
manner, trying to minimize the dissimilarity between the moving image warped by
the spatial transformer and the fixed image. To quantify it, the Pearson correlation
coefficient, or simply called correlation coefficient, is used: it is based on the
covariance between the image volumes V1 and V2, which is defined as follows.

Cov[V1, V2] = 1
|Ω|

Ø
x∈Ω

V1(x) · V2(x) − 1
|Ω|2

Ø
x∈Ω

V1(x) ·
Ø
y∈Ω

V2(y) (4.1)

In Equation 4.1 Ω represents the grid on which V1 and V2 are defined. The
correlation coefficient is defined as:

CC[V1, V2] = Cov[V1, V2]ñ
Cov[V1, V1] · Cov[V2, V2]

(4.2)

It can assume all the values in the range [−1, 1], and if it is equal to one of the
ends it means that the two image volumes are linear functions of each other [48].
The correlation coefficient loss used in the training is defined as:

LCC(V1, V2) = 1 − CC[V1, V2] (4.3)

To enforce the estimated deformation fields to be spatially smooth, the Total
Variation (TV) loss has been employed as a penalty by penalizing large differences,
as in [57] and [48]. It is defined as:

LT V = 1
3|Ω|

Ø
x

3Ø
i=1

(f(x + ei) − f(x))2, (4.4)

where e1,2,3 represent the natural basis of R3.
So, finally, the final loss function for the whole registration module is:

L = Laffine
CC + α · Laffine

T V + Lelastic
CC + β · Lelastic

T V (4.5)

In Equation 4.5 α and β are the weights for the regularization penalties, and they
are set to 1

100 and 1
10 respectively. A higher value has been assigned to β to contain

too large elastic deformations, which can result in a final image not anatomically
plausible.
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Evaluation metric

To assess registration quality, Dice Similarity Coefficient (DSC), Normalized Surface
Distance (NSD) and Structural Similarity Index Measure (SSIM) were used.
The internal NKI dataset was segmented by using TotalSegmentator tool [58]: it
is an algorithm based on nnUNet [59] which outputs the segmentations of a wide
range of anatomical structures, providing also a statistics file containing the volume
(in mm3) and the mean intensity of each class. Once obtained the segmentations,
only the biggest (i.e liver) and the smallest (i.e 11th left rib) ones were studied, as
we assume on average intermediate performance for all intermediate volume labels.
For each scan pair, the oldest scan has been used as fixed image and the most recent
in time as moving, and registration was performed. The resulting deformation field
was then applied to the segmentation mask of the moving image to obtain the
warped segmentation. Finally, DSC and NSD were calculated between fixed and
warped segmentation masks of liver and the 11th left rib.
DSC is a overlap-based metric that quantifies the similarity between two volumetric
samples as defined below:

DSC = 2 · |X ∩ Y |
|X| + |Y |

, (4.6)

where |X| and |Y | represent the number of elements in each sample.
NSD, on the other hand, does not focus on the entire volume but it is a boundary-
distance-based method that quantifies which fraction of a segmentation boundary
is correctly predicted. It requires the definition of a threshold, which was set to 3
mm. A surface element is considered correctly predicted if the closest distance to
the ground-truth surface is smaller than or equal to the threshold.
This metric fits our application, since it focuses on the localisation of the overall
anatomical structure (i.e segmentation) and on the alignment of fixed and warped
surfaces [58]. The choice to use both DSC and NDS wants to give a complete
view of the registration performance, keeping in mind the inherent limitations of
the individual metrics. Volumetric overlap-based metrics, such as DSC, are highly
sensitive to the object size [60], since a False Negative (FN) voxel penalizes more
the final score for smaller volumes. Contrarily, distance-based metrics, such as
NSD, are highly sensitive to object shape [61] and to its surface-to-volume ratio.
In fact, the likelihood that the boundaries of a thin and elongated volume (such as
the rib) are contained within the set threshold is higher than for a object with a
lower surface-to-volume ratio (such as the liver).
Since the limitations of the two metrics are somewhat complementary, considering
the size and structure of the two anatomical structures considered, it was decided to
use them together. A not-segmentation-based metric, i.e SSIM, was implemented to
assess the similarity between entire volumes, independently from specific anatomical
structures. It performs a localized comparison rather than a global similarity,
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making it suitable for image registration, where the alignment needs to be accurate
at a fine-grained level. Moreover, it is a perceptually meaningful metric, taking into
account features as luminance, contrast and structural information that underpin
human perception.

4.3.2 Prognostication module
The trained registration network is used to extract the quantitative vectorial fea-
tures from the scan pair, describing the deformation field, and serving as input
for prognostication. In particular, the features of the deepest layer of the elastic
sub-network are extracted: according to the size of the network set in the sub-
experiments, they can include either 256 or 64 feature maps. Global average pooling
is applied in order to transform the features from a tensor shape to a vector. The
resulting vector represents the input of the core of the prognostication module, i.e
the Random Survival Forest (RSF): it is a survival regression model that operates
by splitting the dataset into different groups with the same mortality hazard, and
additionally it is able to deal with censored data [62].
As its precursor (i.e Random Forest) it consists in several decision trees, which are
trained on different parts of the training set, to increase the generalisation ability.
The RSF outputs a score representing the risk that the failure event occurring: the
final score is dependent on the output of each and every decision tree.

In statistics, survival analysis represents the collection of methods that aim to
estimate (and predict) the amount of time until one event occurs. Therefore, it is
necessary to define an event, when that event has taken place, in days, and the
observation-time. For the purposes of the thesis, the event is defined as the death
of the patient, the observation-time is equal to 1 year after the date when the last
CT was acquired, and the survival-time is defined as the days until the event occurs
[63]. When a patient does not experience the event during the observation interval,
it is called right-censored.

The RSF model, as mentioned in Section 4.2, was trained with an internal NKI
dataset. For each scan pair in the training set, in addition to the features extracted
from the registration task, the RSF takes in input also the time-interval between
prior and subsequent scan (in days) and the time-interval between prior scan and
the start of treatment date (in days).

To better understand the risk score predicted, let’s consider a single tree. Ac-
cording to the input xi, the sample ends up in one of the leaves of the tree, called
h. Given h containing N items, each item is characterized by a event-time T and
a event-status δ (= 1 if event occurred, else = 0). So, there exist N event-times
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possible in the h leaf. For a given event-time T , it is possible to define two parame-
ters: (I) dT is the number of deaths occurred until that time, (II) YT is the number
of patients at risk of death until that time [64]. The Cumulative Hazard Function
(CHF) can be calculated for h:

CHFh = Ĥh(t) =
Ø
T <t

dT

YT

(4.7)

The above quantity is also known as the Nelson-Aalen estimator; it can be formu-
lated also as the time-integral of the hazard function h(t), which describes how the
probability of the event to occur changes over time.
Since all the items in the same leaf share the same risk, the prediction of the
decision tree for the ith sample is equal to the CHF calculated for its leaf:

H(t|xi) = Ĥh(t) (4.8)
The overall RSF prediction is defined as the mean over all single decision tree
predictions, and it is called Ensemble CHF:

CHFensemble = He(t|xi) = 1
ntrees

·
ntreesØ
j=1

Hj(t|xi) (4.9)

The actual RSF output represents the expected number of deaths if all cases in the
dataset were similar to ith sample:

r(x) =
JØ

j=1
He(tj|xi), (4.10)

where (t1, ..., tj, ..., tJ) are the entire set of unique event-times for the learning
data [65]. The output score is analyzed performing predictive and associative
evaluations.

Predictive analysis

The predictive analysis is based on the Harrell’s concordance index (C-index). The
C-index is an evaluation metric that quantifies the discrimination power of the
model: in particular, it outputs the probability that, in a random pair of samples,
the sample that experiences first the event had a worst predicted risk score [62]. It
can range between 0 and 1, and a value equal to 0.5 represents a random prediction.
C-index has a similar interpretation to Area under the ROC Curve (AUC), but it
is able to deal with censored data. The prognostic value of the AI risk-score is also
assessed via logrank-test, after splitting the scores in two groups according to the
median, to evaluate whether the differences between the two classes are statistically
significant or not. For the most performative model the Kaplan-Meier curves were
also used, by maintaining the same splitting and obtaining the high risk and low
risk curves.
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Associative analysis

A Cox time-varying regression analysis is performed to evaluate the relationship
between AI risk-score and the patient survival, correcting for cofactors in the data.
These cofactors are informative of pathology and therapy, and include: cancer-type,
the intake of opiods, corticosteorids or immunosuppressants, brain radiotherapy,
bone radiotherapy, or other types of radiotherapy. As for the Kaplan-Meier curves,
the associative analysis is performed only for the model showing the higher C-index.

4.4 Results

4.4.1 Study Cohort
The preprocessing applied to TCIA dataset, used to train the image registration
module, resulted in a final dataset of 2185 CT volumes, later divided into a training
set (80% = 1747) and a test set (20% = 438).

patients scan age M/F % mortality survival months
pairs ratio SoT 2nd scan

Total 861 3036 58.8 1.07 46.8 25.1 15.4
subset
Melanoma 477 1601 57.1 1.48 41.1 28.6 17.4
Lung cancers 119 473 59.3 0.56 52.6 25.6 15.3
Breast cancers 73 304 57.1 0.00 68.7 16.9 10.3
Kidney cancers 81 239 62.4 2.92 36.0 23.7 13.7
non-Melanoma 40 131 64.8 1.43 38.2 38.1 26.0
Training set 431 1463 59.9 1.27 48.0 25.1 15.2
Test set 430 1573 57.7 0.91 45.6 25.1 15.5

Table 4.1: Patient characteristics for the training set and the independent test set

For the prognostication dataset, a cohort of 861 patients was collected: it contained
5044 CT volumes and 3068 pairs. Scans were paired if acquired over a period of
time between 30 and 120 days. Since multiple acquisitions of the same patient in the
same date were performed, for example by varying the CT acquisition parameters,
we define unique pairs (= 3036) as the number of scan pairs taking into account a
single acquisition per date. The cohort was later divided into a training set and a
independent test set based on the patient identifier. Patients with even ID numbers
were assigned to the training set, patients with odd ID numbers to the test set.
Table 4.1 shows patient average characteristics in both training and test set and
by splitting the cohort by cancer type. Only the most recurrent five cancer types
are reported: melanoma (C 4.3), lung (C 3.4), breast (C 5.0), kidney (C 6.4) and
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skin non-melanoma (C 4.4). It is important to notice that these are all the tumor
types that have been reported for these patients, but are not necessarily the tumor
types they were receiving treatment for. The column M/F ratio refers to the ratio
between male and female subjects. The two columns related to survival contain
the survival months after the start of treatment (SoT) and after the subsequent
scan date (2nd scan). The entire process that led to the final dataset is shown in
the consort diagram of Figure 4.2.

