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Summary 
In recent years, with the improvement of actual needs such as automatic driving, 

elderly health detection, and motion detection, the fields of human body 

detection, tracking, activity recognition, and gesture recognition have developed 

rapidly. In fact, light detection and ranging (LiDAR), cameras, and other radio 

technologies such as pulsed radio ultra-wideband (IR-UWB) and Wi-Fi have 

demonstrated their efficacy in these domains. Despite these promising advances 

and their potential for human tracking and activity recognition, a unified 

framework to assist these technologies is clearly lacking. The challenges posed 

by harsh signal propagation environments further widen this gap, complicating 

the tasks of person tracking and activity recognition [30], [31]. However, 

advances in mmWave radar and its integration with micro-Doppler signatures 

and point cloud data are reshaping the landscape, providing unprecedented 

capabilities for human-centric sensing. 

This review thesis provides an in-depth study of state-of-the-art processing 

methods for point cloud data acquired by mmWave radar. We systematically 

study and elucidate the significant progress made in this field, focusing on 

fundamental keywords such as indoor localization, human tracking, human 

activity recognition (HAR), and human pose reconstruction. 

This technical review will first provide an overview of how mmWave radar 

works and provide an in-depth look at the entire mmWave radar signal 

processing chain. Understand the principle and process of converting raw 

mmWave radar signals to the data form we need (such as point cloud, 

micro-Doppler signature). 

Then we will start from the origin, development, sensors, data processing 

methods, and applications of point clouds, and introduce the development status 

of millimeter-wave radar point cloud signals, core aspects and challenges related 

to point cloud data. concern. 

In this context, this thesis will deeply study the processing method of point 

cloud data collected by millimeter-wave radar, especially its practicability in the 

fields of human detection, tracking, human activity recognition (HAR) and human 

posture recognition. At this stage, this article will use the largest space to review 

a series of methods and algorithms for processing millimeter-wave radar point 

cloud data from the perspective of various input data. 

In terms of method classification, we don't want to simply classify these 

methods with various topics, because after reviewing a lot of literature, we found 

that in many cases, such as human detection, tracking, human activity 

recognition (HAR) and human gesture recognition in most articles are located in 

the overlap. For example: when we realize human body posture recognition, we 

also realize human body activity recognition. We prefer to classify and compare 
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these methods from the representative characteristics of different methods 

designed by researchers. So, the classify and introduce each method will from the 

perspective of various data forms and get some interesting results from that as 

well. 

 

The first category: Use the micro-Doppler feature as the input data. 

Representative articles: "R. Zhang and S. Cao, "Real-Time Human Motion 

Behavior Detection via CNN Using mmWave Radar" The author proposes a 

method using micro-Doppler features converted from 3D point cloud 

information collected from radar systems integrated with CFAR algorithms, and 

This kind of data is used as a data set to train the convolutional neural network 

model, and finally realize the detection and classification of efficient human 

motion behavior. 

 

The second category: Use voxelized point cloud data as input data.  

First article been introduced is from Akash Deep Singh, Sandeep Singh Sandha, 

Luis Garcia, and Mani Srivastava. 2019. “RadHAR: Human Activity Recognition 

from Point Clouds Generated through a Millimeter-wave Radar.” This is an 

important work in the field of recognizing human actions or postures using 

millimeter-wave radar point cloud information. This study introduces RadHAR, 

the author defines this method as: "a framework designed for high-precision 

human activity recognition (HAR) using sparse and non-uniform point clouds." [3] 

The "sliding time window" and voxelization method is used by "RadHAR".  The 

results achieved the best results at the time Among all the methods using 

millimeter-wave radar as a sensor, the best-performing deep learning classifier 

"Time-distributed CNN + Bi-directional LSTM" [3] designed by the author 

achieved an impressive A deep 90.47% accuracy. This demonstrates the efficacy 

of “RadHAR” in accurately identifying and classifying human activities.  

The left work in this category: "P. Zhao et al., "mID: Tracking and Identifying 

People with Millimeter Wave Radar". In” mID” The authors introduce a system 

for human tracking and identification, termed “mID”, the advantage of “mID” lies 

in its ability to maintain high tracking accuracy without compromising visual 

confidentiality. Uniquely, as stated by the authors, this is the first instance of 

using point clouds generated by mmWave radar for tracking and identifying 

individuals as they walk. The performance of the system is remarkable, with a 

median position error of just 0.16 meters, and an identification accuracy of 89% 

for a sample of 12 people. These metrics underline the efficacy of the “mID” 

system in both tracking and identifying individuals based on their walking 

patterns. 

Then C. Yu, Z. Xu, K. Yan, et al.: "Noninvasive Human Activity Recognition Using 

Millimeter-Wave Radar". In this work, they propose an accurate and efficient 

human activity recognition method based on augmented voxelization, data 

augmentation and dual-view machine learning. The results have demonstrated 

that the proposed system can achieve 97.61% and 98% accuracies during the 
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tests of fall detection and activity classification, respectively. 

After compared the above-mentioned several voxelization methods and found 

that the combination of enhanced voxelization method and Data Augmentation 

used in the article "Noninvasive Human Activity Recognition Using 

Millimeter-Wave Radar" finally achieved the best results. The reason Because 

random voxelization has the advantages of improving data calculation efficiency, 

orderly data storage and down-sampling, it is beneficial to extract multi-scale 

and multi-level local feature information, and it is conducive to maintaining the 

spatial correlation of point clouds, but the voxelization process is inevitable. It is 

still a big challenge to cause information loss, but the author of this article 

successfully avoided this problem by using Data Augmentation. At the same time, 

we also found that using the difference model and the fusion model can 

significantly improve the speed of data processing and the accuracy of 

classification results. 

 

The third category: Use multi-dimensional point cloud data as input data.  

First Article: Arindam Sengupta, Feng Jin, et al.: “mm-Pose: Real-Time Human 

Skeletal Posture Estimation using mmWave Radars and CNNs”. This study 

introduces a novel real-time technique for estimating and tracking human 

skeletal structures, employing millimeter-wave (mmWave) radar and 

convolutional neural networks (CNNs). According to the authors, this approach is 

pioneering, being the first to successfully detect more than 15 distinct skeletal 

joints using mmWave radar reflection signals. In terms of performance, the 

method has shown promising results, yielding average localization errors of 3.2 

cm in depth (X-axis), 2.7 cm in elevation (Z-axis), and 7.5 cm in azimuth (Y-axis). 

This innovative approach promises to advance the field of human skeleton 

tracking using non-invasive technologies. 

Then is the article from Meng, Z., Fu, S. et al. “Gait Recognition for Co-Existing 

Multiple People Using Millimeter Wave Sensing.” The authors present an 

innovative deep-learning oriented approach for recognizing human gait patterns 

using millimeter-wave (mmWave) technology, termed mmGaitNet. This system 

falls under the umbrella of Multi-channel Attribute Deep Networks.Significantly, 

mmGaitNet showcases impressive accuracy rates in various scenarios. It reaches 

90% accuracy when identifying a single person and maintains 88% accuracy 

even in complex scenarios with five co-existing individuals. In comparison, the 

existing methods have proven to be less effective, with accuracy levels not 

surpassing 66% in either of the aforementioned scenarios. This robust 

performance underlines mmGaitNet's potential as a leading solution in the field 

of mmWave gait recognition. 

Next from Jiang, X.; Zhang, Y. et al. “Millimeter-Wave Array Radar-Based Human 

Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural 

Network.” In this study, they explore two fundamental issues related to human 

gait detection using radar, namely, classification and recognition of human gait 

patterns. Then present a novel method based on millimeter-wave array radar, 
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and developed a multi-channel three-dimensional convolutional neural network 

(CNN), which is an enhancement of the existing residual network model. This 

model is specifically designed for classifying and recognizing human gait by 

employing hierarchical extraction and fusion of multi-dimensional features. The 

inputs for the network are the three-dimensional coordinates, speed of 

movement, and intensity of strong scatter points during target motion. This 

multi-channel convolution method effectively extracts motion features and 

facilitates the classification and recognition of typical daily actions such as 

walking and jogging. In terms of performance, their experimental results have 

been highly promising, achieving over 92.5% recognition accuracy for common 

gait categories like jogging and normal walking. This highlights the effectiveness 

of the proposed method in identifying and classifying different types of human 

gait. 

The last article is from Sizhe An and Umit Y. Ogras. 2021. “MARS: 

mmWave-based Assistive Rehabilitation System for Smart Healthcare." The MARS 

system is capable of reconstructing 19 human joints and their corresponding 

bone structures from point cloud data generated by millimeter wave (mmWave) 

radar. In terms of result evaluation, the author uses the "mean absolute error" to 

evaluate the performance of the system, and the obtained results show that the 

"mean absolute error" is 5.87 cm, which is a gratifying result. This proves that the 

"MARS" system has a very powerful potential in effectively reconstructing human 

joints and bone structure, that is, a more accurate human posture, after 

accurately calculating the positions of key points of human bones based on the 

point cloud data generated by millimeter-wave radar. Even when dealing with 

complex and demanding rehabilitation sports. 

Then I analyzed and compared "mm-Pose" and "MARS", "mmGaitNet" and 

"MC-3DCNN". The conclusion is that compared with "mm-Pose", using the same 

data set and using the same feature map, "MARS" achieves better than 

"mm-Pose" under the condition of reducing the complexity of the model. "Better 

performance. In terms of hardware settings, "mmPose" requires two radars, 

while "MARS" only uses one radar, making it more practical and easier to use. In 

addition, MARS can handle complex rehabilitation exercises because 

rehabilitation exercises require more precise results and faster response speeds, 

while mmPose can analyze joint movement conclusions during walking to help 

medical staff assess the patient's status. 

For "mmGaitNet" and "MC-3DCNN". "mmGaitNet" requires placing two radars 

diagonally for maximum recognition accuracy. At the same time, if the number of 

people in an open space increase, the recognition accuracy will drop rapidly in 

the case of a per capita gathering. For "MC-3DCNN", although it has reached an 

average accuracy rate of 93%, the system itself is designed for single-person gait 

recognition and is not suitable for deployment in open spaces. Yes, the usage 

scenarios of the system are very limited. It is only suitable for use in spaces such 

as single wards. Therefore, in terms of gait recognition, research still has a lot of 

room for improvement. 
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At this point, we can make a brief summary of the subject of human activity 

recognition. In essence, human activity recognition based on 3D point clouds is a 

classification problem. At this stage, the accuracy of human activity recognition 

in the case of a single person has reached 97%. [15]. According to the different 

data input, we can divide these methods into the four categories mentioned 

above, but we look at the models they use again and we can find that, for 3D 

point cloud data and point cloud data conversion When voxelizing incoming 

voxel data, researchers often use combined models based on CNN and LSTM for 

design. At the same time, in order to cope with the large number of features 

carried by multi-dimensional point cloud data, decomposing these features in the 

form of difference is also a very effective way to improve the model processing 

ability. practice. For micro-Doppler data, articles [1] and [15] prove the 

outstanding ability of the CNN model in this regard. 

 

The fourth category: use point cloud and range Doppler as the input of the fusion 

model  

The article from Huang, Y.; Li, W. et al. “Activity Recognition Based on 

Millimeter-Wave Radar by Fusing Point Cloud and Range–Doppler Information.” 

The researchers implement a hybrid model that combines Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) to extract 

time-sequential features from point clouds. Additionally, a separate CNN model is 

used to capture features from range-Doppler data.The evaluation of this 

combined method, based on the dataset used, revealed that it achieves superior 

accuracy compared to approaches that utilize either type of information 

individually. The recognition accuracy of the combined method was an 

impressive 97.26%. This marks a roughly 1% improvement over networks that 

rely on only one type of data input, underscoring the effectiveness of combining 

different data types and models for more accurate results. 

 

In the part of human pose recognition. Some representative methods, such as 

the most representative research direction, are to reshape human pose through 

skeletal joint localization. This includes the aforementioned "mm-Pose" and 

"MARS," which also use skeletal positioning to recognize human activity. A brief 

introduction to the method is also found in other works such as: H. Cui and N. 

Dahnoun, "Real-Time Short - Human Pose Estimation Using Millimeter-Wave 

Radar and Neural Networks", and Kong, Xiangyu Xu et al. M3Track: 

mmWave-based multi-user 3D pose tracking". 

While exploring the field of human pose estimation, it becomes apparent that 

there is a plethora of models and methods available. However, one significant 

challenge is the limited availability of open-source research databases akin to 

those for lidar and cameras. Researchers often have to invest substantial effort in 

designing experimental scenarios and hardware equipment, which can be quite 

time-consuming. 

In the second chapter, a novel solution to this challenge is presented: 
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"mmPose-NLP". This approach, based on natural language processing (NLP), is 

utilized for estimating skeletal poses using simulated millimeter-wave (mmWave) 

radar point cloud data. And then the author uses the simulated human skeleton 

key point millimeter-wave radar point cloud data to train the deep learing model 

and finally achieved a significant result. 

Following this, the work of Sizhe An and Umit Y. Ogras is highlighted, who 

developed a quick and adaptable framework for human pose estimation. Their 

article, "Fast and scalable human pose estimation using mmWave point cloud," 

details a baseline model composed of a Convolutional Neural Network (CNN). 

After fine-tuning the FUSE model for just 5 epochs, it achieves a Mean Absolute 

Error (MAE) of 8.3 cm, which is 1.3 cm lower than the baseline. This 

demonstrates how efficient training strategies can enhance the performance of 

machine learning models in this field. 

"MARS" as the best skeletal key point estimation method introduced before. I 

make a compare between "MARS" and "FUSE”. FUSE achieves a lower mean 

absolute error (MAE) in joint coordinate estimates, showing a 34% improvement 

over “MARS”. Additionally, “FUSE” is able to adapt to unseen scenarios within five 

epochs, which is four times faster than “MARS”. 

According to the result FUSE is a better model than MARS for mmWave point 

cloud-based human pose estimation due to its improved point cloud 

representation and the incorporation of meta-learning. These enhancements 

result in higher accuracy and faster adaptation to new data, making FUSE a more 

versatile and efficient model for human pose estimation tasks. 

At this point, we can make a summary for human body pose recognition. At 

this stage, our most effective and accurate solution in human body pose 

estimation is to use computer-simulated radar point clouds to locate bone key 

points. However, such a method will face great challenges in the selection of 

noise and the stability of the model. However, different from human activity 

recognition, reshaping human posture through bone key point positioning is 

essentially a regression problem. The purpose of the experiment is to obtain 

more accurate human bone position information, so the methods that can be 

applied in this regard are also more diverse. It also has more potential for 

research. But what we can still see is that although all methods have designed 

different models, we can still see that many methods use CNN or LSTEM models 

as baseline models [11], [13] or use CNN's Some modules [12], from which we 

can also observe that the outstanding spatial and temporal interpretation 

capabilities of the CNN and LSTM models in human activity recognition still have 

great advantages in the application of human pose recognition. At the same time, 

we can also consider some future research possibilities. For example, there is a 

lack of open-source databases available. In addition, the author of the article [8] 

adopted the "seq2seq" natural language model, so now that various natural 

language models are blowing out, is there any other model that can get better 

results? 

