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Abstract

In recent times, there has been growing attention towards Computer-Aided Di-
agnosis (CAD) systems dedicated to the automated analysis of electrocardiograms
(ECGs). These systems have gained significant interest due to their potential to
facilitate the diagnostic process and improve the precision of cardiac anomaly iden-
tification and classification. Furthermore, CAD systems can be situated within the
broader context of telemedicine, specifically telecardiology and remote monitoring
of cardiac conditions.

It is within this context that this thesis work is situated, presenting a method
that employs Artificial Intelligence (AI) for the automatic classification of cardiac
anomalies. It is based on the ECG traces acquired through a three-lead ECG
wearable patch device, commercialised by CGM and designed in collaboration
with STMicroelectronics, called ‘HI ECG 3-LEAD’. This battery-powered device
is designed to be applied with adhesive electrodes to the patient’s chest, allowing
the acquisition, recording, and transmission of one to three channels of ECG and
other physiological parameters (body position, subject’s activity status, MEMS
data) to an external device via Bluetooth technology. Due to its simplicity, safety,
wireless connectivity, and battery life in excess of 24 hours, it is well-suited for
monitoring cardiac arrhythmias in non-hospital environments. Additionally, the
proposed system aims to provide valuable assistance to cardiologists in examining
and reporting of ECG signals, reducing the analysis time and increasing the accuracy
in identifying and classifying cardiac anomalies.

The method consists of two main stages. In the first stage, following appropriate
pre-processing of the ECG signal, the positioning of the device on the user’s chest
is identified to correct any potential electrode misplacement that could compromise
the subsequent analysis of cardiac anomalies. This prediction has been addressed as
a ternary classification problem, considering that the device user manual indicates
three possible chest electrode placements. In the second stage, a convolutional
neural network is employed for detecting and classifying cardiac anomalies. The
ECG signals used for training the network were obtained from publicly available
arrhythmia databases, as currently, no electrocardiographic traces are available
with the CMG Hi 3-Lead device and properly interpreted by cardiologists.

Overall, this thesis work demonstates good promise in the field of cardiac
anomaly classification, showcasing the potential of wearable device and AI to
enhance cardiac monitoring and diagnosis.
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Chapter 1

Theoretical and Medical
Background

This chapter aims to describe the the-
oretical framework in which this thesis
work is situated, particularly regarding
aspects such as telemedicine and telecar-
diology. Specifically, telemonitoring and
Wearable Devices (WDs) have emerged
as essential tools in the field, enabling
continuous monitoring of cardiac health
and facilitating early detection of abnor-
malities. The ‘HI ECG 3-LEAD’ device
will then be presented: this wearable elec-
trocardiogram (ECG) recorder is used in
this work to record three electrocardio-
graphic signal leads.

Additionally, this chapter intends to pro-
vide critical concepts related to electro-
cardiography and its application in the
context of wearable devices, including in-
dications on standard and modified elec-
trode systems on the patient’s body, with
particular emphasis on the differences in
ECG signal morphology between differ-
ent electrode placements.
Finally, theoretical insights will be pro-
vided on the main cardiac anomalies pri-
marily classified in the literature concern-
ing Computer-Aided Diagnosis (CAD)
systems for classifying pathological elec-
trocardiograms.
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Theoretical and Medical Background

1.1 Telemedicine
The World Health Organization (WHO) defines digital health as the application
of digital technologies for medical purposes, encompassing the expanding use of
technologies in the delivery of healthcare services. Telemedicine is closely linked to
digital health as it aims to leverage the expanding role of technology to establish
more efficient healthcare practices [1]. The WHO defines telemedicine as [2]: “The
delivery of health care services, where distance is a critical factor, by all health care
professionals using information and communication technologies for the exchange
of valid information for diagnosis, treatment and prevention of disease and injuries,
research and evaluation, and for the continuing education of health care providers,
all in the interests of advancing the health of individuals and their communities.”

An example where distance has proven to be a critical factor is the outbreak of
the COVID-19 pandemic, which posed unique challenges to the healthcare system:
previous studies have already highlighted the crucial role of telemedicine in times of
disasters and public health emergencies. With the outbreak of the COVID-19 crisis
in 2020 and the significant uncertainties surrounding its spread and infectivity,
the urgent need for telemedicine quickly became essential for managing patients’
healthcare and, at the same time, ensuring their safety through social distancing
and quarantine measures [3, 4].

This context has facilitated the development and advancement of telecommuni-
cation systems, enabling the remote transmission of medical information between
patients and healthcare facilities, thereby eliminating the need for in-person visits.
Furthermore, this technology has enabled remote monitoring of patients with severe
illnesses, ensuring prompt emergency interventions [5].

1.1.1 Telecardiology
One of the fields of medicine where electric and electronic devices (including
wearable devices) were first used for both diagnostics and therapy is cardiology:
essential and relatively easy-obtainable physical signals give helpful, and sometimes
vital, information about a patient’s condition, such as arterial blood pressure and
heart rhythm. With the advent of technology enabling the transmission of such
information to remote locations, the concepts of telemonitoring and even remote
treatment started to emerge [6]. It is within this context that telecardiology finds
its place, as it can be defined as “cardiology at a distance”, thus the usage of
telemedicine in the cardiology field.

The current formats of telemedicine used in cardiology include [7]:

1. Synchronous (live) applications: as remote consultations or teleconsultation
and real-time video/audio consultation;

3



Theoretical and Medical Background

2. Asynchronous (store & forward) applications: e-consultation, imaging and
data storage and remote patient monitoring.

In telecardiology, the COVID-19 pandemic provided a valuable opportunity to
demonstrate that the widespread adoption of digital health solutions can overcome
patient-, physician- and system-related barriers to cardiac rehabilitation. Existing
guidelines for implementation have supported this approach. The management
of heart failure has also witnessed a renewed emphasis on monitoring and home
follow-up. This involved offering explicit guidelines on establishing effective virtual
visit programs, as outlined in a comprehensive document by the Heart Failure
Association of America [8, 9]. Figure 1.1 illustrates what could be the optimal
recommendations for delivering remote healthcare to patients, which have been
derived from lessons learned during the COVID-19 pandemic.

Figure 1.1: Best recommendations for remote delivery of health care to cardio-
vascular disease patients [8].

Finally, it is essential to perceive telemedicine-driven interventions not as stan-
dalone, one-size-fits-all solutions but as complementary additions to the existing
multifaceted health interventions that can be tailored to different patient popula-
tions [10].

The critical advantages of telecardiology, as reported by [8], are:

• Improved treatment follow-up and quality of care.

4



Theoretical and Medical Background

• Reduction in the number of trips, resulting in time savings and an improved
quality of life (reduced incidence of inappropriate shocks).

• Early detection of problems and prevention of complications;

• Decreased length of hospital stays and utilization of healthcare services (hos-
pitalizations, consultations).

• Decreased reliance on in-person consultations while maintaining access to
specialized medical advice, reducing the need for patient transportation.

• Reduced isolation for patients with cardiac implants who are located far from
implant centers, particularly benefiting elderly patients with limited access to
transportation.

Telemonitoring in Cardiology

The real-time transmission and reporting of electrocardiograms (ECGs) have
represented a significant step forward in handling time-sensitive cardiovascular
diseases, such as Acute Coronary Syndromes (ACS). Additionally, it has proven
valuable in the management of chronic cardiac conditions, ensuring continuity of
care on a routine basis [11].

The most direct approach to Remote Monitoring (RM) involves collecting data
from already implanted devices, such as pacemakers, Implanted Cardiac Defibrilla-
tors (ICDs) and Cardiac Resynchronisation Therapy Devices (CRT-Ds), through a
patient-provided transmitter and communication technology that facilitates remote
data transfer. For many years, this data acquisition has been used primarily to
detect technical issues such the battery level, electrode dysfunction, or insulation
defects. However, in the present time, the device can also be used to assess patients’
clinical status, including changes in heart rate, respiration rate, or physical activity.

Another RM approach involves using external wearable devices specifically
designed for this purpose. Recent advances in chipset electronics and sensor
technology have made these devices cost-effective and highly efficient.

A RM system via a wearable device typically comprises four elements: the
wearable device itself, a network infrastructure, a communications interface to
allow data transfer, and an analytics platform capable of integrating large amounts
of data and identifying critical information [6]. Figure 1.2 shows the structure of
a telemonitoring system for remote monitoring of arrhythmia and heart failure
patients.

The TeleCheck-AF project is an example of RM implementation in telecardi-
ology, developed during COVID-19 [13]. Maastricht Medical University Centre
developed a mobile health (mHealth) intervention unit specifically designed to
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Figure 1.2: Telemonitoring system for remote monitoring of arrhytmia
and heart failure patients [12]. The data management center is responsible for
the integration of data acquired from the patient.

facilitate Atrial Fibrillation (AF) teleconsultations. This initiative aimed to ensure
uninterrupted and comprehensive management of AF through teleconsultation
during the pandemic. TeleCheck-AF consisted of three main components:

1. A structured teleconsultation (“Tele”).

2. An app-based on-demand heart rate and rhythm monitoring infrastructure
(“Check”).

3. Comprehensive AF management (“AF”).

The infrastructure to monitor heart rate and rhythm is based on a CE-marked
mobile phone app, which uses photoplethysmography (PPG) technology through
the built-in camera of the smartphone, allowing semi-continuous heart rate and
rhythm monitoring of AF patients both before and during the teleconsultation.

During the pandemic, this strategy was expanded to various European countries,
with great satisfaction from both physicians and patients: more than 80% of centres
reported no problems during the implementation of the TeleCheck-AF monitoring
system, and the majority (94%) of the recruited patients agreed that the app was
easy to use [8, 14].

Wearable Devices and their application in Telemonitoring

Wearables, wearable devices, or wearable technology refer to small electronic and
mobile devices or computers with wireless communications capability. These devices
can be integrated into gadgets, accessories, or clothes that can be worn directly on
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the human body. In some cases, wearables may also include invasive versions such
as microchips or smart tattoos [15].

Equipped with sensors and advanced technologies, these devices enable the
storage and transmission of biological signals or parameters (like heart rate, oxygen
saturation, respiratory rate, and electrocardiographic signals), as well as parameters
related to the movement and activity status of the user [16]. By continuously collect-
ing and transmitting this information and data to healthcare providers, wearable
devices facilitate remote patient monitoring and early detection of abnormalities,
allowing for timely interventions and personalised treatment plans.

Different Wearable Devices (WDs) can also be connected to each other, as
happens in Body Area Networks (BANs). In BANs, communication takes place
entirely within or in the proximity of the human body. In cardiac monitoring,
when continuous deployment is required, sensors embedded in ICDs, injectable
cardiac monitors, implantable loop recorders or pacemakers are used. On the other
hand, for shorter periods of monitoring (like 2 to 4 weeks), patches, i.e., wearable
stick-on monitoring devices worn on the torso, provide continuous and looping
ECG recording. In addition to this, for intermittent symptom-triggered monitoring,
touch-activated electrodes configured for smartphones can be used.

As depicted in Figure 1.3, in a typical architecture of a patient monitoring
system implementing wearable sensors technology, on-body sensors establish wireless
communication with stationary devices (such as wireless local area network) or
wearable gateway devices (such as mobile phones) to transmit sensor data to remote
locations.

The measurements obtained from wearable sensors can be either stored locally
on the wearable monitoring device itself for later transmission or, alternatively, they
can be directly transmitted (for example, over the public mobile phone network)
to a medical centre where patient’s data can be accessed online using the Internet
independently of the patient’s physical location. Lastly, it is important to consider
that reducing battery consumption through power scavenging, also known as
“energy harvesting”, from on-body sources or the environment can be a potential
solution to enhance battery life, especially for implantable sensors. In fact, the
advancement of low-power measurement and transmission systems plays a vital
role in the successful development of wireless Body Sensor Network (BSN) systems
[17].

1.1.2 CAD systems for heart diseases

Cardiovascular diseases (CVDs) are disorders affecting the heart and the blood
vessels, including coronary heart disease, peripheral arterial disease, cerebrovascular
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Figure 1.3: Architecture of a patient monitoring system using wearable
sensors [17]. Wearable sensors communicate through wireless technology with
stationary or wearable gateway devices to relay sensor data to remote locations.

disease, rheumatic heart disease and other conditions [18]. Among the diverse spec-
trum of various cardiovascular abnormalities, this thesis work will focus specifically
on arrhythmia, the most prevalent heart condition, which refers to any irregularity
in the rate or rhythm of a person’s heartbeat. During an arrhythmia, the electrical
impulses may be excessively rapid, too slow, or irregular, leading to irregular
heartbeats [19].

According to the WHO, CVDs are the primary cause of death globally, accounting
for approximately 17.9 million deaths yearly. More than 80% of CVD deaths are
attributed to heart attacks and strokes, and about one-third of these deaths occur
prematurely in individuals under the age of 70. Notably, over 75% of these deaths
occur in Low- and Middle-Income Countries (LMICs) [18]. From an economic
perspective, it is estimated that CVDs incur an annual cost of approximately Ä169
billion in the European Union. Of this amount, 62% accounts for direct costs
within the healthcare system, while the remaining portion represents productivity
losses and informal care [20]. It is reported that identifying individuals at the
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highest risk of CVDs and the insurance they receive for appropriate treatment can
prevent premature deaths [18].

Standard diagnostic tests for CVDs include ECG, echocardiogram, blood work,
ambulatory monitoring, cardiac computed tomography and magnetic resoncance
imaging, stress test, cardiac catheterisation etc. However, accurate diagnosis
requires analysis and integration of much laboratory data and patient information.
Integrated data analysis through the manual procedure can be complex and time-
consuming, and the diagnostic effectiveness depends on physicians’ knowledge and
experience, which can sometimes lead to misdiagnosis [21].

Another point to consider is that there is often a low physician-to-patient ratio
in low-resource clinical settings compared to developed nations. Furthermore, even
when such physicians are accessible, they often operate in an environment that lacks
high-quality expertise and medical infrastructure. Combined, these phenomena
contribute to an overburdened healthcare system that fails to adequately meet
the community’s needs and can result in untreated patients or patients receiving
inadequate or substandard treatment [22]. Acknowledging that over-burdened
healthcare systems are not just limited to low-resource clinical settings is essential.
Indeed, health systems in developed nations, such as the National Health Service
in the United Kingdom, are recognising this reality, particularly in the wake of the
COVID-19 pandemic [23].

To mitigate this burden, researchers and healthcare professionals are focusing
on systems that assist healthcare professionals in their daily tasks, particularly
in the decision-making phase [22]. In this context, Computed-Aided Diagnosis
(CAD) is introduced. CAD is defined as: “A diagnosis made by a physician who
uses the output from a computerised medical data analysis as a second opinion
in detecting lesions, assessing disease severity, and making diagnostic decisions”.
CAD is expected to improve physicians’ diagnostic capabilities and reduce the time
required for accurate diagnosis [24].

Artificial intelligence (AI), which simulates human intelligence in machines
programmed to replicate human thoughts and actions, holds promise in assisting
clinicians in diagnosing and managing CVDs through extensive data analysis.
Clinical Decision Support Systems (CDSS) based on AI can be developed using
traditional Machine Learning (ML) algorithms or Deep Learning (DL) algorithms
that leverage large datasets and complex algorithms for model training [21].

The design of an ML-based CAD system for cardiovascular diseases is structured
into an offline and an online system. The purpose of the offline system is to
evaluate and select the best algorithm structure, which is then employed in the
online one as a diagnosis support system. Both the online and offline systems
can be modelled as an algorithm chain, as shown in Figure 1.4. The algorithm
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chain starts with pre-processing and feature extraction1. As such, the classification
outcomes constitute the decision support for medical specialists [25].

On the other hand, CAD systems can also be implemented in a telemonitoring
system to perform automatic ECG classification. In this scenario, it is important
to consider that the computational complexity associated with these systems may
lead to increased power consumption. Therefore, exploring solutions that involve
low-complexity algorithms becomes necessary, allowing for implementation in WDs
[26].

Figure 1.4: Block Diagram of ML-Based CAD system for cardiovascular
diseases [25]. It is constituted of two main blocks: online and offline systems.

1.2 CGM HI 3 LEADS ECG
In this paragraph, the Hi 3 Leads ECG CGM device will be presented, and its use
within this thesis work to acquire ECG signals and other physiological parameters
will be described.

1As better described in paragraph 2.2, feature extraction is not required in DL-based CAD
systems.
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1.2.1 Device overview
CGM Hi 3 Leads ECG (Hi-ECG) is a CE-mark wearable ECG recorder commer-
cialised by CompuGroup Medical (CGM) and developed in collaboration with
STMicroelectronics.

This battery-powered medical device is designed to be applied with adhesive
electrodes (patches) on the patient’s chest to acquire, record, and transmit one
to three channels of ECG and other parameters (such as body position, subject’s
activity status and Micro-Electromechanical Systems - MEMS - data) to an external
device, using Bluetooth technology. Due to its simplicity and ease of use, absence
of wired connections, and battery life of over 24 hours, this device is suitable for
various applications, as reported by CGM Telemedicine, including [27]:

• Tele Holter : remote Holter up to 30 days with web-based platform2 data
transmission and dedicated advanced holter analysis software.

• Telemonitoring: remote monitoring up to 7 days with online transmission and
data analysis in a web-based platform by using an integrated and dedicated
algorithm.

• Tele ECG: remote rest ECG examination when symptoms occur or on sched-
uled sessions, with online transmission and data analysis in web-based platform.

The Hi-ECG device sensor suite includes, in addition to the three electrodes,
a MEMS triaxial accelerometer dedicated to the analysis of physical activity and
body position. As shown in Figure 1.5, two of the electrodes are integrated into the
main body of the device, while the third electrode is connected to the main body
through a cable. The three electrodes perform differential measurements, where a
single-lead ECG is obtained for each pair. Therefore, a total of three bipolar ECG
leads can be recorded. The resolution of each ECG channel is 12 bits, ranging from
-6.6 mV to +6.6 mV; the default sampling frequency is 128 Hz.

