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Alla piccola e dolce Manuela,
il cui sorriso ha illuminato la mia vita.

Abstract
Prior to radiation therapy planning, tumours and organs at risk need to be
delineated. In recent years, deep learning models have opened the possibility
of automating the contouring process, speeding up the procedures and helping
clinicians. However, deep learning models, trained using ground truth
labels from different clinicians, inevitably incorporate the human-based inter-
observer variability as well as other machine-based uncertainties and biases.
Consequently, this affects the accuracy of segmentation, representing the
primary source of error in contouring tasks. Therefore, clinicians still need to
check and manually correct the segmentation and still do not have a measure
on the reliability. To tackle these issues, researchers have shifted their focus
to the topic of probabilistic neural networks and uncertainties in deep learning
models. Hence, the main research question of the project is whether a
3D U-Net neural network trained on CT lung cancer images can enhance
clinical contouring practice by implementing a probabilistic auto-contouring
system. The Monte Carlo dropout technique was employed to generate
probabilistic and uncertainty maps. The model calibration was assessed using
reliability diagrams, and subsequently, a clinical experiment with a radiation
oncologist was conducted. To assess the clinical validity of the uncertainty
maps two novel metrics were identified, namely mean uncertainty (MU) and
relative uncertainty volume (RUV). The results of this study demonstrated
that probability and uncertainty mapping effectively identify cases of under
or over-contouring. Although the reliability analysis indicated that the model
tends to be overconfident, the outcomes from the clinical experiment showed
a strong correlation between the model results and the clinician’s opinion.
The two metrics exhibited promising potential as indicators for clinicians
to determine whether correction of the predictions is necessary. Hence,
probabilistic models revealed to be valuable in clinical practice, supporting
clinicians in their contouring and potentially reducing clinical errors.
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Sammanfattning
Innan planering av strålbehandling måste tumörer och riskorgan avgränsas.
Under de senaste åren har djupinlärningsmodeller öppnat upp för möjligheten
att automatisera kontureringsprocessen, vilket påskyndar åtgärderna och hjäl-
per läkarna. Djupinlärningsmodeller som tränas med hjälp av grund sanning
från olika läkarna, innehåller dock oundvikligen den människobaserade
variabiliteten mellan observatörer samt andra maskinbaserade osäkerheter
och fördomar. Detta påverkar följaktligen segmenteringens noggrannhet,
som utgör den främsta felkällan i kontureringsuppgifter. Därför måste
läkarna fortfarande kontrollera och korrigera segmenteringen manuellt. För
att ta itu med dessa problem har forskarna flyttat sitt fokus till ämnet
probabilistiska neurala nätverk och osäkerheter i modeller för djupinlärning.
Projektets viktigaste forskningsfråga är därför om ett probabilistiskt system
för automatisk konturering kan förbättra klinisk konturering. För att besvara
denna fråga utvecklades och tränades ett 3DU-nät neuralt nätverkmed hjälp av
CT lungcancer bilder. Monte Carlo Dropout-tekniken användes sedan för att
generera probabilistiska och osäkerhetskartor. Modellkalibreringen bedömdes
med hjälp av tillförlitlighetsdiagram och därefter genomfördes ett kliniskt
experiment med en strålningsonkolog. För att bedöma osäkerhetskartornas
kliniska giltighet identifierades två mått, nämligen medelosäkerhet (MU)
och relativ osäkerhetsvolym (RUV). Resultaten av denna studie visade att
sannolikhets- och osäkerhetskartläggning effektivt identifierar fall av under-
eller överkonturering. Även om tillförlitlighetsanalysen visade att modellen
är överdrivet självsäker för höga osäkerhetsvärden, visade resultaten från
det kliniska experimentet en stark korrelation mellan modellens resultat
och läkarens åsikt. De två mätvärdena uppvisade en lovande potential som
indikatorer för läkarna avgöra om det är nödvändigt att korrigera prognos.
Sannolikhetsmodeller visade sig därför vara värdefulla i klinisk praxis genom
att stödja kliniker i deras konturering och potentiellt minska kliniska fel.

Nyckelord
3D U-Nät, Konturering, Klinisk validering, Djupinlärning, Lungcancer, Mon-
te Carlo dropout, Sannolikhetskartor, Tillförlitlighetsdiagram, Segmentering,
Osäkerhetskartor
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Chapter 1

Introduction

Deep neural networks have demonstrated impressive results in various
computer vision tasks. However, in real-world applications such as
autonomous driving, medical diagnoses, and nuclear power plant monitoring,
concerns about safety have arisen due to the potential severe consequences
of failures [1, 2]. These networks are often referred to as ’black box’ models,
which may fail silently without indicating that the prediction is incorrect. This
is especially concerning for safety-critical applications in medicine, such as
neurosurgical interventions and radiotherapy planning [3, 4].

In the specific field of medical image segmentation, the primary challenge
leading to incorrect segmentations is the high inter-observer variability. In
Machine Learning (ML) models, a common practice is to generate ground
truth labels by merging multiple observations from different clinicians.
However, different doctors may delineate very different areas due to factors
such as image quality, personal bias, level of expertise, and knowledge [5].
As a result, deep learning models trained with this data include human-based
inter-observer variability, as well as other machine-based uncertainties and
biases due to the model architecture and parameters. This affects the accuracy
of the segmentation and is the primary source of error in contouring tasks. This
raises the critical question: how can we trust the predictions of these models?

To address these issues, researchers have shifted their focus to the topic
of probabilistic neural networks and uncertainties in artificial intelligence
models. Thus, the main research question of the project is the following:
Can a probabilistic auto-contouring system improve clinical contouring
practice?

To increase trust and interpretability in deep learning algorithms [6] for
medical imaging analysis, we need tools such as uncertainty estimates that
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can improve the robustness of automated segmentation systems. By providing
clinicians with an uncertainty map, they can better understand where and why
the model failed and manually correct the segmentation [3].

Gal and Ghahramani [7] demonstrated that model uncertainty can be
obtained from dropout neural networks. In the field of deep learning,
dropout refers to the training procedure whereby a subset of nodes and their
connections in a neural network are randomly suppressed to avoid overfitting
and improve generalisation. The authors suggested using dropout during the
testing phase as well in order to produce different segmentations that can be
averaged together. By utilising the so-called Monte Carlo dropout technique
[8], probability and uncertainty maps can be generated on images during
prediction. These maps can be valuable in the field of radiation therapy by
aiding clinicians in their contouring task. Probability maps can indicate which
areas on the image have a high probability of being a tumor and should be
included in the target area. Uncertainty maps will highlight regions with high
uncertainties, warning clinicians to exercise caution when contouring those
areas.

The objective of this project is to make a contribution to the field of
oncological image analysis by proposing the application of Monte Carlo
dropout technique in clinical practice. The project will demonstrate the
benefits of utilising probability and uncertainty maps for the clinical case of
lung cancer patients.

1.1 Purpose
The primary objective of the project is to address the inherent reliability issue
in deep learning models for segmentation. Currently, artificial intelligence
tools cannot be entirely relied upon for high-risk tasks, and thus require a
clinician’s evaluation of the model’s results. The main goal of this project
is to develop a methodology that utilises uncertainty and probability maps as
supplementary tools for the clinician to assess the segmentation quality. By
doing so, high-uncertainty segmentations can be reviewed by the clinician,
while low-uncertainty delineations can be automatically approved, resulting
in significant time savings. Furthermore, the use of uncertainty maps can
help address undercontouring and overcontouring issues by identifying areas
of uncertainty and alerting the clinician. This can potentially help prevent
undertreatment or toxicity issues.
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1.2 Goals
The final goals of the project from a general point of view can be summarised
in four main points:

• Build a 3D U-Net able to produce segmentations of the tumor;

• Implement Monte Carlo dropout technique to develop probability and
uncertainty maps;

• Check reliability of the probabilistic model using reliability diagrams;

• Clinically validate the model by the expert.

1.3 Research Methodology
The methodology adopted in this project follows the main steps of developing
a standard neural network with a few extra steps to make the model capable
of producing probability and uncertainty maps. Each step is listed in the
following:

• Understand the nature of the problem and the state of the art in medical
image segmentation and uncertainty maps by performing a detailed
literature review;

• Set-up the infrastructure needed for training and running neural
networks on a Linux cluster.

• Model a 3D U-Net neural network on the Linux cluster capable of
generating auto-contours given medical images;

• Train, validate and test the performance of the network;

• Expand the model in order to generate multiple segmentations using
Monte Carlo dropout technique and aggregate solutions to generate
probabilistic and entropy maps;

• Extract and evaluate model calibration curves per structure by expected
frequencies to probabilities;

• Clinical validation of the model through a blind experiment designed to
compare uncertainty scores provided by the model with the clinician’s
opinions.
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This approach ensures to start with a simple, known neural network and
then enrich the model step by step with the goal of obtaining a probabilistic
auto-contouring system for medical purposes.

Figure 1.1 shows the project pipeline and summarises the steps described
previously.

Figure 1.1: Project timeline.

1.4 Limitations
The primary objective of this project is to utilise the Monte Carlo dropout
technique to develop probability and uncertainty maps. It is crucial to note that
the dataset that has been used to train the model was quite small in terms of
number of patients and with a high variability of the tumor. The segmentation
performance achieved with this project reflects the averaged results of other
works that used the same dataset [9]. However, the key focus of the project
is on the second stage of the pipeline, specifically during testing where new
innovations were implemented. As a result, the outcomes from the first stage
have a minimal impact on the primary accomplishments of the project.

1.5 Structure of the Thesis
The thesis is divided into the following chapters:

• Introduction 1, which presents an overview of the research goals to the
reader;
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• Background 2, which provides fundamental information related to
previous research and the theory behind medical image segmentation
and deep learning tools;

• Methodology 3, which explains the choices and steps taken during the
project to reach the goals;

• Results 4, which shows the outcomes obtained, in particular regarding
probability and uncertainty maps and clinical validation;

• Discussion 5, which analyses and interprets the results;

• Conclusion 6, which highlights the research objectives achieved and
describes any limitations and future developments.
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Chapter 2

Background

The background chapter introduces two distinct fields, medicine and computer
science. The chapter covers an extensive range of topics, including lung
cancer, radiotherapy, and medical image segmentation, in addition to the
fundamental concepts of deep learning. Furthermore, the chapter provides
a review of the implementation of probability and uncertainty mapping
techniques, along with strategies for validating the reliability of these tools.

2.1 Lung Cancer
This section covers various aspects of lung cancer, including its epidemiology
and associated risk factors, staging and classification, as well as diagnosis and
treatment methods.

2.1.1 Lung Cancer Epidemiology and Risk Factors
Although the incidence and mortality of lung cancer have been consistently
decreasing in the last decade, it still maintains its position as the leading cause
of cancer-related deaths [10]. Lung cancer is responsible for nearly 25% of
all cancer-related deaths, with 82% of these deaths directly linked to cigarette
smoking [11].

It ranks second in terms of incidence, with prostate cancer being the only
more common cancer in men and breast cancer in women. While lung cancer
is more prevalent in men, the rate of decline in lung cancer incidence is slower
for women when compared to men.

