
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Software development life cycle of a
back-end web application using the Elixir

language

Supervisor

Antonio Servetti

Candidate

Rizwan Khalid

Edoardo Conte (Company Supervisor)
Restworld S.r.l.

July 2023

Abstract

In the Horeca sector, finding the right candidate is a problem that every employer
face, and the same goes for people who look for work in this sector. This situation has
worsened in COVID-19 where finding people to come and work in the restaurant
became difficult. Restworld has a solution for this, giving a platform to both
the worker and employer to enlist their requirements, working for specific time-
period / duration, or for long term. Among many other platforms providing this
service, in the Restowrld, the focus is the correct match between the two entities,
simplicity and ease-of-use product for them. Certainly this includes a reliable and
a scalable product. The backend of the software is developed in Elixir language
which is known for its robustness, reliability and scalability. The elixir backend
is connected to a relational database, which ensures the consistency by having
some constraints, like unique or foreign-key constraints. Every software platform
involves the authentication and authorization mechanisms developed. Considering
that fact the some users in this domain are not much into technology, they tend
to forget their passwords frequently. Magic link functionality was developed so
that any user, given email can access the platform, without the need of a password.
The user experience matters a lot in software products and if the backend system
is slow in providing the data, this can cause some significant delays in rendering
it on client and thus making your service bad. To tackle this issue, cache has
been implemented for some functions which we know are used very frequently.
To provide quick and results from a number of documents, or any data, full-text
search has been implemented by using an external service. The only thing is to
have consistent data on both our database and the external service servers. By
having these implementations in the product, we advantages in different contexts.
For the main users, they get to access the platform without remembering almost
anything. The system responds quickly as the processing time reduced for some
mainly used operations. The internal members gain more flexibility in finding a
worker by remembering a specific thing about them, like their city or a nearby
area.

i

Acknowledgements

First of all, I am sincerely grateful to God, for His boundless blessings and unwa-
vering presence, which have bestowed upon me the strength and perseverance to
successfully complete this thesis. Without His guidance and grace, this milestone
would not have been attainable.
I am deeply appreciative of my family for their unwavering love and unconditional
support during this significant journey. I am especially grateful to my parents,
whose continuous encouragement and sacrifices have been instrumental in my
pursuit and successful completion of this endeavor.
I am also indebted to my supervisor, Prof Antonio Servetti, for his guidance and
expertise. I am so grateful for his support and encouragement.
I am deeply indebted to Restworld for providing me with the opportunity to conduct
my research. I could not have completed this thesis without their help. Specifically,
I would like to thank Edoardo Conte, my supervisor at Restworld, for his support
and guidance during my time at the company. He was always available to answer
my questions and provide me with feedback.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1
1.1 Software Development Life Cycle 1
1.2 Problem Description . 2
1.3 About Restworld . 3

2 Tools and Technologies 4
2.0.1 Database Design . 4
2.0.2 Project Management . 5
2.0.3 Communication . 6

3 Implementation 7
3.1 Database Architecture . 7

3.1.1 Brief Database Structure . 7
3.1.2 Our Implementation . 8

3.2 Programming Language . 9
3.3 Authentication and Authorization 10
3.4 Cache . 12

3.4.1 Need for cache . 12
3.4.2 Caching Patterns . 13
3.4.3 Caching Topologies . 14
3.4.4 Our Implementation . 15

3.5 Full Text Search Implementation 20
3.5.1 The need for full-text search 21
3.5.2 Algolia . 21

iv

4 Testing and Maintenance 24
4.1 Test-Suite . 24

4.1.1 Our Implementation . 25
4.2 Monitoring . 27

4.2.1 Appsignal . 27

5 Conclusion 30
5.0.1 Forms Structure . 30
5.0.2 Using GraphQl . 31

Bibliography 33

v

List of Tables

3.1 Cache vs DB - Speed Difference . 19

5.1 GraphQl vs REST . 32

vi

List of Figures

1.1 Software Development Life-Cycle 1

2.1 Dbdiagram . 5

3.1 User Schema . 8
3.2 Database Structure . 9
3.3 Referenced Tables . 12
3.4 Read Aside . 13
3.5 Write Aside . 13
3.6 Write Through . 14
3.7 Replicated Cache . 15
3.8 Partitioned Cache . 16
3.9 Large Sized Table . 17
3.10 Small Sized Tables . 18
3.11 String Fields Example . 21

4.1 Appsignal Dashboard . 28
4.2 Slow Queries Appsignal . 29

5.1 Forms Table . 30
5.2 Restaurants Table . 32

vii

Acronyms

Horeca
Hotels, Restaurants and Catering

API
Application Programming Interface

REST
REpresentational State Transfer

ix

Chapter 1

Introduction

1.1 Software Development Life Cycle

Software Development Life Cycle (SDLC) is a process through which defines some
steps for a software system. This process helps organization in creating an efficient
and client adhering system, by also managing the risks and control the cost of the
system.