The main block of electronic components comprises three differential amplifiers
(for each signal channel), three Light-Emitting Diodes (LEDs), a microcontroller, a
Bluetooth module and a battery. The Bluetooth module connects Hi-ECG with a
host device (e.g., a smartphone, tablet, or computer) to periodically transmit all
the acquired signals. The internal battery is a lithium-ion one (3 VDC with 250
mAh capacity). The LEDs provide information on the battery charge status, the

2The web platform is CGM CARE MAP, a web solution that allows healthcare personnel to
always keep in touch with their patients by monitoring not only cardiac rhythm but also several
vital parameters (oxygen saturation, blood pressure) which help to have a complete clinical
picture of the patient’s health.
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Figure 1.5: CGM HI 3 LEADS ECG medical device [27]. The polarity of
the three electrodes is also shown.

current operational mode of the device (engage, streaming and monitoring), and
warnings on the incoming signals (such as the detachment of one or more electrodes).
The adopted microcontroller is the STM32L451, based on the high-performance
Arm® Cortex®-M4 32-bit RISC core operating at frequencies up to 80 MHz and
embedding up to 512 Kbytes of flash memory and up to 160 Kbytes of SRAM [28].

1.2.2 Use of the Device in the thesis work
In this thesis work, Hi-ECG is used to acquire and transmit three channels of ECG
signal and accelerometric data on the three axes and the body posture level to a
personal computer. The body posture level is a parameter that indicates whether
the user is in an upright, seated or lying position. These data have been processed
in MATLAB version R2021a and Python version 3.10 to classify cardiac anomalies
using a deep learning–based approach.

The signals are acquired by positioning the device’s electrodes according to the
instructions provided in the user manual. Specifically, three types of electrode
placement - configurations - are indicated, as shown in Figure 1.6.

• Configuration #1 (indicated in the user manual as ‘preferred electrodes po-
sition’): The main body of the device is vertically applied (with the power
button facing upwards) at the mid-sternal level, with the upper electrode
positioned along the axillary line. The movable electrode is placed at the level
of the left inframammary fold.
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• Configuration #2 : The main body of the device is horizontally applied (with
the power button facing right) at the level of the axillary and mid-sternal line.
The movable electrode is applied at the level of the left inframammary fold.

• Configuration #3 : The main body of the device is horizontally applied (with
the power button facing left) at the level of the xiphoid and right para-sternal
line. The movable electrode is placed along the axillary and left para-sternal
line.

(a) Configuration #1 (b) Configuration #2

(c) Configuration #3

Figure 1.6: Electrode Placements of Hi-ECG proposed by the user manual [27].

It should be noted that Hi-ECG is intended to be positioned by the users
themselves, and therefore, there is a possibility of electrodes misplacement. In this
thesis work, we will also address electrode placement scenarios where the user has
incorrectly positioned the main body of Hi-ECG. The configurations characterised
by misplacement of the main body electrodes will be referred to as:

• Configuration #1 – Misplacement;

13
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• Configuration #2 – Misplacement;

• Configuration #3 – Misplacement;

1.3 Electrocardiography
This paragraph will briefly describe the basic principles of electrocardiography,
with a specific focus on Einthoven’s bipolar leads, as the ECG signals acquired with
the Hi-ECG device also correspond to bipolar leads. The information presented
here is derived from the books “Fisiologia Cardiovascolare” by Prof. L. Agnati
[29] and “In Quantitative Human Physiology” by Prof. J. Feher [30], which can be
referred to for a more detailed description.

1.3.1 Electrophysiological Characteristics of the Heart
While the electrical phenomena occurring at the level of individual cells are detected
using intracellular microelectrodes inserted into the cardiac cell under examination,
the overall electrical phenomena of the heart are recorded using macroelectrodes
placed on the body’s surface. These phenomena depend on the depolarisation and
repolarisation of different parts of the myocardial mass, and their recording over
time constitutes the ECG.

The study of the propagation of the electrical event within the cardiac mass is
fundamental to interpreting the ECG and analysing cardiac abnormalities. The
ECG waveform has a morphology that is dependent on this propagation. Alterations
in cardiac tissue result in changes in the pathway and magnitude of the excitation
wave, leading to modifications in the ECG morphology. Therefore, the diagnostic
value of electrocardiography becomes evident.

The excitation wave arises in the Sinoatrial (SA) Node, located in the terminal
groove on the posterior side of the heart, where the superior vena cava joins the
right atrium. It exhibits an unstable membrane potential due to a spontaneous
decrease in potassium ion permeability, resulting in progressive resting potential
depolarization. When the membrane potential reaches approximately -50 mV,
calcium ions (Ca++) enter the cell, initiating the onset of the action potential. This
action potential is transmitted in all directions within the atrial cells at a 1.0-1.2
m/s velocity. Since the SA node controls the heart rate, it is called the primary
pacemaker.

After approximately 0.1 seconds, the impulse reaches the Atrioventricular (AV)
node, the region where excitation reaches the ventricles. It is located posteriorly
on the right side of the interatrial septum, near the opening of the coronary sinus.
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The excitation propagates through the AV node at a 0.02-0.05 m/s speed. This
delay allows for complete atrial contraction before the activation of the ventricular
myocardium. If the transmission through the AV node were interrupted, the atria
and ventricles would contract independently and not in a coordinated manner.

At this point, the excitation propagates along the His bundle with a velocity of
approximately 1.2 m/s. After a short course in the interventricular septum, the
His bundle divides into the right bundle branch and the left bundle branch. In
these branches, the velocity of the excitation wave is approximately 2.0 m/s. These
branches are located beneath the endocardium on their respective sides of the
septum. They extend towards the apex of the corresponding ventricle, loop around
it, and then return towards the base of the heart. Throughout their course, these
branches give rise to fibres that penetrate the ventricular myocardium, forming the
Purkinje network.

In the terminal endings of the fibres, the velocity of the wave decreases propor-
tionally to the diameter of the involved fibres. The base of the ventricles is the last
part to be activated.

Figure 1.7 shows the sequence of cardiac activation schematically.

Figure 1.7: Initiation and propagation of excitation in the myocardium,
modified from [29]. The propagation velocities of the excitation wave in each
structure are indicated in parentheses.
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1.3.2 Recording of Cardiac Electrical Events on the Body
Surface

Recording the electrical events associated with the propagation of the excitation
wave in the cardiac mass on the body surface constitutes the ECG, from which
various information can be derived, including any alterations in the onset and
propagation of the electrical phenomenon. This information is obtained by analysing
the shape, amplitude, and temporal course of the potential variations that originate
at the heart level and can be recorded using macroelectrodes located on the body
surface.

To evaluate these aspects, it is essential to understand the physical principles of
electrocardiography. Some key points are described in the following paragraph.

Heart as electric dipole

As excitation of the cardiac muscle is conveyed through the myocardium, the
electrical state of the muscle fibres differs from place to place. During the conduction
of the action potential, some parts of the muscle are depolarised, and others are not.
This produces the equivalent of an electrical dipole, as is depicted in Figure 1.8.

Figure 1.8: Equivalent dipole of the heart muscle during partial acrivation [30]. .

The dipole moment is given as:

p̨ = q
+ · d̨ (1.1)

Where:

• d is a vector pointing from q
≠ (negative pole) to q

+ (positive pole).

• q
+ is the magnitude of charge separated by distance, d.

An electric potential (V ) surrounds the dipole, and measured in a certain point
P, it is given approximately as:
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V = p cos ◊

4fiÁr2 (1.2)

Here:
• p is the absolute value of the dipole momentum.

• ◊ and r are the polar coordinates, with respect to the dipole, of the point from
where the electric potential is measured.

• Á is the relative permittivity, which describes the electrical characteristics of
the tissue interposed between the dipole and the point P.

The electric dipole of the heart produces an electrical potential throughout the
thorax and is projected onto the skin.

Bipolar Leads

Building upon the considerations presented in the previous paragraph, Einthoven
(1860-1927) recorded potential differences on the body surface, resulting from
the heart’s electrical activity, using specialised electrodes and a highly sensitive
galvanometer. His pioneering work in the measurement and interpretation of the
ECG earned him the Nobel Prize in Medicine and Physiology in 1924.

He proposed three ways of placing electrodes on the body surface (known as
‘leads’) and provided a theoretical interpretation of the potential differences recorded
from these leads.

The three leads proposed by Einthoven are bipolar, meaning that one electrode
acts as the positive electrode while the other acts as the negative electrode. These
leads involve placing the electrodes on the two upper limbs and the left leg. The
Bipolar Lead Combination is summarised in Table 1.1.

Lead Electrode + Electrode - Signal
combination

Geometrical
angle

I LA RA LA-RA 0¶

II LL RA LL-RA +60¶

III LL LA LL-LA +120¶

Table 1.1: Bipolar Lead Combination

Einthoven believed these positions could be considered vertices of an equilateral
triangle and that the heart, represented by the vector of the equivalent dipole, was
located at the centre of this triangle. The voltage differences between the different
electrodes can be measured in three combinations:

Left Arm - Right Arm = LEAD I
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Left Leg - Right Arm = LEAD II

Left Leg - Left Arm = LEAD III

The voltages recorded at these bipolar leads are not independent. Because of
Kirchoff’s voltage law, which states that the voltage drop around any closed circuit
is zero, we have the following:

I + III = II (1.3)

Where I, II and III are the voltage differences across leads I, II and III,
respectively. So, the voltage in the third bipolar lead can always be calculated from
the other two.

The voltages recorded in each of the bipolar leads at any instant are equal to
the projection of the heart’s electric dipole (cardiac vector) at that instant onto
the bipolar lead.

Figure 1.9 represents the instantaneous electrical vector due to ventricular
depolarization within the Einthoven triangle.

Figure 1.9: Equivalent electrical vector, modified from [29]. Partially excited
ventricular mass representation with equivalent electrical vector (left panel). Place-
ment within the Einthoven triangle of the electrical vector illustrated in the left
panel and projections of the vector along the lead lines (right panel).

A deflection above the isoelectric baseline (positive wave) is recorded if the
direction of the cardiac vector projection is in the same direction as the reference
line of the lead; otherwise, a negative wave is observed. The resulting projections
of the electric dipole moment onto the limb leads produces a record of voltage that
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varies with time – the scalar electrocardiogram. The ECG is typically produced at
a chart speed of 25 mm/s on a scale of 1 mV/cm.

An example of an ECG signal on lead II (VLL ≠ VRA) is reported in Figure 1.10.

Figure 1.10: Typical appearance of the ECG on lead II [30]. The signal
consists of several named electrical events, beginning with the P wave. The P wave
is the first electrical event of the heart cycle and corresponds to the depolarization
of the atria. The QRS complex corresponds to the depolarization of the ventricles.
Buried within it is the electrical signature of the repolarisation of the atria. The T
wave corresponds to the repolarisation of the ventricles. It is upright because of
the sequence of repolarisation of different parts of the ventricles.

In addition to the three bipolar leads of Einthoven, which allow exploration of
the electrical activity of the heart in the frontal plane, the standard ECG includes
nine other leads (three augmented unipolar leads by Goldberger and six unipolar
leads by Wilson), for a total of twelve leads. However, in this thesis work, the focus
will only be on the bipolar leads as the Hi-ECG device records these kinds of leads,
as described in paragraph 1.2.

1.3.3 General Theory of heart vector projection
The description provided in the previous paragraph indicates that the values
recorded on leads I, II, and III at any time are the result of the electric dipole
moment of the heart at that time. Yet, what is measured are the voltages on
these leads, while the electric dipole moment remains unknown. Still, it is possible
to approximately reconstruct the direction and magnitude of the electric dipole
moment from these measured voltages, but this cannot be done by ordinary vector
addition. This is because the vectors I, II, and III are projections of the heart’s
dipole moment onto axes that are not orthogonal. In fact, in orthogonal coordinate
systems, a vector parallel to one coordinate has no components in the direction of
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any other coordinate. In contrast, in the triangular coordinate system, a vector
along one axis does have components along both other axes. This means that the
electric dipole can be reconstructed only by reversing the projection onto the axes,
as described in Figure 1.11.

Figure 1.11: Reconstruction of the heart’s electrical dipole from leads I
and III [30]. A vector whose magnitude is the voltage of lead I is drawn with its
starting point at the origin and its end on the lead I axis. A second vector equal to
the voltage of lead III is drawn the same way but oriented on an axis parallel to
the lead III axis and starting at the origin. The electric dipole extends from the
origin to the intersection of the two lines drawn perpendicular to the axes at the
ends of the lead I and lead III vectors. The electric dipole of the heart obtained
this way pertains to the time leads I and III were measured. This dipole has a
magnitude (its length in the same units as for the two lead axes) and a direction.
The direction is usually given in degrees using the convention shown.

The size and magnitude of the cardiac electric dipole continuously change as
excitation spreads through the heart. In Figure 1.12, the electric dipole is depicted
in one specific state of the heart, mainly corresponding to the depolarization of the
ventricles.

The cycle shown in Figure 1.13 is elongated toward the vector produced upon
depolarizing the thick left ventricular wall. This elongation defines an electrical
axis of the heart, which generally should relate to the heart’s anatomical position
within the thorax.
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Figure 1.12: Representation of the cardiac electrical dipole during ventricular
depolarization and its projection along lead II [30].

Figure 1.13: Approximate changes in the direction and magnitude of
the cardiac dipole during ventricular excitation [30]. The dipole projection
on the different leads produces the ECG and accounts for different shapes of the
QRS complex recorded in leads I, II, and III.

The electrical axis is most easily defined as the cardiac electric dipole at the peak
of the curve traced out in Figure 1.13. Because of its tilt, however, the projection
of the vector tracing this curve peaks at different times on the lead I and lead III
axes. This is why the electrical axis can be determined from lead I and lead III
ECGs using the voltage of the R wave and selecting the resulting cardiac dipole as
described in Figure 1.11.

The electrical axis is typically oriented about 60° below the horizontal but varies
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widely from -30° to 110°. The electrical axis depends in part on the anatomical
orientation of the heart: a tall, thin person generally would have a more vertically
oriented electrical axis than a short, stout person. Moreover, the heart lies within
a tough fibrous sac, the pericardium, which is fused to the diaphragm. So, during
inspiration, the diaphragm moves downward to expand the thoracic cavity, pulling
the heart into a more vertical orientation. Thus, the electrical axis typically becomes
more vertical during inspiration and more horizontal during expiration.

The electrical axis also depends on the relative contributions of the right and
left ventricles to the ECG. Hypertrophy of the left ventricle shifts the axis, causing
left axis deviation, whereas hypertrophy of the right ventricle is associated with
right axis deviation.

Assumptions underlying the Theory of Einthoven

The theory of Einthoven and the projection of the cardiac vector onto the frontal
plane are based on certain assumptions:

• The chest is a spherical and homogeneous conductor, and the heart is at the
sampling volume’s centre.

• The cardiac electrical forces are generated at the centre of the conductor, and
a single vector can represent the resultant of these forces at any given moment.

• The limb-trunk junction points (vertices of the Einthoven Triangle) are the
vertices of an equilateral triangle inscribed in the longitudinal section of the
spherical chest.

It is clear, therefore, that the theory formulated by Einthoven is applicable when
the electrodes for acquiring bipolar leads are positioned on the limbs. This does
not apply to the electrode placements indicated in the user manual of the Hi-ECG
device, as described in paragraph 1.2.2.

1.4 Electrodes Positioning in Wearable Technolo-
gies for Cardiac Monitoring

As mentioned in the previous paragraph, there are several defined and established
configurations of electrodes for measuring electrocardiogram signals in standard,
comparable formats that facilitate the diagnosis of cardiac conditions. The Standard
12-Lead Configuration, depicted in Figure 1.14, enables the acquisition of an
ECG signal in 12 leads (or channels): three bipolar limb leads (I – II – III),
three unipolar limb leads (aVR – AVL – aVF), and six unipolar precordial leads
(V1–V2–V3–V4–V5–V6).
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Figure 1.14: Standard 12-Lead configuration [31].

However, medical configurations have several limitations, including the use of a
large number of electrodes and their uncomfortable placement, as well as limited
movement and duration of the recordings [31]. This contrasts with the requirements
of a cardiac monitoring system, where patient comfort needs to be considered,
especially for long-term recordings that may involve physical activity. In this
context, non-standard electrode placements have been proposed in the literature,
specifically designed for wearable devices [31, 32, 33].

Furthermore, several studies have demonstrated that modification of the elec-
trode placement, compared to the standard configuration, significantly alters the
waveforms and axes of the electrocardiographic signal [34, 35]. Especially regarding
the bipolar limb leads, deviations from the standard electrode placement may inval-
idate the assumptions underlying Einthoven’s theory, as summarised in paragraph
1.3.3, making the interpretation of the electrocardiogram difficult, particularly for
the detection of cardiac abnormalities.

In the next paragraph, we will focus on the configuration called ‘Modified Limb
Lead’ often used in telemonitoring systems. Additionally, the signals from the MIT-
BIH Arrhythmia Database, described in more detail in paragraph 2.4.1 and used
in a part of this thesis, were acquired using a Holter device positioned according to
this specific configuration [36].
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1.4.1 Modified Limb Lead ECG system
The Modified Limb Lead ECG system involves placing the electrodes for the bipolar
leads on the patient’s chest, as shown in Figure 1.15, to enhance the user’s comfort
while wearing the portable electrocardiograph, particularly during physical activity.

Figure 1.15: Placement of modified limb on the torso [37]. The polarity of
the right arm electrode is negative, while the polarity of the left arm and left leg
electrodes is positive. The conventional terminology is still used; for example, the
potential difference between the right arm electrode (RA) and left arm electrode
(LA) is still referred to as lead I, II, and III. The positions of the standard precordial
electrodes V1-V6 remain unchanged compared to the Standard Limb Lead system.

Particularly:

• The right arm electrode is positioned in the third intercostal space on the
subject’s right side, slightly to the left of the mid-clavicular line.

• The left arm electrode is positioned in the fifth intercostal space on the
subject’s right side, slightly to the right of the mid-clavicular line.

• The left leg electrode is placed along the mid-clavicular line in the fifth
intercostal space.

• The right leg electrode used as reference is placed on the subject’s right ankle.

Several studies in the literature, including the one by Jayaraman et al. [37],
have examined the differences between the Standard Limb Lead (SLL) and the
MLL ECG system. In their study, 60 male subjects in sinus rhythm, aged between
25 and 58 years, with normal body composition, were recruited from the outpatient
department of the Rajiv Gandhi Government General Hospital of Chennai. ECG
signals were recorded from these subjects using the MLL system and then analysed.
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Specifically, ECG values such as frontal plane axis (P , QRS, and T ), amplitudes
of each waveform (R, S, and T ), and ST segment amplitudes (STa) level were all
recorded and stored for further analysis. Compared to the conventional 12-lead
ECG, the MLL configuration led to noticeable alterations in the frontal plane axis
of the P , QRS, and T waves. The modifications in the placement of the limb
electrodes significantly impacted the axis measurements, particularly in relation
to the QRS and T wave axes. The distribution of these axis changes between the
standard and modified positions can be observed in Figure 1.16.