But at the same time, what we can think about is that the essence of human 
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activity is the constantly changing posture of the human body, so whether it is 

possible to use the method of skeletal key point positioning and reshaping to 

identify human activity. 

The increasing importance of millimeter-wave (mmWave) radar has had a 

significant impact on various research fields, especially those related to human 

detection and tracking. However, the interpretation of point cloud data collected 

by mmWave radar, a key element in these processes, remains a challenging task. 

It can be noticed that there are already many researchers using millimeter-wave 

radar to design many methods with very high accuracy in the fields of human 

body tracking, human activity recognition and human gesture recognition. But it 

is worth noting that most of these methods have more restrictions, such as the 

performance requirements of the hardware and the settings of the radar. 

Moreover, the point cloud obtained based on the existing radar system is still 

very sparse, which has great limitations for future research. 
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Chapter I 

 

Introduction 
Nowadays, our society is becoming more and more intelligent and digital, 

especially in the field of traditional monitoring, traditional camera monitoring 

has the best effect, but now we gradually realize the importance of privacy 

protection, but cameras are considered to be in the privacy protection, and low 

light conditions are very limited. Therefore, with the gradual maturity of lidar, 

WiFi, infrared camera, radar and other technologies, people began to try to 

develop applications in related fields of these devices. 

Among these sensors, millimeter-wave radar is considered to be a device with 

great market application potential, because it is relatively less restricted by light, 

environment, and venue, and at the same time has very high privacy and 

confidentiality. Therefore, in the future, it will be widely used in medical, health, 

military, public places and automatic driving. 

The goal of human location tracking and activity recognition technology is to 

create real-time personnel protection that adapts to any indoor environment or 

semi-open environment. Regardless of the composition of this open or semi-open 

space, this makes the technology adaptable to different application scenarios, 

such as personnel security in office environments or factory floors, or anti-theft 

security in home environments with limited space, or rehabilitation needs the 

health detection of patients, and the elderly can play a very critical role even in 

emergency rescue. 

It is based on these facts that this work initiates this work, which aims to 

present an existing representative analysis of point cloud data collected using 

mmWave radar as a sensor in the fields of human localization, human activity 

recognition, and human pose recognition technology. In addition, specific 

analysis, interpretation, and comparison of the advantages and disadvantages of 

existing technical methods with similar results are carried out. It is hoped that 

future researchers will be provided with a simple and fast path to understand the 

current state of development in this field. However, it should be pointed out that: 

this work is not to screen the optimal solution at the emergence stage, but to sort 

out technical methods and provide innovative ideas for subsequent researchers. 

 

Now I introduce the chapter structure of this article, as follows: 

  

In the second chapter, this work will provide an overview of the radar signal 

processing chain, mainly introducing the development of radar, the basic working 

principle of FMCW radar system, and the processing process of radar to generate 
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other waveforms and point cloud signals. Raw radar signal. 

 

Chapter three introduces point clouds. The article will start with "What is a 

point cloud?". Then the basic point cloud data processing flow is introduced. 

This chapter will focus on more than ten representative techniques in this field, 

such as: methods based on traditional micro-Doppler signals [1], methods based 

on voxelized point clouds [3], [16], and multidimensional point cloud data [5], [7], 

[10], and the method of using micro-Doppler features and point cloud signals 

[15], and the method of simulating human point cloud signals by simulation [8]. 

In the article, I divided them into two categories based on the experimental 

goals, one is human activity recognition, and the other is human gesture 

recognition. Because human body activity recognition is a classification problem 

in terms of problem classification, human body point cloud information will be 

collected in the experiment, and then the recognition result of human body 

activity will be obtained through the analysis of point cloud information, while 

human body posture recognition is a regression problem, usually we Human 

body pose is reconstructed using key points of human skeleton. 

 

At the end of the two categories of human activity recognition and human 

gesture recognition, the methods in the two branches are compared in the form 

of Table XI and Table XIII. The technical characteristics of each technical method 

are compared in this work. This article first introduces the experimental settings 

in the technical methods, and then gradually introduces the technical process, 

experiments and verification results. This article will make a comprehensive 

comparison of the technical methods introduced at the end of each type of 

technology. The following comparison will be carried out from several aspects. 

i. Comparison of the experimental results of the methods. 

ii. The stability of the comparison method results. 

iii. Comparing the adaptability and universality of the methods in different 

environments. 

iv. Complexity. 

v. The hardware or experimental cost of the methods being compared. 

Second, when comparing similar methods, this work will make basic 

distinctions based on the subject matter of the methods. Although some articles 

are classified into one category from certain angles, the results are not 

comparable afterwards. For the former example, the technique method 

"mm-Pose" [4] and the technique method "mmGaitNet" [5]. 

 

Since the results of various methods have been described and compared in 

detail in the text, therefore, in the two summary tables Table XI, the method of 

human activity recognition is analyzed from the sensors used, the data form, and 

the deep learning model type, etc. aspects were compared. Combining the result 

data we obtained from the references, we can get the classification results. For 

human activity recognition in the case of a single person, it is easier to obtain 
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better results by using multiple forms of input data and differential models, for 

the choice of baseline model from the results, CNN and LSTM are the more 

commonly used baseline models and the two models with the best results. The 

reason is that these two models have outstanding capabilities in spatial analysis 

and time analysis respectively, so in It has a very good effect on human activity 

recognition. But at the same time, we also see that although 97% recognition 

accuracy can be achieved in single-person scenarios [15], based on our 

knowledge, the number of models suitable for multi-person scenarios is still 

limited and the types of activities are very limited. It is limited to gait recognition 

[], and when the number of human targets increases, the recognition accuracy 

will drop greatly. Moreover, in the entire field of human activity recognition, the 

recognition accuracy for relatively low-movement sports is relatively low, and 

these are directions for further research in the future. 

 

At the end of the human body pose recognition, Table XIII is also used to 

summarize the table, comparing the sensors used, the data format, the number of 

key points of the bones, and the accuracy. In this field, the bones we observed the 

method of using simulated data in the key point positioning method [8] has 

obtained the best results in the experiment. Compared with other methods that 

use the point cloud data collected in the experiment, this method is more 

expensive in terms of experimental cost and accuracy. The effect is very good, but 

the setting of the noise level is very difficult, which will cause great challenges to 

the results and stability of the model. At the same time, it is difficult to determine 

how adaptable the method is to different environments and goals. In addition, 

due to the emergence of a large number of NLP language models this year, many 

different NLP models can be applied to this method, so this direction is worthy of 

further digging. 

 

In general, at this stage, we have made great progress in the field of human 

activity recognition and human pose recognition, but there is still a lot of room 

for improvement and many problems to be studied. At the same time, the 

technical development of radar itself restricts the development of this field. The 

typical problem is that the radar point cloud has high sparsity, which poses great 

challenges to subsequent experiments, especially when dealing with activities 

with indistinct motion characteristics.   
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Chapter II 

 

Radar  

2.1 Overview of the Radar Signal Processing Chain 

This section provides a concise exploration of the procedures involved in radar 

signal detection, with a particular focus on range and velocity estimation in 

various mmWave radar systems. These systems include Frequency Modulated 

Continuous Wave radar, Frequency-Shift Keying (FSK), which are frequently used 

in automotive radars and indoor localization radars. A depiction of a typical 

radar system is presented in Figure.1 for further reference. 
 

 

Figure (1): Radar basic working principle: The object is detected by comparing the 

transmitted (TX) and the received (RX) electromagnetic wave.[96] 

 

2.2  Frequency Modulated Continuous Wave (FMCW) Radar 

Radio detection and ranging (radar) technology was first developed in the 

19th century. But it wasn't until 1940 that time-band millimeter-wave radar 

technology was first released. It was first applied to marine navigation, but its 

development was greatly restricted due to its low power and large transmission 

loss. In the mid-1970s, Germany's AEG-Telefunken and Bosch began to invest in 

research on the application of millimeter-wave radars in automobiles for 

collision avoidance. Due to the high cost, the development of millimeter-wave 

radars stagnated. Until the early 1980s, many famous universities, research 

institutes and enterprises all over the world joined the upsurge of researching 

millimeter-wave radar, which directly promoted the rapid development of 

millimeter-wave technology. In the late 1980s, the "European Efficient and Safe 

Traffic System Plan" launched the research program of vehicle-mounted 

millimeter-wave radar again, and millimeter-wave radar technology has entered 

a period of explosion since then. After entering the 1990s, millimeter-wave radar 

car anti-collision technology gradually matured, and millimeter-wave radar really 
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entered commercial use. The most widely used area is in the automotive field. 

The main function of the millimeter-wave radar is to detect objects and 

calculate the parameters of the detected objects through the radar system, such 

as: speed, distance, and azimuth. The radar system's time delay and Doppler 

frequency estimates determine the accuracy of the radar data. 

There are many types of radar, which can be classified according to different 

standards. 

According to the wavelength, it can be divided into long-wave radar and 

short-wave radar. The wavelength of long-wave radar is meter or decimeter level, 

its resolution is low, but its penetration is strong, and it is generally used for 

broadcasting, military early warning and satellite communication. The 

wavelength of short-wave radar is centimeter or millimeter level, its resolution is 

high, but its penetration is poor, and it is generally used for surveying and 

mapping, short-range communication and vehicle applications. 

According to the waveform, it can be divided into pulse radar and continuous 

wave radar. Pulse radar uses the time difference between pulse transmission and 

reception to determine the distance of the target and cannot measure the speed 

of the target. This principle is very similar to LiDAR. The transmitted signal of the 

continuous wave radar is continuous in time, and the frequency of the 

transmitted signal changes with time, so it also becomes a continuous frequency 

modulation wave. What this article is going to introduce is the millimeter-wave 

radar based on continuous frequency modulated wave (FMCW). Figure.2 

provides a basic description of the FMCW system through a block diagram. 

 

 
Figure (2): Block diagram of a FMCW radar. The synthesizer is responsible for the chirp 

generation, the mixer mixes received (RX) and transmitted (TX) obtaining in output the 

intermediate frequency (IF) signal, which is analyzed to find target(s).[51] 

 

The operation of an FMCW system, which transmits sequences of a Linear 

Frequency Modulated (LFM) signal, also referred to as a chirp signal. This kind of 

signal increases linearly with time, over a bandwidth range that can reach up to 4 

GHz and a carrier frequency range of 76–81 GHz [52]. The core principle of radar 

systems involves the transmission of an electromagnetic signal that is then 

reflected by objects in its trajectory. Specifically, in FMCW radars, a signal is 

utilized wherein the frequency escalates linearly with time - a signal type also 

known as a chirp show in Figure.3. From the plot the chirp is characterized by 
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“fc” which is start frequency, “B” which is bandwidth, “Tc” means duration, and 

the slop “s” control the rate of frequency of the chirp. 
 

  
Figure (3): Chirp signal, with frequency as a function of time.[51] 

 

The system then captures the reflected signals bouncing back from the targets. 

Once the moving object with respect to the radar been detected, the Doppler 

effect with take place show in Figure.4 at the receiving end, these received signals 

are mixed with the transmitted (chirp) signals in a mixer the Figure.2 shows with 

Block diagram. The Doppler effect then induces a frequency shift in the received 

signal, correlating to the radial velocity of the target. This will result in a 

heightened frequency if the target is advancing towards the radar, while a 

receding target will yield a lower frequency.  
 

 

Figure (4): Radio wave signal which changes frequency due to Doppler effect 

caused by the movements of the detect moving objects.[97] 

 

The operational mechanism of FMCW radars, illustrated in Figure.5, showcases 

the key parameters: “Δt”, which represents the time difference between the 

transmitted and received signals; “Δf” the discrepancy in frequency; and “fD”, the 

frequency shift instigated by the Doppler effect. 
 

 

Figure (5): Operational mechanism of FMCW radars to Doppler effect. 
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Come back to the FMCW system. As the block diagram shows in Figure.2 received 

signals are mixed with the transmitted (chirp) signals in a mixer. The result of the 

mixer, an intermediate frequency (IF) signal is produced. Performing a Fourier 

transform on this signal yields a beat signal. The frequency of this signal remains 

consistent and is equal to S * τ, where τ denotes the time delay between the 

transmitted and received signals. This frequency, as depicted in Figure.6 is 

utilized to determine the range of the detected target. If multiple targets are 

detected, the IF signal will consist of several sinusoids, each having a unique 

frequency corresponding to a specific target [51]. 

 

Figure (6): Intermediate frequency (IF) resulting from the mixer output, a signal with 

constant frequency.[51] 

 

Also, this process results in a new frequency known as the beat frequency signal, 

calculated as follows: 

                                (1) 

where “b” is the distance of the object from the radar, “s” is the slope of the chirp 

signal, and “c” is the speed of light. 

And then we can calculate the range of the target detected by the radar with the 

function blow:  

                                                  (2) 

where “R” respect to the target distance, “c” has introduced before the speed of 

light, “fb” is beat frequency corresponding to the target, “B” means bandwidth of 

the signal. 

 We have measured the distance of the target, so how do we measure the speed 

of the target? To measure the speed of the target, the radar sends two chirps 

separated by “Tc”. Each reflected chirp is processed by FFT (Range FFT) in order 

to detect the range of the target. The range FFT for each chirp will have peaks at 

the same location, but with different phases. This measured phase difference 

corresponds to the movement of the detected object with velocity “V”.  
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Figure (7). Dual Chirp Velocity Measurement.[97] 

Returning to the phase difference issue, the initial phase of the IF signal is the 

only difference between the phase of the TX chirp and the phase of the RX chirp 

at the time point corresponding to the start of the IF signal. This time point can 

be observed on the left dotted line in Figure 6. So, we can get the following phase 

difference formula [51]: 

                                                          (3) 

where “fc” stands for the center frequency and “τ” means time delay. Duo to 

the relationship between center frequency [51], time delay and wavelength. We 

can transform the function as:  

                                                              (4) 

Where “λ” is wavelength. 

Then we can calculate the phase difference between two chirps separated by 

“Tc”, given by: 

                                                          (5) 

Finally, we can get the velocity of the object, given by: 

                                                             (6) 

Furthermore, when measuring the velocity of the detected target, it may 

happen that the phase difference between the difference chirps does not obey 

the constraint |Δω| < π, causing the radar to fail to know the velocity. This 

happens because the phase difference is a period of 2π. This means that every 

radar has an upper limit of detectable speed, which means that if Δω = π then the 

peak manageable speed can be recorded by the following formula: 

                                                           (7) 

where the maximum velocity limit can be increased by having closer chirps by 

decreasing “Tc” and “λ” is wavelength. 
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Given that the phase shift of millimeter-wave signals is more sensitive to target 

object movements compared to the beat frequency shift, a velocity FFT is 

typically carried out across the chirps. This generates the phase shift which is 

subsequently converted into velocity. The expression for the velocity resolution 

“ΔVres” can be represented as [51]: 
 

                                             (8) 

 

In this equation “L” is the number of chirps in one frame, and “Tf” is the frame 

period. 