Figure 1.1: Software Development Life-Cycle

1

Introduction

Figure 1.1 outlines the steps involved, along with some responsible/associated
people to it. We can have a brief introduction to each step. [1]

• Requirement
This is the initial phase for development life cycle, in which we analyze the
situation, gather the requirements for the system. The goal is to have definite
features and constraints of the software. This process requires the involvement
of different stakeholders, business analysts and development teams.

• Design
This step involves designing the architecture. Once we have the requirements
ready, we can start defining the database structure and the UX/UI design.
Defining how the software would look like, the process flow for user and how
it will be stored in the database is all done in this step.

• Development
The actual coding takes place at this development step. The right language and
tools for this system is defined in this step. This step involves programming
the software according the specifications defined already.

• Testing
Once we have a software programmed, we can pass it to the testing phase in
order to verify that the requirements are met. Critical features, bugs are all
identified in this step. QA engineers, testers are responsible for the verification
process.

• Deployment
After testing the software, making sure that it satisfies the requirements, its
ready to be deployed for the end-users. An executable is made and is installed
on to production environment.

• Maintenance
The last step is to monitor the deployed software, in order to fix the bugs
or having any unusual activities. Several monitoring tools are available.
Feedbacks are highly important in this step

1.2 Problem Description
For a startup company, there are many challenges faced in terms of launching their
product/service in the market. Here we can briefly look at some them, related to a
software product.

2

Introduction

• Due to limited financial resources, startups usually have difficulties in hiring
professional designers, developers in their team. This can affect the overall
product development.

• Having close deadlines, time restrictions, to release the Minimum Viable
Product (MVP) into the market, which would eventually generate cashflow,
this causes the company to make some strategic decisions and prioritize the
software features.

• There can be intense competition in the market, considering that there
already exists established companies with greater resources available, it’s
difficult to achieve the customer loayalty.

1.3 About Restworld
Restworld is a startup company that provide services in Horeca sector by sim-
plifying the supply-demand gap. It acts as a bridge between restaurant owners
(employers), who are looking for someone to hire, for full-time or seasonal jobs, and
the workers who are looking for work in this sector. A dedicated team of Customer
Success Managers (CSM) is there to understand the needs and requirements for
the employers and workers. Each employer can have multiple retaurants and for
each restaurant, there can be different job positions. A brief flow of work can be
described as,

• The employers conveys the requirements to the CSM for the new job position

• The responsible CSM finds a worker fit enough for the profile described by
the employer

• Once a list of workers, that satisfies the requirements, are ready, that shortlisted
workers/candidates are sent to the employer

• The employer can have interviews and hire among those shortlisted candidates

The company has provided different platforms for each entity to access their services.
An employer has a profile/dashboard available in which there are shortlists available
for each job position and can also see the list of shortlisted workers.
In the same manner, the workers have a separate platform in which they can see
their status in shortlists or can apply to other active job positions directly.
Then there is an internal platform which is used by CSMs to look thtough profiles
and find the candidates.

3

https://www.restworld.it/

Chapter 2

Tools and Technologies

There can be many solutions to a given problem, the selected solution should be
effective given the scenario. In the same way, developing a software product, we
have multiple ways to follow, many tools and technologies at hand. Listed below
are some of the technologies that were used.

2.0.1 Database Design
Structuring the database is useful in order to have complete view of the system.
We can analyze whether all the requirements are met or not. This step is crucial
for a system because it can happen that the proposed structure cannot be scalable
in future.

For creating the structure, there are many tools available such as [2],

• Diagrams.net

• Dbdiagram

• ERD Plus

• QuickDBD

dbdiagram was used to define our database structure, in which we can define the
tables, their columns and the relationships between them. It’s a free and simple
tool for creating Entity Relationship Diagrams.

Dbdiagram uses DBML (Database Markup Language), which can be seen on
left in figure 2.1. We just to define in the table schema, the references it has and
the tool will create the reference in the diagram shown. It also has a real-time
collaborative editing feature.

4

https://app.diagrams.net/
https://dbdiagram.io/home
https://erdplus.com/
https://www.quickdatabasediagrams.com/
https://dbdiagram.io/

Tools and Technologies

Figure 2.1: Dbdiagram

2.0.2 Project Management
Project management is essential in a software development teams as they provide
a centralized system to creating tasks, keeping track of them, respecting deadlines
and seeing who is falling behind. This helps in making the development organized.
Brief advantages of a project management tool are,

• Accountability/Responsibility: A task can be assigned to a person and
he will be repsonsible that the task satisfies the requirements. There are also
stories which defines the high-level requirements, then the tasks can be created
according to what needs to be done to implement the functionality

• Visibility: Being able to see all the tasks of the project, the user can look
at the risks involved, the complexity of each task and the dependencies of it,
which allows the user to make better decisions.

