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Abstract 
 

The surface morphology of dissolving and/or melting bodies in a fluid is of interest 

in many applications. 

Studies on the topic are useful not only for clarifying the physical phenomena 

involved, thus enabling more accurate mathematical models, or for increasing the 

predictability in engineering applications. But also for providing new tools in 

geomorphology and planetary geology to better estimate the initial fluid flow 

conditions that gave birth to coherent structures on the surface of underground 

rocks. 

The surface pattern formation is strongly correlated with the forces exchanged 

between the fluid and the solid body. Indeed, on one hand, a body melting or 

dissolving in a quiescent fluid induces flows. On the other hand, the boundary layer 

plays a key role in the body surface erosion and in the near-wall fluid diffusion. 

This coupled phenomenon is referred to as self-sculpting. 

 

The results of a parametric experimental study based on the dissolution of hard 

candy in natural convection are here proposed and commented. 

The main varying parameters being considered are the inclination of the object and 

the salinity of the fluid. But also the convexity of the surface and the possible 

presence of V- or U-shaped incisions on the surface are introduced for drawing 

attention on and suggesting possible future research proposals. 

The surface pattern formation of first flutes followed by scallops is confirmed.  

Thanks to image data processing, a study on the body regression rate and an 

investigation on the characteristic size and on vertical and horizontal wavelengths 

of the coherent superficial structures is conducted. The results obtained from the 

photos are then commented on the basis of hydrodynamic stability theory, which is 

introduced at the beginning of the thesis. 

Final general comments on the results and the work conducted, together with 

suggestions for possible successive experimental works, are finally provided.
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Introduction and Objectives 
 

The present thesis aims to provide further understanding on the topic of the 

morphology that firstly appear and then evolve on the surface of dissolving bodies 

in an initially quiescent fluid. 

 

At first glance, it may appear that research on melting and dissolving phenomena is 

not needed. Mainly because there is the habit that, since these phenomena happen 

every day, i.e., ice cubes melting in water, then they must be known for sure. 

But most of the people are induced to think in this way, since they expect from the 

science classes attended at school that an easy and deterministic relation describes 

the physical system. Something like: by increasing the difference in temperature 

between the solid body and the environment, the solid melts faster. 

But it will appear evident in the next chapters, that this is not so easy as it looks 

like…at all. 

For example, just think about the same problem of a solid melting in a liquid 

environment, but with the possibility of changing now the salinity of the liquidity 

and not the temperature. The solid dissolves faster? 

Furthermore, it should be taken into account that most of the laws thought at schools 

describing the melting and the dissolution, like Fourier’s thermal conduction law or 

Fick’s law of diffusion were proposed respectively in 1822 [1] and in 1855 [1]. But 

the theory of the boundary layer was proposed by Ludwig Prandtl only in 1904 [3]. 

If, for the sake of argument, boundary layer did not exist, the two mentioned 

theories would have provided a very clean and concise way to mathematically 

describe the evolution of the problem. But as will be seen, considering the existence 

of the boundary layer, the results are not at all those expected a priori. 

Just to give a clue, when speaking of ice melting in quiescent water, most of the 

people would expect that the surface gets rounder and rounder, and smoother and 

smoother, with its volume retroceding uniformly till is completely melted. There is 

a similar expectation for a solute dissolving in a solvent. Instead, movement of the 

initially quiescent water near the wall of the solid is induced by hydrodynamic 

instabilities. The instability is caused in turn by the difference in temperature 
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(melting) or concentration (dissolving) between the liquid and the solid. Therefore, 

the established movement of water near the wall, strongly affects the shape of the 

body, but at the same time the shape of the body strongly affects the near-wall fluid 

dynamics. In summary, the surrounding fluid is not merely a passive agent, even if 

it is initially quiescent. Therefore, one or multiple surfaces of the object becomes 

rougher and dimplier in the process. This is totally unexpected with the classical 

theories of thermal conduction or of solute diffusion that do not consider the 

existence of boundary layer; thus, neglecting the importance of the fluid in the 

process. 

There is like a reminder to Karl Popper’s analogy between (some) scientific theories 

and buildings built on unsecure foundations. 

And recently the topic has received great renovated interest. 

 

Potential applications of the present study could be found in geomorphology and 

planetary geology. Because the surface morphology driven by solutal convection is 

found in soluble rocks. 

Therefore, the idea is to study the evolution of the pattern on the surface of a 

dissolvable body, in a controlled environment in a laboratory, to start creating a 

model that may in the future allow to estimate the initial fluid flow conditions that 

gave birth to coherent structures on the surface of underground rocks visible today. 

Obviously, further studies need to follow this one, in order to accomplish this 

ambitious goal. 

 

Since this is an aerospace engineering master’s degree thesis, the author of the 

present thesis dares to suggest that, if such a model is achieved one day and 

confirmed in geomorphology, then it might even be extended to planetary geology. 

Indeed, it is known that NASA is working on the project Planetary Cave Rovers [4] 

to explore planet caves. And there is even intention to use AI-guided drones (if the 

planet has an atmosphere, even rarefied) to do so [5], since they allow to reach, take 

photos and map caves, which are usually inaccessible places for rovers and which 

are not visible by orbiters. 
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The present work is organised in five chapters. 

In the first chapter, a necessary introduction to the topic is provided. The chapter 

explains why the topic is considered within the domain of multiphase flows, what 

the Stefan’s problem and why it is important in the study of melting and dissolving. 

Follows an introduction on the hydrodynamics instabilities needed to understand 

why the initially quiescent fluid starts to move. Follows a brief collection of photos 

showing the rough and dimply surfaces mentioned before. 

In the second chapter, a general and exhaustive overview of the physical 

mechanisms behind the surface morphology on different materials is given. This is 

the core chapter with a rich bibliography to draw on. 

In the last final three chapters, it will be given emphasis on the work, both made of 

experiments and of coding, carried out for six months at the Physics of Fluids group 

of the University of Twente by the author of the present thesis. Additional three 

months of post-processing followed. 

To be more precise, the third chapter explains comprehensively how to repeat the 

experimental activity described in the thesis. The experimental activity carried out 

is entirely based on image processing as the principal tool for investigating the 

physical phenomenon. Indeed, the usual experimental techniques used in fluid 

dynamics, i.e., hot-wires, cannot be applied in freezing-melting or solute near-wall 

regions. While PIV techniques have greater chances as PLIF to be applied in the 

near future. 

The fourth chapter explains the two codes written to process the front and lateral 

photos taken in the experiments. The former is about a thousand lines long, while 

the latter is a little less than three thousand lines long. Only the former is provided 

in the appendix. 

In the last chapter, conclusions will be drawn based on the image data that were 

processed. Results will be commented. A physical explanation of the mechanism 

behind the surface patterning observed in an inclined block of hard candy is 

supposed and proposed. Based on the proposed mechanism, it will be explained 

why scalloping has the potentialities to be considered a self-organising system. 
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CHAPTER 1: Multiphase flows and self-sculpting 
 

1.1 Introduction 

 

Multiphase flows are ubiquitous in our surrounding environment. 

Evidence of their presence ranges from the troposphere, where clouds dynamically 

evolve, to the Earth’s crust, where geophysical flows transport mass and deposit 

sediments over long distances, as in snow avalanches and in pyroclastic flows, or 

well deep underground, as in groundwater flows. It is evident that many 

environmental multiphase flows are connected to the water cycle, which is essential 

to life on Earth. In addition to natural phenomena, multiphase flows are present in 

many key processes of the main energy industries, as in electrolysis, nuclear 

reactors, oil and gas industries processes. Thus, a deep understanding of the 

phenomena associated with multiphase flows is of great importance, if not even a 

necessary condition, for a better and sustainable development of our society. 

 

It is clearly not possible to treat exhaustively the fluid dynamics and the actual and 

possible future applications of multiphase flows in a single document. 

The present document focuses only on multiphase flows of a liquid-solid mixture 

associated to the dissolution or melting of a body in a fluid. In the following 

chapters, emphasis will be given to the study of dissolution of a body in a quiescent 

liquid and of the related self-sculpting phenomena, that leads to the initial formation 

of flutes, to their metamorphosis into scallops and to the final surface pattern. But 

before treating in detail the apparently easy, but in reality complex, phenomenon, it 

is better to provide a definition of multiphase flows and of self-sculpting and to 

introduce some common geometries created on the surface of a solid by self-

sculpting processes and by sculpting processes driven by a forced external fluid. 

 

A multiphase flow is any fluid flow consisting of more than one phase or 

component. [1] Where a phase is, in thermodynamics, a chemically and physically 

uniform or homogeneous quantity of matter. [2] 
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Figure 1 Possible originating interfaces in liquid-solid phase change problems. 

As well introduced in [3], in a multiphase system made of a solid and a fluid, either 

being a liquid or a gas, similar geometries can arise from erosional effects of an 

external flow on the surface of an erodible solid body. And as will be thoroughly 

explained successively, similar geometries can arise even if the fluid is initially 

quiescent, but there is a presence of a temperature or a concentration gradient within 

the considered physical system. As shown in Fig. 1, the similar geometries 

described in the paper are grouped considering the convection regime and, in case 

of forced convection, if the acting flow is internal or external. 

It is easier for the reader to imagine the erodible solid body as a block of ice, while 

regarding the flow, it can be either considered as a liquid or a gas. Indeed, the final 

effects are the same; only the dimensions of the shaped surfaces change due to the 

different order of magnitude in the viscosity of the fluid. 

 

In case of an external forced flow, a first distinction is given by the external velocity 

module. If the external velocity is very low and the heat conduction normal to the 

wall is predominant with respect to the conduction along the fluid flow, alias the 

Reynolds and Nusselt numbers are very low, then the problem reduces to one that 

primarily concentrates on the nonlinear nature of a transient phase-change process. 

On the other hand, if the external velocity is not negligible, the effects of erosion in 

shaping the surface are important. In this case, two cases are distinguished 

according to the direction of the external flow with respect to the normal direction 

of the local surface. 

If the flow is directed almost parallel to the region of surface considered, it will 

gradually erode the surface. A greater local regression of the surface due to erosion 



 

17 
 

is expected moving downstream from the trailing edge. If the flow remains laminar, 

then a reduction in the local curvature moving downstream is expected. This means 

that apart from an upstream region, the surface regression of the remaining body 

surface is almost constant and limited in value. The cutting surface is the same of a 

pinnacle. 

 

Figure 2 Steady-state ice-layer profile on a flat plate, indicating various flow regimes. [3] 

Instead, if the laminar flow reaches at a coordinate the critical Reynolds number, 

then at this transition coordinate there is a substantial increase in the heat-transfer 

coefficient due to turbulent mixing. This causes a marked decrease in the meltable 

solid thickness, which results in a region of unfavourable pressure gradient. Due to 

the unfavourable pressure gradient, the conductive heat transfer of the fluid 

drastically decreases in the formed valley. Therefore, the smooth transition results 

in a gradual increase in the Nusselt number, whereas the step transition results in a 

peak in the Nusselt number. Cheng et al. [4] also confirmed that heat-transfer rates 

are 1.5 to 2.5 times greater and that laminar-to-turbulent boundary-layer transition 

occurs at Reynolds number as much as an order of magnitude lower with respect to 

the relative parameters for a flat surface of the same material. The latter is a clear 

reminder of the undisputed necessity of anti-icing techniques to guarantee 

airworthiness in adverse cold environments associated with freezing rain 

conditions. 

Instead, in case of a concentrated flow directed non parallelly with the local surface, 

there is a strong asportation of material due to the impingement. In this case the 

flow coherent structures within the jet mark the surface, leaving an indication of 

their dimensions. This is the case of warm jets impinging on a meltable solid 



 

18 
 

surface. Yen & Zehnder [5] showed experimentally that the penetration rate of a 

free water jet into a solid block of ice is essentially constant and linearly dependent 

on the bulk water temperature. Gilpin [6] highlighted that two different ablation 

modes exist for any given set of externally controllable parameters. In the slow 

mode, relatively larger cavities are produced with smooth rounded shapes at 

stagnation points, while in the fast mode, the cavities have smaller diameters and 

rough cylindrical surfaces. It is evident that the new surface morphology depends 

entirely on the jet flow properties and not on the properties of the fluid surrounding 

the jet and the solid body. There could even be vacuum in place of a surrounding 

fluid. Indeed, a clear example of fast ablation mode for an impinging jet on an 

erodible surface is offered by exhaust jets of retrorockets of landers when in 

proximity of a planet’s surface. 

An external flow directed almost parallel to the local surface, whose velocity is 

greater than the one associated to the case of nonlinear nature of a transient phase-

change process and at the same time smaller than the one associated to the case of 

transition flow over a meltable surface, may generate a wavy surface geometry. 

Clearly, in order for wave patterns to develop, there must be a maximum in the heat-

transfer rate in the trough regions between the waves and a minimum in the heat 

transfer rate at the crest region. [3] Furthermore, if the waves are not in static 

positions, then the heat-transfer rate must occur in the downstream half of the 

trough. Indeed, turbulence, and therefore heat transfer, are damped in regions of 

accelerating flow (favourable pressure gradient) and enhanced in regions of 

decelerating flow (adverse pressure gradient). The measured heat transfer rates for 

flow over a rippled surface are found to be 30 to 60 percent larger than those for 

flow over a flat or small-amplitude wavy surface of the same material. [7] 

 

Regarding internal flows applied to liquid-solid phase change problems, it is just 

worth to briefly mention that, in the problem of solidification of an advancing-pipe 

flow, the freezing length increases with time. [8] Indeed, time is an independent 

variable of these models, since the solidifying crust thickness depends not only on 

the local convective heat exchange but on the time of arrival of the flow front as 

well. 
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The reason why the author added in Fig. 1 the case of a meltable internal pipe 

surface is that it is similar to the case of a dissolvable internal pipe surface. The 

author will motivate the possible interest in studying such a geometry in the final 

chapters.  

 

Having treated briefly the possible cases related to forced convection, it is now 

worth to provide a definition of self-sculpting and to discuss the geometries shaped 

in the natural convection regime. 

Self-sculpting [9] can be defined as the phenomenon of solid boundary time-

evolution due to the interaction between the solid being sculpted and the flow which 

had been induced by gradients created by the presence of the same solid. 

The definition is at first abstruse. So, a description of the main time states of the 

long-lasting phenomenon is here provided. Basically, at the initial condition, a solid 

body is immersed in a quiescent fluid. It is either supposed that the solid body is 

soluble in the surrounding fluid or that the temperature of the surrounding fluid is 

higher than the melting point of the solid body. The two conditions may even apply 

at the same time, as happens for ice in salty water. In the former case there is a non-

null concentration gradient while in the latter case there is a non-null temperature 

gradient. If the two conditions are superimposed, obviously the two aforementioned 

gradients are both non-null. The gradients are higher getting closer to the surface of 

the solid body. At the same time the gradients decrease while getting further from 

the body surface and are null for positions farther than a critical distance. Even only 

one non-null gradient is a sufficient condition to induce a flow. The flow is induced 

in order to reach the minimum energy state of the system, alias the equilibrium of 

the system, by increasing the entropy of the overall closed system, alias the number 

of different possible combinations of Boltzmann microstates. The latter means that, 

in order to reach the biggest number of combinations of Boltzmann microstates, the 

molecules initially within each separated phase (which is an homogeneous system) 

must disperse into a single heterogeneous system (made of the first two phases, thus 

multiphase) where they have an higher number of possibilities to interact 

chaotically. The induced flow by the gradient(s) acts on the solid body in the same 

way of an external forced flow on a solid body, as previously treated. With the main 
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and big difference that the surface geometries being sculpted are unique with 

respect to the ones associated with an external forced flow, because the effects 

become in turn the causes. Indeed, in case of a geometry being sculpted by an 

external flow, the sculpting phenomenon is mainly forced from the outside; in other 

words, manly by the external flow. In case of a self-sculpting geometry, the external 

flow has been initially induced by (the different properties of) the body, through a 

non-homogeneous and non-null gradient. 

The induced flow in turns affect the melting and/or dissolution process at the local 

surface of the body, with two main effects: a modification in time of the thermal 

and/or concentration gradient and of the solid boundary. The perturbed gradient 

together with the evolved solid boundary affect the near-wall flow. In turn, the near-

wall flow affects now differently the gradient(s) and the solid boundary, modifying 

them with a different perturbation. The cycle starts again. It is good to keep in mind 

that the perturbations of each cycle are not said to be constant. Indeed, the time-

evolution of the process, and thus the mathematical model describing it, as will be 

further explained in the following chapter, is non-linear. 

 

Figure 3 Temperature and concentration gradients in the case of melting and dissolving. [10] 

Fig. 3 illustrates schematically the distribution of temperature and concentration in 

the near-wall domain. It is worth noting that, to guarantee the best possible 

generalization in the discussion of the melting and dissolving problems, both 

temperature and concentration gradients are taken into account. Anyways, in the 
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absence of convection, the rate of ablation is controlled exclusively by thermal 

diffusion for melting and solutal diffusion for dissolving. 

 

Figure 4 Near-wall temperature, concentration and streamfunction profiles for large 𝐿𝑒. [10] 

Fig 4 shows the case of large Lewis number (𝐿𝑒), which is equal to the ratio of 

thermal diffusivity to mass diffusivity. In the melting case, large solutal gradients 

are confined to a thin diffusive boundary layer, where the advective transport 

𝑓 → 0 yields a broad fresh layer close to the interface. While in the dissolving case 

the solute gradient 𝜙 is large and 𝑓 is small close to the interface. 

Conservation of heat across the solid-liquid interface is expressed by the Stefan 

condition, as quantitatively explained in the next paragraph: 

𝜌𝑠𝑙𝑓
𝜕𝛼

𝜕𝑡
= 𝜌𝑠𝑐𝑠𝜅𝑠

𝜕𝑇

𝜕𝑦
|
𝑦=𝑎−

− 𝜌𝑙𝑐𝑙𝜅𝑙
𝜕𝑇

𝜕𝑦
|
𝑦=𝑎+

 

Where 𝑙𝑓 is the latent heat of fusion and 𝜌𝑗 , 𝑐𝑗 , 𝜅𝑗 are the density, heat capacity and 

thermal diffusivity of the solid (j=s) and the liquid (j=l) phases. 

On the other hand, conservation of solute across the interface is expressed by: 

𝜌𝑠(𝐶𝑖 − 𝐶𝑠)
𝜕𝛼

𝜕𝑡
= −𝜌𝑙𝐷

𝜕𝐶

𝜕𝑦
|
𝑦=𝑎+

 

Where 𝐷 is the solutal diffusivity. 

The two conditions allow either the heat flux or the salt flux to control the rate of 

change �̇� = 𝜕𝛼 𝜕𝑡⁄ . 
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In the self-sculpting phenomenon two governing and contrasting processes can be 

observed at the same time: natural insulation and natural mixing. As the terms 

suggest, the former is responsible for a reduction in the gradient, thus in the local 

surface regression rate, while the latter is responsible for an enhancement of the 

gradient, thus an increase in the local surface regression rate. 

A more detailed explanation of the corresponding regions of natural insulation and 

natural mixing on a self-sculpting body will be given after the introductory chapters. 

 

Anyways, to conclude the dissertation on the possible self-shaped geometries in 

natural convection, some of the main parameters to take into account which 

differentiate the fluid dynamics, thus the body-fluid interaction with the following 

possibility of modifying the final geometry are here provided. 

A major variable which is possible to play with in experiments and computational 

models is the relative body-fluid density, which decides the vertical direction of the 

problem. This determines the side of the body where dissolutional self-sculpting is 

expected: the side where the net surface, between the weight force and the buoyancy 

force, points outward the body. 

The local relative density between the melt/dissolution layer and the fresh water 

plays a key role both in water-ice systems and in systems driven by vigorous 

compositional convection, which were already illustrated in Fig. 1. 

In the case of water-ice systems, varying the salinity of water, it is possible to 

indirectly vary the water density while keeping its temperature constant. This is 

what happens in multiphase systems driven by vigorous compositional convection, 

when a strong difference in density is obtained.  For ice-water system, though, this 

density difference can happen more easily, since the freezing point and the 

maximum density of pure water are respectively 0°C and at 4°C, thus the 

temperature window is very narrow. So, a small increase in the water temperature 

or a modification of its salinity can cause different vertical directions of the problem 

and corresponding different surface geometries. 

On the other hand, when the solid and liquid are of different materials, the 

melting/dissolving solid produces a sharp density interface, with a correlated sharp 

gradient, that may provide the controlling mechanism for natural-convective 
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movement of the melt/concentration layer and the liquid adjacent to the solid 

surface. By varying the local relative densities of the melt/concentration layer and 

of the fresh water, it is possible to play on the direction of the melt/concentration 

layer induced by the compositional convection, but the efforts are bigger with 

respect to the ice-water systems. For some solid bodies of a given certain material, 

it may even be necessary the use of liquids made most of alcohol or directly the use 

of olive oil. Anyways, since the mechanism is the same for ice-water systems or for 

systems where the compositional convection is enhanced on purpose, a single 

explanation will be offered in paragraph 2.1 and not only before the introduction of 

some hydrodynamic instabilities of interests in paragraph 1.3. 

 

The present paragraph is concluded with a legitimate question that the reader may 

now arise: why the term “self-sculpted phenomena” is referred to phenomena where 

the body finally dissolves/melts entirely? Indeed, when referring to sculptures, most 

of us involuntarily thinks also about monuments or decorative friezes. All artistic 

works known for lasting in time, even from outdoor atmospheric agents. Obviously 

when speaking of a solid volume being sculpted, we would refer to a still existing 

solid volume. The answer relies on the fact that, even if in all the experiments that 

will be illustrated in the following paragraphs, the solid body is finally completely 

dissolved/melted, in the real world the effects of self-sculpting are still visible in 

the present day. It is like stopping the experiment or the computational analysis at 

a general instant of the final stage. The “final stage”, as will be clarified in the 

following chapters, is an interval in which the self-sculpting phenomenon has 

reached a characteristic length scale, thus the forms being sculped, if considered 

statistically, are quite homogeneous and do not vary their size no more in time. 

Many of the visible effects of self-sculpting in the real world are shown in paragraph 

1.4. 
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1.2 Stefan’s problem 

 

Stefan’s problem is intrinsically associated with the study of multiphase flows. 

In its classical formulation, it describes the time-evolution of an initial free 

boundary between two phases of a material undergoing a phase change. [9] It was 

formulated by Jožef Štefan in [12]. 

For an exhaustive demonstration of the problem formulation and for non-classical 

formulations applied to problems involving more than two phases, the author 

invites to read other references which treat the topic specifically. A suggested recent 

book covering the life of the scientist while providing a chronicle on his discovery 

is [13]. 

The information provided in the following are taken mainly from [14] and [13]. It 

is firstly provided an introductory explanation of the mathematical formulation in 

1D of Stefan's problem applied to a solid melting in a liquid of the same material in 

a cylindrical volume as provided in [14] and as firstly formulated by Štefan in [12]. 

 

Let's consider at an initial time 𝑡 = 𝑡0 a spatial domain 𝔄 divided by a planar 

interface 𝔇, at initial surface position 𝑠(𝑡 = 0) = 𝑠0 into two subdomains: 

𝔄1 = 𝔄 ∩ {𝑥 < 𝑠0} filled with water and 𝔄2 = 𝔄 ∩ {𝑥 > 𝑠0} filled with ice. It is 

assumed that the temperature is a function of the spatial coordinate only 𝑇(𝑥). The 

position of the interface at the generic istant is denoted by 𝑠(𝑡) and the interface is 

hypotished to remain planar. 

An initial free boundary value problem between two phases of the same material 

undergoing a phase change is described by a parabolic set of partial differential 

equation (PDE). Since a portion of the boundary is a priori unknown, the free 

boundary, two boundary conditions must be prescribed on it, instead than only one, 

to obtain a well posed problem. 

When a change of phase takes place, a latent heat is either absorbed (melting) or 

released (solidification). The heat is said to be latent, or hidden, because in phase 

changes, energy enters or leaves the system without causing a temperature change 

in the system. 
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The first boundary condition, applied to all the boundary of the body, is based on 

the assumption that temperature is continuous in the spatial domain, thus the 

temperature at the outer body surface 𝑠(𝑡)+ is the same as the temperature at the 

inner body surface 𝑠(𝑡)− at all instants: 

𝑇(𝑠+(𝑡), 𝑡) = 𝑇(𝑠−(𝑡), 𝑡) = 𝑇0 , ∀ 𝑡          [1] 

Let’s consider a generic portion of the interface with area 𝒮. Since the solid is 

melting, the interface is advancing in time into the space domain previously 

occupied by the solid phase. Thus, at a later time 𝑡1 > 𝑡0, the interface occupies a 

position 𝑠(𝑡1) > 𝑠(𝑡0) = 𝑠0. It is assumed that there is no heat source or sink in the 

domain 𝔄. The heat 𝑄 required to melt the melted volume 𝒮 × (𝑠(𝑡1) − 𝑠(𝑡0)) is: 

𝑄 = 𝒮 × (𝑠(𝑡1) − 𝑠(𝑡0)) × 𝜌𝑙𝑓      [2] 

Where 𝑙𝑓 is the specific latent heat of fusion and 𝜌 is the density of the material. 

While the heat flux through the interface between the two phases can be quantified 

thanks to Fourier’s law: 

Φ𝑄
± = −𝐾± × 𝐷𝑇±(𝑠±(𝑡))     [3] 

The superscript ± is to differentiate between the upper (+) and the lower (−) side 

of the surface at the considered time. Where 𝐾 is the conductivity of the material: 

𝐾− for the liquid and 𝐾+ for the solid. By energy conservation, it is natural to 

assume that in the time interval 𝐼𝑡 = [𝑡0, 𝑡1] Eq. 3 is equal to Eq. 2, when the latter 

is integrated on the volume of the solid body in 𝐼𝑡. Thus, it is possible to write: 

𝒮∫ [−𝐾−
𝜕𝑇−

𝜕𝑥
(𝑠−(𝑡), 𝑡) + 𝐾+

𝜕𝑇+

𝜕𝑥
(𝑠+(𝑡), 𝑡)] 𝑑𝑡

𝑡1

𝑡0

= ∫ ∫ [−𝐾−𝐷𝑇−(𝑠−(𝑡), 𝑡) ∙ �̂� − 𝐾+𝐷𝑇+(𝑠+(𝑡), 𝑡) ∙ �̂�]
𝔇

𝑑𝔇𝑑𝑡
𝑡1

𝑡0

 

[4] 

Dividing both members by 𝒮 and comparing such modified second member with 

Eq. 2, then Eq. 4 can be rewritten as: 
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∫ [−𝐾−
𝜕𝑇−

𝜕𝑥
(𝑠−(𝑡), 𝑡) + 𝐾+

𝜕𝑇+

𝜕𝑥
(𝑠+(𝑡), 𝑡)] 𝑑𝑡

𝑡1

𝑡0
= (𝑠(𝑡1) − 𝑠(𝑡0))𝜌𝑙𝑓 [5] 

Dividing both members by (𝑡1 − 𝑡0) and taking the limit 𝑡1 → 𝑡0, Eq. 4 ends up 

with: 

lim
𝑡1→𝑡0

1

𝑡1−𝑡0
∫ [−𝐾−

𝜕𝑇−

𝜕𝑥
(𝑠−(𝑡), 𝑡) + 𝐾+

𝜕𝑇+

𝜕𝑥
(𝑠+(𝑡), 𝑡)] 𝑑𝑡

𝑡1
𝑡0

= 𝜌𝑙𝑓 lim
𝑡1→𝑡0

𝑠(𝑡1)−𝑠(𝑡0)

𝑡1−𝑡0
   [6] 

By applying the Intermediate Value Theorem, the Extreme Value Theorem and the 

Mean-Value Theorem for integrals, it is possible to rewrite Eq. 6 as: 

𝜌𝑙𝑓�̇�(𝑡1) = lim
𝑡1→𝑡0

1

𝑡1−𝑡0
× (𝑡1 − 𝑡0) × [−𝐾

− 𝜕𝑇

𝜕𝑥
(𝑠−(𝜏), 𝜏) + 𝐾+

𝜕𝑇

𝜕𝑥
(𝑠+(𝜏), 𝜏)]    [7] 

Where 𝜏 is a generic instant of the interval 𝐼𝑡, thus 𝜏 ∈ [𝑡0, 𝑡1]. 

But since 𝑡0 → 𝑡1 and the function 𝔍(𝜏) = [−𝐾−
𝜕𝑇

𝜕𝑥
(𝑠−(𝜏), 𝜏) + 𝐾+

𝜕𝑇

𝜕𝑥
(𝑠+(𝜏), 𝜏)] 

is continuous, thus 𝑇 ∈ 𝐶1, then given any instant 𝑡 ∈ 𝐼𝑡, Eq. 7 is rewritten as: 

𝜌𝑙𝑓�̇�(𝑡) = 𝐾
+ 𝜕𝑇

𝜕𝑥
(𝑠+(𝑡), 𝑡) − 𝐾−

𝜕𝑇

𝜕𝑥
(𝑠−(𝑡), 𝑡)     [8] 

The partial derivatives in the spatial domain can be rewritten with the spatial 

domain variable in subscript position, while Newton’s derivative formulation is left 

to highlight that this derivation is done in the time domain. 

𝜌𝑙𝑓�̇�(𝑡) = 𝐾
+𝑇𝑥(𝑠

+(𝑡), 𝑡) − 𝐾−𝑇𝑥(𝑠
−(𝑡), 𝑡)  [9] 

Eq. 9 is called the Štefan’s condition and is the second boundary condition, which 

must be applied just on the free boundary in order to obtain a well posed problem. 

The classical 1D Štefan's problem represents a semi-infinite solid occupying 

position 0 ≤ 𝑥 ≤ ∞ at the solidification temperature 𝑇𝑓 (the subscript standing for 

freezing). An assumption needed is that any volume change in the solidification 

should be ignored. Furthermore, since at the fixed boundary of the solid phase 

𝑥 = 0 there could be many different flux functions depending on the temperature 

value, it is assumed that the temperature in the solid phase is being constant. This 

is not other than a Cauchy boundary condition. Thus, the problem is to find the 

temperature distribution in the liquid phase and the location of the free boundary 

𝑠(𝑡). It is worth remarking that even if two phases are present, the said problem is 

called classical one-dimensional one-phase Štefan’s problem since it is only the 
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liquid phase which is unknown. Such problem is described by the following set of 

PDE and conditions in the two sub-domains and in the free boundary. 

Liquid region 𝕬𝟏 

𝟎 ≤ 𝒙 < 𝒔(𝒕) 

  

 𝜕𝑇

𝜕𝑡
=
𝐾−

𝐶−𝜌

𝜕2𝑇

𝜕𝑥2
= 𝛼−

𝜕2𝑇

𝜕𝑥2
 

Heat equation valid in 

0 < 𝑥 < 𝑠(𝑡), ∀ 𝑡 > 0 

 𝑇(0, 𝑡) = 𝑓(𝑡) Cauchy’s boundary 

condition ∀ 𝑡 > 0 

 𝑇(𝑥, 0) = 𝑇𝑓 Initial condition 

Free-boundary 

𝒙 = 𝒔(𝒕) 

  

 
𝜌𝑙𝑓
𝑑𝑠

𝑑𝑡
= −𝐾−

𝜕𝑇

𝜕𝑥
 Štefan’s condition 

 𝑠(0) = 0 Initial position of the 

melting interface 

 𝑇(𝑠(𝑡), 𝑡) = 0 Dirichlet’s condition at 

the interface: freezing 

temperature 

Solid region 𝕬𝟐 

𝒔(𝒕) < 𝒙 < ∞ 

  

 𝑇(𝑥, 𝑡) = 𝑇𝑓 ∀𝑡, 𝑥 ≥ 𝑠(𝑡) 

Table 1 PDE and conditions describing the two sub-domains and the free interface of the classical 

one-dimensional one-phase Štefan’s problem. 

The author strongly suggests reading [16], where the application of a computational 

model to similar physical phenomena treated in the present work is shown and 

where the previously demonstrated problem is introduced in dimensionless form, 

being described by the following set of equations. 
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{
 
 

 
 

𝜕𝑐

𝜕𝑡
= Δ𝑐, 𝑖𝑛 Ω𝑙𝑖𝑞𝑢𝑖𝑑

𝑐 = 𝑐𝑚 , 𝑜𝑛 Γ(𝑡
′)

𝚅𝑛 = 𝛽
𝜕𝑐

𝜕𝑡
, 𝑜𝑛 Γ(t′)

𝑐(𝒙, 0) = 𝑐0, 𝑖𝑛 Ω𝑙𝑖𝑞𝑢𝑖𝑑

     [10] 

Where 𝑡′ = 𝑡 𝐾⁄  is the rescaled time on the conductivity of the material, and 𝑐 =

(𝑇 − 𝑇𝑚) Δ𝑇⁄ , is the rescaled temperature with Δ𝑇 = max
𝑡=0
(|𝑇 − 𝑇𝑚|) and 𝑇𝑚 the 

melting point of the solid, 𝚅𝑛 is the normal boundary velocity at the interface, 𝛽 is 

the Stefan number. The Stefan number controls the dynamics of the dimensionless 

syste. 

It is not offered here a demonstration of the Štefan problem applied to a solid object 

of material A dissolving in a liquid of material B. But it is worth noting that the 

previous model is also able to describe the dissolution process. In this case the 

temperature field is replaced by the concentration field ℂ ∈ [0,1]. The parameter 

space for melting, solidification and dissolution is listed below, as in [16]. 

Process 𝜷 Range of 𝒄𝟎 𝒄𝒎 

Melting −𝑐𝑝Δ𝑇 𝑙𝑓⁄  [−1,0] 0 

Solidification −𝑐𝑝Δ𝑇 𝑙𝑓⁄  [0,1] 0 

Dissolution 𝜌 𝜌𝑠⁄  [0,1] 1 

Table 2 Parameter space of the model described in [16]. 

Where for the dissolution process, 𝜌, 𝜌𝑠  are respectively the liquid and the solid 

densities, while for the melting and solidification processes, 𝑐𝑝, 𝑙𝑓 are respectively 

the specific heat and the latent heat of fusion (freezing) in case the process 

considered is melting (solidification). The subscript is the same since the latent heat 

of fusion is equal to the latent heat of freezing, only the direction of heat exchanged 

between the two phases changes. 
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1.3 An overview of hydrodynamic stability 

 

In the present paragraph, the hydrodynamic instabilities useful for explaining the 

phenomena studied experimentally are presented. Those are the Kelvin-Helmholtz, 

the Rayleigh-Taylor, the Rayleigh-Bénard and the “solutal Rayleigh-Bénard 

instabilities”. 

 

The Kelvin-Helmholtz theory is explained in the present paragraph thanks to the 

theoretical support provided by [17] [18]. 

 

Figure 5 Sketch of a piecewise constant approximation to a shear layer. Fig. 2.2 in [17]. 

Two incompressible inviscid fluids in horizontal parallel infinite streams along the 

𝑥 direction of different velocities and densities with one stream above the other are 

considered. The upper fluid is numbered as 1 and the lower fluid is numbered as 2. 

The boundary between the two streams is supposed planar and at the vertical 

coordinate 𝑦 = 0. The basic flow is completely described by velocity, density, 

pressure. 

𝑼(𝑦) 𝜌(𝑦) 𝑝(𝑦)  

𝑈1𝒊 𝜌1 𝑝0 − 𝑔𝜌1𝑦 ∀𝑦 > 0 

𝑈2𝒊 𝜌2 𝑝0 − 𝑔𝜌2𝑦 ∀𝑦 < 0 

Table 3 

The physical mechanism has been described by Batchelor [17] [19] in terms of the 

vorticity dynamics. Batchelor considered 𝑈2 = −𝚅, 𝑈1 = 𝑉, with 𝑉 > 0 and that 
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𝜌2 = 𝜌1. In this way, the special case of a vortex sheet in a homogeneous fluid is 

being considered, as shown in Fig 6. 