Included n = 1843 patients, n = 43612 CT scans

CT has more than 50 slices Excluded n = 13584 CT scans

Included n = 1843 patients, n = 30028 CT scans

CT slice-thickness lower or equal to 1 mm Excluded n = 17666 CT scans

Included n = 1486 patients, n = 12362 CT scans

CT includes both thorax and abdomen Excluded n = 7318 CT scans

Included n = 1373 patients, n = 5044 CT scans

patients with at least 2 CT scans Excluded n = 375 patients

Included n = 998 patients, n = 11507 scan-pairs

time between scans > 30 and < 120 days Excluded n = 8439 scan-pairs

Included n = 861 patients, n = 3068  scan-pairs

Figure 4.2: Consort diagram of patient, scan and scan-pair selection

4.4.2 Image Registration results
The registration accuracy was assessed by performing the registration of the NKI
dataset scan-pairs and by calculating SSIM, and DSC and NSD between the fixed
and warped segmentation masks for the biggest (i.e liver) and the smallest (i.e
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11th left rib) volumes. The metrics values averaged along the dataset are shown in
Table 4.2. The results of the three different models, which differ from each other
by size and capacity of the elastic sub-network, show the same trend: all network
configurations share higher DSC values for bigger structures and higher NSD values
for smaller structures. The highest performance in terms of DSCliver, NSDliver

and NSDrib are reached by the Big-no-skip model.

DSCliver DSCrib NSDliver NSDrib SSIM
Big 89.9 ± 5.9% 66.6 ± 21.7% 72.7 ± 13.9% 81.1 ± 24.5% 83.9 ± 4.4%
Small 88.6 ± 5.7% 52.6 ± 23.6% 69.4 ± 13.4% 73.4 ± 27.2% 75.3 ± 5.7%
Big-no-skip 92.5 ± 3.6% 60.8 ± 20.0% 83.4 ± 11.9% 87.2 ± 24.6% 73.8 ± 6.1%

Table 4.2: DSC, NSD and SSIM mean and standard deviation values for the three
sub-experiments of Experiment 1

Contrarily, the highest DSCrib is related to the Big model. A lower DSCrib and an
higher NSDrib can be explained by taking into account the size of the anatomical
structure. Since the total segmentation covers a limited volume, the misclassifica-
tion of a few voxels can significantly bring down the final score (= 60.8%), although
the remarkable alignment between fixed and registered surfaces (= 87.2%).
Since the overall performance cannot be explained exhaustively by DSC and NSD
values, a qualitative evaluation of the registration of the three models was also
made, supported by SSIM values.
In Figure 4.3 an example of qualitative behavior for a random TCIA-dataset scan
pair is given. For this example, the DSCliver has been calculated between fixed and
warped masks: the trend is the same as in Table 4.2, so it is a good example of the
average differences between the sub-experiments. Fixed and moving scans don’t
belong to the same patient, which is why they look very different from each other.
The choice to show such an example, far from the actual purpose of the registration
module (receiving in input scans of the same patient to model the differences), was
made to emphasize more easily the advantages and limitations of the three models.
At first glance, the Big-no-skip network creates less detailed images than the other
two models, with more nuanced contours. Despite the lack of detail, it is able to
reconstruct medium-large anatomical structures’ shapes effectively. We assume
that the good modeling ability is due to the size of the model, sufficiently high to
allow the decoding of the main shapes present in the image. At the same time, the
absence of skip-connections probably does not allow the model to retain all the
information necessary for a meticulous reconstruction, leading to a lower SSIM (=
73.8 %)
Contrarily, the Big network reconstructs more faithfully the structures present in
the fixed image, managing to maintain a high quality overall. In fact, it shows
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Fixed Moving Overlap of warped masks

Registered - Big-Net Registered - Big-No-Skip-Net Registered - Small-Net

Figure 4.3: Qualitative comparison of registration performance for the three
sub-experiments of Experiment 1. The figure shows an example of fixed - moving
scan pair, the registered scan outputted by each model, and the contours of the liver
segmentation masks registered by each model. The orange line is the ground-truth,
blue refers to Big, amaranth to Big-no-skip and yellow to Small.

the highest SSIM value throughout the experiment. The evaluation of the entire
registered volume allows some considerations that, analyzing only the liver mask,
would not be possible. In fact, the contour of the segmentation mask outputted
by the Big model (blue line) is very similar to that of the Big-no-skip (amaranth
line), and both do not include the upper right portion of the liver. Nevertheless,
the Big-no-skip does not reconstruct that area at all, while the Big manages to
model it (roughly) but does not recognize it as belonging to the liver. Finally,
the Small network manages to preserve the anatomical likelihood, thanks to the
implementation of skip-connections, but fails to model some deformations, probably
due to the lower number of filters. Despite the slightly nuanced edges, it overall
manages to align the segmentation of the organ (yellow line).

For completeness, after having shown in Figure 4.3 the liver masks produced
by the three registration models, in Figure 4.4 a comparative example between
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the 11th left rib masks is shown. For a better visualization of the anatomical
structure (very small compared to the total scanning volume) we chose a volumetric
rendering, instead of a single axial slice. For each model in the figure a fixed-moving
pair has been selected from the NKI dataset having a DSCrib value equal to the
average along the entire test dataset. This way it is possible to visualize the average
behavior of the three networks. Following the trend of DSC and NSD shown
in Table 4.2, Big and Big-no-skip models have similar performance for the rib,
managing to reconstruct the volume, while the Small one underperforms with a
greater number of false positive and false negative voxels.

(a) Big (b) Big-no-skip

(c) Small

Figure 4.4: Rendering of 11th left rib volumetric segmentation masks for the three
sub-experiments of Experiment 1. In each subplot the blue volume represents the
warped mask, which is superimposed to the light orange fixed mask. The symbol
on the bottom right of the figures depicts the point of view in space: the subject is
analyzed on the transverse plane, from top to bottom. The caption of each subplot
refers to the network used for the registration. Image created with 3D-Slicer.
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4.4.3 Prognostication results
A RSF was trained to predict survival from the imaging features extracted from the
registration module, which in turn inputs two scans of the same patient acquired
in different time-points, called prior and subsequent scans. The regression model
outputs a mortality hazard related to the 1-year survival from the date of subsequent
scan. To assess the prediction quality the C-index was used and the dataset was
filtered and processed. Only scan-pairs where prior scan was performed before SoT
and the event was experienced at least after 2 months after SoT were retained.
Then, imaging features of multiple pairs acquired on the same date have been
averaged in order to obtain only unique pairs. As a result, the survival prediction
was conducted by analyzing the first two scans acquired during the monitoring
stage, i.e baseline (BL) and first follow-up (FU1). The final test set counted
138 scan pairs. This choice was made by assuming that the time interval right
after the start of immunotherapy is the clinically most relevant and in which the
treatment effects are most evident. Results of the survival AI-score, in terms of
C-index and statistical significance assessed via log-rank test, are shown in Table
4.3. Confidence intervals were estimated via bootstrapping using repeated sampling
with replacement (100 times).

C-index p-value
Big 0.65 (0.57 - 0.73) 3.4e−2
Small 0.69 (0.63 - 0.76) 3.2e−3
Big-no-skip 0.63 (0.54 - 0.70) 1.6e−2

Table 4.3: C-index, with relative confidence intervals, and p-values for the three
sub-experiments of Experiment 1

Table 4.3 shows an inverted trend compared to that shown in Table 4.2 for DSC
and NSD metrics. In fact, the higher the overlap between fixed and warped
segmentation masks of liver and rib, the lower the survival prediction accuracy.
However, if SSIM is considered to assess registration quality, no clear link is shown
between registration performance and C-index values. All models are statistically
significant (p < 0.05), emphasizing the prognostic value of the AI-score in correctly
dividing patients into two groups with different risk.

4.5 Discussion
In this chapter, the baseline architecture was utilized to model the radio-anatomical
changes occurring during the follow-up of oncological patients and to predict their 1-
year survival. To introduce variations in image registration quality and evaluate the
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corresponding impact on prediction performance, an ablation study was conducted,
manipulating the size and capacity of the network. The behavior of the three
defined models partially aligned with expectations. The Big model, equipped with
highest number of computational units and connections (i.e, convolutional filter and
skip layers), demonstrated superior registration accuracy based on SSIM evaluation.
This finding emphasized the advantages of deeper models in extracting abstractions
from data, resulting in more accurate and detailed warped images. Additionally,
the Big-no-skip model exhibited the lowest SSIM value, indicating the beneficial
role of the information exchange between the encoding and decoding paths within
the elastic network for the task. However, the DSC and NSD results did not entirely
correspond with the SSIM trend. The model without skip-connections displayed
higher overlap of anatomical structures between fixed and warped images. The
Small model yielded lower performance compared to the Big model. The DSC and
NSD results suggested that skip-connections were necessary to obtain qualitatively
and detailed reconstructed images, but they could be omitted when the primary
objective was correct structure alignment. Nonetheless, since the Small network
exhibited lower values in DSC, NSD, and SSIM evaluations, it can be concluded
that reducing the number of convolutional filters resulted in coarser registration.
Survival prediction was conducted by extracting imaging features from the bot-
tleneck of the elastic network and utilizing them to train a RSF regression model,
which estimated the 1-year survival risk factor. Testing the predictor solely on the
BL-FU1 scan-pairs (138 pairs) from the internal NKI dataset demonstrated the
prognostic value of the proposed AI framework. All models achieved C-index values
between 0.63 and 0.69. In the Introduction section, the hypothesis was posited that
more accurate registration and greater overlap between anatomical structures of
fixed and warped images (representing prior and subsequent scans) would enhance
the robustness of the prognostication task. This assumption was rooted in the
goal of recreating a quantitative alternative to radiological reporting, wherein all
deformations are identified and accounted for during the assessment of treatment
response. Accordingly, if all deformations were accurately modeled through precise
registration, it became feasible to evaluate the prognostic significance of these
changes, thereby improving survival prediction performance. However, the results
did not support our initial hypothesis and instead revealed an unexpected trend.
The Small network, which was described by a 64-features vector (instead of 256 as
for the other models) exhibited the highest performance, followed by the Big and
the Big-no-skip models, contradicting the trends observed in the DSC and NSD
metrics. No apparent correlation was found between SSIM and C-index values.
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Chapter 5

Implementing the
Adversarial Learning via
Generative Adversarial
Network

5.1 Introduction

This chapter contains the description of the Experiment 2, where the baseline model
is modified by the addition of a discriminator, in order to leverage the adversarial
learning. This mechanism, which is explained in detail in Section 5.2, is the basis
of Generative Adversarial Networks (GANs) and promotes the obtaining of realistic
images.
In Experiment 1 the training of the registration module was carried on employing
a penalty (i.e Total Variation loss) on large unrealistic deformations. Despite its
usefulness, it is possible that its implementation prevents the network to model
large, potentially clinically significant deformations [52]. As a result, this constraint
may limit the field of effectiveness of the registration, and consequently limit the
predictive ability of the model. Because of that, we expect that by lowering the
contribution of the smoothness penalty, and replacing it by implementing the
adversarial loss, it is possible to maximize the capacity of the network to model
morphological changes while assuring realistic deformations, therefore increasing
its performance in the prediction of survival.
As well as the first experiment, this one is also designed as an ablative study,
performing three sub-experiments by modifying size and capacity of the elastic
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network. The objective of Experiment 2 is therefore to highlight a possible regis-
tration trend, to verify that this is reflected in the prediction, and to confirm the
effectiveness of the implementation of the adversarial loss by comparing the results
of the models with and without discriminator.