Some of the tools for project management are,

• Jira

• ClickUp

• Basecamp

5

https://www.atlassian.com/
https://clickup.com/
https://basecamp.com/

Tools and Technologies

Jira is used by us for project management, as it has good integrations with other
tools, highly customizable and widely used.

2.0.3 Communication
In order to make the team effective, communication plays a big part in it. It ensures
that everyone is on the same page, have the requirements clear to everyone and
convey if there any deadlocks or hurdles that might help the productivity.
Communication can be done in many types, it can be,

• Face-to-Face

• Calls

• Email

• Messaging

• Video Calls

Slack and Notion are used as modes of communication. Slack supports all the
modes of communication, also it has variety of apps/extensions available through
which we can integrate other applications to it. For example, we can integrate Jira
directly with Slack and we will know the updates on the tasks to which we have
been subscribed to.
Notion on the other hand, is more of a documentation tool. Let’s say we have an
idea about the feature that can be or is to be implemented, we create a notion page
which can be shared among users, they can collaborate with each other and improve
the productivity. Having a documentation of different features of a software is
important and can be guideline for new users in the team.

6

https://slack.com/
https://www.notion.so/product

Chapter 3

Implementation

3.1 Database Architecture
Database architecture defines the desgining and organization of a database, how
the components are structured and the relationships that exists between them. The
decision in choosing the data model for the database is crucial as this will define
overall efficiency, scalablity and integrity of a system.
The data model that we are using is the Relational model, Relational Database
Management System (RDBMS). The relational model has several advantages, such
as, [3]

• Strict foreign key constraints, these constraints help in maintaining consistency
all over the system. If we have different user-types exist as schemas, then we
are sure that the user record exists for that user-type entity.

• Structured data, each entity type having a structure of its own, such as
mandatory (not null), optional (nullable) fields and even having enum types
of a field. As shown in figure 3.1, we can see the different user-types, enum
values, that exists in the system.

• Indices, by defining the indices on specific columns helps us in making the
database system effective.

3.1.1 Brief Database Structure
In figure 3.2, the main schemas defined in our backend system is shown. User schema
has one-to-one relations with Workers, Employers and RwMembers, each schema
containing its own specific fields. The Employer can have many restaurants, so there
exists a one-to-many relation between Employers and Restaurants, and similarly, a

7

Implementation

Figure 3.1: User Schema

Restaurant can have multiple Job positions, it has a one-to-many relation with the
Job Positions. Variables table contains data related to information about different
entities, such as some job_type of a job position, gender required for a job position,
etc. The Variables contain the key and variable_name, as a unique multi-column.
The label field is used to display the text that will be visible to the user, while
in the backend system, we use the key or the ID to reference them, so that if we
want to change the label in future, the existing reference with the entities will not
change.

3.1.2 Our Implementation
There are many referenced entities and these references, with time, will increase.
There will be more joins between schemas, only to get the information. Giving
preference to efficiency and scalablity in our case, we disregard the strict foreign key
constraints for some entities. Lets take an example of Variables schema. Because
the values of Variables are change rarely, and when it does, we can propagate
the changes manually, we store the variables data in memory. Now the variable-
referenced-fields are simple strings and doesn’t have a foreign key constraint on

8

Implementation

Figure 3.2: Database Structure

Database. For example, the job_type field of a job position is a string now, which
contains the value of the Variable IDs but there doesn’t exist a constraint between
them. In this way, we can decrease the number of joins because we fetch the
information from memory, which is much faster.

3.2 Programming Language
The backend system is written in Elixir language. Elixir is a functional programming
language built on Erlang virtual machine, BEAM which is known for its concurrency,
fault-tolerance and scalablity. Discord can be seen as an example of this language’s
usage, which scaled their system to have 5 million concurrent users.[4]
Here are some of the key features of Elixir:

• Fault Tolerant: Elixir has been designed to be scalable and fault tolerant. It
uses actor model for concurrency and isolates the processes. Each process can
have a supervisor which is responsible for its functionality to be completed, or
in case of failures, gives the restart ability or a recovery process.
Here is an example of a supervised task (caching a value). The last option,

9

Implementation

restart: :transient makes sure that this task is restarted specified number of
times, only in the case of failure.

Task.Supervisor.start_child(
RestWorld.TaskSupervisor,
fn ->

:ok = Cache.put({@key_atom, jp_id}, jp, ttl: @ttl)
end,
restart: :transient

)

• Concurrency: Elixir processes are very lightweight and not to be be confused
with operating system processes. They communicate with each other through
message passing, are isolated and share nothing, making them fault tolerant
and its usage in a distributed system.