 

Figure 6 Growth of a sinusoidal disturbance of a vortex sheet with vorticity. Fig. 7.1.3 in [19]. 

Each vortex line induces a rotating flow with circulation equal to the strength of the 

vortex line. But at the same time, each vortex line has the fundamental property of 

being carried due to entrainment by and with the fluid. Thus, the vorticity 
𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
 

of the vortex sheet is positive for 𝑉 > 0. So positive vorticity is swept away from 

points like A and towards points like C because vorticity in parts of the sheet 

displaced downwards (or upwards) induces a velocity with a positive or (negative) 

𝑥-component at any part of the sheet where 𝑦 > 0 (or 𝑦 < 0). The induced velocity 

at points like B due to each part of the displaced vortex sheet has positive 𝑥-

component. Thus, the positive velocity accumulates at points like C and induces 

velocities concordant in 𝑦 > 0 around such points thereby amplifying the 

sinusoidal displacement of the vortex sheet. These processes of accumulation of 

vorticity at points like C and of rotation of neighbouring points of the sheet will 

continue together, leading to exponential growth of the disturbance without change 

of the form of the disturbance, so long as the disturbance is small enough not to 

significantly change the flow basic state. 

In addition to the physical mechanism, are here directly provided the formulas that 

allow to quantify the modes or the eigenvalues of the Kelvin-Helmholtz instability 

starting from the properties of the two flows. 

Introducing 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖, the dimensionless wavenumber of instability along the 

𝑥-direction, and 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖, the wave velocity of the disturbance, it is possible to 
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define the dimensionless frequency of the disturbance as 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖, where 

𝜔𝑟 = 𝛼𝑟𝑐𝑟 − 𝛼𝑖𝑐𝑖 and 𝜔𝑖 = 𝛼𝑟𝑐𝑖 + 𝛼𝑖𝑐𝑟. 

The dispersion relation formula for 𝜔 is: 

𝜔 = 𝛼 {
𝜌1𝑈1+𝜌2𝑈2

𝜌1+𝜌2
± 𝑖√

𝜌1𝜌2(𝑈2−𝑈1)
2

(𝜌1+𝜌2)
2 }    [11] 

Which is a linear function of 𝛼. This means that the shorter the wave is, the faster 

it grows, although there is no fastest growing wave. Furthermore, since one root of 

the imaginary part of 𝜔 is positive for 𝑈1 ≠ 𝑈2, the shear flow is always temporally 

unstable in an inviscid fluid and even if 𝜌1 = 𝜌2. This is the crucial point of the 

present introduction on the Kelvin-Helmholtz instability, which is at the origin of 

the Kelvin-Helmholtz waves. 

 

To introduce the Rayleigh-Taylor instability, it is worth rewriting Eq. 11 of [17] 

with the nomenclature used in [18]: 

𝑠 = −𝑖𝑘
𝜌1𝑈1+𝜌2𝑈2

𝜌1+𝜌2
± [

𝑘2𝜌1𝜌2(𝑈1−𝑈2)

(𝜌1+𝜌2)
2 −

�̃�𝑔(𝜌1−𝜌2)

𝜌1+𝜌2
]
1 2⁄

   [12] 

Eq. 11 is of greater practical interest, but Eq. 12 is more useful for theoretical 

considerations. Let’s neglect the different additional quantities �̃�, which is the total 

wavenumber, and 𝑠, which are the two perturbed fluid system modes. Eq. 12 allows 

to extend the reasoning initiated with the flow shown in Fig. 5, assuming that there 

can be internal gravity waves in the flow. 

Indeed, if the basic flow is at rest 𝑈1 = 𝑈2 = 0, Eq. 12 becomes: 

𝑠 = ±[�̃�𝑔(𝜌2 − 𝜌1) (𝜌1 + 𝜌2)⁄ ]
1 2⁄

              [13] 

There is instability if and only if 𝜌1 < 𝜌2, that is, the heavier fluids rests above the 

lighter fluid. Otherwise, if 𝜌1 > 𝜌2, then there is stability. Rayleigh recognised the 

influence of gravity on stratified flows, but was Taylor to expand the model as in 

Eq. 14 recognising the importance of general accelerations other than gravity. 

𝑠 = ±[�̃�𝑔∗(𝜌2 − 𝜌1) (𝜌1 + 𝜌2)⁄ ]
1 2⁄

          [14] 

Where 𝑔∗ is the net vertical acceleration of the system. 

Considering two non-viscous fluid at rest not satisfying the Rayleigh-Taylor 

stability condition (𝜌1 > 𝜌2), they develop in time in order to reach a stable 
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Rayleigh-Taylor condition. To do so, small perturbations at the interface are 

generated. Basically, the boundary surface separating the two flows ripples. The 

physical mechanism is based on the baroclinic torque created by the misalignment 

of the pressure and density gradients at the perturbed interface. [20] 

 

Figure 7 Visualization of the vectors acting in a Rayleigh-Taylor instability. [20] 

The magnitude of the baroclinic torque can be calculated from the inviscid vorticity 

equation: 

𝐷𝜔

𝐷𝑡
=

1

𝜌2
∇𝜌 × ∇𝑝     [15] 

As shown in Fig. 7, for a given unstable configuration, there is a specific harmonic 

component of the initial perturbation, for which the torque on the interface creates 

vorticity that will tend to increase the misalignment on the gradient vectors. This, 

in turn, creates additional vorticity, leading to further misalignment. Therefore, the 

physical system made of the two fluids evolves till a Rayleigh-Taylor stable 

condition is reached. In the stable configuration, the vorticity, and thus the induced 

velocity field, is in a direction that decreases the misalignment and therefore 

stabilizes the system. For example, this happens in response to surface gravity 

waves. This last example is useful to understand how the Rayleigh-Taylor 

instability and the Kelvin-Helmholtz instability are in some phenomena strongly 

related to each other. 

Before passing to the discussion about the Rayleigh-Bénard instability, it is worth 

providing here some results shown in [21] regarding the Rayleigh-Taylor instability 

in fluid layers under an inclined plane. In this peculiar study, the flow is found to 

be linearly temporally unstable for strictly positive values of the inclination angle 

𝛼 of the plane and the most unstable modes were calculated to be: 
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𝑘𝑚𝑎𝑥 =
1

𝑙𝑐√2
√sin 𝛼        [16] 

With a corresponding maximum wavelength: 

𝜆𝑚𝑎𝑥 =
2𝜋√2𝑙𝑐

√sin 𝛼
      [17] 

Where 𝑙𝑐 is the capillary length of the problem and is defined as: 

𝑙𝑐 = √𝛾 𝜌𝑔⁄       [18] 

If 𝛼 = 𝜋 2⁄ , which corresponds with the notation used in [21] to a surface perfectly 

horizontal, Eq. 17 degenerates in the canonical Rayleigh-Taylor instability 

𝜆𝑚𝑎𝑥|𝛼=𝜋 2⁄ = 2𝜋√2𝑙𝑐. According to Brun et al., concluding from Eq. 17 that the 

critical angle that prevents the instability to form is 𝛼𝑐𝑟𝑖𝑡 = 0 is just a crude 

interpretation that does not take into account the absolute-convective transition. 

Basically, a flow is said to be convectively unstable if the amplified perturbations 

move away from the source or absolutely unstable when the amplified perturbations 

invade the entire flow. In Brun et al.’s work, the critical value of inclination yielding 

absolute-convective transition is 𝛼∗ and is calculated from the equality: 

√sin 𝛼∗ tan 𝛼∗ =
3𝑙𝑐

𝑢∗ℎ𝑖
     [19] 

𝛼∗ is thus found to be an implicit expression decreasing with the ratio ℎ𝑖 𝑙𝑐⁄ , such 

that only surface tension and gravity effects influence the problem through the 

capillary length. Indeed, the fluid viscosity is considered to not affect the absolute-

convective transition, because it intervenes linearly both in the flow rate and in the 

droplet formation time, such that its contribution cancels out when considering the 

relative contribution. In Eq. 19, 𝑢∗ =
1

√27
√34 + 14√7 while ℎ𝑖 is the initial thin 

fluid film thickness. 

In summary, the study published in [21] shows that the flow under an inclined plane 

is always linearly temporally unstable, unless 𝛼 = 0 thus the plane is perfectly 

vertical, and two instability cases are always possible for 𝛼 ≠ 0: convective or 

absolute instability. In the first case, perturbations are found to decrease as they are 

carried away by advection, despite the unstable nature of the flow. In the second 

case, the instability is strongly enough to overcome the flow. 
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It is now the right time to introduce an instability related to thermal convection 

within a fluid: the Rayleigh-Bénard (RB) instability. 

This instability arises when a fluid is heated from below. Having said that, since a 

warmer volume of fluid is also denser, it may look at first obvious that the dynamics 

of the system would evolve as an inverted Rayleigh-Taylor instability. Not at all. 

The instability develops in a characteristic and coordinated movement of flow, 

through the manifestation of Rayleigh-Bénard cells. Those cells are convective rolls 

that cover entirely the region of the fluid domain which is experiencing a 

temperature gradient and each cell is counter-rotating with respect to the adjacent 

ones. The force that drives the convective flow is the buoyancy of the heated layer 

and its magnitude is related to the difference in temperature between the top and 

bottom layer. The complexity of the matter becomes apparent when one recognizes 

that the temperature distribution is greatly altered by the convective flow itself, 

whose aim is to carry as much heat from the bottom of the layer to the top. In other 

words, the force that drives the flow is subject to modification by the flow. [22] 

Furthermore, it can be said that the system, by generating a much more efficient 

energy transport through convection, tends to resist the external perturbation and 

tries to return back to the equilibrium state. For the last two reasons, the formation 

of RB cells in nonequilibrium thermodynamics is considered as a self-organizing 

system. [23] 

However, as pointed out by Rayleigh’s analysis, it is worth remembering that RB 

cells do not form every time there is a temperature difference in a fluid surrounded 

by a warmer bottom and cooler top layer, as in the mathematical model proposed 

by Bénard. Indeed, viscous drag and heat diffusion contrast the birth and growth of 

RB cells. Because if the former is equal to the buoyant force, there can be no 

motion, and at the same time the latter tends to dissipate the temperature gradient 

that drives the convective flow. Thus, the gravitational potential energy liberated by 

the sinking of denser fluid and the rising of lighter fluid must be greater than the 

energy dissipated by drag and diffusion in order to ensure the onset of a convective 

flow. The relation of these effects can be expressed as a dimensionless ratio: the 

buoyant force divided by the product of the viscous drag and the rate of heat 
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diffusion. Convection begins when this dimensionless number, called Rayleigh’s 

number, exceeds a critical value specific for the considered physical system. 

𝑅𝑎 =
𝑔𝛽Δ𝑇𝐿3

𝛼𝜈
                  [20] 

Where it is here recalled that: 𝑔 is the acceleration due to gravity, 𝛽 is the thermal 

expansion coefficient, Δ𝑇 = (𝑇𝑠 − 𝑇∞) is the difference between the surface 

temperature (corresponding to the warm layer in the previous discussion) and the 

quiescent temperature (corresponding to the cold layer in the previous discussion 

and in real problems to the temperature of the fluid in the far field with respect to 

the heat source), 𝐿 is the characteristic length of the problem, 𝛼 is the thermal 

diffusivity, 𝜈 is the kinematic viscosity. 

 

The Rayleigh-Bénard instability was introduced mainly to clarify what is referred 

in some papers [24] [25] as solutal Rayleigh-Bénard instability. The author 

underlines that neither Rayleigh nor Bénard applied their theory to model the 

induced convection caused by a concentration gradient in a fluid. Furthermore, to 

the author’s knowledge, there is not an actual agreement among the international 

scientific community on the use of the term and even little is found when searching 

for mentions from different and independent research groups on this instability. To 

be honest, the author even wondered if this instability exists at all. Furthermore, as 

mentioned in the final paragraphs, an alternative explanation to the one proposed in 

[25] of the phenomena related to the self-sculpting on the downward face of an 

inclined block of hard candy can be explained using only the other aforementioned 

instabilities. It is not correct to read the previous lines as a critic to the authors or 

the work discussed in the papers which mention this instability; it is not the author’s 

intention to do so. 

Anyways, the main reason for listing this instability in the present paragraph is 

because the experimental work presented in the present thesis is mostly based right 

on the work carried on in [25]. So, it is necessary for the comprehension of the 

following chapters to understand at least what is meant with solutal Rayleigh-

Bénard instability. 
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In a few words, the solutal RB instability is a modified RB instability driven by a 

concentration gradient instead of a temperature gradient. As clarified in Fig. 46, 

some authors use the terminology of solutal RB instability to refer to a cellular 

structure, organised on the dissolving surface, which is made of a repeated geometry 

of peaks delimitating valleys. The peaks act as detaching points for the dissolving 

plumes, while in the valleys the solute is collected and transported by the solutal 

liquid layer towards the adjacent plumes. Fig. 46 clearly shows that the regression 

rate is higher in the valleys than in the peaks, due to the higher concentration 

gradient. Even if the velocity is higher, and thus a greater erosion, could have been 

at first expected close to the peaks, this is not apparently the main contribution to 

the phenomenon. 

The solutal Rayleigh number associated to the solutal RB convection is written as: 

𝑅𝑎 =
Δ𝜌𝑔𝛿3

𝐷𝜂𝑓
 

Where Δ𝜌 is the apparent density of the fluid in the solutal film, 𝑔 is the acceleration 

due to gravity, 𝛿 is the characteristic length of the problem which is represented 

here by the thickness of the destabilising film, 𝐷 is the diffusion coefficient, 𝜂𝑓  is 

the mean viscosity inside the film. It is evident that the variables Δ𝜌, 𝛿, 𝜂𝑓 are 

referred to the film, which is the solutal liquid layer surrounding the diffusing solid 

object and separating the diffusing solid object from the liquid solvent. 
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1.4 Evidence of self-sculpting in the real world 

 

As explained in the first paragraph, self-sculpting processes are mainly associated 

to solid bodies melting and/or dissolving in a liquid in natural convection. 

Notable examples of self-sculptures in nature are icebergs melting in the ocean and 

dissoluble rocks under the exogenous process of chemical weathering. As will be 

explained in the next chapter, the most common dissoluble rocks are salt (halite), 

gypsum and limestone. The chemical weathering process can happen in the 

underground or in the aboveground environment. Examples of mineralogical 

underground self-sculptures are scallops and flutes in karst environment, while 

examples of mineralogical aboveground self-sculptures are so called pinnacle and 

tower karsts. While in underground rock self-sculpting, water may be in contact for 

very long period with the rock surface, due to the presence of underground aquifers, 

in aboveground rock self-sculpting, water may even be cyclically deposited on the 

rock surface due to atmospheric agents, i.e. rain, haze, snow. For a broader and 

extensive dissertation on geological sculpting and on karst geomorphology, the 

author suggests respectively [26], especially the 6th chapter, and [27]. 

 

Some photos of notable effects of self-sculpting in nature are proposed in the 

present paragraph. The photos are coupled with an image describing the relative 

fluid dynamics involved in the self-sculpting process. 

 

Since sculpting due to externally-forced flows was mentioned in the first paragraph, 

it is good to at least mention some evidences of these natural processes. 

Aeolian processes land-form characteristic shapes as dunes, ripples on the surface 

of a dune, barchanoid ridges and even more. Similarly, fluvial deposition and 

erosion sculpt riverbeds [28], leaving prints with coherent length scales [26]. 

Recently, even the morphology of meteorites left by the ablation due to the 

atmosphere entry was studied [30]. In conclusion, even if this type of shapes is not 

the object of the present study, it is worth mentioning its existence for suggesting 

eventual future experimental studies, using a wind or water tunnel, of the sculpting 

geometries and their characteristic length scales. 
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Figure 8 Scalloped iceberg near Paulet Island, Antarctica. © Phillip Colla. 

 

 

 

Figure 9 Model of ice scallop due to vigorous compositional convection. 
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Figure 10 Pinnacle karsts in the Tsingy de Bemaraha National Park, Madagascar. © Arthus Bertrand. 

 

Figure 11 Tower karsts in Guilin, Guangxi province, China. © VCG Photo. 

 

Figure 12 Bed-of-nails morphology from dissolution of an initial porous media. [31] 
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Figure 13 Speleogens in a cave in Borneo. [32] © Dave Bunnell. 

 

Figure 14 Sala degli Scallops (transl. “The room of scallops”), Grotta della Lupa, Majella, Italy. 

 

Figure 15 Another image of smaller speleogens.
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CHAPTER 2: Current Understanding of Scalloping 
 

2.1 Scalloping on ice 
 

Glaciers and ice melting is one of the actual grand challenges in environmental fluid 

dynamics. [33] 

 

Figure 16 Graph of 𝜌𝐻2𝑂(𝑇). [34] 

 

Figure 17 Temperature-salinity diagram of 𝐻2𝑂. 
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Melting or freezing of water at temperatures near 4°C is peculiar. This is not 

because of a strong interaction between convection and phase change. Instead, it is 

due to the fact that thermal convection in water near its freezing point is 

distinguished from more common convective systems, since the density of water is 

not linearly dependant on temperature, as shown in Fig. 17, but attains a maximum 

value at about 4°C [3]. An empirical law for calculating seawater density based on 

the values of its salinity and temperature is provided in [35]. 

Therefore, as already anticipated in the first paragraph, for ice-water system, a small 

increase in the water temperature or a modification of its salinity, as shown in Fig. 

18, can cause different vertical directions of the problem and corresponding 

different surface geometries. 

 

Figure 18 Possible ice surface melting patterns driven by a buoyancy gradient. 

This is illustrated in Fig. 19, where the lighter melt layer is directed upward if fresh 

water is at 4°C, while is denser and thus directed downward if fresh water is at a 

temperature greater or equal than 8°C. If the temperature of fresh water has an 

intermediate value, the shear flow originated at the interface of the two vertically 

layered fluid, the lighter melt layer which is closer to the ice surface and the denser 

fresh water, generates a Kelvin-Helmholtz instability, sculpting the surface with the 

characteristic scallops. 

 

Furthermore, also the local inclination of the considered body surface is a strong 

variable of the problem. Therefore, considering a symmetric body, the behaviour 

on the surface pointing downward is different with respect to the behaviour on the 

surface pointing upward. A confirmation of this different behaviour is given in [36] 

[37], where it is noticed that the upper surface of an ice plate at the bottom of an 

aquarium becomes pitted, while the lower of a fixed ice plate in contact with the 
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water meniscus remains smooth. The former case is referred to as melting from 

above, while the latter case is referred to as melting from below in [37]. 

 

Figure 19 Sketch of the melting from below (a) and melting from above (b) configurations. [37] 

Basically, the temperature and concentration distributions cause stable and unstable 

conditions, respectively, in the liquid melt for the melting from above. The 

predominance of the buoyancy resulting from the concentration distribution 

produces a vigorous convection in the liquid melt for melting from above. A pattern 

made of convective cells, similar to the one associated to the RB instability, 

develops, sculpting the initial flat surface into a pitted surface made of a small scale 

“mountain and valley” structure, as shown in Fig. 20. The structure has a width of 

approximately 1 mm [37]. Kerr [36] confirms a typical width of the pits of 1-2 mm. 

 

Figure 20 Sketch of convective cells and relative streamlines in the near-wall region of the 

“mountain and valley” structure. [37] 

A vigorous upward flow is seen just above each “mountain top”, while a weak 

downward flow appears in proximity of the “valley center”. Upward and downward 
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flow velocities are respectively measured to be about 0.7 mm/s and 0.4 mm/s at the 

20th minute since the start of the experiment [37].  A pair of small circulations 

develop between upward and downward flow. The small circulating vortices allow 

the entrainment of purer water in the concave region. Therefore, the concentration 

gradient is highest in the valley center. Once these vortices are established, they 

sum their diffusion-caused acceleration to the buoyancy acceleration. The 

superposition of these two accelerations is constructive. Therefore, these typical 

flows will considerably promote the melting of the ice plate to be 30% larger as 

compared to the numerically predicted results assuming a flat melting front, and 

also by three times larger compared with the results for melting from below and 

tow times larger as compared to a vertical ice plate melting [37]. An increase in the 

melting rate on the same self-sculpting surface is confirmed also by Kerr [36], who 

measured a melting velocity at the top of the cavities about two and a half times 

greater than the melting velocity of the otherwise-flat interface. Kerr proposes a 

formula for calculating the overall regression velocity in such conditions: 

𝚅~(
𝑔(𝜌𝑓−𝜌𝑚)𝜅𝑓

2

𝑃𝜇𝑚𝒮
4 )

1 3⁄

(1 +
𝑘𝑓

𝑘𝑚𝒮
)
−1

   [21] 

Where 𝚅 is the overall melting velocity of the surface, 𝜇𝑚 is the dynamic viscosity 

of the melt, 𝜌𝑗 , 𝑘𝑗 are respectively the density and the thermal conductivity of the 

fluid (𝑗 = 𝑓) and of the melt (𝑗 = 𝑚), 𝜅𝑓 is the thermal diffusivity of the fluid, 𝑃 

is a dimensionless number defined on the ratio of the dynamic viscosity of the fluid 

to the dynamic viscosity of the melt, 𝒮 is the Stefan number. 𝑃 is empirically 

calculated as: 

𝑃 = √324
3

(
𝜇𝑓

𝜇𝑚
)
2 3⁄

    [22] 

And the Stefan number for this problem is defined as: 

𝒮 =
𝜌𝑠𝐿𝑠+𝜌𝑠𝑐𝑠(𝑇𝑚−𝑇𝑠)

𝜌𝑓𝑐𝑓(𝑇𝑓−𝑇𝑚)
    [23] 

Where 𝐿𝑠 is the latent heat of the solid, 𝑐𝑗 is the specific heat of the solid (𝑗 = 𝑠) 

and of the fluid (𝑗 = 𝑓), 𝑇𝑚 , 𝑇𝑠, 𝑇𝑓 are respectively the temperatures in the melt, in 

the solid and in the fluid. 
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Eq. 21 can be simplified to the following equation in case 𝒮 ≫ 𝑘𝑓 𝑘𝑚⁄ : 

𝚅~(
𝑔(𝜌𝑓−𝜌𝑚)𝜅𝑓

2

𝑃𝜇𝑚𝒮
4 )

1 3⁄

     [24] 

The case 𝒮 ≫ 𝑘𝑓 𝑘𝑚⁄  is equivalent to ℎ𝑇 ≫ (ℎ𝑚𝑘𝑓) 𝑘𝑚⁄ , where ℎ𝑇, ℎ𝑚 are 

respectively the fluid and the melt layer thicknesses, which can be calculated as: 

ℎ𝑇~(
𝑃𝜇𝑚𝜅𝑓

2

𝑔𝚅(𝜌𝑓−𝜌𝑚)
)
1 4⁄

     [25] 

ℎ𝑚~(
𝑃𝚅𝜇𝑚

𝑔(𝜌𝑓−𝜌𝑚)
)
1 2⁄

      [26] 

Obviously, to calculate 𝚅, Eq. 21 or Eq. 24 is needed, with the former being more 

general than the latter but requiring 𝜅𝑚. It is clear that in order to apply Eq. 24, the 

condition 𝒮 ≫ 𝑘𝑓 𝑘𝑚⁄  or the condition ℎ𝑇 ≫ (ℎ𝑚𝑘𝑓) 𝑘𝑚⁄  needs to be satisfied with 

the latter condition requiring 𝚅. They are basically the same condition defined on 

different parameters. In case the reader wants to use the secondly defined condition, 

the impasse is resolved using Eq. 24 to calculate 𝚅 to calculate in turn ℎ𝑇, ℎ𝑚. Only 

now the second condition is tested: if verified, the assumption made on the use of 

Eq. 24 was correct, otherwise Eq. 21 needs to be used. Generally, for ice-water 

systems the condition is satisfied.  

Kerr’s work is useful not only for providing a formula to quantitatively estimate the 

overall regression rate of the melting solid-liquid system, but especially for 

introducing a dimensionless number that determines if the vigorous compositional 

convection can occur in the system. Specifically, in order to have vigorous 

compositional convection, the unstable compositional buoyancy of the melt needs 

to be always much greater than the stabilizing thermal buoyancy due to the heat that 

must be removed from the fluid to produce this melt. Thus, the ratio ℜ of the 

buoyancies needs to satisfy the following condition, for a horizontal ice floor: 

ℜ ≔
𝜌𝑓−𝜌𝑚

𝛼(𝜌𝑠𝐿𝑠+𝜌𝑠𝑐𝑠(𝑇𝑚−𝑇𝑠)) 𝑐𝑓⁄
≳ 2.0    [27] 

Where 𝛼 is the coefficient of thermal expansion. 

Kerr suggests that the critical ratio ℜ𝑐 should depend also on the viscosity ratio 

𝜇𝑓 𝜇𝑚⁄ , expecting higher ℜ𝑐  for unequal viscosities, since the viscous coupling 

between the melt and fluid should then be reduced. 
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It is worth mentioning that Kerr conducted also experiments on a sloping ice floor 

and noticed two different convective regimes depending on a new critical ratio 

ℜ𝑐 = 2.7. It was found that if ℜ > ℜ𝑐, then the ice surface is cusped, otherwise the 

ice surface consists of a series of parallel grooves running down the slope. The 

critical ratio referred to the case of the sloping ice floor is higher than the one 

referred to the case of the horizontal ice floor, suggesting that the mixing efficiency 

of the compositional convection is hindered by the downslope flow in the thermal 

boundary layer. It is therefore anticipated that ℜ𝑐 is a monotonically increasing 

function of the slope of the floor [36]. 

So, comparisons of experiments made with different viscosities and additional 

experiments investigating the influence of the floor angle may further help in 

quantitatively refining Kerr’s model. 

Thus, it is evident that despite the existence of many studies on pressure-driven and 

shear flows, the possibility for topography to emerge between a horizontal melt or 

dissolving layer and a solid phase is not well understood. At least compared with 

the case of topography generation by RB convection. 

 

Furthermore, in addition to topographies generated by buoyancy-driven layered 

flows, the aforementioned horizontal boundary layer can even be strongly affected 

by shear, such as under ice shelves. In the latter, the flow has high 𝑅𝑒∗, 𝑆𝑡, 𝑃𝑟. 

Higher 𝑃𝑟 results in thinner thermal boundary layers, which could impact the near-

wall dynamics, and higher 𝑆𝑡 results in slower melt rates, which could significantly 

change how interface patterns couple with transient flow features. Two prominent 

studies conducted by Couston et al. [38] and by Claudin et al. [39] attempt to model 

the topography generated by this type of flow. 

The key findings of [38] are a confirmation that streamwise topographical features 

emerge from uneven melting and freezing at a phase boundary also when the flow 

is driven by a pressure gradient and that the type of density stratification affects the 

characteristic amplitude and spanwise wavelength of the streamwise patterns. 

Furthermore, the mentioned paper computationally demonstrate that the crest-to-

trough amplitude is of the same order as the viscous sublayer thickness for stable 

and neutral buoyancy-driven stratification and that it extends beyond the buffer 
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layer and into the log layer for unstable stratification. This spatial ratio, combined 

with a separation of scales between the topography lifetime and the diffusion time 

scale across the solid layer, suggests that the interface evolution is purely driven by 

the flow dynamics for stable stratification. While it is suggested an interplay 

between interface evolution and the fixed-temperature condition at the solid wall 

for neutral stratification and it is suggested an interface’s amplitude saturation 

forced by the solid wall condition. 

Claudin et al. [39] notice that the dissolution instability at the origin of the pattern 

is associated with an anomaly, and therefore an instability, at the transition from a 

laminar to turbulent hydrodynamic response with respect to bed elevation. Thus, 

suggesting a possible mechanism for the selection of the pattern amplitude. 

 

Figure 21 In-phase 𝒜 and in-quadrature ℬ shear stress components as a function of the wave 

number 𝑘𝜈 𝑢∗⁄  [39] 

The novelty of the study is, by an investigation of a sinusoidally perturbed surface, 

that the coefficients encoding the in-phase and in-quadrature components of the 

sinusoidal bed modulation, which influence the basal shear stress, are found to be 

strongly dependant on the bed-roughness-based Reynolds number 𝑅𝑒𝑑 = 𝑑𝑢∗ 𝜈⁄ . 

In Fig. 22 the region associated to small wavenumbers 𝑘𝜈 𝑢∗⁄ ≲ 10−4 corresponds 

to the turbulent regime, while the region associated to wavenumbers 𝑘𝜈 𝑢∗⁄ ≳ 10−2 

corresponds to the laminar regime. It is clear that the region between the mentioned 

two corresponds to the laminar-turbulent transition regime. 
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In order to present the final results of the mentioned study, it is necessary to define 

a diffusion coefficient 𝒟𝑡 proportional to the turbulent viscosity: 

𝒟𝑡 ≔
ℓ2|�̇�|

𝛽𝑡
+
𝜈

𝛽𝜈
 

Where 𝛽𝑡, 𝛽𝜈 , ℓ, |�̇�| are respectively the turbulent and viscous Schmidt numbers, a 

van Driest-like mixing length and the strain rate modulus. 

Therefore, for a constant 𝒟𝑡 corresponding to the laminar regime, the peak effect 

visible in Fig. 22 increases the flux and thus the erosion at the crests of the 

sinusoidal solid surface. This is a stabilising situation. On the other hand, when 

turbulence is dominant, 𝒟𝑡 is not constant due to turbulent mixing. For 

corresponding small wavenumbers, turbulence is enhanced slightly-up stream of 

the crests of the sinusoidal solid surface, and hence there is stabilising erosion again. 

 

Figure 22 Isocontours of the diffusion coefficient (case a) and of the concentration (case b) within 

the fluid above a sinusoidally modulated bed (in white). Red (blue) regions correspond to a strong 

(weak) modulus. [39] 

Fig. 23 illustrates the stabilising effect associated to turbulence: strong mixing leads 

to a large vertical flux (case a) which reduces the concentration (case b). 

An amplifying destabilising situation is found only for laminar-turbulent transition, 

since turbulence is shifted downstream by means of the adverse pressure gradient, 

enhancing mixing and thus erosion in the throughs. Hence explained how only the 

development of the instability increases the bed roughness, thus suggesting how the 

pattern eventually selects nonlinearly the wavenumber 𝑘𝜈 𝑢∗⁄ . 
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It is worth concluding the present paragraph briefly introducing the known effects 

of ice melting in a mixture. This can be extended to ice shelfs melting, since 

between ice and oceanic water there is a salinity gradient. 

 

Figure 23 Stability of the density/concentration distribution in the region close to the ice surface. 

Sketches related to melting in water (on the left) and melting in a mixture (on the right). [37] 

Sugawara et al. [37] confirm experimentally a different density/concentration 

distribution in the region close to the ice surface, as shown in Fig23. In the case of 

ice melting in water, the liquid region above the 4°C line is stable as seen from the 

density distribution. While in the case of ice melting in a mixture (made of 20 wt.% 

of 𝐶𝑎𝐶𝑙2), the mixture above the diffusion layer is neutral due to the uniform 

concentration/density. 

Furthermore, ice blocks melting into a salinity gradient are expected to become 

vertically layered [38] [41], thus influencing the final shape. Layering in sheared 

double-diffusive convection Rayleigh-Bénard is expected when the temperature 

field destabilises (𝑇𝑏𝑜𝑡𝑡𝑜𝑚 > 𝑇𝑡𝑜𝑝) while the salinity field stabilises (𝑆𝑏𝑜𝑡𝑡𝑜𝑚 >

𝑆𝑡𝑜𝑝) the flow [39]. 
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2.2 Scalloping on gypsum 

 

As anticipated in the final paragraph of the previous chapter, the most common 

dissoluble rocks are salt (halite), gypsum and limestone. It is good to discuss the 

experiments done on scalloping on gypsum separately, since the experimental 

activity is done in water tunnel and thus in a forced convection regime. While the 

experimental studies on scalloping on salt are similar to the ones related to 

scalloping on hard candy, since they are performed in a natural convection regime. 

 

Respectively, halite is a mineral made of 𝑁𝑎𝐶𝑙, gypsum is a soft sulfate mineral of 

calcium sulfate dihydrate with chemical formula 𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂, while limestone is 

a carbonate rock composed mostly of the minerals calcite and aragonite, which are 

both crystal forms of 𝐶𝑎𝐶𝑂3. 

 

Figure 24 Dissociation reactions and solubilities of some representative minerals that dissolve 

congruently in water at 25°C and 1 bar pressure [27]  

 

Figure 25 The solubility of calcite and gypsum in water at the standard atmosphere in the 

temperature interval ranging from 2°C to 25°C [27] 
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Patterns left on limestone surfaces were first remarked by Lugeon in 1915 [43]. 

With the only exception of Maxson [44], who in 1940 was the first to coin the word 

flute to indicate a long, continuous grooves of concave cross-section found on 

surface-rivers beds, and Bretz [45], who in 1942 was the first to suggest the use of 

cave patterns to “determine the direction of a cave stream flow”, only right after the 

Second World War interest on the topic exploded. Similar patterns started being 

observed also on the surface of ice caves [44] [47], thus suggesting that the 

phenomenon was not only associated to rocks. One of the most important 

contributions was historically made by Coleman [48], who in 1949 was the first to 

suggest the term scallop to indicate a series of interrupted concavities. The term 

replaced the misleading term cup already introduced by Bretz [45]. The 

aforementioned author’s contribution was of interest also because they went further: 

Maxson remarked the possibility that scallops may “fix the position of vortices 

supplied by the turbulent flow”, even though without providing a physical 

explanation, while Bretz and Coleman suggested a possible self-stabilizing 

interaction of vortices and scallops. A second dark period for remarkable 

contributions followed. Only at the start of the ‘60s, the initial problem on the origin 

of cave patterns, which was mainly debated among geologists and speleologists, 

regained attention with a more systematic research approach based on the use of 

water tunnels. For nearly twenty years, erosion of gypsum by a forced external 

water current was extensively studied in order to try to provide a possible answer 

to some geomorphological questions still open. The major contributions were made 

independently by Curl [49] [50] and Allen [51] [52] [53]. They were representatives 

of two different theories regarding the origin of patterns: Curl supported the 

passive-bed theory, while Allen supported the defect theory. 

As outlined in [52], the passive-bed theory of erosion marks postulates that the 

characteristics of the erosion marks are entirely determined by the dynamic 

properties of the fluid in contact with the surface, while the defect theory assumes 

that the position of each erosion mark is due to the initial presence of an irregularity 

or a defect at the surface. The latter also assumes an independent evolution for each 

mark and an increase of length and amplitude with time up to a limit set by the 

initial spacing of defects. 
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Figure 26 Changes of bed geometry with time according to the passive-bed theory (case a) and to 

the defect model (case b) [53] 

In [49] Curl studies the mass transfer profile of a fixed flute pattern machined into 

Perspex when immersed in a forced water flow. Two viewpoints are highlighted in 

the study: the evolution in time of dimensionless parameters describing the pattern 

dimensions and the determination of stability conditions for the pattern geometry. 

The dimensionless analysis proposed is based entirely on averaged quantities and 

on stationary and homogeneous values, the latter due to the fixed and homogeneous 

pattern considered. So, the reader should keep in mind that the averaging sign is 

omitted in all the variables shown in the following formulas just to make the text 

more readable. By introducing the stable flute period ℒ, the diffusivity of the solute 

ions in the water 𝔇, the width of the water channel 𝐻, and 𝜌, 𝜇 referred to the forced 

fluid, by dimensional analysis is found that: 

𝑁𝑓
∗ ≔

𝜌𝑈𝐿

𝜇
= 𝑓 (

ℒ

𝐻
,
𝜇

𝐷𝜌
)    [28] 

Where 𝑆𝑐 = 𝜇 (𝒟𝜌)⁄  is the Schmidt number, which controls the relative thickness 

of the mass and moment transfer boundary layers.  