5.2 Technical background
GANs, formulated by Goodfellow et al. in [66], belong to the family of generative
models and are composed of two neural networks that continuously try to beat
each other in a so called minimax game.
The two components of the model are known as the generator and the discriminator.
The first, starting from random noise, has the task of generating synthetic data
that can be as similar as possible to the real data present in the training set to
fool the discriminator [67]. At the same time, its opponent has to distinguish the
real data from the ones generated by the generator.
During training, the generator is constantly trying to outsmart the discriminator by
synthesizing better and better fakes, while the discriminator is working to correctly
classify real and fake data. The equilibrium of this game is achieved when the
generator is able to generate "perfect" samples, bringing the discriminator to a
success rate of 50% [68].

More formally, let x be data representing an image, and D(x) be the discrim-
inator network which outputs the probability that x came from training data
rather than the generator. By defining z as the latent space vector from which the
generator creates fake samples, G(z) represents the generator function which maps
z into data-space [66]. Hence, D is trained to maximize the probability it classifies
correctly (logD(x)); G is trained to minimize log(1 − D(G(z))). The overall loss
function is defined as follows:

min
G

max
D

(D, G) = Ex[logD(x)] + Ez[log(1 − D(G(z)))] (5.1)

In Equation 5.1 Ex and Ez denote the mean likelihood over all original data and
synthetic data respectively.

5.2.1 GAN in Image Registration
GANs are also a common component of Deep Learning Image Registration ap-
proaches [47]. These models, widely used in the medical domain as tools for data
augmentation and segmentation [47], are effective in improving the overall image
alignment, as showed by Fu et al. in [69].
The generator is a registration network which predicts the deformation field, and
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consequently the warped moving image. The discriminator receives in input the
fixed and the warped moving image, and judges whether images are well aligned
and feeds misalignment information to the generator during training [70].
Hence, the addition of a discriminator offers a learnable mechanism to evaluate
the similarity between two images, and simplifies the task of choosing a suitable
similarity metric [47].

5.3 Methods
The datasets used in this experiment are the same of those of Experiment 1,
described in Section 4.2.

Affine Elastic

Discriminator
Real/Fake

Generator

Figure 5.1: Representation of Adversarial PAM

To effectively implement the adversarial learning to the model, the affine and elastic
networks are ideally grouped in a generator, and the discriminator is added. It is
made up of seven convolutional blocks, followed by an adaptive average pooling
layer, a linear layer and a final sigmoid activation function. Every convolutional
block applies a convolution, a GN and a ReLu activation function to the incoming
feature map. Block by block the feature maps double their depth, from a value of
8 up to 512. The discriminator needs two inputs, a real and a generated image.
For the sake of brevity we will use the term real to indicate the affinely aligned
image, and the term fake to indicate the warped moving image.
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The affinely aligned image has been used as a reference for the discriminator,
instead of the fixed one, because it is assumed that any unrealistic deformations
to be corrected come mainly from the elastic network [52], and in order to avoid
trivial solutions. The affine network eventually produces some artifacts at the edges
of the image (zero-padding to maintain the same shape after the transformation),
that are in turn passed on to the final warped image. Choosing the fixed image as
a reference, exempt from these artifacts, would have led the discriminator to rely
exclusively on this distinction instead of focusing on the real morphological details.
The resulting network is called Adversarial PAM.
Consequently, the loss that drives the training of the generator now includes an
extra component, i.e adversarial loss.

Lgenerator = Laffine
CC + α · Laffine

T V + Lelastic
CC + β · Lelastic

T V + γ · MSE1
fake (5.2)

The first 4 terms are the same of those in Equation 4.5, and the last one measures
the ability of the generator to fool the discriminator. The subscript denotes what
the prediction should be compared to, and the superscript represents a real image
(1) or a fake image (0).
In other words, the last term quantifies the mean-squared error between a real
image and the output of the discriminator when it has in input a fake image.
γ is set to 1

10 , and β is ten times higher than in Experiment 1, so equal to 1
100 . The

contribution of the regularization term has been lowered for the elastic network
(β) because of the presence of the adversarial learning term, which has the task of
penalizing unrealistic deformations. The loss function of the discriminator is:

Ldiscriminator = 1
2 · (BCE1

real + BCE0
fake) (5.3)

It quantifies discriminator’s ability to classify real from generated samples. BCE
represents the binary cross-entropy.

5.4 Results
The data filtering and preprocessing applied are the same of those of Experiment 1,
so the resulting cohorts used for image registration (TCIA dataset) and prognosti-
cation (NKI dataset) are the ones already described in Section 4.4.1 and in Table
4.1.

5.4.1 Image Registration results
The registration accuracy was assessed by performing the registration of the NKI
dataset scan-pairs and by calculating SSIM, and DSC and NSD between the fixed
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and warped segmentation masks for the biggest (i.e liver) and the smallest (i.e
11th left rib) volumes. The metrics values averaged along the dataset are shown in
Table 5.1. The results of the three different models, which differ from each other

DSCliver DSCrib NSDliver NSDrib SSIM
Big 84.5 ± 7.3% 50.0 ± 26.2% 59.5 ± 12.8% 64.0 ± 30.2% 82.9 ± 3.7%
Small 84.8 ± 6.9% 29.6 ± 23.8% 60.1 ± 12.8% 51.6 ± 32.3% 74.0 ± 5.5%
Big-no-skip 90.0 ± 4.2% 43.7 ± 24.4% 72.5 ± 12.9% 73.1 ± 32.6% 68.0 ± 6.6%

Table 5.1: DSC, NSD and SSIM mean and standard deviation values for the three
sub-experiments of Experiment 2

by size and capacity of the elastic sub-network contained in the generator, show
the same trend found in Experiment 1. In fact, the most performative model in
terms of DSC and NSD is the Big-no-skip, followed by the Big and the Small. In
addition, the Big performs the most accurate registration overall, showing highest
SSIM, followed by Small and Big-no-skip models.
From the comparison between the Experiment 1 and Experiment 2, the metrics
related to the liver differ just by a few percentage points. This reveals that the
ability to register large volumes is maintained even by implementing the adversarial
learning. In contrast, the three models of Experiment 2 show values of DSC and
NSD less than about 15% for the 11th left rib. It is assumed that the reduction
recorded for smaller structures is attributable to how the adversarial learning has
been implemented. As visible in the generator’s loss function formula (Equation
5.2), the last term includes the MSE between a real image and the discriminator’s
output when it receives a fake image input. The MSE is undoubtedly an intuitive
metric, but it focuses on the overall features of the samples, not local. Therefore, we
hypothesize that, since the majority of the image is occupied by larger structures,
such a loss focuses on increasing the similarities of such structures, paying less atten-
tion to the smaller details. It is possible that, by implementing loss functions that
aim at obtaining a more visually qualitative image, such as the Fréchet Inception
Distance (FID), this limitation can be minimized. In addition, the decision to use
the affinely warped image as the reference image for the discriminator, to prevent
it from focusing on potential artifacts introduced by the affine transformation,
may have influenced the performance. While this approach helps mitigate the
discriminator’s sensitivity to artifacts, it introduces an inherent error, since the
affinely warped image will always contains some degree of registration error and
artificiality (not present in the real fixed image). As in the previous chapter, for
a complete understanding of the registration performance of the three models, a
qualitative evaluation of the task is carried out. The same randomly extracted scan
pair from TCIA dataset is shown in Figure 5.2. For this example, the DSCliver
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Fixed Moving Overlap of warped masks

Registered - Big-Net Registered - Big-No-Skip-Net Registered - Small-Net

Figure 5.2: Qualitative comparison of registration performance for the three
sub-experiments of Experiment 2. The figure shows an example of fixed - moving
scan pair, the registered scan outputted by each model, and the contours of the liver
segmentation masks registered by each model. The orange line is the ground-truth,
blue refers to Big, amaranth to Big-no-skip and yellow to Small.

has been calculated between fixed and warped masks: the trend is similar to the
one shown in Table 5.1, so it is a good example of the average differences between
the sub-experiments.
Following the behavior shown in the absence of adversarial learning, the Big-no-skip
model is visually less detailed, focusing on registering the main shapes present
in the scan. For this reason, it is able to identify correctly the largest structures
and to produce low noise segmentation masks. The Big model, on the other hand,
thanks to the skip connections, is able to recreate the anatomical detail and to
generate a more realistic overall image. However, the search for such detail leads
the network to fragment the structures too much, as visible from the too noisy
segmentation mask of the liver (in blue). The performance of the Small model does
not differ too much from that of the Big one, but the registered image appears
unrealistic because of many contours not precise enough. A common feature of
the three Adversarial PAM models, deducible from the qualitative analysis, is the
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limited possibility of deformation in respect to Experiment 1, especially for smaller
structures such as the stomach (adjacent to the liver) and the spleen (adjacent
to the stomach). The addition of the loss term probably contained too many
variations in the deformation field to preserve the overall realism.

A visual evaluation between the 11th left rib warped masks outputted by the
models, shown in Figure 5.3, concludes the qualitative assessment of registration.