• Immutability: Elixir emphasizes immutability and the using pure functions.
Function arguments are transformed but cannot be modified. Add it to the
pattern matching and the code becomes maintainable.
Here in an example, we have a sum function which will be executed only if the
num1 and num2 are integers and returns the sum of them. In the function
body, if the value of either of them changes, it doesn’t propagate outside the
scope of the function.

def sum(num1, num2) when is_integer(num1) and
is_integer(num2) do

num1 + num2
end

def sum(num1, num2), do: :error

• Syntax: Elixir is inspired by Ruby. It provides concise, readable and gives
features like pattern-matching, pipelines and macro-based programming.

3.3 Authentication and Authorization
Authentication is verifying that the user is the one who he/she claims to be, to grant
access to a system. To authenticate a user, we use password-based authentication
and magic link functionality.

10

Implementation

• Password Based: The user is authenticated using the email and password,
which stored in our database. Hashed value of password is stored. When the
user logs in, a JWT (JSON Web Token) is generated and assigned to user.
Then whenever the user makes the subsequent requests, that JWT token is
passed in header of the request, and the backend identifies the identity of the
user through it.

• Magic Link: It’s a much simpler login functionality for a user. The process
is as follows:

– User provides an accessible email

– The backend generates a token, encrypting user’s identity, and sends it to
the user’s provided email

– The user opens the link in his/her email and is redirected to login page

– The login function at backend decrypts the token, extracts the user identity,
generate and returns the JWT token

Authorization comes after the authentication step which gives privileges to user
and access to contents to which it has been allowed. We use authorization to
protect content of other users. Authorization process makes it possible to not allow
a user1 see the contents of user2.
Bodyguard library is used at backend for authorization. It allows us to define
different scenarios to authorize a user. Lets have an example,

def authorize(actions, {:ok, %{type: "employer"} = _user}
= _current_user, _params)

when actions in [
:index_restaurants,
:index_job_positions,
:retrieve_invoice,
:upload_picture,
:delete_picture,
:stripe_customer_portal

],
do: :ok

deny everything else
def authorize(_, _, _) do

{:error, :unauthorized}
end

11

https://github.com/schrockwell/bodyguard

Implementation

authorize function defined above ensures that only the user with type =
employer can access the functions, which are listed as actions. For every other
action or if the conditions are not met, the user is denied access

3.4 Cache

3.4.1 Need for cache
The relational database is used in the system. To get information for a single entity,
we need to create joins on database, depending on what information do we need.
Lets take an example,

Figure 3.3: Referenced Tables

Here we can see that the table a has one-to-many relation with table b. In order to
get information for table b while querying table a, we need to create the join which
will load multiple table b values.
Now imagine a case where we have multiple of these tables and these joins have
to be created everytime the enpoint is called, that would definitely overload the
database. In order to solve this efficiency problem, cache has been implemented,

12

Implementation

Figure 3.4: Read Aside Figure 3.5: Write Aside

which would cache the values, and the next time that operation is called, the cached
value is returned rather than going to the database.

3.4.2 Caching Patterns
Cache Aside

Cache aside strategy is the most commonly used one. Whenever there is a read
request, the application will first look in cache, if the value is not present, the
application will load the value from database and update the value in cache.
For a write request, the application writes to the database first and then to the
cache.

Read/Write Through

In this cache pattern, the cache is used as a primary SOR (Source of Record). In
these cases, rather than the application, the cache is responsible for providing you
the data. If there is a read request and the data is not present in cache, the cache
is responsible for getting the data from the data-store and return the value.
For the write request, the application conveys the request to the cache directly and
the cache is responsible to update the data on data-store. In a way, in this usage
pattern, the cache is the orchestrator here and is responsible to maintain the data
consistency between cache and data-store.

13

Implementation

Figure 3.6: Write Through

Write Behind

For the write-behind usage pattern, the difference exists with the cache updating
the data-store. With the write-through strategy, a synchronous request is made to
update the data-store while for the write-behind strategy, an asynchronous request
is made to update the value in data-store.

3.4.3 Caching Topologies
• Replicated Cache

In this cache topology, the key-values are replicated for each node, that is,
each node/server will contain the same key-value pairs. In terms of reading,
this would be very useful but a write will trigger the write operation on every
node. Therefore, this kind of topology is useful for cases in which the data is
read most of the times and is written less often or only once.

• Partitioned Cache
For the partitioned cache topology, the key-value pairs are distributed among
each node/servers. In order to get a value, difference algorithms are used,

14

Implementation

Figure 3.7: Replicated Cache

such as, consistent hashing, to find the node containing the requested value.