It is now evident, looking at the first ratio, that the dimensional analysis leads to the 

Reynolds number, as expected. But in [49] it is given a different name to this ratio: 

𝑁𝑓
∗, the stable flute Reynolds number. The author of the present thesis personally 

disagrees on renaming a corroborated and important physical dimensionless 

number so easily. But it must be said that there is a reason after all. Indeed, in 

Reynolds’s notable pipe experiment [55], the Reynolds number is calculated for a 

given geometry (length scale) based on the density and the dynamic viscosity of the 
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flow considering, usually, the flow velocity as the variable input; thus it describes 

and allows to predict the fluid flow behaviour. While in Curl’s study, the density 

and dynamic viscosity of the flow are given too, but in this case 𝑁𝑓
∗ is fixed and the 

aim is to find the relationship 𝐿 = 𝑓(𝑈)|𝜌,𝜇,𝑁𝑓
∗ . So, in addition to directly 

considering the usual outcome of the Reynolds number as a fixed parameter, also 

the main characteristic potential of describing the flow behaviour with the 

dimensional ratio is completely lost. Curl suggests a stable flute Reynolds number 

𝑁𝑓
∗ ≈ 22500. Therefore, Eq. 28 states that the averaged flute period, is inversely 

proportional to the average flow velocity and thus that the averaged flute period 

depends on the flow properties. 

In order to study a possible stable vertical height, Curl applies a dimensional 

analysis on the parameters acting in the perpendicular direction of the mean surface: 

𝜌𝑦𝑈

𝜇
= 𝑓 (

𝑥

ℒ
,
𝑈𝐻

𝜇
,
𝜇

𝒟𝜌
)    [29] 

Curl speculates that Eq. 29 should not depend on 𝑅𝑒𝑈 and on 𝑆𝑐. The reasoning 

behind the first hypothesis is driven by the fact that, in presence of a highly 

disturbed flow region near a fluted surface, the flow disturbance produced by other 

surfaces of the channel is of less importance, except to the extent that other surfaces 

determine the average flow velocity in the region of the surface upon which the 

surface forms. Therefore, as long as ℒ 𝐻⁄  is small, Eq. 29 should not depend on the 

Reynolds number calculated with the average velocity of the overall flow. The 

reasoning behind the second hypothesis is driven by the fact that, the Schmidt 

number, should not be important when it is large and the concentration boundary 

layer is extremely thin. 

By applying the two aforementioned hypotheses, Eq. 29 reduces to a dependence: 

𝑦

ℒ
=

1

𝑁𝑓
∗ 𝑓 (

𝑥

ℒ
)            [30] 

Eq. 30 allows to conclude that all stable flute profiles must be geometrically similar. 

Curl passes then to the analysis of the rate of solution of the pattern, doing a 

dimensional analysis of the average mass transfer coefficient 𝓀 over a full flute 

period, finding that: 
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𝓀ℒ

𝒟
= 𝑓 (

ℒ

𝐻
,
𝜇

𝒟𝜌
,
𝜌𝑈ℒ

𝜇
)     [31] 

The ratio ℒ 𝐻⁄  is omitted because very small and Eq. 31 is simply rewritten as: 

𝓀ℒ

𝒟
= 𝑓 (

𝜇

𝒟𝜌
,
𝜌𝑈ℒ

𝜇
)               [32] 

This time the Schmidt number cannot be omitted because the exchange of solvent 

between the surface and the mainstream is very rapid due to the mixing strengthen 

by the high turbulence levels induced by the scalloped wall. Therefore, the 

concentration boundary layer does influence the mass transfer rate perpendicular to 

the surface. 

The dimensionless ratio on the left-hand side is the overall average Sherwood 

number 𝑆ℎ and represents the ratio of the convective mass transfer to the rate of 

diffusive mass transport. It is indicated in the following as 𝑁𝑆 to underline that it is 

referred to the flute pattern. Eq. 32 can thus be rewritten as: 

𝑁𝑆 = 𝑓(𝑆𝑐, 𝑁𝑓
∗)    [33] 

For a stable flute pattern 𝑁𝑆 = 𝑓(𝑁𝑓
∗) such that 𝑁𝑆 = 𝑁𝑆

∗ and constant. Specifically, 

𝑁𝑆 ∝ 𝑁𝑓
½ for a fixed pattern and it found to be strongly dependent on the flute 

profile, especially along the lee slope: 

𝑁𝑆 = 𝑐𝑓𝑁𝑓
½𝑆𝑐⅓    [34] 

Where 𝑐𝑓 is a constant. For an approximately circular conduit of diameter 𝑑, the 

Reynolds number is calculated as 𝑈𝜌𝑑 𝜇⁄ , allowing to rewrite a functional relation 

among the previously introduced dimensionless numbers as: 

𝑆ℎ = (𝑁𝑆 𝑁𝑓⁄ ) ∙ 𝑅𝑒    [35] 

Therefore, the rate of solution of the pattern is inversely proportional to flute period 

and hence proportional to stream velocity when stability is attained. This means that 

the flute pattern will evolve in time to establish a constant Sherwood number. 

Furthermore, 𝑁𝑆 ∝ 𝑁𝑓
∗ allows to conclude that stable flute patterns with small 

periods are propagating more rapidly than those with longer periods, if all other 

factors are kept constant, and that shorter flute periods should be more common 

than longer periods. 
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Figure 27 Crest and critical point geometry of stable flute profile [49] 

Finally, Curl calls with Ψ the crest angle, with 𝜃 the angle of propagation, with 𝜙 

the local slope angle of a stable flute profile, as shown in Fig. 28, and is able to 

demonstrate that: 

𝚅1

𝚅2
=

sinΨ1

sin(Ψ−Ψ1)
     [36] 

Where Ψ1 = 𝜃 − 𝜙1 and 𝚅 is the rate of solution at a point of the scallop. The 

subscripts are referred to the points 1, 2 where respectively the maximum and the 

minimum occur. Therefore, Eq. 36 states that the direction of propagation of a stable 

flute pattern is determined entirely by the ratio of solution rates at the points 1, 2. 

It is then evident why flutes can be considered one of the most useful forms of flow 

marking for the interpretation of past flow conditions. 

Furthermore, Curl asserts that a stable flute profile cannot have a cusp. 

The reason behind this assertation is driven by the fact that the rate of solution is 

expected to be continuous, but at the same time the local slope angle is 

discontinuous in a cusp. If the sharp crest were equivalent to coincide of the 

inflection points 1 and 2, the direction of propagation must bisect the crest angle. 

This gives a minimum solution rate at the cusp and a maximum somewhere within 

the concavity, contradicting the initial expectation. 

 

In [50] Blumberg & Curl expand the studies anticipated so far, studying the 

“periodic dissolution patterns” formed on an initially flat block of Plaster of Paris 

when immersed in a forced water flow. The author quoted the object of the study, 
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since the experiments discussed in the mentioned paper are performed at 𝑅𝑒𝜏 ≅

2200, which corresponds to 𝑅𝑒 ≅ 22500; therefore it is very legitimate to doubt if 

the periodicity of the pattern is caused primarily by an erosional phenomenon, by 

the structures within the associated turbulence and by a characteristic separation-

reattachment length associated to the forced convection than to a merely dissolving 

phenomenon. 

 

Figure 28 Flute geometry and dissolution-rate and characteristic velocity vectors [50] 

Similarly to Eq. 36, using the notation shown in Fig. 29 for two different points on 

a stable profile, the propagation direction in terms of local conditions is given as: 

tan 𝜙 =
𝑣1 sin 𝜃2−𝑣2 sin 𝜃1

𝑣1 cos𝜃2−𝑣2 cos𝜃1
              [37] 

It is worth mentioning that the notation in [50] is different than the one proposed by 

the same author in [49]: in Eq. 37 𝜙, 𝜃 are respectively the propagation direction 

angle and the slope angle as used in [50], while in Eq. 36 which was proposed in 

[49] they are exactly the opposite. 

Blumberg & Curl provide the multiplying factors of the formula mentioned earlier. 

The weighted formula are not mentioned here, both because of the doubt anticipated 

at the top of the present page and because their validity is less limited since they 

depend also on empirical constants. 

The doubt anticipated at the top of the present page is supported also by Fig 30, 

where it is evident the contribution provided by turbulence. Fig. 30 evidences the 

main turbulent flow (1), the laminar free-shear layer (2), the laminar-turbulence 

transition and the relative entrainment (3), the reattachment (4), the recirculating 
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flow (5), the lee-slop boundary layer (6), the stream ward-slope boundary layer (7), 

the lee-slope boundary-layer separation with small eddies (8). 

 

Figure 29 Characteristic flow regions over one flute period [50] 

Overall, it can be said that Blumberg & Curl find a general agreement with the 

information provided before. The experimental results have been later confirmed 

[56] with in-situ measurement for the case of forced water flow in karst conduits. 

 

Allen’s explicit critic to Curl is that, apart from providing relations based on 

experiments, does not advance any physical reasoning to suggest why the flow 

velocity, flow dimension, fluid properties and rock diffusivity alone determined the 

wavelength of the flutes. As mentioned earlier, it is now even more clear that Allen 

is a supporter of the defect theory and thus endorses that the origin of flutes and 

scallops is due to the enlargement of initial inhomogeneities [51]. To prove this, 

shallow pits of circular plan and depth one-third the diameter were cut into the bed 

of a Plaster of Paris block. The block was then located in the test section of a water 

tunnel and a flow was forced. The experiments were carried out at Reynolds 

numbers between 7950 and 99400. 

According to Allen, if the pit is sufficiently small in relation to the thickness of the 

laminar sublayer, the eddy within the pit remains laminar, otherwise the eddy in the 

pit is turbulent, as shown in Fig. 31. Both Allen and Curl thus agree on the idea that 

flutes and scallops are associated with a locally separated flow. But Allen arguments 

that a scallop or a flute can arise at an inhomogeneity only if the rate of solution is 

for some reason greater at the inhomogeneity than the surrounding bed, otherwise 

the inhomogeneity is erased by the flow in favour of a smooth bed. 
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Figure 30 Idealised pattern of flow and associated flow velocity profile in a shallow cavity [51] 

According to Allen the critical condition is associated to the separation of the 

turbulent flow. Therefore, in [51] a relation for the critical diameter for the 

occurrence of a turbulent separated flow in a pit of cylindrical shape given in [57] 

is proposed: 

𝑋𝑐𝑟𝑖𝑡 = 80𝐾𝑑 (
1.25𝑈𝑑𝜌

𝜇
)
−7 8⁄

    [38] 

Where 𝐾 is a numerical constant to be determined experimentally. 

It is worth noting that 𝑋𝑐𝑟𝑖𝑡 ∝ 𝑈
−7 8⁄ . This is expected because the separation is 

induced in the viscous sublayer as shown in Fig. 31. And the viscous sublayer 

thickness decreases for an increasing value of the Reynolds number defined at a 

fixed position 𝑥 on the streamwise direction 𝑅𝑒𝑥, as shown in the following two 

formulas taken from [57]: 
𝛿𝜈

𝑥
=

50

𝑅𝑒𝑥√𝑐𝑓 2⁄
            [39] 

𝛿𝜈

𝛿
= 680

ln2 𝑅𝑒𝑥

𝑅𝑒𝑥
            [40] 

Using the hydraulic radius of the experiments as flow dimension 𝑑, it was found 

𝐾 = 7.4. Therefore, according to Allen, in a water tunnel with test section of 

diameter 𝑑, in order to have the formation of a pattern on the surface of plaster of 

Paris, the diameter of initial inhomogeneities must respect the following condition: 

𝑋 > 7.4 × 80𝑑 (
1.25𝑈𝑑𝜌

𝜇
)
−7 8⁄

    [41] 
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Considering Eq. 39 as a criterion for the stability of pits in a plaster surface exposed 

to a turbulent water stream, it is possible to measure the depth of the pits at different 

time intervals. It is found that: 

𝐴(𝑡)

𝐻
= 1.23 (−

𝚅𝑡

𝐻
)
2 3⁄

                          [42] 

Where 𝐴(𝑡) is the depth at a generic instant 𝑡, 𝐻 is the initial depth, (𝚅𝑡) 𝐻⁄  is a 

dimensionless ratio based on the mean velocity 𝚅 with which the surface retreats. 

The rate of growth of the pits is thus simply calculated from Eq. 40 as: 
𝑑𝐴

𝑑𝑡
= 0.82𝚅2 3⁄ 𝐻1 3⁄ 𝑡−1 3⁄     [43] 

Eq. 41 shows that larger initial inhomogeneities grow slightly faster than smaller 

ones. In all cases, however, the rate of growth gradually decreases with increasing 

duration of the experiment. 

Furthermore, the non-dimensional length of the initial pits increases approximately 

as (−𝚅𝑡 𝑑⁄ )1 2⁄ , the non-dimensional breadth roughly as (−𝚅𝑡 𝑑⁄ )4 5⁄ , as also 

graphically shown in [53]. 

 

Even if Curl was the first to propose a time-evolution model for characteristic 

dimensions and geometry of the flute pattern with the related stability conditions, 

only Allen introduced order in the nomenclature (Fig. 32) of the patterns on the 

basis of the flow-structure phenomena. 

As introduced in [52], from a morphological point of view: 

• Flutes are isolated heel-shaped, wave-like solutional hollows of parabolic 

plan-form whose arms open out down-current. 

• Scallops are saucer-shaped depressions of polygonal plan that are produced 

by the growth of flutes to the stage of interference. 

• Grooves are shallow depressions several times longer than wide and 

elongated parallelly to the flow direction. 

• Ridges and furrows are long, almost perfectly rectilinear structures with a 

remarkable regular transverse spacing which is a tiny fraction of their 

streamwise length. 

• Secondary flutes and secondary scallops appear, in a few words, like 

intersecting flutes or scallops, respectively. 
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Figure 31 Scheme of instabilities and resulting bed forms and flow fields [52] 

Allen’s nomenclature is powerful and useful, with respect to all the previous 

nomenclatures coined, because the related classification is not merely based on a 

morphological point of view. Quite the contrary, it is based on a fluid dynamic 

reasoning and thus it provides a physical explanation of the final shape. The plaster 

bed is divided into the primarily and secondarily bed, depending on if the patterns 

are being sculpted by instabilities associated to the main or eventual secondary flow. 

 

To analyse the aforementioned structures from the point of view of the respective 

fluid source, it is worth starting with the flutes, the first structures that appear on 

plaster of Paris in a forced convection regime. As shown in Fig. 33, the initial pit 

contains a separated flow and from its upstream rim sheds vortices into the current 

to form a wake extending a considerable distance downstream from it. The separate 

flow enhances mixing in the near-wall region thus a long narrow grove is hollowed 

out downstream from the pit, which itself undergoes at first a slight enlargement in 

the upstream and lateral directions. 
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Figure 32 Mould showing a flute at 𝑉𝑡 𝑑⁄ = 1.5. Current from left to right. The portion of the bed 

shown in the photo is 10 cm wide [52] 

 

Figure 33 Schematic flow field displaying skin-friction lines and streamlines associated with 

mature flutes (case a) and mature grooves (case b) [52] 

As shown in Fig. 34, there is a striking concentration of vorticity in the flow 

associated with flutes. Basically, the upstream part of each flute holds captive a 

closed separation bubble and along each flank lies a strong vortex that rises out of 

the mark to pass downstream and blend into the external flow. The median ridge of 

the flute is generally a zone of weak streamwise separation of flow. Therefore, the 

erosion rate is expected to be least at the crests of the ridges, where the local shear 

bed stress is least, and greatest at the axes of the furrows, where the local bed shear 

stress reaches a maximum. 
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The flow field associated with mature grooves is simpler: a pair of oppositely 

rotating and relatively weak streamwise vortices reattaching to the bed on the floor 

of the mark. 

 

Figure 34 Rectilinear furrows [52] 

In the case the defects originally present on the experimental plaster bed have 

dimensions smaller than the critical, then all the bed is a secondarily bed and 

becomes involved in another mode of instability, shown as case II in Fig. 32. 

Basically, this secondarily bed is covered by ridges and furrows, as shown in Fig. 

35. In several experiments, their crest-to-crest distance ranges between 0.71 cm and 

1.05 cm with their transverse spacing being between 5 and 10 times their depth [52]. 

The difference between a ridge and a furrow is that the latter has a sharper crest, 

while the latter has a more rounded crest. Therefore, the former may be associated 

in the field to rinnenkarren while the latter to rundkarren, two specific forms of 

karren. Karren is a German term used in geology and geomorphology to refer to 

small-scale solutional forms developed on limestone. Allen suggests successive 

experiments to verify a possible connection between ridges and furrows and 

Klineian streaks; but nothing more can be added on the connection. The grooves 

make angle projected onto a horizontal plane generally between 5 and 10 degrees 

relative to the streamwise elongation of the ridges. The ridge crests and the 

longitudinal axes of the furrows can be respectively interpreted as streamwise 
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separation lines and lines of streamwise reattachment. The bed features appear to 

be associated with paired vortices similar to the Taylor-Görtler type. 

 

Figure 35 Features of ridges and furrows: (a) Evolution in time of the profile. (b) Schematic 

pattern of skin-friction lines. (c) Three-dimensional illustration of the flow-field. [52] 

The ridges and furrows described so far can undergo an additional instability, 

indicated as case III in Fig. 32. If this is the case, the crest-to-crest distance appears 

at first to shrink and widen along the stream direction. The rectilinearity is lost into 

a more or less regular sinuosity, which evolve in turn into a definitive asymmetry 

with respect to the stream direction. The sinuosity has a streamwise wavelength 

about 5-25 times the mean transverse ridge spacing. As the furrows widens, the 

vortices in the widening portion grow steadily larger and more vigorous, to the 

extent of substantially disturbing, and sometimes considerably suppressing, the 

flow in the vortices situated laterally, as shown in Fig. 37. In Fig. 38a the right 

furrow shows the kind of flow field associated with furrows at the stage of 

development of case a of Fig. 37. The furrows, as anticipated, may widen 

symmetrically about the flow direction or even show an asymmetrical hollow 

developing in the bed, which is case b of Fig. 37 and is illustrated in Fig. 38c. For 

sure, if the asymmetrical widening occurs, it always follows the symmetrical one. 

Therefore, the left furrow in Fig. 38b is the least advanced, since it has only one 

vortex on a side. Thus, this furrow corresponds to a transition state preceding case 

b in Fig. 37, while the furrow on the right corresponds to case c in Fig. 37. 
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Figure 36 Schematic flow field displaying skin-friction lines and streamlines associated with 

stages in the development of secondary flutes from longitudinal ridges and furrows [52] 

 

Figure 37 Moulds illustrating sequential stages in the development of secondary flutes by the 

higher-order instability of longitudinal ridges and furrows. They are not referred to the same 

furrow. Flow from bottom to top. [52] 

The structures shown in Fig. 38b are 3-4 times wider than the parent furrows. 

Furthermore, the cusped rim developed at the upstream end of the flank of each 

furrow is not yet continuous across the median line. the illustration of the flow field 

from case c of Fig.37 suggests that there is a powerful vortex against each flank of 

the mark and a pair of weak vortices symmetrically arranged about a weak 

streamwise separation line on the crest of the median ridge. At the upstream end of 

the mark, the skin-friction lines of the main vortices make a relatively large angle 
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with the mean flow direction. If there are neighbouring secondary furrows, the one 

with the strongest flute enlarges englobing the adjacent furrows, through fusion of 

the cusped rims. Right before englobing adjacent secondary furrows, the structure 

is approximately six times wider than its parent furrow. When the cusped rim fusion 

between adjacent furrows happens, a captive roller appears in the flow field 

associated with the mark and progressively strengthens. Further growth beyond the 

stage of case d of Fig. 37 leads to the disappearance of the weak up-current furrow 

and the development of a parabolic shape in plan: a flute has now been attained. 

 

To sum up, according to Allen, the broad spectrum of bed shapes that have been 

noted suggests an equally broad spectrum of flow phenomena associated with 

separated flows and makes it unlikely that a single mechanism of instability is 

responsible for the structures. 

 

In conclusion, Allen even provided a classification of erosional marks found in rock 

or mud caves depending on their assemblage. Indeed, when erosional marks occur 

in association, the marks may be either scattered widely over an otherwise sensibly 

smooth surface, or so closely spaced as to interfere and share crests. Marks in the 

first category are described as isolate and in the latter as conjugate. Mark 

assemblages are in turn separated into homogeneous and heterogeneous. Usually, 

in a homogeneous assemblage, the marks are similar in shape and size; thus the 

linear scale of the individual mark can contribute largely to the linear scale of the 

assemblage. On the other hand, in a heterogeneous assemblage, the linear scale of 

the assemblage is larger than the linear scale of the marks themselves. 

In the scheme shown in Fig. 39, dissolutional scallops, depending on their evolution 

in time, are in the categories of parabolic (broad form), polygonal (symmetrical) 

and polygonal (asymmetrical) and are within the bigger group of the homogeneous, 

conjugate assemblages. In speleology, scallops are rarely more than 20 cm and 

seldom less than 5 cm in length. The width is generally between one and two times 

the length, which is usually between four and eight times the amplitude. Ordinarily 

the crests of the marks are asymmetrically sharply cusped, thus suggesting a 

preferential flow direction. Assemblages of scallops are principally of 
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asymmetrically polygonal marks with subordinate numbers of parabolic and 

symmetrical polygonal structures. Very commonly in these assemblages the shared 

crests of the scallops join and culminate at sharp peaks on the bed. 

 

Figure 38 Cataloguing of assemblages of transverse erosional marks. 
Current from top to bottom [53] 

As sketched in Fig. 40, the commonest form of peak is the culmination of three 

crests about 120° from each other, one crest lying parallel with flow. Less 

commonly, four crests may culminate at one point or, in pairs, joint at the ends of a 

short transverse ridge of constant elevation along its length. 

The cave markings known as flutes are rare compared to scallops. Their crests in 

plan vary from straight, through gently curved, to weakly sinuous, and in profile 

range from cusped to rounded. Flutes ordinarily occur in homogeneous, conjugate 

assemblages, with scallops found sometimes here and there in the assemblage. 



 

67 
 

 

Figure 39 Pattern of crests, and their culmination (peaks), in assemblages of polygonal erosional 

marks [53] 

 

The assemblages mentioned thus far are instantaneous. Instead, Fig. 41 proposes 

four stages of the time-evolution of an assemblage of marks of the same initial size 

but random spacing on a fixed surface. 

 

Figure 40 Expected development in time of an initial assemblage of transverse erosional marks. 

Current from top to bottom [53] 

In early stages the marks do not interfere and a high proportion of the total bed area 

lacks marks. With increasing age, the marks grow larger and nearer so that 

eventually those initially closest merges to share rims. Therefore, there are now 
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small cluster of erosional marks scattered among isolate ones. But there are still 

large individual areas on the bed not yet impinged on by marks. By a late 

developmental stage, however, even these areas have been absorbed and the 

assemblage is now wholly of conjugate marks. Many individual marks retain their 

initial non-polygonal form till a relatively late developmental state, certainly to the 

earliest stage describable as conjugate. In later conjugate stages, however, the 

erosional processes now acting in quasi-isentropically are expected to give place to 

a polygonal form and straighten out the cusped crests shared by marks. 

The last stage shown in Fig. 41 deserves a special comment driven by a substantial 

question: does this stage represent the final and unchanging state of the surface? 

The answer is affirmative according to Curl’s stable flute theory. Therefore, this 

stage would be the greatest age that could be determined by inspection a posteriori 

of the surface. Instead, Allen supports the idea that when the surface reaches the 

conjugate state, erosional marks could be destroyed as well as created and that there 

is no significant evidence to say whether the two opposing processes would strike 

a balance expressed by a statistically constant size and spacing of marks 

independently of time. 

 

Figure 41 Conjecture on secondary vortices and bed furrows generated by flank vortices of 

conjugated marks [53] 

The reason behind Allen’s answer is mainly motivated by the distance between 

vortices of adjacent patterns. Indeed, to reach the conjugate state, the secondary 
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lateral vortices must merge into bigger vortices. This morphologically means that 

erosional marks are so closely spaced that interfere and may even share crests, as 

shown in the left case of Fig. 42. It is interesting to note that such condition, 

corresponding to a cusp, is not admitted for a stable flute profile in Curl’s theory. 

Anyways, the attachment line on one mark could advance downstream on the 

separation line of the next mark along the line of flow, as shown in the right case of 

Fig. 42, only if the flow field and pattern of erosion in the marks were substantially 

independent of each other. Allen points out that, since substantial independence has 

been established for migrating sand dunes in [59], it cannot be neglected a priori a 

possible analogy also for erosional marks. 

 

The author of the present thesis will compare the result found experimentally with 

the ones provided by Allen and Curl in the final chapter. Motivated comments about 

the similarities found and about the emerged limitations of the two mentioned 

authors’ work will be provided as well. 
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2.3 Scalloping on salt 

 

The renovated interest in performing experiments on salt dissolving in water is due 

to the potential offered for studying solutal convection in an initially quiescent fluid 

induced by dissolution. 

Indeed, with respect to the aforementioned experiments involving ice or plasters: in 

the former, even if water salinity has an undisputed influence on melt-water density 

and thus on the surface melt instability, the phenomenon is mainly induced at the 

beginning by a temperature gradient and then driven by it. While in the latter, even 

if this is the case for dissolution to dominate, the experiments must be performed in 

an externally forced flow and thus the dissolution effects linked to the concentration 

gradient might be highly masked by erosional effects. Where erosion of surface due 

to a fluid involves two processes: deflation, which is the removal of surface loose 

particles by the flow and is linked to the near-wall velocity gradient of the clean 

fluid, and abrasion, which is the bombardment of the surface by sediments collected 

upstream and transported within the fluid. Therefore, for applications to 

geomorphological studies, experiments performed with salt in natural convection 

or with plaster in forced convection are respectively more correctly related to 

chemical weathering and aeolian/water erosion. The difference being that 

weathering does not usually include the transportation of the disintegrated rock and 

soil away from the site of the degradation [59]. 

Even if the first observation of the pattern forming on a salt block when dissolving 

in a quiescent water has been scientifically reported for the first time in 1905 [61], 

where such pattern is called figures de corrosion and is found to have a cellular 

structure on the bottom surface of a horizontal salt block and a structure made of 

parallel stripes (stries de convection) if the block is inclined, it is not till recent 

decades that the interest in possible studies arose again. Indeed, in addition to being 

a good test model for dissolution water caves [62] [63], salt is a good experimental 

model for solutal convection induced by dissolution [24] [64] [25]. The latter being 

a topic of recently renovated interest for the study of Darcy flows in porous media, 

one of whose engineering application is found in CO2 sequestration [65]. 
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The principal papers mentioned in this paragraph are [24] [64], whose research was 

carried out by the same research group. These references are relevant, because they 

pave the way for the next paragraph. 

In [64] [24], the solutal convection induced by dissolution in water of a horizontal 

block of salt is being investigated by means of numerical simulations. The reason 

behind the computational approach was preferred with respect to the experimental 

one is motivated by the following characteristic. 

Despite the simplicity of the experimental configuration, immersing suddenly a 

dissoluble block into water or filling rapidly with water an aquarium in which the 

dissoluble block has been already posed, does not correspond to the classical 

problem formulation of the Rayleigh-Bénard convective instability. Indeed: 

• Neither the concentration nor the flux at the boundaries is stationary forced 

in the initial base state. 

• Due to the development of the concentration boundary layer by diffusion, 

the base state of the instability is time dependent. 

• For the previous point, the convective flow starts after a specific duration. 

Therefore, the standard methods of linear stability analysis cannot be used to predict 

the onset time, the associated wavelength and growth-rate of the convective 

instability. 

Furthermore, the experimental investigation of the concentration boundary layer at 

the dissolving interface remains challenging due to its small size (about 100 μm) 

and the high concentration gradients; thus preventing the use of optical techniques. 

Calculating the thickness of the concentration boundary layer is important because 

the dissolution rate is set by its size, as it is for the temperature boundary layer in 

turbulent thermal convection. 

Anyways, the physical problem can be understood as an advection-diffusion 

problem in the fluid, which is coupled with a moving solid boundary due to the 

dissolution and gravity precipitation of Na+ and Cl- ions in water [66]. The 

dissolution law at the interface is written as: 

−𝜌𝑠
𝜌𝑚−𝜌0

𝑐𝑚
𝙫𝒅 ∙ 𝒏 = 𝛼(𝜌𝑖 − 𝜌𝑚) = −𝐷∇𝜌|𝑖 ∙ 𝒏  [44] 
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Where 𝜌𝑠, 𝜌𝑚 , 𝜌0, 𝜌𝑖  are respectively the density of the solid, of the liquid at 

saturation, of the liquid in the absence of solute, of the liquid at the interface, 𝑐𝑚 is 

the saturation mass concentration, 𝛼 is the dissolution rate coefficient, 𝙫𝒅 is the 

dissolution velocity, 𝒏 is the normal vector to the interface directed outward from 

the liquid, 𝐷 is the diffusion coefficient of the solute in the liquid. As can be seen, 

the dissolution rate depends on the value of the density 𝜌𝑖 at the interface, which is 

modified by advection by the hydrodynamic flow in the liquid phase. Although the 

domain is static in this approach, the boundary condition involves simultaneously 

the module of the characteristic variable and its flux across the boundary, thus is 

non-classic. Furthermore, although the solutal convective instability corresponds to 

a nonstationary Rayleigh-Bénard convection problem, the global dissolution flux is 

experimentally found to be constant with time after some time has passed since the 

start of the experiment [67]. 

For salt, 𝑐𝑚 = 315 𝑘𝑔 𝑚3⁄ , 𝜌𝑚 = 1200 𝑘𝑔 𝑚3⁄ , 𝜌𝑠 = 2153 𝑘𝑔 𝑚3⁄  from [24] 

and 𝛼 = 5.0 ± 0.4 × 10−4𝑚 𝑠⁄  from [68]. 

 

Figure 42 Phase diagram of NaCl-H2O [69] 

A different method to calculate 𝑐𝑚 , 𝜌𝑚 is using a state diagram, like the one 

provided as Fig. 43. To give an example on how to use it, this visually states that at 

the temperature of 20°C, 1 kg of water can fully dissolve a concentration of about 

26.3 wt.% of salt, which corresponds to about 357 g of NaCl. 
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It is worth to mention that Eq. 44 was obtained from: 

−𝜌𝑠𝙫𝒅 ∙ 𝒏 = 𝛼(𝑐𝑖 − 𝑐𝑚)    [45] 

Which considers in turn the linear relation 𝑐 = 𝑐𝑚 (𝜌 − 𝜌0) (𝜌𝑚 − 𝜌0)⁄  between 

the density 𝜌 and mass concentration 𝑐 of the solution, which is valid when only 

one chemical species is in the solution. This to remind that, when the dissolution of 

hard candy in salty water will be studied in the next chapter, there will be more than 

one chemical species in the solution. 

 

Anyways, the importance of [24] [64] for the experimental study carried on is that, 

in addition to underline the non-classic RB problem and thus the points listed 

earlier, identify three regimes and propose formulas describing the related system 

dynamics. 

The regimes identified are: 

• Diffusive regime (𝑡 < 𝑡𝑜𝑛𝑠𝑒𝑡). 

• Convection instability growth regime (𝑡𝑜𝑛𝑠𝑒𝑡 < 𝑡 < 𝑡𝑞𝑠). 

• Quasi-stationary regime (𝑡 > 𝑡𝑞𝑠). 

 

Figure 43 (a) Physical domain in the numerical simulation. (b) Solutal convection instability near 

the dissolving interface [64] 
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Whenever a soluble solid is put in contact with the corresponding solvent, it starts 

dissolving. The originating concentration layer grows until a critical thickness 

𝛿𝑜𝑛𝑠𝑒𝑡 is reached at 𝑡𝑜𝑛𝑠𝑒𝑡 . Only now the layer becomes unstable due to the 

buoyancy forces acting on the denser concentred solution layer. Therefore, a 

buoyancy instability, analogous to the Rayleigh-Bénard instability where 

concentration replaces temperature, develops according to [24] [64]. The boundary 

layer adopts a sinusoidal shape with a wavelength 𝜆𝑜𝑛𝑠𝑒𝑡 . In [64], 𝜆𝑜𝑛𝑠𝑒𝑡 =

0.53 𝑚𝑚 is found both for the perturbed vertical velocity field and for the perturbed 

concentration field. The theoretical approach used in the model to describe the 

convective instability under the action of gravity acceleration relies on the 

Boussinesq approximation. This approximation requires that the variations of 

density with the solute concentration are negligible and is acceptable in the salt-

water dissolving problem. 

In a few words, in the intermediate regime the instability non-linearly grows in time, 

concentrated plumes are emitted. 

In the quasi-stationary regime, the plumes are intermittently emitted in the vicinity 

of the surface and the solute flux at the interface reaches a constant value on 

average. The characteristic timescale 𝑡𝑒𝑚 of emission of filaments is measurable 

experimentally and follows the scaling hereafter proposed for the onset time. 

However, direct measurements of the onset time appear to be unreachable 

experimentally, as for the aforementioned concentration boundary layer thickness. 

The aforementioned asymptotic laws proposed in [24] for the second and third 

regimes strongly depend on the dissolving rate of the solid. Indeed, two cases are 

discernible: the fast dissolving case, which corresponds to a significant Damköhler 

number 𝐷𝑎 ≫ 1, and the slow dissolving case corresponding to 𝐷𝑎 ≪ 1. The 

Damköhler number compares the dissolution rate coefficient 𝛼 with a characteristic 

diffusion velocity defined as 𝐷 𝛿⁄  and is defined as: 

𝐷𝑎 ≔
𝛼𝛿

𝐷
           [46] 

When the Damköhler number is large, the dissolution is limited by the diffusion 

and the concentration at the interface is close to the saturation concentration. 

Instead, when the Damköhler number is small, the dissolution is limited by the 

chemical kinetics and the concentration at the interface is close to the initial 
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concentration of the solution. Given the aforementioned value of 𝛼, a block of salt 

dissolving in water is part of the fast-dissolving case. The asymptotic laws derived 

in [24] for the fast-dissolving case are: 

𝛿𝑜𝑛𝑠𝑒𝑡 ≈ 𝑅𝑎𝑐
1 3⁄ (

𝜂𝐷

Δ𝜌𝑔
)
1 3⁄

    [47] 

𝜆𝑜𝑛𝑠𝑒𝑡 ≈ 𝛾𝑅𝑎𝑐
1 3⁄ (

𝜂𝐷

Δ𝜌𝑔
)
1 3⁄

     [48] 

𝑡𝑜𝑛𝑠𝑒𝑡 ≈ 𝑅𝑎𝑐
2 3⁄ (

𝜂

Δ𝜌𝑔√𝐷
)
2 3⁄

      [49] 

Φ ≈ (𝑅𝑎𝑞𝑠)−1 3⁄ (
𝑔𝐷2

𝜂
)
1 3⁄

𝑐𝑚

𝜌𝑚−𝜌0
Δ𝜌4 3⁄                [50]  
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2.4 Scalloping on hard candy 
 

Hard candy, or solid sugar, has recently received a renovated interest for carrying 

out experiments on the self-sculpting phenomena induced by dissolution in 

quiescent water [9] [31] [25] [70]. 

Undiscussed advantages to prefer hard candy over salt are for sure a cheaper cost, 

there is no mineral preferred orientation, the greater malleability, the lower 

dissolution rate, the higher saturation concentration in water. 

Furthermore, also hard candy is not opaque, therefore the pattern formation and 

evolution can be studied without the use of refraction, stereo-correlation or 

projection based optical techniques [71] or the involvement of tracing particles or 

colorants. 

Obviously, nothing is perfect. Hard candy has disadvantages too: it is fragile when 

in the glassy state, its fragility can be easily influenced by atmospheric condition, 

its manufacturing process is more complex, the manufacturing process requires a 

control of the final temperature reached, it is difficult to manufacture a bubble-free 

volume. 