Patients under the age of 40 have a relatively low incidence of lung cancer,
which gradually increases and reaches its peak between the ages of 65 and 84
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[12].
There are various well-established risk factors for developing lung cancer,

[10]. The most important ones are listed below in order of relevance [10, 13]:

• Cigarette smoking, representing the number one risk factor;

• Exposure to second-hand smoke;

• Environmental hazards, such as asbestos and radon, due to occupa-
tional exposure;

• Air pollution, including emissions rich in polycyclic aromatic hydro-
carbon compounds;

• Personal or family history of lung cancer;

• Dietary habits and supplements.

2.1.2 Lung Cancer Classification and Staging
Lung cancer can be classified into two main forms: Non-Small Cell Lung
Cancer (NSCLC) and Small Cell Lung Cancer (SCLC), with NSCLC
accounting for 85% of patients. The primary distinguishing factor between
the two principal types of lung cancer is the cellular morphology observed
through a microscope. SCLC cells exhibit a flatter appearance and smaller
size compared to cancer cells present in NSCLC. SCLC usually progresses
more quickly than NSCLC and has a tendency to spread to the lymph
nodes. Approximately 75% of the patients diagnosed with SCLC already
have advanced-stage cancer. NSCLC typically spread at a slower pace and
generates fewer symptoms [14].

TheWorld Health Organization (WHO) classifies NSCLC into three types:
adenocarcinoma, squamous cell carcinoma, and large cell. Adenocarcinoma
represents the most common type of NSCLC, while squamous cell carcinoma
represents 25% to 30% of lung cancers. Large cell cancers account
for approximately 5% to 10% of all lung cancers. The WHO also
recognises early stages of lung cancer as adenocarcinoma in-situ, minimally
invasive adenocarcinoma, or invasive adenocarcinoma based on the extent of
invasiveness. Immunohistochemical markers are typically present and used
for the diagnosis and characterization of these types of lung cancer [12].
After the initial diagnosis of NSCLC, accurate staging using the Tumor-
Node-Mestastasis (TNM) classification system is essential for selecting the
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appropriate therapy after diagnosis, predicting prognosis, and evaluating
the response to treatment [13]. The TNM system involves evaluating the
dimension of the primary tumour (T), regional lymph node(s) involvement
(N), and distant metastases (M) [15]. After determining T, N, and M, they are
merged to assign an overall stage of 0, I, II, III, or IV. These stages can be also
further classified using letters, like IIIA and IIIB.

2.1.3 Lung Cancer Diagnosis
The typical procedure for the diagnosis of lung cancer starts with the patient
recognizing suspicious symptoms such as cough, hemoptysis, chest pain, and
dyspnea.

The first step in diagnosing lung cancer is typically through the use of
imaging tools such as Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), and Positron Emission Tomography (PET) scans. The first
imaging test is performed with posteroanterior and lateral chest radiography.
Then, all suspected patients undergo a chest CT scan to define the size,
shape and location of the lesion. PET is used to provide information about
the metabolic nature of the lung tumour by injecting into the body 18-
fluorodeoxyglucose (FDG) to recognise cancer cells. Studies confirmed that
integrated PET/CT scanners appear to produce more detailed images than
CT or PET alone [16]. Abdominal CT, bone scanning, and brain MRI are
usually recommended in patients with small cell carcinoma because of the
high likelihood of metastatic disease.

After locating the lesion using imaging methods, the next phase is to
determine the appropriate technique to get a biopsy sample for histologic
confirmation [17]. Biopsies are the most commonly used tool to obtain tissue
for diagnosing lung cancer, which may include needle biopsy, EndoBronchial
UltraSound (EBUS), mediastinoscopy, Video-Assisted Thoracoscopy (VAT),
and wedge resection [18].

2.1.4 Lung Cancer Treatment
The type of cancer, the stage at diagnosis, and the patient’s functional
assessment are factors that determine the treatment approach. NSCLC patients
in stages I to IIIA are typically treated with surgery, which could be lobectomy
(surgical resection of a lobe) or sub-lobar resection. Recent evidence indicates
that preoperative chemotherapy can increase survival rates. For those who
undergo complete resection without preoperative chemotherapy, standard
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treatment involves adjuvant chemotherapy.
Unresectable non-small cell carcinoma patients may be treated with

Radiation Therapy (RT) and chemotherapy. High-energy X-rays with strong
killing or growth-inhibiting properties are employed in lung cancer RT
to destroy cancer cells. External radiation, which involves administering
radiation from outside the body, is more frequently utilized than internal or
implant radiation, which involves using radioactive materials placed directly
inside the lung cancer tumour [19]. On the other hand, chemotherapy
employs powerful drugs that travel through the body’s bloodstream and target
cancer cells [20].

In salvage therapy after surgery, RT, or chemotherapy or for palliation
in advanced NSCLC, percutaneous thermal ablation procedures such as
cryoablation, microwave, and radiofrequency ablation have been considered
effective treatment options [12].

2.1.4.1 Radiotherapy

As previously stated, external beam RT is the primary treatment modality for
inoperable lung cancer patients often combined with chemotherapy [21]. The
workflow of RT typically involves several stages, which are described below
and illustrated in Figure 2.1:

Figure 2.1: Radiotherapy workflow [22] (CC BY 4.0).

• Consultation: The patient is referred to a Radiation Oncologist (RO)
by their primary care physician. The RO will review the patient’s
medical history and imaging studies, and determine if radiotherapy is
an appropriate treatment option.

• Simulation: If radiotherapy is considered appropriate, the patient will
undergo a simulation procedure to help the RO determine the best
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treatment plan. It involves the use of imaging techniques, such as CT
or MRI scans, to precisely localize the tumour and surrounding healthy
tissues, as well as to determine the appropriate techniques for treatment
delivery.

• Contouring: It involves the delineation of the tumour and normal
tissues on the imaging data, in order to accurately define the Gross
Tumor Volume (GTV) (visible extent of the tumour in the medical
image) and Organs At Risk (OAR) for radiation planning.

• Planning: Specialized software are used to develop a radiation
treatment plan that takes into account the individual patient’s anatomy,
tumour characteristics, and treatment goals while minimizing the dose
to surrounding healthy tissues.

• Treatment delivery: Once the plan has been developed, the patient
will begin receiving radiotherapy treatments. These may be delivered
using external beam RT, in which a machine called a linear accelerator
delivers the radiation beams from outside the body, or internal RT, in
which radioactive sources are placed inside the body in or near the
tumour. The number and duration of treatments will depend on the
specific treatment plan, but most patients receive treatment on a daily
basis for several weeks.

• Follow-up: After the RT treatment is completed, the patient will
typically have regular follow-up visits with their RO to monitor their
progress and evaluate any potential side effects or complications. These
visits may involve imaging studies, blood tests, and physical exams.

Overall, the RT workflow is a carefully orchestrated process that involves
multiple stages of planning and delivery, with the ultimate goal of effectively
treating the patient’s cancer while minimizing the risk of side effects and
complications. It is also clear that the contouring step is crucial in order to
avoid mistreatment due to over or under-irradiation of the GTV and OAR.

2.2 Medical Image Segmentation
Image segmentation is a crucial step in medical image processing that involves
dividing a digital image into multiple segments, each comprising sets of
voxels. There are three main categories of image segmentation techniques:
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• manual segmentation, which is carried out by a RO who annotates the
voxels of interest manually;

• semi-automatic segmentation, which involves algorithms that aid in the
segmentation process or help finalize the contouring,

• automatic segmentation, which does not require user input and can be
classified into learning and non-learning-based methods [23].

However, the RO is the clinician responsible for accepting the GTV
delineation, even if automatic segmentation has been used. This is because
reliable GTV auto-segmentation models are yet to be developed, with the
current models primarily focusing on accurate segmentation of OARs.

Conventional automatic segmentation methods rely on the surface-level
characteristics of the image, including grayscale, texture, and gradient, to
segment the desired target. Thresholding Method, Atlas Method, and Region
GrowingMethod are some of the common approaches employed in traditional
automatic segmentation techniques [24].

The Thresholding Method selects appropriate grayscale thresholding
based on the target and background that require segmentation. Subsequently,
all pixels in the image are categorized into either the target or background
group.

On the other hand, the Atlas Method aligns the new input image with a
reference image known as an atlas template. The labels in the atlas are then
applied to the new input image to accomplish the segmentation task.

The Region Growing Method involves the manual delineation of sub-
regions, followed by themerging of neighbouring pixels with similar attributes
into the predetermined region and segmenting the target area from the
background.

As Deep Learning (DL) technology advances, models based on DL
have demonstrated remarkable potential in auto-segmentation of medical
images. DL models independently learn feature representation and utilize the
acquired high-dimensional abstraction to segment without the need for manual
interaction [24].

2.2.1 Segmentation in Radiotherapy
In the field of RT, precise targeting of the GTV and protecting OAR from
radiation-related complications are crucial for its effectiveness. Three main
volumes are to be considered in RT, as illustrated in Figure 2.2. The
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GTV represents the position and extent of the primary tumour, the clinical
tumour volume (CTV) encompasses the GTV and defines the extent of
microscopic cancerous spread that can’t be seen on imaging; the planning
target volume (PTV) is added to account for uncertainties in planning or
delivery [25]. In Figure 2.3, an example of segmentation of OAR and GTV
is illustrated. Accurate segmentation of the GTV and OAR is essential in

Figure 2.2: Diagram of the main radiotherapy planning volumes.

RT treatment planning to deliver the intended dose to the GTV. However,
as previously stated, manually segmenting the GTV and OAR is a tedious
and time-consuming task for ROs. This can cause delays in treatment and
adversely affect survival rates. Moreover, the quality of manual segmentation
is subject to the ROs’ expertise. Even when following the same guidelines,
inconsistencies in the segmentation may occur among both inter- and intra-
observers [24].

Accurate delineation of the GTV and OAR is critical to avoid OAR over-
irradiation while still treating effectively the GTV. Even a small error in
the segmentation, such as a 1 mm shift, could have a significant impact on
radiotherapeutic dose calculations, with an estimated effect of up to 15% [26].

The use of DL in clinical practice for RT has the potential to reduce
unnecessary time and relieve relevant staff of their workload, thus avoiding
errors caused by fatigue [24]. Moreover, while other machine learning
methods could be more interpretable and easy to implement, DL’s ability to
automatically extract and learn complex features, scalability to large datasets,
and integration of multimodal data make it a particularly powerful approach
for tumour segmentation in oncology studies.
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Figure 2.3: Example of organs at risk and GTV delineations for lung cancer.

2.3 Deep Learning in Medical Image Seg-
mentation

This section will first present an overview of the fundamental concepts of DL.
Following that, the focus will shift to the field of image segmentation, with
a detailed description of the most commonly employed DL model in medical
image segmentation.

2.3.1 Machine Learning and Neural Networks
Before delving into the discussion of deep learning, it is essential to establish
a foundational understanding of the field by distinguishing between various
terms and concepts. To achieve this objective, Artificial Intelligence (AI), ML,
and DL concepts are described in the following. The hierarchical relationship
between these terms is summarized in the Venn diagram depicted in Figure
2.4 [27].