3.4.4 Our Implementation
For our implementation of cache, considering that a simple solution would be suffice
and which would be easily maintainable, cache-aside pattern is implemented.
Regarding the topology, both the topologies are implemented depending on the
use case. For some tables/entities having bulk data, partitioned/distributed cache
topology is used while for other tables having less data but frequently used,
replicated cache topology is implemented.

In Figure 3.9, we can see an example of a large size information. A single job
position table has its own fields but if we need information also from its restaurant,
the data size will be increased. Also these entities are to be updated more frequently,
therefore it is more sensible to put them in a distributed cache.

As small sized information, shown in Figure 3.10, the information contained in
this table is rarely or never updated, therefore a replicated cache is a better choice

15

Implementation

Figure 3.8: Partitioned Cache

to implement them.

In the code snippet given, listing 3.1, a wrapper function is defined, which we
call to store the job position in cache. The code that calls the library function to
save the job position, is wrapped inside a supervised task. A supervised task is a
task which will be restarted by the supervisor if its execution is not normal, that
is, an error or exception occurs.

Listing 3.1: Storing a Job Position in Cache
1 de f put(%JobPos i t ion { id : jp_id } = job_pos i t i on) do
2 Task . Superv i so r . s t a r t_ch i l d (
3 RestWorld . TaskSupervisor ,
4 fn −>
5 : ok = Cache . put ({@key_atom , jp_id } , job_pos i t ion , t t l : @tt l)
6 end ,
7 r e s t a r t : : t r a n s i e n t
8)
9

16

Implementation

Figure 3.9: Large Sized Table

10 j ob_pos i t i on
11 end

Requesting Job Position (when the value doesn’t exist in Cache)

• Job position is requested given the ID

• System checks value in cache

• Value not found in cache

• Database is queried for that ID

• Joining operations are done to preload the entities

• Preloading job position is stored in cache

• Job position is returned to client

17

Implementation

Figure 3.10: Small Sized Tables

Listing 3.2: Fetching a Job Position
1 de f get (JobPos i t ion = ent i ty , %{" id " => id }) do
2 Cache . get (ent i ty , id)
3 |> case do
4 n i l −>
5 RestWorld . Employers . Helper . get_job_position_from_db (id)
6 |> case do
7 n i l −>
8 n i l
9

10 jp −>
11 Cache . put (jp , t rue)
12 end
13

14 j ob_pos i t i on −>
15 j ob_pos i t i on
16 end
17 end

18

Implementation

Updating a Job Position

• PUT request is made given the ID and update parameters

• Update is performed in Database (making DB as the SOR)

• Updated value is stored in cache

• If the value was already present in cache, it is replaced with the updated value

• All other related cache values are deleted from cache, so that when the request
that value is made, updated value from cache is queried and cache is updated
for that value

Listing 3.3: Updating a Job Position
1 de f update (changeset) do
2 Repo . update (changeset)
3 |> case do
4 { : ok ,
5 %JobPos i t ion { restaurant_id : res taurant_id } =
6 updated_job_posit ion } −>
7 JobPos i t ion . upser t_algo l ia_index (updated_job_posit ion)
8

9 Cache . put (updated_job_posit ion)
10 Cache . d e l e t e (%Restaurant { id : re s taurant_id })
11

12 { : ok , updated_job_posit ion }
13

14 e r r o r −>
15 e r r o r
16 end
17 end

In the code snippet above, updated job position value is put in cache. Now,
since the restaurant values, stored in cache, also has job positions preloaded, that
restaurant, associated with the job position, is deleted from cache, otherwise the
data in cache would be inconsistent.

Table 3.1: Cache vs DB - Speed Difference

Entity Size (bytes) DB Read (msec) Cache Read (msec)
JobPosition 38028 59973 731
Restauarant 208031 26258 2813
RWMember 4493 1541 33

19

Implementation

3.5 Full Text Search Implementation
Full text search is used to retrieve information from an entire text of a document,
or from the data containing phrases, keywords. It is used to query the text data
given the input. A document can be described as a collection of phrases, text or
keywords, to retrieve the information from.
Lets understand the concept of full-text search with an example. Imagine a person
was reading a book, now that person needs to find a quote, the location of that
is not known to the person. What the person only remembers is that the quote
contained ’blue’ in it. Using this limited information, the user can get the result
using full text search implementation.
To efficiently retrieve the information, an index is created for each keyword/phrase,
with its location or an object. For example, we have 3 objects, as,

{
id: 1,
published_date: "2001-01-02",
text: "The sky was filled with mesmerizing blue clouds."

},
{

id: 2,
published_date: "1996-05-02",
text: "As I gazed up, the blue clouds danced gracefully."