An advantage, and disadvantage at the same time, of hard candy is that its 

properties, i.e., opacity and viscosity, depend on the final temperature reached in 

the manufacturing process [72]. So, from a point of view, it is possible to play with 

the final temperature, for example till “burning the sugar” and thus discovering that 

it can become so opaque that eventual patterns forming on the surface are very 

difficult to detect if present, and at the same time discovering that after it is casted 

it takes much more time to solidify and during this time its viscosity is much lower 

than could be at first expected. But if this allows to vary some conditions using the 

same material when rarely preferred, at the same time there is usually the necessity 

of having the same material properties to increase the repeatability of the 

experiments. It is worth reminding that the dependence is not only on temperature 

or concentration, but also on the sugar used (i.e., glucose, fructose, …). Anyways, 

to the author’s knowledge, there are no consistent surface viscosity changes in the 

final hard candy block manufactured. A more detailed explanation on the last 

statement and on the manufacturing of hard candy is given in paragraph 3.1. 
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The experiments described in the present paragraph are referred to [25], which 

constitutes the principal reference on the topic available today. They were carried 

out on a rectangular block of hard candy immersed in quiescent aqueous solutions. 

The experiments are performed varying the inclination of the block and the salinity 

of the solution. 

 

Figure 44 Schematic view of the dissolution-driven flow on an inclined block of hard candy [25] 

The differences in solute transport depending on the orientation of the block 

interface go along with a different erosion velocity and shaping of the block walls. 

It is found that the solute flow along the block and the dynamics of patterns at the 

block interface have little if any influence on the global dissolution rate. In the 

mentioned paper, the experiments were carried out immersing a block of hard candy 

at room temperature at the center of a glass tank which is 40 cm long, 20 cm wide 

and is filled with the solution to a depth of 20 cm. A few seconds after immersion, 

longitudinal parallel stripes with an initial wavelength of 0.4 mm are observed. The 

initial wavelength of longitudinal stripes 𝜆𝑠, the characteristic growth time 𝑇𝑠 for 

their formation and the global erosion velocity ℎ̇ of the block wall pointing 

downward, where there is scalloping. Indeed, the block wall pointing upward is not 

scalloped, showing clearly how the solute layer at the interface is destabilised by 

gravity. Solute diffusion and viscosity stabilize the interface and tend to increase 

the solute layer thickness 𝛿, while gravity drives the instability and tends to 

decrease 𝛿 by ultimately forcing the near-wall flow to detach. The instability selects 
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the thickness of the concentration layer and the wavelength of solute threads. It 

produces a modulation of the solute concentration at the interface, which shapes the 

dissolving block. The concentration at the interface of the block is larger above a 

thread than between threads. The block dissolves faster where the concentration at 

the interface is smaller. The respective higher and lower concentration is indicated 

respectively as (+) and (-) in Fig. 47. 

 

Figure 45 Evolution in time, from top to bottom, of the dissolution instability [25] 

In the present paper it is reported that the overall inclination of the bottom surface 

does not change over time, except for the region in the vicinity of the top corner. 

No explanation is provided. Furthermore, it is noted that the block dissolves faster 

at the interface facing downwards with respect to the interface facing upwards. 

The characteristic time and length scales are said to depend on material, initial bath 

concentration and inclination of the block. It is reported that: 

• The initial wavelength as the characteristic time for the stripes’ formation 

increases with the bath concentration. 

• The interface recedes faster when the concentration of the bath is smaller. 

• The initial wavelength and growth time increase, and the interface recedes 

slower when the inclination angle with respect to the horizontal increases. 
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The second point as will be explained in a while, could have been expected a priori. 

The scaling laws are derived balancing the dissolution-driven solute flux at the 

receding interface, the diffusion-dominated flux of mass at the solid interface, the 

advection flux of mass at the interface between the solute layer and the outer bath. 

Basically, to explain the code implemented in the mentioned paper, it is worth 

recalling the Stephan problem explained in paragraph 1.2 together with the used 

notation. The volume of the aquarium can be idealised in a spatial domain 𝔄 made 

of three subdomains 𝔄1, 𝔘2, 𝔄3 divided respectively by two interfaces 𝔇12, 𝔇23 at 

respective initial positions 𝑠12(𝑡 = 𝑡𝑜𝑛𝑠𝑒𝑡) = 𝑠0,12, 𝑠23(𝑡 = 𝑡𝑜𝑛𝑠𝑒𝑡) = 𝑠0,23, such 

that 𝔄1 = 𝔄 ∩ {0 ≤ 𝑥 < 𝑠0,12} filled with water, 𝔄2 = 𝔄 ∩ {𝑠0,12 < 𝑥 < 𝑠0,23} 

made of the concentration layer, 𝔄3 = 𝔄{𝑥 > 𝑠0,23} filled with the solid not yet 

dissolved. In order to take into account of the existence of the concentration layer, 

and thus considering two interfaces instead of one, it is necessary that 𝑡 = 𝑡𝑜𝑛𝑠𝑒𝑡 , 

and not simply that 𝑡 = 0 like in the classical one-dimensional one-phase Štefan’s 

problem explained in paragraph 1.2. Furthermore, another difference is that only 

the interface between the concentration layer and the outer bath is effectively a free 

boundary layer in a numerical simulation. Indeed, the thickness of the concentration 

boundary layer influences the dissolution rate, as anticipated in paragraph 2.3. 

While the interface between the concentration layer and the solid is basically fixed, 

in a numerical simulation, by the Damköhler number. As anticipated in paragraph 

2.3, if 𝐷𝑎 ≫ 1, then 𝐶𝑖 ≈ 𝐶𝑠𝑎𝑡; while if 𝐷𝑎 ≪ 1, then 𝐶𝑖 ≈ 𝐶𝑏. Where with 

𝐶𝑖 , 𝐶𝑠𝑎𝑡 , 𝐶𝑏 are indicated respectively the mass concentration of the solution at the 

interface between the solid and the concentration layer, 𝐶𝑠𝑎𝑡 is the concentration of 

the saturated solution, 𝐶𝑏 is the concentration of the outer bath. In physical words, 

the equilibrium between the dissolution kinetics and the diffusive flux sets the 

concentration at the solid interface. The authors of the mentioned paper assume a 

linear concentration profile in the concentration layer and a linear relationship 

between density and concentration. This allows to postulate scaling laws for the 

thickness of the concentration layer 𝛿 and for the already introduced variables 

ℎ̇, 𝜆𝑠, 𝑇𝑠: 
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𝛿 ∼ (3𝑅𝜆
2)
1 3⁄
[

𝜌𝑠

𝜌𝑠−𝛽𝐶𝑠𝑎𝑡

𝐷𝜂𝑓

(𝜌𝑠𝑎𝑡−𝜌𝑏)𝑔 cos 𝜃
]
1 3⁄

(
𝐶𝑠𝑎𝑡−𝐶𝑏

𝐶𝑠𝑎𝑡−𝐶𝑏
𝜌𝑠𝑎𝑡−𝐶𝑠𝑎𝑡
𝜌𝑏−𝐶𝑏

)

1 3⁄

 [51] 

ℎ̇ ∼ −(3𝑅𝜆
2)−1 3⁄ [

𝐷2(𝜌𝑠𝑎𝑡−𝜌𝑏)
4𝑔𝑐𝑜𝑠(𝜃)

𝜂𝑓(𝜌𝑠−𝛽𝐶𝑠𝑎𝑡)
2𝜌𝑠

]
1 3⁄

𝐶𝑠𝑎𝑡

𝜌𝑠𝑎𝑡−𝜌0
(

𝐶𝑠𝑎𝑡−𝐶𝑏

𝐶𝑠𝑎𝑡−𝐶𝑏
𝜌𝑠𝑎𝑡−𝐶𝑠𝑎𝑡
𝜌𝑏−𝐶𝑏

)

−1 3⁄

 [52] 

𝜆𝑠 ∼ −(3𝑅𝜆
5)
1 3⁄
[

𝜌𝑠

𝜌𝑠−𝛽𝐶𝑠𝑎𝑡

𝐷𝜂𝑓

(𝜌𝑠𝑎𝑡−𝜌𝑏)𝑔𝑐𝑜𝑠𝜃
]
1 3⁄

(
𝐶𝑠𝑎𝑡−𝐶𝑏

𝐶𝑠𝑎𝑡−𝐶𝑏
𝜌𝑠𝑎𝑡−𝐶𝑠𝑎𝑡
𝜌𝑏−𝐶𝑏

)

1 3⁄

    [53] 

𝑇𝑠 ∼ (9𝑅𝜆
7)
1 3⁄
[

𝜂𝑓
2(𝜌𝑠−𝛽𝐶𝑠𝑎𝑡)𝜌𝑠

2

𝐷(𝜌𝑠𝑎𝑡−𝜌𝑏)
5(𝑔𝑐𝑜𝑠𝜃)2

]
1 3⁄

(
𝐶𝑠𝑎𝑡

𝜌𝑠𝑎𝑡−𝜌0
)
−1

(
𝐶𝑠𝑎𝑡−𝐶𝑏

𝐶𝑠𝑎𝑡−𝐶𝑏
𝜌𝑠𝑎𝑡−𝐶𝑠𝑎𝑡
𝜌𝑏−𝐶𝑏

)

2 3⁄

  [54] 

Where 𝑅𝜆 ≔ 𝜆𝑓 𝛿⁄ , and is found in [25] applying Brown [73] or Lister & Kerr [74] 

wavelength of the Rayleigh-Taylor instability. According to the former 𝑅𝑓 ≅ 3, 

while according to the latter 𝑅𝑓 ≅ 3.8. 𝛽 is a dimensionless value that depends on 

the dissolving material. The values in Eq. 51-54 for hard candy and salt are provided 

in the same mentioned paper grouped in Table 4. 

 𝛽 𝐶𝑠𝑎𝑡  [𝑘𝑔 𝑚3⁄ ] 𝜌𝑠𝑎𝑡  [𝑘𝑔 𝑚3⁄ ] 𝜌𝑠 [𝑘𝑔 𝑚3⁄ ] 

Hard candy 1.06 968 1450 1540 

Salt 1.96 317 1197 2348 

Table 4 Useful values for hard candy and salt to be used in the scaling laws Eq. 51-54 [25] 

 

Before concluding the present paragraph, the author of the present thesis would like 

to do some remarks regarding the mentioned paper. 

First of all, in the mentioned paper’s abstract as in its second paragraph and in its 

eighth figure’s caption, an experiment with plaster in aqueous solution is reported. 

Reading these parts of text, it appears that Cohen et al. performed an experiment of 

buoyancy-driven dissolution of an inclined plaster block and studied its erosion rate 

and pattern formation. But, to the author of the present thesis’ knowledge, it is not 

possible to dissolve plaster in natural convection. This can be explained looking at 

the chemical formulas. 

Gypsum, the soft sulfate mineral introduced in paragraph 1.2, is composed of 

calcium sulfate dihydrate: 𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂. Gypsum, as explained in the 

aforementioned paragraph, and shown in Fig. 26, is (somewhat) soluble in water 

with the following reaction. 
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𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂 → 𝐶𝑎
2+ + 𝑆𝑂4

2− + 2𝐻2𝑂 

Therefore, gypsum is already in a hydrated state with two molecules of water. In 

order to obtain plaster of Paris, which is calcium sulfate hemihydrate, the 

crystallization water of the hydrate needs to be removed. Thus, original gypsum is 

heated at a temperature between 120°C-180°C: 

𝐶𝑎𝑆𝑂4 ∙ 2𝐻2𝑂
ℎ𝑒𝑎𝑡
→  𝐶𝑎𝑆𝑂4 ∙ ½𝐻2𝑂 +½𝐻2𝑂 ↑ 

Where the arrow pointing up means that chemical species has been released as 

steam. Plaster of Paris is 𝐶𝑎𝑆𝑂4 ∙ ½𝐻2𝑂. If the reagents were heated up to a 

temperature higher than 600°C, then dead burnt plaster is obtained. Dead burnt 

plaster is nothing else than anhydrous calcium sulphate (CaSO4). 

Therefore, when water is added to the kiln-dried gypsum powder, aka plaster of 

Paris, it is readily absorbed and becomes incorporated back into the crystal 

structure. During this process the plaster of Paris crystallizes and hardens into a 

solid, releases heat, and increases in volume slightly. Therefore, it sounds very 

strange that a buoyancy-driven dissolution pattern may have been formed on the 

surface of plaster. The doubt is unfortunately not clarified by the lack of images of 

dissolving plaster in the mentioned paper, even though plots showing results of such 

experiments with gypsum are provided. Furthermore, the cited supplemental 

material at the end of the mentioned paper is not openly accessible. 

 

Secondly, the author of the present thesis cannot unfortunately verify Eq. 50-53, 

since the intermediate passages are not provided. They honestly appear dubious due 

to the absence of dimensionless numbers, i.e., 𝑅𝑒, 𝑅𝑎, …, and due the exponentials. 

 

Finally, regarding the second point mentioned at page 77, it could have been 

expected a priori that the interface recedes faster when the concentration of the bath 

is smaller. Doing a mental consideration, if only the concentration of the bath is 

changed and all the other parameters are left constant, then increasing the 

concentration of the bath, it means that there is more hard candy dissolved in the 

bath; therefore the net concentration gradient between the concentration layer and 

the bath is smaller; therefore the block dissolves slower. The opposite happens for 

an increase in the concentration of the bath. Remaining on this topic, right before 
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the fourth chapter of the mentioned paper, its authors highlight that the value Ω, 

defined as Ω ≔ [𝐶𝑠𝑎𝑡 − 𝐶𝑏(𝜌𝑠𝑎𝑡 − 𝐶𝑠𝑎𝑡) 𝜌𝑏 − 𝐶𝑏⁄ ] (𝐶𝑠𝑎𝑡 − 𝐶𝑏)⁄ , increases with the 

bath concentration. This is quite evident rewriting Ω as: 

𝐶𝑠𝑎𝑡 −
𝐶𝑏(𝜌𝑠𝑎𝑡 − 𝐶𝑠𝑎𝑡)

𝐶𝑏 (
𝜌𝑏
𝐶𝑏
− 1)

 

Where 𝐶𝑠𝑎𝑡 , 𝜌𝑠𝑎𝑡 = 𝑐𝑜𝑛𝑠𝑡. and 𝐶𝑏 can be removed. In this case the first derivative 

of the function depends only on the quantity in curly brackets at the denominator. 

Recalling what said concerning on how to use a state diagram like the one shown 

in Fig. 43, it is evident that 𝜌𝑏 = 𝑓(𝐶𝑏) and that 𝜌𝑏  increases monotonically with 

𝐶𝑏 increasing. Furthermore, the lower and upper limits of these two quantities are 

𝜌𝑏 > 𝜌𝐻2𝑂 ≅ 1000 𝑘𝑔 𝑚3⁄  and 𝐶𝑏 ≤ 𝐶𝑠𝑎𝑡 = 968 𝑘𝑔 𝑚3⁄  for hard candy and 

𝐶𝑏 ≤ 𝐶𝑠𝑎𝑡 = 317 𝑘𝑔 𝑚3⁄  for salt; thus (𝜌𝑏 𝐶𝑏⁄ ) > 1. Therefore, also this 

dependence could have been a priori expected. 
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CHAPTER 3: Experimental Activity 
 

3.1 Hard candy manufacturing 

 

In order to carry out experiments with hard candy, it is obviously necessary to 

manufacture, or as commonly said cooking, it. The recipe used is the one proposed 

in [31]. Crystal sugar, corn syrup and water are combined together in volumetric 

proportion 8:3:2 respectively. Every candy is made of these ingredients. The author 

of the present thesis stresses that hard candy is not caramel [75], as sometimes 

wrongly found in the literature. Indeed, caramel is also made of milk or some of its 

derivates. Due to the presence of proteins of milk’s derivates, the reactions involved 

in the manufacturing process are thus different, as will be explained in a while. 

To provide repeatable or comparable results, it is mentioned that the crystal sugar 

and the corn syrup used in author’s experiments is the fine-grain white table sugar 

produced by Südzucker© and the corn syrup produced by Chung Jung One©, whose 

respective products are shown in Fig. 47. Demineralised water is used. 

 

Figure 46 Sugar and corn syrup used in the following experiments. 

There are different types of candies, like chevy-, cotton-, gritty-, gummy-, hard- or 

rock-candy, just to mention some. They all start by the same ingredients, but the 

final appearance is different and mainly dependent on whether sugar crystals are 

given enough time to form in the process [76] [77]. The time given to form also 
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selects the final dimension of the crystal. Even the maximum temperature reached 

in the manufacturing process determine the overall properties of the final candy. 

 

Figure 47 Final candy properties depending on the syrup boiling point reached in cooking. [77] 

It is worth explaining briefly some organic chemistry of sugars in order to 

understand what happens at the molecular level during candy manufacturing and 

thus correctly control the process and have the final candy as wanted. 

 

Figure 48 Chemical arrangement of common sugars. [77] 
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Each grain of sugar consists of a small crystal made of an orderly arrangement of 

sucrose molecules. Sucrose is in turn a disaccharide made of glucose and fructose. 

When table sugar is put in contact with water, dissolution starts. The dissolution 

process involves two steps: firstly, water molecules bind to sucrose molecules; 

secondly, the (globally null) electrostatic distribution of the bound sucrose-water 

molecules, pull the sucrose molecules away from the sugar crystal and into the 

solution. This process, though, happens only for a small portion of the table sugar 

which has been put together with water and corn syrup in the pot, since it is present 

in supersaturated concentration. This is a chemical dynamic equilibrium. In order 

to dissolve more sucrose molecules, since the dynamic equilibrium is affected by 

temperature, it is necessary to increase the temperature of the system. Indeed, as 

stated by Le Châtelier’s principle, a system that is shifted away from equilibrium 

acts to restore equilibrium by reacting in opposite to the shift. So, an increase in 

temperature causes the system to decrease its energy, in an attempt to bring the 

temperature down. Because the breakup of chemical bonds always absorbs energy, 

it cools the system down, so more sucrose molecules break apart and dissolve in the 

solution. 

 

Figure 49 State diagram of sucrose. Adapted from [78] and shown in [75]. 
(Keep in mind that this is a state, and not a phase, diagram, since 𝑇𝑔is not a thermodynamic 

equilibrium event, in contrast to the melting transition). 
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But as shown in Fig. 50, when providing heat, it is necessary to take into account 

the corresponding state of sucrose. Indeed, as also mentioned in Fig. 48, increasing 

too much the temperatures means breaking even the intramolecular carbon bonds 

of sucrose molecules. This chemical event is referred to as caramelization. It is 

therefore now clear that providing heat to increase the dissolution process and 

providing (further) heat to break the intramolecular C-bonds of sucrose molecules 

are actions that should keep separated to obtain a final hard candy block with the 

wanted properties for the experiments discusses in the following chapters. 

Regarding the heating phase of the manufacturing process, it was mentioned before 

that caramel is involved in a different reaction with respect to hard candy. Indeed, 

since in the case of caramel there are milk proteins within the reagents, they take 

part in a reaction with the reducing sugars. This reaction is called Maillard reaction, 

happens at lower temperatures than the caramelization temperature and is 

responsible for the flavour and colour in most of bakery products. 

Having concluded the chemical description of the heating phase of the 

manufacturing process, it is worth mentioning what happens in the cooling and 

setting, or also called relaxation, phase. 

Once the saturated solution starts to cool down, it becomes supersaturated. A 

supersaturated solution is unstable so, as temperature decreases, sugar comes out of 

the solution forming crystals. The lower the temperature, the more molecules join 

the sugar crystals. Since a crystal is generally formed by a crystal seed, 

mechanically stirring the solution causes the sucrose molecules within the solution 

to be pushed into one another, forming crustal seeds throughout the syrup. This 

should be done, after the syrup has cooled down below 50°C. The resulting crystals 

are smaller when more of the crystal seeds are present, because the sucrose 

molecules can join any of a larger number of crystal seeds. Another solution to 

mechanically stirring is cooling the solution too quickly. This is what is done in the 

process for manufacturing candy blocks used in the present experiments. This can 

be done simply cutting off abruptly the heating source and leaving the viscous syrup 

to cool down in a mould at room temperature. In this case the syrup does not have 

time to form enough intermolecular interactions to grow into larger crystals. The 

rapid cooling has a second effect: the chemical structure remains amorphous. And 
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when an object has an amorphous structure, which is an irregular structure with no 

pattern, it has the property to appear glassy. Even if the overall structure is almost 

irregular, there can be some small regions where crystallization had time to happen. 

This can be proved by putting the hard candy block in a freezer and lowering the 

temperature slowly in order to do not crack the block due to a temperature shock. 

After a while, even if the cooling is done very gradually, the block will crack since 

these ordered regions have different orientations with each other and can thus 

induce a crack plane and a crack path between them. This can finally explain why 

when the caramelization temperature is reached or even passed, the final syrup is 

very less viscous, takes a way longer time to solidify and looks dark brown or black. 

In this case the intramolecular bonds of many sugar molecules are broken. So, the 

syrup cannot form at all intermolecular interactions to grow into crystals. Therefore, 

in this liquid state the broken molecules have even greater freedom to move and 

thus the internal frictional force between contiguous layers is even fewer; therefore, 

the lower viscosity. Burnt candy, assuming there are no bubbles within it, since it 

has no ordered regions, does not crack in a freezer. The author of the present thesis 

even left a block of burnt hard candy for a couple of weeks in a freezer of the 

laboratory and there were observed no cracks in it. On the other hand, doing the 

same with non-burnt hard candy, it is observed that the candy block cracks within 

24 hours. 

 

Having said so from a molecular point of view, is here proposed a brief description 

of the corresponding actions to be performed in the cooking process. 

The aforementioned ingredients, in the aforementioned volumetric proportion, are 

put in a pot and heated. The electric heater available allowed to set the power of the 

temperature to be reached. At the beginning, maximum power is set in power-mode, 

or a maximum temperature of 170°C is set in temperature-mode. The mixture is 

mechanically stirred every now and then, especially pushing the mixture from the 

inner perimeter of the pot toward its center. This is done because the temperature at 

the base of the pot is not uniform and because bubbles in the center tend to push the 

mixture toward the inner circumference of the pot. The mixture boils twice: at 

100°C due to the boiling temperature of water and then there is a second increase 
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in bubbling at around 155°C-160°C due to the boiling of water molecules originated 

form the breaking of some sugar bonds. If power-mode was selected, when the first 

boiling is observed at 100°C, then it should be switched to 170°C temperature 

mode. Cooking is stopped when the syrup turns to be slightly-yellow/yellow. The 

syrup is poured into a silicon mould, while moving gently the pot from a side to the 

other to easily level the viscous syrup. The mols is put in a vacuum chamber in 

order to remove bubbles trapped within the viscous candy syrup. Depressurising 

the candy syrup, its volume will expand considerably. For this reason and to keep 

the candy syrup inside the lateral walls of the mould, the depressurisation process 

is done step by step. This allows the viscous syrup the needed time to expel the 

bubbles trapped within it and thus regaining a smaller volume. At the beginning, 

the syrup is depressurised at 800 mbar. Usually not more than ninety seconds are 

needed to the candy syrup to expel many bubbles and set to a certain height in the 

mould. Then, depressurisation to 700 mbar is reached. It is waited a few more, like 

in the previous step. Then, after these two fast and small depressurisations, a big 

depressurisation is set to reach 500 mbar. The sugar syrup stays at this pressure level 

for longer, not less than five minutes. If the escaping bubble-activity through the 

free surface of the syrup calms down, then a smaller depressurisation is applied in 

order to keep always the syrup in a bubble-escape state, thus also to prevent the 

syrup not passing from a viscous state into a rubber-like behaviour. Since it tends 

to increase viscosity very fast if left free to relax. Anyways, not more than eight 

minutes should pass since 500 mbar where reached, otherwise the syrup would be 

too viscous to incorporate the holder without deforming the free surface. Therefore, 

the valve of the vacuum chamber is opened and the holder is set in the mould. 

Before doing so, the holder is inserted in its supporter. The support of the holder is 

a holed metal block. The holder passes through the hole and is blocked by a lateral 

screw. It is suggested to lower the holder inside the viscous syrup with the base 

steeply inclined, in order to push the smallest volume as possible and preventing a 

major volume of air gets trapped right below the base. It is strongly suggested to 

lower vertically the holder and minimize as possible horizontal movements of the 

holder in the viscous syrup. The holder should be put closer as possible to smaller 

side of the mould to maximize the interrogation area for the frontal photos. But also 
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not too close; the rule of thumb is that there should be at least a centimetre and a 

half.  The holder can be even positioned closer to an edge than the adjacent. The 

same rule of thumb applies considering the distance from both the sides having in 

common the edge. But this should be done only after a few experience is acquired, 

since an holder closer to an edge than the other has higher chances to crack the hard 

candy after a while. The base of the holder should not be placed too close to the 

base to the mould. As will be explained in the next paragraph and as already 

anticipated in the previous one, the regression rate at the surface facing downward 

is faster than the regression rate of the surface facing upward. Therefore the base of 

the mould should be closer to the free-surface of the viscous syrup than to its base 

in contact with the mould. Till now the holder’s support is fixed through the 

blockage of the screw close to the holder extremum which is opposite at the base. 

This allows to have a longer length of the holder available to manoeuvre it. A rule 

of thumb is to position the base at 2/3 the total height of the liquid syrup, with the 

reference system starting from the internal base of the mould, or at one centimetre 

deep from the free surface. Obviously, with increasing experience, more accurate 

positions can be better estimated. To do so, once the base of the holder is already 

within the syrup, the screw blocking the height of the metal holder along the metal 

support is unscrewed. The metal holder is left leaning on the walls of the mould, 

and the desired depth of the base is chosen raising or lowering the holder through 

the hole of the metal holder. The screw is thus tightened and the height of the base 

set. Anyways, after the holder is placed in the mould, the vacuum chamber hatch is 

closed and an internal pressure of 300 mbar is set. Always keeping in mind that, 

even if the holder was inserted inclined, a bubble might have been trapped right 

below the base of the holder. So, during the fast depressurisation to 300 mbar, the 

operator should be ready to stop the vacuuming process if a bubble starts raising 

out from the base and expanding way faster than the smaller ones within the viscous 

syrup. The process to reach 300 mbar can resume as soon as this bubble raises the 

surface and shrinks by dissolving the trapped air in the vacuum chamber 

environment. When this pressure value is reached, the syrup should be left in this 

condition for a little bit less than five minutes. Anyways, it is suggested not to keep 

using the vacuum chamber for more than twenty minutes since the syrup was firstly 
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put in it right after the casting. The process may even be shortened if the escaping 

bubble activity is seen to calm down. Indeed, this is a symptom that candy syrup is 

getting quite viscous. The more viscous candy syrup gets, the more difficult it is to 

extract bubbles from it and also the more difficult it is to resume the initial volume 

condition once the vacuuming process is stopped. Therefore, whether there is even 

a doubt that at a preceding instant of the twentieth minute since the start, the 

escaping bubble activity is less energetic, the vacuuming process should be stopped 

immediately. Basically, as more time passes, the candy syrup cools and since it is 

in a supersaturated condition as previously said, as can be seen from Fig. 51, its 

viscosity changes very rapidly [79]. 

 

Figure 50 Dependence of the dynamic viscosity of sucrose solutions from temperature and weight 

concentration 𝜇(𝑇,𝑤𝑡.%). Adapted from Table 6.3 in [79] and shown in [75]. 

The hard candy setting time is at least of three hours and a half starting from the 

end of the vacuuming. Obviously if more hours are waited the better it is. But 

waiting more than six hours, as some papers report, is neither necessary. Also 

because the longer time passes, after the sixth hour, the more probable is that the 

hard candy block may crack. If this is the case, and the temperature of the room has 

always been constant, it could be related to the humidity of the room. Basically, the 
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crack may originate because the hard candy block is dehydrated with respect to the 

humidity of the room. This implies that, unfortunately for the operator working with 

hard candy, it is not suggested to manufacture the block the day before. It is also 

worth noticing that, in order to reduce the probability of cracking when dropping 

the hard candy block in the aquarium, it would be better if the minimum water 

temperature is at least at 19°C or little higher. For the best reproducibility of 

experiments, water temperature should also neither vary too much. In the 

experiments shown in the present thesis, the usual water temperature range is 18°C-

23°C. 

 

In conclusion, it is worth answering a question that may arise reading the present 

paragraph: is the vacuuming process really necessary? 

The answer obviously depends on the application. For the experimental study 

described in the present thesis, the answer is affirmative. 

This is evident by looking at Fig. 52. The hard candy block shown in the figure is 

still rich of air bubbles. The bubbles are dispersed all over the face (front photo) 

and at different heights from the base (lateral photo). Furthermore, big bubbles are 

found at the faces of the parallelepiped, since they solidified first due to the contact 

with the cooler surface of the mould. This is obviously even worse for doing 

experiments aiming at studying the genesis of patterns on a surface. 

 

Figure 51 Lateral photo (on the left) and frontal photo (on the right) of the same hard candy block, 

whose dispersed air bubbles were not removed with the vacuum chamber. The base of the block is 

134 mm long and 90 mm width. 
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3.2 Experimental Set-up 

 

 

Figure 52 Illustration of the experimental set-up used for the experiments. 

For the experiments in natural convection, it was used a water tank whose internal 

length and width are respectively 78.3 cm and 38.4 cm. The water height was set 

for all the experiments at 44.4 cm from the base of the tank, by placing on one 

surface a strip of tape. 

For the nomenclature, the point of view of camera A is the frontal, while the point 

of view of camera B is the lateral. 

A Nikon D850 camera has always been used for taking the frontal photos. While for 

the lateral photos, it was used at times a Nikon D850 or a Nikon D5100. Because of 

the inclination of the hard candy block, a wide-angle lens is suggested for the frontal 

photos. This allows to have a greater depth of field and thus have in focus all the 

surface ranging from the top to the bottom frontal face of the block. The lens mainly 

used for the frontal photos was a Nikon Nikkor 50mm f/1.8D. Rarely it was used 

instead a Sigma Macro 50mm f/2.8 EX DG. For the lateral photos is preferred 

instead a telephoto lens, in order to have a smaller depth of field. This allows to 

have in focus only the perimeter of the lateral surface of the hard candy block and 

thus not to take into account of patterns or plumes detaching from the middle of the 
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frontal face. The lens used for this purpose is a Carl Zeiss Milvus Makro Planar 

100mm f/2 ZF.2. All the lens mentioned thus far are fixed focal lenses. 

 

Figure 53 Photo of an experiment taken behind the frontal-point of view camera. 

 

Figure 54 Photo of the same experiment taken behind the lateral-point of view camera. 
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Flexible moulds made of silicone rubber were made by the author of the present 

thesis. Two moulds have a rectangular base of size 133.5mm x 89.9 mm and 147.9 

mm x 92.2 mm, respectively. 

 

Figure 55 One of the two moulds with the rectangular base. (It appears distorted only in photo). 

There were manufactured some flexible bases, always made of silicone, which can 

be lean on the base of the two aforementioned rectangular moulds to change the 

geometry of the frontal face of the hard candy block. These flexible bases are made 

to make an hard candy block with a 2D-harmonic surface, a convex surface (whose 

curvature is made from a circumference of diameter 17.0 cm). The 2D-harmonic 

surface is a square in plan view. It was realised pouring liquid silicone hardeners on 

a negative surface which was 3D printed in resin. The surface is described by the 

following function, where 𝑥, 𝑦, 𝑧 are respectively the length, with and depth 

coordinates with respect to the horizontal plane of the mould and ℒ = 95 𝑚𝑚 is the 

length of the side of the mould. 

−2 ≤ 𝑧[𝑚𝑚] ≤ 2 − (cos (5
𝑥

ℒ
× 2𝜋) cos (5

𝑦

ℒ
× 2𝜋))   [55] 
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Figure 56 Harmonic surface. On the left there is the (negative) resin print on which the silicon 

mould base on the right was manufactured. 

 

 

 

 

Figure 57 Concave mould base to realise a hard candy block with a convex face. In cross-sectional 

view the surface is an arc of circumference of diameter 170 mm. The two lines of points made of 

the extrema of the arc of circumference are 125 mm apart. 
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There were produced also silicone moulds bases allowing to have a V- or U-shaped 

longitudinal incision on the surface. The former more for an interest in the 

regression rate driven by bubbles than for tilting the local plane of the face pointing 

downward with a second angle. As shown in Fig.60. 

 

Figure 58 “V-shaped” base mould. 

 

Figure 59 Regression rate influences by upward pushing bubbles. 

Even if the configuration illustrated in Fig. 60 appears at first banal, it is worth 

saying that there is an increasing interest in shapes sculpted by bubbly flows and 

not much is found in the literature. A bubble does not sculpt a surface through it 

upward bushing force, but rather by its interaction with the concentration or melting 

boundary layer. Indeed, extending this configuration to the melting ice would be of 

interest too since the thermal conductivity of air is lower than the one of water. 

Therefore, a bubble soon lies against a bump in the interface from which it can be 
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easily displaced laterally by the vigorous underlying thermal convection [36]. The 

curve connecting all the vertices of the cross-sections shown in Fig. 60 becomes 

thus corrugated as time passes. Therefore the interaction between the local lower 

temperature conductivity and the higher wet surface and is not banal a priori. 

Fig. 59 is also useful for showing the metal supporter of the holder (in black) needed 

till the candy syrup has not solidified yet. The holder and its circular base are in 

plastic. The material and shape were not decided by chance. Plastic has a lower 

thermal conductivity than metal, therefore it does not vary its temperature when in 

contact with cooling hot candy syrup. This prevents the formation of cracks in the 

candy block which would be caused by thermal shock in case a metal holder were 

used. The circular shape of the base of the holder is a continuous surface without 

sharp edges. This furtherly prevents the formation of cracks, by minimizing 

nucleation points at eventual edges. 

The V-shaped base mould shown in Fig 59 has a dual U-shaped base mould. 

 

Figure 60 “U-shaped” base mould. 

The base mould shown in Fig. 61 allows to create a candy surface with a concave 

surface. The cross section of the concavity is a semicircumference with a diameter 

of 20 mm. 

In addition to the previous moulds, there were realised also other three moulds. 

Anyways, they were not used for the experimental activity described in the present 

thesis. A couple of the three moulds are cylindrical moulds with diameter of 52.8 
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mm and 34.7 mm respectively. The reason behind the non-canonical length is to be 

find in the cylindrical cans commercially available that were used as negative mould 

to manufacture the silicone positive mould. The final mould created allows to create 

a half cross-section of a pipe. In addition to the mould shown in Fig. 62, it should 

be remarked that a covering part exist. Basically, the complete mould is made of a 

covering and of the piece shown in Fig 62 in the right photo. The idea is that at the 

beginning the two pieces should be kept joint using some tape. During the casting, 

candy syrup is poured from the hole which is on the right of the mentioned photo 

and at the top in the upper-left sketch. The mould is so placed vertically in the 

vacuum chamber with the hole pointing upward to extract the bubbles within the 

candy syrup. Once the syrup is solidified, the tape should be removed, together with 

the covering. Since the silicone mould is flexible, as shown in Fig. 62, there should 

be no problem in extracting the half-pipe from the mould. 

Since this mould was not used for experiments and that no tests, especially using 

the vacuum chamber, were made, the author of the present thesis expects that 

possible improvements are applicable and does not exclude a priori that some may 

be even necessary in order to use it. It was thought to provide anyways a brief 

description of the mould as a reference for possible future suggestions or 

implementation, or for sparking interest on similar mould geometries to realise 

shapes that allow to study melting or dissolving internal pipe surfaces, as was 

anticipated in Fig. 1. 

 

Figure 61 Mould to realise a half cross-section of a pipe. 
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Before concluding the present paragraph, it is necessary to explain the factor used 

in the volumetric proportion of the hard-candy recipe and the water salinity levels 

chosen. 

Regarding the former, this factor is stated here only for eventual readers that are 

continuing the experimental activity at the Physics of Fluids group of the University 

of Twente who may use some moulds created by the author of the present thesis. It 

is obvious that if different moulds are created in the meantime, then the internal 

volume of the mould is varied together with the factor. The ingredients are measured 

with a chemical beaker, their volume is expressed in millilitres. 