AI represents the intelligence demonstrated by machines and comprises a
wide range of techniques that allow computers to imitate human behaviour and
perform complex tasks independently or with minimal human involvement,
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ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING

Figure 2.4: Venn diagram illustrating the hierarchical relationship between AI,
ML and DL.

sometimes even surpassing human decision-making abilities. ML refers to the
field devoted to enhancing a computer program’s ability to perform a particular
set of tasks. This is accomplished by utilizing algorithms that learn from
training data related to the specific problem, enabling computers to identify
patterns and hidden insights without the need for explicit programming [27].
DL, a subset of ML techniques, relies on artificial neural networks to process
information.

The architecture of DL draws inspiration from the information processing
principles of the biological neural network found in the human brain. A
biological neuron serves as the fundamental building block of the human
neural network and comprises three major components, as shown in Figure
2.5:

• a cell body (soma), which houses the nucleus and other cell-supporting
structures,

• dendrites, that receive electro-chemical signals from neighbouring
neurons

• an axon, that transmits the signal to the following neuron [28].

Dendrites of the two adjacent neurons are connected through a synapse. If the
signal received is strong enough to surpass a certain threshold, the neuron is
triggered, and the signal is transmitted to the subsequent neuron.

An artificial neuron tries to imitate the behaviour and structure of
biological neurons, and neural networks resemble the brain in two key aspects:
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Figure 2.5: Comparison between a biological neuron and an artificial neuron’s
structure. Adapted from [29].

• They acquire knowledge through a learning process;

• The knowledge is stored using synaptic weights.

A learning algorithm modifies the connection weights between neurons to
achieve a specific goal. There are two types of learning:

• Supervised learning: the weights are adjusted in order to minimize the
error between the output and the given target;

• Unsupervised learning: the aim is to cluster dataset elements in
homogeneous groups.

The simplest artificial neural network, the perceptron shown in Figure 2.5,
classifies inputs into one of two classes using an activation function that
receives the weighted sum of inputs. However, since a perceptron is a single-
layer Neural Network (NN), it cannot perform non-linear classification, which
can be overcome by adding hidden layers to create a deep neural network. A
NN that contains one or more hidden layers is called deep neural network and
it is organised in a deeply nested architecture. This is the reasonwhy it is called



Background | 17

”deep learning” since several layers are required for processing the data and
generating output. For sake of clarity, NN layers are composed of a certain
amount of neurons and organized as follows (Figure 2.6):

• Input layer: consisting of neurons that receive input from the
environment;

• Output layer: consisting of neurons that produce the final output of the
network and provide it to the environment;

• Hidden layer(s): consisting of neurons that do not have direct contact
with the environment.

Figure 2.6: Neural Network functioning example.

Neurons of one layer connect fully or partially to those in the closest layers,
with different NN types based on the task and the optimal topology.

Learning in an NN can be divided into two phases:

• Input patterns are presented to the input layer, then propagated layer to
layer until an output pattern is generated;

• If the generated output pattern differs from the target output, an error is
computed and propagated backwards from the output layer to the input
layer while modifying the weights accordingly.
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2.3.2 Convolutional Neural Networks
Using traditional fully-connected artificial neural networks (ANNs) for image-
based real-world problems is challenging due to the large number of network
components required, leading to computational complexity and loss of spatial
information.

To address these challenges, Convolutional Neural Network (CNN)s
are used. CNNs use the convolution operator, which replaces matrix
multiplication with a set of convolution kernels. This allows for tractable
learning of the kernels and reduces computational complexity [30]. They are
widely used for image and video recognition.

The main building blocks of a CNN are convolutional layers, pooling
layers, and fully connected layers [30], as illustrated in Figure 2.7.
Convolutional layers apply a series of filters to an input image, which extract
various features from the image. The stride and padding are two essential
parameters in convolution. The stride determines how the filter is shifted
along the input matrix, while the padding determines whether additional zero-
padding is added to the input feature map to ensure that the window can always
be centered on the input matrix value. The resulting feature maps are then fed
into pooling layers, which downsample the feature maps to reduce their size
and make the network more efficient. After several convolutional and pooling
layers, the output is flattened and fed into fully connected layers, also called
dense layers, which perform a final classification of the input. These fully
connected layers learn to combine the extracted features from earlier layers to
make a final prediction.

Figure 2.7: Schematic diagram of a basic CNN architecture [31] (CC BY-NC
3.0).
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Convolution is a linear operation, hence applying non-linearity is quite
necessary to increase the expressive power of the model. Therefore,
convolutional layers also incorporate non-linear activation functions such as
Rectifier Linear Unit (ReLu) to introduce non-linearity into the network.

Batch normalization layers are also used in a CNN architecture to
normalize the output of the previous layers by subtracting the mean and
dividing by the standard deviation of the activations. This helps to prevent
the internal covariate shift problem and improves the stability and speed of
training [32].

Moreover, adding a regularization term is important to reduce the risk of
overfitting. Dropout is a regularization technique that trains only a random
subset of neurons at each iteration, so a portion of neurons are randomly
dropped and do not contribute to training [33] (Figure 2.8).

a) Standard Neural Network b) Dropout Neural Network

Figure 2.8: Dropout neural network. On the left, no dropout was applied, on
the right, dropout was applied and crossed neurons were dropped.

By arranging these fundamental layers in various sequences, several
distinct architectures of neural networks can be built.

2.3.2.1 Preprocessing, Training and Performance Assessment

To train a NN, after defining the architecture, it is necessary to prepare the
data, split the data set into training, validation, and testing sets, choose an
optimization algorithm and a loss function, tune the hyperparameters, and
evaluate the performance.

First, it is important to preprocess the data. Medical images are typically
stored in Digital Imaging and COmmunications in Medicine (DICOM)
files, which is the international standard for storing, transmitting, and
exchanging medical images and additional information [34]. DICOM files
are used in various medical imaging modalities such as X-ray, CT, MRI,
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ultrasound, and more. The format allows for the storage of not only the image
data but also additional metadata, such as patient information, acquisition
parameters, and annotations.

All the DICOM files from the different patients can be combined into a
single repository, which could be aHierarchical Data Format version 5 (HDF5)
file [35]. HDF5 is a flexible and efficient file format designed for storing and
organizing large and complex datasets. It has a hierarchical structure and it is
organized into groups, datasets and attributes, as shown in Figure 2.9.

Groups 
(patients)

Datasets
(Images, Masks)

Attributes 
(metadata)

-
-
-
-

Figure 2.9: Snapshot of the HDF5 View, a visual tool to visualize and edit
HDF5 files.

After organizing the file, the dataset needs to be cleaned up and
preprocessed. Once the dataset it is ready and split, the model can be trained
using the training set, a loss function and an optimization algorithm.

The loss function measures the difference between the predicted output
of the neural network and the true output, while the optimization algorithm
is the method for minimizing the loss function during the training process
of a neural network. Common optimization algorithms include Stochastic
Gradient Descent (SGD), Adam, and Adagrad.

Regarding the hyperparameters, the most important to consider when
training a neural network are listed in the following:

• Learning rate: determines how quickly the neural network adjusts its
weights during training. A high learning rate can cause the weights to
oscillate, while a low learning rate can result in slow convergence. It
usually ranges between 10−2 and 10−6.

• Batch size: sets the number of samples used in each iteration of training.
Larger batch size can result in faster convergence but can also lead to
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overfitting.

• Number of epochs: defines the number of times the entire training
dataset is passed through the neural network during training. A higher
number of epochs can result in better performance, but can also lead to
overfitting.

After training the model, each NN segmentation model’s performance
needs to be assessed. There are several evaluation metrics that can be used,
some of which are listed below:

• Precision, also called true predictive assessment: the ratio between the
number of true positives (TP) to the sum of all the cases reported by the
model as positives (True Positive + False Positive).

Precision(PR) =
TP

TP + FP
(2.1)

• Recall, also called sensitivity or true positive rate: ratio between the
number of true positives to the sum of all the real positive cases (True
Positive + False Negative).

Recall(RE) =
TP

TP + FN
(2.2)

• False Positive Rate, also specificity: the ratio between the number of
false positives to the sum of all the real negative cases (True Negative +
False Positive).

FPR =
FP

TN + FP
(2.3)

• F1 Score: metric that combines precision and recall in the form of a
harmonic mean to measure the overall performance of a segmentation
model.

F1 score =
2 ∗ PR ∗RE

PR +RE
(2.4)

• Intersection over Union (IoU), also called Jaccard index: area of
intersection between the predicted mask and the ground truth mask
divided by the the area of union of the predicted mask and the ground
truth mask. The score range is from 0 to 1, where 1 indicates perfect
overlap.

IoU =
|A ∩ B|
|A ∪ B|

=
TP

TP + FP + FN
(2.5)
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• Dice Score: one of the most common metrics for segmentation. It
measures the similarity between the predicted and ground truth masks.
The coefficient ranges from 0 to 1, with 1 indicating perfect similarity.

Dice score =
2|A ∩ B|
|A|+ |B|

=
2 ∗ TP

(TP + FP ) + (TP + FN)
(2.6)

• Pixel Accuracy: measures the percentage of correctly classified pixels
in the segmentation mask.

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
(2.7)

Moreover, the performances of a classification model can be visually
illustrated using a Receiver Operating Characteristic (ROC) curve, as
shown in Figure 2.10. This curve plots the true positive rate as a function
of the false positive rate at different classification thresholds. The Area Under
the ROC Curve (AUC) measures the area under the ROC curve. AUC ranges
between 0 and 1. A model whose predictions are 100% wrong has an AUC
of 0; one whose predictions are 100% correct has an An AUC of 1 represents
a model with totally correct predictions, AUC of 0 indicate a model whose
predictions are totally wrong.

Figure 2.10: ROC curve explanation. As the curve goes up in the graph, the
area under the curve increases and the performance of the classifier is better.
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Another method to describe the performance of a classifier is through a
confusion matrix (Figure 2.11). A confusionmatrix for a binary classification
problem includes four numbers:

• True Positives (TP): The number of instances that are actually positive
and correctly predicted as positive.

• False Positives (FP): The number of instances that are actually negative
but incorrectly predicted as positive.

• True Negatives (TN): The number of instances that are actually
negative and correctly predicted as negative.

• False Negatives (FN): The number of instances that are actually positive
but incorrectly predicted as negative.

Figure 2.11: Confusion matrix explanation.

[36]. Overall, the choice of evaluation metrics for NN segmentation
depends on the specific application and requirements of the task [37, 38].

2.3.3 Deep Segmentation and U-Net
Medical image segmentation is a challenging task that involves identifying the
pixels of organs or lesions from background medical images like Magnetic
Resonance (MR) or CT images. CNN have proven successful in this domain;
however, traditional CNN require identical input shapes, which can be
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problematic. To address this issue, the Fully Convolutional Network (FCN)
was introduced in 2015 by Long et al [39]. The FCN has convolutional layers
without fully connected layers, enabling it to predict arbitrary-sized inputs
[40].