(a) Big (b) Big-no-skip

(c) Small

Figure 5.3: Rendering of 11th left rib volumetric segmentation masks for the three
sub-experiments of Experiment 2. In each subplot the blue volume represents the
warped mask, which is superimposed to the light orange fixed mask. The symbol
on the bottom right of the figures depicts the point of view in space: the subject is
analyzed on the transverse plane, from top to bottom. The caption of each subplot
refers to the network used for the registration. Image created with 3D-Slicer.
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For a better visualization of the anatomical structure (very small compared to
the total scanning volume) we chose a volumetric rendering, instead of a single
axial slice. For each model in the figure a fixed-moving pair has been selected
from the NKI dataset having a DSCrib value equal to the average along the entire
test dataset. This way it is possible to visualize the average behavior of the three
networks. The performance worsening for smaller structures is clearly visible in the
volumetric mask created by Small model, where only a third of the entire rib is
considered and the overall shape is not maintained. The Big one is able to preserve
the bone structure, but with lower performance in respect to Experiment 1. Finally,
as reflected by DSC and NSD values, the Big-no-skip has the ability to effectively
register the rib within a confidence interval of 3 mm.

5.4.2 Prognostication results
A RSF was trained to predict survival from the imaging features extracted from the
registration module, which in turn inputs prior and subsequent scans of the same
patient. The regression model outputs a mortality hazard related to the 1-years
survival from the date of subsequent scan. To assess the prediction quality, the
C-index was used and statistical significance was measured via log-rank test. As in
the previous experiment, the performance were not assessed taking into account all
the NKI independent test set, but only the baseline (BL) and first follow-up (FU1)
unique scans. Unique pairs were obtained by averaging imaging features of all the
multiple pairs acquired on the same date. Results of the survival AI-score, in terms
of C-index and statistical significance, are shown in Table 5.2. Confidence intervals
were estimated via bootstrapping using repeated sampling with replacement (100
times).

C-index p-value
Big 0.56 (0.46 - 0.63) 5.8e−1
Small 0.62 (0.55 - 0.69) 2.6e−3
Big-no-skip 0.61 (0.53 - 0.68) 1.9e−1

Table 5.2: C-index, with relative confidence intervals, and p-values for the three
sub-experiments of Experiment 2

Table 5.2 shows a clear drop in predictive performance compared to the baseline.
Experiment 1 models showed C-index above 0.63 and up to 0.69, while the imaging
features extracted from the adversarial architecture lead to values that range from
0.56 to 0.62. Moreover, only the RSF trained with the Small model features
is statistically significant (p < 0.05). The trend found in the previous chapter
is no longer respected here, as there is an inversely proportional relationship
between registration quality and predictive accuracy. However, as visible from the
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comparison between the Table 5.2 and 5.1, the model that overall shows the worst
DSC and NSD values is the one better predicting survival.

5.5 Discussion

In this chapter, the integration of adversarial learning into the framework was
accomplished via Generative Adversarial Networks, by introducing a discriminator
into the image registration module previously presented in Chapter 4.
The decision to explore this architecture aimed to provide the model with a self-
learnable mechanism for evaluating the similarity between two scans and penalizing
unrealistic deformations [47]. This approach aimed to limit the use of strict pre-
determined penalties that could hinder the model’s ability to capture large yet
clinically significant changes. Consequently, the weight of the smoothness penalty
used in the baseline model was reduced to produce more realistic and anatomically
plausible warped images.
Similar to the previous chapter, three sub-experiments were conducted, wherein
the size and capacity of the elastic network within the generator were system-
atically ablated. The behavior of the three models exhibited partial alignment
with expectations. Qualitative examination revealed that the integration of the
adversarial loss effectively increased realism and improved anatomical details in
terms of contrast, brightness, and other perceptual features. However, all sub-
experiments demonstrated limited accuracy in registering smaller structures, such
as the stomach and spleen. Notably, DSC and NSD related to the rib exhibited a
significant decline. As explained in Section 5.4, it could be attributable to how the
adversarial learning has been implemented, i.e MSE between real and fake images.
Despite the intuitiveness of the metric, MSE does not focus on local and smaller
features. It is possible that, by implementing loss functions that aim at obtaining
a more visually qualitative image, such as the Fréchet Inception Distance (FID),
also fine-grained details could be accurately modeled.
In addition, the decision to use the affinely warped image as the reference image
for the discriminator, to prevent it from focusing on potential artifacts introduced
by the affine transformation, may have influenced the performance. While this
approach helps mitigate the discriminator’s sensitivity to registration artifacts, it
introduces an inherent error, since the affinely warped image will always contains
some degree of registration error and artificiality (not present in the real fixed
image). Further investigation could address this problem by applying to the fixed
image the same affine transformation encoded by the network and by selecting the
resulting image as reference. It would be artificially modified to have the same
artifacts that any image outputted from the affine network would have, so it could
be possible to both prevent the model to focus on these artifacts and to drive the
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adversarial learning to a realistic sample.
The results indicated that while the implementation of adversarial learning led to
enhanced realism for larger regions, the modeling of deformations in smaller anatom-
ical areas remained challenging. Consequently, the calculated metrics demonstrated
a slight decrease in SSIM, and in DSC and NSD values for the liver. Comparing the
outcomes to Experiment 1, the general image registration trend persisted even with
the addition of adversarial learning: models equipped with skip layers achieved
higher SSIM values, whereas the Big-no-skip model performed better in aligning
larger regions, as reflected by higher DSC and NSD values.
Survival prediction was conducted by extracting imaging features from the bot-
tleneck of the elastic network and utilizing them to train a RSF regression model,
which estimated the 1-year survival risk factor. The predictor was tested only on
the BL-FU1 scan-pairs (138 pairs) from the internal NKI dataset. The models
achieved C-index values of 0.56 (Big), 0.61 (Big-no-skip) and 0.62 (Small); only
the latter showed statistical significance. No correlation between image registration
performance and C-index values was found. From the comparison with the baseline
model, it can be concluded that the implementation of adverse learning has led to
imaging features with lower prognostic value, and that led to distinguish the risk
class of patients with less accuracy.
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Chapter 6

Implementing the
self-Attention Mechanism
via Vision Transformer

6.1 Introduction

This chapter contains the description of Experiment 3 and Experiment 4, where the
registration module includes a Vision Transformer in the latent space of the elastic
sub-network, in order to leverage the attention mechanism, which is explained in
detail in Section 6.2. The baseline model is a CNN-based network, and consequently
suffers of the inherent limitation of convolution operation, i.e the local receptive
field. Despite its ability to actually perform the registration task, it is possible
that the size of the local receptive field limits the performance of the model to
establish the correspondence between the same anatomical structures of two images,
especially when the same anatomical structure is distant [71].
Because of that, we assume that the integration of a attention-based model, which
enables to model long-range spatial relations in data, can be beneficial to obtain
more accurate deformation fields. In both Experiment 3 and Experiment 4 this
mechanism is implemented, and they differ from each other in the use of adversarial
learning. Similarly to the experiments presented in the previous chapters, they are
also designed as an ablative study, performing three sub-experiments by modifying
size and capacity of the elastic network.

The purpose of Experiment 3 is to assess how the ability to consider features
from spatially distant regions is reflected in registration performance, and whether
this improvement actually leads to a more accurate survival prediction. Finally,
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Experiment 4 is proposed to study the behavior of the architecture including
CNNs, attention and adversarial mechanisms. For the already mentioned reasons,
it is expected that the individual changes made to the network will improve the
modelling ability of the deformation field. As a result, it is safe to assume that
even their combination will benefit the ultimate goal.

6.2 Technical background
Transformers are self-attention-based architectures and in the recent years have
become the models of choice in the field of Natural Language Processing (NLP), in
particular in machine translation tasks [72].
These networks, proposed by Vaswani et al. in [73], mimic cognitive attention,
whose purpose is to focus on the important parts of an input and to disregard infor-
mation that is not relevant [74]. It is basically performed via dot product between
different input subgroups (i.e, tokens), so specifically weighting the significance of
each part of the input data: this is the key-operation of the self-attention mechanism.

Firstly input data are tokenized, so divided into multiple inputs [x1, x2...xi...xn].
Each input is multiplied with three matrices, WQ, WK and WV , to derive three
new vectors, called queries, keys and values, which will be used to calculate the
attention weights. These matrices represent the controllable parameters during the
training step. The attention function can be described as an operation that aims
to weigh the importance of a token within the general set, and works sequentially
on each token. Considering you want to determine the weight of the i-th input:
the i-th query is multiplied by the j-th key vectors, the result wij is passed through
a softmax, and then it is used in a weighted sum with the j-th values. In practice
this operation is applied to all the queries simultaneously, packed together into the
Q matrix. The keys and values are also packed together into matrices K and V .
The mechanism can be summarized as:

Attention(Q, K, V ) = softmax(Q · KT

√
dk

) · V (6.1)

In Equation 6.1 dk represents the dimensionality of queries and keys, and the
scaling factor

√
dk is added to handle the cases of large dk, which can lead to large

magnitudes of dot products, pushing the softmax function into regions of extremely
small gradients [73].
A variant of the above mentioned operation is the Multi-Head Self-Attention: the
self-attention process is performed simultaneously on different heads (groups of
tokens), and finally the results of each head are concatenated and projected to the
initial dimension. The use of multiple heads allows the attention layer to attend to
informations from different representation subspaces [73] and makes the process
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Figure 6.1: Illustration of attention mechanism. Image adapted from [73]

parallelizable, so faster.

Transformers are self-attention-based networks, whose blocks, repeated N times,
essentially include multi-head self-attention operations, normalization layers, and
feed-forward networks, as MultiLayer Perceptrons. These architectures can com-
prehend, as in CNNs, an encoder and a decoder part.

6.2.1 Transformers in Computer Vision
Inspired by the huge success of Transformers in NLP, in the recent years there
has been an increasing interest in developing self-attention-based architectures in
Computer Vision [75], as the so called Vision Transformer, published by [72]. As
mentioned above, Transformers receive 1D sequence of token embeddings as input
data. Vision Transformers, to meet this requirement, have to manipulate the input
2D images. The image are first divided in patches, and then each patch is flattened
through a linear projection to a latent D-dimensional space. In order to retain
positional information contained in the initial image, position embeddings are added
to the patch embeddings [72]. Despite the preliminary data processing, Transformer
architecture can be applied in the same way both in Computer Vision and in NLP.
These models have proved their usefulness in different fields, such as that of Image
Registration [75] [71] [76], showing better performances when integrating self-
attention and CNN architectures: by implementing the self-attention mechanism it
is possible to better model long-range spatial relations [72].
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6.3 Methods
The datasets used in these experiments are the same of those of Experiment 1,
described in Section 4.2. In this section we will discuss the methods of Experiments
3 and 4 : as mentioned in Section 6.1 they differ from each other in the use of
adversarial learning. In particular, in Experiment 3 just a Vision Transformer is
added in respect to the baseline model presented in Chapter 4, in Experiment 4
both self-attention and a discriminator are used.