Flat block mould 400:150:100 mL 

Harmonic surface mould 480:180:120 mL 

Curved surface mould 480:180:120 mL 

U-, V-shaped sliced surfaces mould 640:140:160 mL 

Table 5 Volume of hard-candy ingredients needed in base of the used mould. 

Thanks to a balance accurate to the centigram, those can be translated in: 

200 mL table sugar = (196.82 ± 0.15) g 

200 mL corn syrup = (285.70 ± 2.5) g 

200 mL NaCl = (294.17 ± 2.6) g 

Table 6 Volume-to-mass translation of ingredients in Table 5 

The cited sodium chloride is necessary for changing the salinity of the water in the 

aquarium. Three levels were chosen for the experiments: no salt, 400 mL, 800 mL, 

which corresponds respectively and to salinity S=0 ppt, S≈4.41 ppt, S≈8.82 ppt, 

according to the formula: 

𝑆[𝑝𝑝𝑡, 10−3,‰,𝑚𝑔 𝐿⁄ ] =
𝑔[𝑁𝑎𝐶𝑙]

𝑔[𝐻2𝑂]
∙ 1000    [56] 

This allows to calculate the density of the water in the aquarium, thanks to the 

empirical formula given by Millero and Poisson [81], which since 1980 is the 

formula officially adopted by UNESCO as the International one-atmosphere 

equation of state of seawater. 
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3.3 Evidence of surface patterning 
 

As soon as the hard candy block is placed tilted in the aquarium, stripes appear on 

the surface facing downward. For brevity, the surface facing downward and the 

surface facing upward will be called from here on the frontal surface and the upper 

surface, respectively. Stripes is the terminology used in [25], but since a roller is 

not expected at the point where this pattern originates and propagates downstream, 

these patterns may be called as grooves using Allen’s nomenclature (Fig. 31 and 

Fig 33b) [52]. 

This vertical flow pattern covers all the length of the frontal surface. Even if it 

appears regular in space, it is expected to be hydrodynamically unstable and does 

not last long. There is a critical distance along each groove in which the layer under 

the inclined plane detaches. Looking from a lateral point of view, the grooves 

appear as a layer moving downward parallelly to the frontal surface, while the 

detaching points along the grooves are seen as plumes originating now and then at 

irregular distances from the trailing edge, alias upper side, of the frontal surface.  At 

the beginning, this pattern is mainly a flow pattern, but it soon starts leaving 

corresponding surface traces on the surface. Indeed, it should be remembered from 

paragraph 1.3 that the flow field associated with a mature groove consists of a pair 

of oppositely rotating and relatively weak streamwise vortices reattaching to the 

bed on the floor of the mark, thus there is, even if small in magnitude, a sculpting 

wall shear-stress. In general, the flow pattern is more difficult to be taken in a photo 

with respect to the surface one. Some hints to do that will be given in the next 

paragraph. Anyways, the vertically predominant flow instability starts leaving on 

the surface some patterns which do not interfere with each other and that are well 

separated by big surface areas still flat. This configuration looks like the top-left 

sketch of Fig. 40. In the areas lacking marks, the grooves are more pronounced and 

still present. The grooves gradually disappear only after these small surface marks 

become visible along their vertical direction. Therefore, the pattern associated to 

the fluid structure is replaced by the corresponding superficial pattern. This implies 
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that the superficial patterns spread also in the areas previously lacking them. This 

is equivalent to the top-right stage sketched in Fig. 40. 

 

Figure 62 Evolution in time of the same fixed detail of surface. Each photo is taken after six 

minutes the preceding one. Photo order is: top-left, top-right, bottom-left, bottom-right. The 

caramel is tilted 60° with respect to the horizontal line and the water salinity is 𝑆 = 8.81 𝑝𝑝𝑡. 
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Figure 63 Evolution in time of the same fixed detail of surface of Fig. 63. The top-left photo is 

taken after six minutes the bottom-right photo in Fig. 63 was taken. The other three photos are 

taken at an interval of twelve minutes starting from the top-left photo. Photo order is: top-left, top-

right, bottom-left, bottom-right. The caramel is tilted 60° with respect to the horizontal line and 

the aquarium water salinity is 𝑆 = 8.81 𝑝𝑝𝑡. 
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Figure 64 Evolution in time (from top to bottom) of the surface pattern on a hard-candy block 

inclined 60° with respect to the horizontal line with no salt added to the aquarium water. 
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It is worth noting the time interval between two sequential photos in Fig. 63-64. 

The patten evolution rate is high at the beginning, due to the unstableness of the 

flow structures and relative surface pattern. While the rates decrease notably at an 

advanced time in an experiment. When this happens, like in the last two photos of 

the bottom line in Fig. 64, as will be quantitatively proved in the conclusive chapter, 

the wavelength of the pattern seems not to vary. Therefore, even if the final structure 

may appear more chaotic with respect to the seemingly equally spaced vertical 

grooves in the top-left photo of Fig. 63, the grooves are the representation of an 

hydrodynamically unstable flow and are visible only for a limited time interval, 

while the scallops are the visual result of the self-sculpting phenomenon which 

tends in time toward a hydrodynamically stable condition. This seems to be the 

condition of the bottom-right sketch in Fig. 40. 

Observing the experiment from the point of view of the lateral camera, as 

anticipated in [25], the regression rate of the frontal and upper surfaces is higher in 

the upper region, alias the region close to the trailing edge of the surface, and it 

seems not to vary noticeable at the base, as shown in Fig. 66. 

 

Figure 65 Sketch of the different regression rate depending on the surface considered and on the 

coordinate along the surface. Representation of the system of reference for the angle used. 

Furthermore, the regression of the frontal region is tremendously greater than the 

regression rate at the upper surface, showing its dependence with the surface 

patterning. Indeed, the upper surface does not show any surface pattern, remaining 

smooth for all the duration of the experiments. 
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It was generally observed that, the higher the inclination, the longer it takes to reach 

the transition from grooves to scallops; in agreement with the Rayleigh-Taylor 

instability of a layer under an inclined plane [21]. 

During the experimental campaign, it was verified that the critical angle in order to 

have scallops is 𝛼𝑐𝑟𝑖𝑡 = 90°. This was done by using the base mould shown in Fig. 

58 to create a frontal surface which is an arc of circumference and by placing this 

surface such that the axis of the circumference is horizontal, in order to have a local 

and continuous variable angle along the path of the solute layer. It was observed 

that scalloping forms only on the surface of the lower volume with respect to the 

horizontal line. In other words, this is the point where the local angle is 𝛼 = 𝛼𝑐𝑟𝑖𝑡 =

90°, since the normal to the corresponding local surface is exactly horizontal. 

 

Figure 66 Lateral photos of the experiment to verify the existence and the value of 𝛼𝑐𝑟𝑖𝑡 . 
The two photos have the same spatial resolution. The photo on the right is taken 88 minutes after 

the first photo at the beginning of the experiment, which is shown on the left. 

At the extreme case of 𝛼 = 90°, which corresponds to the caramel block completely 

vertical, there is no scalloping induced by the hydrodynamic instability of the 

concentration layer. After a long time, it might even happen that patterns are able 

to nucleate. But in this case, it is a phenomenon more driven by eventual 
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inhomogeneities that arise or are present since the beginning on the surface. Indeed, 

it is a very local phenomenon and the local patterns do not exhibit the properties of 

a homogeneous assemblage (Fig. 38). 

This is helpful in anticipating one of the points that will be listed and motivated in 

the conclusive chapter: scalloping due to self-sculpting is not merely a pattern 

driven by inhomogeneities as Allen and the defect model theory assume. 

As mentioned a moment ago about the scalloping on a vertical surface arising only 

due to the presence of inhomogeneities, are hereafter shown some photos (Fig. 68) 

of an experiment using a hard candy block whose internal bubbles were not 

removed through the vacuuming chamber. This allows to use the bubbles as initial 

inhomogeneities. In this case, four different phases in the development of the 

surface morphology are noticed. In a first phase (Fig. 68a), a fluid pattern similar 

to the aforementioned stripes is visible. If part of the print left from the bubble is a 

curve with only one maximum and continuous, i.e., a top-half semicircumference, 

only the two stripes originating at the horizontal extrema of the perimeter of the 

bubble are visible. In this case these two extrema are also the two points of local 

minimum of the top-half part of the print left by the bubble. If instead the part of 

the sign above the horizontal line passing through the two most distant points has 

more than a local maximum or is discontinuous, then the stripe originates also at 

the point of local minimum (as before, but in more than one then) or of 

discontinuity. It is evident that the stripe is none other than the separated solute 

layer. The point of separation is thus the top of the visible stripe. Differently from 

the stripes noted in [25] and mentioned at the beginning of the present paragraph as 

grooves, those do not cover the entire surface, but become less visible downstream. 

At a point, they are no more visible, symptom that the layer reattached. Basically, 

bubbles at the surface simply leaves a shallow cavity, as in Allen’s model shown in 

Fig. 30 and with the same fluid mechanics mechanism of separation. The vorticity 

associated to the separation pushes horizontally the flow. This works in constructive 

superimposition of effects with the lateral displacement of the layer induced by the 

top-half contour of the print of the bubble. Therefore, in a similar mechanism to the 

one shown in Fig. 33, the flow is driven from the maximum of the top-half print 
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toward the left and right local minima, or points of discontinuity, of the top-half rim 

respectively. And the following wake is seen. 

 

Figure 67 Evolution in time of the surface pattern on a vertical hard-candy block with initial 
surface inhomogeneities left by trapped bubbles. Time of acquisition of the photo since the start of 

the experiment: (a) 13 min., (b) 40 min., (c) 70 min., (d) 110 min. All the photos have the same 

spatial resolution. 
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The region in the pit is eroded faster due to the mixing and the mechanical shear-

stresses associated to the separated flow. Furthermore, as just explained, the wake 

is formed by the vortices shed from the upstream rim. Thus, also these existing 

vortices contribute by laterally enlarging the initial shallow cavity left by a 

superficial bubble, as shown in Fig. 68b. 

The shallow pits are now wider and deeper. It is important to notice that the pits do 

not have a planar base; therefore, the local curvature in the peak 𝛼𝑙𝑜𝑐 ≠ 𝛼𝑐𝑟𝑖𝑡 = 90° 

and only now dissolution scalloping is able to evolve with the expected structure. 

The only and big difference is that the evolution is strongly limited within only 

regions whose surface points downward and which have an inclination smaller than 

the critical one. This explains why in Fig. 68d, scallops are present only in the upper 

part of the shallow pit. Fig. 68c shows how scallops originated by surface 

inhomogeneities, in addition to not covering all the surface, are delimited slightly 

above by a sharp upper contour which has a characteristic shape, similar to the one 

in cross-section of a “wide cupola”. Thus, it is still possible to see in it a 

resemblance of the initial shape of the surface inhomogeneity. Therefore, the 

scalloping self-sculpting process induced by bubble inhomogeneities on a surface 

initially inclined at 𝛼 = 𝛼𝑐𝑟𝑖𝑡 has a memory. 

 

Resuming the started conversation on the mould (Fig. 58) used for realising the 

shape shown in the experiment Fig. 67, this is usually used for experiments in which 

the axis of the arc of circumference of the frontal surface points upward with the 

wanted tilt angle 𝛼, as shown in Fig. 69. 

It is noticed that the flow is affected by the local curvature and, at least even more 

remarkably at the beginning of the experiment, two different regions are evident. 

The lateral regions, affected by a locally higher lateral tilt angle are even more 

unstable and thus have an anticipated grooves-scallop transition. This is evident in 

the top and middle photos in Fig. 69. In the top photo, in the lateral regions there 

are already some single flutes here and there, some induced by the presence of a 

bubble or an associated inhomogeneity and some others by solute layer instability, 

while in the central regions only narrower and longitudinally elongated grooves are 

visible. 
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Figure 68 Evolution in time (from top to bottom) of the pattern on a convex surface on a hard-

candy block inclined 45° with respect to the horizontal line with no salt added to the aquarium 

water. Each photo has the same spatial resolution and is taken 30 minutes after the preceding one. 



 

110 
 

It is worth clarifying that this is not related by chance to the bubbles’ presence, since 

the same behaviour is found to repeat at the beginning in several experiments. 

Furthermore, as mentioned, not all the flutes are originated by bubble’s presence 

and as clearly in the other two photos of Fig. 69, the pattern evolve and organises 

independently of the initial homogeneities if the surface is inclined not at the critical 

angle and facing downwards. 

In Fig. 69b, the scallops in the central regions globally point upward, while the 

scallops in the lateral region are tilted. This confirms that scallops can be used to 

indicate flow direction [48] [45]. But here it is noticed that this is true not only when 

they are found in nature in a speleological pipe, which may be experimentally 

modelled as Curl’s and Allen’s experiments when there is a flow directly mainly in 

a single forced direction, but also when there is a second angle involved. Indeed, in 

the experiments shown in Fig. 65, the only angle present is the one made between 

the direction of gravity and the normal direction of the local plane (which in this 

case coincides with the local direction of the solute mean flow). While in the 

experiment shown in Fig. 69, in addition to the same angle, there is a second angle 

made with the direction of the local mean flow. 

While in my case it is easier to observe this in a convex surface pointing downward, 

since my phenomenon is driven only by solutal convection and gravity, the dual 

surface to verify a similar dependence applied to a forced convection regime may 

be thought as a curved concave surface. For example, like the shape of a centrifugal 

compressor. 

Furthermore, Fig. 69b shows how the scallops formed laterally have a higher 

horizontal wavelength, alias are wider, with respect to those formed in the center. 

Recalling that scalloping has a memory, it is here evident how this is related to the 

previous stages when central scallops originated from more compacted vertical 

grooves, while each lateral scallops was able to evolve in a greater area due to the 

initial single flutes spread here and there. Furthermore, differently, from Fig. 65, 

here the lateral regions are more subject to a second acceleration whose direction is 

set by the second angle which it is recalled is related to the local curvature. 

In Fig. 69c it can be seen how the central region has evolved more in time with 

respect to the lateral ones. Indeed, the central region’s evolution reminds of the one 
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seen for a planar and inclined block (Fig. 65). While in the lateral regions, where 

the difference between the two aforementioned angles in more evident, the structure 

appears to evolve very fast at the beginning toward an equilibrium. 

 

Fig. 71 shows the evolution in time of the self-sculpting pattern on a harmonic 

frontal surface of a hard candy block which is inclined 45° with respect to the 

horizon. 

This confirms what anticipated for Fig. 67-68: the surface patterns is generated in 

the regions facing locally downward (in red in Fig. 70) and not in the regions with 

a local angle equal or greater than the critical angle (in blue in Fig. 70). Because in 

these red regions, the solute layer is Rayleigh-Taylor unstable and is able to 

separate, while in the blue regions, the local curvature of the surface keeps the layer 

attached.  

 

Figure 69 Detail of the top photo in Fig. 71. Regions camped in red point locally downward, while regions 
camped in blue point locally upward or are locally vertical. 

It is worth calling now each blue region with the relative upstream rim a harmonic 

cell, since it is associated to the harmonic curvature imposed on the initial surface 

and in order to distinguish it from the term pattern, which is referred to the 

superficial self-sculpting process. Looking at the central photo shown in Fig. 71, 

the pattern within each harmonic cell has spread further toward the bottom of the 

harmonic cell, but it is still confined only in the upper half part of the harmonic cell. 

In the instants between the central and the bottom photo of Fig. 71, a process similar 

to the one described in Fig. 68b happens. Each harmonic cell widens, thus etches 

and digs the region facing upward of the adjacent harmonic cell. 
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Figure 70 Evolution in time (from top to bottom) of the pattern on a harmonic surface of a hard-

candy block inclined 45° with respect to the horizontal line with water salinity 𝑆 = 8.81 𝑝𝑝𝑡. Each 

photo has the same spatial resolution and is taken 30 minutes after the preceding one. 
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This is even more visible, because the three photos in Fig. 71 have a lateral light 

source and their contrast was enhanced. It appears comparing the photo in the 

middle with the photo in the bottom that the upstream rim is less sharp. This is 

indeed explained by the local digging process by means of the vortices shed by each 

upstream rim. Therefore, each harmonic cell, in addition to widening has a less 

sharp groove between its upward pointing region and the downward pointing region 

of the adjacent harmonic cell. This causes the lateral light to shade less and is thus 

highlighted by the less sharp contour. 

The more uniform curvature allows internal scallops to extend from the left to the 

right side of each harmonic cell, being more present also in the central region of 

each harmonic cell. Only in the inner bottom of each harmonic cell the scallops are 

less packed. Even after a hour, like shown in the bottom photo, the scallops are still 

dependant from the initial imposed surface. The experiments end with a surface that 

has sharp crests corresponding to the initial harmonic maxima were located and 

nearly uniform flat bed corresponding to the initial surface depressions. It is worth 

noticing that the two final structures are said to correspond and not to be in the same 

initial position. Indeed, also this structure, as for the mentioned scallops of the 

experiments shown in Fig. 65, 69, appears to advance upstream. A greater physical 

explanation of this upstream motion will be given in the final conclusion. 

 

In Fig. 72, is shown in three photos the time evolution of the self-sculpting pattern 

on a flat surface with a V-shaped longitudinal incision harmonic frontal surface of 

a hard candy block which is inclined 60° with respect to the horizon. The incision 

makes a right angle at the base and the two planes of the incision are inclined 45° 

toward the inside of the hard candy block with respect to its frontal surface. This 

shape is made from the mould shown in Fig. 59. The time evolution of the pattern 

is similar to the one observed in the lateral regions of the experiment done with a 

convex surface pointing downward (Fig. 69). The two geometries have in common 

the existence of the aforementioned second angle. But while in Fig. 69, this varies 

locally, in Fig. 72 it is constant along the solute layer path. Therefore, the flutes 

spread here and there covering all the surface of the internal incision. In a few 

words, the pattern organises regularly and according to the flow direction. 
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Figure 71 Evolution in time (from top to bottom) of the pattern on the surface of a V-shaped cavity 

of a hard-candy block inclined 60° with respect to the horizontal line and no salt added to the 

water. Each photo has the same spatial resolution and is taken 30 minutes after the preceding one. 
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3.4 Lighting set-up 
 

Similarly to the final remarks left in paragraph 1.2, here is provided a description 

of the lighting set-up, mainly addressed to the readers who are effectively in the 

position of doing experiments on the self-sculpting of hard-candy. The readers who 

are not in the position of doing experimental activity on the topic, may understand 

better the difficulties associated in the lighting of such experiments in order to 

highlight the morphology created by an induced flow on the surface of a semi-

transparent body. Those who are not interested in the topic at all, can even jump the 

present paragraph, without losing relevant information. 

The author’s interest in providing such information is driven by empathy to help 

others who should face similar conditions. Since different lighting set-ups had to be 

tested to optimise the subsequent image processing, it could be worth for some 

readers sharing the advantages and disadvantages of each of those suggestable. 

 

In a few words, two lighting set-ups are suggested among the several tried: a lateral 

horizontal-pointing lighting source, named for brevity case L1, and a bottom 

upward-pointing lighting source, named case L2. 

With reference to Fig. 53, an opaque Plexiglas diffuser is placed between the light 

source and the caramel block. In case of the bottom light source, the diffuser is 

placed directly inside the aquarium at its bottom, while in the case of the lateral 

light it is outside of it, supported on the lateral side of it. An additional diffuser is 

right at the back of the hard candy block, from the frontal camera point of view and 

is supported with some bolts by the inclined rod which is supporting also the 

inclined hard candy block. The diffusers are necessary both for diffusing the light 

and for having an homogeneous and clear background in the photos. Furthermore, 

the inclined diffuser also indirectly allows to break eventual thermal convective 

cells within the aquarium. 

The lateral is simply a projection light, while the light at the bottom is a square LED 

panel, whose intensity can be varied through a potentiometer. 

In order to visualise better the structures at the beginning of the experiment, like the 

stripes’ and grooves’ structure, it is suggested to use the lateral light and tilt the hard 
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candy block slightly in the opposite direction of the light source. The author 

underlines again that the tilt angle must be very low. In this way, since these 

structures tend to be aligned along a vertical line, a lateral horizontal-pointing light 

source highlights their left side shadowing the right one. In this way, a code to 

calculate the horizontal wavelength is very favoured in recognising these structures. 

If instead a horizontal upward-pointing light is used, most of the information on the 

initial structures is lost, since they become barely visible. 

But as soon as the initial stripes’ and grooves’ pattern starts developing into spread 

flutes, then the situation is more critical, since in this case the left side of a flute is 

very bright with respect to the shadowed right side. The lateral light can be kept for 

the few initial minutes of this transition, but it is then suggested to switch the lateral 

light off and switch the bottom upward-pointing light on. 

This is now necessary because the more stable patterns have a more predominant 

vertical wavelength than a horizontal one. Indeed, as already visible in the middle 

and bottom photos of Fig. 65, scallops tend to form horizontal clusters, even 

suggesting sometimes, especially in the final stages of the morphology evolution, 

ideal horizontal lines. Therefore, it is better in this case a light direction 

perpendicular to the main direction of the structure in order to highlight and shadow 

the opposite sides, applying the same idea illustrated earlier. This, as will be 

explained in greater detail in paragraph 4.2 is remarkably useful to not consider 

bubbles in the interrogation area of the frontal photos. Moreover, by the local 

grayscale or RGB intensity of the photo, it is even possible to have a greater clue 

of the local inclination of the frontal surface with respect to the horizon, because 

light scatters differently. 

 

There is no interest in going into a detailed description of other light set-ups which 

were tested. It is worth saying that using two lateral lights tilted toward the position 

of the hard candy block with respect to the frontal camera, and positioned slightly 

at its back, appears only a priori to be useful and in practice ineffective. The amount 

of light is too much, and it is difficult, even by reducing the diaphragm’s aperture 

and using a tele-lens, to visualise clearly surface patterns, because it is even difficult 

to see them with the naked eye.
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CHAPTER 4: Image Data Post-Processing 

 

4.1 Side Photos 

 

In this paragraph a nomenclature associated to a lateral point of view of the 

experiments is used. Therefore, the lower surface is the previous frontal surface, 

which is the surface pointing downward and subjected to scalloping. The upper 

surface retains the name. 

 

The expected results from the post-processing of each image in the folder of the 

lateral photos taken in a general experiment in which a flat hard candy inclined 

block dissolves in water are: 

• Object contour detection and region segmentation. 

• Lower and upper surfaces’ inclination. 

 

These two raw results are related to the specific instant when the photo was taken. 

In order to study the physical phenomenon, the evolution in time of these raw results 

is studies, allowing to calculate: 

• Evolution in time of the shape of the body, which is useful in case there is a 

convergence toward a universal shape. [82] [9] 

• Evolution in time of the lower and upper surface’s inclination. 

• Overall regression velocity ℎ̇(𝑡) and regression acceleration ℎ̈(𝑡) of the 

lower and upper surfaces. 

• Evolution in time of the local regression velocity ℎ̇(𝑥, 𝑡) along each of the 

two surfaces. In this case, the spatial domain is made of points which are 

spatially cross-correlated. 

• Evolution in time of the FFT-analysed signal associated to the instantaneous 

local regression velocity ℎ̇(𝑥, 𝑡). 

 

Each lateral photo is an input datum to the image data processing code. For the non-

specialists, the operations explained hereafter, are all based on matrix operation. 
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Figure 72 A generic lateral photo. 

 

Figure 73 Additive synthesis of primary colours. 

Because the photo is coloured, the matrix has dimensions [𝑁𝑅, 𝑁𝐶 , 𝑁𝐶ℎ], where 𝑁𝑅 

is the total number of rows, 𝑁𝐶  is the total number of columns and 𝑁𝐶ℎ is the total 

numbers of channels. In this case, the photo is an RGB image, meaning that there 

are three channels: red (R), green (G), blue (B). 

The colour depth is stored in 8-bit, meaning that each pixel 𝑝(𝑟, 𝑐, 𝑖), with 𝑟 ∈

[1,𝑁𝑅] and 𝑐 ∈ [1,𝑁𝐶], has a digitalised intensity level 𝐼(𝑟, 𝑐, 𝑖) of the 

corresponding 𝑖𝑡ℎ channel in the range of 0 ≤ 𝐼(𝑟, 𝑐, 𝑖) ≤ (28 − 1). 
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Since there is the interest in extrapolating the contour of a yellowish body in front 

of a cyan-blue background, the blue channel is multiplied by a constant and is 

subtracted from the red channel. This is equal to subtracting the secondary colour 

cyan (C=B+G) from the secondary colour yellow (Y=R+G). 

The multiplication constant depends on the overall illumination in each experiment 

and decreases while time increases. The input photo is processed in parallel to 

optimise the boundary detection on the lower surface and on the upper surface. For 

the lower surface the multiplication constant is not usually greater than 2.8, while 

it has usually constant unit value for the upper surface. The reason for the reduction 

in the constant for the lower surface is that the hard candy block is smaller and 

smaller as time advances, thus it appears brighter and thus the intensity level of the 

red channel of a pixel within the domain of the hard candy increases, while the 

intensity level of the blue channel remains almost constant for every pixel in the 

image for all the duration of the experiment. Furthermore the difference between 

the upper and lower surface is related to the higher presence of bubbles on the lower 

surface than on the upper as the time passes. 

The remarkable advantage of the present method is that it does not need to do what 

in image processing is called the background subtraction. Basically, there is no need 

to subtract a photo taken when all the hard candy body is dissolved from the photo 

of Fig. 73 in order to obtain a clear boundary. On the contrary, doing that penalises 

unexpectedly the result. 

After the subtraction, the pixel intensity values are normalised. All the pixel values 

different than zero are set equal to one in the processed photo for the lower surface, 

while for the photo related to the upper surface the high-pass filter has a threshold 

usually about 0.4. So, each of the two photos is now binarized. This means that the 

pixels which are considered to be within or right on the boundary of the object have 

value equal to one, which corresponds to true in the terminology used by the logical 

connectors and is coloured white in a binarized image. While the pixels which are 

considered to be outside the boundary of the boundary of the object have value 

equal to zero, which corresponds to false in the terminology used by the logical 

connectors and is coloured black in a binarized image. The binarized photos (one 

optimised for the lower and the other for the upper surface) may also have white 
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regions not referring to the hard candy body. This happens only if there are some 

parts of the photo with a high intensity level in the red-colour band. An example of 

this is given by the plumb line inserted in the experiments to calculate the vertical 

direction. Therefore, in order to consider only the hard candy body, the Matlab 

function bwboundaries is used followed by an if-statement, where only the 

boundary made of a greater number of pixels and for which the center of the photo 

is within the detected boundary is considered as the effective boundary of the hard 

candy block. A gaussian filter in the spatial domain is applied. The upper surface 

filter has a greater standard deviation 𝜎 of the gaussian distribution of the filter, in 

the range 13-20, usually, and sometimes is not fixed but is decreasing during an 

experiment due to the less rectilinear upper surface’s boundary. While for the lower 

surface filter, the standard deviation is usually in the interval 𝜎 = 2.5 − 3.5. Since 

in the next step the gaussian filtered photo is furtherly binarized, the two actions 

combined can be seen as a diffusion in the spatial domain of the probability of 

finding the object. The higher the standard deviation of the gaussian filter, the 

higher the diffusion in the spatial domain. Thus, it is like asking the computer if the 

general pixel is within a certain distance from the expected object; distance which 

is increased increasing the standard deviation. If the answer is true, then the pixel 

is coloured white, otherwise black. The binarization has a threshold value usually 

around 0.3 for the lower surface and usually 0.5 for the upper surface. The threshold 

is different because the upper surface is almost continuous and locally linear, and 

also because the previous standard deviation is quite big, therefore increasing the 

threshold is not necessary. While the lower surface is expected to be locally 

nonlinear and discontinuous, due to the presence of nucleating bubbles, the same 

surface pattern and dissolutional plumes. In Fig. 75 is shown what said thus far, 

from the first binarization (on the left), the consequent gaussian filtering (in the 

middle), and the final further binarization of the so filtered domain (on the right). 

To be specifically, the binarized photo on the right has bene multiplied by the 

original photo (thus the zeros remains zeros, while the white regions becomes 

coloured), to have a visual clue of the precision in recognising the lower surface. 

In Fig. 76 it is shown all the body detected from Fig. 73 using the previous 

algorithm. It is worth reminding that since this process is parallel for the lower and 
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upper surface, then for every photo in input, two binarized photo, similar to Fig. 76 

but with the coloured region just white, are saved in output in a .mat file. We may 

still refer to these two as binarized photos, but it is easier and more correct 

considering them as binarized matrices made of zeros and ones. 

 

Figure 74 Three main process to obtain the body domain (optimised for the lower surface) as 

shown in Fig. 76. On the left: binarization of the photo obtained by the subtraction of the blue 

channel from the red channel. In the middle: Gaussian filter applied to the previous photo. On the 

right: Binarization of the photo in the middle and multiplication by the original photo. 

 

Figure 75 Object detected in the photo shown as Fig. 73 (optimised for the lower surface). 

The next passage is to segment the different characteristic regions in the binarized 

matrices. In the matrix referring to the lower surface, the leftmost vertical column 

in which there is at least a cell different than zero is identified. The cell different 

than zero which is at the lowermost row is detected. The coordinates of this cell 
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identify point A. The rightmost vertical column in which there is at least a cell 

different than zero is identified. The cell different than zero which is at the 

uppermost row is detected. The coordinates of this cell identify point B. In the 

matrix referring to the upper surface, the uppermost row in which there is at least a 

cell different than zero is identified. The cell different than zero which is at the 

leftmost column is detected. The coordinates of this cell identify point C. The 

lowermost row in which there is at least a cell different than zero is identified. The 

cell different than zero which is at the rightmost column is detected. The coordinates 

of this cell identify point D. In this way the vertices of the hard candy have been 

identified. It is worth considering now the binarized matrix as a photo, in which the 

closed region of ones is the hard candy body and the outer space made of zeros is 

the background. The two lines passing through points A and B, and through points 

C and D, are interpolated. They are both translated of a certain offset toward the 

center of the body. The boundary pixels of the detected body lower (higher) than 

the interpolated line passing through points A and B (C and D) and in the interval 

between them is the lower (upper) surface contour. This is appended in the .mat file. 

 

Figure 76 Lower and upper surface contours and relative extrema segmented. 

The pixel points belonging to the lower and the upper surfaces’ contours are then 

reordered, because MATLAB lists them by default with a similar logic used in TV 
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monitors: from top to bottom and then from left to right. Instead, for a better 

processing of the images, it is preferred to have the points belonging to the contour 

of the two surfaces listed in ascending order according to the direction given by the 

solute layer: from A to B and from C to B respectively. To do so, the pixels are 

reordered taking into account 8-connectivity between a pixel and the other and 

assigning a priority in the selection of two possible nearby pixels given by the 

expected solute layer direction (from top-left toward bottom-right). This passage, 

even may appear secondary, is critical in order to have cross-correlated points to 

calculate the thickness regression rate and for performing the successive operations. 

 

Figure 77 (a) Lower surface according from top to bottom as done by default by MATLAB. (b) 

Lower surface reorder in 8-connectivity along the direction given by the solute layer. The 

increasing pixel number is given according to the bottom colorbar. 

The so reordered lower and upper surface contours, together with their calculated 

inclination are appended in the .mat file. The inclination of the lower surface of the 

first photo, thus right after that the hard candy block was immersed in the aquarium, 

is appended in the .mat file in memory as inclination reference. 

In parallel, the acquisition time of the photo is stored in a separate .mat file as a 

matrix that has a total number of rows equal to the number of photos and two 

columns: in the left one there is the number of the photo in the processed folder and  

in the right one the acquisition time. The acquisition time is taken from the EXIF 

(abbreviation of Exchangeable Image File Format). To get access to the acquisition 

time saved in the EXIF using MATLAB, the EXIF folder is first of all imported 

through the line of code I=imfinfo(‘Photo_name’) and then the acquisition time  is 

saved specifying DigitalCamera.DateTimeOriginal in the structure of the file 
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previously imported. For example, in order to show it in the Command Window, it 

is requested only to write string(I.DigitalCamera.DateTimeOriginal). Similarly, 

it can be saved. 

 

Figure 78 Variation in time of the overall bottom and upper surface of the dissolving hard candy. 

 

Figure 79 Evolution in time of the boundary of the dissolving hard candy block. 
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The vector with the time instants when each photo is taken in the experiment, 

together with the value of the inclination of each photo and of the contour 

previously segmented, allows to plot the variation in time of the overall inclination 

of the bottom and upper surfaces (Fig. 79) and the evolution in time of the boundary 

of the dissolving hard candy body (Fig. 80). 

 

A critical task is to calculate the thickness with respect to a fixed line for the lower 

surface’s ordered curvature. In order to do so, the inclination of the lower surface 

of the hard candy in the first photo is loaded together with the position of point A 

of the boundary of the hard candy in the last photo. The line with same inclination 

as the initial surface is drawn so that it passes for the two coordinates of point A. 

the complementary angle to the one associated to the line direction is calculated. 

This angle decides the direction along which to calculate the thickness of the two 

significant surfaces of the hard candy. It is worth noticing that, since the line 

sketched and the complementary angle to this line is related to the angle of the lower 

surface of the hard candy in the first photo taken, then this angle is constant for all 

the photos. This is obviously necessary to calculate the thickness along a fixed 

direction. To measure the thickness, the code starts from each pixel belonging to 

the lower surface curvature and, goes pixel-by-pixel toward the sketched fixed line 

along the thickness direction. For every step further from the initial pixel, the 

counter increases by one. When the moving pixel crosses the sketched fixed line, 

then the number reached in the counter is saved and the process is repeated for the 

successive pixel in the lower surface curvature. The process ends when for the final 

pixel of the ordered lower surface the sketched fixed line is crosses. This is 

performed in MATLAB with an outer for-loop on the pixels of the lower surface 

curvature, an inner while-loop for the moving pixel, an inner for-loop to check the 

coordinates of every pixel of the sketched fixed line through two nested if-

statements. Obviously this is not the only logic possible to do so; another one could 

have been finding the smallest cell of a vector created calculating in each cell the 

Euclidean-norm between the pixel considered on the lower surface and each pixel 

of the sketched fixed line. Anyways, the first logic allows to represent in Fig. 79 

the thickness so calculated. In this figure the sketched fixed line is visible and the 
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red stripes, which appear as an inner red texture, are the displacement along the 

thickness direction from each pixel on the lower surface to the corresponding 

intersection on the sketched fixed line. 

 

Figure 80 Distance calculated for each pixel of the lower surface with respect to the fixed line. 

 

Figure 81 A couple of details of Fig. 79. 

It is worth mentioning that it is better calculating the thickness starting from the 

body surface’s points and not from the points of the fixed line, especially for the 

lower surface. Fig. 80 clearly shows why. In this way, when has great local changes 

in the inclination, there are no points that are missed. It is worth taking the 

opportunity to show the preciseness of the code in calculating before the boundary 
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of the object. Fig. 80b is indeed the contour of a small bubble which as trapped 

within the hard candy block. Similar pits are found also when there are very bright 

regions in contact with the lower surface in the original photo. In the code it was 

preferred to remove them by subtracting the two primary colour-channels, since this 

helps in removing eventual bright spots due to bubbles. As will be explained in 

greater detail hereafter, the thickness calculated in Fig. 80b is not calculated merely 

as shown in the figure, but there is an implementation in the code to take into 

account of that; therefore it is not a problem. 

The same process shown here for the lower surface is done for the upper surface. 