In addition to distance and speed, another important information is the angle 

of the target relative to the radar, which is “θ” in the Figure.8 below. Estimating 

the angle “θ” requires multiple receive antennas. Different distances from targets 

to multiple receiving antennas will result in differences in the phase of the 

received signal. The frequency of the received signal basically does not change, 

because the distance “d” between the receiving antennas is in millimeters, which 

is negligible compared to the target distance “r”. Show in Figure.8. 

 

 

Figure (8). Schematic diagram of target angle estimation 

 

The blue line segment in the above figure represents the distance difference 

“Δr” between the target and different receiving antennas, and the red line 

segment represents the distance “d” between the receiving antennas. The 

relationship between “d” and “Δr” can be expressed as:  

                                                     (9) 

And ∇r can be expressed by phase difference: 

                                                (10) 

According to the above two equations, the formula for angle estimation can be 

derived: 
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                                            (11) 

Similar to velocity estimation, the absolute value of the phase difference also 

needs to be less than π to ensure no ambiguity, which is, |Δ∅1-Δ∅2|<π. From this, 

the range of angle measurement can also be deduced, that is, the field of view of 

the radar: 

                                                    (12) 

When d=λ/2, the field of view reaches a maximum of ±90 degrees. 

To measure the azimuth of a target, at least two receiving antennas are 

required. When there are multiple targets, it is very difficult for the two receiving 

antennas to distinguish the targets if they are all at the same range and speed. In 

order to improve the angular resolution, it is necessary to increase the number of 

receiving antennas. Let's take a look at how this conclusion was reached. 

When there are multiple receiving antennas in Figure.9 the phase difference 

between each received signal and the previous received signal is ω. Take the 

following figure as an example, assuming that there are 4 receiving antennas, 

taking the first receiving antenna as the reference, the phase differences of the 4 

received signals are 0, ω, 2ω, 3ω respectively. The change frequency of this 

sequence signal is ω, so we extract this component through Fourier transform 

(that is, angle FFT). 
 

 

Figure (9). Angle estimation based on multiple receive antennas. 

 

The formula below briefly derives the calculation of the angular resolution. 

Suppose there are two targets in the scene, the azimuths are “θ” and “θ+Δθ” 

respectively, and the corresponding phase differences are ω1 and ω2.  
 

                                                  (13)  

                                          (14) 
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Since the derivative of sin(θ) is cos(θ), the difference between ω1 and ω2 can 

finally be written in the form of :  
 

                                              (15) 

 

According to the Fourier transform theory, the minimum frequency component 

that can be distinguished by the FFT of point K is 2π/K, where K is the number of 

receiving antennas. In this way, we can get the smallest angular difference that 

can be distinguished, which is the angular resolution. 

 

                                                        (16) 

 

“N”means the receiver number, and “d” is the ragne between the receiver 

antenna. 

Generally speaking, take d=λ/2, θ=0, (that is, the center of the radar). At this 

time, the angular resolution formula is Δθ>2/N. The above formula demonstrates 

that the angular resolution depends primarily on two factors:  

1) The azimuth angle of the target. The resolution is highest in the boresight 

direction. The closer to the edge of the radar FOV, the lower the angular 

resolution.  

2) The number of antennas. The angular resolution is directly proportional to 

the number of antennas. The first factor is beyond our control, and the main 

means to improve the angular resolution of FMCW radar is to increase the 

number of antennas. Calculated according to the above formula, the angular 

resolution that can be achieved by two receiving antennas is about 57 degrees. 

By analogy, 4, 8, and 16 receiving antennas can achieve angular resolutions of 

about 28 degrees, 14 degrees, and 7 degrees. 

The transmitting antenna sends M Chirp signals in each frame, and the 

sampling number of each Chirp is N. At the same time, the K receiving antennas 

will receive K sets of return signals, and the mixer mixes them with the transmit 

signal to obtain an intermediate frequency signal IF. The IF signal is a 

three-dimensional data block K x M x N, and the distance, speed and angle of the 

target can be analyzed by performing three FFT operations on it. The finally 

obtained RAD data block is the dense underlying data used in the introduction of 

the millimeter wave radar perception algorithm. Of course, some algorithms also 

use neural networks instead of FFT. For example, retain the Chirp dimension and 

use neural networks to extract speed information. Or keep the antenna 

dimension and use neural network to extract the angle information. 
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2.3 Radar Signal Processing  

As shown in Figure.10, the procedure consists of seven distinct stages. The 

radar signals (ADC samples) received over a single coherent processing interval 

(CPI) are initially organized into matrix frames. This results in the formation of a 

three-dimensional radar cube containing three distinct dimensions: rapid time 

(represented by chirp index), slow time (illustrated by chirp sampling), and 

phase (represented by TX/RX antenna pairs). 

A 2D-FFT processing technique is then applied to a 3D radar cube to 

determine the unambiguous range-velocity. Typically, an ADC time-domain 

signal is subjected to a range FFT to determine the range. Then, in order to 

determine the relative radial velocity, a second FFT, known as the velocity FFT, is 

performed across the chirps. 

 

Figure (10). Radar signal processing and imaging. Adapted from [60] 

 

After the conclusion of the first two FFT phases, the entire process yields a 2D 

map of velocity and range, with areas of greater amplitude indicating potential 

targets. Nevertheless, distinguishing genuine targets from noise requires 

additional processing. A Range-Velocity-Azimuth map is generated by 

performing a third FFT operation on the strongest Doppler peaks within each 

range segment, known as the Angle FFT. This comprehensive procedure, which 

consists of the range FFT, velocity FFT, and angle FFT, implements a 

three-dimensional FFT. In addition, a spectrogram, which is a visual 

representation of an object's velocity, can be generated by applying a short-time 

Fourier transform (STFT) to the output of the range FFT. 

The fourth phase is targeting detection, which is accomplished primarily by 

applying CFAR algorithms to FFT outputs. The CFAR detection algorithm is 

utilized to determine the level of noise in the vicinity of the target, thereby 

enhancing the precision of target detection. Fin and Johnson introduced the 

CFAR technique in 1968 [61]; it employs a variable threshold that modifies based 

on the noise variance in the vicinity of each cell, as opposed to a fixed threshold. 

Various CFAR algorithms are currently available, each with its own method for 
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calculating the threshold. In addition, 3D point clouds are generated by applying 

an angle FFT to the range-velocity bins' CFAR detection. Moreover, this 

procedure will be utilized frequently in the third chapter. 

In addition, a DBSCAN algorithm is utilized to aggregate detected targets into 

clusters, allowing for the differentiation of multiple targets [64]. Other clustering 

may somehow supplant DBSCAN in the feature. The final stage of radar signal 

processing is targeting tracking, where algorithms such as the Kalman filter are 

used to monitor the position and trajectory of the target in order to provide a 

more accurate estimation. 
 

 

 

2.4 Discuss about FMCW Radar 

FMCW radar transmits and receives at the same time, “theoretically there is no 

ranging blind zone that exists in pulse radar, and the average power of the 

transmitted signal is equal to the peak power, so only low-power devices are 

needed, thereby reducing the probability of being intercepted and interfered, 

short range, distance Doppler coupling and difficult transceiver isolation.” [98] 

The performance of FMCW radar to measure the distance and speed of the 

target has nothing to do with the lighting conditions of the surrounding 

environment and does not require additional auxiliary light sources to provide 

illumination. Its higher operating frequency means a smaller overall solution size. 

“FMCW radar has the advantages of easy implementation, relatively simple 

structure, small size, light weight and low cost, and has been widely used in 

civilian/military fields.” [98] 

Compared with the pulse radar system, one of the advantages of the FM 

continuous wave radar is low transmission power, small size, and low cost. The 

radar can achieve zero blind zone when both the transmitter and receiver are 

working and can directly measure the Doppler frequency shift. And static target 

probability, which is very in line with the performance requirements of vehicle 

radar and industrial radar. 

In addition to general indicators, the core performance indicators of this type 

of radar include resolution, ambiguity, and accuracy of range and radial velocity. 

The resolution is determined by the signal bandwidth and the coherent 

processing interval, and the accuracy of parameter estimation is determined by 

the signal-to-noise ratio of the radar echo signal. 

 

Most contemporary automotive radars now employ the FMCW modulated 

radar scheme, which has been intensively studied in [50][51]. FMCW radars are 

rapidly gaining popularity as they are the sensing components of choice in 

applications such as adaptive cruise control (ACC), autonomous driving, and 

various industrial uses, including in our current research topic: Human Tracking, 

Human Activity and Attitude In identification, the most mature and widely used 
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one is also the FMCW modulation radar scheme. Among them, the most diverse 

and mature program is launched by Texas Instruments in the United States 

[65][66], and all the experiments we will discuss later are also undertaken by 

Texas Instruments equipment. 
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Chapter III 

 

Points Cloud 
The 3D point cloud [35], [36], [37], which is a new representation for objects, is 

gaining popularity in numerous research disciplines [36] due to its simplicity, 

adaptability, and potent representation capacity. In contrast to triangle meshes, 

point clouds do not necessitate the storage or maintenance of polygonal-mesh 

connectivity [38] or topological consistency [39]. Therefore, processing and 

manipulating point clouds can result in improved efficacy and reduced overhead. 

These prominent benefits make processing point cloud research a popular topic. 

 

 

 

3.1  Points Cloud Generation 

Both range Doppler (or matrix) and point cloud are commonly used data 

representations in radar applications. 

The Range Doppler Map is a 2D representation of radar return data showing 

the range (range) and velocity (velocity of the Doppler effect) of detected objects. 

The x-axis usually represents velocity (from Doppler shift) and the y-axis 

represents distance. These maps are especially useful for radar systems whose 

main purpose is to determine the range and speed of detected targets. They can 

provide information about both stationary and moving objects, as shown in 

Fiugre.12. However, compared to point clouds, range-Doppler maps usually lack 

precise information about object angles or orientations, which limits their 

usefulness in applications, but It has to be pointed out that the range Doppler 

map has outstanding performance in terms of high computational efficiency, 

which is why most of the micro-Doppler feature data generated by range Doppler 

were used in the early days. Point cloud data, however, can provide very detailed 

3D information about the shape and location of detected objects, which makes 

them useful for tasks such as 3D modeling, environment mapping, and object 

recognition. Therefore, the reason why we are more willing to use point cloud 

data is that computer capabilities have made great progress today. 

However, the original signal collected by our millimeter-wave radar is 

presented in the form of a range-Doppler map, so it is necessary to convert the 

range-Doppler map into point cloud data. As we mentioned in Chapter 2, the 

conversion method for converting range-Doppler maps into point cloud data is 

used extensively in articles applying radar point clouds. 

The following is a step-by-step breakdown of the process based on the 
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flowchart in Figure.10 in Chapter 2, starting with a basic understanding of some 

of the terms involved: 

 

CFAR detection:  

CFAR stands for Constant False Alarm Rate. This is a technique used in radar 

systems to detect target returns against a background of noise or clutter. It is 

used to set an adaptive threshold that varies according to the background noise 

level. Any returned signal above this threshold is considered an object detection. 

 

Angular FFT (Fast Fourier Transform):  

FFT is a method of computing the discrete Fourier transform (DFT) or its inverse 

of a sequence in a computationally efficient manner. The Fourier transform is a 

mathematical tool that converts A time-domain signal is decomposed into its 

component frequencies. An "angle FFT" involves performing an FFT along the 

angle dimension, thereby extracting the frequency components along the angle. 

 

Now, the process of generating a 3D point cloud by applying an angle FFT to 

the CFAR detection of the range-velocity bins is as follows: 

 

1. First, the radar signal is received and processed to create a range-velocity 

map. 

 

2. Next, apply CFAR detection to the graph. The CFAR algorithm determines the 

threshold level for detecting objects in the presence of noise or clutter. If the 

signal in a bin exceeds this threshold, it is considered detected. 

 

3. Then apply an angle FFT to these detected signals. This FFT is performed 

along the angular dimension of the range-velocity plot, transforming the 

detected signal into the frequency domain. 

 

4. The result of this angular FFT can be used to generate a 3D point cloud. Each 

point in the cloud corresponds to a detected target, and the coordinates of 

the point represent the distance, velocity and angle of the target. 

 

This method is the most common existing method for translating between 

range-Doppler signals and point cloud data, which helps to generate a spatial 

representation of detected objects in the form of 3D point clouds. These 3D point 

clouds can be used in various applications such as object recognition, tracking, 

and environment mapping. 
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3.2 General Processing for Points Cloud 

The rapid progress of low-cost sensors such as time-of-flight cameras [48], [43], 

millimeter-wave radar [33], LiDAR [32] and Kinect [40], [41], [42] has made the 

acquisition of point cloud data change. The simplicity also enables the rapid 

advancement of point cloud processing techniques based on these sensor 

collections. In general, the processing of the obtained human body point cloud 

data includes the following stages:  

 

1. Filtering: Point clouds acquired using these sensors are always subject to 

noise pollution and contain Anomalies [44,45]. Therefore, filtering operations 

must be performed on the raw point cloud to obtain an accurate point cloud 

suitable for further processing. Several techniques can be used to remove 

outliers and reduce data noise, including statistical outlier removal, 

pass-through filtering, and voxel grid filtering. This is a crucial stage, as it 

ensures the quality of the data used in subsequent steps, thereby increasing 

the overall accuracy and reliability of the system. I looked for some commonly 

used methods for removing noise from point clouds, which are widely used in 

various scenarios. 

Statistical Outlier Removal (SOR): This is a popular method for removing 

noise from point clouds. Computes the average distance of each point from all 

its neighbors. If that distance exceeds a certain multiple of the standard 

deviation, the point is considered an outlier and removed. 

Radius Outlier Removal: This method removes points that have less than a 

certain number of neighbors within a given radius. It is similar to SOR, but 

uses a radius-based approach instead of a statistical one. 

 

Voxel Grid Filtering: This method reduces the number of points by building 

a 3D voxel grid on the input point cloud. Inside each voxel, all points are 

approximated by their centroids, effectively reducing computational 

complexity while preserving the overall structure.  

 

Straight-through filtering: This method is used when we want to focus on a 

specific region of interest in a point cloud. It allows us to specify a range of 

acceptable values along a certain axis, and only keep points that fall within 

that range. 