(a) Distribution of mean QRS wave axis in standard
and modified position and curvilinear regression

calculated from the axis values

(b) Mean electrical axes of the QRS complex in
standard and modified position showing the

thresholds for clinical abnormality

Figure 1.16: Comparison between Standard Limb Lead and Modified Limb Lead
systems [37].

As a result of the alterations in the placement of the limb electrodes, significant
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shifts in the frontal plane axis were observed, leading to substantial changes in
amplitude in the frontal plane leads. The modification of the limb electrode also
produced changes in the (STa) in the frontal plane leads. To summarise, this study
demonstrated that the deviations in the QRS axis caused false-positive changes
in the frontal plane axis of the ECG. These findings highlight the possibility of
incorrect interpretation of heart diseases based on these altered axis measurements.

1.5 Pathological electrocardiogram
In the following paragraph, we will discuss the major abnormalities that charac-
terise pathological ECG, with a particular focus on the abnormalities that are
most commonly classified by CAD systems described in the literature. For more
information on cardiac abnormalities, we refer to the sources used to write this
paragraph which are the books ‘Fisiologia cardiovascolare’ by Prof. L. Agnati [29]
and ‘Advances in Cardiac Signal Processing’ by Dr. S. Acharya [38].

Cardiac abnormalities in an electrocardiogram are commonly classified into two
fundamental categories:

1. Cardiac rhythm abnormalities (or arrhythmias): These involve alterations in
the orderly sequence and/or normal frequency of cardiac electrical events.

2. Morphological abnormalities of the electrocardiographic waveform: These ab-
normalities do not necessarily indicate changes in cardiac rhythm but are
characterised by alterations in the shape, duration, or amplitude of specific
components of the ECG waveform.

In the literature, the CAD systems for classifying pathological electrocardiogram
focus on arrhythmias [25].

Arrhythmias may be more readily understood by categorising them in the
following manner, based on where the pacemaker region (which normally is in the
SA node) is located:

• Sinus Node Arrhythmias – pacemaker in the SA node.

• Atrial Arrhythmias – pacemaker in the atria.

• Junctional Arrhythmias – pacemaker in AV junction.

• Ventricular Arrhythmias – pacemaker in the bundle branches, Purkinje network,
or ventricular myocardium.

• Atrioventricular Blocks – impulse blockage in the AV junction.
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• Bundle Branch and Fascicular Blocks – impulse blockage in the bundle branches
and sub-branches (fascicles).

The heart’s natural rhythm, known as Normal Sinus Rhythm (NSR), is free
from any disease or disorder. It is identified by a heart rate of 60 to 100 beats per
minute. The regularity of the R-R interval may vary slightly with the breathing
cycle, shortening slightly during inspiration. The heart’s natural pacemaker is the
sinoatrial node, responsible for generating this rhythm. Therefore, a characteristic
feature of NSR includes a normal P-wave followed by a normal QRS complex.
When the heart rate increases beyond 100 beats per minute, the rhythm is known
as sinus tachycardia. This is not an arrhythmia but a normal response of the heart
to higher demand for blood circulation.

1.5.1 Sinus Node Arrhythmias
Sinus node arrhythmias originate from the SA node of the heart, which serves as
the normal pacemaker. Variations in the morphology of the P-wave characterise
these types of arrhythmias. They can be classified into the following types:

• Sinus Arrhythmia: This is not a disorder or a true arrhythmia but a normal,
physiologic variation in the sinus rate with the phases of respiration. The
slowest instantaneous heartbeat may be less than 60 beats per minute, while
the highest may exceed 100 beats per minute.

• Sinus Bradycardia: The rhythm originates from the SA node but at a rate
of fewer than 60 beats per minute. The ECG appears normal except for the
slow heart rate (Figure 1.17a).

• Sinus Arrest: The SA node intermittently fails to fire. There is no P-wave,
no accompanying QRS complex and no T-wave. Bradycardia may result if
the occurrence of sinus arrests is frequent. Sinus arrest results from a marked
depression of the automaticity of the SA node. Since the automaticity of the
S-A node is abnormal, the most extended P-P interval (i.e. the “pause” on
the ECG) will not be a multiple of the shortest P-P interval, unlike SA exit
block (Figure 1.17b).

• Sino-Atrial Exit Block: similar to sinus arrest, except that the SA node retains
its automaticity, but the generated electrical impulse cannot exit from it and
propagate. This is caused by an intermittent conduction block in the tissue
surrounding the SA node. Occasionally, conduction manages to occur through
the perinodal tissue. Since the automaticity of the SA node is expected, the
most extended P-P interval is a multiple of the shortest P-P interval (the
underlying rhythm).
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(a) In bradycardia, the heart beats at a slow rate, resulting in long
R-R intervals.

(b) Sinus arrest is characterised by a missing beat (P-QRS-T) that
occurs repeatedly.

Figure 1.17: Examples of Sinus Arrhythmias [38].

1.5.2 Atrial Arrhythmias

Atrial arrhythmias occur when electrical impulses originate outside the SA node
but within the atria. As the origin is not from the SA node, the morphology of
the P-wave differs from that of the sinus P-wave. However, the subsequent QRS-T
complex appears normal, as the ventricles receive their impulses through the AV
node in the usual manner. Figure 1.18 shows the principal atrial arrhythmias:
Premature Atrial Contraction (PAC), Atrial Tachycardia (AT), Atrial Flutter (AF)
and Atrial Fibrillation (AF).

1.5.3 Junctional Arrhythmias

Junctional arrhythmias occur when the impulse originates within the AV junction,
which includes the AV node and the Bundle of His. The resulting QRS complex
and T-wave typically appear normal as they follow the common pathway for
ventricular depolarisation. However, retrograde conduction to the atria may lead to
the development of a P-wave with abnormal morphology and timing. The polarity
of the P-wave is opposite to that of a normal sinus P-wave due to the retrograde
propagation of depolarisation from the AV node towards the atria. Additionally,
the wave appears after the onset of the QRS complex.

The primary junctional arrhythmias, shown in Figure 1.19, are Premature
Junctional Contractions, Non-Paroxysmal Junctional Tachycardia and Paroxysmal
Supraventricular Tachycardia.
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(a) A premature atrial contraction (PAC) is an atrial
contraction that appears early in time with an abnormal

P-wave morphology (shape).

(b) Ectopic atrial tachycardia occurs when more than 3 PACs
occur consecutively.

(c) Atrial Flutter. Atrial rate is very fast and has a consistent
repetitive waveform with a saw-tooth like appearance.

(d) Atrial Fibrillation. When atrial fibrillation occurs, the
QRS appears erratically. There is no distinct P-wave.

Figure 1.18: Examples of Atrial Arrhythmias [38].

1.5.4 Ventricular Arrhythmias

Ventricular arrhythmias occur when the heart’s impulses originate from the ven-
tricles and then spread throughout the rest of the heart. These arrhythmias can
happen due to either the ventricular myocardium’s enhanced automaticity or a
re-entry circuit. A normal conduction pathway from the atria to the ventricles
results in a narrow, standard QRS complex where all ventricular myocardium
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(a) In premature junctional escape contraction, a
normal-looking QRS complex prematurely appears, but

without a preceding P-wave. The accompanying T-wave is
normal.

(b) Non-paroxysmal junctional tachycardia with retrograde
conduction results in inverted P-waves. The atrial and

ventricular rate falls in the normal range.

(c) Paroxysmal supraventricular tachycardia results in very
fast heart rate ranging from 160 to 240 beats per minute for a

short period of time.

Figure 1.19: Examples of Junctional Arrhythmias [38].

depolarises simultaneously. However, in cases of ventricular arrhythmias, the QRS
complex is vast and bizarre in shape because the impulse is not propagated through
the normal pathway but rather through non-specialized myocardium that conducts
more slowly, resulting in a wider QRS complex and a different direction, leading to
a bizarre-looking QRS complex.

In Figure 1.20, the main ventricular arrhythmias are shown: Premature Ventricu-
lar Contraction (PVC), Ventricular Tachycardia (VT), and Ventricular Fibrillation
(VF).
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(a) An isolated premature ventricular contraction occurs
without a preceding P-wave. The QRS morphology is bizarre
in shape since depolarisation of the ventricles do not follow

the normal sequence.

(b) Monomorphic ventricular tachycardia. Heart beats at a
very fast rate and with a consistent bizarre-shaped QRS

morphology.

(c) Ventricular flutter exhibits a very rapid ventricular rate
with a saw-tooth like ECG waveform.

Figure 1.20: Examples of Ventricular Arrhythmias [38].

1.5.5 Atrioventricular Blocks
The phenomena when electrical impulses are disrupted along the conduction path-
ways to the ventricles is known as atrioventricular blocks. This block may cause
a delay or prevent the impulse from propagating to the rest of the conduction
system intermittently. A first-degree AV block occurs when all the P-waves reach
the ventricles, but the PR interval is prolonged. Second-degree AV blocks happen
when some P-waves don’t conduct to the ventricles and can be further categorised
into:

• Wenkebach (or Mobitz Type 1).

• Mobitz Type II.

• 2:1 AV block.

• High-grade AV block (>3:1).
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A complete heart block or third-degree block happens when all P-waves fail to
conduct down to the ventricles. Pacemakers are used to treat this condition and
bring the heart rate back to normal.

1.5.6 Bundle Branch and Fascicular Blocks
Bundle branch blocks are secondary to a conduction defect at the level of the right
branch or the left branch of the bundle of His. In case of bundle branch block, the
depolarisation of the two ventricles is asynchronous due to a delay in the activation
process of the ventricle dependent on the blocked branch. This asynchronism causes
a “loosening” of the QRS complexes is more than 120 ms. Depending on the locked
branch, it is possible to recognise the right and left bundle branch blocks.
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Chapter 2

State of the Art

This chapter will present some key
concepts related to Artificial Intelligence
and its application in medicine, with a
particular focus on Machine Learning
and Deep Learning techniques. We will
then explain the main approaches com-
monly used in the literature for the spe-
cific task of cardiac anomaly classifica-
tion, highlighting the differences between
more traditional methods based on the
extraction of “expert features” and more
recent methods based on deep learning,

such as the use of convolutional neu-
ral networks, the architecture details of
which will be explained in this chapter.
We will then analyse the main works
found in the literature, highlighting those
that classify cardiac anomalies on a
beat-by-beat basis and those that clas-
sify them based on rhythm. Addition-
ally, we will mention the main ECG
databases and the performance metrics
recommended by the Association for Ad-
vancement of Medical Instrumentation.
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2.1 Artificial Intelligence in the Clinical Decision
Support Field

In this paragraph, we will briefly overview important concepts related to Artificial
Intelligence (AI) techniques like Machine Learning (ML) and Deep Learning (DL),
as they are the basis of the methods used in research for identifying cardiac
anomalies.

Seventy years ago, the idea of Artificial Intelligence was first introduced by Alan
Turing through his description of “thinking machines”. Later, John McCarthy
came up with the term “Artificial Intelligence” to define the concept of computers
being able to perform tasks that are typically considered intelligent when done by
humans [39]. In healthcare, the cornerstone of effective patient care is experience
and expertise. The more data and knowledge we have, the better equipped we are
to make informed decisions.

One major obstacle for humans in acquiring extensive data is time limitations.
Furthermore, with silicon chips, large amounts of patient data can now be accessed,
obtained, and stored for processing. Utilising these vast amounts of data and
transforming them to gain experience is the foundation of AI in medicine [40]. Be-
sides, AI can aid physicians in risk-stratifying patients for interventions, identifying
those most at risk, and evaluating multiple strategies to optimise overall patient
outcomes. The next paradigm shift in medical education will involve integrating
and educating physicians in model development.

The domain of Clinical Decision Support presents vast opportunities for AI to
influence clinical management profoundly. While CDSS are not novel, the innovative
concept of incorporating AI into a “black box” CDSS, which utilises inputs from
diverse sources to generate decisions or recommendations for specific diagnostic
and therapeutic strategies, represents a significant advancement [41]. AI-based
CDSS have the potential to enhance the diagnosis, treatment, and prognosis of a
specific medical condition by leveraging biomedical data to predict the likelihood
of a medical outcome or the risk of a particular disease. These systems have the
capability to analyse historical, present, and incoming patient data, enabling them
to identify potential safety concerns, errors, or opportunities for improvement in the
care pathway. Providing accurate and relevant predictions opens up new avenues
for optimising patient care [42].

These systems can be developed using either traditional ML algorithms or the
more advanced DL algorithms [21]. Figure 2.1 shows a taxonomy of Artificial
Intelligence comprising Machine Learning and Deep Learning.
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Figure 2.1: Artificial Intelligence Taxonomy [21].

2.1.1 Machine Learning
Machine Learning is a subfield of AI that focuses on enabling machines to mimic
intelligent human behaviour. It encompasses the capability of a machine to learn
from data and make predictions or take actions based on that learning. A ML system
can have different descriptive, predictive, or prescriptive functions. In a descriptive
function, the system uses data to explain past events, while in a predictive function,
the system uses data to forecast future events. Lastly, in a prescriptive function,
the system leverages data to offer suggestions or recommendations on actions to be
taken [43, 44].

Several types of machine learning, including supervised and unsupervised learn-
ing, have distinct approaches and applications. In situations where training datasets
are not available, unsupervised learning methods are employed. They are par-
ticularly valuable in scenarios involving unknown disease detection, new drug
discovery, and fault diagnosis identification. On the other hand, supervised learning-
based anomaly detection and classification techniques are efficient when annotated
datasets and expert knowledge are present, enabling accurate detection and classi-
fication of anomalies [45].

2.1.2 Deep Learning
Deep Learning is a subset of ML that leverages computational models and algorithms
inspired by the structure and functioning of biological neural networks in the brain.
The human brain comprises a network of interconnected neurons, and deep learning
aims to emulate this neural connectivity through Artificial Neural Network (ANN)
techniques [46].
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The term “deep” in deep learning is a technical term that refers to the number
of layers in an ANN where there are typically three types of layers: the input layer,
the output layer, and one or more hidden layers.

The input layer receives the input data, which can be in various formats, such
as images, text, or numerical values. On the other hand, the output layer produces
the final result of the data processing, which can be a classification, prediction, or
any other desired output. The hidden layers are the intermediate layers between
the input and output layers. They are responsible for extracting and learning the
underlying patterns and representations within the data. The number of hidden
layers can vary depending on the problem’s complexity and the network’s depth.

A deep ANN differs from a shallow ANN (characterised by a single hidden layer)
by having a more significant number of hidden layers. This deeper architecture
allows deep ANNs to perform more complex tasks. As data passes through each
hidden layer, simpler features are combined and reassembled into more complex
features.

In practice, deep learning excels at handling unstructured data and has demon-
strated higher accuracy than traditional machine learning methods. However, it
typically requires substantial training data to learn complex patterns and rela-
tionships effectively. Additionally, deep learning models often demand significant
computational resources and specialised hardware and software for training and
inference processes [47].

2.2 Approaches for the Classification of Cardiac
Abnormalities

Over the years, numerous research studies have focused on classifying heartbeats.
Existing solutions in this domain can generally be categorised into two main
approaches: feature engineering-based methods and deep learning-based methods
[48].

Regarding the first approach, in the past, the analysis of ECG signals relied
heavily on diagnostic rules. This approach involved a two-step process: first,
‘expert or hand-crafted features’ were extracted from the raw ECG data, and then
these features were used to create decision rules or were input into ML algorithms
to generate the final analysis results [49]. Expert features in ECG analysis can
be classified into four main categories: frequency-domain features, time-domain
features, joint time-frequency domain features, and decomposition-domain features
[48]. These features can be extracted using computer-based algorithms, but they
may not always be sufficient due to limitations in data quality and human expert
knowledge [50]. Moreover, engineering hand-crafted features can be challenging,
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even with a good domain understanding, often requiring iterative trial-and-error
[51].

In recent years, studies exploring incorporating DL techniques in ECG analysis
have significantly increased. These approaches aim to integrate feature extraction
and classification stages within a unified framework, eliminating the need for
handcrafted features. This methodology, known as end-to-end learning, has gained
considerable attention [52]. A visual representation comparing the conventional
methods and deep learning approaches can be found in Figure 2.2.

Figure 2.2: Comparison between traditional methods, that require the extraction
of expert features, and deep learning methods [49].

2.2.1 Feature-engineering Based Methods
Feature-engineering based methods in ECG classification primarily focus on signal
feature extraction, feature selection, and classifier selection [53].

In raw ECG signals, a heartbeat is represented as a high-dimensional time-series
sequence; it is challenging for classifiers to interpret and extract relevant information
to differentiate between different types of heartbeats. Hence, it becomes necessary
to summarise and extract patterns from the time-series sequence of heartbeats to
represent them effectively. These patterns, known as ‘features’, play a crucial role
in the classification process, directly influencing the final classification performance.

Feature extraction is typically guided by medical knowledge, which aids in
enhancing the classification performance and providing explanatory insights into
the model. An example of such a feature is the RR-interval, which is widely used
due to its comprising of essential rhythm information.

Due to the abundance of features that can be derived from the ECG signal, the
feature selection process becomes crucial. Many studies rely on the researchers’
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experience and understanding of the task to determine which features to include,
but this approach does not guarantee the optimal selection of features. On the other
hand, a few studies have explored the feasibility of automated feature selection
techniques to identify the most representative features. Generally, a feature selection
technique comprises a search strategy to identify and evaluate candidate feature
subsets through an objective function.

As for the classifier selection, the Support Vector Machine is widely used due
to its robustness, good generalisation, and computational efficiency, as evidenced
by studies such as [54, 55, 56]. Additionally, Decision Trees [57, 39], K-Nearest
Neighbors [58, 59], and ANNs [60, 61] are also commonly employed in the literature
for this purpose. Other classifiers that have been utilised include Optimum-Path
Forest, Linear Discriminant, and hidden Markov models [53, 62].