The choice of integrating a self-attention-based network with the baseline model
creating a hybrid model, instead of replacing the entire convolutional structure
with self-attention layers, is merely practical. In fact, the application of a naive
Transformer to full-resolution volumetric images increase significantly memory and
computational complexity [71]. So, it is added at the bottleneck of the elastic
network, receiving in input the high-level features extracted from the deepest
encoding layer. These feature maps have dimensions fx12x12x18: f is the number
of features (dependent on the depth of the model of the sub-experiment performed),
12x12x18 are the height, width and length of a single map as result of previous
convolutions and max-pooling operations.

fixedmoving

affinely aligned

ELASTIC NETWORK
 ENCODING PATH

morphological changes

AFFINE NETWORK ELASTIC NETWORK
DECODING PATH

FEATURE MAPS

PATCH & POSITION EMBEDDING

NORMALIZATION

MULTI-HEAD SELF-ATTENTION

NORMALIZATION

FEED-FORWARD NETWORK

+

+

VISION TRANSFORMER

RESHAPE

12 x

Figure 6.2: Representation of ViT-PAM

As visible in Figure 6.2, this block starts with patch and position embeddings.
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Each feature map is split into N = 12 cubic patches of dimension P 3 = 6x6x6;
then the patches are linearly projected into a D-dimensional space. D, also called
embedding size, is dependent on the sub-experiment performed: for Big and Big-
no-skip networks D was set to 4096, for the Small to 1024.
The choice of these values respects the proportionality between the depths of the
models used in the ablative study: as well as the deeper features extracted in the
big model are 4 times greater than those in the small one, here the embedding size
chosen for the big model is 4 times greater than the one chosen for the small one.
After the linear projection, realized via a convolutional layer, position embeddings
are added to retain positional information [75]. The resulting embeddings pass
through 12 Transformer encoder blocks: each block is composed of two normal-
ization layers, a Multi-Head Self-Attention layer, a Multi-Layer Perceptron and
residual connections. The number of heads is set to 8.
At the end, the output of the Vision Transformer has dimensions NxD, so a re-
shape is performed to obtain the same shape of the input feature maps to start the
decoding and enable the skip-connections, if applied. The reshape is realized via de-
convolution, with a scale factor of (2,2,3). The resulting network is called ViT-PAM.

In Experiment 3 this model is used for registration, and the loss function used
during its training is the one showed in Equation 4.5. Otherwise, in Experiment 4
the adversarial learning is used; so, as in Experiment 2, a discriminator is added
and the combination of affine and elastic (here containing the ViT) is seen as a
generator. The architecture of the discriminator and the loss function used are the
same ones detailed in Chapter 5.

6.4 Results
The data filtering and preprocessing applied are the same of those of Experiment 1,
so the resulting cohorts used for image registration (TCIA dataset) and prognosti-
cation (NKI dataset) are the ones already described in Section 4.4.1 and in Table
4.1.

6.4.1 Image Registration results - Experiment 3
The registration accuracy was assessed by performing the registration of the NKI
dataset scan-pairs and by calculating SSIM, and DSC and NSD between the fixed
and warped segmentation masks for the biggest and the smallest volumes. The
metrics values averaged along the dataset are shown in Table 6.1.
The results of the three different models, which share the implementation of a
Vision Transformer and differ from each other by size and capacity of the elastic
sub-network, show a different trend than the architectures described in the previous
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experiments. In both baseline and Adversarial PAM the most performative sub-
experiment, in terms of DSC and NSD, was the one without the skip-connections.
Here the Big-no-skip model suffers a noticeable drop in performance, not being able
to effectively register smaller and/or larger anatomical structures. For the remain-
ing models the metrics scores are comparable with those obtained in Experiment 1,
with a slightly improvement in terms of SSIM. With the ViT-PAM architecture

DSCliver DSCrib NSDliver NSDrib SSIM
Big 89.6 ± 6.1% 65.3 ± 23.8% 72.5 ± 14.1% 78.2 ± 27.2% 84.4 ± 4.1%
Small 88.9 ± 5.9% 47.2 ± 26.1% 69.5 ± 14.1% 69.5 ± 30.3% 76.7 ± 5.4%
Big-no-skip 74.2 ± 6.0% 13.2 ± 8.8% 27.6 ± 6.7% 44.0 ± 16.5% 59.0 ± 6.8%

Table 6.1: DSC, NSD and SSIM mean and standard deviation values for the three
sub-experiments of Experiment 3

in mind, the trend reversal for the Big-no-skip model is not surprising. At the
end of the encoding path of the elastic network, the transformer splits the input
feature-maps into patches, uses them to weigh the correlations between different
points of the image, and then outputs a NxD tensor. To start the decoding path
with a tensor with the same dimension of the last feature-maps of the encoding
path, a manual reshape was applied. It’s possible that all the latent-space manip-
ulations have somehow lost semantic information to the model, to preserve the
spatial-relational information discovered by convolutional and self-attention layers.
As a result, those models with skip connections had the chance to retrieve lost
information to reconstruct semantically plausible images, while the Big-no-skip did
not.

As in the previous chapters, it is advisable to verify that qualitatively the regis-
trations follow the overall trend of the metrics calculated for the liver and the rib.
Hence, in Figure 6.3 the registration of two randomly extracted scans from TCIA
dataset is shown. For this example, the DSCliver has been calculated between fixed
and warped masks: the trend is similar to the one shown in Table 6.1, so it is a
good example of the average differences between the sub-experiments.
The performance drop for the Big-no-skip model is confirmed also visually: it
cannot distinguish different structures and fails in the task. The other two networks
output warped images with similar features and drawbacks of the baseline ones:
they provide an higher anatomical detail, leading to more realistic images, which
at the same time can limit the uniformity of organs. This behavior is visible in
the upper right part of the liver for both of them, and in the spleen for the Small
network.

55



Implementing the self-Attention Mechanism via Vision Transformer

Fixed Moving Overlap of warped masks

Registered - Big-Net Registered - Big-No-Skip-Net Registered - Small-Net

Figure 6.3: Qualitative comparison of registration performance for the three
sub-experiments of Experiment 3. The figure shows an example of fixed - moving
scan pair, the registered scan outputted by each model, and the contours of the liver
segmentation masks registered by each model. The orange line is the ground-truth,
blue refers to Big, amaranth to Big-no-skip and yellow to Small.

For completeness, in Figure 6.4 a qualitative comparative example between the
rendering of 11th left rib volumetric masks is shown. For each model in the figure a
fixed-moving pair has been selected from the NKI dataset having a DSCrib value
equal to the average along the entire test dataset. This way it is possible to visualize
the average behavior of the three networks.
Following the DSC and NSD metrics trends, the rib is better registered by the
models implementing the skip connections: despite some false positive zones, where
the predicted mask extends outside the ground-truth area, the warped segmenta-
tions are localized correctly. The Big-no-skip network shows a mean DSCrib of
13.2% and a mean NSDrib of 44.0%; the example displayed confirms its difficulty
in registering the small structures, despite the appreciable similarity of shape and
the spatial proximity of the two masks.
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(a) Big (b) Big-no-skip

(c) Small

Figure 6.4: Rendering of 11th left rib volumetric segmentation masks for the three
sub-experiments of Experiment 3. In each subplot the blue volume represents the
warped mask, which is superimposed to the light orange fixed mask. The symbol
on the bottom right of the figures depicts the point of view in space: the subject is
analyzed on the transverse plane, from top to bottom. The caption of each subplot
refers to the network used for the registration. Image created with 3D-Slicer.

6.4.2 Prognostication results - Experiment 3

A RSF was trained to predict survival from the imaging features extracted from
the registration module, which in turn inputs prior and subsequent scans of the
same patient. The regression model outputs a mortality hazard related to the
1-years survival from the date of subsequent scan. To assess the prediction quality,
the C-index was used and statistical significance was measured via log-rank test.
As in the previous experiments, the performance were not assessed taking into
account all the NKI independent test set, but only the baseline (BL) and first
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follow-up (FU1) unique scans. Unique pairs were obtained by averaging imaging
features of all the multiple pairs acquired on the same date. Results of the survival
AI-score, in terms of C-index and statistical significance, are shown in Table 6.2.
Confidence intervals were estimated via bootstrapping using repeated sampling
with replacement (100 times).

C-index p-value
Big 0.57 (0.48 - 0.65) 6.2e−1
Small 0.56 (0.56 - 0.60) 4.2e−1
Big-no-skip 0.61 (0.50 - 0.67) 2.0e−1

Table 6.2: C-index, with relative confidence intervals, and p-values for the three
sub-experiments of Experiment 3

Table 6.2 shows, as in the previous chapter, a clear drop in performance compared
to the baseline. The imaging features extracted after the reshape of the ViT output,
implemented in the bottleneck of the network, lead to C-index values between 0.56
and 0.61. All the models did not showed statistical significance (p > 0.05). There
are no observable trends linking the registration and prediction tasks. For example,
despite the different registration performance between the Big and Small models,
highlighted by all the metrics used, their extracted features lead to very similar
predictive accuracy. The model that does not implement skip connections, which
fails in properly registering the scans, is the one providing the best prognostication.

6.4.3 Image Registration results - Experiment 4
The image registration quality was assessed by following the same protocol of the
previous experiments. The metrics values averaged along the dataset are shown in
Table 6.3.