 

Conditional Outlier Removal: This is a more advanced filter that removes 

points based on user-defined criteria. For example, one condition might be 

that points should only be kept if they lie within a certain distance of a plane 

or other geometric primitive. 

The choice of these filtering methods above depends on the characteristics 

of the point cloud and what you want to achieve in the experiment. For 

example, voxel grid filtering might be a good choice if you want to preserve 
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the overall shape of objects in a point cloud. But if you are dealing with a lot 

of noise, you may want to use Statistical Outlier Removal or Radius Outlier 

Removal. However, according to the conclusions drawn by the author through 

ablation learning in the article [10], retaining a certain amount of noise will 

make the trained model have better adaptability and stability. 

 

2. Segmentation: Once the point cloud data is properly preprocessed, it is 

segmented into different groups. These segments typically represent different 

objects or parts of objects within the radar's field of view. Techniques such as 

region growing, Euclidean clustering, or model fitting can be used for this 

task. The goal is to separate points that might represent people from points 

that represent other objects or background clutter, making the following 

steps more manageable and precise. 

As we mentioned in "Radar Signal Processing" in the second chapter, the 

most common point cloud segmentation method is DBscan. After proper 

preprocessing, the point cloud data needs to be divided into different groups. 

These fragments represent different objects or parts of objects within the 

field of view. This is where DBSCAN comes in. It can be used to cluster points 

into groups based on their spatial density. 

DBSCAN works by defining a neighborhood around each point. A new 

cluster is created if at least a minimum number of points (MinPts) (defined by 

a certain radius epsilon) exist within that neighborhood. This process is 

repeated until all points have been assigned to a cluster or are considered 

noise (points without enough neighbors within a radius of epsilon). 

The reason DBSCAN is particularly useful in point cloud segmentation is 

that because it does not require the number of clusters to be specified a priori, 

it can find clusters of arbitrary shape, and it has the notion of noise so it can 

handle outliers. This makes it particularly effective for segmenting complex 

point cloud data, where the number and shape of objects (and thus clusters) 

are not known in advance. As show in Figure.11.  

 

 
Figure (11). Plot Cluster Comparison 
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3. Feature Extraction: This phase involves the extraction of certain 

characteristics or 'features' from each segment of the point cloud. These 

features can include physical attributes such as height, width, and depth, as 

well as dynamic properties like velocity and direction. Other potentially 

useful features could be shaping descriptors, statistical features, or texture 

features. Advanced techniques like Histogram of Oriented Gradients (HOG) or 

Convolutional Neural Networks (CNN) might also be utilized. The goal is to 

extract meaningful and discriminative features that can aid in the 

identification and tracking of human figures. 

 

4. Classification: The features extracted from each segment are then fed into a 

classification algorithm, which determines whether the segment is 

representative of a human. This can be achieved through a variety of machine 

learning methods, ranging from simpler techniques such as support vector 

machines (SVM) or decision trees, to more complex deep learning models 

such as convolutional neural networks (CNN). The performance of this step 

depends heavily on the quality of the previous steps, especially the extraction 

of meaningful features. There are plenty of models to try besides SVMs, 

decision trees, and the very commonly used CNN, let's dig a little deeper into 

the potential algorithms that can be used for classification:  

 

Random Forest: Random Forest is an ensemble learning method in which 

multiple weaker decision trees are combined to form a more robust model. 

Random forests are less prone to overfitting and generally give better results 

than single decision trees. 

 

Gradient Boosting Machine (GBM): A GBM is another ensemble machine 

learning algorithm that builds multiple weak predictive models, usually 

decision trees, in a staged fashion. It generalizes to data by allowing the 

optimization of arbitrary differentiable loss functions. 

 

Recurrent Neural Network (RNN): An RNN is a type of neural network 

designed to recognize patterns in sequences of data, such as text, genomes, 

handwritten or spoken language. This makes them useful for tasks where the 

order of the data matters, such as time series analysis, language translation, 

and speech recognition. In the method that will be introduced later, the long 

short-term memory (LSTM) network is a special kind of recurrent neural 

network (RNN), which can be used in the classification stage of human 

activity recognition based on point cloud data. In the works I will introduce 

[3], [9] have adopted the method based on LSTM model design and achieved 

very good results. 

 

LSTMs are particularly well-suited for forecasting on time-series data, or 
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any data where temporal dynamics are important. In the context of point 

cloud data, the "temporal" dimension can refer to the sequence of point cloud 

frames captured over time. As show in Figure.12. 

 

 

Figure (12). Long Short-Term Memory (LSTM) 

 

Each point cloud frame in the sequence can be processed to extract 

features such as geometric features, statistical features or deep learning 

features. These features can then be fed into an LSTM. LSTMs can learn 

time-series patterns of these features, which are indicative of different types 

of human activity. 

For example, an LSTM can recognize a person walking, running, jumping, 

etc. using a specific sequence of body poses captured in a series of point cloud 

frames. 

It is worth noting that while LSTMs are powerful, they are also complex 

models that can require significant computational resources and time to train, 

especially on large datasets. Furthermore, they require careful design and 

tuning to prevent problems such as overfitting or vanishing/exploding 

gradients. 

In addition, another model worth noting, Bi-LSTM, is an extension of LSTM, 

which can improve model performance by presenting sequence data in both 

forward and backward directions to the model. Essentially, for each time 

point, the Bi-LSTM layer maintains two hidden layers, one for the forward 

state and one for the backward state. As show in Figure.13.  

In the context of point cloud data for human activity recognition, this 

means that the model will consider past and future data in the sequence of 

point cloud frames when making predictions. This can be useful if the current 

context (activity) depends on what happened before and what will happen 
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after. 

 

Figure (13). Bi-directional Long Short-Term Memory (Bi-LSTM) 

 

For example, a person may stand up while one is bending over. In this case, 

seeing the "bend down - stand up" sequence can help the model better 

understand and classify these types of activities. 

Like LSTMs, Bi-LSTMs can be computationally expensive and require 

careful tuning and training. It is also worth noting that using a Bi-LSTM only 

makes sense if you have access to the full sequence of frames at prediction 

time. In real-time scenarios where prediction is made as new frames come in, 

a standard LSTM may be more appropriate. 

Each of these algorithms has its own advantages and disadvantages, and 

the choice of which algorithm to use will depend on the specific 

characteristics of the problem and data. It is also important to note that there 

is no need for a complex model for ordinary classification of human bodies 

and stationary objects. Here we just introduce the models that will be widely 

used in this field. For example, LSTM is more suitable for later activities. used 

in the identification phase. 

 

5. Tracking: If the classification step determines that a human has been 

detected, the system can track the movement of the person through 

continuous radar scans. This involves predicting a target's future location 

based on its previous location, and updating those predictions as new data 

becomes available. Commonly used tracking algorithms include Kalman 

filters (assuming a linear motion model) or particle filters (which can handle 

nonlinear motion models). 

Also, the Hungarian algorithm is widely used here, also known as the 

Kuhn-Munkres algorithm. In general, the Hungarian algorithm and the 

Kalman filter are often used together in tracking applications because they 

each address different aspects of the problem and complement each other 

well. 

The goal is to find the best assignment that minimizes the total cost, where 
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the cost is usually some measure of the distance between the predicted 

position of the object (from the tracking algorithm) and the actual detection 

in the current frame. In this context, the Hungarian algorithm can solve the 

allocation problem optimally and efficiently. 

The Hungarian algorithm and the Kalman filter are often used together in 

tracking applications because they each address different aspects of the 

problem and complement each other well. 

A Kalman filter uses a series of measurements observed over time, 

incorporates statistical noise and other inaccuracies, and produces estimates 

of unknown variables that tend to be more precise than estimates based on a 

single measurement alone. Its main advantage is to predict the future 

position of an object based on its previous position. And high efficiency, 

making it suitable for real-time tracking. Also, under certain conditions 

(linear Gaussian models), the Kalman filter provides the best estimate of the 

system state. 

But the limitation is that it assumes that the system is linear, and the noise 

is Gaussian. These assumptions do not apply to all systems. Also, the Kalman 

filter can be sensitive to the initial state. But if the initial state is far from the 

true value, the filter may take a while to converge. 

So usually, the Hungarian algorithm is needed to improve the optimization. 

The Hungarian algorithm is a combinatorial optimization algorithm that 

solves allocation problems in polynomial time. It is used in tracking to solve 

the problem of data association, i.e., de terminating which measurements in 

the current frame correspond to which existing trajectories. 

The beauty of the Hungarian algorithm is that it finds a globally optimal 

solution to the assignment problem, ensuring optimal data association at 

each step. It is also computationally efficient, especially considering that it 

finds the global optimum. 

In tracking, the Kalman filter is used to predict the future position of an 

object and the Hungarian algorithm is used to correlate the predicted 

position with the actual detection in the current frame. Together, they enable 

tracking of multiple objects over time in an efficient and effective manner. 

 

6. Recognition: After tracking, the next step is recognition, also known as 

Human Activity Recognition (HAR). At this stage, the specific activity or 

behavior performed by a person is identified based on the detected 

movement patterns. Various machine learning and deep learning models can 

be employed to accomplish this task. Recognition can cover a wide range of 

activities, from simple actions like walking or standing to more complex 

behaviors like running, jumping, or even specific gestures. In essence, the 

"recognition" here is also a classification problem. All the models we 

mentioned in the previous "classification" stage can be used here. Unlike the 

previous ones, in order to distinguish between human bodies and stationary 

objects, the objects we classify here are different. human activities so we will 



23 
 

need more powerful models to perform this task. I won’t expand the 

description here, and this article will use the largest space to give detailed 

examples of various identification methods. 

 

7. Reconstruction: The final step is human pose reconstruction. The goal here is 

to reconstruct a 3D model of a human pose from point cloud data. This 

involves interpreting the data in terms of body parts and their positions. 

Generally speaking, the most popular method of human pose reconstruction 

is to identify and locate key points of the skeleton, and then reconstruct the 

pose of the human body. In this step, the key points of the bones we locate the 

more accurate the points, the more accurate the human body pose will be 

when reconstructed. Another key point is the number of key points of the 

selected bones. Generally speaking, the more key points of the bones, the 

more accurate the pose we reconstruct, but the increase of bone key points is 

likely to put higher requirements on the design of the model. The most 

reconstruction method in the knowledge range uses 25 bone key points, see 

Table XIII. But this method puts forward very high requirements for the use of 

hardware. High requirements, and it is not conducive to expanding the use of 

multi-person scenarios in the future. At the same time, the lack of an 

open-source database for accurate human body point cloud is also one of the 

constraints. This step is especially useful for applications that require 

detailed information about the pose of the human body, such as healthcare 

monitoring or advanced surveillance systems. Later this article will also use a 

lot of space to describe this content in detail. 

 

Each of these steps plays a crucial role in the process of human detection, 

tracking, and activity recognition, and they all build upon each other. The quality 

and accuracy of the final results heavily depend on the effectiveness of each 

individual step. 
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Chapter IV 

 

Human Tracking and Activity Recognition  
  In the previous section of this work, we outlined the process of using point 

cloud information. This section of the work aims to describe the latest advances 

in mmWave radar Human Activity Recognition (HAR). 

  In recent years, due to the large aging population, the demand for human 

activity monitoring in public places has gradually increased, and fall detection is 

performed by tracking the gait of the aging population. The use of traditional 

sensors such as cameras and lidar has great limitations, such as visual occlusion 

and obstacles in the blind area, or some scenes are full of thick smoke or water 

vapor. These traditional sensors can also be affected if the harsh weather in 

space is turned on. distracted. vision sensor. But it is undeniable that in a good 

environment, they can detect various activities very well and achieve very high 

accuracy. These systems represent an effective way to monitor indoor 

environments, but this raises privacy concerns. At the same time, sensors like 

lidar also have extremely high costs. 

The high sensitivity of mmWave to Doppler-induced frequency shifts makes it 

suitable for inferring human motion patterns. A widely adopted analysis method 

is to extract features from the so-called micro-Doppler signature  of the 

object, which contains time-frequency information about the induced Doppler 

shift, including the contribution of small-scale motion [5], [6]. D signatures have 

been used in the challenging discrimination task of observing subjects from their 

walking style (gait), which is the aim of the present work. 

Human gait has been classified as a soft biometric [7], which means that each 

individual's gait is unique. However, unlike hard biometrics such as fingerprints 

or DNA, it cannot be used in high-risk settings or to uniquely identify subjects in 

very large groups (e.g., more than 1; 000 people). Still, gait is difficult to fake, it 

can be efficiently analyzed even at a distance, and it doesn't require the 

cooperation of the subject. For these reasons, mmWave radar-based gait 

recognition may be a good choice for recognizing objects in scenes, such as 

surveillance systems or individually customized smart home applications, where 

the number of people involved is on the order of tens of people, replacing or 

augmenting traditional camera system.  
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Chapter V 

 

Using micro–Doppler Characteristics  
We noticed that the earliest article [1] on analyzing the micro-Doppler 

characteristics of millimeter-wave radar to identify human activities in real time 

came from 2018, published by R. Zhang and S. Cao et al. In this article, the author 

proposes an innovative method for monitoring human motion behavior. The 

author collects two kinds of millimeter-wave radar micro-Doppler data. The first 

is the raw Doppler data collected by the radar without integrated CFAR 

algorithm. The other is converted from the 3D point cloud information collected 

from the radar system integrated with the CFAR algorithm an example in 

Figure.14, and the two kinds of data are used as data sets to train the 

convolutional neural network model. Finally, the detection and classification of 

efficient human motion behaviors are realized. Next, I will elaborate on their 

processing process of using the 3D point cloud data collected in the radar system 

integrated with the CFAR algorithm. 
 

  

Figure (14). Real-time micro-Doppler prediction scene. (a) Camera vision. (b) Radar point 

cloud output with Doppler velocities in meter per second [1] 

 

 

5.1 Real-Time Human Motion Behavior Detection [1] 

 An example of micro-Doppler characteristics the author uses in the acritical can 

be seen in Figure.15, where the mmWave radar obtains the micro-Doppler 

signature of a human walking by raw sampling on board and processing through 

a host computer. Arm, leg, and torso can be clearly recognized in the entire 

Doppler data. 
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Figure (15). Micro-Doppler signature of a human walking. 

 

5.1.1 Points cloud data generation 

Use mmWave radar captures raw range-Doppler data and processes it using 

the integrated CFAR algorithm to generate point cloud data with Doppler 

information. 