2.2.2 Deep-Learning Based Methods
Heartbeat classification has recently witnessed significant advancements, primarily
attributed to Deep Neural Networks (DNNs). A DNN is a computational model
comprising multiple layers of processing units, enabling it to automatically learn
and extract high-level representations from raw ECG recordings without extensive
data preprocessing. This ability to learn intricate patterns and features directly
from the data has revolutionised the field and improved classification accuracy and
performance. Convolutional Neural Network (CNN), Recurrent Neural Network
(RNN), Autoencoder (AE), and Long Short-Term Memory network (LSTM) are
some of the DNNs used in the task of ECG classification. The following paragraph
will outline the fundamental principles underlying a CNN, as it is the method
chosen in this thesis.

Convolutional Neural Networks

LeCun first introduced CNNs in [63] as a type of neural network designed explicitly
for feature extraction tasks while preserving the spatial configuration of the data and
ensuring translation invariance. These characteristics have made CNNs extremely
popular in domains where object shape is crucial, such as image analysis [64].
Recently, CNNs have attracted more and more attention in the applications in
ECG signal classification because they have been proven effective in recognising
key patterns and learning valuable features, such as P-waves and QRS-complexes
of ECG heartbeats [53].

A typical CNN architecture, shown in Figure 2.3 consists of multiple convolu-
tional layers, pooling layers, and fully connected layers, briefly described below.
For further information please refer to the article by Alzubaidi et. al: “Review of
Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future
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Directions” [65].

Figure 2.3: Example of CNN architecture for image classification [65].

Convolutional Layer

In a CNN, the convolutional layer is the central element responsible for most
computational tasks. We define:

• An input tensor I, which represents a multidimensional array of data.

• A kernel K, which represents a multidimensional array of parameters.

The convolution operation S (shown in Figure 2.4) computes a weighted average
of the input tensor and the kernel at every position, according to this equation:

S(p) =
⁄

I(p ≠ a)K(a)da (2.1)

Where p is the position index.

The result of the convolution operation is referred to as a feature map. It
is generated by matrix multiplication between the kernel and each equally-sized
sub-matrix of the input tensor. This means that each kernel produces its own
feature map. The number of kernels in a CNN is determined based on the specific
task. It is typically defined by the complexity and diversity of the features that
need to be learned from the input data.
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After the convolution operation, applying a Rectified Linear Unit (ReLU) acti-
vation function is common1. The ReLU function introduces non-linearity into the
network by converting negative values to zero and leaving positive values unchanged.
It has been widely adopted in CNN architectures due to its low computational load
and effectiveness in improving the network’s learning capabilities.

Figure 2.4: An example of 2D convolution between an input tensor of size 4x3
and a kernel of size 2x2 [66].

Pooling Layer

The pooling layer replaces the previous layer’s output with a condensed rep-
resentation, effectively reducing the size of the learned features and mitigating

1In ANNs, an activation function is a mathematical function applied to the output of a neuron
or a group of neurons. It determines whether the neuron should be activated or not, based on
the weighted sum of its input values. The activation function adds non-linearity to the neural
network and is essential in the process of training the network [65]
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the problem of overfitting2 . Commonly employed pooling methods, such as max
pooling, average pooling, and global average pooling, are depicted in Figure 2.5.

Figure 2.5: Three types of pooling operations. Modified from [66].

Fully Connected Layer

Typically, the Fully Connected (FC) layer is positioned at the end of a CNN
architecture. In this layer, each neuron is interconnected with all neurons from the
preceding layer. The FC layer adopts the fundamental approach of a conventional
Multi-Layer Perceptron (MLP) neural network, as it is a type of feed-forward ANN.

In classification tasks, such as the classification of cardiac anomalies, specific
loss functions are employed in the output layer. These loss functions quantify
the predicted error generated by the CNN model across the training samples.
Subsequently, the CNN learning process aims to optimise this error through various
techniques and algorithms.

The loss function uses two parameters to calculate the error: the CNN estimated
output (referred to as the prediction) and the actual output (referred to as the

2Overfitting is a common issue that can occur when training machine learning models. It
refers to the phenomenon where the model becomes too complex and starts to fit the training
data too closely, leading to poor performance on new, unseen data. This can be caused by various
factors, such as using an overly complex model, having insufficient training data, or training for
too long [65, 67].
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label). Different types of loss functions are utilised for various problem types, and
one widely employed option is the Cross-Entropy or (Softmax) loss function, which
is frequently used for evaluating the performance of CNN models. It is also known
as the Log loss function, and its output represents a probability of belonging to the
class, denoted as p, which is in the range of [0,1]. The mathematical representation
of the output class probability can be expressed as follows:

pi = e
ai

q
N

k=1 e
a

k

(2.2)

Here, e
ai represents the non-normalized output from the preceding layer, while N

represents the number of neurons in the output layer (equal to the number of classes
of the problem). Finally, the cross-entropy loss function can be mathematically
represented as (yi is the desired output and pi is the predicted one):

H(p, y) = ≠
ÿ

i

yi log (pi) where i œ [1, N ] (2.3)

Overfitting is the central issue for CNN models to obtain well-behaved generali-
sations. If a model performs well on training data but fails on test data (i.e., data
it has not seen before), it is considered over-fitted. On the contrary, an under-fitted
model occurs when the model does not learn enough from the training data. Lastly,
the model is just-fitted if it executes well on both training and testing data – this
is the optimal scenario. These three types are illustrated in Figure 2.6.

Various concepts are used to help the regularisation to avoid overfitting, such as
dropout, drop-weights, data augmentation and batch normalisation.

Figure 2.6: Over-fitting and under-fitting issues [65].
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2.3 Critical Analysis of the Existing Works
The majority of research studies in the field of cardiac abnormalities classification
focus on the classification of individual heartbeats. This is primarily driven by the
standard proposed by the Association for Advancement of Medical Instrumentation
(AAMI), namely ANSI/AAMI EC57:1998/(R) 2008. According to this standard,
heartbeats are classified into 15 types, which are further categorised into five
superclasses: Normal (N), Supraventricular (S) ectopic, Ventricular (V) ectopic,
Fusion (F), and Unknown (Q) [68]. Table 2.1 provides an overview of the AAMI
categorisation of abnormal heartbeats, while Figure 2.7 illustrates examples of
these five different types [69].

In contrast, there are no specific regulations regarding the classification of
rhythms; however, the work of Zhang et al. [70] suggested grouping 11 abnormal
rhythms into four super classes based on the guidelines provided by cardiologists,
as shown in Table 2.2.

Table 2.1: Classification of heartbeats according to AAMI standard: ANSI/AAMI
EC57:1998/(R) 2008 [53].

In the context of heartbeat classification, following the AAMI standard, a notable
work was done by Acharya et al. [71]. They proposed a 9-layer CNN model for
the general heartbeat classification task. The model takes segmented heartbeats
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Figure 2.7: Super classes of heartbeats according to AAMI standard: (a)
Normal (N) (b) Supraventricular ectopic (S) (c) Ventricular ectopic (V) (d) Fusion
(F) (e) Unknown (Q), respectively [53].

as input and calculates the probability of each heartbeat type to which the input
heartbeat may belong.

In addition to CNN, LSTM has also shown good performance on ECG signals,
as Tan et al. [72] demonstrated in their work on detecting coronary artery disease.
This has led to attempts at combining both CNN and LSTM, resulting in state-
of-the-art results that Oh et al. achieved [73]. A similar approach was proposed
by Liu et al., who utilised empirical mode decomposition to decompose segmented
heartbeats into N components. 2D CNN layers processed the first N/2 components,
while stacked bidirectional LSTM layers processed the remaining components. The
outputs of both the CNN and LSTM layers were combined in the fusion layer to
make a classification decision.

Regarding works that classify abnormal rhythms, one of particular importance
is the study by Yildirim et al. [74]. This work is based on a low computational
complexity CNN, making it suitable for telemedicine applications, especially on
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Table 2.2: Classification of rhythms according to the work presented by Zhang et.
Al [70].

mobile devices and cloud computing for monitoring ECG signals from a single lead.
Similarly, Acharya et al. [75] proposed a similar neural network focusing explicitly
on classifying Atrial Fibrillation, Atrial Flutter, and Ventricular Fibrillation.

The mentioned works focus on classifying cardiac arrhythmias using a single
channel of ECG signal. However, some studies, such as those by Yang et al. [76]
and Tung et al. [77], have instead focused on multi-channel approaches to improve
detection accuracy and reduce false positive alarms.

2.4 Evaluation of a Heartbeat Classification Model
Several ECG databases that serve as benchmarks for evaluating heartbeat clas-
sification models, aiming to standardise the evaluation of automatic arrhythmia
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classification methods have been defined by AAMI. Among these databases, the
most notable one for arrhythmia is the ‘Massachusetts Institute of Technology -
Beth Israel Hospital Arrhythmia Database’ (MIT-BIH DB) [36]. This database
holds significant importance as it was the first publicly available database designed
for this purpose. Researchers often utilise this database to assess and validate the
performance of various arrhythmia classification algorithms.

The AAMI has also recognised the need for multiple performance metrics to thor-
oughly evaluate heartbeat classification models, unlike other classification problems
where overall accuracy alone is sufficient. In the context of evaluating arrhythmia
classification models, researchers commonly utilise the MIT-BIH Database, which is
a widely used benchmark dataset. This database provides valuable real-world ECG
recordings for developing and testing arrhythmia classification algorithms. More
information about the databases mentioned and the performance recommended by
the AAMI are given in the following paragraphs.

2.4.1 Databases Used in the Construction of an ECG Clas-
sification Model

MIT-BIH Database

The MIT-BIH Database is widely employed in numerous literary publications,
primarily due to its distinctiveness in incorporating the five arrhythmia groups
recommended by the AAMI, as detailed in Table 2.1 [62]. These arrhythmia groups
serve as a comprehensive representation of cardiac anomalies. Consequently, the
database’s utilisation allows researchers to assess and develop automatic arrhythmia
classification methods aligned with the AAMI’s standardised categories. This
uniqueness and adherence to the AAMI’s proposed arrhythmia groups contribute to
the database’s significance and widespread adoption within the research community.

The ECGs included in the MIT-BIH Arrhythmia Database originate from a
collection of over 4000 long-term Holter recordings acquired by the Beth Israel
Hospital Arrhythmia Laboratory from 1975 to 1979. These recordings were obtained
from both inpatients and outpatients, with approximately 60% originating from
inpatient cases. The database, as outlined in the MIT-BIH Arrhythmia Database
Directory [36], comprises two distinct sets of records:

1. 23 records (numbered from 100 to 124 inclusive with some numbers missing)
were derived randomly from the larger pool of long-term recordings.

2. 25 records (numbered from 200 to 234 inclusive, again with some numbers
missing) specifically curated to encompass various rare but clinically significant
phenomena that may not be adequately represented in a small random sample
of Holter recordings.
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The combination of these two sets of records provides a diverse range of ECG
data, capturing both common and infrequent cardiac events, contributing to the
comprehensive nature of the MIT-BIH Arrhythmia Database.

Each of the 48 records in the MIT-BIH Arrhythmia Database has a duration
slightly exceeding 30 minutes and consists of two ECG leads. The primary lead,
called ‘lead A’, is typically a modified version of lead II (better described in
paragraph 1.4.1). The secondary lead, designated as ‘lead B’, is typically lead V1,
although it may correspond to lead V2, V5, or V4 in certain records. It is worth
noting that in the literature, lead A is commonly utilised for heartbeat detection
due to its greater prominence in capturing the QRS complex [62].

The analogue outputs of the playback unit were converted into digital signals
at a sampling rate of 360 Hz per signal in real-time. The digitisation process
was carried out using custom-built hardware developed at the MIT Biomedical
Engineering Center and the BIH Biomedical Engineering Laboratory [36].

Every heartbeat in the MIT-BIH Database is annotated independently by two
or more cardiologists. This process ensures that any differences in opinion are
resolved, resulting in a final set of reference annotations for each heartbeat in
the database. In total, there are approximately 110,000 annotations available.
Additionally, rhythm annotations are also provided.

Figure 2.8 displays a segment of the signal obtained from subject #205 along
with the corresponding annotations.

Figure 2.8: Example of beat annotation from the 10 seconds of the signal
#205 [36]. In this case Ventricular Fusion (F), Ventricular Premature (V), Atrial
Premature (A) beats have been annotates as well as some rhythms annotations (N:
Normal, VT: Ventricular Tachycardia).
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INCART DB

The St. Petersburg 12-lead arrhythmia database (known also as INCART DB)
is widely used and freely accessible. It consists of 75 ECG recordings sampled
at a rate of 257Hz. These recordings were extracted from 32 records at the St.
Petersburg Institute of Cardiological Technics (Incart) in 2008 [78].

Each recording in the INCART DB contains 12 standard leads and lasts 30 min-
utes. The annotations for the ECG signals were initially generated by an automatic
algorithm and then manually corrected based on the standard PhysioBank beat
annotation definitions [79]. In addition to beat annotations, rhythm abnormalities,
similar to the MIT-BIH DB, were also annotated. A summary of the distribution
of annotated beats can be found in Table 2.3.

In addition to MIT-BIH and INCART DB, other commonly used ECG databases
are: The PTB Diagnostic database [80], Creighton Ventricular Tachyarrhythmia
Database [81] and China Physiological Signal Challenge 2018 [82].

Table 2.3: Comparison of the distribution of annotated beats in INCART and
MIT-BIH DBs. Modified from [53].

2.4.2 Performance Metrics Recommended by AAMI
The development of an AI-based CAD system is typically divided into two phases:
training and testing. During the testing phase, various measures AAMI recommends
are used to evaluate the performance of classification methods. These measures
help assess the effectiveness of the CAD system in correctly identifying different
types of heartbeats. The measures recommended by AAMI include [62]:

• Sensitivity (Se), also known as ‘Recall’: It represents the proportion of true
positive predictions (correctly identified abnormal heartbeats) out of all actual
positive instances (total abnormal heartbeats). A higher sensitivity indicates
a better ability to detect abnormal heartbeats.

• Positive predictivity (+P), also known as ‘Precision’: It measures the propor-
tion of true positive predictions (correctly identified abnormal heartbeats) out
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of all positive predictions (total predicted abnormal heartbeats). A higher
positive predictivity indicates a lower rate of false positives.

• False positive rate (FPR): It calculates the proportion of false positive pre-
dictions (incorrectly identified normal heartbeats) out of all actual negative
instances (total normal heartbeats). A lower false positive rate indicates a
lower rate of misclassifying normal heartbeats as abnormal.

• Overall accuracy (Acc): It measures the proportion of correct predictions
(both true positives and true negatives) out of the total number of instances.

To compare different methods, the first three measures (sensitivity, positive
predictivity, and false positive rate) are particularly relevant, considering that the
results of the majority class can strongly distort the overall accuracy. In this way,
the first three measures are the most relevant for comparing the methods since the
classes for the heartbeat types are highly imbalanced in available databases.

While AAMI specifies benchmark databases and evaluation metrics, there is
a lack of a specific protocol that provides clear guidelines on how to perform an
evaluation using these databases. The AAMI does not specify which recordings
or heartbeats should be used for training a model and which should be used for
testing the method. However, in the literature, two main paradigms are employed
for constructing a cardiac anomaly classification model [62, 83]:

1. Inter-patient paradigm: In this type of classification of ECG beats, each
patient’s data are divided into training and test sets. This means that the
data from each patient are used for both training the model and evaluating its
performance. Most studies on beat classification adopt this paradigm, where
the focus is on individual patients’ data and classification within those specific
patients.

2. Intra-patient paradigm: This paradigm uses data from different patients to
train and evaluate the model. These methods aim to assess the model’s
generalisation across a larger population and overcome real-world challenges
and these methods use data from multiple patients to create a model that can
effectively classify anomalies in a diverse patient population.

The choice between these paradigms depends on the specific research objectives
and data availability. The inter-patient paradigm is commonly used in studies
focusing on beat classification, while the intra-patient paradigm addresses broader
generalisation challenges.
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Chapter 3

Design and Implementation
of a CAD system for
Automated ECG Anomaly
Classification

In this chapter, we will discuss the
methods and implementation choices for
the development of the first task of this
thesis. The underlying idea of this stage
is to design and implement a CAD sys-
tem for automated ECG classification
that can be used in the future on a
database consisting of properly labelled
signals acquired through the Hi-ECG de-
vice. However, such a database is cur-
rently unavailable. Therefore, the desig-
nated model has been implemented using
the freely available MIT-BIH database.
In terms of architecture, Convolutional
Neural Networks have been chosen as
they have proven highly efficient in pre-
vious works in this field.

We will discuss how these signals are pre-
processed to enhance the signal-to-noise
ratio and how to segment and normalise
them. Next, we will illustrate how the
network was designed and trained and
how its performances were evaluated in
the testing phase, according to the Asso-
ciation for the Advancement of Medical
Instrumentation recommendations.
The CAD system presented is not ap-
plicable to signals acquired with the Hi-
ECG device as they are morphologically
different from the MIT signals. There-
fore, a future development of the work
involves applying the proposed method-
ology in the presence of a database of
signals acquired with the Hi-ECG device,
with properly labelled cardiac anomalies.
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3.1 Motivations and Context
In the previous chapters, we highlighted the importance of signal morphology
in classifying cardiac anomalies. Considering this, to apply a cardiac anomaly
classification model to signals acquired with the Hi-ECG device, it is necessary to
consider that there is currently no database of ECG signals acquired with such
a device that includes properly labelled recordings of cardiac patients. For this
reason, in this thesis work, we chose to develop two parallel tasks, which will be
described in more detail in the following two chapters:

• Task #1: Design and Implementation of a CAD System for Automated ECG
Anomaly Classification. The purpose of this task is to develop a CAD system
to be trained in a future phase of the work, considering a database of signals
acquired with the Hi-ECG device. For more information on this database,
please refer to chapter 6. Since we do not have access to this specific database,
we have chosen in this phase to use one of the publicly available databases
discussed in the paragraph 2.4.1.

• Task #2: Development of a method for the adaptation of a Pre-trained CAD
System to Hi signals. This task aims to develop a methodology to enable the
use of a CAD system, pre-trained with signals from freely available databases,
on signals acquired with the Hi-ECG device.

This chapter describes the steps necessary for the first task. It is important to
consider that the CAD system developed in this study cannot be directly applied to
the classification of anomalies present in signals acquired with the Hi-ECG device
due to the following reasons [84]:

• ECG tracings acquired by wearable devices, such as the Hi-ECG device,
differ from those typically considered in the literature, such as the MIT-BIH
Database. For example, in the Hi-ECG device, the electrodes are positioned
closer together compared to a classical Holter or 12-leads configuration, which
can result in changes in the morphology of the signals, as discussed in section
1.4.