In the same year, the U-Net architecture was proposed by Ronnerberger et
al. [41] to address the issue of loss of segmentation accuracy and insufficient
integration of context information caused by the large multiplier used in the
upsampling operation of FCN. The U-Net architecture uses an equal number
of convolutional layers for upsampling and downsampling and incorporates
skip connections between each level of the upsampling and downsampling
layers. This allows features obtained from the downsampling layer to be
passed to the upsampling layer, improving the accuracy of pixel positioning
and segmentation [24].

Figure 2.12: U-net architecture designed by Ronneberger et al. [41].

The architecture of the U-Net is illustrated in Figure 2.12 and comprises of
a contracting path (also called analysis [42]) on the left side and an expansive
path (also called synthesis) on the right side. The contracting path follows
the typical structure of a convolutional network and is made up of repeated
application of two 3x3 convolutions, each followed by a ReLu and a 2x2
Max Pooling (MaxPool) operation with stride 2 for downsampling. At every
downsampling step, the number of feature channels is doubled. The expansive
path involves an upsampling, i.e. an up convolution, of the feature map
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that reduces the number of feature channels by half, a concatenation with
the feature maps from the contracting path, and two 3x3 convolutions, each
followed by a ReLu. The final layer of the network involves a 1x1 convolution
to map the 64 components to the final number of output [41].

The architecture of the U-Net is fed with images and ground truth
segmentation, also called masks, organized in a tensor structure. Tensors are
multi-dimensional arrays that can have any number of dimensions and are the
primary data structure used in deep learning frameworks like TensorFlow [43]
and PyTorch [44]. A standard U-Net is trained using 2D images and therefore
tensor of size [C,H,W ], where C represents the number of channels (for
example 3 in RGB images), H is the height andW is the width of the image.
For 3D images, also the depth D of the image is added as dimension.

The original U-Net model has undergone significant enhancements in
segmentation networks, resulting in the creation ofmodernmodels that display
remarkable performance in various challenging segmentation tasks, such as
3D U-Net [42], U-Net++ [45], nnU-Net [46], and others [47].

2.4 Probability and Uncertainty Mapping
Although automatic segmentation algorithms have achieved good accuracy in
segmenting medical images, they still do not reach high levels of reliability
in segmenting GTVs. This is likely due to the inter-observer variability
inherent in the training data, the variability of imaging properties, and
the heterogeneity of the GTV itself. To improve the robustness of these
techniques, one promising approach is to incorporate uncertainty estimates
of the automated segmentation results[8]. In medical image segmentation,
uncertainty estimates reflect the confidence level of the predicted class label
assigned to each voxel. A model with high confidence would exhibit low
uncertainty, while a model with low confidence would have high uncertainty.

By utilizing uncertainty maps, it is possible to identify areas in the
image where the segmentation is uncertain or ambiguous, which can be
helpful for guiding manual corrections, pinpointing regions for further data
analysis or collection, evaluating the quality of the segmentation, and detecting
segmentation failures.

This uncertainty associated with the model prediction can be broken down
into two main categories [48]:

• aleatoric uncertainty, due to noise within the data,

• epistemic uncertainty, due to the model architecture and parameters.
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Aleatoric uncertainty can be further categorized into homoscedastic uncer-
tainty, uncertainty which stays constant for different inputs, and heteroscedas-
tic uncertainty which depends on the inputs to the model [49].

In literature, several methods for creating probability and uncertainty maps
are presented, but three main categories can be delineated.
The first category is Bayesian methods which are based on the Bayesian
inference framework. These methods estimate the posterior probability
distribution of the parameter by using prior knowledge and observed data. The
posterior distribution can be used to develop uncertainty maps. However, this
method became intractable for a large number of parameters and therefore
impossible for NN.

The second category is Bayesian approximations which use simplifica-
tions or approximations of the Bayesian inference framework to make the
computationsmore tractable. Monte Carlo (MC) dropout presented byGal and
Ghahramani [50] in 2015 is one of the most popular methods in this category.
As previously explained, dropout refers to the training procedure of randomly
dropping a subset of nodes of a neural network in order to avoid overfitting and
improve generalization ability [48]. Gal et al. suggested using dropout during
the testing phase to produce N different segmentations that averaged together
to build a probability map.

The third category is non-Bayesian methods which do not rely on
the Bayesian inference framework and instead use other statistical or
machine learning techniques to estimate uncertainty. Deep ensembles by
Lakshminarayanan et al. [51] are the most famous, where results from
multiple deterministic NNs trained with different parameter initializations are
aggregated to determine the probability and uncertainty outputs.

In summary, each category of uncertainty mapping method has its
own strengths and weaknesses, and the choice of method depends on the
specific application, available data, and computational resources. Bayesian
methods provide a principled framework for uncertainty estimation but
can be computationally expensive, while Bayesian approximation methods
provide a compromise between computational efficiency and accuracy. Non-
Bayesian methods can be computationally efficient but may not provide
accurate uncertainty estimates. Recently, new techniques for building such
tools have been developed. One interesting attempt is represented by the
probabilistic U-Net published by S. Kohl [52]. It builds upon the standard
U-Net architecture but incorporates probabilistic modelling techniques. It
predicts both segmentation masks and associated uncertainty maps, utilizing
a variational autoencoder and a Bayesian approach.
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2.4.1 Monte Carlo Dropout Technique
In 2015, Gal and Ghahramani developed a new theoretical framework
where test-time dropout is demonstrated to be a good approximation of
Bayesian inference, as shown in Figure 2.13. This framework offers a
direct way to model uncertainty with dropout NN. This addresses the
challenge of representing uncertainty in deep learning without compromising
computational efficiency or accuracy [50].

Figure 2.13: MC Dropout technique [53] (CC BY 4.0).

MC dropout is a method that does not require any prior information to
be incorporated into the model and is capable of approximating the output
distribution without any additional bias. Due to its similarity to Bayesian
methods and straightforward implementation, MC dropout has become a
popular choice for medical image analysis, as opposed to more complex
Bayesian alternatives [48]. It is important to note that the utilization of MC
dropout primarily predicts epistemic uncertainty, which helps capture the
model’s uncertainty in its own parameters. In 2020, Jungo et al. [8] analysed
the effectiveness of MC dropout in the clinical context of automated brain
tumour segmentation and confirmed the value of uncertainty estimation. In
his paper, a detailed explanation of the procedure for obtaining probability
and uncertainty maps is provided. First, dropout layers need to be included in
the model, as shown in Figure 2.14, and the model trained.

At test-time, N random samples generated from the posterior distribution
of the network’s weights are considered as MC samples. The foreground
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Figure 2.14: Dropout neural network [53] (CC BY 4.0).

probability is then computed by averaging the N samples using 2.8.

pr =
1

T

T∑
t=1

pr,t (2.8)

Normalized entropy (2.9) is then used as a measure of uncertainty.

H = −[pr log pr + (1− pr) log (1− pr)]
1

log 2
∈ [0, 1] (2.9)

Different dropout strategies can be used. Jungo [8] describes in his article
four different dropout methods used in a U-Net architecture. The first strategy
involves using MC dropout in all layers with a dropout rate (likelihood of a
neuron being switched off) of 0.05. The second method applies dropout only
at specific key positions, for example at the centre of the architecture, while
in the third one only at the two lowest pooling/upsampling steps. Finally, the
fourth strategy uses concrete dropout, which learns the dropout probability
during the optimization process.

Therefore, Jungo demonstrated the MC dropout method to be simple
and easy to implement since it is only necessary to randomly switch off
some nodes, create multiple segmentations and merge the results together.
Moreover, this method involves less computational complexity than Bayesian
NN and Ensembles, reduces over-fitting and improves generalization ability if
applied also in the training phase. Also, as already stated, the method does
not require any prior information compared to Bayesian NN, but it has still
Bayesian-like outputs.
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2.5 Model Reliability
Accurate uncertainty estimates are crucial for determining whether a model’s
output can be trusted and to ensure that the model’s inference probabilities
accurately reflect the likelihood of occurrence. Therefore, it is necessary
to assess the quality of a model’s reliability. It is also important to assess
which methods are reliable under dataset shift, a common issue in medical
data where changes occur between training, testing, and clinical distributions.
One way to evaluate a model’s confidence is by examining its calibration and
comparing it to the perfect calibration. Calibration for segmentation models
refers to the alignment between the model’s predicted probabilities and the
true probabilities of the predicted classes. Calibration is essential for reliable
uncertainty estimation and ensuring that the model’s confidence levels are
meaningful. A model is considered perfectly calibrated when ”a model’s
prediction f(x) with confidence p is correct with a rate of p for any label
y, meaning that:

P (y(x) = y|f(x) = p) = p, (2.10)

where y(x) are the model’s label predictions” [8]. For example, if the
confidence of a model is around 80%, it should give correct predictions 80 out
of 100 times. A common graphical way to represent calibration is a reliability
diagram. It plots the predicted confidence in bins against the observed
accuracy within each bin. A well-calibrated model would have the points
closely aligned with the ideal line (y=x). To obtain the so-called reliability
diagrams, shown in Figure 2.15, the model’s continuous predictions f(x)

need to be divided into M confidence bins and plotted against the accuracies
in those bins, with the identity line on the reliability diagram representing
perfect calibration. A model is considered overconfident when the curve of

Figure 2.15: Comparison of different dropout strategies tried by Jungo for an
underconfident, an overconfident and a well-calibrated subject (CC BY 4.0)
[8].
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its calibration plot falls below the identity line, and underconfident when it
falls above. A popular way to quantify the model miscalibration using one
scalar value is through the Expected Calibration Error (ECE), given by the
following equation:

ECE =
M∑

m=1

nm

N
|cm − am|, (2.11)

where cm and am represent the confidence and the accuracy in binm,M andN
respectively the total number of bins and voxels, and nm the number of voxels
in bin m. ECE measures the discrepancy between predicted probabilities
and observed accuracy. It divides the predicted probabilities into bins and
calculates the average absolute difference between the average predicted
probability and the observed accuracy within each bin. A lower ECE score
indicates better calibration, with a value of 0 indicating perfect calibration.

Another common method to quantify reliability is to compute the
miscalibration of uncertainty, called Expected Uncertainty Calibration Error
(UCE) using the following equation:

UCE =
M∑

m=1

nm

N
|em − um|, (2.12)

where em and um represent the error and the uncertainty in bin m, M and
N respectively the total number of bins and voxels, and nm the number of
voxels in binm [54]. Similar to ECE, UCE divides the predicted uncertainties
into bins and calculates the average absolute difference between the average
predicted uncertainty and the observed error rate within each bin. A lower
UCE score indicates better calibration, implying that the model’s predicted
uncertainties align more closely with the actual errors made by the model.



Methodology | 31

Chapter 3

Methodology

This chapter outlines the methodology and technical choices that were made
throughout the project and analyzes them in detail. The chapter begins with
Section 3.1, which provides an overview of how the literature review was
conducted. Section 3.2 focuses on the dataset used to train the NN and the pre-
processing steps taken to clean and prepare the raw data. In Section 3.3, the
implementation, training, and testing of a 3DU-Net for segmentation purposes
are described. Section 3.4 explains the Monte Carlo Dropout technique, while
Section 3.5 presents information on how to construct reliability diagrams for
checking the model calibration. Finally, Section 3.6 delves into the clinical
validation process and describes the experiment conducted to compare the
model’s results with the clinician’s opinion. Figure 3.1 provides a visual
representation of the project pipeline.