 

1. Denoising: Denoising the raw Doppler radar signals. 

Denoising raw Doppler radar signals typically involves the use of digital 

signal processing techniques to reduce the amount of noise in the signal and 

improve its quality. A few of the techniques that are commonly used for this 

purpose include: 

Wavelet Transform: This is a mathematical technique that transforms a 

signal into a different representation to make it easier to analyze. Wavelets 

can efficiently represent and denoise data with transient or spiky behaviors, 

as well as slowly varying or smooth behaviors. Advantages are it can provide 

multi-resolution capabilities and can analyze different frequencies of a signal 

with different resolutions. Also, could preserve high-frequency parts of the 

signal, which are often lost in other methods. And effective at removing 

Gaussian noise. Disadvantages are: Requires careful selection of the 

appropriate wavelet basis function for the specific type of data and noise. But 

when the performance may be poor if the noise is non-Gaussian. 

Kalman Filter: This is a recursive algorithm that is used to estimate the state 

of a dynamic system from noisy measurements. The Kalman filter can be used 

to predict the state of the system in the next time step and update the 

prediction based on the current measurement. 

Advantages: Effective at handling dynamic systems where the signal is 

changing over time. Works in real time, as it updates the predictions based on 

the current measurements. Also, it can estimate missing or noisy data in a 

sequence. Disadvantages: Assumes that the system is linear and that the 

noise is Gaussian, which is not always the case. Tuning the parameters of the 

Kalman filter can be challenging. 
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Median Filtering: This is a non-linear digital filtering technique, often used to 

remove noise from an image or signal. It replaces each input pixel value in the 

signal with the median of its neighboring pixel values. Advantage: Its simple 

to implement and computationally efficient. And does not require any 

assumptions about the underlying signal or the noise. Finally, particularly 

effective at removing "salt and pepper" type noise. Then the limitation maybe, 

can lead to signal distortion or loss of detail, especially if the window size is 

too large. And not effective against Gaussian noise. 

So, the choice of method should be made based on the specific characteristics 

of the signal and the noise. In this article the author did not mention which 

method they use to denoising the raw Doppler radar signals. But we can 

guess that due to the raw radar Doppler signal has multi-component and 

non-stationary characteristics, the author may use wavelet transform 

filtering method here. 

 

2. Detection: The integrated CFAR algorithm is employed to detect the presence 

of objects or targets within the radar data. And the benefits to use CFAR 

algorithm is that it sets a variable threshold depending on the estimated 

noise, calculated as the average power level of the neighbors, and filters out 

points below the threshold or neighbors. This selects only the radar detection 

points with Doppler information, reducing the amount of data to be 

transmitted and enabling real-time applications. 

 

3. Generation of point cloud data: Once the targets are detected, their respective 

Doppler shifts are extracted, providing information about velocities and 

motion behaviors. The detected targets' range, azimuth, and Doppler shift 

values are combined to create a 3D point cloud representation. 
 

5.1.2 Micro-Doppler signature data generation  

The host computer processes the point cloud data using grouping and clustering 

algorithms (e.g., DBSCAN or other clustering algorithms) to form the 

micro-Doppler signature data. 

1. Time-frequency analysis: The point cloud data is subjected to time-frequency 

analysis, typically using methods like Short-Time Fourier Transform (STFT) 

or Wavelet Transform. This analysis helps to identify and isolate the Doppler 

shifts corresponding to different motion components of the target (e.g., 

walking, arm swinging, leg movements). 

2. Micro-Doppler signature extraction: Based on the time-frequency analysis, 

the micro-Doppler signature is extracted. The signature is a 2D 

representation that captures the target's motion characteristics by revealing 

the frequency modulation patterns associated with the movement. This 

signature is unique for different types of motion, making it a useful feature 

for classification tasks. 
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5.1.3 Convolution Neural Network  

In the final recognition stage, the author uses a commonly used convolutional 

neural network for recognition. The CNN uses leaky ReLU to avoid the "dying 

ReLU" problem, max pooling to reduce the dimensionality of the feature maps, 

dropout to avoid overfitting, and fully connected layer to flatten the high-level 

features learned by the convolutional layers and combine them into the final 

output. The CNN framework used by the author shows in Figure.16. 

 

Figure (16). The structure of the CNN network from the radar raw range-Doppler 

response  

In the data collection phase, the author used TI IWR1642 millimeter-wave 

radar to collect data on a volunteer in the following five human activities: (a) 

Human walking and vanish; (b) Waving hands when standing or sitting; (c) 

Sitting to standing and walking transition; (d) walking back and forth; (e) 

standing and sting still. After the training was completed, the following four 

human activities were verified. (1) Human walking and vanish from radar got an 

average accuracy of 96.32%; (2) Human waving hands when standing or sitting 

got an average accuracy of 99.59% ;(3) Human sitting to standing and walking 

transition got an average precision of 64%; (4) Human walking back and forth 

got an average precision of 91.18%. In the case of NO-micro-Doppler detections, 

97.84% Average accuracy, in the case of Complex detections including all 

behaviors, an average accuracy of 95.19% was obtained.  

In this result, we can see that this method has a great advantage in detecting 

moving objects and has very good accuracy. On the contrary, for a stationary 

human body in a sitting position, the detection accuracy is not high when 

standing. It can be Said It is relatively low, which is also the biggest limitation of 

using Doppler data as input data for the machine learning algorithm. Meanwhile, 

the lower accuracy rate may be due to insufficient training data for transitional 

behaviors such as standing and walking. These activities occurred for a short 

period of time, and the authors only used about 1,900 samples for training, as 

opposed to the nearly 10,000 samples for other activities. Since the applicability 

of micro-Doppler features goes far beyond the scope of human motor behaviors, 

such as walking and waving, head shaking, etc., the proposed method can be 

extended to include other human behaviors. 
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Chapter VI 

 

Voxelized Points Cloud 
We have discussed the early use of micro-Doppler features collected by 

millimeter-wave radar for Real-time human motion behavior monitoring, and 

the micro-Doppler features here are converted from 3D point cloud data. The 

reason why the real-time monitoring method does not choose to use point cloud 

data is largely due to Micro-Doppler data usually involves fewer dimensions and 

less data than 3D point cloud data, which can mean less computational resources 

are required to process and analyze it. This can be particularly important in 

real-time systems, where there's a need for quick data processing. 

However, the relatively low monitoring accuracy of the micro-Doppler feature 

when the target is stationary has always been a problem that needs to be 

improved, especially in the activity detection of the target object is the patient 

and the elderly, the slow action will lead to the monitoring cannot be smooth 

conduct or even generate false positives. 

So we observed that some researchers started to explore the method of 

directly analyzing the millimeter-wave radar 3D point cloud data for human 

tracking and recognition [2] or human activity recognition (HAR) [3], [4], [5], [6], 

[7], [9], [15], [16], [17], within the scope of our knowledge, it was the first to 

explore and discover the method of directly using 3d radar point cloud signals to 

detect the human body Activity Recognition (HAR) from the framework 

proposed by Akash Deep Singh and Sandeep Singh Sandha et al.: ''RadHAR''. 

 

6.1 RadHAR [3] 

This is an important work in the field of recognizing human actions or postures 

using millimeter-wave radar point cloud information. The framework they 

proposed was cited by many later works and served as the object of comparison. 

Below I will introduce RadHAR in detail.  

In the early data collection phase of the experiment, they used TI's 

IWR1443BOOST [65] radar to collect a new point cloud dataset called the 

MMActvity [3] (millimeter wave activity) dataset. It is an FMCW (Frequency 

Modulated Continuous Wave) radar that uses a chirp signal. The radar operates 

in the frequency range 76 GHz to 81 GHz. The radar includes four receiver and 

three transmitter antennas and can track multiple objects using range and angle 

information. This antenna design can estimate azimuth and elevation angles, 

allowing object detection in a 3-D plane [66]. Data from the radar is sent to the 

laptop via ROS (Robot Operating System) messages on USB. They collected data 
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on two users. Users perform 5 different activities in front of the radar, as shown 

in Figure.17. These activities are walking, jumping, jacking jacks, squats and 

boxing. For subjects performing the same activity, data was collected over 

approximately 20 seconds in continuity. Some data files are longer than 20 

seconds per each. In total, they collected 93 minutes of data for the experiment. 

Captured point cloud contains spatial coordinates (x,y,z in meters) as well as 

velocity in meters/second, range in meters (distance from radar point), intensity 

(decibels) and azimuth (Spend). The sampling rate of the radar is 30 frames per 

second. 

 

Figure (17): Data collection setup.[3] 

 

6.1.1 3D points cloud processing for RadHAR 

1. Data Splitting: The authors split the collected data into two separate sets - 

training set and test set. “They get 12097 samples in training and 3538 

samples in testing.” [99] 

 

2. Voxelization: In order to solve the problem of uneven number of points in 

each frame, the point cloud is converted into a voxel representation. Voxels 

have dimensions 10x32x32 (depth = 10). The value of each voxel represents 

the number of data points within its boundaries. This process ensures that 

the input size remains constant regardless of the number of points in the 

frame. The Voxelization workflow of data preprocessing are show in the 

Figure.18. The author didn't describe the process of convert, so I think the 

process of convert should be like this: First, loading point cloud data: Point 

cloud data can be loaded using software programs that support point cloud 

processing, such as CloudCompare, Recap, or Point Cloud Library (PCL). Then, 

Define the voxel grid: The voxel grid needs to be defined. Voxels are 3D pixels 

that represent physical points in space. The voxel grid defines the resolution 

and size of the voxels. It is important to choose an appropriate voxel with a 

size small enough to capture the details of the point cloud data. Finally, assign 

points to voxels: assign a value to each voxel based on the points that fall 

within each voxel. This value can be determined by counting the number of 
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points that fall within each voxel or by computing the average of the points. 

 

Figure (18): Workflow of data preprocessing. The voxel size if 10*32*32. The time 

windows are generated by grouping 60 frames (2 second) together.[3] 

 

3. Time window generation: To capture the temporal dependence of activity, 

windows of 2 s (60 frames) were created with a sliding factor of 0.33 s (10 

frames). These windows provide a means of analyzing data sequences, taking 

into account both spatial and temporal aspects of activity. The choice of the 

2-second window [67] is based on previous human activity recognition and 

human recognition studies using point clouds [2]. 

 

4. Classification: To investigate the results of different classifiers for indoor 

occupant activity recognition, the authors evaluated several different 

classifiers on the “MMActivity” dataset. They are support vector machine 

(SVM) [68], multi-layer perceptron (MLP) [69], Bi-directional LSTM (Bi-LSTM) 

[74], and convolutional neural network (CNN) combined with LSTM [2]. 

These classifiers were chosen because they are widely used in various 

applications, including human activity recognition. 

 

For the result of each classifier, SVM achieved 63.74% accuracy, MLP achieved 

80.34% accuracy, and Bi-directional LSTM achieved 88.42% accuracy. The best 

performing classifier is Temporal Distribution CNN + Bidirectional LSTM with a 

test accuracy of 90.4 7%. A temporarily distributed CNN layer learns spatial 

features from the data since point clouds are spatially distributed, while a 

Bi-directional LSTM layer learns the temporal dependence of active windows. 

After analyzing the confusion matrix of the time-distributed CNN + Bi-dir 

sectional LSTM classifier, also can be found that the confusion matrix of one of 

the trained time-distributed CNN + Bi-directional LSTM classifiers, active 

jumping and boxing are confused with walking. The reason may be that the data 

for these activities are similar. The Time-distributed CNN + Bi-directional LSTM 

classifier trained on velocity voxel representation also had the similar 

performance. 

It is worth noting that the inspiration of LSTM and CNN combined with LSTM 

architecture comes from another earlier article "mID: Tracking and Identifying 

People with Millimeter Wave Radar'' [2] that we are concerned about. This 

article also uses the "sliding time window" " and "voxelization" methods. Next, I 

will introduce the human body tracking and identification method using 

millimeter-wave radar proposed by P. Zhao et al.: ''mID'' 
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6.2 mID [2] 

The author of this article proposed "a high-precision human body tracking and 

identification system mID based on millimeter-wave radar" [2]. In addition, 

according to the author, "This is the first time that the point cloud generated by 

millimeter-wave radar is used to monitor and identify Research on walking 

individuals." [2] Therefore, I think the "mID" system has certain originality and 

certain research reference significance for further research in this neighborhood 

in the future. 
 

 

Figure (19): Experiment Setting. “Vicon tracking system” used for collecting ground 

truth trajectories.[2] 

 

During the experimental setup the authors created their gait recognition 

pipeline using a commercial mmWave radar IWR1443Boost [66]. The 

IWR1443Boost [66] millimeter wave radar sensor uses three transmitter 

antennas and four receiver antennas in terms of hardware configuration to 

generate and collect 3D point cloud data. "The start and end frequencies are set 

to 77GHz and 81GHz, respectively, resulting in a bandwidth of 4GHz. The chirp 

cycle time Tc is 162.14 microseconds, and the frequency slope S is 70GHz/ms." 

[66] With this configuration, the author can design the "mID" [2] system can 

detect up to a distance of 5m while maintaining a range resolution of 4.4cm. "It 

can measure a maximum radial velocity of 2m/s with a velocity resolution of 

0.26m/s. The sensor is configured to transmit 33 frames per second, that is, 128 

chirps per frame." [66] In order to ensure the accuracy of the experiment The 

"mID" system was evaluated in a room using the "Vicon Optical Tracking System" 

to provide the ground truth position of each experimental target within 1 cm. 

The whole "mID" system consists of radar and backend. As shown in Figure.19, 

"The radar collects data and generates a 3D point cloud, which is then 

transferred to the backend computer for further processing. A deep neural 

network classifier is implemented using the Keras library and the Tensorflow 

backend." [2] 
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6.2.1 3D points cloud processing for “mID” 

The whole process consists of 4 steps:  

i. Point cloud generation  

ii. Point cloud clustering  

iii. Tracking, using a multi-target tracking algorithm to maintain the trajectories 

of different people.  

iv. Recognition, a recurrent neural network is used to identify user identities 

from sequential data for each user. 

1. Generation of Point Clouds: In this article, the authors take a very common 

practice of using an FMCW radar to transmit mmWave signals and record 

reflections from all targets in the scene. Then, the designed program 

calculates the sparse point cloud generated by the object, and then deletes 

the noisy points generated by the static object. 

In the article, the author does not specify which technique was used to 

eliminate it, so he presents his own idea. Typically, the process includes the 

following steps: 

Calibration: The radar system makes initial measurements in a static 

environment with no moving objects. In order to generate a fixed 

environment. 

Subtraction: For each new measurement made in the presence of moving 

objects, the radar system subtracts new point cloud data from the baseline 

data. Points that do not coincide with a fixed environment are considered 

"clutter points" and are removed from the dataset. After the subtraction stage, 

additional filtering techniques, such as clustering algorithms, can be utilized 

to further refine the data and remove any remaining noise or false positive 

points. Especially "DBsacn", the algorithm is widely used in point cloud data 

target recognition and noise removal. 

The main advantage of using "DBsacn" is that there is no need to specify the 

number of clusters in advance, because individuals enter and exit the 

monitoring scene randomly. In addition, "DBScan" can automatically identify 

outliers to combat noise. 