• The Hi-ECG device is intended to be placed by users themselves rather than by
clinicians. Therefore, it is necessary to consider that there may be positioning
errors, which can again lead to modifications in the morphology of the ECG
signals.

• The Hi-ECG device’s user manual specifies three configurations in which the
user can position the device. Different configurations correspond to different
signal morphologies.
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• During long-term monitoring, user movements can cause device displacement,
compromising the quality of the signals. Moreover, the morphology of the
heartbeats might vary due to changes in the heart rate. This makes ECG
tracings acquired by the Hi-ECG device more heterogeneous than those
acquired in more controlled situations, such as those in the MIT-BIH Database.

Considering the aforementioned reasons, in order to implement the CAD system
directly on the signals acquired from the wearable device under analysis, it would
be necessary to have a specifically constructed database using that device with
properly labelled cardiac anomalies. However, this chapter proposes a procedure
that can be followed in the future if such a database becomes available.

The MIT-BIH Arrhythmia DB was chosen for training and testing the proposed
CAD system. The reason behind this choice is that this database is considered
the most comprehensive for the specific task of classifying cardiac anomalies, and
it is also the most widely used database in the literature [85]. This allows a
more accurate comparison between the present work and state-of-the-art studies.
Considering then the fact that the annotations concerning abnormal rhythms are far
less than the annotations for beats, it has been chosen to develop a network for the
classification of abnormal heartbeats, following the ANSI/AAMI EC57:1998/(R)
2008 standard, that recommends categorising beats in 5 superclasses:

• Normal (N).

• Supraventricular ectopic (S).

• Ventricular ectopic (V).

• Fusion (F).

• Unknown (Q).

3.2 Proposed Pipeline
For this task, it was decided to design a Convolutional Neural Network, as it is one
of the most used networks in this field, given the excellent performance that has
been achieved, such as in the works of Acharya et. Al [71, 86, 87], Yıldırım et. Al
[88] and Zubair et. Al [83].

The pipeline consists of two phases: Training and Testing, represented graphically
in Figure 3.1.
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Figure 3.1: Proposed pipeline for the first task of the work. In two different
colours are represented the training and the test phase.

53



Design and Implementation of a CAD system for Automated ECG Anomaly Classification

Generally, the proposed steps consist of:

1. Loading MIT-BIH DB signals and annotations: In this study, only Modified
Limb Lead II (MLL-II) ECG signals were analysed, as it is a bipolar lead
similar to the leads acquired by the Hi-ECG device.

2. ECG Pre-processing: This phase involves noise removal, ECG segmentation,
and normalisation of the signals.

3. Data augmentation: Generating synthetic data is one way to overcome the
imbalance in the number of ECG heartbeats in the five classes (N, S, V, F,
Q). Another method implemented in this thesis is using a cost-sensitive loss
function during network training.

4. Dataset split into Training, Test, and Validation Sets: A ten-fold cross-
validation approach was used to avoid overfitting and ensure robust evaluation.

5. Training of the model: This phase also includes a grid search tuning method
to optimise the network’s performance.

6. Testing of the models: All the trained networks resulting from the grid search
tuning method were tested on the Test Set, and their evaluation performances
were obtained. The model with the best performance was selected for this
task.

3.3 ECG Data Preprocessing
The ECG signals are processed as follows:

• Removal of noise.

• ECG segmentation.

• ECG normalisation.

3.3.1 Noise Removal
To ensure accurate cardiac arrhythmia detection and classification, it is crucial
to address the issue of background noise that accompanies the acquisition and
transmission of ECG signals. Implementing appropriate measures to mitigate the
impact of noise is necessary for reliable analysis and interpretation of the signals
[53, 89].
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ECG signals can be affected by various types of noises, including baseline wander,
powerline interference, electrode motion artefacts, and EMG noise. These artefacts
can introduce distortions and unwanted components into the ECG signal, making
it challenging to analyse and interpret the underlying cardiac activity accurately.
A brief explanation of these noises is given below [90, 91]:

• Baseline wander : It is characterised by the shifting or wandering of the baseline
axis of a signal, causing the entire signal to deviate from its normal position.
In ECG signals, baseline wander can occur due to improper electrode-skin
impedance, patient movement, and respiration. The frequency content of
baseline wander typically lies within the range of 0.5 Hz, but it can increase
during intense body movement or stress tests.

• Powerline interference: It refers to the presence of electromagnetic fields
generated by powerlines, which can introduce noise into ECG signals and
other bioelectrical signals recorded from the body surface. This interference is
characterised by sinusoidal patterns at 50 or 60 Hz. The narrowband nature of
powerline interference makes it challenging to accurately analyse and interpret
low-amplitude waveforms, leading to unreliable delineation and the possibility
of spurious waveforms.

• Electrode Motion Artifacts: They occur when the impedance of the skin around
the electrodes changes due to stretching or movement. These artefacts share
similarities with baseline wander regarding signal characteristics but are more
problematic to mitigate because their spectral content significantly overlaps
with the QRS complex. They typically manifest as high-amplitude waveforms,
occasionally mistaken for PQRST complexes.

• Electromyographic (EMG) Noise: It represents a significant challenge in many
ECG applications, particularly during recordings obtained during exercise.
This noise is caused by muscle activity and can obscure low-amplitude wave-
forms. Unlike baseline wander and powerline interference, EMG noise cannot
be effectively removed through narrowband filtering due to its spectral content
overlapping with the PQRST complex. Filtering out muscle noise presents a
more complex problem, requiring advanced techniques to separate it from the
desired ECG signal accurately.

There are many approaches for filtering such noises, such as Infinite Impulse
Response (IIR) and Finite Impulse Response (FIR) Filtering, Adaptive Filtering,
Discrete and Bionic Wavelet Transform (DWT, BWT) Approaches, Moving Average
Approach, Filtered Residue Method, and Empirical Mode Decomposition [91, 89].

The objective of filtering is to extract the ECG signal from the noise, ensuring
that the clinical information remains undistorted while removing as much noise as
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possible. To achieve this, it is necessary to understand the frequency contributions
of the various waves that make up the ECG signal. Specifically, variations in the
speed of wavefront propagation during the cardiac cycle, as described in paragraph
1.3.1, are manifested by differences in the frequency content of ECG waves. As
shown in Figure 3.2, The T wave is predominantly found within the frequency
range of zero (DC) to 10 Hz, the P wave is characterised by frequencies ranging
from 5 to 30 Hz, and the QRS complex typically contains frequencies within the
range of 8 to 50 Hz [92].

Figure 3.2: Power spectra of ECG components showing the relative
frequencies [93]. The spectra include QRS complex, P and T waves, muscle noise,
and motion artefacts. The analysis is based on an average of 150 beats.

For the noise removal of MIT-BIH signals, wavelet-based denoising was chosen
as the approach, as it is a commonly used technique in the literature and is
known for its effectiveness in preserving signal features while effectively reducing
noise. Its main advantages over other techniques include the coefficient compaction
characteristics of wavelets, the ability to dilute noise in the wavelet domain, and
the removal of redundancy. In fact, it is advantageous in ECG signals due to
their large data size. ECG data requires significant memory storage, averaging
100 MB daily for a signal sampled at 1 kHz. This poses challenges for real-time
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telemedicine applications, where efficient transmission of ECG signals to remote
diagnosis facilities is necessary [94].

3.3.2 Wavelet-based Denoising of MIT-BIH DB
A wavelet is a mathematical function that exhibits wave-like oscillations with
an amplitude that starts from zero, increases, and then decreases back to zero.
Figure 3.3 illustrates an example of a wavelet function, specifically the first derivative
of Gaussian function. Wavelets have become a valuable tool in signal processing
and data analysis because they capture localised information in both time and
frequency domains and extract features from various types of data, including signals,
images, and time series. They are beneficial in applications where the data is local
and global features need to be analysed simultaneously [95].

Figure 3.3: Example of wavelet function: first derivative of gaussian function.

The Discrete Wavelet Transform (DWT) provides a time-frequency representa-
tion of a signal by decomposing it into different frequency bands using scaling and
wavelet functions. It iteratively applies these functions to the signal, capturing its
frequency content at several levels of detail. This multi-scale decomposition allows
for efficient analysis of signals in different frequency bands [53, 96].

The DWT is the discrete form of Continuous Wavelet Transform (CWT) given
in the following equation:

C(a, b) =
⁄ +Œ

≠Œ
x(t)Âú

a,b
(t)dt (3.1)

Here, x(t) is the signal, a and b are respectively the dilatation and the translation
of the wavelet, and Â

ú(t) is the complex conjugate of the analysing mother wavelet,
which can be of various types such as Haar, Daubechies, Symlet etc. [97].
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To define the DWT, the following assumptions are made:

b = 2≠s
a = 2≠s

l (3.2)

Where l describes the shifting parameter and s the scale parameter (l = 0, 1, 2...;
s = 0, 1, 2...). By discretising the signal x(t) and using the above formulas, we
obtain the DWT as follows:

W (l, s) = 2 s
2

ÿ

n

x(n)Â (2s
n ≠ l) (3.3)

The main objective of the DWT is to decompose a signal into different resolutions
using low-pass and high-pass filters. The decomposition equations are as follows:

A(k) =
ÿ

n

x(n)h(2k ≠ n) (3.4)

D(k) =
ÿ

n

x(n)g(2k ≠ n) (3.5)

In these equations, x(n) denotes the original signal, h(n) is the half-band low-
pass filter, g(n) is the half-band high-pass filter, A(k) represents the approximation
coefficients, and D(k) represents the detail coefficients. Particularly:

• Approximation coefficients represent the low-frequency components of the
signal.

• Detail coefficients represent the high-frequency components of the signal.

The DWT decomposition at level 2 can be illustrated using the block diagram
shown in Figure 3.4. Depending on the desired cutoff frequency, this process can
be repeated for deeper levels.
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Figure 3.4: DWT decomposition model at level 2. HPF and LPF are
the high-pass and the low-pass analysis filters [98]. The block ¿ 2 represents
the down-sampling operator by a factor of 2. The input signal x(n) is recursively
decomposed into a total of three sub-band signals described by: A2 – approximation
coefficients for the coarse signal and the detailed coefficients D1 and D2 for the
detailed signals of two resolutions.

Finally, the denoised signal can be reconstructed through the inverse DWT,
using the updated details coefficients of DWT after estimating noise on these
coefficients. Figure 3.5 shows an implementation of two-level inverse DWT [98].

In this work, the Daubechies D6 wavelet function (‘db6 ’) was chosen as the
mother wavelet. This selection was based on previous studies in the literature that
reported favourable results using this wavelet. Although the Daubechies functions
are conceptually more complex and involve slightly more complicated computations,
they have the advantage of capturing finer details that may be missed by other
wavelet algorithms, such as the Haar wavelet algorithm [52, 99].

• The 9th-level approximation subband, corresponding to the frequency range
of 0-0.351 Hz, primarily contains the baseline wander. So, it was not used in
the reconstruction of the denoised signal.

• Information beyond 45 Hz in the ECG signal was deemed to be of less signifi-
cance. Consequently, the first and second-level detail coefficients, representing
frequency bands of 90-180 Hz and 45-90 Hz, respectively, were not included in
the reconstruction process of the denoised ECG.

All in all, for the denoising procedure, only the detail signals from the 3rd to
the 9th levels were used, while all other sub-band coefficients were replaced with
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Figure 3.5: Inverse DWT. HPF and LPF are the high-pass and low-pass
analysis filters [98]. The block ø 2 represents the up-sampling operator by a
factor of 2. Signals of the various sub-bands are recursively combined to reconstruct
the output signal xd(n)

zeros. These selected sub-bands were employed in the computation of the inverse
wavelet transform, leading to the generation of the denoised ECG signal [100].

3.3.3 ECG Segmentation
The segmentation process was carried out by following these steps, as outlined in
Algorithm 1:

1. Identification of R-peaks using the Pan-Tompkins algorithm [101].

2. Calculation of the time interval between the current R-peak and the previous
R-peak (T1) and between the next R-peak and the current R-peak (T2).

3. Segmentation of the heartbeat by considering the interval (I) as the minimum
value between T1/2 and T2/2.

4. Beat stretching to achieve a fixed length of 260 samples. This value was
chosen considering that the RR interval falls approximately between 0.7 and
1.2 seconds [29]. Therefore, considering a worst-case scenario with an RR
interval of 0.7 seconds, a heartbeat would have a duration of approximately
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260 samples, given the sampling frequency of MIT-BIH DB signals equal to
360 Hz.

The implemented segmentation ensures that there is only one R-peak for each
heartbeat, regardless of the subject’s heart rate value.

Algorithm 1 MIT-BIH DB Heartbeat Segmentation Algorithm
1: Require: MIT-BIH DB signals
2: Require: Beat annotations
3: for i = 1 to length(mitdbs) do
4: Û Read sig
5: Û Wavelet-based denoising of sig
6: Û Resampling of sig to 128 Hz
7: Û R-peaks detection through Pan-Tompkins algorithm: Rpos

8: for j = 2 to size(Rpos) ≠ 1 do
9: Compute T1 = Rpos(j) ≠ Rpos(j ≠ 1)

10: Compute T2 = Rpos(j + 1) ≠ Rpos(j)
11: Compute Interval as I = min

1
T1
2 ,

T2
2

2

12: Beat segmentation: beat = signal (Rpos(j) ≠ I : Rpos (j) + I)
13: Û Identifies the AAMI EC57 category of beat based on its record
14: end for
15: end for

A modified version of the Pan-Tompkins algorithm was implemented to detect
R-peaks, excluding the filtering phase as it was performed earlier. Pan-Tompkins is
a widely used algorithm for the real-time detection of QRS complexes and consists
of the following stages [48, 101], graphically depicted in Figure 3.6:

1. Derivative stage: provides information about the slope of the QRS complex.

2. Squaring: each signal sample is squared, making all points of the signal
positive and emphasising higher frequency components, particularly the ECG
frequencies.

3. Moving window integration (MWI): provides information about the waveform
characteristics and the slope of the R-wave.

4. Threshold adjustment: a dual-threshold technique is employed. The higher
threshold is used for initial signal analysis, while the lower threshold is activated
only if no QRS complex is detected within a specific time interval. The
thresholds are automatically adjusted; lower thresholds indicate an improved
signal-to-noise ratio.
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5. Average R-R interval adjustment: two averages of the R-R interval are cal-
culated. The first average considers the eight most recent beats, while the
second average considers the eight most recent beats with R-R intervals falling
within certain limits. This approach allows for rapid adaptation to changes
and cardiac irregularities.

6. T-wave identification: if an R-R interval is shorter than 360 ms, it is evaluated
whether the current QRS complex has been correctly identified or represents
a T-wave. If the slope of the waveform is lower than half of the previous
QRS complex, it is identified as a T-wave; otherwise, it is considered a QRS
complex.

Figure 3.6: Block diagram of the Pan-Tompkins algorithm.

3.3.4 ECG Normalization
Each heartbeat is normalised using Z-score normalisation to address the issue of
amplitude scaling and eliminate the offset effect before inputting the heartbeats
into the CNN for training and testing. This is necessary because the raw data
exhibits a wide range of values, both depending on acquisition parameters and on
the patient. Normalisation techniques are applied to standardise these values by
compressing the original data range to a more coherent interval. This normalisation
process enhances the gradient flow in the network during gradient descent, leading
to faster convergence rates [73, 87]. Given x as the segmented heartbeat, the
normalised x is computed as:

xnorm = x ≠ µ

‡
(3.6)

Where µ and ‡ are respectively the mean value and standard deviation of data.
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3.4 Addressing Class Imbalance: Strategies for
Handling an Unbalanced Dataset

One of the significant challenges in classifying ECG anomalies is the highly imbal-
anced dataset. In fact, the number of abnormal heartbeats is significantly lower
compared to normal heartbeats. This imbalance makes it difficult to train an effec-
tive deep-learning model with many parameters using small datasets with disease
labels [49]. To address this issue, two main methods are commonly employed:

1. Data augmentation: This involves generating synthetic training datasets using
generative models such as variational Autoencoders or Generative Adversarial
Networks. Alternatively, simple techniques like altering samples through
amplitude scaling can also be used.

2. Using specific loss functions: one example is the Focal Loss (FL), designed
to give more importance to the minority class samples during training. This
helps to mitigate the impact of class imbalance in the dataset.

Both methods have been implemented in this thesis work. Specifically, regarding
data augmentation, the method proposed by Acharya et al. [71] was chosen,
where synthetic data is generated based on Z-score normalisation. They varied
the standard deviation and mean of the Z-scores from the original normalised
ECG segments. The specific implementation details of the scaling method are not
mentioned, but it seems that a randomly selected scale factor was applied to each
segment. In the present work, random scale factors were chosen within a range
that spans the minimum to maximum values of the mean and standard deviation
calculated from the heartbeats in the entire database.

This method, although simple, presents some significant limitations:

• The synthetically generated heartbeats will not have a zero mean and unit
standard deviation like the originally normalised heartbeats in the database.
This could introduce bias in the learning of the network.

• This type of synthetic data generation does not take into account the physio-
logical principles underlying the ECG signal. A more interesting approach,
using amplitude scaling as well, is presented in the work of Do et al. [102]. In
their approach, the characteristic peaks of the ECG (e.g., P, Q, R, S, T) are
treated differently, and the scaling factor is decided in collaboration with a
cardiologist.

Due to the abovementioned limitations, it was decided to proceed with the unbal-
anced dataset while implementing a specific cost-sensitive loss function, described
in more detail in paragraph 3.6.
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3.5 CNN Architecture
A 1-dimensional CNN with nine layers was employed for heartbeat classification.
The architecture of the CNN model, adapted from the work of Acharya et al.
[71], is summarised in Table 3.1. Additionally, Figure 3.7 provides a graphical
representation of the model.

Table 3.1: Architecture of the proposed CNN model [71].

Excluding the input layer, which has a size of 260 (corresponding to the number
of samples in the segmented heartbeats), the network comprises nine layers with
the following characteristics:

• Three convolutional layers: Every convolutional layer (layers 1, 3, and 5)
convolves its respective kernel, which has a size of 3, 4 and 4, respectively.
The convolution operation is performed using the equation below:

xn =
N≠1ÿ

k=0
ykfn≠k (3.7)

Here, y is the signal, f is the kernel, and N is the number of elements of y.
The kernel is initialised using the Xavier initialisation [103]. The output vector
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(or feature map) is denoted as x. The kernel size was determined through
a brute force technique, and the stride (i.e., the step size when sliding the
kernels across the input data) was set at 1. Finally, the ReLU function is used
as the activation function for these three convolutional layers and the first two
fully-connected layers.