DSCliver DSCrib NSDliver NSDrib SSIM
Big 86.0 ± 6.8% 50.8 ± 23.7% 62.9 ± 13.7% 63.8 ± 26.6% 81.3 ± 3.9%
Small 86.1 ± 6.6% 41.2 ± 23.9% 61.6 ± 13.3% 62.0 ± 28.1% 73.8 ± 5.7%
Big-no-skip 76.5 ± 3.5% 10.1 ± 13.8% 35.6 ± 9.9% 32.7 ± 27.5% 58.5 ± 6.9%

Table 6.3: DSC, NSD and SSIM mean and standard deviation values for the three
sub-experiments of Experiment 4

Table 6.3 shows that Experiment 3 and Experiment 4 share the same registration
trend: the models implementing the skip-connections behave similarly in terms of
DSC and NSD, while the Big-no-skip follows the same worsening of the ViT-PAM.
The last column of the table, referring to SSIM values, shows the same trend of the
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previous experiments: an higher ability of the network to model deformations is
reached if skip connections are used. In Figure 6.5 the registration of two randomly
extracted scans from TCIA dataset is shown, to perform a qualitative assessment.
For this example, the DSCliver has been calculated between fixed and warped

Fixed Moving Overlap of warped masks

Registered - Big-Net Registered - Big-No-Skip-Net Registered - Small-Net

Figure 6.5: Qualitative comparison of registration performance for the three
sub-experiments of Experiment 4. The figure shows an example of fixed - moving
scan pair, the registered scan outputted by each model, and the contours of the liver
segmentation masks registered by each model. The orange line is the ground-truth,
blue refers to Big, amaranth to Big-no-skip and yellow to Small.

masks: the trend is similar to the one shown in Table 6.3, so it is a good example
of the average differences between the sub-experiments. The performance drop
for the Big-no-skip model is reflected also in the visual example, highlighting the
difficulty of the network to reconstruct faithful and detailed images without skip
layers, if self-attention mechanism is implemented. Big and Small models, as in
Experiment 3, behave similarly, sharing an accurate registration of medium-large
structures. However, despite the bigger network achieves higher realism in terms of
structure integrity and detail, they both suffer from the same limitations described
in Experiment 2 : the integration of a discriminator in the model causes less plausible
deformations for smaller structures, such as the stomach and the spleen.
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For completeness, in Figure 6.6 a qualitative comparative example between the
rendering of 11th left rib volumetric masks is shown. For each model in the figure a
fixed-moving pair has been selected from the NKI dataset having a DSCrib value
equal to the average along the entire test dataset. This way it is possible to visualize
the average behavior of the three networks.

(a) Big (b) Big-no-skip

(c) Small

Figure 6.6: Rendering of 11th left rib volumetric segmentation masks for the three
sub-experiments of Experiment 4. In each subplot the blue volume represents the
warped mask, which is superimposed to the light orange fixed mask. The symbol
on the bottom right of the figures depicts the point of view in space: the subject is
analyzed on the transverse plane, from top to bottom. The caption of each subplot
refers to the network used for the registration. Image created with 3D-Slicer.

The most performative version of the experiment is the Big one, with a mean
DSCrib of 50.8% and a mean NSDrib of 63.8%, but despite its acceptable results it
is unable to reliably reconstruct the bone. The qualitative examination shows the
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limitations of the remaining two models: the DSC and NSD values of the Small
network are obtained over-segmenting the rib with a high number of false-positive
voxels, while the rib warped by Big-no-skip is anatomically plausible but not
correctly aligned.

6.4.4 Prognostication results - Experiment 4
The survival prediction quality was assessed by following the same protocol of the
previous experiments and by using the same RSF structure. Results of the survival
AI-score, in terms of C-index and statistical significance, are shown in Table 6.2.
Confidence intervals were estimated via bootstrapping using repeated sampling
with replacement (100 times).

C-index p-value
Big 0.57 (0.48 - 0.63) 3.7e−1
Small 0.52 (0.43 - 0.59) 9.8e−1
Big-no-skip 0.66 (0.57 - 0.73) 3.0e−4

Table 6.4: C-index, with relative confidence intervals, and p-values for the three
sub-experiments of Experiment 4

Table 6.4 shows similar results compared to the ones obtained by integrating just
the ViT in the model. In fact, also here the Big and Small predictive performance
are below 0.57, and the Big-no-skip model is the most performative one. Despite
this, the addition of adversarial mechanism has led to appreciable changes in the
prognostication. First, the difference in registration quality, in terms of SSIM,
between the models implementing skip connections is also reflected in C-index
values. The Small model, in fact, produces an almost random prediction. Moreover,
although the Big-no-skip fails in the registration task, its features lead to an
acceptable C-index value (0.66) and to statistical significance (p < 0.05).

6.5 Discussion
In this chapter, the integration of self-attention mechanism into the image registra-
tion network was achieved by incorporating a Vision Transformer in the bottleneck
of the elastic network. This architectural choice aimed to address the inherent
limitations of convolution-based networks, which are primarily designed to capture
local features due to the size of the local receptive field. In contrast, self-attention
mechanisms, as demonstrated by Vision Transformers [75] [71] [76], excel at cap-
turing long-range spatial relationships [72]. Therefore, leveraging this mechanism
within the convolutional elastic network was deemed advantageous for achieving
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more accurate image registration by enabling the capture of correspondences be-
tween distant points in the images.
The chapter described two experiments: Experiment 3 and Experiment 4, which
differed in the presence of adversarial learning. It was hypothesized that both
the self-attention mechanism and adversarial learning could individually enhance
registration accuracy, and thus their combined integration (Experiment 4 ) was
expected to further benefit the overall goal. Different models with varying size
and capacity were defined for these experiments, as in the previous chapters. The
results partially confirmed the assumptions made, shedding light on the complexity
of the task at hand.
Firstly, both quantitative and qualitative results clearly demonstrated the failure of
models lacking skip connections in achieving accurate registration. The Big-no-skip
models exhibited a significant decline in metrics such as DSC, NSD, and SSIM,
rendering them the least performant models. Conversely, the ViT proved beneficial
for the task when skip connections were implemented, allowing the hybrid model to
fully leverage the encoding capabilities of transformers without sacrificing semantic
details. This improvement was evident in slightly higher SSIM values for both the
Big and Small networks compared to the baseline. However, the integration of
the adversarial loss, as observed in Experiment 2, did not significantly enhance
the model’s ability to obtain more realistic and accurate deformation fields. While
visual examination of Experiment 4 revealed more detailed images, suggesting an
improvement in realism, it also highlighted the challenge of correctly registering
small and localized areas. Consequently, the DSC and NSD values associated with
the rib region were approximately 10% lower, and the SSIM values showed a slight
decrease as well.
Survival prediction was conducted by extracting imaging features from the bot-
tleneck of the elastic network, after the reshape of the ViT output embedding
vector, and utilizing them to train a RSF regression model, which estimated the
1-year survival risk factor. The predictor was tested only on the BL-FU1 scan-pairs
(138 pairs) from the internal NKI dataset. The results from the two experiments
exhibited similar trends in terms of C-index values. In both Experiment 3 and Ex-
periment 4, the most performant model was the Big-no-skip architecture, achieving
C-index values of 0.61 and 0.66, respectively. On the other hand, the Big and Small
models demonstrated lower performance with C-index values below 0.60, which
did not reach statistical significance. Despite the apparent trend that the model
performing worst in the registration task was the most accurate in prediction, no
correlation was found between the performance of the models in image registration
and prognostication tasks.
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Chapter 7

Additional Experiment:
Enforcing Similarity in the
latent-space

7.1 Introduction

This chapter contains the description of Experiment 5, where a new version of
the baseline model is proposed, following the observations made in the previous
experiments. In Experiment 1 the registration network is trained mainly trying
to minimize the dissimilarity between the moving image warped by the spatial
transformer and the fixed image, along with a penalty term that enforces the
estimated deformation field to be spatially smooth.
Despite the use of the overall loss function (Equation 4.5) has proven its effectiveness
through satisfactory registration results, it is possible that driving the training
by focusing only on warped images’ features could limit the learning power of
the network. Consequently, we assume that by adding a loss term related to the
similarity between the encoded high-level features of reference (fixed) and target
(registered) images, the registration network could reach a deeper learning and
perform better. As in the previous chapters, also this additional experiment is
designed as an ablative study, introducing variation in the registration quality and
trying to link the registration performance to the ability of the model to predict
survival. Unlike previous experiments, the three sub-experiments are defined by
varying size of both affine and elastic sub-modules, instead of modifying size and
capacity of just the elastic one. The objective of Experiment 5 is therefore to confirm
whether the addition of a loss term that enforces the similarity of latent-spaces
leads to more accurate and faithful registrations.
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7.2 Methods
The datasets used in this experiment are the same of those of Experiment 1,
described in Section 4.2.
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similarity affine loss (Pearson correlation)
similarity elastic loss (Pearson correlation)

total variation elastic loss

latent space loss (MSE)

Figure 7.1: Representation of Split-Encoders PAM

In order to actively force the network to minimize the distance between the
embedding spaces of fixed and warped image, the baseline architecture has been
modified, especially in the block related to the affine transformation. In the model
shown in Figure 4.1, the affine network was simply an encoder that received in
input the concatenation of the images to register. In the proposed new version,
called Split-Encoders, that initial block is replaced by two separate encoders, which
encode separately the features of the images, and a final encoder deputy to regresses
the 12 parameters of the rigid transform. Each of the two split encoders is made up
of five convolutional blocks, followed by a fully connected layer, and outputs both
a multi-dimensional feature map and a latent-space vector. As visible from Figure
7.1, the feature maps are concatenated together and input the affine network. The
elastic network structure was not modified. Compared to the baseline, the new
architecture also presents an encoder used to extract the latent-space of the final
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warped image. Figure 7.1 shows also all the loss functions used in the training; the
final loss function used to train the latent-space was the MSE.
The dimensions of the various blocks that make up the registration network depend
on the specific sub-experiment performed. Table 7.1 shows an overview of the
differences between the network parameters throughout the sub-experiments.

Set of filters Latent-space Set of filters
Split-Encoders size Elastic network

Big [16, 32, 64, 128, 256] 512 [16, 32, 64, 128, 256]
Small [16, 32, 64, 128, 256] 512 [4, 8, 16, 32, 64]
Smaller [4, 8, 16, 32, 64] 128 [4, 8, 16, 32, 64]

Table 7.1: Split-Encoders and Elastic network parameters for the three sub-
experiments of Experiment 5

As visible from Table 7.1, unlike the previous experiments, the ablation here does
not focus exclusively on the elastic network size and capacity, but the aspects
under investigation are the size of the embedding space and the number of elastic
network’s convolutional filters. As in the previous chapters, the Big version of
the model is characterized by a higher number of convolutional filters. The Small
one involves reducing the size of the elastic network while keeping the encoders’
dimensionality unchanged. This sub-experiment serves two purposes. Firstly, it
helps us examine how changes in the deformation representation size impact the
quality of registration. Secondly, it allows us to measure the impact of the new
architecture by comparing its results with those of the Small version of Experiment
1. On the other hand, the Smaller model involves further reducing the filters of the
encoders used to obtain the latent-space of fixed, moving and warped images. This
reduction results in a fourfold decrease in the length of the embedding vectors. We
believe that comparing models with latent-spaces of different sizes is crucial as it
helps us understand how deep the embeddings should be to capture the necessary
informations for the task.
The influence of skip connections is not taken into account, as it was extensively
investigated in the previous chapters, and as the core of the architecture does not
rely on the elastic network.