For each processed photo, for each hard candy body’s surface, the coordinates of 

the two extrema on the fixed line that are crossed by the red thickness lines are 

saved. This allows to save the interval over which the thickness is calculated, 

passing from a variable system of reference in time, which corresponds to the 

coordinates of the points of the lower surface, to a fixed system of reference in time, 

which corresponds to the coordinates of the points of the fixed line. The rightmost 

left coordinate of the left extremum and the leftmost coordinate of the right 

extremum are calculated. These two coordinates identify the interval where the 

coordinates of the points of each hard candy body’s surface are cross-correlated in 

all the duration of the experiment. Indeed, the interval calculated for a photo taken 

at an advanced instant in the experiment is for sure smaller than the one calculated 

for a photo taken at the beginning of the experiment, since the body is shrinking 

due to dissolution. The same reasoning applies to a body shrinking due to melting. 

It is worth mentioning that calculating directly the interval based on the extrema of 

the final photo is not always a good idea. Furthermore, the computational cost 

associated in calculating the reduced cross-correlated interval is very low and 

stabilises even more at the same time the algorithm. 

As anticipated before, the thickness calculated in Fig. 80b is not a problem. In the 

algorithm mentioned now is understood why. Basically, the thickness calculated 

thus far is not univocal. Indeed, in the thickness calculation, to a single pixel in the 

fixed line usually correspond more than one pixel on hard candy body’s upper and 

lower surface. Therefore, the previously calculated local thicknesses for each photo 

are saved in a matrix which has a number of columns equal to the number of the 
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processed photos and a number of rows equal to the number of discrete pixels of 

the fixed line within the cross-correlated interval calculated before. When a pixel 

corresponds to more than one point, only the maximum value among the associated 

thicknesses is stored. At the beginning of coding, the mean value was saved instead 

of the maximum value; but it was then noticed that the maximum value stabilise 

more the code since dump more eventual spurious numerical oscillations of the 

thickness value in the region of the surface’s point considered in consecutive 

photos. In this way the stored thickness related to the lower surface’s points in the 

detail shown in Fig. 80b is the one for all the points on the “outer” surface, since 

the thickness is univocal; this is noticeable since the red lines are quite equally 

spaced. In the “inner surface”, corresponding to the pit and thus to points which are 

non-univocal with respect to points in the fixed line, only the maximum thickness 

is stored. Therefore, when the red thickness lines are more pronounced in colour, 

since they are calculated for three points (the outer effective surface point, a 

medium point associated to the recess, an inner point associate to the base of the 

bit), only the thickness of the outer point on the surface is stored. For the inner and 

univocal (middle) region of the pit, nothing can be done now with this algorithm. 

But again, this is not a problem, because this region is now more identifiable since 

the thickness presents a discontinuity along the coordinate of the fixed line. And 

discontinuities in functions are highly detectable. 

Therefore, in the successive step, the mean thickness 𝜇 is calculated from the stencil 

made of all the thicknesses related to the surface points. The standard deviation 𝜎 

is also calculated in order to fix an upper (𝜇 + 𝜎𝑘+) and lower interval (𝜇 − 𝜎𝑘−) 

where the thicknesses are considered correct. 𝑘+, 𝑘− are two multiplicative factors, 

such that 𝑘+ ≠ 𝑘− otherwise there is no change in the calculated mean value, that 

are set in order to cut out eventual discontinuities in the thickness curve. Two 

extrema are set in order to not allow the code to set very big multiplicative factors 

in order to cut out little discontinuities when the hard candy surface has no pits. 

Even if the code can work autonomously with good results in setting optimal 

multipliers within the given limited interval, for most of the results shown in the 

present thesis two fixed multipliers were set manually for the photos of the same 
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experiment, since this update in the code was done after most of the results were 

already calculated. 

The mean thickness now calculated from the narrower stencil made of the 

thicknesses related to the surface points 𝑥 that were within the aforementioned 

interval is updated and appended in the saving file. The thickness values outside of 

the interval are updated in the matrix made of univocal values with a constant and 

manually decided non-realistic value in order to easily detect it in the next 

algorithms and do not consider it. 

The evolution in time of the value of the mean thickness calculated for all the points 

of the lower and upper surfaces allows to calculate the mean regression rate of the 

surface under consideration. Indeed, between two consecutive photos there is a 

constant interval of thirty seconds. Therefore, the mean regression rate is nothing 

less than the difference between two consecutive mean thickness value divided by 

the elapsed time interval between the two photos. 

 

Figure 82 Evolution in time of the mean (lower) surface thickness. The red dotted line is the 1st 

order approximated regression-rate. 

The shown parula-coloured curve has been gaussian filtered, with a very small 

standard deviation associated to the filter, in order to remove eventual 

discontinuities in the curve. Indeed, it is worth reminding that the thickness values 

have not been averaged yet. 

The parula-coloured curve is approximated with a 3rd order approximation, 

allowing to calculate in addition to the regression rate, which is a velocity after all, 
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also the regression acceleration. This is useful to determine the position in time of 

an eventual horizontal inflection point in the regression velocity curve, which 

corresponds, by definition, to the instant when the regression acceleration is null. 

Such cases are shown in Fig. 82-83. 

 

Figure 83 Evolution in time of the (lower) surface regression rate. The horizontal flex point 

corresponds to null regression acceleration. The horizontal red dotted line is the mean value. 

 

Figure 84 Evolution in time of the (lower) surface regression acceleration. The horizontal red 

dotted line is the mean value. The horizontal black line intersects the curve at the instant when the 

acceleration is null, which is the instant associated to the horizontal flex point in Fig. 82. 

Furthermore, since the thickness values in the matrix are all univocal and referred 

to cross-correlated points, it is possible to calculate the regression rate along the 
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coordinates of the cross-correlated interval. To do so, the averaged thickness is 

calculated from the stencil made of the thicknesses of two consecutive photos, in 

order to cancel out eventual spurious oscillations in the values. Furthermore, in this 

averaging operation is done on non-nested “photos”. The mathematical term would 

be points, but this would be less clear since points are already mentioned to indicate 

the discrete pixel on the surface. Basically, what the author wants to underline is 

that in order to calculate the regression rate from the average thickness, four photos 

are needed and not three. The reason is clarified hereafter: 

ℎ(𝑥, 𝑡) = 0.5 × (ℎ(𝑥, 𝑡1) + ℎ(𝑥, 𝑡2))        [57] 

ℎ(𝑥, 𝑡) is the averaged thickness (the reason why the letter ℎ is used will be 

explained in a while) and is referred to the intermediate instant between the initial 

ones 𝑡 = 0.5 × (𝑡1 + 𝑡2). The intermediate instant is calculated in the algorithm 

when calculating the averaged thickness. If the regression rate of the averaged 

thickness is calculated from only three photos, in which one photo is common to 

both the two couple to do the averaging, the following cancellation happens: 

ℎ̇ (𝑥, 𝑡2) = ℎ (𝑥, 𝑡2) − ℎ (𝑥, 𝑡1) = 0.5 × (ℎ(𝑥, 𝑡2) + ℎ(𝑥, 𝑡3) − ℎ(𝑥, 𝑡1) − ℎ(𝑥, 𝑡2))

= 0.5 × (ℎ(𝑥, 𝑡3) − ℎ(𝑥, 𝑡1)) 

[58] 

This is not wanted and is equivalent to not considering the thickness associated to 

a photo (the nested one, which in the case shown is taken at the instant 𝑡2). It is then 

clear that four photos are necessary to calculate the regression rate from the average 

thickness. 

The local regression rate so calculated from the averaged thickness can be plotted 

in space along the coordinate of the body’s surface cross-correlated interval. 

Obviously, since it is of interest studying the evolution of this quantity, it is possible 

overlapping the curves coloured in different colours on the same graph. This is done 

in Fig. 84. 

Since the local regression rate is similar to a resulting signal made of the 

superimposition of harmonic signals and noise, a discrete Fourier transform using 

a fast Fourier transform algorithm is computed on the signal. Every signal is 

considered as made of two superimposed harmonic signals. Basically, they are the 

two highest peaks in the power density spectrum. Therefore, the evolution in time 
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of the frequency, the relative wavelength, and the amplitude of the two signals is 

calculated and shown in Fig. 85-87. 

 

 

Figure 85 Evolution in time of the local regression rate along the coordinate of the body’s surface 

cross-correlated interval. 

 

 

 

 

Figure 86 Evolution in time of the frequency of the two harmonic carrier waves found through 

FFT of the local regression rate defined in the body’s surface cross-correlated space interval. 
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Figure 87 Evolution in time of the wavelength of the two harmonic carrier waves found through 

FFT of the local regression rate defined in the body’s surface cross-correlated space interval. 

 

 

 

 

Figure 88 Evolution in time of the amplitude of the two harmonic carrier waves found through 

FFT of the local regression rate defined in the body’s surface cross-correlated space interval. 

 

The code for processing the lateral photos taken in each experiment is thus 

concluded.
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4.2 Front Photos 
 

The expected results from the post-processing of each image in the folder of the 

frontal photos in a general experiment in which a flat hard candy inclined block 

dissolves in water are related to the morphology pattern on its frontal downward-

pointing surface. 

 

The basic ideas behind the algorithm, in order to do so, are: 

• The pattern must be recognised. 

So, that the coordinates of the pixels which constitute the pattern can be 

stored in a file in the memory. 

• These coordinates must be grouped. 

This is necessary because the pixels recognised as patter are not a priori 

continuous. Therefore, one pattern may be made of different relatively close 

limited curves, each one made of 8-connected pixels. 

• The curves belonging to the same group are numbered in order to satisfy a 

“virtual connection” between the curves. 

Basically, the curves are still different closed sets in the spatial domain 

defined by the group, but this domain is a topologic space whose 

components (each entity defined before as set) are connected. 

• Thanks to indices associated to the virtual connection of the previous step, 

the curves are connected such that they are a single geometrical set. 

• The vertical distance between the sets (surface patterns) is calculated. 

• The horizontal distance between the sets (surface patterns) is calculated. 

• The ratio of the area occupied by the patten to the total area is calculated. 

 

Eventually, the total area can be used in combination of the known lateral area 

calculated with the algorithm explained in the previous paragraph in order to 

calculate the volumetric regression of the block in time. 
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Prior to process the frontal photos, it is necessary to define the boundary of the 

interrogation area used. This can be done manually or automatically. Both the 

methods were used for processing the frontal photos. He two methods have in 

common that the lower horizontal side of the interrogation area moves upward 

linearly, while the upper horizontal side of the interrogation area moves downward. 

In doing so, the upper horizontal side draws at the beginning a curve similar to an 

arc of hyperbola. Then when about fifty minutes passes since the beginning of the 

experiment, the position of the upper horizontal side in the photos can be considered 

almost constant. In the final photos of the experiments, at around eighty minutes 

since its start, the positions seem to move even downwards and not upwards because 

the hard candy block is quite thin then. When this happens, this usually identifies 

the last workable photo. It is also worth mentioning that the leftmost and rightmost 

sides of the rectangular interrogation area should stay enough far away from the 

physical boundary of the hard candy surface, in order not to take into account 

boundary effects, such as local vortices due to the sharp edge of the block. In the 

present experiments, the left boundary is decided by the position of the base of the 

holder, and therefore is usually fixed for all the photos of the experiment. For the 

right boundary, a hint is usually given by the presence in the final photos of a 

rounded top-right edge of the frontal surface of the hard candy block. The right 

boundary must be on the left on the rounded top edge, intersecting the top side when 

it is still quite rectilinear. Usually, the right boundary layer is kept fixed, in order to 

consider the same width for all the photos. But it may be also varied if wanted. 

 

Figure 89 Evolution in time of the row position in the photos of the upper and lower horizontal 

side of the interrogation area. Be aware that the two photos are horizontally compressed. 
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Defined the evolution in time of rows and columns associated to the interrogation 

area, a generic input photo is shown in Fig. 89. The interrogation area is highlighted 

in red. It is worth keeping in mind that the spatial domain of the operations 

described hereafter is the one defined within the boundary of the interrogation area. 

 

Figure 90 A generic front photo, with its rectangular interrogation area highlighted. 

 

Figure 91 (Workable) spatial domain of the photo defined by the rectangular interrogation area. 

The first pre-processing step aims to remove the bubbles present in the spatial 

domain. To do so, it is recalled that the light source is at the bottom of the aquarium 
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and pointing upward. Therefore, bubbles have the property to be very bright at the 

bottom and very dark at their top. The initial photo is thus converted from RGB to 

greyscale and then a high-pass filter with a big threshold is applied in order to detect 

the bright pixels in the photo and save their positions in a temporary file. Usually, 

the big threshold is of the order 0.75 (it may look low, but keep in mind that the 

value is normalised), but it may range between 0.62 and 0.80 depending on the 

intensity light. Once it is set, it does not change in time. 

The temporary file just saved is a binary matrix with the same number of rows and 

columns of the interrogation area. It is made of zeros, corresponding to pixels in the 

photo darker than the threshold, and ones, corresponding to pixels in the photo 

brighter than the threshold. A gaussian filtering with standard deviation 𝜎 = 1.7 and 

a subsequent binarization with threshold 0.3 is applied to this binary space. By 

doing so, the sets made of unitary cells in the domain maid of zeros enlarge radially. 

This is done to consider a greater boundary of bubbles with respect to the effective 

one detected, and thus to cancel out also the shadowing of the bubbles that might 

have been remained undetected thus far. 

A similar process is applied for the upper and brighter part of the bubbles. In this 

case the greyscale is inverted and an initial high-pass threshold of the order of 0.62 

is applied. The threshold may vary between 0.58 and 0.65. This is equivalent to 

considering a low-pass filter with a threshold of the order 0.38. The reason why the 

low-pass filter is not applied, despite its simplicity, is that MATLAB’s function 

im2bw is implemented as a high-pass filter. Anyways, a gaussian filter with standard 

deviation 𝜎 = 0.9 and a subsequent binarization with threshold 0.25 is applied. This 

binary space related to the upper region of the bubble is summed to the binary space 

related to the lower part of the bubbles. Then a binarization with null thresholding 

is applied, in order to set all the cells with a value higher or equal than one to unitary 

value and leave the null cells unchanged. The binarized space thus obtained is 

shown in Fig. 91. The pixel coordinates corresponding to the points detected as a 

upper and darker bubble’s region are coloured in blue while the pixel coordinates 

corresponding to the points detected as a lower and brighter bubble’s region are 

coloured in red in Fig. 92. 
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Figure 92 Binarized domain of detected bubbles and bright defects. 

 

Figure 93 Binarized domain of Fig. 91 shown superimposed on Fig. 90, with lower brighter 

bubble’s part coloured in red and upper darker part coloured in blue.  

Eventual bright defects are, with satisfaction, detected too.  

Since, as can be noticed looking at the upper-left corner, also some scallops are 

identified as the top darker part of the bubble, since they are darker with respect to 

the surrounding, a method is implemented to restore them in the workable domain 

of the photo. The condition to be satisfied is based on the distance with respect to 

the corresponding lower and brighter region. Obviously, if a lower and brighter set 

does not exist at all, then for sure the set of darker points previously detected needs 
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to be restored in the workable domain. Fig. 92 is thus shown again as Fig. 93, where 

the restored pixels are coloured this time in green. The restored pixel corresponds 

now to null cells of the binarized matrix. This matrix is thus now saved in memory. 

 

Figure 94 Red pixels correspond to bubbles’ lower and brighter part, blue pixels to bubble’s upper 

and darker part, green pixels to restored and thus again workable pixels previously counted 

among the blue ones. Green pixels can be more easily noted on the top-left corner of the image. 

 

The time has come to explain how the surface pattern can be identified. 

This code is not a continuation of the previous one. Only the binarized matrix from 

the previous code is directly loaded into the workspace and the original photo is 

imported as well and immediately converted in grayscale. The binarized domain, 

similar to the one in Fig. 91, is firstly gaussian filtered with standard deviation 𝜎 =

1.3, the result is multiplied by 12 and subsequently binarized with thresholding 

level of 0.3. Eventual holes present are filled with MATLAB’s function imfill. The 

original photo is gaussian filtered too with filter’s standard deviation 𝜎 = 2, it is 

useful to call here this filtered photo B. This is mainly done to remove salt and 

pepper noise. The unfiltered original photo is gaussian-filtered with a filter that has 

a very big standard deviation: 𝜎 = 20. Basically, the photo is very blurred (Fig. 94) 

after this operation and the overall intensity level decreases as well, as expected. 

This filtered photo is called here A. 

The crucial step to detect the surface pattern is the subtraction of B from A. 
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Figure 95 Photo ‘A’ 

 

Figure 96 Visualization of the effects of the aforementioned image subtraction. Obviously, in 

reality, the surface pattern in A is not so evident and is not so thick in B. 

Fig. 95 visually explains why. Basically, B is quite similar to the original, since the 

standard deviation is so low, that the intensity levels remained pretty the same, 

except for the small regions characterising the salt and pepper noise, which are 

removed. While the blurred photo, as anticipated, has a lower overall intensity level; 

in other words, the photo looks (more uniformly) darker. This is equivalent to say 

that the values of the cells of the matrix (of the photo) are smaller with respect to 

the original. It is very important to keep in mind that the regions without surface 

patterning are brighter than the confined regions where there is surface patterning. 

Therefore when the two photos are subtracted, the regions where there is no surface 

patterning, decreased a lot their intensity value in the gaussian filter, and thus have 

now a negative intensity value. While the confined regions of surface patterning, 

do not decrease significantly their intensity level. Quite the contrary, since they are 

surrounded by many brighter region, they slightly increase their intensity level. 

Therefore, after the subtraction, their associated intensity values are still small, but 

positive in sign. 



 

142 
 

The pixels corresponding to white regions of the binarized matrix imported are 

automatically set to zero. While for the remaining, those that have a negative value 

are set to zero, while the remaining pixels with a still positive value, are all set equal 

to one, obtaining Fig. 96. 

 

Figure 97 Binarized photo highlighting the detected regions of surface patterns. 

It is now necessary to determine a more precise boundary of the surface pattern. 

Indeed, the one shown in Fig. 96 is too thick, the single patterns are not discernible 

and it looks thus almost impossible calculating the horizontal wavelength. 

The light source located at the bottom and pointing upward comes in handy. Indeed, 

it outlines the quasi-horizontal contour of the pattern. 

This allows to easily detect the row at which there is a surface pattern. In order to 

do so, the first derivative of the intensity value of each cell of the matrix is 

calculated along the vertical direction. Indeed, the contour of the surface pattern is 

evident to the human eye, because it has a discontinuity in the intensity value of 

nearby pixels. Each cell of the matrix made of cells that have the value of the first 

derivative is multiplied by each cell of the binarized matrix associated to Fig. 96. 

In this way, only the derivative within the regions of surface patterns is taken into 

account. The cells corresponding to regions outside the surface pattern are set to a 

known positive value, which has several orders of magnitude different than the 

expected first derivative. This is done to be sure that a cell where the derivative is 

null is not wrongly considered as a cell not belonging to the domain of a surface 

pattern. For every column in the photo, the code starts from the first row till it finds 
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a cell where the derivative is negative. The coordinate is saved in a vector named 

scallop1. The algorithm takes into account that the regions detected in Fig. 96 may 

have more than one quasi-horizontal “leg”. Therefore, it is not possible to stop at 

the first negative derivative detected. Therefore, once the first negative derivative 

is found, the algorithm proceeds increasing the row number but without saving the 

position of other negative derivatives. As soon as the pixel belonging to the outer 

region (the one coloured black in Fig. 96) that has the adjacent upper pixel in the 

inner region (coloured white in Fig. 96) is found, the search for the negative 

derivative is found. But in this case, the variable is saved in a different vector named 

scallop2. Again, the search for the first derivative stops till the pixel outside of the 

region which is connected with an upper pixel in the inner region is found. The 

search for the negative derivate restarts again, saving the coordinate to the vector 

named scallop3. In summary, the algorithm has a three-level redundancy to take 

into account of three possible quasi-horizontal “legs” belonging to the same white 

region shown in Fig. 96. Obviously, prior to searching for additional legs, through 

the search of an outer existing pixel with null derivative, it is checked that the row 

is within the limits of the image, otherwise the code crashes. 

 

Figure 98 Surface pattern (coloured in red, green or blue) calculated through first derivation of 

the intensity value along the vertical direction. 

This procedure is repeated for every distinct white region in Fig. 96. The 

coordinates calculated in this way are shown in Fig. 97. The points belonging to 
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scallop1 are red, those belonging to scallop2 are green, those belonging to scallop3 

are blue. 

It is worth mentioning that before implementing definitely the algorithm based on 

the detection of the first coordinate along the column at which the first order 

derivative of the intensity value is negative, also algorithms based on the detection 

of the coordinate corresponding to the maximum negative derivative, of the last 

coordinate of consecutive coordinates having all in common negative derivatives, 

or of the mean coordinate of consecutive coordinates having all in common 

negative derivatives were tried. The one based on the first point at which there is a 

negative derivative is chosen since it accurately calculate the surface pattern 

boundary. Furthermore, with respect to the algorithms based on the mean value or 

on the maximum derivative, the calculated points belong to curves which are more 

probable to be 8-connected for longer distances. 

But the problem of the connectivity remains after all, because: 

• Each stencil associated to a white region of Fig. 96 is made of coordinates 

that are not equally spaced. 

• Even when the coordinates are equally spaced, they may cross each other. 

The last point is evident in Fig. 98. 

Indeed this pixels cannot be directly used for the calculation of the horizontal or of 

the vertical distance between surface patterns. 

In order to use them, two major implementations must be done: 

• The stencil must be fixed into a stencil made of equally spaced points. 

In order to do so, eventual missing points must be automatically added. 

After all, it may happen that in the image detection of surface patterns, a 

pixel might be lost. And even only one missing is a sufficient condition for 

a non-equally spaced stencil. 

• The patterns belonging to scallop1, scallop2, scallop3 need to be reordered 

in a more efficient way. 

This is needed in order to prevent the intersection of patterns and in order 

to consider patterns made of pixel coordinates simultaneously belonging to 

each one of the three mentioned vectors. This is evident in Fig. 98, where 

red and some green points (or even some blue points with respect to green 
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points) should be considered as a single entity before the intersection, while 

the remaining red points after the intersection need to be considered as a 

separate entity. 

 

Figure 99 Working directly on the pixel coordinates associated to surface patterns is not possible. 

In addition to being discontinuous coordinates, they may even cross each other. 

This task is not banal. Thinking about an idea to solve this, one suddenly finds out 

that the same idea may not applied in other areas of the image or even that further 

ideas are necessary to close the problem. It is here proposed one algorithm that 

works very well. It was built after others did not succeed and thanks to the 

understanding of the limitations that made the other algorithms to fail. 

The algorithm starts by considering Fig. 97. A null matrix is created. All the cells 

of the matrix which have the same coordinates of the points belonging to the three 

vectors shown in Fig. 97 are equalised to one. A gaussian filtering with 𝜎 = 1.2 is 

applied to this binarized matrix. By doing so, Fig. 99 is obtained. White pixels in 

the photos that are which are vertically or horizontally separated within certain 

geometrical constraints are connected, as shown in Fig. 100-101. 
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Figure 100 Gaussian filtering of the patterns shown in Fig. 97. 

 

Figure 101 Sets separated by only one black row are connected 

 

Figure 102 Sets separated by a maximum of three black columns are connected 
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Skeleton by thinning of the binary imaged along a preferential direction is 

performed. Basically, for each furtherly-connected set of Fig. 99, it is calculated the 

mean pixel along the vertical direction. The result is shown in fig, 102. 

 

Figure 103 Detail of the calculated skeleton (in red) by thinning of furtherly-connected sets in Fig. 

99 along the vertical direction. 

As done for Fig. 99, a gaussian filter is applied to the binarized matrix whose non-

null cells are those with the same coordinates of the points belonging to the three 

vectors shown in Fig. 97. But this time the standard deviation of the gaussian filter 

is half of the previous one: 𝜎 = 0.6. Therefore, the widened sets in the photo are 

always within the widened sets of Fig. 99. 

On the same image (Fig. 103) are considered in white the widened sets of Fig. 99, 

the lastly widened sets is coloured yellow, the red, green and blue pixels associated 

to the patterns detected in Fig. 97 are coloured in the same colour. The skeleton is 

coloured black. Furthermore, also the features in the image of dimensions 2 × 2 

which have the property shown in Tables 7-8 are coloured black. 

1 0 

0 1 
Table 7 Feature n.1 detected in the photo. 

0 1 

1 0 
Table 8 Feature n. 2 detected in the photo. 
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In other words, the cells corresponding to the skeleton and to the ones in Tables 7-

8 are set equal to zero. One detail of the resulted image is shown in Fig. 103. 

 

Figure 104 Detail of the image obtained by furtherly-processed Fig. 97, 99, 102. 

The operations of gaussian filtering and relative sets’ connection allow to connect 

some domains initially non connected, while the operations with the skeleton and 

with the features shown in Table 7-8 allow to separate some domains initially 

wrongly connected. But some domains are not yet optimally connected and some 

still needs to be connected. 

 

All the operations described so far are a practical example of what in mathematics 

is defined as a connected topological space. In Fig. 104, the set Ω1 of the spatial 

domain is connected, while the set Ω2 is not connected but it is made of eight 

connected components. Basically, the algorithm is trying to pass from the condition 

associated to Fig. 104b to the condition associated to Fig. 104a, or in mathematical 

terms, to transform each non-connected sets made of connected components into a 

connected set made of a single component. 

 

Figure 105 (a) A connected set. (b) A non-connected set made of connected components. 

The final operations to connect the pixels of the surface patterns of Fig. 97 are 

performed on the gaussian-filtered sets, shown in yellow in Fig. 103. Basically, for 
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each spatial domain defined by the white gaussian-filtered set, which is shown in 

white in Fig. 103, the leftmost yellow set is considered at the beginning. The 

algorithm calculates the distance and the angle of the segment between the 

rightmost pixel of the surface pattern within the leftmost yellow subset and the 

leftmost pixel of the surface pattern within all the remaining yellow subsets on the 

right. To have a connection, some requirements on the distance and the angle need 

to be satisfied. If they are not, the yellow subset considered is not connected and is 

thus removed from the ones to connect. Otherwise, the connected yellow subset on 

the right becomes the subset “on the left” and the operation is repeated till the 

rightmost pattern is reached. Obviously, when this condition is reached, not all the 

yellow subsets are still connected. Therefore, the cycle starts again from the 

leftmost among the remaining unconnected yellow subsets, till all the subsets are 

either connected or unconnectable. 

 

Figure 106 Connection of yellow subsets. 

Fig. 105 shows one random result of the described operation. The final subsets that 

have a number of pixels of the surface pattern less than five are deleted permanently. 

This happens to the yellow and orange subsets on the right of Fig. 105. 

For each yellow subset, eventual missing points are added by interpolating with a 

line the two extrema of the missing interval. In this way the stencil becomes equally 

spaced. 

 

To calculate the vertical distance between surface patterns, since these are similar 

to quasi-horizontal lines, they are approximated by a horizontal line passing through 

the centroid of the coordinates of the pixels of the surface pattern. The length of the 

line is given by the horizontal extension of the surface pattern. Fig. 106 shows a 

detail of the spatial domain in which the horizontal lines approximating the surface 

patterns are shown.  The reason why the author shows a detail and not the full 

picture is merely because when saving, or even only visualising, the full picture in 

MATLAB, most of the lines are automatically not shown by the program, and only 
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by zooming in the user can really see all the lines and thus see the vertical spacing 

between them. 

 

Figure 107 Horizontal lines approximating the surface patterns detected and connected thus far. 

Even if a characteristic vertical wavelength already appears in Fig. 106, calculating 

directly it for each column by advancing in the row numbers and saving the interval 

between every change of value in the binarized cell of the corresponding Fig. 106, 

leads nowhere. Anyways, for clarity, it is shown in Fig. 107 the result someone 

would obtain by doing so for a single photo. 

Fig. 107 clearly shows two characteristics. The first one is that the interrogation 

area is not fixed for all the photos, but it evolves in time, being optimised for every 

photo. Basically the upper and lower horizontal sides of the interrogation area 

evolve as in Fig. 88. This is more important for the upper limit, in order to let it 

evolve close to the leading edge of the frontal surface. This is visible in the photo 

by the quasi-linear region before the 200th pixel-row of the photo. If the 

interrogation area were fixed, only the region with the peaky curve of the gaussian 

convolution would have been visible, with a horizontal interval going 

approximately from the 100th to the 300th pixel-row of the photo. After all, it is not 

physically correct to directly focus the middle of the frontal surface area neglecting 

its distance from the leading edge; the solute layer, starts descending from the upper 

side of the frontal surface. The second evident characteristic is the presence of the 

interval of linearity. This interval provides a further information: the growth 

distance from the leading edge needed by the surface pattern to assume a coherent 
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form in space. In other words, close to the leading edge of the frontal surface, the 

lines approximating the surface pattern have a longer horizontal and vertical 

spacing among them. And only at a certain position the lines start being more 

packed on the surface. The coordinate in the plot showing the transition from the 

linear to the peaky region highlights the boundary where this change in overall 

behaviour is noticed. 

 

Figure 108 Vertical wavelength between surface patterns (approximated by horizontal lines) 

calculated by counting the peak-to-peak for each column. Adapted interrogation area in time. 

But as anticipated, Fig. 107, even if it provides a useful information on the 

coordinate of the surface pattern’s chaotic transition into coherency, is not very 

useful for determining the evolution in time of the vertical distance between surface 

patterns. Firstly, because Fig. 107 is related to a single photo. This means, since an 

experiment lasts for ninety minutes and the photos are taken every thirty seconds, 

that 180 similar graphs are obtained…for a single experiment. Saving the peaks’ 

position of every graph in a vector and plotting the evolution of the positions in 

time is only useful to see how a graphic with a high dispersion in the data looks 

like. Furthermore, by carefully looking at the peaks’ value and position in Fig. 107, 

it is evident that there are more peaks than should be. Indeed, if each peak’s value 

is a the distance between consecutive patterns, it is expected to find the successive 

peak in a position on the x-axis given by the sum of the previous peak’s position 

plus value. But this is not the case. After all, this happens because, looking at Fig. 

106, when two lines partially overlaps their end parts in the same column, the peak-
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to-peak distance falls. This highlights the path toward a better algorithm: a weighted 

peak-to-peak distance based on the number of pixels of the line sharing the same 

value. 

This algorithm does not start counting the distance between the horizontal lines 

from the first row of the discrete spatial domain. Instead, each line has a spatial 

reference system. Therefore, the algorithm starts counting from each pixel of a 

horizontal line the vertical distance to reach the pixels of line(s) located donward. 

Since the initial line may have its end parts partially above surrounding lines or 

there might even be small segments between two very long lines, as shown in Fig. 

106, if more than a distance is found for an initial line, these are weighted for the 

number of pixels sharing the distance value, and only the two distances associated 

to the biggest number of pixels are taken into account. The value of the two 

distances is then averaged and stored for the known vertical coordinate of the initial 

line. 

The evolution of the value along the rows of the photo quite dispersed, as shown in 

Fig. 108. 

The mean value 𝜇 and the standard deviation 𝜎 normalised to (𝑛 − 1), where 𝑛 is 

the number of dispersed points, of the dispersed points are calculated.  This allows 

to set the interval [𝜇 − 𝜎, 𝜇 + 𝜎], within which to consider the dispersed points. By 

doing so, eventual points that are very different than the mean and that would thus 

influence the gaussian convolution making spurious peaks are removed. The 

distribution of the points and the related gaussian convolution is shown in Fig. 109. 

The same figure indicates with inverted violet triangles the position of the local 

maxima. This is plotted in a different graph (Fig. 110) as a set of vertical red lines, 

where the height of the line corresponds to the vertical distance between 

consecutive surface patterns and the position of the line is the position of the upper 

surface pattern with respect to which the distance is calculated. This allows to add 

on the same plot the curve of the interpolated peak-to-peak points and its gaussian 

convolution, as shown in Fig. 111. Obviously, this is more a visual feedback, since 

it can be seen as the spread probability over a certain region of finding that surface 

pattern’s vertical wavelength. By saying that this is merely a visual feedback, it is 

meant that the filtered distribution cannot represent the distribution of the peak-to-
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peak, since the distribution is expected to be a succession of peaks, where the 

distance between two consecutive ones is exactly the value of the previous peak. 

 

 

Figure 109 Dispersed points indication the distribution along the rows of the photo of the vertical 

distance between two horizontal lines, which approximates the surface pattern. 

 

Figure 110 With respect to Fig.108, points outside the interval [𝜇 − 𝜎, 𝜇 + 𝜎] are not considered. 

 

From Fig. 109 and especially from Fig. 110, it is clear how the peaks now calculated 

are more physically representatives of a wavelength. Indeed, between a peak and 

its successive there is a distance which is about the value of the peak. 
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Figure 111 Peaks of Fig. 109 distributed along the vertical direction (alias the row) of the photo. 

 

Figure 112 Interpolation of the peak-to-peak points (black) and its gaussian convolution (blue). 

 

The final step is now to plot the evolution in time of the peak-to-peak distribution 

along the vertical direction found for each photo. The result is plotted in a graph, 

Fig. 112, where the 𝑥-axis is still the vertical direction, alias the rows of the photo, 

while the 𝑦-direction is the temporal domain. The blue circles in Fig. 110 are thus 

plotted at the corresponding coordinate along a horizontal line. 

The information on the vertical wavelength is in the figure, but it is hidden. To 

elaborate from the data the wanted information, it is necessary to remember that, as 
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shown in Fig. 113, firstly, the surface pattern is advancing upstream and, secondly, 

the related upstream velocity is so slow, that the cross-correlated position in the two 

photos of the same pattern is easily detectable even with the naked eye. 

 

Figure 113 Evolution in time of the distribution of the peak-to-peak distance between surface 

patterns along the vertical direction. 

 

Figure 114 Detail of two photos taken at time instants 𝑡1 and 𝑡2 = 𝑡1 + 240 𝑠. The detail on the 

left and on the right is the same, while the detail in the middle is flipped horizontally to show the 

vertical displacement. The details are made of the same pixels of two different photos taken at 

different times at a fixed position. It is evident that the surface pattern advances upstream in time. 

Combining in Fig. 112 the information that the same surface pattern is expected to 

be in a slightly advanced position in the successive photo, it is possible to search 

for a hidden coherence in the apparently dispersed data. The information translates 

into grouping the points that are on leftward inclined lines. In other words, the 

algorithm is cross-correlating the peak-to-peak referred to the same surface pattern 
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that is shifted slightly upward in the following photos.  Fig. 114 shows the automatic 

implementation of the task. 

 

Figure 115 Cross-correlated peak-to-peak distances of the same upstream-advancing surface 

pattern superimposed on the distributed data shown in Fig. 112. 

Therefore, Fig. 114 provides the evolution in time and along the flow stream 

direction, starting from the leading edge of the frontal surface, of two quantities: 

• The peak-to-peak distance associated to the surface pattern. 

• The upstream-advancing velocity. 

The first quantity can be calculated measuring the horizontal distance between a 

curve connecting cross-correlated points and the one at is right. 

The secondo quantity is given by the local inclination of the curve connecting cross-

correlated points. 

 

This is related to the vertical peak-to-peak. The calculation of the horizontal peak-

to-peak is done in a similar way. On each connected yellow subset, as the one shown 

in Fig. 105, a gaussian convolution with very low standard deviation is applied. The 

reason why the standard deviation must be very low is that otherwise it may dampen 

too much the maxim and the minima that we are interested in detecting. But at the 

same time, it is necessary because, even if the stencil is now equally spaced, it is 

not continuous. And it will never be continuous if a gaussian convolution or in 

general an interpolating function is applied because the stencil is by definition 

defined on discrete points: the pixels of the photo. This time the peak-to-peak 
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distance is the distance between maxima of the gaussian convolution. It may happen 

that only maximum is found, because sometimes the detected pixels are only one 

side of a single scallop. It was decided by the author to implement a conditional 

statement in the code to check if the condition of existence of only one maximum 

for a given yellow subset is satisfied. If the condition is true, then the maximum is 

not saved. Regarding the few cases this happens, an attempt to calculate a horizontal 

wavelength could have been to calculate the distance with respect to the minima of 

the gaussian convolution. Anyways, the author preferred directly not to consider an 

eventual subset made of similar points, in order to have fewer data, but at least more 

accurate and reliable; together with a more stable code. Speaking of code’s stability, 

the event that no maxima of the gaussian convolution are found is taken into 

account. The author has not checked if at this stage of the code there are subsets 

mad of perfectly horizontal points. Anyways, if they may exist or not, there is a 

conditional statement that checks for the existence of no maxima. If the condition 

is true, then the corrupted subset is directly deleted. So, for each subset the 

maximum, mean and minimum wavelength are saved. It is usually preferred to 

work only with the mean horizontal wavelength. This distance is associated to the 

vertical position of the centroid of the subset. From here on the algorithm is the 

same as the one for the vertical wavelength since it works on a wavelength and the 

associated position on the vertical direction. 