3.1 Research Process
The research process followed two different approaches in order to gather as
much relevant information as possible.

The first approach started from scientific papers provided by the supervisor
and was used as the foundation of the project [7, 8, 41]. Further papers were
then researched based on the citation references. The articles obtained through
this search were filtered based on their relevance. This first approach is useful
to know the state of the art in this specific field of investigation and to check
how far research has moved in that direction.

The second approach is more general and allows for a broader view of
the research topic and a more structured search. A research question was
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Figure 3.1: Project workflow. The Monte Carlo Dropout technique is applied
at test time to produce probability and uncertainty maps.

formulated, search terms found and search blocks created. The formulated
question is the following:

Does a probabilistic auto-contouring system using a 3D U-Net improve
performances in clinical contouring practice for lung cancer CT images?

The defined keywords were used to search several databases by adopting
search techniques such as truncation, phrase searching and Boolean operators
(AND, OR). The databases used are Google Scholar, Web of Science Core
Collection, PubMed and Scopus.

3.2 Data
In this section, the dataset used to train the NNwill be illustrated. The different
steps performed to process and augment the data will be described in detail as
well.

3.2.1 Dataset
The 3DU-Net was trained on a collection of images from 422 NSCLC patients
treated at MAASTROClinic, in The Netherlands [55, 56]. It is an open dataset
published in the Cancer Imaging Archive. For each patient, they provided:

• pretreatment CT scans in the DICOM format
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• manual contours by a radiation oncologist of the 3D volume of the
primary gross tumour volume (GTV-1) and neighbouring OAR (i.e.,
right and left lung, heart, spinal cord and esophagus)

The dataset includes GTVs of various TNM stages since they vary in size and
spread to nearby lymph nodes.

3.2.2 Extract, Load, and Transform Process
The dataset needed to be prepared through several preprocessing steps prior
that such data being used for training and inference. An Extract Transform
Load (ETL) process was performed to combine data from different files into a
single central repository. The repository consists of a HDF5 file which allows
for simpler and more structured handling. A data pre-processing pipeline
was written and executed that extracted the Three-Dimensional (3D) image
data from the DICOM file, patient-per-patient and stored it in the HDF5 file
format as an array ([D, H, W], where D is depth, H is height and W is width).
Along with the 3D image data, the relevant structure sets were extracted from
the DICOM file, as binary images with the same coordinates of the images,
defining a segmentation mask of the GTV that was manually delineated by the
physicians. In addition, relevant metadata were extracted including:

• rescale intercept and rescale slope to convert pixel values to Hounsfield
unit (HU) values;

• slice thickness to obtain the voxel spacing, hence the resolution in the
z-direction;

• pixel spacing to get the resolution in the x-y direction.

CT scans andmaskswere saved as databases of the corresponding group, while
metadata as attributes.

3.2.3 Data Preprocessing
After the ETL process, the processing of the data was performed. First,
the dataset was cleaned up by removing patients with missing images and/or
missing segmentation. For this project, the standard preprocessing steps for
segmenting CT medical images were employed. The subsequent techniques
outline the preprocessing procedures utilized:
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• Voxel-space resampling: Process to obtain the same voxel size for each
image in the dataset in order to make resolution homogeneous even
though the patients were scanned with CT equipment from different
manufacturers. In this project, the resampling size was fixed at 1x1x3
mm3.

• Transforming to HU: A linear transformation 3.1 applied to the data in
order to get HU values from the image pixel values:

HU = PV ∗ s+ b (3.1)

where PV represents the pixel value, s is the rescale slope and b is the
intercept.

• Contrast enhancement (HU windowing): HU values outside a
predefined range {min, max} were truncated and all the values below
min were set to min while all the values above max to max. A standard
range for CT lung images is {-1000, 400}, but other ranges were also
tried.

• Intensity normalization: The HU values were normalized from the
predefined range {min, max} to {0, 1}.

• Cropping: Edges of the image are cut away. A cropping region of 1 cm,
3 cm and 5 cm were selected around the segmentation in order to keep
the relevant neighbourhood for training and improve model training
efficiency. These cropping approaches are acceptable as the final goal
is probability and uncertainty, not the segmentation itself. The most
performing cropping approach was then chosen.

Omitting the cropping technique is a possibility, but doing so would
require feeding the model with an entire 3D image, which often results in
memory constraints. However, it is important to note that all the other
mentioned steps are indispensable for achieving satisfactory segmentation
performance. Besides the application of cropping, other methods were tried
out to deal with the memory issues arisen during the training. Downsampling
represents a technique to reduce spatial resolution and consequently the
storage size of the data. However, this technique may lead to throwing away
relevant information. Another common technique is patching, i.e. subdividing
the image into smaller patches. These patches can be treated as entire images,
therefore given to the network and segmented. The final image can be
reconstructed by merging together the segmentations of each patch.
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To avoid the potential loss of relevant information from the images,
denoising was not applied. Furthermore, since the images were confirmed
to be aligned with the segmentations, there was no need for registration
techniques to be utilized.

The final dataset was split into training, validation and testing sets
following well-accepted general rules in the scientific community.

A flag was added as an attribute of each patient’s group in the HDF5 file
in order to distinguish the corresponding set to which each patient belongs, as
illustrated in Table 3.1.

Set Splitting Flag
Training set 80% (333 patients) ”0”
Validation set 10% (42 patients) ”1”

Test set 10% (42 patients) ”2”

Table 3.1: Dataset split

In addition, data augmentation was applied at training time to increase the
size of the training set using the torchIO Python library [57]. In particular, the
following 4 transformations with a probability of 20% each were used:

• Flip along the x-axis: a technique that reverses rows and columns of the
3D matrix horizontally, i.e. along x-axis

• Flip along the y-axis: a technique that reverses rows and columns of the
3D matrix vertically, i.e. along the y-axis

• Flip along the z-axis: a technique that reverses rows and columns of the
3D matrix along the remaining axis, i.e. z-axis

• 90 degrees rotation: a technique that rotates the 3D image by 90 degrees
clockwise from z- axis towards the x-axis.

Therefore, in 20% of cases, the data did not undergo any transformation.

3.3 Neural Network Model
In the following section, the details of the network architecture of the 3DU-Net
and the related Pytorch implementation are provided. Moreover, both training
and testing algorithms are described.
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3.3.1 Model Architecture
The network architecture is illustrated in Figure 3.2 and summarised in Table
3.2. Like the standard U-Net by Ronneberger O. [41], this network architecture
includes a contracting path and an expansive path, each with four resolution
steps. The main difference consists in the replacement of 2D operations with
3D operations, making this network a 3D U-Net instead of a standard U-
Net [42]. By using a 3D CNN, operations like convolution and pooling are
implemented in a 3D space, preserving spatial information of the volumetric
medical images [58].

Figure 3.2: 3D U-Net architecture

The 3D U-Net was entirely built from scratch using open-source PyTorch
packages but following literature parameters as reference. The primary
motivation for this choice was driven by educational purposes. In the
contracting path, each step includes two 3 x 3 x 3 3D Convolution (Conv) with
padding of 1, each followed by a 3D Batch Normalization (BN) and ReLu.
After this double convolution block, a 2 x 2 x 2 MaxPool operation and a
dropout layer with dropout rate (p)= 0.2 are applied. A conservative approach
was preferred when selecting a dropout rate in order to avoid dropping relevant
information, as it is typically maintained within the range of 0.2 to 0.5. This
step is repeated the same for the other three resolution steps of the contracting
path. At each step of this path, the number of feature maps are doubled. In the
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original U-Net model by Ronneberger O. (2015) [41], the number of feature
maps that begin the network is 64, while the maximum number of feature
channels is 1024. In this work, the minimum number has been chosen to be
32 and the maximum to 512, to reduce the memory issues that could arise
during the training.

In the expansive path, each step consists of a 3D Transposed Convolution
(ConvTransp) of 2 x 2 x 2, also called upconvolution, with a stride of 2,
followed by a dropout layer (p = 0.2) and a double convolution with ReLu and
BN. Skip connections from the contracting path are concatenated to feature
maps of the expansive path according to their resolution step.

At the final step, another dropout layer and a 3D Conv are applied to map
the 32 feature channels to the defined number of classes, i.e. 2.

As it can be noticed, dropout layers were added only at key positions
[49] instead of being applied throughout all layers, as usually done to reduce
overfitting [59]. In this project, dropout layers were used after each MaxPool
operation in the contracting path and after each ConvTransp in the expansive
path, plus another dropout layer at the final step.

3.3.2 Training and Testing
Two main parameters used during the training following the literature can be
highlighted:

• Adam as the optimization method

• Dice Loss as loss function

The remaining hyperparameters were defined as a result of experimenta-
tion. Since a higher learning rate performs better on bigger batch size, batch
size was set to 128 and learning rate to 1e-4 during the two approaches of
training patches (32 x 32 x 32) and training images with the same size (80
x 112 x 32). The batch size was set to 1 and the learning rate to 1e-6 for
the cropping approach, since a smaller learning rate performs better on small
batch size [60].

A validation set was used to tune hyperparameters and avoid overfitting by
plotting and comparing training and validation’s loss function. Dice score was
used as a metric to check model performance since it is a measure of overlap
between the target and the prediction. The model was trained on an Nvidia
Tesla T4 16GB GPU.

At testing time, dropout layers were switched off to predict segmentations.
Softmax function 3.2 was used as an activation function at the final layer of
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Blocks Layers
Conv3D+ReLu+BN

Down 1 Conv+ReLu+BN
MaxPool+Dropout
Conv3D+ReLu+BN

Down 2 Conv3D+ReLu+BN
MaxPool+Dropout
Conv3D+ReLu+BN

Down 3 Conv3D+ReLu+BN
MaxPool+Dropout
Conv3D+ReLu+BN

Down 4 Conv3D+ReLu+BN
MaxPool+Dropout
Conv3D+ReLu+BN

Bottleneck Conv3D+ReLu+BN
ConvTransp+Dropout
Conv3D+ReLu+BN

Up 1 Conv3D+ReLu+BN
ConvTransp+Dropout
Conv3D+ReLu+BN

Up 2 Conv3D+ReLu+BN
ConvTransp+Dropout
Conv3D+ReLu+BN

Up 3 Conv3D+ReLu+BN
ConvTransp+Dropout
Conv3D+ReLu+BN

Output Conv3D+ReLu+BN
Dropout

Conv3D+ReLu+BN

Table 3.2: Building blocks of the 3D U-Net architecture

the NN
Softmax(xi) =

exp(xi)∑
j exp(xj)

(3.2)

Finally, the class with the highest probability was selected per each voxel as a
predicted class label by using argmax function.
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3.4 Monte Carlo Dropout
The first main goal of the project is to develop probability and uncertainty
maps. Following Jungo’s work on the topic [8], dropout layers have been
used at test-time to create MC samples [7]. Therefore, dropout layers were
kept on during the experiment and 25 predictions T were produced per each
patient, following the procedure described in [54]. The foreground probability
pr related to the cancerous region r was computed as the average of the 25MC
samples using 2.8.