},
{

id: 3,
published_date: "2005-02-02",
text: "The moonlight shimmered on the tranquil lake."

}

The indices for the objects can be,

’sky’ => 1,
’blue’ => 1, 2,
’filled’ => 1,
’gracefully’ => 2,
’shimmered’ => 3

The indices contain the phrases and the id of the object. Therefore, searching for
’blue’ would return 1 and 2 objects.

20

Implementation

3.5.1 The need for full-text search
The main entities defined in our system are of workers, restaurants and job positions.
In each of these entities, there are some text/string columns defined. Lets say in one

Figure 3.11: String Fields Example

of the restaurants location_description, we had stored near metro station. Rather
than remembering the name of the restaruant and querying only the restaurants
table, we can query the pharse, metro station, which would return all the restaurants
having the ’metro station’ in its location_description.
This searching is useful also for other entities making the work of the user a lot
easier. Since the full-text search is not only limited to text, we store whatever
information we want and query on that.

3.5.2 Algolia
Algolia offers its search engine through Software-as-a-Service (SaaS) model. It
allows developers to integrate the relevant search functionality into their platforms.
It includes many of the features, like autocomplete, instant search, typo tolerance,
etc. Algolia focuses on speed, simplicity and relevance to enhance their search

21

Implementation

functionalities. RESTful API is used for searching.

Implementation

Algolia requires that the information to be uploaded on their servers. Multiple
indices are created on Algolia for different entities. There is a separate index for
workers and another one for restaurants, so that if we need information about the
workers only, we can use that index only and filter the unnecessary results.

Listing 3.4: Restaurant Algolia Structure
1 de f r e s taurant_st ruc t (r e s t au rant) do
2 %{
3 objectID : r e s t au rant . id ,
4 restaurant_name : r e s t au ran t . restaurant_name ,
5 cu i s ine_note : r e s t au rant . cu is ine_note ,
6 address : r e s t au ran t . address ,
7 country : r e s t au ran t . country ,
8 l o c a l i t y : r e s t au rant . l o c a l i t y ,
9 postal_code : r e s t au ran t . postal_code ,

10 notes :
11 Enum.map(r e s t au rant . notes , fn note −>
12 %{
13 objectID : note . id ,
14 note : note . note ,
15 category : note . category ,
16 de l e t ed : note . de le ted ,
17 last_modif ied_by : note . last_modif ied_by_user
18 }
19 end) ,
20 j ob_pos i t i on s :
21 Enum.map(r e s t au rant . job_pos i t ions , fn jp −>
22 %{
23 objectID : jp . id ,
24 j ob_desc r ip t i on : jp . job_descr ipt ion ,
25 status_key : jp . status_key
26 }
27 end) ,
28 employer : %{
29 objectID : r e s t au rant . employer . user_id ,
30 business_name : r e s t au rant . employer . business_name ,
31 vat_number : r e s t au rant . employer . vat_number ,
32 sdi_code : r e s t au rant . employer . sdi_code
33 }
34 }
35 end

In the code given, we have an example struct defined for restaurants. This object
is uploaded to the algolia server with the information filled. Whenever we have

22

Implementation

an insert or an update operation to a restaurant value in database, the value on
algolia is updated/inserted synchronously.
Algoliax library is used to communicate with Algolia. Helper functions like save,
search and many others are called for different purposes. These functions make the
API request to algolia, get the result from Algolia API, parses it and returns to
the user. Using a library, it has been integrated in our codebase, which handles
the insertion and update of the data on Algolia.

Usage

On algolia, limited information of an entity is stored. Because the information that
is left out is not needed in any case for searching.
Since the data is not complete over aloglia, we cannot query only algolia and return
the results to the client. In our implementation, in case where we want to search
for a given text, both algolia and the DB is queried in a specific manner.

Text-Search Filtering:

• Query algolia for text search query

• Apply the filters on Algolia, if present any

• Get the entity IDs from algolia

• Query the DB with those those IDs returned

• Preload the necessary information

• Maintain the same order as from algolia

• Return the results

Basic Filtering:

• Query the DB with the filters present in parameters

• Preload the necessary information

• Apply sorting

• Return the results

23

https://github.com/WTTJ/algoliax

Chapter 4

Testing and Maintenance

4.1 Test-Suite
In order to maintain the functionalities of a system, test suite is essential. It makes
sure that each of the feature is working correctly after addition of some another
functionality or refactoring a current one. Instead of testing each feature manually
which takes time, tests are created for that feature which would save time and
increase productivity.
In elixir, we have a built-in framework for testing, ExUnit, which allows to create
tests in a very readable manner. Lets take a look at the following example,

test "create_user()" do
user_attrs = %{

"name" => Faker.Person.name(),
"email" => Faker.Internet.email(),
"type" => "worker",
"password" => Faker.Lorem.characters(16)