• Three max-pooling layers: After every convolutional layer, a max-pooling
operation (with a stride set at 2) is applied to the feature maps with the aim
of reducing its size.

• Three fully-connected layers: These layers consist of 30, 20, and 5 output
neurons, respectively. In the final layer, before computing the loss, the softmax
activation function is applied to the output to squash the values within the
range of [0, 1]. The softmax function is defined as:

‚y(i) =
exp

1
z

(i)
2

q
C

j=1 exp (z(j))
(3.8)

Where C represents the number of ECG beat categories (five in this case), and
y(i) denotes the class probability assigned by the CNN to the input feature
vector z(i).

3.6 Training Phase
3.6.1 Training Parameters
Choosing hyperparameters – e.g., parameters set before model training that cannot
be learned during the training process – is a crucial step in developing effective
machine learning models. The optimal values for these parameters can vary
depending on the dataset, model complexity, and available computational resources.
Therefore, tuning hyperparameters often involves an iterative process of running
experiments and evaluating performance on a validation set. In this work, some
hyperparameters were selected based on previous research, while others were
obtained using the grid search technique. This technique involves systematically
testing different combinations of hyperparameters to determine the combination
that yields the best model performance [104].

The CNN model was trained with the following parameters:

• Optimization algorithm: Adam (Adaptive Moment Estimation) with a variable
Learning Rate (LR) based on the training epoch. The LR is an important
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Figure 3.7: Architecture of the proposed CNN model [71].
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hyperparameter that controls the change applied to the model weights in
response to the estimated error during each update [105]. The initial LR (lr0)
in this work was determined using the grid search technique. The LR for the
current epoch i out of the total number of training epochs N is calculated
using the equation provided:

lr = lr0 ◊
3

1 ≠ i

N

40.9
(3.9)

The progressive reduction of the learning rate helps accelerate the neural
model training in the initial epochs while preventing weight instability and
overfitting in the later epochs.

• Number of epochs: The CNN was trained over 20 epochs, where each epoch
represents a complete cycle of presenting all training data to the model. The
backpropagation algorithm was used for training [106].

• Loss function: The CNN model used the Categorical FL as the loss function to
handle the unbalanced dataset. The Categorical Focal Loss, introduced by Lin
et al. [88], is a variant of the Cross-Entropy Loss that assigns different weights
to each sample based on its classification error. It focuses on the problematic
and less-represented classes by reducing the contribution of samples already
correctly classified by CNN. The Categorical FL can be calculated through
Equation 3.10, where ŷ represents the class probability calculated in the output
layer using the softmax function, and “ is the focusing parameter.

FL(‚y) = ≠(1 ≠ ‚y)“ · log(‚y) “ Ø 0 (3.10)

Compared to the classical Cross-Entropy function (Equation 3.11), the Cat-
egorical Focal Loss introduces a modulating factor, (1 ≠ ŷ)“, that keeps the
loss function almost unaffected for misclassified examples with small class
probabilities (ŷ). As the model’s confidence increases, the modulating factor
tends to 0, down-weighting the loss value for well-classified examples.

CE(‚y) = ≠ log(‚y) (3.11)

The focusing parameter “ rescales the modulating factor, giving more weight
to hard examples than easy ones and reducing their impact on the loss function,
as shown in Figure 3.8.
Different values of the focusing parameter “ were tested during the training
process using the grid search technique. The optimal value was determined
based on performance evaluation. Figure 3.9 provides a visual representation
of how the loss value is calculated during the training process.
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Figure 3.8: Effect of the focusing parameter “ on the focal loss. When “ = 0,
Focal Loss is equal to cross-entropy loss [88].

Finally, a comprehensive grid search technique optimised the hyperparameters
“ (focusing parameter), batch size, and initial learning rate. Table 3.2 displays
the attempted values for these parameters during the grid search process. The
grid search involved testing various combinations of these parameters to find the
optimal values.

In the end, a total of 90 networks were saved, considering all possible combina-
tions of the mentioned parameters. The performance of each network was evaluated
on the test set, and the best-performing network was selected and saved.
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Figure 3.9: Block diagram showing how the loss is calculated using Focal Loss.
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Table 3.2: Hyperparameters attempted during the grid search technique.
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3.6.2 Dataset Division and Cross-Validation
Cross-validation and train/test split are essential techniques for evaluating the
performance of a model on unseen data. This work employed a nested ten-fold
cross-validation approach to assess the model’s performance. Thus, the dataset
was divided into ten folds, ensuring that each fold contained an equal distribution
of segments and conditions within the heartbeats (stratified sampling).

During the cross-validation process, the model was reinitialised for each fold,
with one fold as the test set and the remaining nine for training. This process
was repeated ten times, with each fold serving as the test set once. The model’s
performance was then averaged across all ten folds for an overall evaluation.

To monitor the model’s training progress, 30% of the Training Set was set aside
for validation. This validation set allowed for the examination of the model’s
performance during the training process. Details regarding the ten-fold cross-
validation methodology can be found in Figure 3.10.

Figure 3.10: Dataset division in Training, Test and Validation Set.

In this work, the validation phase occurs at the end of each epoch during the
training process. During this phase, the value of the loss function on the Validation
Set (validation loss) is recorded. The model is saved if the validation loss improves
compared to the previous epoch. Otherwise, the training proceeds to the next
epoch.

An Early Stopping technique was implemented to prevent overfitting and avoid
unnecessary training. The training process is terminated if there is no improvement
in the validation loss for five consecutive epochs. This helps to ensure that the
model is trained at the point where it no longer improves its performance on
unseen data. By employing Early Stopping, the training process can be efficiently
stopped when there is no significant progress in the model’s validation loss, saving
computational resources and preventing overfitting as it helps find the optimal
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point of training where the model achieves good generalisation performance on
unseen data.

3.7 Test Phase
In evaluating the 90 saved models, the recommended evaluation metrics by the
AAMI were used, as described in paragraph 2.4.2. Specifically, on the Test Set, the
following metrics were evaluated with the aim of:

• Distinguishing ‘S’ type beats from other beats (considered metrics can be
found in Table 3.3(a))

• Distinguishing ‘V’ type beats from other beats (considered metrics can be
found in Table 3.3(b))

• Distinguish the five AAMI classes (considered metrics can be found in Ta-
ble 3.4)
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Table 3.3: a. Evaluation metrics proposed by AAMI for the classification
of ‘S’ beats; b. Evaluation metrics proposed by AAMI for the classifica-
tion of ‘V’ beats. Abbreviations: ACC: Accuracy; F: Fusion heartbeats; FN: False
Negatives; FP: False Positives; N: Normal heartbeats; +P: Positive predictivity; Q:
Unknown heartbeats; Se: Sensitivity; Sp: Specificity; S: Supraventricular ectopic
heartbeats; V: ventricular ectopic beats; TN: True Negatives; TP: True Positives.
Modified from [62]

(a) (b)
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Table 3.4: Evaluation Metrics to distinguish the five AAMI classes,
modified from [62]. Please refer to the abbreviation in Table 3.3.
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It is worth noting that, according to Table 3.3, the calculation of positive
predictivity for V-type beats (+PV ) does not penalise false positives related to
F and Q-type beats. Similarly, false positives of Q-type beats are not included
in the calculation for positive predictivity of S-type beats (+PS). By considering
these specific metrics, the evaluation provides a comprehensive assessment of the
model’s performance in distinguishing different types of beats and aligns with the
recommendations provided by the AAMI.

Finally, to evaluate the best model, it was decided to identify the top 10 models
for the identification of V-type beats and the top 10 models for the identification
of S-type beats based on the following indexes:

indexV = +PV + SeV

indexS = +PS + SeS

(3.12)

Of these two sets of models, the intersection was made. Finally, of the remaining
models, the most accurate one was chosen as the best.
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Chapter 4

Development of a Method
for the Adaptation of a
Pre-Trained CAD System to
Hi-ECG Signal

In the previous chapter, an example
of the design and development of a CAD
system for classifying cardiac anomalies
– trained on a freely available public
database – was presented. However, this
system does not apply to Hi-ECG device
signals as they are morphologically dif-
ferent from the signals used to train the
model. Therefore, in the absence of an
appropriate database of Hi-ECG signals
acquired with the device and properly
labelled, this chapter proposes a method-
ology to adapt the signals acquired with
the analysed device to a pre-trained CAD
system using a public database, a 12-lead
ECG DB. To achieve this, the objective
is to convert the wearable device signals
to a “standard” morphology, such as that

obtained from the three Einthoven limb
leads. In this way, the Hi-ECG signals
are transformed to have a morphology
similar to those used for training the
CAD system.
The proposed methodology involves a
signal pre-processing phase, including
denoising, a step to identify the device
placement on the user’s chest, the con-
version of Hi-ECG signals to a unique
configuration (specifically, the one recom-
mended by the user manual), and finally,
the conversion of these signals to “stan-
dard” signals.
The proposed method is intended to be
appropriately validated in future work,
where Hi-ECG signals with anomalies
will be available for analysis.
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4.1 Proposed Pipeline
This chapter will describe the steps of the proposed methodology to adapt a
pre-trained CAD system to Hi-ECG device-acquired signals.

The need for developing such a methodology arises from the lack of a database
containing appropriately labelled cardiac signals acquired with this wearable device.
Therefore, the methodology suggests preprocessing steps for Hi-ECG signals to
convert them into “standard” signals. Specifically, the aim is to reconstruct the
three standard Einthoven leads (obtained by applying electrodes to the limbs) from
the Hi-ECG signals, which, as discussed in the previous section, are acquired with
a non-standard positioning.

At this stage, the methodology proposes classifying the ECG signals using a
CAD system pre-trained on 12-lead signals so that the morphology of the input
signals to the system is as similar as possible to those used for training the network.
This would enable the classification of any cardiac anomalies recorded with the
Hi-ECG device using a CAD system without needing a custom-built database
specifically for this device.

The pipeline for this task is illustrated in Figure 4.1.
In general, the proposed steps include:

1. Noise removal: This phase is necessary to extract the ECG signal from
background noise.

2. Patch Positioning Identification: In this phase, the type of configuration in
which the subject has positioned the Hi-ECG device on the chest will be
identified.

3. Misplacement Correction: If any misplacement of the Hi-ECG device is identi-
fied, it will be corrected in this phase.

4. Conversion of signals to Configuration 1 : Signals related to Configurations 2
and 3 are converted so that their morphology is similar to those acquired in
Configuration 1.

5. Conversion to “Standard” Configuration: In this phase, various approaches
will be proposed to achieve the described objective.

6. Classification of cardiac anomalies using a CAD system pre-trained with a
12-lead ECG database.

It should be noted that the proposed methodology has been explored and
validated only up to Step #4. In future developments of this work, the focus will
be on Steps #5 and #6.
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Figure 4.1: Proposed pipeline for the second task of the thesis. Colour
boxes indicate steps for which no implementation is provided in this work.

78



Development of a Method for the Adaptation of a Pre-Trained CAD System to Hi-ECG Signal

4.2 Noise Removal
This phase is performed differently from what was described in Section 3.3.1 due
to the following reasons:

• The user can select the sampling frequency of the signals acquired with the
Hi-ECG device. In this section, we will focus on two scenarios: when the
sampling frequency is set to 128 Hz (the default value of the device) and when
it is set to 512 Hz.

• The signals acquired with the Hi-ECG device are inherently noisier compared
to the signals in the MIT-BIH database, which are recorded under more
controlled conditions and for shorter durations (30 minutes compared to
durations that can reach up to 48 hours with the Hi-ECG device signals) [84].

Due to the reasons above, it was chosen to implement a cascaded filter approach
to address baseline wander removal and high-frequency noise that may affect the
signal. The literature suggests that a bandwidth ranging from 0.05 Hz (which can
be relaxed up to 0.67 Hz for digital linear filters with zero-phase distortion) to
40 Hz is suitable for ensuring ECG quality and facilitating clinical interpretation
[100, 107]. Therefore, the implemented filters aim to attenuate noise and artefacts
outside this frequency range while preserving the informative components of the
ECG signal.

As a first step, wavelet-based denoising was applied primarily for the removal of
baseline wander in the following manner:

• For signals sampled at 128 Hz : seven decomposition levels were chosen. This
ensured that the 7th level approximation subband, which corresponds to the
frequency range of 0-0.5 Hz, predominantly representing the baseline wander,
was excluded from the denoised signal reconstruction. Therefore, only the
detail signals were used to compute the inverse wavelet transform and obtain
the denoised ECG signal.

• For signals sampled at 512 Hz : In this case, the number of levels was set to nine,
ensuring that the 9th level approximation subband, covering frequencies from
0 to 0.5 Hz, was not used for denoising. Additionally, the detail coefficients at
the first and second levels, corresponding to the frequency bands of 128-256
Hz and 64-128 Hz, were excluded from the denoised signal reconstruction.

Subsequently, to remove high-frequency noise, a windowed FIR filter with an
order of 30 and a cutoff frequency of 40 Hz was applied [108]. This filter helps
attenuate noise components above 40 Hz, improving the overall quality of the
denoised ECG signal.
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4.3 Patch Positioning Identification
This phase of the methodology aims to identify the placement type of the Hi-ECG
device on the patient’s chest. As mentioned in Section 1.2.2, the device’s user
manual specifies three configurations to position the device (shown in Figure 4.2).
Identifying the configuration type serves the following purposes:

1. Correct any misplacement errors related to the central body of the Hi-ECG
device. It is highly likely that the user, misinterpreting the instructions from
the user manual, may position the central body of the device in the opposite
direction as indicated.

2. Proceed with the subsequent phase of the methodology, which involves con-
verting configurations 2 and 3 (Figure 4.2b and Figure 4.2c) into Configuration
1 (Figure 4.2a).

The placement type identification was considered a ternary classification problem,
where the classes correspond to the three configurations from the user manual. The
chosen approach for this task is using a Multilayer Perceptron (MLP) network,
a type of feedforward NN consisting of multiple layers of interconnected nodes
or neurons. The MLP network was selected because, in addition to successfully
addressing intricate and diverse classification problems, its simplicity of architecture
makes it suitable for potential integration into the device’s firmware in future studies
[109].

The problem consists of the following phases:

1. Database creation: In this phase, a database that includes ECG signals with
known placement configurations is constructed.

2. ECG signal segmentation: The ECG signals from the database are segmented
into individual beats.

3. MLP training: The MLP model is trained using the segmented ECG signals.
The training process involves presenting the input signals to the MLP and
adjusting the model’s weights and biases to minimise the classification error.

4. MLP testing: After training, the performance of the MLP model is evaluated
using a separate set of ECG signals. This testing phase assesses the model’s
ability to classify the placement configurations accurately.

5. Identification and correction of misplacements: After the patch positioning
identification, Accelerometer data are used to identify any misplacements.
Corrective actions can be taken to address the issue if misplacements are
detected.
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(a) Configuration #1 (b) Configuration #2

(c) Configuration #3

Figure 4.2: Placement of the wearable device, as indicated in the user manual
[27]

These phases collectively form the methodology for addressing the problem of
placement identification and correction using the MLP model.

4.3.1 Creation of a Hi-ECG Database
To create an appropriate dataset for training and testing the MLP, ten subjects
were recruited for ECG signal acquisition using the Hi-ECG device. All subjects
were asked to remain seated during the approximately 2-minutes long acquisition
sessions. Multiple acquisitions were performed for each subject, simulating both
correct and incorrect device placement conditions, with a sampling frequency of
512 Hz. Precisely, as shown in Figures in Appendix the device was positioned for
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each subject in the following ways:

• The three manual configurations (referred to as Class 1, 2, and 3).

• The three configurations with the central body of the device inverted compared
to the manual instructions (referred to as Class 4, 5, and 6).

• The three configurations with device translation (considering both correct and
incorrect central unit orientation):

– For Configuration 1, a vertical translation was considered (Class 1 and 4).
– For configurations 2 and 3, a horizontal translation was considered (class

2, 3, 5 and 6).

For the purpose of training and testing the MLP network, Classes 4, 5, and 6 were
merged with Classes 1, 2, and 3, respectively, resulting in a ternary classification.

Subsequently, as described in more detail in paragraph 4.3.6, any misplacements
of the device’s central unit will be identified and corrected using accelerometer
data recorded during the acquisitions. The accelerometer data, sampled at 8
Hz, provides information on the orientation of the device with respect to the
gravitational acceleration vector.

4.3.2 ECG Segmentation
The segmentation process of the signals acquired with the Hi-ECG device is
necessary to generate the dataset used for training the MLP. This procedure
considers the three recorded ECG channels. Specifically, for each channel, the same
procedure described in paragraph 3.3.3 regarding the segmentation of MIT-BIH
DB signals is followed, with the difference of the imposed length for each beat,
which in this case is set to 200 samples.

Subsequently, the segmented beats for each channel are aligned into a single
vector of 600 samples, which will serve as the input for the MLP.

The pseudo-code for the described procedure is provided in Algorithm 2

4.3.3 Training of the Multi-Layer Perceptron Network
The MLP architecture, as depicted in Figure 4.3, is composed of an initial input
layer, one or more hidden layers, and an output layer. Each neuron in a hidden
layer receives inputs from the neurons in the preceding layer and produces an
output based on its weights and activation function. In this work, the input layer
of the MLP architecture consists of 600 neurons, which matches the dimension of
the input data. The number of neurons in the output layer corresponds to the
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Algorithm 2 Hi-ECG Heartbeat Segmentation Algorithm
1: Require: Hi-ECG signals (3 channels)
2: Initialize empty dataset D

3: for channel = 1 to 3 do
4: for each signal sig in channel do
5: Perform denoising on sig
6: Detect R-peaks in sig using Pan-Tompkins algorithm: R_pos
7: for j = 1 to length(R_pos) ≠ 1 do
8: Compute T1 Ω R_pos(j) ≠ R_pos(j ≠ 1)
9: Compute T2 Ω R_pos(j + 1) ≠ R_pos(j)

10: Compute interval I Ω min
1

T1
2 ,

T2
2

2

11: Segment beat as beat Ω sig[R_pos(j) ≠ I : R_pos(j) + I]
12: Append beat to dataset D

13: end for
14: end for
15: end for
16: Concatenate all beats in D into a single vector: dataset
17: Output: dataset

number of classes to be distinguished, which in this case is three. Furthermore, we
employed ten neurons for the hidden layer.