 

2. Static Clutter Removal: Points corresponding to static objects, i.e., objects that 

do not change their position in consecutive frames, are discarded. This can be 

done by comparing the current point cloud with the previous point cloud. If a 

point or group of points does not change its position in space from one frame 

to another, the system can identify it as a static object and remove it from 

consideration. 

3. Moving Object Tracking: Track and identify individuals from a continuous 

point cloud captured by sensors using a combination of detection and 

association using the Hungarian algorithm and tracking prediction and 

correction using the Kalman filter. The system essentially creates and 

maintains a track for object detection at each frame, with inter-frame object 
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association based on the Hungarian algorithm. If no tracked object is detected 

for D consecutive frames, the track is marked as inactive and excluded from 

continuous association. Finally, a Kalman filter is applied to predict and 

correct the track based on the position and velocity estimates. 

 

The Hungarian algorithm is used to create an association between each 

object detected and the object kept tracked so that the combined distance 

loss is minimized, allowing the system to successfully keep detections 

tracked. The Kalman filter is used to correct for sensor noise and to provide 

predictive guidance in case a tracked object is not detected due to occlusion 

or temporary loss of the sensing area. The advantage of this approach is that 

it can continuously track and identify individuals in real time, even in 

situations where the object may be temporarily lost or obscured by the 

sensor's field of view. The use of the Hungarian algorithm and the Kalman 

filter can help improve the accuracy of the tracking system and reduce false 

positives and false negatives. However, a potential disadvantage of this 

approach is that it may require significant computational resources and 

large amounts of real-time data from multiple sensors. Additionally, the 

accuracy of tracking systems can be affected by factors such as sensor noise, 

occlusions, occlusions, and changes in lighting or environmental conditions. 
 

4. User Identification: After identifying the points corresponding to human 

objects, a "tracklet" [71] is used to identify them. Specifically, "they voxelize 

the points of the intended human subject in each frame of the trajectory using 

a fixed-size bounding box to form an occupancy grid." [2] But it is worth 

noting that "OccupancyNet "Grid" itself will contain the subject's body shape 

information. For example, tall subjects typically have a higher center of 

gravity, while similarly short subjects have a lower center of gravity. 

The "tracklet" method used in the "mID" system adopts the "sliding 

window segmentation" method. This method is mostly based on the 

sampling frequency setting of the system. The author's setting is: "A window 

consists of 2 seconds of continuous occupancy units, with a 75% overlap 

with the previous window." [2] Generally speaking, if you extract valuable 

features directly from the "occupancy grid" to Performing analysis is a very 

challenging option "because most feature engineering methods are not 

effective for point cloud classification" [72]. When the "tracklet" 

identification is completed, the author can identify the "track ID" based on 

the subject's motion characteristics, such as including the subject's gait and 

shape information, by providing the classifier with a time-ordered 

occupancy grid. 

To determine the best ANN architecture for the recognition problem, the 

authors compared three different LSTM-based architectures [73]. Figure.20 

depicts the classification network structure. They adopted a variant based on 

LSTM because "LSTMs have been shown to be effective for end-to-end 
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learning on time series data" [2]. In the authors' design: "Each model was 

trained with the same parameters: 30 iterations and a dropout ratio of 0:5. 

Each of the three models used LSTM layers with 256 and 128 hidden units. 

The CNN used in the CNN+LSTM model consists of two convolutional layers 

and a max pooling layer. The CNN is temporally distributed, which means 

that the data of each frame is first sent to a two-layer 3D CNN for feature 

extraction, and then the sequence data is sent to an LSTM for classification.” 

[2] 

To evaluate these designs, the authors collected and evaluated a sample of 

12 participants. In addition, in order to determine the impact of model size 

on model classification performance, they also compared various neural 

network architectures and sizes, and finally they found that bidirectional 

LSTM networks (with 256 and 128 hidden units) performed best, using the 

same data In the case of the set, the model achieved an accuracy rate of 89%, 

and it was found that the smaller group performed better. It can be seen that 

the size of the model does not determine the quality of the model. 

Experiments also prove that the recognition method proposed by them has 

the ability to recognize sparse point cloud data while ensuring high 

recognition accuracy. However, it is still worth further study that the method 

may have limitations in the case of large numbers of people or high noise. I 

think this is also the direction that human body recognition technology 

needs to intensify in the future, and the accurate identification of target tasks 

in the case of multiple people. 

 

 
Figure (20). Network Structure. T is the number of frame ; K is the number of people. 

[2] 

 

Then we can discuss,why does Bi-LSTM work best in this article? I think there 

are these possible reasons: 

1. Temporal Correlations: As mentioned earlier, Bi-directional LSTM 

processes the input sequence in both forward and reverse directions, 

enabling it to capture temporal correlations from both ends of the 

sequence. This is especially useful when working with time series or 

sequential data where the order of the data points is critical. On the other 

hand, standard LSTMs only process sequences in the forward direction, 

which can make it difficult to encode information from the beginning of 

long sequences. 

2. Feature extraction: For the CNN+LSTM model, 3D CNN is used to extract 
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features from each frame, and then LSTM is used for classification. While 

a combination of CNNs and LSTMs can help capture spatial and temporal 

features, the work shows that sparse point cloud data generated by 

mmWave radars may not be suitable for feature extraction using 3D 

CNNs. In contrast, bidirectional LSTM can automatically learn more 

complex features through training, and its ability to bidirectionally 

process sequences helps capture richer information from data. 

3. Convergence: The article shows that Bi-directional LSTM converges 

faster than the other two architectures, which means it can achieve 

better results with fewer guesses. The faster convergence can be 

attributed to the bidirectional processing of sequence data, which 

enables the network to model temporal dependencies more efficiently. 

 

Overall, the superior performance of bidirectional LSTMs on recognition 

problems can be attributed to its ability to capture richer temporal correlations 

in data, automatically learn complex features through training, and faster 

convergence compared to other architectures. 
 

 

 

6.3 Noninvasive Human Activity Recognition  

This system consists of four major components: denoising, enhanced 

voxelization, data augmentation, and dual-view machine learning to lead to 

accurate and efficient human activity recognition. 

The author designed the system use IWR6843ISK-ODS mmWave radar. The 

complete mmWave radar system includes TX and RX radio frequency 

components. In our testbed, we use a frequency modulated continuous-wave 

(FMCW) radar operating at 60–64 GHz with four RX and three TX antennas 

according to [47] hereof, while the sampling rate is ten frames per second and 

the instantaneous bandwidth is 400 MHz .The sweep range angle is 120◦  of 

elevation and azimuth, which leads to the detect ability of movements as small as 

a fraction of a millimeter.  

 The point cloud is only sensitive to the moving human body. Their 

experiments focus on the daily behaviors of elderly people, especially for 

surveillance of their falls. There are seven types of activities registered in the 

experiments: 1) walking; 2) changing from standing to sitting; 3) changing from 

sitting to standing; 4) lying down from sitting; 5) sitting up from lying down; 6) 

falling down; and 7) recuperating from a fall. To accurately label these activities 

as the ground truth in their experiments, we have built a synchronous recording 

platform to integrate radars with a Kinect-V2, which is a depth camera that can 

record the skeleton’s spatial coordinates corresponding to a subject. Using the 

recorded skeleton’s characteristics, such as the skeleton’s 3-D coordinates, the 

angle between the joints, and the displacement difference between the front and 
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back frames of the joint point, the human behaviors can be labeled (recognized) 

at the same time.  

 

 
Fig (21). Experimental setup. (a) Lab infrastructure. (b) Floor plan. 

 

The layout of the experiment field is exhibited by Figure. 21(a), the radar was 

placed at a height of 2.9 m, while a Kinect-v2 camera was placed at a height of 

1.35 m to collect the skeleton data in order to label on-going activities. Both 

radar and Kinect-v2 record the data related to the subject(s) synchronously. 

Four volunteers (subjects) have participated in their experiments. Their 

individual heights range from 170 to 183 cm, and their individual weights range 

from 63 to 85 kg. As shown in Fig. 21(b), these subjects recorded their activities 

at six different locations in the laboratory. Each activity was performed 

individually. The experiment is under the assumption that there is only one 

person in this texting field. The arrows with different colors illustrate the 

directions of different activities, while the gray-dotted lines mark the horizontal 

distances from the radar to a subject’s locations. The volunteers had stayed in a 

static condition for 5 s to make our experiments similar to the daily life. Each 

subject had been recorded for a total of 10 min at each of the six different 

locations, as illustrated in Fig. 21(b). As a result, we have recorded data for 1200 

min since the total duration of each trial in our experiments spans 240 min, 

while the total number of trials is five. 
 

6.3.1 3D points cloud processing  

1. Denoising: They use a denoising method based on the DBSCAN algorithm that 

groups points that are close to each other and marks points in low-density 

regions as outliers. The benefits are this step helps remove noise from the 

point clouds and retain only the points that are closely related to human 
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activity. 

 

2. Enhanced voxelization: The authors propose an enhanced voxelization 

method to transform the point clouds into a fixed-size 3D grid (voxels), which 

simplifies the processing and analysis. 

 

Determine the voxel size: The first step is to decide the size of the voxels, 

which will be used to divide the 3D space into equal-sized cubes. The 

voxel size should be chosen carefully to maintain a balance between 

preserving spatial information and reducing computational complexity. 

 

Quantize the point cloud data: Assign each point in the point cloud to a 

voxel. To do this, the 3D coordinates of each point are divided by the voxel 

size, and the resulting values are rounded to the nearest integer. These 

integer values correspond to the voxel indices in the grid.  

 

Create a sparse 3D grid: The researchers used a sparse representation for 

the 3D grid, which only stores the voxels containing points. This helps in 

reducing memory consumption and computational time. 

 

Compute voxel features: For each voxel, calculate the local features such 

as the number of points, average position, and other statistics that 

capture the essential characteristics of the original point cloud. These 

features will be used later for human activity recognition.  

 

Compared with the traditional 'voxelization', the "enhanced voxelization" 

method has some key modifications: first: instead of creating a dense voxel 

grid occupying the entire 3D space, the "sparse representation" method is to 

generate only voxels with points in the point cloud. This can significantly 

reduce the memory and computational resources required to process 

voxelized data. The second is "voxel feature computation," a method that not 

only assigns points to voxels, but also computes additional features for each 

voxel, such as the number of points it contains, the average position of those 

points, and other statistics. This process extracts more information from the 

point cloud, which can improve subsequent analysis and recognition tasks. 

The benefit of these processing steps is that these processes help to 

preserve the spatial correlation between point clouds in the real 

environment for further processing and analysis. Different from the 

traditional voxelization method, which is sensitive to the point distribution, 

the enhanced voxelization method modifies the boundary of the cubic mask 

according to the size of the actual test field and the radar sensing range. 

 

Although the raw voxels resulting from the conventional voxelization method, 

are successfully confined by the identical dimensions for all frames and the 
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sparsity of the radar point clouds can be mitigated, the relative 

spatial-correlation information in physical environments would be lost when we 

focus on the human body point clouds.  

This is because the conventional voxelization method was originally designed 

for objects in a fixed range (hence, the object(s) in the scene would have a 

constant size on the image plane). The main limitation on the conventional 

voxelization is that objects’ mobility will also be normalized inadvertently. In 

addition, the cubic mask size is significantly influenced by the distribution of 

point clouds. When a far isolated point appears, the cube will be enlarged to 

cover that point. If there are only a few points, the cubic mask will be made 

smaller thereupon. 

In consequence, the conventional voxelization method would be very sensitive 

to the point distribution. On the contrary, they modify the cubic mask’s 

boundaries based on the size of the testing field and the radar sensing range in 

reality. They set the dimensions of the cube as 6 m × 6 m × 2.5 m there by, where 

the radar emitter is located at the ceiling and the maximum human height and 

the sensing range are 2.5 and 6 m, respectively.  

Thus, they apply the same cubic mask for each frame rather than a relative 

boundary in the conventional method. Therefore, the inter- and intracloud points 

can convey the human activity and location information, respectively. Figure.22 

displays the point clouds captured by a mmWave radar as a person is walking 

(from left to right). Figure.22(a) and (b) delineates the point clouds generated 

from the conventional voxelization method and our proposed enhanced 

voxelization scheme, respectively.  

This figure exhibits that it is quite difficult to capture the human moving 

trajectory based on the conventional voxelization method. On the contrary, the 

human moving trajectory can be easily observed from the point clouds resulting 

from our enhanced voxelization scheme. Figure.23 displays the point clouds 

captured by the radar as a person is sitting down from the standing position. The 

trend in Figure.23 is similar to that in Figure.22. That is, the underlying dynamics 

along the Z-axis can be better interpreted by the point clouds resulting from the 

enhanced voxelization scheme than those resulting from the conventional 

voxelization method. 
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Figure (22). Point clouds corresponding to a person who is walking from left to right. 

(a) Point clouds generated by the conventional voxelization method. (b) Point clouds 

generated by our enhanced voxelization method. 

 

 

Figure (23). Point clouds corresponding to a person who is sitting down from the 

standing position. (a) Point clouds generated by the conventional voxelization 

method. (b) Point clouds generated by our enhanced voxelization method. 

 

3. Data Augmentation: They propose a rotation-shift approach for data 

augmentation. 

1. Convert Cartesian coordinates (x, y, z) to spherical coordinates (r, θ, φ). 

  

2. Increment φ by δφ to produce a rotation on the horizontal XY plane. This 

rotation simulates different angles of view for the radar point clouds. 

 

3. Convert the rotated spherical coordinates back to Cartesian coordinates 

using equations (20), (21), and (22). These equations incorporate the 

rotation (by adding δφ) and shifting (by adding δx and δy) of the point 
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clouds. 

    x = r sin (θ) cos (φ + δφ) + δx                                       (20) 

y = r sin (θ) sin (φ + δφ) + δy                                       (21) 

z = r cos (θ)                                                      (22) 

 

 

4. Perform this rotation-shift approach for a series of angles, each 

incremented by 30°, effectively creating 12 times more training data than 

the original data. Figure.24 in the article illustrates this process. The red 

points represent a person falling at a certain location with the radar 

placed at the origin. The blue points are the initial group of points 

rotated 90° clockwise. After shifting the center of the blue point cloud to 

the origin, the data augmentation simulates a different fall direction 

using the proposed rotation-shift approach.  

This process can generate various data corresponding to other 

rotation angles in a similar manner. Benefits: This approach uses the 

symmetry properties of the radar sensing region to expand the data size 

by generating rotated and shifted versions of the original point clouds. 

The data augmentation technique takes the radar as the center of a circle 

and rotates the acquired point s by a series of angles, making the training 

data 12 times larger than the originally acquired data. 

 

 

Fig (24). Data augmentation: rotating the initial group of cloud points by 90° clockwise. 