7.3 Results
The data filtering and preprocessing applied are the same of those of Experiment 1,
so the resulting cohorts used for image registration (TCIA dataset) and prognosti-
cation (NKI dataset) are the ones already described in Section 4.4.1 and in Table
4.1.
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7.3.1 Image Registration results
The registration accuracy was assessed by performing the registration of the NKI
dataset scan-pairs and by calculating SSIM, and DSC and NSD between the fixed
and warped segmentation masks for the biggest and the smallest volumes. The
metrics values averaged along the dataset are shown in Table 7.2.

DSCliver DSCrib NSDliver NSDrib SSIM
Big 92.0 ± 4.0% 75.3 ± 13.1% 78.5 ± 11.5% 90.4 ± 13.8% 85.8 ± 3.7%
Small 90.4 ± 4.4% 62.4 ± 16.6% 73.4 ± 11.4% 85.8 ± 16.3% 80.2 ± 4.1%
Smaller 89.4 ± 4.8% 49.7 ± 23.1% 69.4 ± 12.4% 72.9 ± 24.6% 81.2 ± 4.3%

Table 7.2: DSC, NSD and SSIM mean and standard deviation values for the three
sub-experiments of Experiment 5

According to Table 7.2, the most performative model is the Big one, which reached
the highest values of all the metrics used. The accuracy in terms of DSC and
NSD is directly proportional to the size of the overall network. In fact, the highest
performances have been obtained with a greater number of convolutional filters,
and these have suffered a decrease matching the downsizing of the network. This
trend is also reflected in SSIM values, where a performance of 85.8% is reached for
the Big model, and around 80% for less dense models.
The effectiveness of the new architecture and the additional latent-space-based
loss function is easily seen from the comparison with the results obtained for the
baseline model, showed in Table 4.2. In addition to an increase in performance in
terms of SSIM and a more precise alignment of larger structures (such as the liver),
there is a remarkable improvement in the reconstruction of smaller anatomical
structures. In fact, for both Big and Small models, the results show DSCrib and
NSDrib values increased by 10%.

As in previous chapters, for a complete understanding of the registration per-
formance of the three models, a qualitative evaluation of the task is carried out.
The same randomly extracted scan pair from TCIA dataset is shown in Figure
7.2. For this example, the DSCliver has been calculated between fixed and warped
masks: the trend is similar to the one shown in Table 7.2, so it is representative
of the average behaviour of the three models. The SSIM results, which measure
the registration quality of the entire volumes, are perfectly reflected in the visual
example shown. All three sub-experiments are able to reconstruct the CT scan
satisfactorily (with SSIM values above 80%), and the major differences between
the models lie in the anatomical faithfulness of the smaller structures. In fact,
although the liver is warped in a very similar way a priori by the size of the network,
the stomach and the spleen appear more fragmented and less realistic when fewer
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Fixed Moving Overlap of warped masks

Registered - Big-Net Registered - Small-Net Registered - Smallest-Net

Figure 7.2: Qualitative comparison of registration performance for the three
sub-experiments of Experiment 5. The figure shows an example of fixed - moving
scan pair, the registered scan outputted by each model, and the contours of the liver
segmentation masks registered by each model. The orange line is the ground-truth,
blue refers to Big, amaranth to Smaller and yellow to Small.

convolutional filters are used for encoding features. However, Figure 7.2 confirms
also qualitatively that the implementation of the new loss function is beneficial for
the task and helps to overcome the performance obtained by the baseline.

For completeness, after having shown in Figure 7.2 the liver masks produced
by the three registration models, in Figure 7.3 a comparative example between
the 11th left rib masks is shown. For each model in the figure a fixed-moving
pair has been selected from the NKI dataset having a DSCrib value equal to the
average along the entire test dataset. This way it is possible to visualize the average
behavior of the three networks. Following the trend of DSC and NSD shown in
Table 7.2, Big model is able to realistically reconstruct the bone structure of the rib
with high accuracy, while Small and Smaller underperform with a greater number
of false negative voxels, even though the overall shape is maintained.
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(a) Big (b) Small

(c) Smallest

Figure 7.3: Rendering of 11th left rib volumetric segmentation masks for the three
sub-experiments of Experiment 5. In each subplot the blue volume represents the
warped mask, which is superimposed to the light orange fixed mask. The symbol
on the bottom right of the figures depicts the point of view in space: the subject is
analyzed on the transverse plane, from top to bottom. The caption of each subplot
refers to the network used for the registration. Image created with 3D-Slicer.

7.3.2 Prognostication results

The survival prediction quality was assessed by following the same protocol of
the previous experiments: a RSF regression model was used and the testing was
performed solely on the BL-FU1 unique scan-pairs from the internal NKI dataset.
Results of the survival AI-score, in terms of C-index and statistical significance, are
shown in Table 7.3. Confidence intervals were estimated via bootstrapping using
repeated sampling with replacement (100 times).
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C-index p-value
Big 0.70 (0.63 - 0.78) 9.0e−4
Small 0.65 (0.56 - 0.75) 1.3e−2
Smaller 0.66 (0.57 - 0.77) 1.5e−1

Table 7.3: C-index, with relative confidence intervals, and p-values for the three
sub-experiments of Experiment 5

Table 7.3 shows the effectiveness and usefulness of the new proposed architecture in
the survival prediction task. In fact, all three experiments lead to a C-index value
of more than 0.65, outperforming the baseline with the Big model and behaving
similarly with the smaller ones. By splitting the test set into two groups with
different risk levels (median of AI-scores), and using the log-rank test, it was
possible to estimate that this division is statistically significant for Big and Small
models (p < 0.05). The prognostication trend seems to follow that of registration
quality, if SSIM is taken into account. Both SSIM and C-index values, in fact,
reach a peak with the Big model, while have very similar performance for smaller
ones. The large gap between Small and Smaller models in the registration of
minor anatomical structures in terms of DSC and NSD (greater than 10%) has an
influence on statistical significance but not on C-index values.

7.4 Discussion
In this chapter, an additional experiment called Experiment 5 is introduced, aimed
at improving the registration performance compared to the baseline model. Since
none of the previous experiments achieved significantly higher registration results
than the baseline, we decided to modify the underlying structure of the registration
module to assess the impact of these changes on the performance. The baseline
model primarily focused on minimizing dissimilarity between the moving and fixed
images, without considering similarity in the latent-space features. We hypothesized
that enforcing similarity in the high-level features of reference and target images
could enhance learning for the task.
To achieve this, some adjustments were made to the architecture. The first block
of the pipeline was replaced with two Split Encoders, each taking a single image
(either fixed or moving) as input. These encoders produced an embedding vector
and feature-maps after the encoding process. Additionally, a slightly modified
version of the affine sub-network was used. The ablation in this experiment did not
involve altering the capacity of the elastic network. Instead, three sub-experiments
were conducted, varying size of both the embedding size and the deformation field
representation.

69



Additional Experiment: Enforcing Similarity in the latent-space

Experiment 5 effectively surpassed the performance of the baseline model, indicating
that incorporating a latent-space similarity loss, alongside an image similarity loss,
contributed to a more robust registration process. Notably, the most significant
improvement was observed in the registration accuracy of smaller regions, with
DSC and NSD values of the rib increasing by 10% compared to the baseline for
both the Big and Small models. Moreover, the DSC and NSD values for the liver
and SSIM values also exhibited notable improvements, achieving the highest values
in the entire study. A trend can be observed from the comparison of the three
sub-experiments in this chapter: the performance in terms of DSC and NSD is
directly proportional to the size of the network. In other words, a larger network
capable of extracting more abstractions during feature encoding results in higher
accuracy in structure alignment. Additionally, all three models achieved SSIM
values above 80%.
Survival prediction was conducted by extracting imaging features from the bot-
tleneck of the elastic network and utilizing them to train a RSF regression model,
which estimated the 1-year survival risk factor. The predictor was tested only on the
BL-FU1 scan-pairs (138 pairs) from the internal NKI dataset. The prognostication
results aligned with the trend observed in the registration task, with larger models
achieving higher prediction accuracy. The Big model attained a C-index of 0.70,
followed by the Small and Smaller models with values of 0.65 and 0.66, respectively.
All three versions demonstrated C-index values exceeding 0.65, surpassing the
performance of previous experiments and emphasizing the prognostic value of the
Split Encoders architecture.
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Chapter 8

Linking registration to
prognostic performance

Previous studies postulated the prognostic value of tracking all anatomical changes
between follow-up scans of the same patient receiving anti-cancer treatment using
image-to-image registration [34] [51] [52] [37]. In this thesis, we investigated the
relationship between the ability of the network to model morphological changes
through image-to-image registration in serial CT images of the same patient and the
ability of the same registration features describing the deformation field to predict
survival. To prove this hypothesis, we introduced variations in registration quality
by means of ablation of the network architecture, and examine their potential
correlation with the survival prediction accuracy. In particular, four experiments
were performed, each implementing a different registration strategy, which included
mechanisms of adversarial loss and self-attention mechanism, and each architecture
was defined in three versions, varying the size and capacity of the elastic sub-
network.

Image-to-image registration

The performance of image-to-image registration was assessed using Dice Similarity
Coefficient (DSC) and Normalized Surface Distance (NSD) between the fixed and
warped segmentation masks of the liver and the 11th left rib, and SSIM to evaluate
the overall volumetric similarity. A qualitative assessment of registration quality
was also conducted to evaluate the anatomical plausibility and realism of the
registered images. As expected, the ablation of size and capacity of the registration
module led to variations in the registration quality.
In Experiment 1 the baseline model was employed, and it was observed that the
Big network achieved the most accurate volumetric registration based on higher
SSIM values. However, when it came to precise structure alignment, assessed by
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DSC and NSD, the Big-no-skip model outperformed the others. This suggests that
skip-connections may not be crucial for achieving precise alignment but are benefi-
cial for overall volumetric registration accuracy and perceptive quality. Experiment
2 introduced the adversarial learning, and its integration with the baseline model
enhanced the anatomical realism as assessed through visual examinations, but
slightly worsened the registration of smaller areas of the scan. Experiment 3 and
Experiment 4 focused on the integration of a Vision Transformer in the bottleneck
of the elastic sub-network, creating a hybrid model. Surprisingly, the Big-no-skip
models in both experiments exhibited a drop in registration performance compared
to the previous ones. This drop was evident in lower DSC, NSD and SSIM values, as
well as in qualitative assessments. In contrast, the combination of self-attention and
skip layers was beneficial for the task, since it allowed to fully exploit the encoding
potentialities of Transformers without losing any semantic detail. It resulted in
improved overall structural similarity, suggesting that self-attention mechanism can
enhance the ability of the model to capture long-range dependencies and improve
the alignment of structural features.