The performances of the network were assessed using a nested ten-fold cross-
validation approach. The ECG dataset was divided into ten equal portions, ensuring
each portion contained a balanced representation of segments corresponding to the
three positioning options. During the training phase, which consisted of 70 epochs,
nine portions of the ECG segments were used for training, while the remaining
portion was reserved for testing. This process was repeated ten times, with each
iteration involving model reinitialisation and testing on a distinct subset of data.

To monitor the training progress of the models, 30% of the training set was
dedicated to validation. The MLP network was trained using the backpropagation
technique with a batch size of 27. The Adam optimiser was employed to expedite
the learning process, with a weight decay of zero and a variable learning rate
that depended on the epochs. At the end of each training epoch, the categorical
Cross-Entropy loss function was evaluated on the validation set. The performance
of each epoch was compared to previous epochs, and the model with the best
validation loss was saved at the end of the training. Table 4.1 summarises the
critical choices made for the training of the MLP network.
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Figure 4.3: Example of architecture of a MLP network with two hidden
layers, modified from [110]. In this case į = [i1, i2, i3] is the input vector whereas
ǫ = [o1, o2] is the output vector.

4.3.4 Evaluation Metrics and Analysis of the Classification
The metrics chosen to evaluate the MLP network’s performance are reported below,
based on the counted True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN) for every class:

Accuracy(Acc) = TP + TN

TP + TF + FP + FN
(4.1)

Sensitivity(Sens) = TP

TP + FN
(4.2)

Specificity(Spec) = TN

TN + FP
(4.3)
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Table 4.1: Parameters and choices for training the proposed MLP network.

4.3.5 Intended Use of the MLP

In order to determine the corresponding class for the positioning of the device
associated to a recording, the following steps are performed:

1. Denoising and segmentation of the signal, as described in the previous para-
graphs.

2. Use of the MLP network. Each segment will then have a predicted class by
the network.

3. Considering ten consecutive segments, the most representative class value
within each block was determined and assigned to it. In cases the number
of segments was not a multiple of ten, zero-padding was used to ensure a
consistent block size.

4. Considering all the ECG blocks results, the most representative class value was
again identified, which was ultimately designated as the overall class assigned
to the entire acquisition.
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4.3.6 Misplacement Identification and Correction
Once the device placement has been determined, assuming the user is sitting, it is
possible to detect any misplacement by examining the principal component of the
acceleration recorded during the session. Considering the coordinate system shown
in Figure 4.4, the principal axis of acceleration and its sign should align with the
expected values based on the determined placement, as outlined in Table 4.2. If
the sign is opposite to what is expected, it indicates a misplacement of the device’s
rigid body.

Figure 4.4: Coordinate system of the accelerometer in the Hi-ECG device.

The proposed method is valid only for users who are in a sitting or standing
position while wearing the Hi-ECG device. For patients lying down, the principal
component of acceleration would be along the z-axis with a positive sign in all
configuration types, making it difficult to distinguish between a normal positioning
condition and a misplacement.

To extend the identification of device placement to bedridden patients, an
approach suggested for future development of this work consists of introducing a
six-class classification, incorporating the three manual placement classes (1, 2, and
3) and the three classes where the central body is considered inverted (4, 5, 6).
This extended classification would allow for the differentiation of device placement
in various patient positions and accommodate a broader range of scenarios.

If a misplacement of the main body of the device is detected, the ECG data
undergoes treatment to correct the misplacement. Specifically, the following steps
are taken (Figure 4.5):
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Table 4.2: Expected magnitudes and orientation of normalised acceleration
(expressed in g) along the three axes for the three configurations when the user is
sitting.

1. The sign of lead I, which is associated with the rigid body, is inverted using
the following equation:

I Ω ≠I (4.4)

2. Leads II and III are swapped, and their signs are inverted to account for lead
polarity. This means that the data from the third lead is treated as if it was
acquired from the second lead, and vice versa:

II Ω ≠III

III Ω ≠II
(4.5)
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Figure 4.5: Left Panel: Hi-ECG device and lead polarities before misplacement
correction; Right Panel: Hi-ECG device and lead polarities after misplacement
correction.

4.4 Conversion into Configuration #1
In cases where the user has positioned the device according to Configuration 2
or 3, we chose to convert the three ECG leads so that they have a morphology
similar to signals acquired according to Configuration 1, as it is the recommended
configuration based on the instruction provided by the user manual of the device.
This can be useful in cardiac anomaly classification problems, where the focus of the
process is on the morphology of the signal. With this method, we eliminate the issue
related to the device being placed in different configurations, thereby introducing
additional variability to the problem, in addition to the inherent inter-patient
variability.

To achieve the objective of this phase, a geometric-analytical approach based on
the general theory of heart vector projection, described in the paragraph 1.3.3, was
chosen. Some underlying premises of the proposed method are summarized below:

• The proposed method relies on the accurate identification of the device’s
placement on the user’s chest in the previous step. Any misplacement of the
central body must also be corrected.

• It should be noted that the general theory of vector heart projection is based
on the assumptions formulated by Einthoven, as described before. In the
configurations proposed by the Hi-ECG user manual, the assumption that
the heart is positioned at the centre of the sampling volume does not hold.
Therefore, it is important to consider that the proposed method for converting
the signals to Configuration 1 is only valid in a reference system related to
the Hi-ECG device.
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• The signals considered for this phase are the same as those described at the
beginning of the chapter, where denoising is applied. However, the analysis is
conducted on the signals in their entirety, without applying the segmentation
process described before. Normalization is also not applied.

The proposed method is based on the following steps:

1. Obtaining the system geometry: Based on the acquisitions made on each user
placing the Hi-ECG device on the patient’s chest in the three configurations
recommended by the user manual, photos were obtained and used for the
calculation of the angle between the corresponding line of each lead and the
horizontal line.
With this procedure, a set of three angles – named A, B and C were obtained.
The sets are averaged (Equation 4.6) for all the subjects to find the system
geometry of the three configurations, which will be used in the subsequent
steps.

[A1, B1, C1] =
10ÿ

s=1
[As,1, Bs,1, Cs,1]

[A2, B2, C2] =
10ÿ

s=1
[As,1, Bs,1, Cs,1]

[A3, B3, C3] =
10ÿ

s=1
[As,3, Bs,3, Cs,3]

(4.6)

Here, A, B and C are the set of angles for the three configurations and s is
the number of subjects considered for the calculation.

2. Segmenting the ECG signal into the three characteristic waves:

• P wave.
• QRS complex.
• T wave.

To do this, ‘The Electrocardiogram Kit’ (ecg-kit) is used. It is an open-
source application programming interface that provides tools for accessing
and processing ECG signals. It includes algorithms for QRS detection, wave
delineation, pulse wave detection and heartbeat classification. The toolbox can
be accessed at http://marianux.github.io/ecg-kit/ [111], where documentation
and source code are available [112]. In this work, ecg-kit is used for ECG
delineation, which involves computing the onset and offset locations for each
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ECG wave (P, QRS, and T waves). An example of the report generated by
ecg-kit for a 7-second recording from the dataset is shown in Figure 4.6.
As an output of the ECG delineation, the following vectors will be obtained
for the analyzed recording, with a number of components equal to the number
of detected heartbeats in the signal:

• PON : Identifies samples where the detected P waves begin.
• POF F : Identifies samples where the detected P waves end.
• Similarly, QRSON , QRSOF F , TON and TOF F .
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Figure 4.6: A report generated by ecg-kit for a three-lead recording of
the Hi-ECG device of 7 seconds. Heartbeats in the ECG signals are indicated
by vertical lines, with colour coding representing the type of heartbeat and the
corresponding algorithm responsible for detection. Additionally, the delineated
waves are overlaid on the signal with different colours: P waves are shown in green,
QRS complexes in pink, and T waves in yellow.
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3. Calculating the amplitudes of the waves for each lead, as described in Figure 4.7.

Figure 4.7: Graphical representation of the calculation process for
wave amplitudes. Considering each wave separately, the amplitude is computed
as: Amplw = |max (signal

w
) ≠ min (signal

w
)| · sgn (max (signal

w
) ≠ min (signal

w
) | ,

where w represents P, QRS, and T. For example, signalP corresponds to the P
wave of the signal.

4. Determining the angles related to the instantaneous cardiac electrical vector
at:

• Atrial depolarization (P-wave axis): ◊P

• Ventricular depolarization (mean axis): ◊QRS

• Ventricular repolarization (T-wave axis): ◊T

This step follows the procedure reported in Figure 4.8, which is different
depending on the configuration under analysis. It relies on the method
described in paragraph 1.3.3, where heart vector is projected onto the three
lead lines (Figure 4.9). In these calculations, I and III refer to amplitude
of waves in lead 1 and lead 3 recorded with the Hi-ECG device. P , QRS,
and T are referred to the portions of the signal corresponding to the P waves,
QRS complexes, and T waves, respectively. For example, I(P ) refers to the
amplitude of the P waves in the signal, and so on. Finally, x refers to the
magnitude of the cardiac electrical vector during depolarization of atria and
ventricles and repolarization of ventricles.
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Figure 4.8: Procedure to determine the angles related to the instantaneous cardiac
electrical vector
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(a) Projection on Lead I line

(b) Projection on Lead II line

(c) Projection on Lead III line

Figure 4.9: Projection of the electrical heart axis on the lead lines

5. Reconstructing the magnitude of the instantaneous cardiac electrical vector (x)
based on the previously calculated angles. For each lead, different equations
are applied depending on the configuration being analyzed (2 or 3). This
process is applied to each lead, resulting in reconstructed x values: x1, x2,
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and x3. These values are averaged to obtain xT OT . If, for a specific lead, the
denominator of one of the equations tends to zero (particularly if it is less
than or equal to 0.1), the corresponding lead is excluded from the calculation
of xT OT . Detailed calculation regarding this step can be found in Figure 4.10.

Figure 4.10: Procedure to obtain the magnitude of instantaneous heart vector
during P, QRS and T waves basing on the results of segmentation and the angles ◊

calculated in the previous steps.

6. Reconstructing the three leads corresponding to Configuration 1 based on the
xT OT value obtained in the previous step. Specifically, the following equations
are applied:

Iw,1 = xw · cos (B1 ≠ ◊w)
IIw,1 = xw · cos (A1 ≠ ◊w)
IIIw,1 = xw · cos (C1 ≠ ◊w)

(4.7)

Here, w corresponds to P, T and QRS waves. A1, B1 and C1 are the angle
relative to Configuration 1. Finally, ◊ is the angle of the instantaneous heart
vector during depolarization of atria and ventricles and repolarization of
ventricles.
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4.5 Signal Conversion to the ‘Standard’ Configu-
ration and Use of the CAD System

The goal of this phase is to make the signals acquired with the Hi-ECG device as
similar as possible to the Einthoven leads, which are acquired using a standard
placement. The motivation behind this is the different morphology exhibited by
the signals acquired with the wearable device, as already discussed in Section
3.1. Therefore, since a labelled database of Hi-ECG signals is not available, it is
necessary to ‘align’ these signals to a morphology similar to that of the signals used
for training the DL-Based CAD system.

For this specific task, it is recommended to use a database of 12-lead ECG
signals, such as the ones described in Paragraph 2.4.1. The design and development
of such a model can follow the pipeline proposed in Chapter 4. It should be noted
that this section will only present proposed approaches to the problem found in
the literature, as they were not developed in this thesis and should be considered
as future work.

4.5.1 LSTM networks for the reconstruction of standard
leads

In the work of Sohn et al. [113], a three-lead patch type device, similar to the Hi-
ECG device, was used with the goal of reconstructing a 12-Lead Electrocardiogram.
As an approach, a Long Short-Term Memory (LSTM) Network was proposed,
which was compared to more classical algorithms such as linear regression that have
been used in the past for the same purpose but are influenced by the notion that
the electrogenesis of the heart is not a purely linear process [114]. On the other
hand, LSTM networks are very effective for ECG modelling as they can effectively
retain historical information and learn long-term dependencies in the input data.
In the cited work, to obtain a personalized model for each user, a single standard
12-lead ECG is required, and the proposed algorithm is graphically represented in
Figure 4.11.

The cost function that needs to be minimized during the training of the network
is:

J = 1
m

mÿ

i=1
h (yt, ŷt) (4.8)

Here, the cost function is the average of the reconstruction error h (yt, ŷt) for all
training samples (m). It can be represented by the mean square error between the
original signal yt (i.e., the standard 12-leads ECG) and the reconstructed signal ŷt.

The main limitations of these methods are the requirement of a reference signal
for the reconstruction of standard leads and the lack of testing on patients with

96



Development of a Method for the Adaptation of a Pre-Trained CAD System to Hi-ECG Signal

heart disease. Further research needs to be conducted to reconstruct standard
leads from patch-type devices like the Hi-ECG device.

Figure 4.11: Flow of the algorithm proposed by [113]. x1: Lead 1 ECG
data, x2: Lead 2 ECG data, x3: Lead 3 ECG data. Reference ECG is needed to
compute Mean Square Error (MSE) Loss, that is minimized during training of the
LSTM network.
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Chapter 5

Results

This chapter presents the results re-
lated to the two main tasks developed in
this thesis. Specifically, for the first task,
“Design and Implementation of a CAD
System for Automated ECG Anomaly
Classification”, the results regarding the
preprocessing of the signal from the em-
ployed database (MIT-BIH DB) will be
discussed. This preprocessing includes
the segmentation of signals into denoised
beats, which are then fed into the de-
veloped CNN. Details will be provided
regarding how the training of the net-
work was performed, and the chosen best
model will be identified. The evaluation
metrics selected for performance assess-
ment and comparison with state-of-the-
art works will also be presented.

On the other hand, for the second part
of the chapter, the results related to the
second task, “Development of a method
for adapting a pre-trained CAD system
to Hi signals”, will be presented. Simi-
larly, the results of signal preprocessing
will be shown, this time focusing on sig-
nals acquired with the Hi-ECG device.
Subsequently, the results regarding the
identification of the device placement on
the user’s chest and the subsequent cor-
rection of any detected misplacements
will be discussed. Finally, the results re-
lated to the conversion of signals into a
unique configuration, particularly Con-
figuration 1, will be presented.
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5.1 Task #1 Results
In this section, the results of the steps related to the development of a CAD system
for the classification of cardiac abnormalities will be described. In particular, the
following results will be presented:

• Signal preprocessing: the impact of wavelet-based denoising on the signal
will be demonstrated, followed by the resulting beats from the segmentation
process.

• Network testing: metrics related to the top-performing networks will be
presented, and finally, a comparison between the selected model for this task
and state-of-the-art approaches will be provided.

5.1.1 Data Preprocessing
Figure 5.1 compares a signal from the MIT-DB (specifically, number #100) before
and after wavelet-based filtering. The effective elimination of baseline wander can
be observed. On the other side, the effect of removing high-frequency noise is most
noticeable in individual beats, as shown in Figure 5.2.

Figure 5.1: Comparison between 15 seconds of an ECG signal from MIT-BIH
DB pre- and post-filtering.
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Figure 5.2: Example of segmentation of five beats belonging to super-
classes identified by AAMI. The left column shows the beats before filtering,
while the right column shows the denoised ones.
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The segmentation phase is then carried out on filtered signals to identify the
beats that will be given as input to the CNN. Based on the operation of the
implemented segmentation algorithm, beats of length 260 samples are obtained,
with the R peak located at the centre of the beat.

Figure 5.2 shows five beats obtained after segmentation, belonging to the super-
classes identified by AAMI - Normal (N), Supraventricular (S) ectopic, Ventricular
(V) ectopic, Fusion (F), and Unknown (Q). These beats have undergone denoising
and normalisation using z-score normalisation. A comparison with the correspond-
ing raw beats is also provided to highlight the overall effect of the preprocessing.

After the segmentation process, a database consisting of 102,023 beats is obtained.
The distribution of beats in the various classes is reported in Table 5.1. The weight
associated with each class is also provided based on the class representation in
the dataset. This information is helpful for understanding which classes are more
challenging to handle due to their lower representation. The class weight for a
particular class is calculated by taking the inverse of its class frequency, which is
obtained by dividing the total number of samples by the number of samples in that
class. Mathematically, the class weight (W ) for class i can be calculated as:

Wi = N

C · ni

(5.1)

Where N represents the total number of beats in the dataset, C is the number
of classes (five in this problem), and ni represents the number of samples in class i.
To ensure that the average weight is 1, the class weights are further normalised by
dividing them by the sum of all weights. This normalisation step guarantees that
the sum of all class weights equals the number of classes.

5.1.2 CNN Results
This study involved using a CNN-based approach to classify abnormal heartbeats.
A rigorous evaluation using a 10-fold cross-validation strategy was conducted to
ensure reliable model performance. A total of 90 networks were trained, each with
different hyperparameters, through a grid search. The training process utilised the
scikit-learn and Keras libraries, with TensorFlow as the backend. The model was
trained on a notebook equipped with an Intel® Core™ i7-1195G7 CPU and 16 GB
of RAM.

A number of epochs equal to 20 was set during training, but an Early Stopping
mechanism was implemented that halted training if the validation set performance
did not improve for five consecutive epochs. Notably, the time required for each
epoch varied depending on the batch size. For a batch size of 32, an epoch took
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Table 5.1: Dataset heartbeats distribution in the five classes recommended by
AAMI: Normal (N), Supraventricular (S) ectopic, Ventricular (V) ectopic, Fusion
(F), and Unknown (Q).

approximately 60 seconds, while a batch size of 512 reduced the time to around 4
seconds.

Cross-validation and hyperparameter exploration contributed to a comprehen-
sive assessment of model performance. However, it is important to consider the
computational cost associated with training 90 networks, which can be considered
intensive. On the other hand, the long training time is secondary because, once
trained, the system can immediately identify an unknown ECG beat. Moreover,
given that CNNs are concurrently-based algorithms training the CNNs with graph-
ics processing unit will help to reduce the complexity and power consumption due
to computation.