}

assert {:ok, %User{} = user} =
Accounts.create_user(user_attrs)

assert user.name == user_attrs["name"]
assert user.email == user_attrs["email"]
assert user.type == user_attrs["type"]
assert Bcrypt.verify_pass(user_attrs["password"],

user.hashed_password)
end

In the test module, we define a test named create_user . In the test, we define

24

https://hexdocs.pm/ex_unit/main/ExUnit.html

Testing and Maintenance

attributes to create a user and pass it to the context function. Now if everything
is correct, the user is created with the given attributes, that we assert afterwards
with the given attributes.

4.1.1 Our Implementation
The tests are run synchronously, unless specified otherwise, but in a random order.
Now imagine a test which would need to test the get/show function of an entity.
For that we would need to create user in each test and then assert that the value
returned from the context function is the correct one, as defined below,

test "get_user()" do
user_attrs = %{

"name" => Faker.Person.name(),
"email" => Faker.Internet.email(),
"type" => "worker",
"password" => Faker.Lorem.characters(16)

}

{:ok, %User{} = created_user} =
Accounts.create_user(user_attrs)

assert {:ok, user} = Accounts.get_user(created_user.id)
assert user.id == created_user.id

end

The same criteria would be used for other functions which involves a user entity to
be present. To avoid having to create user everytime in each test, we are defining
the main entities in a setup_all function which would run once at the start of each
testing module. Each test can select the entity it needs, as implemented below,

setup_all do
user_attrs = %{

"name" => Faker.Person.name(),
"email" => Faker.Internet.email(),
"type" => "worker",
"password" => Faker.Lorem.characters(16)

}

{:ok, %User{} = created_user} =
Accounts.create_user(user_attrs)

25

Testing and Maintenance

{:ok, user: created_user}
end

test "get_user()", %{user: user} do
assert {:ok, user1} = Accounts.get_user(user.id)
assert user1.id == user.id

end

test "update_user()", %{user: user} do
update_attrs = %{age: 33}
assert {:ok, updated_user} =

Accounts.update_user(user, update_attrs)
assert updated_user.age == update_attrs.age

end

Now the setup_all function returns the entities that can be used by the function.
Each test, after its name is being defined, it selects/accepts the entities that it
is required. The point to remember here is that if we change an entity/update a
shared entity, it will modify it for the other test as well. In that case, we will just
create a bare minimum entity, which will be explained below.

Using Factories

Factories are the entities which are created using the minimum information. For
example we can create a user using just email and type, name and password are
not required for creating a user. ExMachina is used to create factories for each
entity in test suite. Lets take an example of the definition of a user factory,

def user_factory do
%User{

email: Faker.Internet.email(),
type: "worker",
password: Faker.Lorem.characters(19)

}
end

Now our test module can import the factories defined and use them as,

...after importing the factory module
test "get_user()" do

user = insert(:user)
assert {:ok, user1} = Accounts.get_user(user.id)

26

https://github.com/thoughtbot/ex_machina

Testing and Maintenance

assert user1.id == user.id
end

So instead of creating an entity, containing bulk information which is not necessary
in every case, we can create the entities with the minimum required information,
we can create them easily and use them.

4.2 Monitoring
When the application is deployed to production, in order to ensure that the it is
working as expeted, a or multiple monitoring tools can be implemented. They are
responsible to report any irregularities found with the application. Since the error
code 500, internal server error, happens on unknown cases, it’s crucial to know
when and where it happened, and if it’s frequent, then it needs to be prioritized
over others.

4.2.1 Appsignal
In our system, Appsignal has been integrated, as a monitoring tool, which gives us
many useful insights into the system. Whenever there is a system crash, we can see
the log report generated by the library on the dashboard. Appsignal also allows to
monitor custom functions, calculating their execution time and differentiating the
events that are heppening during its execution.
For the general usage of appsignal, we can simply configure the file for it and use it
in our main application. The config file allows us to ignore some actions or to filter
some parameters that we don’t want to be logged or sent to the appsignal. For
example, due to privacy concerns, the user’s address, phone numbers, passwords,
etc, are not sent to appsignal.

As seen for the dashboard figure, 4.1, we have multiple tools available for
monitoring or to diagnose a problem. One of them is the Slow Queries functionality.
It lists all the queries that sorted by impact or throughtput, which helps us to give
an idea of what can be optimized, whether we can optimize the query or if we can
cache it. We can see the details like which query is actually executing, what is
it’s response time, to which event it’s associated. Here is a screenshot of the slow
queries section.