Since none of the described experiments reached significantly higher registration
performance than the baseline, and following practical observation built during the
development process, an additional experiment was executed, called Experiment
5. Unlike the previous experiments, which focused on variations in the elastic
sub-network, Experiment 5 sought to investigate the effects of the latent-space sim-
ilarity loss on achieving accurate registration. To assess the influence of enforcing
similarity in the latent-space of fixed and warped images, some adjustments were
made to the registration architecture. The first block of the pipeline was replaced
with two Split Encoders, each taking a single image (either fixed or moving) as
input. These encoders produced an embedding vector and feature-maps after the
encoding process. Additionally, a slightly modified version of the affine sub-network
was used.
The ablation in this experiment did not involve altering the capacity of the elastic
network. Instead, three sub-experiments were conducted, varying size of both the
embedding size and the deformation field representation. Experiment 5 effectively
surpassed the performance of the baseline model, indicating that incorporating a
latent-space similarity loss, alongside an image similarity loss, contributed to a more
robust registration process. Notably, both large and small versions exhibited higher
SSIM values, as well as improved DSC and NSD scores. A noticeable enhancement
in the registration accuracy was showed for smaller structures, such as the rib.

By comparing all the experiments conducted, the image-to-image registration
network introduced in the additional experiment, featuring the Split Encoders
and the incorporation of latent-space similarity, overall outperformed the other
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architectures. In particular, the most performant model was the Big model, which
achieved a mean SSIM value of nearly 86% across the internal NKI dataset. Figure
8.1 provides a visual example, showcasing two scans of the same patient acquired
at different time-points (fixed and moving), along with the affinely warped image
and the final registered image generated by that model. The plot demonstrates the
model’s remarkable capability to perform accurate registration, faithfully recreating
the shapes and details of large organs (such as the liver and stomach) as well as
smaller organs (such as the spleen and colon) with high precision and realism.
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Figure 8.1: Visual example of registration performance for the Big model of
Experiment 5. Fixed and moving images belong to the same patient
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Survival prediction

The survival prediction task was carried out by training a RSF from the high-level
imaging features extracted from the registration module, which in turn inputs
two scans of the same patient acquired in different time-points, called prior and
subsequent scans. The regression model predicted max 1-year survival from the
subsequent scan date of the input prior-subsequent pair. To this end, an internal
dataset embedded with follow-up images and survival times was used. For simplic-
ity, and to obtain a clearer statistical signal, testing was performed on only BL-FU1
scans, which represent a critical time interval where the effects of immunotherapy
are more pronounced and clinically relevant. To assess prognostication quality, the
C-index was calculated and statistical significance was measured via log-rank test
between the highest and lowest risk groups, defined by the median of the predictions.

The metric measured for the several experiments did not exhibit a consistent
trend. The Small model demonstrated the highest predictive power in the first two
experiments, achieving C-index values of 0.69 and 0.62, whereas the Big-no-skip
models, when ViT was integrated, demonstrated superior accuracy in Experiment
3 and Experiment 4, with C-index values of 0.61 and 0.66, respectively. Experiment
5 sub-experiments led to highest predictive accuracy, reaching a C-index between
0.65 and 0.70. Comparing the influence of different architectures and mechanisms
on the prognostication ability, both the baseline and Split Encoders structures
showcased the highest performance, while the integration of the ViT resulted in
performance deterioration.

In addition to the predictive analysis based on the C-index, the prognostic value of
the most accurate model (Big model from Experiment 5, achieving a C-index of
0.70) was further investigated using Kaplan-Meier curves and Cox time-varying
regression analysis. The Kaplan-Meier plot was generated by dividing the test set
into two risk groups (high risk and low risk) based on the median AI-risk score
generated by the RSF model. As shown in Figure 8.2, the plot indicates that the
model effectively distinguishes patients at different risk levels based on imaging
features.
The Cox time-varying regression model was employed to assess the relationship
between the AI risk-score and patient survival likelihood, considering other relevant
factors present in the data, such as pathology and therapy information. The results
of the analysis are presented in Figure 8.3. The figure demonstrates that the AI
risk-score exhibits a significant association with survival (log(HR) > 0), along with
factors such as opioids-intake and cancer-type (breast cancer).
However, it is important to note that these findings do not necessarily imply that
patients diagnosed with breast cancer and undergoing opioids-intake are the only
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Figure 8.2: Kaplan-Meier curves for the three categories based on the risk score
provided by the Big model of Experiment 5

Figure 8.3: Cox time-varying regression analysis for the prognostic AI-risk score
provided by the Big model of Experiment 5. Cofactors used in the analysis include:
pathology description, radiotherapy (RT) site, immunotherapy (IT) medication,
corticosteroid (CS) type, immunosuppressant (IS) and opiods intake
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ones at a statistically higher risk of death. In reality, the cancer-types indicated
in the analysis may not exclusively represent the tumors for which patients were
receiving treatment; they could also include past pathologies that have already been
treated. Therefore, since immunotherapy is generally not the primary treatment for
breast cancer [77], it is likely that patients with breast cancer as a cofactor had a
pre-existing oncological history and were simultaneously undergoing treatment for
another pathology, which would increase their overall risk of death. Additionally,
it should be noted that opioids are typically prescribed by physicians to patients
with advanced stages of the disease to alleviate the pain associated with ongoing
therapies and advanced cancer spread [78]. Given the complex and large dataset
analyzed, their clinical correlations need to be scrutinised critically before drawing
any conclusion.

Relationship between image registration and prognostication quality

To comprehensively evaluate the relationship between the network’s capability to
model radio-anatomical changes over time and its ability to predicting survival,
a correlogram was utilized. It is showed in Figure 8.4. The correlogram analysis
provided insights into the interdependencies of the different evaluations metrics
used in the study, allowing for a rigorous examination of the inter- and intra- asso-
ciations of the two tasks. All sub-plots, except those in the main diagonal of the
matrix, depict a scatter plot and the resulting linear regression. The figures in the
main diagonal show the distribution of the individual variables. Not surprisingly,
the metrics employed to measure registration performance exhibit a notable linear
correlation, indicating that a strong capability to accurately register individual
structures (high DSC and NSD) corresponds to a high accuracy for the entire
volume (high SSIM), and vice versa. Similarly, the metrics associated with survival
prediction accuracy and robustness, such as C-index and p-value (p), demonstrate
a similar trend. Hence, a higher C-index implies a greater likelihood for the model
to be statistically significant (p < 0.05). In Figure 8.4, instead of p values, −log(p)
are reported.

Despite this, as visible from the two last rows of the correlation plot, registration and
prognostication qualities are uncorrelated, having a similar C-index or p for different
registration qualities. These findings suggest that the factors influencing successful
image registration may not directly align with the factors associated with accurate
survival prediction. In other words, our results suggest that an improvement in the
tracking of anatomical changes between serial images of the same patient will not
result in an improvement of the prognostic performance. Although this result may
be influenced by certain choices made in the study, such as the use of DSC, NSD and
SSIM as evaluation metrics for registration performance, and further investigations
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Figure 8.4: Correlation plot

could address it by using different parameters, it is reasonable considering the
complexity and diversity of the two tasks. Even though prognostication involves
the identification and the tracking of all the radio-anatomical changes that occur
during the treatment, predicting patient survival entails analyzing a variety of
clinical and biological factors that may extend beyond the morphological changes
captured by image registration. Survival prediction often relies on a combination of
clinical variables, genetic markers, treatment information, and other non-imaging
data.
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The proposed model used unsupervised image registration, meaning that no explicit
information about the location and extent of tumors or other specific features
is provided during the task. Using thoraco-abdominal CT scans, a multitude of
changes can occur, but not all of these changes may have equal prognostic relevance.
It is possible that the image registration module does not extract a sufficient
number of prognostic features. The RSF classifier is responsible for distinguishing
input features that are more or less relevant for survival. However, if very large
volumes are registered compared to the size of the tumor lesion, or if all scan areas
are given equal weight without considering the localization of the tumor, the vector
input to the classifier may contain an excessive number of non-prognostic factors.
As a result, the lack of linear link between registration performance and survival
prediction accuracy could be attributed to the loss of potentially prognostic local
features in the registration module, which are not considered during classification.

Future work

Despite the excellent results obtained in terms of registration (SSIM = 85.8%,
DSCliver = 92.0%, NSDrib = 90.4%) and the promising survival prediction results
(C − index = 0.70), these findings suggest that the framework currently in use can-
not lead to significant prognostication improvements. A direct link between image
registration and prediction quality would have suggested to focus on a more optimal
and accurate registration, as an improvement would have brought an improvement
in the final task also. Since this linear correlation has not been demonstrated, it is
difficult to predict how to improve the prognostication algorithm by continuing to
work on the modelling of radio-anatomical changes via image-to-image registration.
Therefore, to support treatment-response assessment in oncology more robustly, it
may be necessary to find alternatives to the unsupervised image-to-image registra-
tion model presented in this study.

A potential improvement could involve providing the model with additional in-
formation in a semi-supervised manner. For example, incorporating information
about the location of tumor burden or other clinically relevant features during
the registration process could enhance the model’s ability to capture the most
important morphological changes related to prognosis.
Or, alternatively, future developments could focus on applying the pipeline used
in this study to specific patches containing cancer, combining segmentation and
registration operations together. Segmentation of the area of the scan containing
the tumor mass, provided by an operator or automatically obtained from an AI
model, would allow to choose with accuracy the patch to be registered. As said, it is
possible that the registration of such extensive scans can lead to a deformation field
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rich in non-prognostic changes. In contrast, identifying critical areas a priori may
increase the likelihood of detecting deformations directly related to the patient’s
survival.
The segmentation operation could also be used independently of the registration
operation, proposing a totally different approach than the one proposed. The
lesions present in the scans could be segmented, also possibly in combination with
masks related to specific target organs, and could be used to carry out volumetric
monitoring over time. As a result, the measurement of segmented volumes would
be used to predict prognosis and survival, extending RECIST criteria to the entire
tumor burden. The use of segmentation would certainly allow a more intuitive and
fast approach, as well as more interpretable and explainable.
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