 

4. Dual-View Convolutional Neural Network (DVCNN): The authors propose a 

Dual-View Convolutional Neural Network (DVCNN) model, the new DVCNN 

model show in the Figure.25. 

The Dual-View Convolutional Neural Network (DVCNN) can be considered a 
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kind of forked CNN model. In a forked CNN model, the input data is processed 

in parallel through different branches of the network, and the results are 

combined later to obtain the final output. 

The authors use the DVCNN model for human activity recognition because it 

effectively balances accuracy and complexity. 

In The last part the author applies a Ablation Study of NN model analysis 

for various classifiers used in the study, including: SVM, MLP, Bi-LSTM, 

time-distributed CNN + Bi-LSTM, Dual-View Convolutional Neural Network 

(DVCNN). Our proposed new method achieves 97.61% accuracy and is more 

robust, while other existing methods are all below 70% accurate. Among 

these existing methods, the Ti-CNN+Bi-LSTM method has the best 

performance with an accuracy rate of 66.79%, followed by the Bi-LSTM 

scheme with an accuracy rate of 62.53%. The accuracy rates of MLP and SVM 

are 38.33% and 25%, respectively. The results show that the accuracy of our 

proposed new method is very consistent on the test data. Other existing 

classifiers, such as MLP and Bi-LSTM, produce performance outliers. 

 

 

Figure (25). Structure of our proposed new DVCNN. 

 

Second, in the ablation study the authors investigated the influence of various 

components. Research shows that augmented voxelization methods have the 
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greatest impact on accuracy (approximately 29% gain), followed by data 

augmentation (approximately 18% gain) and denoising (approximately 8% 

gain). 
 

So far,we have shown three articles using voxelized millimeter-wave radar 

point cloud data in recent years. Their research and application goals correspond 

to indoor human body tracking and identification, and human activity 

recognition. In the article, they The data processing methods designed by each 

have achieved very good accuracy. The experimental goals in the two articles of 

''RadHAR"[3] and "Noninvasive Human Activity Recognition Using 

Millimeter-Wave Radar"[16] are Human Activity Recognition (HAR) in 2019. In 

the article "RadHAR", the author used the clustering algorithm DBsacn to denoise 

the point cloud, then voxelized the filtered 3D point cloud, and finally used the 

fusion deep learning model of Temporal Distribution CNN + Bidirectional LSTM 

to process the data. Activity classification, for Boxing, Jumping Jacks, Jumping, 

Squats, Walking and other activities, the processing method finally got an 

accuracy of 90.47%, and in the article "Noninvasive Human Activity Recognition 

Using Millimeter-Wave Radar" in 2022 four years later, the author The clustering 

algorithm is also used to denoise and voxelize the 3D point cloud data. The 

difference is that the author uses the methods of Sparse Representation and 

Voxel Features Computation to strengthen the representation of voxels and uses 

Data Augmentation to make up for the lack of data. The method increases the 

amount of data, and finally uses a differential CNN model to classify human 

activities, including: 1) walking; 2) changing from standing to sitting; 3) changing 

from sitting to standing; 4) lying down from sitting; 5) sitting up from lying down; 

6) falling down; and 7) recuperating from a fall. In the recognition of activities 

such as 97.61% accuracy. From this, I think we can summarize the data 

preprocessing method of voxelized 3D point cloud and conclude that the 

voxelization process brings the following advantages and disadvantages to this 

type of method: 

Advantages: 

1) The voxelized point cloud data will be stored in the memory in an orderly 

manner, which is beneficial to reduce random memory access and improve 

data calculation efficiency. 

2) Thanks to the ordered data storage and down-sampling brought by 

voxelization, this method can handle large-scale point cloud data. 

3) Voxelized data can efficiently use spatial convolution, which is conducive to 

extracting multi-scale and multi-level local feature information. 

4) Voxelization is conducive to maintaining the spatial correlation of point 

clouds, which is convenient for further analysis and processing 

Limits: 

1) The voxelization process will inevitably lead to information loss, and the 

degree of information loss is closely related to the selected resolution. 

2) The size of the memory footprint and the resolution are almost in a cubic 
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relationship. When the resolution selection is relatively large, the required 

memory will be very large. 

3) Since the point cloud is spatially sparse, if sparse convolution is not used, a 

large number of meaningless operations will occur, reducing the operation 

efficiency. 
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Chapter VII 

 

Multi-Dimensional Point Clouds 

Earlier, we first introduced the direct use of radar micro-Doppler features to 

recognize human actions in the early stage, and later began to use voxelized 

[2],[3],[16] 3D point cloud data to train the model to achieve the purpose of 

Human Activity Recognition (HAR). The data makes it easier to use for model 

processing to carry more spatial and temporal features. According to this idea, 

we found that many of the later articles adopted the method of multidimensional 

data to obtain more information elements in order to directly or indirectly 

improve the accuracy of the model, but the improvement of the data dimension 

is bound to be accompanied by model design. The increase in complexity, the 

increase in training time, the increase in cost and the extension of recognition 

time. Here I would like to introduce an article in 2019. As far as I know, the 

method "mm-Pose" [4] proposed by the author of the article, Arindam Sengupta 

et al. Articles on human activity recognition. Next, I will show the point cloud 

data processing process in the article in detail. 
 

7.1 mm-Pose  

They devised a novel method for real-time human skeleton estimation and 

tracking using mmWave radar combined with convolutional neural networks 

(CNNs). Their setup employs a Texas Instruments AWR 1642 step-up mmWave 

radar transceiver, equipped with two transmit channels and four receive 

channels on a linear axis. A typical radar in its traditional orientation can only 

resolve the range (depth) and azimuth reflection point. To circumvent this issue, 

they use two radars, designated as R-1 and R-2. R-2 is positioned 90 degrees 

counterclockwise in relation to R-1, thereby transforming the azimuth into the 

elevation of the reflection point. Each of these radars transmits a wide chirp of 

3.072 GHz every 92 microseconds, centered at 79 GHz. To guarantee stable and 

consistent data acquisition, they utilized a custom-made dual-slot 3D frame for 

mounting both radars. 

The point cloud data processed from both radars were captured via a USB 

cable, connected to the Robot Operating System (ROS) interface on a Linux 

computer. Each radar can retrieve up to 256 detection points, including their 

position (depth, elevation/azimuth), velocity, and intensity within a coherent 

processing interval at 20 frames per second (fps). Additionally, each data return 

is accompanied by a header containing a UTC timestamp and radar module 

index. 
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For acquiring the ground truth data, they utilized a Microsoft Kinect attached 

to a Windows computer and employed the MATLAB API. Infrared (IR) sensor 

data, when coupled with a skeletal tracking algorithm from MathWorks, 

provided depth, azimuth, and elevation information for 25 joint locations, in 

addition to UTC timestamps for each frame. A common time server was utilized 

to synchronize the clocks on the two data capturing computers (radar and 

Kinect), accepting clock variations on the order of one millisecond. UTC 

timestamps from both Kinect and radar frames were used to identify and 

correlate frames. 

The experiment was conducted in an open area, with two human subjects of 

varying sizes, each performing separately. The subjects performed four different 

actions in sequential sets: normal walking, swinging the right arm, swinging the 

left arm, swinging both arms. This process resulted in about 32,000 training data 

samples and around 6,000 samples for the validation/development dataset. They 

also collected about 1,700 test data samples, where the subjects performed the 

four actions in a random order to increase the robustness of the experiment. 
 

7.1.1 3D points cloud processing for mm-Pose 

1. Collect point cloud: As mentioned in Section 1, radars primarily function 

as time-of-flight sensors that illuminate a scene using their own RF signal. 

The phase information of the reflected signal is then used to compute the 

time delay and estimate the distance of the reflecting point. Due to their 

millimeter-scale wavelengths, mmWave radar signals are able to detect 

minute variations in targets. Moreover, radar reflections within the 

coherent processing interval (CPI) result in a 3-dimensional radar data 

cube encompassing fast time, slow time, and channels. By utilizing the 

radar signal processing chain, as outlined in Section III-A, we can extract 

the range, velocity, and angle information of the reflecting point. 

By applying basic trigonometry, the actual position (x; y; z) of the 

reflection point relative to the radar (origin) was obtained, where x; y; z 

represents the depth, azimuth, and elevation coordinates respectively. In 

this study, the aim was to employ these radar data to estimate the human 

skeleton using a CNN. 

“There are various ways to represent radar reflection data. The 

simplest method is a point cloud representation of reflection points in 

3-D XYZ space” [4], as shown in Figure.26(a). However, the obvious 

disadvantage is that this representation method does not provide the 

size of the reflective surface and lacks a certain indication. So generally 

speaking, "reflected power level" can be introduced as an additional 

feature. We define this special parameter as "I". Based on the 

relationship formula of radar cross section (RCS), we can get:  

 ,they assign an RGB weighted pixel value to the 

points show in Figure.26(b), resulting in a 3-D heatmap, which may serve 
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as an input to the CNN. Considering the max-range , max-azimuth  

and max-elevation  values offered by the radar with resolutions 

, then the input data can be written as: 

 

                (23) 

 

Let's consider a radar capable of detecting up to 256 reflection points 

within a single CPI. In order to represent the reflection data within a 5m 

x 5m x 5m scene and maintaining a resolution of 5 cm across all three 

dimensions, the input dimensions would equate to a 100 x 100 x 100 

pixel image. Each pixel would have three channels (RGB), each 

corresponding to the intensity of the reflection power. However, two 

major challenges arise from this approach. First, the CNN would be 

considerably large and demanding in terms of parameters due to the 

substantial input size. Second, the input data is extremely sparse (with 

256 points scattered across 10^6 pixels), making this an inefficient 

representation of features and leading to unnecessary computational 

overhead. 

To circumvent these issues, the following method is proposed. Initially, 

the reflection points are projected onto the depth-azimuth (XY) and 

depth-elevation (XZ) planes. Following this, a 16 x 16 RGB image is 

created, where each pixel represents a reflection point, and the RGB 

channels correspond to the x-coordinate, y/z-coordinate (based on the 

projection plane), and the normalized reflection power, I, respectively. 

Pixels that don't correspond to any detections are assigned (0,0,0) across 

the RGB channels. Consequently, every CPI yields two images, each 

measuring 16 x 16 x 3. This significantly reduces the input size for the 

CNN, leading to a substantial decrease in the network's computational 

complexity. 

 

Figure. (26). (a) Point-cloud of the target in 3-D space; (b) Point-cloud of the target with 

the reflected power use RGB weight represent; (c)Projecting the point-cloud in the XY 

and XZ planes,[4] 
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In my opinion, using RGB weighted pixels allows the authors to encode 

the necessary information for each reflection point in a compact and 

efficient manner, making it suitable for CNN processing. But it is still 

possible to use point cloud data without RGB weighting, but it may not be 

as suitable for CNN as RGB weighted representation, for several reasons: 

 

Information loss: If only point cloud data is used without RGB weighting, 

the additional information provided by the distance, elevation/azimuth 

and power level of the reflected signal will be lost. This information is 

critical for accurate detection and tracking of human skeletons, as it helps 

the model distinguish points in the point cloud and understand their 

spatial relationships. 

 

Sparsity: Point cloud data is usually sparse, meaning that there are much 

fewer points than in dense images. CNNs are designed to work with 

grid-like data, such as images, and it may not perform well on sparse data 

without any additional information (such as RGB channels) to help the 

network learn meaningful features from the data. 

 

Input format: The input format of a CNN is usually a grid of values (such 

as an image). Directly using point cloud data as input to a CNN may 

require additional preprocessing steps, such as converting the point 

cloud to a suitable input format, such as a 3D mesh or depth map. This 

extra step adds complexity to the overall processing pipeline. 

 

Inefficiency: Due to the sparsity of point cloud data, a large part of the 

input to CNN will be empty or unused. This results in unnecessary 

computation and memory usage, reducing network efficiency. 

 

However, other types of neural networks, such as PointNet, which is 

specially designed for processing point cloud data, may be more suitable for 

processing raw point cloud data without RGB weighting. 

 

2. Forked CNN and Skeleton Output: After generating the heatmap, the data 

is projected onto the XY and XZ planes, which is then fed as input to the 

CNN. The author developed a forked CNN model, depicted in Figure.27, 

that bears similarities to the DVCNN model referenced in the article 

"Noninvasive Human Activity Recognition Using Millimeter-Wave Radar" 

with regard to data input. When it comes to utilizing mmWave radar for 

human activity recognition, "mm-Pose" is the first work to adopt such a 

distinctive CNN model. It's noteworthy that due to the small input 

dimensionality, max pooling layers were not incorporated between the 

CNN stages. This approach maintained the full resolution of the data 

without implementing down-sampling operations. The data is then 
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flattened and processed through a 3-layer MLP (comprising 512, 256, 

and 128 nodes and using a ReLU activation function) to further refine the 

non-linear modelling of the input (radar) - output (skeleton) relationship. 

Lastly, the output layer consists of 75 nodes that represent the (X, Y, Z) 

coordinates of the 25 joints. 
 

 
Figure. (27). From the radar projection on the XY and XZ planes, it enters the 3-layer 

bifurcated CNN architecture, and after being connected and flattened, the output enters 

the 3-layer MLP, and the final output obtains the spatial position of 25 bone joints. [4] 

 

 

7.1.2 Results  

Upon examining the Mean Absolute Errors (MAEs) across all 25 joint positions, 

we observed that some indices stood out as outliers during the training phase, 

yielding the highest MAEs. Furthermore, it was noted that these outliers 

consistently contributed to high errors across all frames. These outlier joints 

corresponded to the wrists, palms, fingertips, and thumbs of both the left and 

right hands. Nevertheless, the remaining 17 joints proved to be effective in 

reconstructing the human body structure. 

In terms of human body reconstruction through bones, the author compared 

his results with the state of the art, as shown in Table I. When compared to 

"RF-Pose3D" [75] from MIT Academy, the average positioning error in axis X of 

3.2 cm and axis Z of 2.7 cm exhibited improvement, being approximately 24% 

and 32% better respectively. However, it was found that the positioning error in 

axis Y of 7.5 cm was higher than the 4.9 cm provided by RF-Pose3D. 

 
Table I: LOCALIZATION ACCURACY COMPARISON [4] 
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7.1.3 Discussion of Differential CNN Model 

As mentioned earlier, the differential CNN model is used in both non-invasive 

human activity recognition and mm-Pose. The authors of this series of articles 

did not mention why they used the differential CNN model. But I think we can 

discuss the advantages and disadvantages of the difference CNN model. 

First, I think this is due to the size and parameter density of the CNN, since the 

input size is very large. Second, the input data is extremely sparse (256 points 

out of 106 pixels), and thus a suboptimal representation of features, resulting in 

unnecessary computational expense. This is because it can better utilize the 

spatial information in the 3D point cloud. The bifurcated CNN model consists of 

two independent CNN branches, one for processing the XY plane and the other 

for processing the XZ plane. By using a separate branch for each plane, the model 

can learn specific features and relationships unique to each plane. This can lead 

to better accuracy and performance than processing the entire 3D point cloud as 

a single input. 