Probabilitymapswere then obtained from the resulting tensor [C,D,H,W ]

by extracting the second channel output of the tensor (output size: [D,H,W ]).
Normalized entropy 2.9 was employed as a measure of uncertainty [8], while
the softmax output of the network was used a probability pr of the GTV region
r.

Softmax output, probability and uncertainty maps were saved into a HDF5
file for later use. Maps were visualized using Image Slicer Viewer, an open-
source code using Matplotlib library [61].

Multiple segmentations Probability map Uncertainty map3D U- Net

Monte Carlo Dropout

Figure 3.3: Pipeline to obtain probability and uncertainty maps using Monte
Carlo Dropout technique.

3.5 Reliability Diagrams
The quality of the model’s confidence was assessed by using reliability
diagrams [62]. Two different reliability diagrams were produced. To create a
reliability diagram which plots relative frequency as a function of confidence,
predictions were discretized into 15 bins (M) with equal width, following
the methodology delineated in [54] and [63]. Labels were considered as a
measure of frequency, while the predicted softmax likelihoodwas ameasure of



40 | Methodology

confidence. For each bin, voxels whose prediction confidence falls within that
interval were considered. The weighted average of confidence and frequency
within the bin were calculated and saved in a list. Once the results for each bin
were obtained, a reliability diagram was plotted and the ECE was calculated.
As for the second approach, a diagram was developed plotting the errors as a
function of uncertainty, as shown in literature [54]. Uncertainty values, i.e.,
probability predictions converted into entropy 2.9, were averaged within each
bin. Voxels with predictions different from the target that fell within that range
were considered errors and averaged. Afterwards, UCE was computed and the
reliability diagram was plotted. The selection of the aforementioned metrics
was based on their established status as standard measures for evaluating the
reliability of the model.

3.6 Clinical Validation
A clinical experiment was performed to evaluate the developed model, testing
whether the results produced by the NN agreed with a clinician’s opinion.

The test set used during the experiment was composed of 42 patients
randomly selected from the dataset of 417 patients. These patients were not
used during the previous training steps, constituting an unseen dataset. The
experiment was conducted blind, as the clinician was shown only the CT scans
and the target, but not the uncertainty maps produced by the model.

Two stages were included in the experiment:

• Uncertainty classification

• Uncertainty localization

The first phase involved the clinician’s classification of each patient into three
different categories:

• GTV with expected high segmentation uncertainty

• GTV with expected intermediate segmentation uncertainty

• GTV with expected low segmentation uncertainty

Dicompyler platform [64] was used to visualize the CT scans of each patient.
The clinician was allowed to scroll through the slices, change the window
width and level, zoom in and out, and visualize the overlapping GTV
mask. Then, the clinician had to classify the patient into one of the three
aforementioned categories.
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During the second phase, the clinician had to indicate the area with the
highest expected uncertainty in their opinion. Snapshots of the screen were
captured while the clinician was indicating the areas with the pointer. In
addition, the clinician’s comments on each patient were noted. Once all the
results were collected, the outputs were analysed by developing two metrics
of evaluation:

• Mean Uncertainty (MU): average of the uncertainty values of each voxel
in the uncertainty map,

Mean Uncertainty =
1

N

N∑
n=1

Hn (3.3)

where N is the total number of voxels in the image and Hn represents
the uncertainty value of the voxel n

• Relative Uncertainty Volume (RUV): volume of the higher uncertainty
area,

Relative Uncertainty Volume =
Vhigh uncertainty

V target
(3.4)

Since it is known that the uncertainties scatter all over the images, it is
necessary to narrow it to the high uncertainty regions. Otsu’s thresholding
technique was implemented to extract the high uncertainty volume [65]. This
method was used to find the best uncertainty threshold in order to separate
the voxels into two classes, the background and the ring related to the highest
uncertainty area. The best threshold is represented by the uncertainty value
that minimizes the intra-class intensity variance, i.e. the variability between
observations of the same class. After finding the best threshold, the higher
uncertainty class voxels were extracted and considered for computing the
relative uncertainty volume.

In addition, ROC curves were plotted considering two different cases,
representing the 2 opposite levels of clinician’s concern. In the first case,
patients classified as intermediate by the clinician were considered with low
uncertainty. This depicts the scenario of a less concerned clinician, who
wants to limit the use of this tool only to regions with very high uncertainty.
In the second case, patients with intermediate uncertainty were added to the
high uncertainty class. This depicts the approach of another clinician, more
concerned, who prefers to include more regions in the high uncertainty area.
In this way, it is possible to compare the performance of the two developed
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metrics, MU and RUV, considering the two extreme cases. AUC score was
computed as well to quantify the ability of discrimination of both metrics.

Furthermore, two sensitivity values were decided and used to classify the
patients into two classes, low uncertain and high uncertain, using the two
metrics. Confusion matrices were then employed to compare the different
scenarios.
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Chapter 4

Results

This chapter provides a comprehensive presentation of the results obtained
throughout the thesis project. To facilitate parallel consideration of
methodology and results, this chapter follows a similar section division to the
previous one.
Section 4.1 outlines the results of the data handling and preprocessing,
including details of the resultant images. In Section 4.2, the reader can
find details regarding the performances of the 3D U-Net model previously
described. MC Dropout technique was applied to generate probability and
uncertainty maps, which are presented in Section 4.3, while Section 4.4
contains reliability diagrams used to check the calibration of the model.
Finally, Section 4.5 illustrates results from the experiment designed to
clinically validate the model.

4.1 Data Preprocessing
As mentioned earlier, the dataset used in this study comprises GTV of various
sizes, each corresponding to a different TNM stage. The volume distribution
of the primary GTV for the dataset is shown in Figure 4.1. The distribution
appears to be half-normally distributed, with a peak of values near zero and a
tail that extends to around 800 cm3.

Figure 4.2 depicts an example of the data before preprocessing. On the left
side, a 2D slice of the 3D scan of patient ’1’ is displayed. The values in the
image are still pixel values and not windowed HU values. On the right side,
the corresponding GTV delineation is shown.

As mentioned in the methodology chapter, the dataset was cleaned up by
removing patients with missing images and/or segmentation. As a result, 5
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patients were removed, which is a small number compared to the initial dataset
of 422 patients.

Various preprocessing steps were implemented, as described previously.
Figure 4.3 displays the different cropping techniques used, with the margin
around the GTV increasing from left to right in the image.

Figure 4.1: Volume distribution of the primary GTV in the dataset.

a)

Image

b)

Mask

Figure 4.2: Example of a 2D slice of the CT image (a) and GTV delineations
by a clinician (b) before preprocessing.

Several ranges of HU were experimented and the most effective one ([-
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150, 250]) was selected. When the window width is decreased, the GTV’s
edges become more distinct and identifiable. However, it is crucial to select
the appropriate window level to avoid losing critical information.
Figure 4.4 illustrates the difference between two images generated using
different HU windows. Image a shows the result of the application of a HU
window in the range [-1000, 400], while the second one corresponds to the
same CT slide preprocessed with a HU window of [-150, 250].

a)

1 cm margin

c)

3 cm margin

e)

5 cm margin

b) d) f)

Figure 4.3: Image and corresponding mask after applying three different
cropping sizes.

a)

HU=[-1000,400]

b)

HU=[-150,250]

Figure 4.4: Comparison between two different HU windowing.

After resampling, windowing, and cropping, the preprocessed dataset
underwent data augmentation techniques discussed in Section 3.2. Figure 4.5
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demonstrates the effects of flipping a 2D slice dataset along all three axes.

a)

Flip x-axis

b)

Flip y-axis

c)

Flip z-axis

Figure 4.5: Data augmentation: flipping along the three axes.

4.2 Segmentation Performance
Asmentioned in the preceding chapter, various preprocessing techniques were
applied to the dataset during the training of the model to determine the most
effective combination. The choice to use the dice score for evaluating the
model is based on its effectiveness in measuring the similarity between the
predicted segmentation and the ground truth. Moreover, it is commonly
used in medical image analysis and computer vision tasks. The following
three Figures, 4.6, 4.7 and 4.8, display performances in terms of the loss
function and the dice score of the training of the datasets cropped with the
three distinct methods. Results from the training set are represented by the
blue curve, validation by the orange curve and a red line is used to indicate
where overfitting starts occurring. Plot a shows the loss function of both
training and validation, while plot b displays the dice score trend. Figure
4.6 demonstrates a clear instance of overfitting that arises after approximately
400 epochs, indicating that training should conclude around the 400th epoch.
Although an early stopping technique could have been employed, it was not
deemed essential to attain high segmentation performance for this project.
As a result, through multiple experiments, it was consistently observed that
a plateau was reached after approximately 400 epochs, leading to the selection
of this number as the final training epoch count. Additionally, the same plot
displays a gap between the training curve (blue line) and the validation curve
(orange line), as expected due to overfitting.

Furthermore, it is noticeable that the model delivers better results when
the dataset is cropped with only 1 cm of margin. A difference of about 0.20 in
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the validation dice score is evident between the results with a margin of 1 cm
and the two other cropping methods. As the margin increases, the model’s
performance appears to worsen. Hence, the first method was selected for
subsequent phases. The average dice score achieved by the chosen model
on the test set was 0.60 ± 0.25 (Table 4.1) Figure 4.9 illustrates an example
of segmentation results generated by the model. Figure 4.9a represents
a preprocessed CT image from the test set, figure 4.9b the corresponding
delineation from the clinician used to train the model, figure 4.9c shows the
prediction produced by the model and figure d the difference between the
contour provided by the clinician and the one predicted. Results from the
downsampling and patching methods are omitted since they did not produce
relevant results.
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Figure 4.6: Model performance during training using the dataset cropped with
1 cm margin.

Training approach Dice score
1 cm margin + HU=[−150, 250] 0.60± 0.25
1 cm margin + HU=[−1000, 400] 0, 55± 0, 28
3 cm margin + HU=[−150, 250] 0, 50± 0, 31
5 cm margin + HU=[−150, 250] 0, 44± 0, 26

Table 4.1: Dice score of the main training approaches.
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Figure 4.7: Model performance during training using the dataset cropped with
3 cm margin.
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Figure 4.8: Model performance during training using the dataset cropped with
5 cm margin.

4.3 Probability and Uncertainty Mapping
Using the Monte Carlo dropout technique, as described in Chapter 3, the
model generates probability and uncertainty maps. This section displays four
different scenarios obtained from the outcomes. Each of the four figures
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a)

CT image

b)

Oncologist contour

c)

Model contour

d)

Contour comparison

Figure 4.9: Example of segmentation results produced by the trained model.

consists of five images:

• (a) preprocessed CT image

• (b) manual delineation by a radiation oncologist

• (c) segmentation generated by the model

• (d) probability maps derived from the Monte Carlo dropout technique

• (e) uncertainty maps resulting from the application of the entropy
equation 2.9

In the first case, depicted in Figure 4.10, it is observable that the oncologist
did not contour an ambiguous spike connected to the spherical tumour area,
which the model captured in its prediction. Nonetheless, the probability and
uncertainty maps indicated low probability and high uncertainty in that region.

a)

CT image

b)

Target

c)

Prediction

d)

Probability

e)

Uncertainty

Figure 4.10: Example of probability and uncertainty maps revealing an
ambiguous spike.