27

https://github.com/appsignal/appsignal-elixir

Testing and Maintenance

Figure 4.1: Appsignal Dashboard

28

Testing and Maintenance

Figure 4.2: Slow Queries Appsignal

29

Chapter 5

Conclusion

5.0.1 Storing Forms in Database

Initially the registrations forms available in the system were stored in DB as a
JSON field. Postgres allows you to define JSON[5] data-type for a column.

Figure 5.1: Forms Table

30

Conclusion

The data field will contain the whole form structure, divided into steps, ques-
tions and the possible answers. On front-end, the whole data field is fetched from
backend and then rendered based on the data from backend. The problem with
this approach is that it’s not scalable. When we need to ask more questions in a
step, change the question, or the answers, we would need to change it on backend
table and also on the client, front-end.

In order to have a scalable system, the approach is not to use the defined forms
structure on backend, rather it is defined at the front-end. We have the required
data fields defined in each of the schema. The front-end will send the payload
containing the data and that data is stored in the database entity. Lets take an
example of a worker registration form. In that form, if the worker fills a step which
required him to enter the address fields, then the data payload to the backend
would be,

{
"user_id": "2SL96rtz4FkwCZLoB0RdIC46HBm",
"address": {

"address_lat": "39.8",
"address_lon": "11.3",
"city": "Torino",
"country": "Italia"

}
}

After receiving the payload, the worker with the give user_id will be updated with
the address fields present.

5.0.2 Using GraphQl
GraphQl is a query language which allows efficient data-fetching by providing a
query of the required data fields. It removes the problem of over-fetching of data [6].

Let’s take an example. We have a restaurant entity as shown in figure 5.2. Now
there is a case in which we only need the restaurant_name to be shown on page.
If we use the REST API to GET the restaurant information using id, it will return
all the other information with it which is not required right now, thus consuming
network bandwidth. If we implement graphql for this endpoint, we can define the
fields that are required directly in the query on front-end. The query can be,

query get_restaurant {
id,

31

Conclusion

Figure 5.2: Restaurants Table

restaurant_name
}

By defining only the required fields, we can decrease the consumption of network
bandwidth. Here, in the following table, is a difference, in terms of speed and size
of the payload, between graphql and REST API for an endpoint which fetches a
job position.

Table 5.1: GraphQl vs REST

Technology Payload Size (kB) Time (ms)
Using REST API 297 1016
Uisng GraphQl 3.7 313

Using graphql endpoints can help improve the overall product performance. By
reducing the network bandwidth consumption, we can speed up the data rendering
on client.

large font Large font LARGE font

32

Bibliography

[1] Sonali Panda. SDLC (Software Development Life Cycle) Phases, Process. What
is SDLC. 2023. url: https://www.numpyninja.com/post/sdlc-software-
development-life-cycle-phases-process-what-is-sdlc (cit. on p. 2).

[2] Anthony Thong Do. Top 5 Free Database Diagram Design Tools. 2018. url:
https : / / www . holistics . io / blog / top - 5 - free - database - diagram -
design-tools/ (cit. on p. 4).

[3] T. Pattinson. Relational vs Non-Relational Databases. 2020. url: https :
//www.pluralsight.com/blog/software-development/relational-vs-
non-relational-databases (cit. on p. 7).

[4] Stanislav Vishnevskiy. How Discord Scaled Elixir to 5,000,000 Concurrent
Users. 2017. url: https : / / discord . com / blog / how - discord - scaled -
elixir-to-5-000-000-concurrent-users (cit. on p. 9).

[5] PostgreSQL. JSON Types. = https://www.postgresql.org/docs/current/datatype-
json.html, (cit. on p. 30).

[6] GraphQL - A query language for APIs. https://graphql.org/. Accessed:
July 9, 2023 (cit. on p. 31).

33

https://www.numpyninja.com/post/sdlc-software-development-life-cycle-phases-process-what-is-sdlc
https://www.numpyninja.com/post/sdlc-software-development-life-cycle-phases-process-what-is-sdlc
https://www.holistics.io/blog/top-5-free-database-diagram-design-tools/
https://www.holistics.io/blog/top-5-free-database-diagram-design-tools/
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
=
https://graphql.org/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Software Development Life Cycle
	Problem Description
	About Restworld

	Tools and Technologies
	Database Design
	Project Management
	Communication

	Implementation
	Database Architecture
	Brief Database Structure
	Our Implementation

	Programming Language
	Authentication and Authorization
	Cache
	Need for cache
	Caching Patterns
	Caching Topologies
	Our Implementation

	Full Text Search Implementation
	The need for full-text search
	Algolia

	Testing and Maintenance
	Test-Suite
	Our Implementation

	Monitoring
	Appsignal

	Conclusion
	Forms Structure
	Using GraphQl

	Bibliography