In order to evaluate the performance and progression of the trained model, we
monitored the validation and training loss as well as accuracy throughout the
training process. These metrics are key indicators of the model’s learning dynamics
and generalisation capabilities. Tensorboard – a popular visualisation tool for deep
learning experiments – was used to illustrate these trends visually. As an example,
Figure 5.3 showcases the evolution of accuracy and loss on both the training and
validation sets during training one of the 90 models. It is interesting to note that in
this specific instance, the number of epochs was not the expected 20 but rather 17.
This discrepancy occurred due to the implementation of Early Stopping, triggered
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when no improvement in the validation loss was observed for five consecutive epochs.
As expected, validation accuracy and loss are slightly worse than training ones.
In fact, with fewer examples, the validation set may exhibit more variability and
result in higher uncertainty in the estimated performance metrics.

Figure 5.3: Trend of Training and Validation Accuracy and Loss depending on
the number of epochs.

5.1.3 Evaluation Metrics and Choice of Best Model
Table 5.2(a) and Table 5.2(b) show the top 10 networks for classifying S-type and
V-type beats based on the indexes described in Section 3.7.
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Table 5.2: Ranking of the ten best models for S and V -type heartbeats identifi-
cation, based on indexs = +Ps + Ses and indexv = +Pv + Sev, where +P is the
positive predictivity and Se is the sensitivity.

(a)

(b)
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Table 5.3 reports the network results from the intersection between Set V and
Set S. Of these networks, the accuracy, metric used for choosing the best model, is
reported.

Table 5.3: Ranking of the best models resulting from the intersection of Set S
and Set V. Accuracy in percentage was considered as the metric for ranking.

Finally, considering the above results, the model of CNN trained with the
following hyperparameters was chosen:

• Focusing parameter (“) = 0.5

• Batch size = 32

• Initial Learning rate (LR) = 0.001

Given the highly unbalanced nature of the dataset, it was expected that a higher
value of the focusing parameter would be necessary to mitigate the impact of the
majority class and improve the performance on the minority class. However, upon
experimentation, it was surprising to discover that the best-performing networks
consistently emerged with a low gamma value. One reason that could explain this
finding is that anomalous beats in our dataset exhibited distinct and well-defined
patterns that were easier for the model to learn, even in the presence of class
imbalance. Moreover, specific subgroups within the majority class could have
contributed significantly to misclassification errors. By opting for a lower gamma
value, the model could allocate more attention to these challenging examples
within the majority class, improving overall classification accuracy. Thus, the
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empirical results and thorough analysis guided the selection of a gamma equal to 0.5,
challenging the initial expectation but ultimately leading to superior performance
in our anomalous beat classification task.

Regarding the batch size value, the fact that a small value was found can be
attributed to several factors. Firstly, a small batch size facilitates more frequent
weight updates during training than a higher one, allowing the model to learn and
adapt to the dataset more rapidly. This characteristic is particularly advantageous
when dealing with unbalanced datasets, such as the MIT-BIH DB, as it enables the
model to capture the intricate patterns of anomalous beats better. Additionally, a
smaller batch size reduces the risk of overfitting, promoting better generalisation
to unseen data.

Finally, as the initial value of the learning rate is concerned, it is worth noting
that the optimal value can depend on various factors, including the dataset charac-
teristics, network architecture, and complexity of the classification problem. Our
empirical findings, precisely an initial learning rate of 0.001, highlight the effec-
tiveness of this choice for our anomalous beat classification task on the MIT-BIH
DB.

Overall, this technique does not focus on optimising each parameter individually
for the problem, but more on optimising the whole set of parameters, by varying
them independently. Therefore, it is more meaningful to consider them as an
optimal set rather than as a set of optimal values.

Based on the confusion matrix obtained from the results shown by the chosen
model, below are the metrics recommended by the AAMI, as specified in paragraph
3.7, relating to the performance assessment for:

• Distinguishing ‘S’ type beats from other beats (Table 5.4(a))

• Distinguishing ‘V’ type beats from other beats (Table 5.4(b))

• Distinguishing the five AAMI classes (Table 5.5)

From the results, it can be inferred that the beat class that posed the most
challenges during classification was the one corresponding to Supraventricular
ectopic beats (S). This may be due to their lower proportion in the dataset
compared to other beat categories.
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Table 5.4: Confusion Matrices relative to the best model and evaluation
metrics used to assess the performances of the model in distinguishing S
and V -type heartbeats. Abbreviations: ACC: Accuracy; FN : False Negatives;
FP : False Positives; +P : Positive predictivity; S: supraventricular ectopic beats;
Se: Sensitivity; V : ventricular ectopic beats; TN : True Negatives; TP : True
Positives.

(a)

(b)
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Table 5.5: Confusion Matrix relative to the best model and evaluation
metrics used to assess the performances of the model in distinguish the
five AAMI classes. Abbreviations: ACC: Accuracy; F: Fusion heartbeats; FN:
False Negatives; N: Normal heartbeats; Q: Unknown heartbeats; Se: Sensitivity;
Sp: Specificity; S: Supraventricular ectopic heartbeats; V: ventricular ectopic beats;
TN: True Negatives; TP: True Positives.

Finally, Table 5.6 shows a comparison between the results obtained in the
present work and the results of some studies in the literature. Specifically, for the
comparison, total accuracy (Acc) and sensitivities in the classification of S-type
and V-type beats (Senss and SensV ) were selected metrics to be compared.
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Table 5.6: Comparison between present work and some literature works on the
classification of cardiac abnormalities. The year of publication of the work, the
type of approach and the metrics used for the evaluation of the results are reported.

Author Year Approach Performance

This work 2023 DCNN
FL

Acc = 97.72%
SensS = 73.58%
SensV = 89.27%

Zubair et. al [83] 2022 DCNN
Cost-Sensitive Loss

Acc = 93.47%
SensS = 89.04%
SensV = 84.07%

Wang et. al [115] 2020 Dual FC NN
Acc = 93.94%

SensS = 90.30%
SensV = 81.40%

Zhai et. al [116] 2018 DCNN
Dual Heartbeat Coupling

Acc = 99.81%
SensS = 95.03%
SensV = 98.47%

Acharya et. al [71] 2017 DCNN,
Data Augmentation

Acc = 96.05%
SensS = 93.80%
SensV = 76.8%
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5.2 Task #2 Results
This section will present the results related to the proposed methodology for
adapting a pre-trained CAD system to Hi-ECG device signals. Specifically, the
focus will be on the following steps:

• Denoising and segmentation of the signals.

• Results of patches positioning identification and misplacement correction.

• Conversion of the signals to configuration #1.

5.2.1 Denoising and Segmentation of ECG Signals
The analysed ECG signals are part of a custom-created database for this thesis
work, as described in paragraph 4.3.1. Specifically, Table 5.7 presents the distri-
bution, for each recruited subject, of the acquisitions in the three classes used for
patches positioning identification. For more information regarding the acquisition
procedures, please refer to Appendix.

Each signal has been filtered as described in paragraph 3.3.1. Figure 5.4 reports
a comparison between 15 seconds of one of the signals of the database pre- and
post-denoising.

Figure 5.4: Comparison between 15 seconds of a signal in the Hi-ECG database
before and after denoising.

Subsequently, the filtered signals were segmented into beats, concatenated then
into segments to create the actual dataset used for training the MLP for device
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Table 5.7: Distribution of acquisitions made on subjects who participated in the
study for each class (e.g., type of positioning of the wearable device).

placement identification on the user’s chest. Figure 5.5 shows examples of these
segments referring to acquisitions performed on the same subject (ID10) in the
three configurations recommended by the device’s user manual.
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Figure 5.5: Segments resulting from the concatenation of beats in the three leads.
Examples are given for each configuration type.
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Finally, after segmentation, the dataset used for MLP network training is
distributed as shown in Table 5.8.

Table 5.8: Distribution of database segments in the three classes.

5.2.2 Patches Positioning Identification
The training of the MLP for patches positioning in the wearable ECG reader has
yielded good results, verified through a rigorous 10-fold cross-validation approach.
The dataset was divided into ten folds, allowing for comprehensive evaluation.
Following the training process, several metrics were calculated on the test set
to assess the performance of the MLP. Results obtained from the ten folds were
averaged to obtain the confusion matrix presented in Table 5.9. Accuracy, sensitivity,
and specificity for each class are also reported as well as overall results.

Table 5.9: Confusion Matrix of MLP network results and metrics used for its
evaluation (Accuracy, Sensitivity and Specificity).
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The calculated metrics demonstrate the MLP’s ability to accurately classify
the patches positions on the body. Sensitivity, a measure of true positive rate,
was found to be 97.27%, indicating the model’s effectiveness in identifying the
correct patches positions. Moreover, the specificity, measuring the true negative
rate, was measured at 98.63%, further validating the MLP’s ability to correctly
identify non-relevant patches positions.

Due to the limited number of subjects recruited for the creation of the Hi-ECG
database, the approach used to obtain these results was an intra-patient type, e.g.,
the segments used for training were also used for testing the network. Further
studies need to be conducted to attempt an inter-patient approach, where data is
reserved solely for testing, which can be performed according to the description
in paragraph 4.3.5. As an example of the inter-patient paradigm, the testing
procedure for an acquisition from a subject different from those involved in the
database creation is described. The Hi-ECG device was placed in Configuration 1
for this acquisition.

These steps were followed:

• The acquisition was segmented as described earlier, and each segment was fed
into the pre-trained MLP network, resulting in a prediction (Figure 5.6).

• Out of a total of 58 segments, only 2 segments were misclassified by the
network. To assign a single label to the acquisition, blocks of 10 segments
were considered, and for each block, the assigned class was determined as the
most frequently occurring value (Figure 5.7).

• The assigned class for the acquisition, in this case, class number 1, is the most
frequently occurring value among the labels assigned to the various blocks
that compose the signal (Figure 5.8).

114



Results

Figure 5.6: Example showing prediction output from MLP for each input segment.

Figure 5.7: Example showing the class associated with a block of 10
segments, based on the most represented prediction. If a block contains
less than 10 segments, the zero-padding technique is applied.
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Figure 5.8: Example showing how the class is associated to the entire
acquisition based on the most representative value of the blocks. M
corresponds to the number of beats of the signal divided by 10. The number is
approximated to the upper integer because the zero-padding technique is applied
for incomplete blocks.

5.2.3 Misplacement Correction Results
Assuming that the MLP network has correctly classified the class associated to an
acquisition, indicating the placement of the Hi-ECG device on the user’s chest, the
next step is to identify misplacement using the accelerometer data recorded during
the acquisition, as described in paragraph 4.3.6.

Table 5.10 presents a comparison of the accelerometer data, obtained as the
average acceleration along each axis, recorded on a subject who underwent acquisi-
tions in all types of configurations, including simulating the condition of central
body misplacement.

If a central body misplacement is identified, the signals are then corrected as
described in paragraph 4.3.6. Figure 5.9 shows an example of signal correction from
acquisitions on a subject where the Hi-ECG device was placed in the misplacement
Configuration 1. The signals acquired in Configuration 1 are also displayed as a
reference for evaluating the correction.
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Table 5.10: Accelerations (expressed in g) on the three axes related to
the three configurations, also considering the misplacement of the central
body. The axis for which the acceleration has greater modulus is highlighted. The
distinction between a case of normal configuration and misplacement one can be
made based on the sign of acceleration on that axis.

Figure 5.9: Results of the misplacement correction on the three leads, compared
with a signal taken from a recording without electrodes misplacement (reference).

Finally, Table 5.11 presents some physiological parameters related to the two
signals to assess the success of signal misplacement correction. As can be seen,
the correction does not alter the amplitude of the ECG segments, and the swap
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between leads 2 and 3 reflects the behaviour of the signal without misplacement.

Table 5.11: Physiological amplitude (QRS AMPL), computed as the sum of
the electrical values in correspondence of the peaks Q, R and S of a single beat,
and signal amplitude (SIGNAL AMPL), computed along the different ECG leads,
comparing a misplaced recording, before and after the correction, with another
recording on the same patient without misplacing the device

5.2.4 Signals Conversion Results
This paragraph presents the results of the proposed algorithm for converting
signals acquired by placing the Hi-ECG device in Configuration 2 or 3 into signals
morphologically similar to those acquired in Configuration 1.

Firstly, the geometry associated with the three configurations was computed.
This geometry was derived based on photographs taken of the subjects during
the signal acquisition phase, which were then analysed to determine the angles
associated with each configuration. An example of how the geometry was computed
from the subjects’ photographs is shown in Figure 5.10.
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(a) Configuration #1

(b) Configuration #2

(c) Configuration #3

Figure 5.10: Geometry associated to the three configuration computed for a
subject that participate at the study.
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The geometries for each subject were averaged to obtain an overall geometry for
each configuration, as shown in Table 5.12. Figure 5.11 present the results of the
conversion to Configuration 1 for two acquisitions made on the same subject in
Configuration 2 and Configuration 3. For comparison, data from an acquisition
made in Configuration 1 on the same subject are also provided.

Finally, Table 5.13 displays the wave amplitudes computed along the different
ECG leads, comparing the signals of the original configuration, the converted one,
and the reference.

Table 5.12: Geometry associated with the three configurations of Hi-ECG device
positioning.
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(a) Configuration #2 to #1

(b) Configuration #3 to #1

Figure 5.11: Signal reconstruction results in Configuration 1 from Configuration
2 and 3. Signals in Configuration 1 are also reported as a reference.
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Table 5.13: Comparison between the wave amplitudes of the original (conf. 2 and
3), reconstructed and reference signals (conf. 1).

(a) Configuration #2 to #1

(b) Configuration #3 to #1
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The actual impact of the correction can be observed as the converted leads
exhibit the same polarity as the reference. Some morphological differences between
the converted signals and the reference, especially in the case of the conversion from
configuration 3, may be attributed to the approximations involved in the method.
In future developments of this work, a more extensive evaluation of the method is
envisioned, analysing the conversion results for other subjects who participated in
the study and acquisitions from subjects with cardiac anomalies.
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Chapter 6

Conclusions and Future
Works

This thesis work is related to research on the classification of anomalies present in
electrocardiographic (ECG) signals through Artificial Intelligence-based approaches.
In particular, the Hi-ECG device, a wearable ECG recorder commercialised by
CompuGroup Medical and developed in collaboration with STMicroelectronics,
has been presented. This device can acquire three channels of signals for extended
durations of time. Through this device, an approach has been sought to classify
cardiac anomalies in order to be integrated on one side into a cardiac telemonitoring
system and, on the other, to be used as part of a Computer-Aided Diagnosis (CAD)
system to support physicians’ diagnosis.

The main challenge encountered in this work is the current absence of a database
of Hi-ECG recorded signals containing appropriately labelled anomalies by experts.
Based on this consideration, two parallel works have been developed.

The first work involved the development of a CAD system for classifying cardiac
anomalies using a publicly available database, particularly the MIT-BIH Database.
Based on a 9-layer convolutional neural network, the system successfully classified
cardiac anomalies at the beat level with an overall accuracy of 97.72%. The
classification followed the ANSI/AAMI EC57:1998/(R) 2008 standard proposed
by the Association for Advancement of Medical Instrumentation (AAMI), which
categorises heartbeats into five subclasses: Normal (N), Supraventricular (S) ectopic,
Ventricular (V) ectopic, Fusion (F), and Unknown (Q).

The proposed methodology, including the signal preprocessing, the chosen
network architecture, and the training and testing procedures, can also be applied
on signals acquired with Hi-ECG device when a database of recordings with
anomalies acquired with it becomes available. In this regard, during this thesis
work, the foundations for a possible clinical trial at Mauriziano Hospital in Turin
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aimed at creating such a database have been laid.

At the same time, a methodology has been proposed to achieve the objectives of
the work without the need for a dedicated database specifically built for Hi-ECG
signal classification.

The fundamental premise of this task is that signals acquired by placing the
device, as indicated in the user manual, have morphological differences compared
to signals obtained by placing the electrodes in the standard Einthoven positions
(i.e., on the limbs). Additionally, it is essential to consider both the intra-patient
variability, related to the device being placed in different configurations resulting
in different morphologies, and the inter-patient variability, due to the variations in
electrophysiological characteristics of the cardiac muscle among individuals.

With this understanding, the idea behind this method is to use a pre-trained
CAD system with signals considered “standard” including the three Einthoven
leads. The objective is to transform the three leads acquired with the Hi-ECG
device into “standard” configurations, making them morphologically similar to the
signals used for training the CAD system.

To achieve this, it has been proposed to first eliminate the intra-patient variability
by employing an experimental method that enables the transformation of all signals
acquired with the Hi-ECG device into the morphology corresponding to a singular
configuration. The accurate identification of device placement on the patient’s
chest and the correction of any placement errors resulting from an incorrect reading
of the user manual form the basis of this analysis. It is performed by leveraging
the accelerometer data recorded by the device during acquisition and using an
appropriately trained and tested Multi-Layer Perceptron Network.

The device placement identification work is innovative in the context of wearable
devices, as it could also be used to provide feedback to individuals who are required
to wear the device without assistance from a specialist independently. In future
developments, it is intended to further validate this method by testing it on subjects
who did not participate in this study. Additionally, the method will be extended to
bedridden subjects, as it is currently designed for subjects in a seated or standing
position.

Finally, the last step of the proposed methodology involves obtaining “standard”
signals from the Hi-ECG signals, which have been appropriately processed as
explained, and the subsequent validation of the CAD system on these signals.
The reconstruction of “standard” signals is an increasingly studied problem, and
interesting artificial intelligence-based methods have been proposed in recent years.
An interesting approach for this task, analysed in this thesis, is using of a Long
Short-Term Memory Network, whose implementation can be considered as future
development of the work.

125



Conclusions and Future Works

Overall, this thesis work demonstrates excellent promise in the field of cardiac
anomaly classification, showcasing the potential of wearable devices and artificial
intelligence to enhance cardiac monitoring and diagnosis, ultimately improving
patient care and outcomes.
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Appendix

Hi-ECG Electrodes Positioning for the creation of the Hi-ECG Database.

Manual Configurations

(a) Configuration #1 (b) Configuration #2

(c) Configuration #3
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Appendix

Misplaced Configurations

(a) Configuration #1

(b) Configuration #2

(c) Configuration #3
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Appendix

Main Body Translation - Configuration #1

(a) Configuration #1 - high

(b) Configuration #1 - low
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Appendix

Main Body Translation - Configuration #2

(a) Configuration #2 - right

(b) Configuration #2 - left
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Appendix

Main Body Translation - Configuration #3

(a) Configuration #3 - right

(b) Configuration #3 - left
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