Figure 4.11 presents the second scenario, where the model’s prediction
appears to be overly contoured when compared to the target. Probability and
uncertaintymaps indicate again that area as low probable and highly uncertain.

Figure 4.12 displays a scenario where the model’s contouring is smaller
than the clinician’s delineation, resulting in under-contouring. Two areas at
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a)

CT image

b)

Target

c)

Prediction

d)

Probability

e)

Uncertainty

Figure 4.11: Example of probability and uncertainty maps revealing over-
contouring.

the top and bottom of the contouring are left out in the prediction. Nonetheless,
it is clear from images d and e of the same figure that probability and
uncertainty maps detected the same shape contoured by the clinician, although
the uncertainty is high.

a)

CT image

b)

Target

c)

Prediction

d)

Probability

e)

Uncertainty

Figure 4.12: Example of probability and uncertainty maps revealing under-
contouring.

The final example of missed tumour can be viewed as an extreme case of
under-contouring. The model failed to provide any segmentation, resulting in
the GTV not being recognized, even though the clinician marked a contour in
that region. Nonetheless, both probability and uncertainty maps indicated the
presence of a potentially cancerous area in that region.

a)

CT image

b)

Target

c)

Prediction

d)

Probability

e)

Uncertainty

Figure 4.13: Example of probability and uncertainty maps revealing a missed
cancerous area.
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Figure 4.14: Reliability diagrams plotting relative frequency as a function of
confidence (a) and error as a function of uncertainty (c) with corresponding
standard deviation SD (b)(d).

4.4 Reliability Analysis
In Section 3.5, the methodology used to create the following reliability
diagrams is explained. The results of this calibration check are presented in
Figure 4.14, where four subplots are shown.

In Figure 4.14, plot 4.14a shows the averaged relative frequency plotted
against the averaged confidence, while the plot 4.14b illustrates the standard
deviation curve of the dataset frequency per each bin of the previous plot.
Although the curve of the average does not precisely follow the identity line,
it hovers around it.

In the same Figure, the mean error across all patients is plotted against
the mean uncertainty in plot 4.14c, while image 4.14d shows the trend of
the standard deviation related to dataset error. Once again, the curve of the
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averaged error deviates from the ideal calibration line, especially for higher
uncertainty values, revealing overconfidence in the model. The ECE and
UCE scores defined in Section and computed as explained in Section 3.5 are
displayed in the top left corner of the figures and in Table 4.2.

Metric Score
ECE 8.54
UCE 8.40

Table 4.2: ECE and UCE scores obtained through reliability analysis

4.5 Clinical Validation
In this section, the results obtained from the clinical experiment are presented.
To start with, an example of the uncertainty distribution of a patient is
illustrated in Figure 4.15. As stated earlier, the bar plot displays two peaks that
represent two distinct classes, the low uncertainty related to the background
and the high uncertainty area related to the ring around the segmentation.
The intra-class intensity variance is minimized to find the best threshold to
separate the two classes. In the figure, this threshold is illustrated as a red line
at almost the centre of the distribution. Figure 4.16 illustrate the outcomes
of the application of Otsu thresholding to extract the high uncertainty volume
and remove the background pixels with low uncertainty values.

Figure 4.15: Example of uncertainty distribution of one patient of the test set.
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a)

Uncertainty map

b)

High uncertainty area

c)

Low uncertainty area

Figure 4.16: Application of Otsu thresholding on the uncertainty map (a) to
extract high (b) and low(c) uncertainty areas.

Figure 4.17 shows the outcomes of the first metric, MU. This barplot
presents the mean uncertainty values of the patients, with each bar coloured
according to the clinician’s feedback. Patients with low uncertainty are
represented by blue bars, while high-uncertainty patients are shown in red, and
those with intermediate uncertainty are depicted in yellow. A colour pattern
can be observed, with blue bars dominating the left side of the figure, and red
bars prevailing on the right. Yellow bars prevail in the middle but outliers can
be found also in the red and blue areas.
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Figure 4.17: Bar chart of the correlation between the clinician’s opinion
(colour-coded) and the mean uncertainty score MU (y-axis) provided by the
model per each patient.

The results of the second metric, RUV, are displayed in Figure 4.18, where
the colors of the bars also follow a certain pattern but are less distinct than in
the previous metric. In the appendix, Table A.1 contains all the results from
the clinical experiment.
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Figure 4.18: Bar chart of the correlation between the clinician’s opinion
(colour-coded) and the relative uncertainty volume RUV (y-axis) provided by
the model per each patient.

Metric Correlation coefficient
MU 0.68
RUV 0.49

Table 4.3: Pearson Correlation coefficient between metrics and clinical results

As presented in Table 4.3, one can notice that the MU has a higher
Pearson correlation coefficient (a measure of the linear correlation between
two variables) with the clinical outcomes compared to RUV metric. Figure
4.19 is a scatter plot that compares MU and RUV to check for any clusters
related to the three classes. Blue dots accumulate in the lower-left corner with
low values of both metrics, while red dots are mostly located in the upper
area of the graph. Yellow dots are scattered in between, without a clear area of
distinction. In the scatter plot, it is possible to notice that two dots are indicated
with the corresponding number of the patient. For patient 12 it is possible to
notice that the value of RUV is quite low, instead, the MU score is higher and
seems to better discriminate this case as a high uncertain GTV. Patient 15 has
a quite high value of RUV, while MU score is low and does not allow to gain
the same classification as the clinician.

The ROC curves for both metrics are shown in figure 4.20. The two
opposite levels of concern corresponding to two clinical cases of a less or more
concerned clinician are illustrated in subplots 4.20a and 4.20b. In the first
plot, intermediate patients were considered as having low uncertainty (image
4.20a), and in the second one as having high uncertainty (image b). It can
be observed that MU outperforms RUV in both cases, with all ROC curves
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Figure 4.19: Scatter plot of the two validation metrics, MU on the y-axis and
RUV on the x-axis. Two cases corresponding to patients 12 and 15 are marked.

having high AUC values, reaching a peak of 0.876 for MU in image 4.20a.
AUC scores are summarized in Table 4.4, where the first rows show the results
of the scenario of a less concerned clinician, and the last two rows the scenario
of a more concerned clinician.
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Figure 4.20: ROC curves of the two validation metrics, mean uncertainty
(MU) and relative uncertainty volume (RUV) in two cases of sensibility.

The classification results after the definition of the two sensitivity levels
(0.8 and 0.9) are summarized in Figures 4.21 and 4.22, where eight confusion
matrices are illustrated. The first four matrices refer to the scenario of a less
concerned clinician, while the remaining four to the case of a more concerned
clinician. In each figure, the results from both metrics and both levels of
sensitivity are shown.
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Metric AUC score
MU (less concern) 0.876
RUV (less concern) 0.804
MU (more concern) 0.849
RUV (more concern) 0.719

Table 4.4: AUC scores for MU and RUV considering the two approaches (less
and more concerned clinicians).

Less concerned clinician

Figure 4.21: Confusion matrices: less concerned clinician (intermediate cases
considered as low). Two levels of sensitivity (0.8 and 0.9) are displayed for
each metric (MU and RUV).

More concerned clinician

Figure 4.22: Confusion matrices: more concerned clinician (Intermediate
cases considered as high). Two levels of sensitivity (0.8 and 0.9) are displayed
for each metric (MU and RUV).

In the following Figures 4.23, two examples are extracted from the test
set. Each of the two figure includes a CT image, the corresponding target
delineated by a radiologist and the uncertainty map produced by model. The
first case (4.23a) shows an example of GTV defined as low uncertain by the
clinician. The uncertainty map seems to confirm the hypothesis producing a
very thin and low uncertain ring around it. The second one shows an examples
of GTV defined by the clinician as high uncertain. The uncertainty map seems
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CT Image Target Uncertainty Map

(a) 2D slice of a GTV (patient 4) defined as low uncertain by the clinician.
CT Image Target Uncertainty Map

(b) 2D slice of a GTV (patient 38) defined as high uncertain by the clinician.

Figure 4.23: Examples of low and high uncertain GTV.

to agree with the clinician’s opinion since the high uncertainty area seems to
be quite large and thick.

Figure 4.24 displays some outcomes obtained during the uncertainty
localization phase of the experiment. For patient 15 (4.24a) and 32 (4.24b),
two screenshots were captured during the experiment while the clinician was
indicating with the pointer the region of high uncertainty in their belief. For
patient 20 (4.24c), only one snapshot was captured. One can notice that a
general agreement can be found between the indicated area and the thicker
and brighter area of the uncertainty map.
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(a) Patient 15.

(b) Patient 32.

(c) Patient 20.

Figure 4.24: Example of agreement between clinician’s localization of high
uncertainty areas and results from model’s uncertainty maps.
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Chapter 5

Discussion

This chapter analyzes and discusses the results presented in Chapter 4. The
focus is mainly on the model’s ability to generate probability and uncertainty
maps and the clinical experiment.

First of all, despite building the model from scratch and not utilizing pre-
built or pre-trained models, the segmentation performance for this dataset
appears to agree with the literature for this dataset [9]. This performance
may be limited due to the small number of patients and the large variability in
GTV morphology. The latter was also reflected in the various TNM stages
including in the patient list. Furthermore, a noticeable decline in model
performance is evident in Figures 4.6 4.7 4.8, suggesting that the reduction
of non-relevant information from the background may aid in improving the
model’s performance.

The results in terms of probability and uncertainty maps agree with
observations in the literature. As in Wickstrom’s study [66], the model tends
to be confident in most of the voxels of the predictions, but it struggles to
find defined borders of the GTV. This is the reason why the shape of the
uncertainty maps is usually a ring that follows the margins of the GTV. It
is difficult for the model to understand exactly where the cancerous area ends
and the healthy tissue starts, as it is for a human. The probability maps are also
reasonable since the probability tends to be higher within the target area and
lower outside. By using a highly variable dataset, in which numerous different
clinicians contoured the GTVs according to their own choices, the resulting
uncertainty captures the inter-observer variability in the outcomes.

Section 4.3 presents four interesting cases that exemplify scenarios
commonly observed in clinical practice. The first case (Figure 4.10)
demonstrates the difficulty of defining borders of a GTV close to adjacent
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vessels or other types of spikes. The ground truth of this GTV does not
include anything related to the neighbouring spike, while the model prediction
does include it. Probability and uncertainty maps highlight that area as low
probable and highly uncertain, thereby warning the clinician to pay attention
and double-check it. The clinician defined the same area as ”doubtful”, thus
confirming what was obtained from the model.

In the second figure (Figure 4.11), a scenario of over-contouring is
represented. This example highlights how hard is for both clinicians and
models to contour areas close to the mediastinum, diaphragm, or other
anatomical structures. It is difficult to understand the exact pixels that mark the
end of the GTV, especially because CT images have low contrast. In this case,
the ground truth did not include part of the lower anatomical structure, while
the model’s prediction did. The uncertainty map revealed high uncertainty in
that region, reflecting the struggle faced by clinicians in contouring in such
conditions.