 

It is worth reminding that both the frontal code and the lateral code convert the pixel 

distance into a mm scale. For doing this, an algorithm that allows to manually draw 

a segment and that automatically displays the number of pixels within the drawn 

segment is used (Fig. 115). The algorithm is applied to a photo of a ruler hold 

parallel to hard candy’s surface. Usually two measures are computed, and their 

average is used for computing the conversion factor. 

 

Figure 116 Algorithm used for determining the pixel-to-mm conversion factor.
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CHAPTER 5: Result and discussions 
 

5.1 Results from side photos 

 

One of the information of biggest interest which can be calculated from lateral 

photos is the mean regression rate of the lower surface and upper surface. 

Even if not initially requested, the surface mean regression acceleration is also 

calculated. A verification of a possible inflection point in the function is done and a 

possible explanation of its presence is provided. 

The present work did even more: thanks to the high spatial resolution of the 

cameras, a study the evolution in time of the distribution of the local regression rate 

is attempted. 

 

The mean regression rates for the bottom surface of the hard candy block are plotted 

in Table 9 for the inclinations of 30°, 45°, 60° with respect to the horizontal and for 

the cases of no additional salt added to the water in the aquarium and salinities 

S≈4.41 ppt and S≈8.82 ppt. 

It is worth recalling that all the values reported in Tables 9-10 are negative, because 

the direction of the normal vector of the surface is considered pointing outward the 

solid body. 

 α=30° α=45° α=60° 

No add. NaCl -3.07e-6 m/s -3.25e-6 m/s -2.98e-6 m/s 

S≈4.41 ppt -3.42e-6 m/s -3.31e-6 m/s -3.00e-6 m/s 

S≈8.82 ppt -3.18e-6 m/s -2.95e-6 m/s -2.36e-6 m/s 

Table 9 Mean regression rate of the lower surface. 

 α=30° α=45° α=60° 

No add. NaCl -8.94e-7 m/s -9.11e-7 m/s -1.10e-6 m/s 

S≈4.41 ppt -8.81e-7 mm/s -8.54e-7 m/s -8.84e-7 m/s 

S≈8.82 ppt -1.03e-6 m/s -9.90e-7 m/s -8.56e-7 m/s 

Table 10 Mean regression rate of the upper surface. 
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 α=30° α=45° α=60° 

No add. NaCl +4.10e-11 m/s2 -2.46e-11 m/s2 -1.28e-10 m/s2 

S≈4.41 ppt +3.52e-11 m/s2 -1.05e-10 m/s2 -1.62e-10 m/s2 

S≈8.82 ppt +5.61e-11 m/s2 -2.13e-8 m/s2 -9.52e-11 m/s2 

Table 11 Mean regression acceleration of the lower surface. 

 α=30° α=45° α=60° 

No add. NaCl +3.23e-11 m/s2 -1.87e-11 m/s2 +7.10e-7 m/s2 

S≈4.41 ppt -5.68e-12 m/s2 -4.35e-11 m/s2 -1.87e-11 m/s2 

S≈8.82 ppt +9.72e-11 m/s2 -4.30e-11 m/s2 +9.74e-12 m/s2 

Table 12 Mean regression acceleration of the upper surface. 

 α=30° α=45° α=60° 

No add. NaCl 56’ 66’ 62’ 

S≈4.41 ppt 38’ 47’ - 

S≈8.82 ppt 48’ 49’ 105’ 

Table 13 Minutes from the start of the experiment at which there is a flex point in the mean 

regression acceleration of the lower surface. If ‘-‘, then no asymptote was registered. 

 α=30° α=45° α=60° 

No add. NaCl 53’ - 62’ 

S≈4.41 ppt 37’ 62’ 68’ 

S≈8.82 ppt 65’ 43’ 60’ 

Table 14 Minutes from the start of the experiment at which there is a flex point in the mean 

regression acceleration of the upper surface. If ‘-‘, then no asymptote was registered. 

The data shown in Tables 9-10 clearly shows how the lower surface has a regression 

rates which is greater of orders of magnitude with respect to the regression rate of 

the upper surface. The ratio is expressed as a percentage in Table 15. 

 α=30° α=45° α=60° 

No add. NaCl 3.43 3.57 2.71 

S≈4.41 ppt 3.88 3.88 3.39 

S≈8.82 ppt 3.09 2.98 2.76 

Table 15 Ratio of lower surface’s mean regression rate to upper surface’s mean regression rate. 
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Table 15 is quite useful to show that the regression rate is not constant as someone 

would a priori expect without considering the existence of the boundary layer. 

It is also interesting to notice that, by increasing the water salinity for a fixed 

inclination of the block, the regression rate does not change monotonically. 

Furthermore, keeping fixed the salinity and changing the inclination of the block, 

the same non monotonic behaviour is observed. 

Making consideration on the salinity is not easy. While regarding the influence of 

the inclination angle, apart from the value of the case of no additional added salt at 

𝛼 = 30° whose experiment should be repeat, the other cases show how the 

regression rate decreases by increasing the inclination with respect to the horizontal. 

After all, the more the block is horizontal, the easier the solute layer “falls” away 

from the lower surface of the block. In the other extreme case of a perfectly vertical 

block, the solute layer will indeed remain in the near-wall region while descending 

downward. This means that the solute increases very easily the concentration 

gradient flowing downward and therefore the block dissolves tends to dissolve 

slower, ergo a slower regression rate. Furthermore, the smaller the inclination, the 

more hydrodynamically unstable is the condition, and the stronger is the solutal 

convection induced by dissolution. 

To prove this, an experiment with the block perfectly vertical was carried out. In 

this case there is no evidence of scalloping on both the surfaces. 

 

Figure 117 Evolution in time of the thickness of a perfectly vertical dissolving hard candy block. 
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Fig. 118 clearly shows that in case of a perfectly vertical dissolving block, the 

regression rate is quasi-perfectly linear and that its module ℎ̇(𝑡) = −8.52 ∙ 10−7 

m/s is an order of magnitude smaller than the values associated to the lower surface 

of an inclined block (Table 9) and very similar to most of the values associated to 

the lower surface of an inclined block (Table 10). 

Furthermore, this is an opportunity to recall that the curves approximating the 

regression rate of an inclined block looks all like Fig. 83. In this curve, three regions 

can be found. An initial region and a final region where the instantaneous 

measurements are below the approximating line and a big intermediate region 

where the opposite happens. Fig. 119 clearly shows this. 

 

Figure 118 Evolution in time of the thickness of a generic inclined hard candy block. 
The three regions described above are quite evident. 

This happens because a line approximates all the points within the stencil. But as 

explained hereafter and can be seen in Fig. 120, the regression rate is not linear. 

Indeed, in the moment the solute block is immersed into the solvent, there is a peak 

in the concentration gradient of the overall system. But it is necessary to wait a 

system response time before the regression rate reaches the value it has in the middle 

of the experiment. After all, as already anticipated in [69] [29], there is a onset time. 

Whereas, in the final instants of the experiment, there is a lot of dispersed solute in 

the solvent. Therefore, the concentration gradient is smaller and thus the instant 
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regression rate calculated from the experimental measurements is lower than the 

temporal-mean one. 

Finally, the higher value in the central region can be explained as a simple due to 

the linear approximation of a non-linear quantity, as anticipated before. 

 

Tables 11-12 are not useful since it is a mean regression velocity. Indeed, as just 

mentioned, the regression velocity in all the experiments is higher at the beginning 

and decreases as time passes, because the concentration of dissolved solute in the 

solvent increases in time. Fig. 84 and Fig. 120 are generic curves of the evolution 

in time of the regression rate that prove what just said. Therefore, considering the 

mean regression velocity, or even more its sign, is useless. Since, as shown in Fig. 

121, its value can be seen as strongly affected by the instant when the curve crosses 

the zero-line. If most of the curve is above it, then the final mean acceleration is 

positive, while the opposite happens if most of the curve is below the zero-line. 

Therefore, Tables 11-12 are more useful than Tables 11-12. 

 

Figure 119 A generic curve showing the evolution of the regression rate in time. 
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Figure 120 The curve showing the evolution in time of the respective acceleration (parula-

coloured) of the regression velocity shown in Fig. 118 and its mean value (red dotted). 

 

Before continuing it is worth saying that the acceleration is not linear a priori. But 

the behaviour of the function approximating acceleration [m/s2] is linear only 

because the evolution of the thickness [m] in time is approximated with a third-

degree function. Anyways, this does not create problems because there is a greater 

interest in the study of the instant (if exist) when acceleration is zero. And it was 

confirmed, during the post-processing of several experiments, that increasing the 

order of the approximating function beyond the third, does not significantly change 

the final results, but instead increases significantly the corruption of the function, 

since some coefficients become too small. 

Anyways, the instant corresponding to the inflection point indicates when there is 

a peak in the regression rate. This point identifies the highest deviation in the middle 

region of Fig. 119 between the instantaneous regression rate calculated from 

experimental results and the approximating function. If no inflection point is found, 

like in the case shown in Table 13 of 𝛼 = 60° and 𝑆 = 4.41 𝑝𝑝𝑡, this does not mean 

that the regression rate keeps accelerating indefinitely, but that the experiment 

terminated before the inflection point could have been reached, as clearly proven 

by Fig. 122. 
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Figure 121 Evolution in time of the regression rate of the lower surface of a block inclined 
𝛼 = 60° with respect to the horizontal and with 𝑆 = 4.41 𝑝𝑝𝑡. 

 

Before the conclusion of the present paragraph, it is good to mention a couple of 

results regarding the spatial evolution of the local regression rate on the lower and 

upper surface of the inclined block. 

Fig. 86 shows the spatial evolution of the value referred to the lower surface, while 

Fig. 123 shows an its detail with fewer curves present. 

 

Figure 122 Detail of the graph of the spatial distribution of the regression rate shown in Fig. 86. 

Referred to the case of a block inclined 𝛼 = 45° without added salt to the water. 
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Higher local amplitudes means a higher regression rate, while the opposite is true 

for smaller amplitudes. Positive values are physically nonsense, since they should 

be referred to a surface increasing the position of its surface outwards. The regions 

of positive values are therefore not considered in the sequent processing. What is 

worth to notice is that the curves tend to slowly shift on the left in time. The shift is 

related to the upstream velocity of the pattern. Indeed, positions occupied in an 

instant by a peak will be occupied after a while by a valley of the dimply lower 

surface of the dissolving body, and the process repeats. Therefore, the shifting 

velocity can be calculated from Fig. 123. Anyways, in the present work, It was 

preferred to calculate that only from the frontal photos, since the side photos are 

more related to the lateral side, and thus may be affected by unwanted phenomena 

associated to the boundary region. 

 

The last figure is also useful to calculate the discrete Fourier transform using a fast 

Fourier transform algorithm, as anticipated in the paragraph 4.1. A couple of results 

are reported hereafter. 

Even if these points may be eventually affected by unwanted phenomena associated 

to the boundary region, it is necessary to note that they describe quite well a 

transition that there is in the physical phenomenon studied. 

 

Figure 123 Evolution in time of the amplitude of the two harmonic carrier waves 
for the case 𝛼 = 45° and 𝑆 = 4.41 𝑝𝑝𝑡 
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Figure 124 Evolution in time of the amplitude of the two harmonic carrier waves 
for the case 𝛼 = 45° and no additional salt added to the water. 

Indeed, as visible, it is possible to notice a transition occurring at about 20-25 

minutes since the block is immersed for a 45° inclined block. And the instant is 

surprisingly not so different from the instant at which the transition from flutes to 

scallop is happening or is under completion. 

The corresponding wavelengths associated to the frequencies of the respective 

carrier waves is found to be within the interval 𝜆 ∈ [1.4,1.65] mm. The mean value 

is close to three times the characteristic wavelength 𝜆𝑐 ≈ 0.53 𝑚𝑚 of the solutal 

convection instability induced by dissolution applied to the case of a perfectly 

horizontal block [69]. The same algorithm proposed in the present work applied to 

the problem of dissolution of a horizontal block could be therefore of interest in 

determining eventual similarities in the results. 

 

It was also verified that the spatial evolution of the regression rate along the surface 

pointing downward of the inclined block is not similar by chance to a resulting 

signal made of the superimposition of harmonic signals and noise. To prove this, 

the discrete Fourier transform using a fast Fourier transform algorithm was applied 

to the same signal referred to the surface pointing upward, where there is no surface 

patterning. It was observed that, even if at first, the signal may appear as harmonic, 

there is no coherent evolution of the frequency of the respective carrier waves and 
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the frequency (and therefore also the amplitude) of the carrier wave varies in an 

interval many order of magnitude smaller than the one related to the same quantity 

of the lower surface, which is shown in Fig. 87 (and for the amplitude Fig. 88). 

Thus, it is confirmed that the signal related to the upward pointing surface is not 

harmonic, and thus the one related to the lower surface must be connected to the 

self-sculpting. 

 

Figure 125 Evolution in time of the local regression rate of the upward pointing surface of a 

dissolved inclined block. 

 

Figure 126 Evolution in time of the frequency of the main harmonic carrier wave of the signal 

(referred to the surface pointing upward) shown in Fig. 126 
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5.2 Results from front photos 

 

It is quite obvious that the results from the side photos must be combined with the 

ones from the front photos. 

The principal results associated to the front photos are related to the determination 

of coherent dimensions on the surface undergoing self-sculpting. Coherent 

structures which can be described in terms of vertical and horizontal dimensions 

and thus, since seem to be repetitive, by the distances in the two directions that 

separate them. If the distances then are found to be constant, the quantity can be 

legitimately referred to as wavelength. 

The principal graphs obtained are already been presented near the end of paragraph 

4.2 and are here reproposed for every experiment analysed. 

The results are ordered consecutively according to the degree of salinity and 

secondly according to the inclination angle of the block. 

 

 

Figure 127 Result from front photos for 𝛼 = 30° and no additional salt added in the water. 
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Figure 128 Result from front photos for 𝛼 = 45° and no additional salt added in the water. 

 

 

 

 

Figure 129 Result from front photos for 𝛼 = 60° and no additional salt added in the water. 
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Figure 130 Result from front photos for 𝛼 = 30° and 𝑆 = 4.41 𝑝𝑝𝑡. 

 

 

 

 

Figure 131 Result from front photos for 𝛼 = 45° and 𝑆 = 4.41 𝑝𝑝𝑡. 
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Figure 132 Result from front photos for 𝛼 = 60° and 𝑆 = 4.41 𝑝𝑝𝑡. 

 

 

 

 

Figure 133 Result from front photos for 𝛼 = 30° and 𝑆 = 8.82 𝑝𝑝𝑡. 
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Figure 134 Result from front photos for 𝛼 = 45° and 𝑆 = 8.82 𝑝𝑝𝑡. 

 

 

 

 

Figure 135 Result from front photos for 𝛼 = 60° and 𝑆 = 8.82 𝑝𝑝𝑡. 
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It is quite evident from Fig. 128-136 that some of them are less dens of point. This 

is not due to a change in the vertical distance separating the patterns on the front 

and downward-pointing surface of the inclined block. This is only due to a change 

in the width of the interrogation area. 

In the present work, the author preferred to upload, when possible, the results 

calculated on an interrogation area as big as possible as the surface of the face of 

the inclined block. But in a few cases, it was not possible. Therefore, cleaner graphs 

due to a simply narrower surface area were discovered by chance. For a 

continuation of the present study is therefore suggested to take into account of that. 

 

The results related to the front photos are all described visually in Fig. 128-136. As 

anticipated, the horizontal distance between a red line connecting cross-correlated 

points is the vertical peak-to-peak distance between surface patterns. The local 

inclination of the red lines is related to the instantaneous upstream velocity of the 

surface pattern considered at that coordinate along the vertical axis of the inclined 

block. 

For reasons only related to the modification on the code, there is still as 𝑥-axis the 

vertical coordinate expressed in row-number of the pixel and not in mm. It is 

hereafter provided a table with the factor (which is a ratio) to be multiplied to the 

value on the 𝑥-axis of the graph in order to translate the distance in mm. 

 α=30° α=45° α=60° 

No add. NaCl 50/1580.4 50/1449.5 50/1463.8 

S≈4.41 ppt 50/1802.7 50/1567.9 50/1668.6 

S≈8.82 ppt 50/1544.9 50/1565.7 50/1614.0 

Table 16 Factor to be multiplied to the 𝑥-axis of the relative graph among Fig. 128-136 to 

translate the pixel coordinate into a mm coordinate from the trailing edge of the face of the block. 

Since it is quite difficult to plot in a single graph the evolution in wavelength, it was 

preferred to leave directly the graphs related to the single cases analysed and to 

provide instead in a single table the measure of the vertical distance between the 

scallops after an hour has passed since the drop in the aquarium of the block. Since 

the results are referred to photos taken after a hour, in this case is correct to call as 
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wavelength the vertical distance separating surface patterns, because the regime is 

at this point stable. 

 α=30° α=45° α=60° 

No add. NaCl 0.94 mm 2.33 mm 5.66 mm 

S≈4.41 ppt 0.92 mm 2.19 mm 4.42 mm 

S≈8.82 ppt 1.05 mm 2.65 mm 5.59 mm 

Table 17 Vertical wavelength of the scallops after one hour since the beginning of the experiment. 

The last table illustrates an unexpected dependency on salinity. 

Indeed, even if a greater wavelength, by increasing the inclination, was expected 

by visual observations, the non-monotonicity dependence on the salinity of the 

solvent could not be anticipated due to the very small difference. 

It is worth reminding that a greater wavelength indirectly means scallops that are, 

over than more distant, even with longer vertical “legs”. This also means that the 

valley between a peak and the successive downstream is more extended vertically. 

Therefore, the fluid covers a greater wet surface, with the possibility of carrying 

more solute while moving downstream. Therefore, the concentration should be 

expected higher, and this would correspond to a lower concentration gradient. This 

could explain why the wavelength increases by increasing the inclination (Table 17) 

and at the same time, instead, the mean regression rate of the lower surface 

decreases (Table 9). The present hypothesis seems reasonable. 

 

Unfortunately, in the present thesis it was not carried out a PIV study. Therefore, no 

hypothesis can be drawn regarding the size and the vorticity of eventual 

recirculating flow within each valley right downstream the crest of scallops. 

 

In conclusion, it was not preferred to show results about the horizontal distance of 

the patterns, since the values calculated seem to be still too dispersed after a hour. I 

hope in the near future that someone else will be able to improve the present code 

written by the author to refine this quantity. 
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5.3 A possible physical mechanism behind scalloping 

 

It is here proposed a possible physical mechanism behind scallop which is not based 

on the idea of solutal Rayleigh-Bénard instability. 

The author has nothing against the mentioned theory, but since neither Rayleigh nor 

Bénard applied their studies on the problem of diffusion of concentration, as 

anticipated in the paragraph 1.4, the author thinks that a possible explanation not 

involving RB cells and based instead on other hydrodynamic instability theories 

could be provided. 

 

The principal motivation is driven by the Rayleigh-Taylor instability of a liquid 

layer under an inclined plane [26]. 

The same idea is recalled here in the problem of a dissolving inclined block. 

Obviously, the two physical phenomena are different, but the author is the opinion 

that is legitimate to consider the same hydrodynamic instability behind the first 

destabilization of the solute layer system. 

 

Figure 136 Four principal phases of the proposed physical mechanism behind scalloping. 

As soon as the solute body is dropped in the aquarium, it is expected that, thanks to 

dissolution, a solute layer initially horizontally will be formed directly in contact 

with the surfaces of the body. This solute layer is at the beginning attached to the 

surface, thanks to surface tension, and slowly starts to descend along the surface 

due to the action of gravity. 

A fluid layer under an inclined plane is always temporally unstable [26], since the 

opposed forces of surface tension and gravity act on it. Therefore it will thicken in 

some regions and a characteristic wavelength, which is associated to the peak-to-
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peak distance, can be determined based on the inclination angle and the capillary 

length, as written in Eq. 17-18. 

It is supposed that is this wavelength to decide the initial position of plumes. 

And, even if the position of the plumes may be the non-correct one, the system is 

able to evolve autonomously in order to reach an equilibrium, as will be legitimately 

hypothesized in the next paragraph. 

The solute layer will therefore behave as in Fig. 137b. Basically it reaches the 

destabilising thickness and evolves into a plume, while right downstream, a “new” 

solute layer originates, descends and increases its solution concentration, it 

destabilises and forms a plume, and the process repeats again till the trailing edge 

of the face is reached. 

After all, the process driven by dissolution and not by the kinematics of the layer, 

since its inertia and velocity are both very small. Therefore, it is expected an 

evolution of the surface depending on the local concentration gradient. 

Where the thickness of the solute layer is small and the concentration gradient is 

high, the surface has a higher regression rate, which can be defined as the normal 

local velocity of the evolving boundary of the surface. While where the thickness 

of the solute is bigger, then the regression rate is smaller and the surface retrocedes 

than low in time. Obviously, this extremum is represented by the detaching 

concentration plume, which evolves slowly into a pointed peak, as in Fig. 137c. 

This process goes on for a while, till the valley between a plume and another is so 

depressed, that the wet surface has increased importantly. In this case the layer, 

which is still laminar before detaching from the plume, covers enough surface to 

increase furtherly the solute concentration. Thus, from a side, it has a higher inertia 

with respect to the fluid of the bath, and on the other side, has enough space to 

furtherly increase its velocity thanks to acceleration of gravity. It is expected that 

now, when the layer reaches the position of the plume, it has a non-negligible inertia 

in order to entrain, thanks to viscosity’s shear stresses, the fluid right downstream 

the plume, thus creating a little recirculation bubble. This bubble, not only can 

slowly peel the surface through wall shear-stresses (even if they are very small), but 

it is in a critical position. It increases the entrainment of outer bath fluid near and 

downstream the detaching point of the plume, which till now was allowed to 
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become quite asymmetrically sharp. This action, as shown in Fig. 137 can explain 

now the increase in upstream velocity, that is not observed at the beginning of the 

experiment. Indeed, the pattern is observed to evolve into a stabilised form before 

increasing suddenly the upstream velocity. 

A possible physical mechanism explained in Fig. 138. Basically, now that the phase 

illustrated in Fig.137d is reached, the local surface right downstream the position 

of the plume has a higher regression rate with respect to the preceding instants. 

Therefore, it reaches a position insider than the boundary defined in the previous 

instant, and by doing so, its position appears to have moved upstream, as illustrated 

in Fig. 138. 

Obviously, since the position where the plume detaches is a sharp peak, is more 

visible even with the naked eye and thus its displacement is more appreciated than 

other regions on the surface. 

 

Figure 137 Physical mechanism behind the upstream velocity of scallops. 

 

In conclusion, a physical explanation of the scalloping phenomenon without the 

need to call the existence of Rayleigh-Bénard cells in a dissolution problem has 

been proposed and physically motivated. 

 

There are two considerations the author would like to remark before concluding the 

present paragraph. 



 

179 
 

Firstly, intermittent plumes [69]  [29] can be explained easily as a Kelvin-Helmholtz 

instability due to the shear stress between the plume and the small recirculating 

bubble which is induced in the transition between the phase c and d of Fig. 137. 

Indeed, even the author observed a behaviour similar to an intermittent plume, but 

those observed, highlighted a wavy form similar to the one of Kelvin-Helmholtz 

instability for a concise interval of time. After this interval, the plume appeared to 

be mostly continuous for the rest of the experiment. Only sporadically it reassumes 

a disturbed shape, but this could be also due to the interaction with transport of a 

little-bigger sediments of hard candy being transported by the concentration layer. 

Because it appears to be too sporadically and non-periodic in order to even speak 

of frequencies like the two mentioned papers do. 

Anyways, since the author did not perform experiments with salt blocks, it leaves 

open the question and the possibility that the phenomenon of intermittent plumes 

described in the two mentioned papers may be more related to the dissolution of a 

horizontal block of salt and not to an inclined hard candy block. Therefore, the 

author does not comment any more about that on the present work. 

 

The second and last consideration is related to Eq. 50-53, which were taken from 

[30]. 

As anticipated, the author of the present thesis was not able to find a demonstration 

of them. But there is only the interest in pointing out that, as anticipated, there was 

the visual confirmation in the experiments carried out that exists a relationship 

between the inclination of the hard candy block and the time at when there is a 

transition from patterns more similar to grooves, to patterns more similar to flutes 

and then to patterns more similar to scallops. It was observed that the more inclined 

is the hard candy block, the longer the groove structure lasts in time, before evolving 

into a flute structure. 

In the mentioned formulas, which propose to describe the phenomenon, there is no 

dependence on the inclination angle. 
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5.4 Scallops as a self-organizing system 
 

Self-organizing systems are able to change their internal structure and their function 

in response to external circumstances. [28] 

 

As anticipated in paragraph 1.3, the formation of Rayleigh-Bénard cells in 

nonequilibrium thermodynamics can be considered a self-organizing system. 

Because it can be said that, by generating a more efficient energy transport through 

convection, they tend to resist the external perturbations and tries to return back to 

the equilibrium state. 

 

The author dares to suggest that even scallops can be considered in this way.  After 

all, the process is quite self-regularized and reaches an asymptotic equilibrium 

autonomously. 

Furthermore, many self-organizing systems are characterised by multiple time-

scales of their internal and/or external interactions and possess a hierarchy of 

structural and/or functional levels kin order to react to external inputs [28]. 

Multiple times-scales are for sure present in the phenomenon, as showed by Fig. 

124-125 and a hierarchy of structural and functional levels appears evident too with 

the existence of different patterns. The patterns do not evolve by chance; there is 

never, after all, a groove developing from a scallop or a secondary scallop 

transforming into a primary one. And as explained with Fig. 137, each pattern 

seems to have a specific function: the flutes shape the concavity right after the 

upstream rim; the concavity then enlarges and at its sharpen top a small 

recirculation flow is allowed. 

Scallops for sure react to external initial conditions, as shown by the different 

results obtained in the first two paragraphs of the present chapter. 

Many self-organizing systems are even defined nonteleological, i.e., they do not 

have a specific purpose except their own existence [28]. 

Well, after all scallops born due to the existence of a concentration gradient that 

destabilizes the boundary layer. Their existence can be seen under these 

perspectives as the aim to reach the null concentration gradient in a more efficient 
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and rapid way, as noted by the compared regression rates of a surface with and 

without scalloping. And they even adapt to the surrounding, since as soon as a lower 

concentration gradient is reached, then the instantaneous regression rate decreases, 

as shown in Fig. 119 

Furthermore, they even have the characteristic of some hierarchical systems to be 

redundant: if a scallop is removed mechanically polishing the surface, there are 

always some in the surroundings ready to extend their arms in the now available 

surface. This is after all what happens when a bubble is seen to impinge, while 

raising upwards, against the base of a rim of a scallop. If it gets trapped, then the 

rim is no more able to keep a recirculating flow in it, and therefore due to the same 

presence of the bubble, a secondary scallop is created, and thus a secondary 

neighbouring rim carries out the function of the blocked one. Therefore, the 

upstream velocity of the pattern is regained, and this causes a non-uniform advance 

of the rim that frees the bubble. Since now there is not the necessity of two 

neighbouring rims, they will remerge in a single one as explained in Fig. 36. 

 

Therefore, the author of the present thesis would like to propose, with this 

qualitative description, based on experimental results and evidence, that they are 

suitable at the pair of Rayleigh-Bénard cells to be considered as a self-organizing 

system. 

 

In conclusion, as previously said, nonteleological self-organizing systems exists to 

accomplish a specific purpose. So, what is the specific purpose of scallops? 

The answer may be found looking at the asymptotic equilibrium in the dimensions 

of the coherent structures that is reached at the end of an experiment. 

The author proposes that, the explanation of the equilibrium can be found looking 

at Fig. 137d. 

If the concentration in the solute layer can furtherly increase, then the recirculating 

region is expected to increase its vorticity, since the entrainment that drives the 

recirculating bubble increases due to the increased inertia of the upstream layer. 

Therefore, it is proposed that the final equilibrium in the final wavelength is found 

due to the equilibrium between the action performed by the solute layer that tries to 
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take the greatest concentration as possible (obviously lower than the saturated level) 

toward the plume and the opposed mixing effect due to the action performed by the 

recirculating region. 

Thus, the author supposes, recalling Curl’s theory, that the equilibrium should be 

found in the aim of having the highest and constant Sherwood number. 

Since Curl has been now recalled, the author would like to make a final comment 

on the two theories supported by Curl and Allen. 

The author of the present thesis personally supports the idea that in medio stat 

virtus. Both Curl and Allen made a a great contribution in exploring the sculpting 

phenomenon on rocks by water flow, using Plaster of Paris as model. But they made 

the mistake to believe that what was seen was mainly due to dissolution, when, to 

the contrary, Rayleigh numbers in their experiments are so big that diffusive 

phenomena cannot be neglected for sure. 

They did not agree each other regarding the last picture of Fig. 40. In conclusion, I 

would like to provide a possible clarification driven by experimental observations. 

According to Curl’s stable flute theory this should be a fixed pattern that does not 

change anymore. While Allen’s passive bed theory drives him to conclude that 

when the surface reaches the conjugate state, erosional marks could be destroyed 

as well as created. 

The experiments carried out demonstrate at their final stage that both Curl and Allen 

are right, but only partially. 

Specifically, it is true that a condition of fixed dimensions of the coherent structures 

is reached. But this does not imply that the coherent structures must stay fixed in 

space. Indeed, the coherent structures keep moving upwards, as shown in Fig. 138, 

till the body is completely dissolved. And since the pattern moves upward, after all, 

in a fixed reference system, the movement can be seen as the transition of peaks into 

valleys and of valleys into peaks, as shown in Fig. 86. 
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Conclusion and Recommendations 
 

The present work demonstrates quantitatively that even if scalloping on a surface 

of a dissolving body may appear at a glance as a chaotic behaviour, there is in reality 

a hidden coherency in the structures when they are analysed statistically. This could 

be very useful in potential applications in geology and planetary sciences, order 

than in increasing the accuracy of the present mathematical models. 

A proposal of the physical mechanism behind scalloping is explained based on 

detailed experimental observations. 

The present proposal even allows to hypothesize scalloping within the class of self-

organizing systems. 

But obviously additional work is necessary. 

The author partially regrets not being able to post-process some of the experiments 

carried out with other moulds, which were realised from scratch, due to the limited 

time available in facing a so interesting and elaborate phenomenon. 

But is confident in the advancement which will be carried out by future students 

and researchers on the topic. 

 





 

187 
 

 

Bibliography 
 

 

 

[1]  J. B. J. Fourier, Théorie Analitique de la Chaleur, Paris: Firmin Didot, 1822.  

[2]  A. Fick, «Ueber Diffusion,» Ann. Phys., vol. 170, pp. 59-86, 1855.  

[3]  L. Prandtl, «Motions of Fluids with Very Little Viscosity,» 1904. [Online]. 

Available: https://ntrs.nasa.gov/citations/19930090813. 

[4]  NASA, «Planetary Cave Rovers,» [Online]. Available: 

https://ai.jpl.nasa.gov/public/projects/cave-rovers/. 

[5]  NASA, «Mars Helicopter (Ingenuity),» [Online]. Available: 

https://mars.nasa.gov/technology/helicopter/. 

[6]  C. E. Brennen, «Fundamentals of Multiphase Flows,» Cambridge University 

Press, 2009, p. 19. 

[7]  «Encyclopedia Britannica,» [Online]. Available: 

https://www.britannica.com/science/phase-state-of-matter. 

[8]  M. Epstein e F. B. Cheung, «Complex Freezing-Melting Interfaces in Fluid 

Flow,» Ann. Rev. Fluid. Mech., n. 15, pp. 293-319, 1983.  

[9]  K. C. Cheng, H. Inaba e R. R. Gilpin, «An experimental investigation of ice 

formation around an isothermally cooled cylinder in crossflow,» J. Heat 

Transfer, n. 103, pp. 733-738, 1981.  

[10]  Y. C. Yen e A. Zehnder, «Melting heat transfer with water jet,» Int. J. Heat 

Mass Transfer, n. 16, pp. 219-223, 1973.  

[11]  R. R. Gilpin, «The ablation of ice by a water jet,» Trans. Can. Soc. Mech. 

Engrs., n. 2, pp. 91-95, 1973.  

[12]  C. Thorsness e T. J. Hanratty, «Mass transfer between a flowing fluid and a 

solid wavy surface,» AIChE J., n. 25, pp. 686-697, 1979.  

[13]  J. A. Bilenas e L. M. Jiji, «Variational solution of axisymmetric fluid flow in 

tubes with surface solidification,» J. Franklin Inst., n. 289, pp. 267-279, 

1970.  



 

188 
 

[14]  M. S. D. Wykes, J. M. Huang, G. A. Hajjar e L. Ristroph, «Self-sculpting of 

a dissolvable body due to gravitational convection,» Phys. Rev. Fluids, vol. 

3, n. 4, 2018.  

[15]  A. J. Wells e M. G. Worster, «Melting and dissolving of a vertical solid 

surface with laminar compositional convection,» J. Fluid Mech., vol. 687, 

pp. 118-140, 2011.  

[16]  «Encyclopedia of Mathematics,» [Online]. Available: 

https://encyclopediaofmath.org/wiki/Stefan_problem. 

[17]  J. Štefan, «Ueber einige Probleme der Theorie der Warmeleitung,» Wiener 

Akad. Math. Naturwiss. Abt., n. 98, pp. 473-484, 1889.  

[18]  C. J. Crepeau, Jožef Stefan: His Scientific Legacy on the 175th Anniversary 

of His Birth, Bentham Books, 2013.  

[19]  D. Andreucci, «Lecture notes on the Stefan problem - Università di Roma 

La Sapienza,» [Online]. Available: 

https://www.sbai.uniroma1.it/pubblicazioni/doc/phd_quaderni/02-1-and.pdf. 

[20]  T. Jonsson, «On the one dimensional Stefan problem,» 2013. [Online]. 

Available: https://www.diva-

portal.org/smash/get/diva2:647481/FULLTEXT01.pdf. 

[21]  J. M. Huang, M. J. Shelley e D. B. Stein, «A stable and accurate scheme for 

solving the Stefan problem coupled with natural convection using the 

Immersed Boundary Smooth Extension method,» J. Comp. Phys., vol. 432, 

2021.  

[22]  W. O. Criminale, T. L. Jackson e R. D. Joslin, Theory and Computation of 

Hydrodynamic Stability, Cambridge University Press, 2003.  

[23]  P. G. Drazin, Introduction to Hydrodynamic Stability, Cambridge University 

Press, 2002.  

[24]  G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University 

Press, 1967.  

[25]  M. S. Roberts e J. W. Jacobs, «The effects of forced small-wavelength 

finite-bandwidth initial perturbations and miscibility on the turbulent 

Rayleigh-Taylor instability,» J. Fluid Mech., vol. 787, pp. 50-83, 2016.  

[26]  P.-T. Brun, A. Damiano, P. Rieu, G. Balestra e F. Gallaire, «Rayleigh-Taylor 

instability under an inclined plane,» Physics of Fluids, vol. 27, n. 8, 2015.  



 

189 
 

[27]  M. G. Velarde e C. Normand, «Convection,» Scientific American, vol. 243, 

n. 1, pp. 92-109, 1980.  