Figure 4.12 outlines an opposite scenario: under-contouring of themodel’s
prediction compared to the ground truth. Here, it is clear that the clinician
made choices related to the final aim of RT. The model did not include any of
the surrounding tissues, resulting in under-contouring compared to the target.
Both probability and uncertainty maps captured well the missed area.

In the final example presented to the reader in Figure 4.13, the model did
not provide any prediction. This could result in a false negative case that will
not be treated. However, both probability and uncertainty maps indicated a
potential cancerous region.

All four previous examples indicate the usefulness of these maps in
clinical practice to avoid cases of under or over-contouring that can lead to
mistreatment, as well as to capture false negative cases in which no treatment
would have taken place otherwise.

Calibration plots were used to assess the reliability of the model. The
results in Figure 4.14 confirmed that the model is overconfident in the high
probability area, which is a common problem for NNs [67]. The most likely
reason for this issue is the overfitting and therefore the small dataset since it
causes the learner to exhibit more confidence in its predictions that do not
accurately reflect the actual data [68, 69]. This overconfidence is reflected in
test data as well [70]. In this case, the model appears to be underconfident
for low confidence bins, but mostly overconfident for values of confidence
larger than 0.3, indicating miscalibration at the dataset level. However, the
ECE and UCE scores (ECE = 8.54, UCE = 8.40) are lower compared to other
uncalibrated models presented in [54], with scores reaching more than 30.
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The standard deviation depicted in Figure 4.14 demonstrates higher values
for intermediate confidence and uncertainty, with decreasing values as we
move towards the extremes of the curve. Attempts to calibrate the model
were made. The application of Temperature Scaling [54], a post-processing
technique aimed at optimizing a scalar value called temperature to calibrate
the softmax output at a global level, did not lead to successful results. This
may be because local spatial miscalibrations occur in the images, and a global
factor cannot fix this issue. Local scaling calibration approaches that address
this phenomenon exist [71], but they were not implemented in this project. By
applying local scaling calibration techniques, the model’s output probabilities
for each pixel or region in the segmented image can be adjusted or scaled,
therefore at a local level.

Regarding Otsu’s thresholding approach used to extract the higher
uncertainty area and define the RUV metric, the results reveal consistency
among the patients. The thresholds computed lay in the narrow range
[0.26, 0.29], thus confirming the reliability of the approach.

The final outcomes of the clinical experiment demonstrate a general
agreement between the clinician’s opinion and the model results. The barplots
in Figures 4.17 and 4.18 reveal a pattern, which is supported by the Pearson
correlation coefficient between the colour labels and the metrics scores
(rMU = 0.68, rRUV = 0.49).

The two ROC curves, employed to reproduce the two different levels of
concern that a clinician can express, exhibit high AUC values, particularly for
the MU metric in the less concerned approach (AUCMU = 0.876). The less
concerned level, which considers intermediate cases as having low uncertainty
(Figure 2.10 b), appears to perform better since the AUC scores are higher
compared to themore concerned case (Figure 2.10 b). Decreasing the concern,
which reduces the number of highly uncertain cases, produces a higher true
positive rate and a lower false positive rate. One possible explanation for these
results is that lowering these intermediate cases helps alleviate the model’s
overconfidence, which tends by its nature to lead to overestimated uncertainty.
This is also evident in the confusion matrices (Figure 2.11), where the less
concerned approach shows higher values of true positives and true negatives,
with aminimal number of incorrect predictions. However, the more concerned
approach allows for eliminating false negatives almost entirely.

The selected example figures from the test set further confirm the
consistency achieved in the initial phase of the experiment, the uncertainty
classification. In particular, Figures 4.23 highlight the distinctions between
low and high uncertainty cases in the uncertainty maps, showing the model’s
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discriminative capability. It can be noticed that low uncertainty GTVs are
typically characterized by low MU scores and a thin ring around the GTV,
while high uncertainty cases exhibit thicker rings and brighter pixels in the
uncertainty maps. Therefore, the two defined metrics appear to discriminate
well these characteristics, as confirmed by the clinician. However, MU shows
better performance as a classifier compared to the other metric. Therefore, the
integration of uncertainty maps and their corresponding MU score in clinical
practice could be employed as an indicator for clinicians to determine whether
correction of the predictions is necessary or not. However, more research is
still needed to incorporate uncertainty maps into clinical practice.

Figure 4.23a displays a GTV slice from patient 4, which the clinician
described as having ”a peripheral location with little tissue around it, and
not much proximity to blood vessels”. Therefore, the clinician concludes with
”Not too much to expect here”. Both MU and RUV metrics yield very low
scores, thus confirming the clinician’s observation. Figure 4.23b shows a case
of very high uncertainty due to ”areas of fluid or puss similar to tumour” close
to the GTV itself, as stated by the clinician and found in the uncertainty maps.

The uncertainty localization phase of the clinical validation provided
valuable insights, confirming the match between highly uncertain regions
identified by the physician and those captured by the model. The clinician
noted that areas closer to the diaphragm and mediastinum present more
uncertainty and that spikes and adjacent vessels make it difficult to obtain
well-defined segmentation boundaries. This aligns with the model’s output, as
demonstrated by slices from patients 15, 32, and 20 in Figure 4.24, where the
clinician identified the same highly uncertain areas outlined in the uncertainty
maps. However, not all patients in the test set exhibit such agreement, as
evidenced by the two bar plots (Figures 4.17 and 4.18), which reveal also
instances of colour mismatch.
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Chapter 6

Conclusions

In the field of medical image segmentation, the high inter-observer variability
poses a major challenge that leads to inaccurate segmentations and represents
the primary source of errors in contouring tasks. The objective of this project
was to investigate whether the use of a 3DU-Net probabilistic auto-contouring
system could improve clinical contouring practice. To achieve this, a well-
established technique was applied to generate probability and uncertainty
maps, with the aim of demonstrating their usefulness as supplementary
tools for clinicians in assessing segmentation accuracy. The methodology
involved several steps to achieve this goal, which included building a 3D U-
Net, implementing the Monte Carlo dropout technique, conducting reliability
assessments, and finally clinically validating the model. The 3D U-Net
achieved a dice score consistent with the performance of other works using
the same architecture and dataset. The model produced reasonable probability
and uncertainty maps by applying the Monte Carlo dropout technique,
which captured interesting cases such as under-contouring, over-contouring
or missed tumours. Reliability diagrams employed for checking the model
calibration revealed overconfidence in the model. Despite this, the clinical
validation performed with a radiation oncologist provided evidence of the
effectiveness of the model, demonstrating a high level of agreement between
the model results and the radiation oncologist’s opinion. Two metrics were
defined to quantify the uncertainty map’s content. The experiment revealed
a high correlation between the two metrics and the clinician’s classification.
However, MU outperformed RUV as a potential indicator for clinicians
to determine whether correction of the predictions is necessary. Overall,
the application of the Monte Carlo dropout technique resulted in valuable
outcomes in terms of probability and uncertainty mapping. The clinical
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validation results showed promising potential for probabilistic models to be
a tool in clinical practice that can assist clinicians in their contouring tasks,
resulting in significant time savings and a potential decrease in clinical errors.
Uncertainty maps provide further information to the RO, which is not captured
in the predictions. This allows for a more efficient correction process for
the clinicians since it can help to recognize cases that could potentially
lead to mistreatment, recurrence of cancer, or toxicity issues. By adjusting
the sensitivity level of the uncertainty, a clinician can include more or less
tissue within the target based on the specific clinical case and the aim of the
segmentation. Additionally, thresholds can be established for the MU and
RUV scores to activate an alert for the clinician when high levels of uncertainty
are detected. In the case of low uncertainty predictions, the clinician could
confidently proceed without spending additional time on double-checking the
segmentation, as these predictions are automatically approved.

6.1 Future Work
The project demonstrates the potential of the Monte Carlo Dropout technique
in producing probability and uncertainty maps that align with clinical
opinions. However, further research is required to incorporate this tool into
daily clinical practice effectively. Investigating the calibration of the model
in greater detail would undoubtedly increase the tool’s trustworthiness. Local
scaling calibration could solve the problem of the local miscalibration of the
model, therefore mitigating the overconfidence of the model and leading to
more reliable outcomes. Furthermore, applying probability and uncertainty
mapping to the segmentation of organs at risk, in conjunction with the GTV,
could yield promising results. Additionally, the integration of other imaging
techniques has the potential to improve the performance of this probabilistic
auto-contouring system, effectively addressing the challenges associated with
low contrast in CT imaging. Moreover, the integration of reinforcement
learning of human expertise could enable the segmentation model to utilize
domain knowledge, expert annotations, and feedback, thereby potentially
enhancing the development of uncertainty maps. Lastly, to further validate
the tool and enhance the value of the outcomes, a larger-scale experiment
involving multiple clinicians is required.
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Table A.1: Results from clinical experiment.

Patient number MU RUV Clinical evaluation
0 0,0740 0,4810 H
1 0,0598 0,2708 L
2 0,0914 0,6165 I
3 0,0507 0,2760 L
4 0,0504 0,2849 L
6 0,0481 0,2954 L
7 0,0538 0,2598 L
8 0,0921 0,5195 H
9 0,0632 0,5970 L
10 0,0524 0,3893 L
11 0,1122 1,9244 H
12 0,0744 0,3320 H
13 0,1254 1,7947 H
14 0,0617 0,2523 I
15 0,0629 1,5098 I
16 0,0511 0,4194 I
17 0,0904 0,5879 H
18 0,0730 0,4446 I
19 0,0746 0,6154 L
20 0,0736 1,1421 L
21 0,0854 0,5462 I
22 0,0890 0,4719 H
23 0,0817 0,7444 H
24 0,0531 0,3866 L
25 0,0587 0,4408 L
26 0,0770 0,5281 H
27 0,0777 0,5060 I
28 0,0671 0,3324 L
29 0,0995 0,7907 I
30 0,0467 0,2703 I
31 0,0733 0,4977 H
32 0,0628 0,8927 H
33 0,0563 0,3941 L
34 0,1001 1,7168 H
35 0,0815 0,6416 I
36 0,0640 0,2539 I
37 0,0437 0,2649 L
38 0,1140 2,4451 H
39 0,0507 0,1987 I
40 0,0702 0,3708 I
41 0,0892 0,9386 H
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Table B.1: Threshold to extract the high uncertainty area with Otsu
thresholding approach.

Testset patient number Otsu Threshold
0 0,285
1 0,277
10 0,287
11 0,283
12 0,286
13 0,288
14 0,277
15 0,284
16 0,277
17 0,282
18 0,275
19 0,283
2 0,285
20 0,267
21 0,285
22 0,280
23 0,284
24 0,291
25 0,280
26 0,287
27 0,279
28 0,282
29 0,284
3 0,286
30 0,261
31 0,286
32 0,283
33 0,290
34 0,284
35 0,283
36 0,274
37 0,260
38 0,291
39 0,280
4 0,285
40 0,285
41 0,287
6 0,269
7 0,286
8 0,287
9 0,283
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