[28]  W. Banzhaf, «Self-Organizing Systems,» in Encyclopedia of Physical 

Science and Technology, 3 a cura di, Academic Press, 2003, pp. 589-598. 

[29]  J. Philippi, M. Berhanu, J. Derr e S. C. d. Pont, «Solutal convection induced 

by dissolution,» Phys. Rev. Fluids, vol. 4, n. 10, 2019.  

[30]  C. Cohen, M. Berhanu, J. Derr e S. C. d. Pont, «Buoyancy-driven 

dissolution of inclined blocks: Erosion rate and pattern formation,» Phys. 

Rev. Fluids, vol. 5, n. 5, 2020.  

[31]  M. A. Summerfield, Global Geomorphology, Routledge, 1991.  

[32]  D. Ford e P. Williams, Karst Hydrogeology and Geomorphology, John Wiley 

& Sons Inc., 2007.  

[33]  A. Einstein, «The cause of the formation of meanders in the courses of 

rivers and of the so-called Baer's law,» Die Naturwissenschaften, vol. 14, n. 

11, pp. 223-224, 1926.  

[34]  K. J. W. D. W. E. Perron J. T., «Formation of evenly spaced ridges and 

valleys,» Nature, vol. 460, pp. 502-505, 2009.  

[35]  K. Amin, J. M. Huang e L. Ristroph, «The role of shape-dependent flight 

stability in the origin of oriented meteorites,» PNAS, vol. 116, n. 33, pp. 

16180-16185, 2019.  

[36]  J. M. Huang, J. Tong, M. Shelley e L. Ristroph, «Ultra-sharp pinnacles 

sculpted by natural convective dissolution,» PNAS, vol. 117, n. 38, pp. 

23339-23344, 2020.  

[37]  D. Bunnell, «The Virtual Cave,» [Online]. Available: 

http://www.goodearthgraphics.com/virtcave/. 

[38]  T. Dauxois, T. Peacock, P. Bauer, C. P. Caulfield, C. Cenedese, C. Gorlé, G. 

Haller, G. N. Ivey, P. F. Linden, E. Meiburg, N. Pinardi, N. M. Vriend e A. 

W. Woods, «Confronting Grand Challenges in environmental fluid 

dynamics,» Phys. Rev. Fluids, vol. 6, n. 2, 2021.  

[39]  K.-D. Keller, «Wikipedia: Properties of water,» [Online]. Available: 

https://en.wikipedia.org/wiki/Properties_of_water. 

[40]  F. J. Millero e A. Poisson, «International one-atmosphere equation of state of 

seawater,» Deep Sea Research Part A. Oceanographic Research Papers, 

vol. 28, n. 6, pp. 625-629, 1981.  



 

190 
 

[41]  R. Kerr, «Melting driven by vigorous compositional convection,» J. Fluid 

Mech., vol. 280, pp. 255-285, 1994.  

[42]  M. Sugawara, E. Tamura, Y. Satoh, Y. Komatsu, M. Tago e H. Beer, «Visual 

observations of flow structure and melting front morphology in horizontal 

ice plate melting from above into a mixture,» Heat Mass Transfer, vol. 43, 

pp. 1009-1018, 2007.  

[43]  L.-A. Couston, E. Hester, B. Favier, J. R. Taylor, P. R. Holland e A. Jenkins, 

«Topography generation by melting and freezing in a turbulent shear flow,» 

J. Fluid Mech., vol. 911, n. A44, 2021.  

[44]  P. Claudin, O. Durán e B. Andreotti, «Dissolution instability and roughening 

transition,» J. Fluid Mech., vol. 832, n. R2, 2017.  

[45]  T. J. S. Huppert H. E., «Ice blocks melting into a salinity gradient,» J. Fluid 

Mech., vol. 100, n. 2, pp. 367-384, 1980.  

[46]  R. Yang, C. J. Howland, H.-R. Liu, R. Verzicco e D. Lohse, «Ice melting in 

salty water: layering and non-monotonic dependence on the mean salinity,» 

2023.  

[47]  V. R. L. D. C. C. Yang Y., «Layering and vertical transport in sheared 

double-diffusive convection in the diffusive regime,» J. Fluid Mech., vol. 

933, n. A30, 2022.  

[48]  M. Lugeon, «Le striage du lit fluvial,» Ann. de Geographie, vol. 24, n. 132, 

pp. 385-393, 1915.  

[49]  J. H. Maxson, «Fluting and Faceting of Rock Fragments,» J. of Geology, 

vol. 48, n. 7, pp. 717-751, 1940.  

[50]  J. H. Bretz, «Vadose and Phreatic Features of Limestone Caverns,» J. Geol., 

vol. 50, n. 6, pp. 675-811, 1942.  

[51]  R. P. Sharp, «The Wolf-Creek Glaciers, St. Elias Range, Yukon Territory,» 

Geographical Rev., vol. 37, n. 1, pp. 26-52, 1947.  

[52]  J. Leighly, «Cuspate surfaces of melting Ice and Firn,» Geographical Rev., 

vol. 38, n. 2, pp. 300-306, 1948.  

[53]  J. C. Coleman, «An indicator of water-flow in Caves,» Proc. Univ. Bristol. 

Speleo. Soc., vol. 6, n. 1, pp. 57-67.  

[54]  R. L. Curl, «Scallops and Flutes,» Transactions Cave Research Group of 

Great Britain, vol. 7, n. 2, pp. 121-160, 1966.  



 

191 
 

[55]  P. N. Blumberg e R. L. Curl, «Experimental and theoretical studies of 

dissolution roughness,» J. Fluid Mech., vol. 65, n. 4, pp. 735-751, 1974.  

[56]  J. R. L. Allen, «On the origin of cave flutes and scallops by the enlargement 

of inhomogeneities,» Rassegna Speleologica Italiana, pp. 3-19, February 

1972.  

[57]  J. R. L. Allen, «Bed forms due to mass transfer in turbulent flows: a 

kaleidoscope of phenomena,» J. Fluid Mech., vol. 49, n. 1, pp. 49-63, 1971.  

[58]  J. R. L. Allen, «Transverse erosional marks of mud and rock: their physical 

basis and geological significance,» vol. 5, n. 3-4, pp. 167-385, 1971.  

[59]  Z. Y. L. D. Villien B., «Surface Dissolution and the Development of 

Scallops,» Chem. Eng. Comm., vol. 192, n. 1, pp. 125-136, 2006.  

[60]  O. Reynolds, «XXIX. An experimental investigation of the circumstances 

which determine whether the motion of water shall be direct or sinuous, and 

of the law of resistance in parallel channels,» Philosophical Transactions of 

the Royal Society of London, vol. 174, n. 174, pp. 935-982, 1883.  

[61]  S.-E. Lauritzen, «Kvithola at Fauske, northern Norway: an example of ice-

contact speleogenesis,» Norsk Geologisk Tidsskrift, vol. 66, n. 2, pp. 153-

161, 1986.  

[62]  J. M. Kay, Fluid Mechanics and Heat Transfer, Cambridge University Press, 

1963, pp. 170-173. 

[63]  G. K. Schlichting H., Boundary-Layer Theory, 9 a cura di, Springer-Verlag, 

2016, pp. 35-36. 

[64]  C. F. Nordin e J. H. Algert, «Spectral analysis if sand waves,» Proc. Am. 

Soc. Civil Engrs., J. Hydraulics Div., vol. 92, n. 5, pp. 95-114, 1966.  

[65]  «Encyclopedia Britannica,» [Online]. Available: 

https://www.britannica.com/science/weathering-geology. 

[66]  J. Schürr, «Sur la vitesse de dissolution des sels dans leurs solutions 

aqueuses,» J. Phys. Theor. Appl., vol. 4, n. 17, pp. 17-26, 1905.  

[67]  D. Gechter, P. Huggenberger, P. Ackerer e H. N. Waber, «Genesis and shape 

of natural solution cavities within salt deposits,» Water Resour. Res., vol. 44, 

p. W11409, 2008.  

[68]  C. Oltéan, F. Golfier e M. A. Buès, «Numerical and experimental 

investigation of buoyancy-driven dissolution in vertical fracture,» J. 

Geophys. Res. Solid Earth, vol. 118, pp. 2038-2048, 2013.  



 

192 
 

[69]  M. Berhanu, J. Philippi, S. C. d. Pont e J. Derr, «Solutal convection 

instability caused by dissolution,» Physics of Fluids, vol. 33, n. 7, 2021.  

[70]  J. A. Neufeld, M. A. Hesse, A. Riaz, M. A. Hallworth, H. A. Tchelepi e H. E. 

Huppert, «Convective dissolution of carbon dioxide in saline aquifers,» 

Geophys. Res. Lett., vol. 37, n. L22404, 2010.  

[71]  P. Meakin e B. Jamtveit, «Geological pattern formation by growth and 

dissolution in aqueous systems,» Proc. R. Soc., vol. 466, n. 659, pp. 659-

694, 2010.  

[72]  T. S. Sullivan, W. J. Brown, M. D. Kerkel e R. E. Ecke, «Turbulent solutal 

convection and surface patterning in solid dissolution,» Phys. Rev. E, vol. 

54, n. 1, pp. 486-495, 1996.  

[73]  M. Alkattan, E. H. Oelkers, J.-L. Dandurand. e J. Schott, «Experimental 

studies of haite dissolution kinetics: 1. The effect of saturation state and the 

presence of trace metals,» Chem. Geol., vol. 137, n. 201, pp. 201-219, 1997.  

[74]  Y. A. Farnam, D. P. Bentz, A. R. Sakulich, D. Flynn e W. J. Weiss, 

«Measuring Freeze and Thaw Damage in Mortars Containing Deicing Salt 

Using a Low-Temperature Longitudinal Guarded Comparative Calorimeter 

and Acoustic Emission,» Adv. Civ. Eng. Mater., vol. 3, n. 1, 2014.  

[75]  C. Cohen, M. Berhanu, J. Derr e S. C. d. Pont, «Erosion patterns on 

dissolving and melting objects,» Phys. Rev. Fluids, vol. 1, n. 5, 2016.  

[76]  M. v. Meerkerk, C. Poelma e J. Westerweel, «Scanning stereo-PLIF method 

for ffree surface measurements in large 3D domains,» Exp. Fluids, vol. 61, 

n. 19, 2020.  

[77]  B. Zhao, H. Zeng, Y. Tian e J. Israelachvili, «Adhesion and detachment 

mechanisms of sugar surfaces from the solid (glassy) to liquid (viscous) 

state,» PNAS, vol. 103, n. 52, 2006.  

[78]  H. R. Brown, «Rayleigh–Taylor instability in a finite thickness layer of a 

viscous fluid,» Physics of Fluids, vol. 1, n. 5, pp. 895-896, 1989.  

[79]  J. Lister e R. Kerr, «The effect of geometry on the gravitational instability of 

a buoyant region of viscous fluid,» J. Fluid Mech., vol. 202, pp. 577-594, 

1989.  

[80]  G. Barra, «The Rheology of Caramel,» 2004. [Online]. Available: 

https://eprints.nottingham.ac.uk/11837/1/Phd_thesis_Giuseppina_Barra.pdf. 

[81]  T. Husband, «ACS: The Sweet Science of Candymaking,» 2014. [Online]. 

Available: 



 

193 
 

https://www.acs.org/education/resources/highschool/chemmatters/past-

issues/archive-2014-2015/candymaking.html. 

[82]  H. McGee, «On Food and Cooking: The Science and Lore of the Kitchen,» 

Scribner, 2004, pp. 653-657,680-691. 

[83]  H. Y. Roos, Phase Transitions in Food, Academic Press, 1995.  

[84]  M. Quintas, T. R. S. Brandão, C. L. M. Silva e R. L. Cunha, «Modelling 

Viscosity Temperature Dependence of Supercooled Sucrose Solutions - The 

Random-Walk Approach,» J. Phys. Chem. B, vol. 111, n. 12, pp. 3192-3196, 

2007.  

[85]  R. P. Mathlouthi M., «Rheological properties of sucrose solutions and 

suspensions,» in Sucrose Properties and Applications, Springer, 1995.  

[86]  P. A. Millero F. J., «International one-atmosphere equation of state of 

seawater,» Deep Sea Research Part A. Oceanographic Research Papers, 

vol. 28, n. 6, pp. 625-629, 1981.  

[87]  E. Nakouzi, R. E. Goldstein e O. Steinbock, «Do Dissolving Objects 

Converge to a Universal Shape?,» Langmuir, vol. 31, n. 14, pp. 4145-4150, 

2015.  

 





 

195 
 

 

List of Figures 

 

Figure 1 Possible originating interfaces in liquid-solid phase change problems. . 16 

Figure 2 Steady-state ice-layer profile on a flat plate, indicating various flow 

regimes. [3] ........................................................................................................ 17 

Figure 3 Temperature and concentration gradients in the case of melting and 

dissolving. [10] .................................................................................................. 20 

Figure 4 Near-wall temperature, concentration and streamfunction profiles for large 

𝐿𝑒. [10] .............................................................................................................. 21 

Figure 5 Sketch of a piecewise constant approximation to a shear layer. Fig. 2.2 in 

[17]. ................................................................................................................... 29 

Figure 6 Growth of a sinusoidal disturbance of a vortex sheet with vorticity. Fig. 

7.1.3 in [19]. ...................................................................................................... 30 

Figure 7 Visualization of the vectors acting in a Rayleigh-Taylor instability. [20]

 .......................................................................................................................... 32 

Figure 8 Scalloped iceberg near Paulet Island, Antarctica. © Phillip Colla. ........ 38 

Figure 9 Model of ice scallop due to vigorous compositional convection. .......... 38 

Figure 10 Pinnacle karsts in the Tsingy de Bemaraha National Park, Madagascar. © 

Arthus Bertrand. ................................................................................................ 39 

Figure 11 Tower karsts in Guilin, Guangxi province, China. © VCG Photo. ....... 39 

Figure 12 Bed-of-nails morphology from dissolution of an initial porous media. 

[31] .................................................................................................................... 39 

Figure 13 Speleogens in a cave in Borneo. [32] © Dave Bunnell. ....................... 40 

Figure 14 Sala degli Scallops (transl. “The room of scallops”), Grotta della Lupa, 

Majella, Italy. ..................................................................................................... 40 

Figure 15 Another image of smaller speleogens. ................................................ 40 

Figure 16 Graph of 𝜌𝐻2𝑂𝑇. [34] ....................................................................... 41 

Figure 17 Temperature-salinity diagram of 𝐻2𝑂. ............................................... 41 

Figure 18 Possible ice surface melting patterns driven by a buoyancy gradient... 42 

Figure 19 Sketch of the melting from below (a) and melting from above (b) 

configurations. [37] ............................................................................................ 43 



 

196 
 

Figure 20 Sketch of convective cells and relative streamlines in the near-wall region 

of the “mountain and valley” structure. [37] ....................................................... 43 

Figure 21 In-phase 𝒜 and in-quadrature ℬ shear stress components as a function of 

the wave number 𝑘𝜈𝑢 ∗ [39] .............................................................................. 47 

Figure 22 Isocontours of the diffusion coefficient (case a) and of the concentration 

(case b) within the fluid above a sinusoidally modulated bed (in white). Red (blue) 

regions correspond to a strong (weak) modulus. [39].......................................... 48 

Figure 23 Stability of the density/concentration distribution in the region close to 

the ice surface. Sketches related to melting in water (on the left) and melting in a 

mixture (on the right). [37] ................................................................................. 49 

Figure 24 Dissociation reactions and solubilities of some representative minerals 

that dissolve congruently in water at 25°C and 1 bar pressure [27] ..................... 50 

Figure 25 The solubility of calcite and gypsum in water at the standard atmosphere 

in the temperature interval ranging from 2°C to 25°C [27] ................................. 50 

Figure 26 Changes of bed geometry with time according to the passive-bed theory 

(case a) and to the defect model (case b) [53] ..................................................... 52 

Figure 27 Crest and critical point geometry of stable flute profile [49] ............... 55 

Figure 28 Flute geometry and dissolution-rate and characteristic velocity vectors 

[50] .................................................................................................................... 56 

Figure 29 Characteristic flow regions over one flute period [50] ........................ 57 

Figure 30 Idealised pattern of flow and associated flow velocity profile in a shallow 

cavity [51].......................................................................................................... 58 

Figure 31 Scheme of instabilities and resulting bed forms and flow fields [52] ... 60 

Figure 32 Mould showing a flute at 𝑉𝑡𝑑 = 1.5. Current from left to right. The 

portion of the bed shown in the photo is 10 cm wide [52] ................................... 61 

Figure 33 Schematic flow field displaying skin-friction lines and streamlines 

associated with mature flutes (case a) and mature grooves (case b) [52] ............. 61 

Figure 34 Rectilinear furrows [52] ..................................................................... 62 

Figure 35 Features of ridges and furrows: (a) Evolution in time of the profile. (b) 

Schematic pattern of skin-friction lines. (c) Three-dimensional illustration of the 

flow-field. [52] ................................................................................................... 63 



 

197 
 

Figure 36 Schematic flow field displaying skin-friction lines and streamlines 

associated with stages in the development of secondary flutes from longitudinal 

ridges and furrows [52] ...................................................................................... 64 

Figure 37 Moulds illustrating sequential stages in the development of secondary 

flutes by the higher-order instability of longitudinal ridges and furrows. They are 

not referred to the same furrow. Flow from bottom to top. [52] .......................... 64 

Figure 38 Cataloguing of assemblages of transverse erosional marks. ................ 66 

Figure 39 Pattern of crests, and their culmination (peaks), in assemblages of 

polygonal erosional marks [53] .......................................................................... 67 

Figure 40 Expected development in time of an initial assemblage of transverse 

erosional marks. Current from top to bottom [53] ............................................... 67 

Figure 41 Conjecture on secondary vortices and bed furrows generated by flank 

vortices of conjugated marks [53] ...................................................................... 68 

Figure 42 Phase diagram of NaCl-H2O [69] ....................................................... 72 

Figure 43 (a) Physical domain in the numerical simulation. (b) Solutal convection 

instability near the dissolving interface [64] ....................................................... 73 

Figure 44 ..................................................... Errore. Il segnalibro non è definito. 

Figure 45 Schematic view of the dissolution-driven flow on an inclined block of 

hard candy [25] .................................................................................................. 77 

Figure 46 Evolution in time, from top to bottom, of the dissolution instability [25]

 .......................................................................................................................... 78 

Figure 47 Sugar and corn syrup used in the following experiments. ................... 83 

Figure 48 Final candy properties depending on the syrup boiling point reached in 

cooking. [77]...................................................................................................... 84 

Figure 49 Chemical arrangement of common sugars. [77] .................................. 84 

Figure 50 State diagram of sucrose. Adapted from [78] and shown in [75]. ........ 85 

Figure 51 Dependence of the dynamic viscosity of sucrose solutions from 

temperature and weight concentration 𝜇𝑇, 𝑤𝑡.%. Adapted from Table 6.3 in [79] 

and shown in [75]. ............................................................................................. 90 

Figure 52 Lateral photo (on the left) and frontal photo (on the right) of the same 

hard candy block, whose dispersed air bubbles were not removed with the vacuum 

chamber. The base of the block is 134 mm long and 90 mm width. .................... 91 



 

198 
 

Figure 53 Illustration of the experimental set-up used for the experiments.......... 92 

Figure 54 Photo of an experiment taken behind the frontal-point of view camera.

 .......................................................................................................................... 93 

Figure 55 Photo of the same experiment taken behind the lateral-point of view 

camera. .............................................................................................................. 93 

Figure 56 One of the two moulds with the rectangular base. (It appears distorted 

only in photo)..................................................................................................... 94 

Figure 57 Harmonic surface. On the left there is the (negative) resin print on which 

the silicon mould base on the right was manufactured. ....................................... 95 

Figure 58 Concave mould base to realise a hard candy block with a convex face. In 

cross-sectional view the surface is an arc of circumference of diameter 170 mm. 

The two lines of points made of the extrema of the arc of circumference are 125 

mm apart. ........................................................................................................... 95 

Figure 59 “V-shaped” base mould. ..................................................................... 96 

Figure 60 Regression rate influences by upward pushing bubbles. ...................... 96 

Figure 61 “U-shaped” base mould. ..................................................................... 97 

Figure 62 Mould to realise a half cross-section of a pipe. ................................... 98 

Figure 63 Evolution in time of the same fixed detail of surface. Each photo is taken 

after six minutes the preceding one. Photo order is: top-left, top-right, bottom-left, 

bottom-right. The caramel is tilted 60° with respect to the horizontal line and the 

water salinity is 𝑆 = 8.81 𝑝𝑝𝑡. ......................................................................... 101 

Figure 64 Evolution in time of the same fixed detail of surface of Fig. 63. The top-

left photo is taken after six minutes the bottom-right photo in Fig. 63 was taken. 

The other three photos are taken at an interval of twelve minutes starting from the 

top-left photo. Photo order is: top-left, top-right, bottom-left, bottom-right. The 

caramel is tilted 60° with respect to the horizontal line and the aquarium water 

salinity is 𝑆 = 8.81 𝑝𝑝𝑡. .................................................................................. 102 

Figure 65 Evolution in time (from top to bottom) of the surface pattern on a hard-

candy block inclined 60° with respect to the horizontal line with no salt added to 

the aquarium water. .......................................................................................... 103 



 

199 
 

Figure 66 Sketch of the different regression rate depending on the surface 

considered and on the coordinate along the surface. Representation of the system 

of reference for the angle used. ........................................................................ 104 

Figure 67 Lateral photos of the experiment to verify the existence and the value of 

𝛼𝑐𝑟𝑖𝑡................................................................................................................ 105 

Figure 68 Evolution in time of the surface pattern on a vertical hard-candy block 

with initial surface inhomogeneities left by trapped bubbles. Time of acquisition of 

the photo since the start of the experiment: (a) 13 min., (b) 40 min., (c) 70 min., (d) 

110 min. All the photos have the same spatial resolution. ................................. 107 

Figure 69 Evolution in time (from top to bottom) of the pattern on a convex surface 

on a hard-candy block inclined 45° with respect to the horizontal line with no salt 

added to the aquarium water. Each photo has the same spatial resolution and is taken 

30 minutes after the preceding one. .................................................................. 109 

Figure 70 Detail of the top photo in Fig. 71. Regions camped in red point locally 

downward, while regions camped in blue point locally upward or are locally 

vertical. ............................................................................................................ 111 

Figure 71 Evolution in time (from top to bottom) of the pattern on a harmonic 

surface of a hard-candy block inclined 45° with respect to the horizontal line with 

water salinity 𝑆 = 8.81 𝑝𝑝𝑡. Each photo has the same spatial resolution and is taken 

30 minutes after the preceding one. .................................................................. 112 

Figure 72 Evolution in time (from top to bottom) of the pattern on the surface of a 

V-shaped cavity of a hard-candy block inclined 60° with respect to the horizontal 

line and no salt added to the water. Each photo has the same spatial resolution and 

is taken 30 minutes after the preceding one. ..................................................... 114 

Figure 73 A generic lateral photo...................................................................... 118 

Figure 74 Additive synthesis of primary colours............................................... 118 

Figure 75 Three main process to obtain the body domain (optimised for the lower 

surface) as shown in Fig. 76. On the left: binarization of the photo obtained by the 

subtraction of the blue channel from the red channel. In the middle: Gaussian filter 

applied to the previous photo. On the right: Binarization of the photo in the middle 

and multiplication by the original photo. .......................................................... 121 



 

200 
 

Figure 76 Object detected in the photo shown as Fig. 73 (optimised for the lower 

surface). ........................................................................................................... 121 

Figure 77 Lower and upper surface contours and relative extrema segmented. . 122 

Figure 78 (a) Lower surface according from top to bottom as done by default by 

MATLAB. (b) Lower surface reorder in 8-connectivity along the direction given by 

the solute layer. The increasing pixel number is given according to the bottom 

colorbar. ........................................................................................................... 123 

Figure 79 Variation in time of the overall bottom and upper surface of the dissolving 

hard candy. ....................................................................................................... 124 

Figure 80 Evolution in time of the boundary of the dissolving hard candy block.

 ........................................................................................................................ 124 

Figure 81 Distance calculated for each pixel of the lower surface with respect to the 

fixed line. ......................................................................................................... 126 

Figure 82 A couple of details of Fig. 79. ........................................................... 126 

Figure 83 Evolution in time of the mean (lower) surface thickness. The red dotted 

line is the 1st order approximated regression-rate. ............................................. 129 

Figure 84 Evolution in time of the (lower) surface regression rate. The horizontal 

flex point corresponds to null regression acceleration. The horizontal red dotted line 

is the mean value.............................................................................................. 130 

Figure 85 Evolution in time of the (lower) surface regression acceleration. The 

horizontal red dotted line is the mean value. The horizontal black line intersects the 

curve at the instant when the acceleration is null, which is the instant associated to 

the horizontal flex point in Fig. 82. .................................................................. 130 

Figure 86 Evolution in time of the local regression rate along the coordinate of the 

body’s surface cross-correlated interval. ........................................................... 132 

Figure 87 Evolution in time of the frequency of the two harmonic carrier waves 

found through FFT of the local regression rate defined in the body’s surface cross-

correlated space interval. .................................................................................. 132 

Figure 88 Evolution in time of the wavelength of the two harmonic carrier waves 

found through FFT of the local regression rate defined in the body’s surface cross-

correlated space interval. .................................................................................. 133 



 

201 
 

Figure 89 Evolution in time of the amplitude of the two harmonic carrier waves 

found through FFT of the local regression rate defined in the body’s surface cross-

correlated space interval. .................................................................................. 133 

Figure 90 Evolution in time of the row position in the photos of the upper and lower 

horizontal side of the interrogation area. Be aware that the two photos are 

horizontally compressed................................................................................... 136 

Figure 91 A generic front photo, with its rectangular interrogation area highlighted.

 ........................................................................................................................ 137 

Figure 92 (Workable) spatial domain of the photo defined by the rectangular 

interrogation area. ............................................................................................ 137 

Figure 93 Binarized domain of detected bubbles and bright defects. ................. 139 

Figure 94 Binarized domain of Fig. 91 shown superimposed on Fig. 90, with lower 

brighter bubble’s part coloured in red and upper darker part coloured in blue. .. 139 

Figure 95 Red pixels correspond to bubbles’ lower and brighter part, blue pixels to 

bubble’s upper and darker part, green pixels to restored and thus again workable 

pixels previously counted among the blue ones. Green pixels can be more easily 

noted on the top-left corner of the image. ......................................................... 140 

Figure 96 Photo ‘A’.......................................................................................... 141 

Figure 97 Visualization of the effects of the aforementioned image subtraction. 

Obviously, in reality, the surface pattern in A is not so evident and is not so thick in 

B. ..................................................................................................................... 141 

Figure 98 Binarized photo highlighting the detected regions of surface patterns.

 ........................................................................................................................ 142 

Figure 99 Surface pattern (coloured in red, green or blue) calculated through first 

derivation of the intensity value along the vertical direction. ............................ 143 

Figure 100 Working directly on the pixel coordinates associated to surface patterns 

is not possible. In addition to being discontinuous coordinates, they may even cross 

each other......................................................................................................... 145 

Figure 101 Gaussian filtering of the patterns shown in Fig. 97. ........................ 146 

Figure 102 Sets separated by only one black row are connected ....................... 146 

Figure 103 Sets separated by a maximum of three black columns are connected

 ........................................................................................................................ 146 



 

202 
 

Figure 104 Detail of the calculated skeleton (in red) by thinning of furtherly-

connected sets in Fig. 99 along the vertical direction. ....................................... 147 

Figure 105 Detail of the image obtained by furtherly-processed Fig. 97, 99, 102.

 ........................................................................................................................ 148 

Figure 106 (a) A connected set. (b) A non-connected set made of connected 

components. ..................................................................................................... 148 

Figure 107 Connection of yellow subsets. ........................................................ 149 

Figure 108 Horizontal lines approximating the surface patterns detected and 

connected thus far. ........................................................................................... 150 

Figure 109 Vertical wavelength between surface patterns (approximated by 

horizontal lines) calculated by counting the peak-to-peak for each column. Adapted 

interrogation area in time. ................................................................................ 151 

Figure 110 Dispersed points indication the distribution along the rows of the photo 

of the vertical distance between two horizontal lines, which approximates the 

surface pattern. ................................................................................................. 153 

Figure 111 With respect to Fig.108, points outside the interval 𝜇 − 𝜎, 𝜇 + 𝜎 are not 

considered. ....................................................................................................... 153 

Figure 112 Peaks of Fig. 109 distributed along the vertical direction (alias the row) 

of the photo. ..................................................................................................... 154 

Figure 113 Interpolation of the peak-to-peak points (black) and its gaussian 

convolution (blue). ........................................................................................... 154 

Figure 114 Evolution in time of the distribution of the peak-to-peak distance 

between surface patterns along the vertical direction. ....................................... 155 

Figure 115 Detail of two photos taken at time instants 𝑡1 and 𝑡2 = 𝑡1 + 240 𝑠. The 

detail on the left and on the right is the same, while the detail in the middle is flipped 

horizontally to show the vertical displacement. The details are made of the same 

pixels of two different photos taken at different times at a fixed position. It is evident 

that the surface pattern advances upstream in time. .......................................... 155 

Figure 116 Cross-correlated peak-to-peak distances of the same upstream-

advancing surface pattern superimposed on the distributed data shown in Fig. 112.

 ........................................................................................................................ 156 

Figure 117 Algorithm used for determining the pixel-to-mm conversion factor. 157 



 

203 
 

Figure 118 Evolution in time of the thickness of a perfectly vertical dissolving hard 

candy block. ..................................................................................................... 161 

Figure 119 Evolution in time of the thickness of a generic inclined hard candy block.

 ........................................................................................................................ 162 

Figure 120 A generic curve showing the evolution of the regression rate in time.

 ........................................................................................................................ 163 

Figure 121 The curve showing the evolution in time of the respective acceleration 

(parula-coloured) of the regression velocity shown in Fig. 118 and its mean value 

(red dotted). ..................................................................................................... 164 

Figure 122 Evolution in time of the regression rate of the lower surface of a block 

inclined ............................................................................................................ 165 

Figure 123 Detail of the graph of the spatial distribution of the regression rate shown 

in Fig. 86. Referred to the case of a block inclined 𝛼 = 45° without added salt to 

the water. ......................................................................................................... 165 

Figure 124 Evolution in time of the amplitude of the two harmonic carrier waves

 ........................................................................................................................ 166 

Figure 125 Evolution in time of the amplitude of the two harmonic carrier waves

 ........................................................................................................................ 167 

Figure 126 Evolution in time of the local regression rate of the upward pointing 

surface of a dissolved inclined block. ............................................................... 168 

Figure 127 Evolution in time of the frequency of the main harmonic carrier wave 

of the signal (referred to the surface pointing upward) shown in Fig. 126 ......... 168 

Figure 128 Result from front photos for 𝛼 = 30° and no additional salt added in the 

water. ............................................................................................................... 169 

Figure 129 Result from front photos for 𝛼 = 45° and no additional salt added in the 

water. ............................................................................................................... 170 

Figure 130 Result from front photos for 𝛼 = 60° and no additional salt added in the 

water. ............................................................................................................... 170 

Figure 131 Result from front photos for 𝛼 = 30° and 𝑆 = 4.41 𝑝𝑝𝑡................. 171 

Figure 132 Result from front photos for 𝛼 = 45° and 𝑆 = 4.41 𝑝𝑝𝑡................. 171 

Figure 133 Result from front photos for 𝛼 = 60° and 𝑆 = 4.41 𝑝𝑝𝑡................. 172 

Figure 134 Result from front photos for 𝛼 = 30° and 𝑆 = 8.82 𝑝𝑝𝑡................. 172 



 

204 
 

Figure 135 Result from front photos for 𝛼 = 45° and 𝑆 = 8.82 𝑝𝑝𝑡. ................ 173 

Figure 136 Result from front photos for 𝛼 = 60° and 𝑆 = 8.82 𝑝𝑝𝑡. ................ 173 

Figure 137 Four principal phases of the proposed physical mechanism behind 

scalloping......................................................................................................... 176 

Figure 138 Physical mechanism behind the upstream velocity of scallops. ....... 178 

 

 



 

205 
 

Acknowledgment 
 

Graduating really means a lot to me. 

More than someone could imagine by reading this simple and short phrase. 

And even if I have always worked hard, enjoyed the good moments, tried to keep 

the route in the bad ones, I am aware that the goal I am able to reach today is also 

thank to the always-supporting relatives and wonderful people, who I am very lucky 

respectively to have and have met. 

Therefore, it is not only a will, but it is also a must taking the opportunity to thank 

all the people who supported me. And especially those who keep doing it. 

 

My gratitude goes firstly to my family. 

This work, together with my university career, would have never seen the light 

without my parents and my grandparents. 

It is also right to thank all my other relatives who have always dedicated interest 

toward me and what I have been academically doing far from home. 

My friends need a special acknowledgement for helping me to live life to the fullest. 

 

Last but not least, I would thank all the experts in the field that helped me to grow. 

I would like to thank Prof. Stefania Scarsoglio and Professor Sander Gerard 

Huisman for their huge help and support behind the present work. 

I would also like to thank Prof. Daniela Tordella, who even if did not provide direct 

support for the present thesis, with her lessons out of the ordinary, helped me in 

understanding which path I want to follow in my future. 

I would like to thank everyone of the support staff of the Physics of Fluids group of 

the University of Twente, both for their technical support with the experimental 

setup, and for the bureaucracy with the international documents. 

I would like to thank Prof. Marco Amabili. Without him, this could have been a 

physics, and not an engineering, master’s degree thesis. 

 

In conclusion, dear reader, if you are reading the present line after reading the 

previous pages, you certainly deserve a special thanking too.





 

207 
 

Ringraziamenti 
 

Laurearsi significa molto per me. 

Più di quanto chiunque possa immaginare, leggendo questa semplice frase. 

Ed anche se ho sempre lavorato a testa bassa, ho goduto dei bei momenti ed ho 

provato a mantenere la rotta in quelli difficili, sono consapevole che il traguardo 

che sono in grado di raggiungere oggi è anche grazie ai miei parenti ed alle 

meravigliose persone che sono molto fortunato di avere e di aver conosciuto. 

Pertanto, non è solo una volontà, ma è anche un dovere cogliere ora l’opportunità 

per ringraziare tutte le persone che mi hanno supporto. E specialmente coloro che 

continuano a farlo. 
 

La mia gratitudine va anzitutto alla mia famiglia. 

Questo lavoro, insieme alla mia carriera universitaria, non avrebbe mai visto la luce 

senza i miei genitori ed i miei nonni. 

È anche doveroso ringraziare tutti i restanti parenti, che hanno sempre dedicato 

interesse nei miei confronti. 

Anche i miei amici necessitano un ringraziamento speciale, per avermi aiutato con 

la loro compagnia a vivere la vita a pieno. 
 

A seguire, ma non per importanza, vorrei ringraziare tutti gli esperti del campo che 

mi hanno aiutato e permesso di crescere. 

Vorrei ringraziare la Professoressa Stefania Scarsoglio ed il Professor Sander 

Gerard Huisman per il loro incalcolabile aiuto e supporto fornitomi per il presente 

lavoro. 

Vorrei anche ringraziare la Professoressa Daniela Tordella, che sebbene non mi 

abbia supportato direttamente nella tesi, con le sue lezioni fuori dall’ordinario, mi 

ha aiutato a comprendere quale strada voglio seguire nel mio futuro. 

Vorrei ringraziare tutto lo staff tecnico del Physics of Fluids group dell’Università 

di Twente. Sia per il loro supporto tecnico per gli esperimenti, sia per le 

commissioni burocratiche con i documenti internazionali. 

Vorrei anche ringraziare il Professor Marco Amabili. Senza di lui, probabilmente 

questa sarebbe stata oggi una Tesi di Laurea in Fisica e non in Ingegneria. 