Furthermore, dividing the point cloud into planes also reduces the 

computational complexity of the network, making it easier to train and run faster. 

Overall, using a bifurcated CNN model and dividing the point cloud into planes is 

an effective strategy for processing and analyzing 3D point clouds. 

Forked CNN also has certain limitations such as: 

 

Complex architecture:  

Since each type of data input requires a separate branch, the design and 

implementation of a bifurcated CNN model can be complex. This can make it 

more difficult to optimize and tune the model for best performance. 

 

Overfitting:  

Forked CNN models may be more prone to overfitting, especially when one 

branch of the model is more complex or dominant than the others. This can 

cause the model to memorize the training data and perform poorly on new or 

unseen data. 

 

Data dependency:  

The bifurcated CNN model relies on different types of data inputs that are 

relevant and informative for the task at hand. If there is little or no 

correlation between data inputs, or if one type of data is more important than 

others, the model may perform poorly. 
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7.2 Gait Recognition for Co-Existing Multiple People [5] 

Earlier we covered the mm-Pose work, which was the first near-by to train a 

model with multidimensional data. According to the authors of mm-Pose: 

"mm-Pose can be used in a wide range of applications, including (but not limited 

to) pedestrian tracking, real-time patient monitoring systems, and through-wall 

pose estimation for military applications." [4] It can be seen that the future 

human The applications of activity recognition will be extensive and highly 

potential. At the same time, in recent years, there is another research direction 

that is very popular in the field of human activity recognition, that is, "gait 

detection". According to gait detection, we can realize the tracking, identification 

or detection of people with special needs, such as patients, the elderly, athletes, 

etc. Gait recognition has a wide range of potential applications in security checks, 

health monitoring, and even military. 

In terms of gait recognition, people have tried to solve this technical problem 

in many different ways, such as based on various wireless sensors or based on 

computer vision or through alternative solutions such as wearable devices. 

Especially the gait recognition method based on "computer vision" [76]; [77]; 

[78]; [79] performed well in terms of accuracy, but also has some limitations in 

terms of privacy protection. First, the camera is used to capture the real Invading 

people's privacy by using images, which can lead to the disclosure of personal 

information, especially considering that the camera can be attacked and hijacked. 

Second, cameras are susceptible to lighting conditions. They cannot capture 

effective images in low-light conditions. In order to address the aforementioned 

issues, researchers attempt to acquire locomotion data using wireless signals. 

The majority of these wireless sensing works rely on channel state information, 

such as "WiFiU" [80], "wiwho" [80], and "AutoID" [82]. However, WiFi signals are 

challenging to segment in order to isolate the influence of each individual, 

making simultaneous identification of multiple individuals impossible. 

Next, I present a work by Meng and Z. et al. "Gait Recognition of Coexisting 

Multiple People Using Millimeter Wave Sensing" [5] also uses the concept of 

multi-dimensional data, the difference is that different choices are made in the 

use of models. 

First, in the experiment, the author designed two experimental scenarios. They 

used two millimeter-wave radars from Texas Instruments as experimental data 

collection equipment to collect gait data of volunteers in two different scenarios, 

as shown in Figure.28(a). Scenario 1 and Scenario 2. In Scenario 1, the author 

simulates the situation of "corridor". The field is set as a rectangle. When the 

subject is close to the radar equipment, because the effective vertical monitoring 

angle of the radar used is less than ±20°, the equipment cannot scan the subject 

at this time. The whole body of a person. Therefore, the author sets point M and 

point N as the reference point and places the two radar devices at a distance of 1 

meter from the reference point, and the height of the device is set to 1 m. The 

first radar uses IWR6843 with the line segment The angle between the site 



52 
 

setting line segment AB is 0°, and the angle between the second radar using 

IWR1443 and the site setting line segment CD is also 0°. Scene 2 shown in 

Figure.28(b), the author’s simulated experiment the open space is a square, and 

the living scene that can be referred to is the interior of the office or home. Place 

two radars IWR1443 and IWR6843 at points E and H, and set the height of the 

radar to 1m. IWR6843 is diagonal to IWR 1443 and the line segment GH placed." 

[5] 

The authors collected a total of 30 hours of 3D point cloud data from 95 

volunteers. This dataset contains two types of walking trajectories: fixed route 

and free route, in which up to 5 volunteers walk simultaneously. 

 

 

Figure (28): Experimental scenario 1 simulates walking in the corridor facing the 

equipment. At this time, the effective horizontal detection angle of the equipment is ±60°. 

Scene2 simulates walking in the living room. At this time, the effective horizontal 

detection angle of the equipment is ±45°. [5] 

 

7.2.1 Points cloud processing  

The point cloud processing method proposed by the author in this article mainly 

includes the following steps: first, denoise and segment the collected point cloud 

data, then track and obtain gait data, and then perform data merging. The data is 

collected by two radars, and finally the model training and gait recognition. 

1. Noise removal and point cloud segmentation: 

The first step is to use the CFAR (Constant False Alarm Rate) algorithm to 

remove the noise points reflected by many static objects. 

The second step is to use the DBscan clustering algorithm to remove these 

noise points and segment the point cloud formed by multiple people. 
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Here the author adopts the most mature point cloud denoising and 

segmentation processing method DBscan. The reason for choosing DBSCAN is 

that it does not need to pre-set the number of clusters, and it can help divide 

the points in the frame into different groups. Each group represents one 

person. 

 

2. Point cloud tracking: Also in the tracking phase, the author adopted the most 

mature and effective method in multi-target recognition and tracking then 

used the Hungarian algorithm to track the clustered point cloud to obtain 

continuous gait data of volunteers. 

It matches clusters in the current frame with clusters present in previous 

frames. The weight matrix of the Hungarian algorithm contains the positions 

of the cluster categories generated in the last 10 frames, which helps to 

alleviate the cluster interruption caused by the sparse point cloud data. 

 

3. Data Merging: In this step we will ask why do they need to merge data? The 

reason is that they decided to use two devices to collect gait data at the same 

time, which can greatly increase the number of points in the point cloud and 

reduce the mutual coverage of volunteers. 

Data merge process: 

The first is coordinate transformation: through the rotation and translation of 

the coordinate system, the point cloud data is converted into the same 

coordinate system. First, rotate the coordinate systems of both devices 

clockwise to align their orientations. 

Next, using the translation formula involving the rotation angle of the 

coordinate system and the coordinates of each point in the original 

coordinate system and the new coordinate system, the coordinate system of 

IWR6843 is translated to be consistent with the coordinate system of 

IWR1443. 

The second step is the merging process: the point clouds collected by the 

two devices are merged according to their timestamps. Each point cloud is 

given a new attribute called device name, which records the ID of the device 

that collected the point cloud. The coordinate-transformed point clouds 

collected by the two devices are merged into the same file, and all point 

clouds are sorted according to the acquisition time. The point clouds of two 

devices whose time difference is less than the specified threshold (set to 50 

milliseconds) will be merged. The average value of the time difference for 

merging point clouds was found to be 24ms. 

 

4. Millimeter Gait Network (mmGaitNet): This neural network model is 

specifically designed to process point cloud data for gait recognition. The 

input data represents human motion in the form of a 3D point cloud. The 

three-dimensional coordinates of the point are represented by X, Y, and Z, V 

represents the radial velocity, and S represents the signal strength of the 
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point. 

 

Figure (29): mmGaitNet framework structure. The 7×7 spatiotemporal convolution 

kernel with 2×2 stride is used in Attribute Networks named COV1; the layer1 of 

ResNet18 is represented by COV block also in Attribute Networks; a 3×3 

spatiotemporal convolution kernel with 1×1 stride Layers are denoted by COV 2; fully 

connected layers are denoted by FC. [5] 

 

The structure of the model Figure.29 is designed to handle these five 

properties efficiently. The mmGaitNet model consists of five identical 

attribute networks and one fusion network. Each attribute network takes as 

input a point cloud of a single attribute, represented as a p x t matrix, where 

“p” is the number of points in the point cloud and “t” is time. The attribute 

network extracts feature information for each attribute separately. The 

fusion network then combines the features extracted by each attribute 

network to create an overall representation of the point cloud. It then goes 

through a final fully connected layer to output the class score, which 

represents the identified person. 

 

 

5. Robustness verification of mmGaitNet: They conducted experiments on 

mmGitNet in two different scenarios, and the results showed that the change 

of the scene had no effect on the recognition accuracy. They evaluate our 

method on data collected when two people walk simultaneously in two 

scenarios. In Scenario 1, our method achieves 86% accuracy. In Scenario 2, 

our method achieves 93% accuracy. Experiments validate the performance of 

mmGaitNet to adapt to environmental heterogeneity. The reason is that 

mmWave sensors and our signal processing algorithms are able to eliminate 

static reflection points from different furniture in different environments. 

 

So, I think we may have a question that why is the effect of scene 1 better 

than scene 2? 

The reason why the result of Scenario 1 is better than that of Scenario 2 is 



55 
 

because of the location of the radar sensor. Due to the limited launch angle of 

the radar wave, the radar horizontal detection used in this work is 45° and 

60° respectively, so the radar sensor similar to Scenario 2 is placed 

diagonally Can achieve better test results. 
 

7.2.2 Results and Discuss  

Compared with the mm-Pose in the previous work that uses the RCS feature of 

the radar to add RGB weights to each point cloud to form a heat map, the author 

here uses each original Doppler radar signal. Species characteristics, 

three-dimensional coordinates, speed, signal strength. An attribute network is 

used to take each feature as a separate input. This greatly reduces the difficulty 

and speed of processing fusion data by a single network, and finally outputs the 

classification result after fusion of the processed data. This method of operation 

is very similar to the idea of differential CNN but executed more thoroughly. Each 

function is handled individually. 

Finally, the author also compares many existing models. 

First, the author's gait recognition accuracy for each person using the 

IWR6843 sensor. This table compares the performance of four methods: PL 

(PointNet with T-Net and LSTM), P-L (PointNet without T-Net and LSTM), DR 

(Deep Residual Neural Network) and the proposed mmGaitNet. The results in 

this table show that mmGaitNet consistently outperforms other methods for 

every person and every scene. Regardless of the number of volunteers walking 

simultaneously, mmGaitNet outperforms PL, P-L, and DR in accuracy. 

Furthermore, the table shows that the gait recognition accuracy of all methods 

generally decreases as the number of volunteers increases. However, mmGaitNet 

can maintain relatively high accuracy even in more complex scenarios where 

multiple people walk at the same time. 

Second, the authors use two sensors (IWR6843 and IWR1443) for the 

accuracy of gait recognition for each person. Still the same four methods: PL 

(PointNet with T-Net and LSTM) [83], P-L (PointNet without T-Net and LSTM), 

DR (Deep Residual Neural Network), and the proposed mmGaitNet (ours). 

Likewise, the results show that mmGaitNet consistently outperforms other 

methods for every person and every scene when using two sensors. And 

regardless of the number of volunteers walking simultaneously, the accuracy of 

mmGaitNet is higher than PL, P-L and DR. 

These two comparative experiments clearly show that the gait recognition 

accuracy of all methods improves when two sensors are used instead of only one 

(IWR6843). This improvement was especially pronounced when multiple people 

were walking at the same time, suggesting that the performance of gait 

recognition systems can be enhanced with the use of additional sensors. 

Then the author also discussed the impact of each feature on the collation 

accuracy. Gait recognition accuracy of the mmGaitNet method when removing 

different attributes from point cloud data. This experiment compares the 



56 
 

performance of the method under six different conditions: removal of X 

coordinate (no_X), removal of Y coordinate (no_Y), removal of Z coordinate 

(no_Z), removal of radial velocity (no_V), removal of signal-to-noise ratio (no_S), 

and use all properties (Ours). The results in this table show that removing a 

single attribute leads to a drop in accuracy compared to a method that uses all 

attributes (ours). When all attributes are included, the method is most accurate 

at 90%. Table II show the results. 

Removing each individual attribute affects the accuracy of the method 

differently. Removing the X coordinate (no_X) was 77% accurate, while removing 

the Y (no_Y) or Z (no_Z) coordinate was 83% accurate. This suggests that the X 

coordinate may have a more important role in gait recognition than the Y and Z 

coordinates. The accuracy of removing radial velocity (no_V) and signal-to-noise 

ratio (no_S) was 82% and 86%, respectively, suggesting that these properties 

also contribute to the overall performance of the method. This shows that each 

attribute contributes to the effectiveness of the method, and the combination of 

all attributes provides the most accurate and robust gait recognition. 

 

Table II: Accuracy of each person under different attributes. 

 
 

At the end of the work, the authors emphasize the importance of considering 

different input formats of point cloud data when designing gait recognition 

algorithms. The results show that the similarity between coordinates, radial 

velocity, and signal-to-noise ratio is smaller than that between individual 

coordinates. Furthermore, the attributes are independent of each other and 

represent different features of the point cloud. Second, the way point cloud 

attributes are processed and combined plays a crucial role in achieving the best 

gait recognition accuracy. The proposed mmGaitNet method, using a separate 

network for each attribute, outperforms other methods, demonstrating its 

effectiveness in processing point cloud data for gait recognition tasks. 
 

 

 

7.3 Human Gait Recognition Using Multi-Channel-3D-CNN [7] 

This is also an article about gait recognition in the field of human activity 

recognition. The author of this work: Jiang, X.; Zhang Yong and others proposed 

"a human gait classification and recognition method based on millimeter wave 

array radar". The author proposes a multi-channel 3D convolutional neural 

network, which achieves the purpose of human gait recognition through the 

extraction and fusion of multi-dimensional features of information collected by 

millimeter-wave radar, which is also a typical classification problem. "[7]. 
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For radar placement and data collection the author designed the system in 

such a way that the IWR1443BOOST [66] radar system was placed at a height of 

0.8 m above the ground. The radar system design in Figure.30. The target 

(person) is allowed to move along a non-fixed path within the detection range of 

the radar. Subjects, in turn, performed various types of locomotion in the 

experimental field, including normal walking, jogging, limping (with one leg 

trailing behind), squatting, and standing up. The movements are performed in 

different scenarios, including corridors, basketball courts, and parking lots, to 

increase the diversity of the sample data. 

 

Figure (30). Experimental scenario: Schematic diagram of experimental scene. 

 

Overall, the first step is Generation of a point cloud of human gait. The FMCW 

radar is capable of measuring the range, velocity, and angle of a target by 

transmitting FMCW signals. There are three main processes covered in this step: 

1) Range Measurement 

2) Velocity Estimation 

3) Direction of Arrival (DOA) Estimation 

Once the above information is known for every detected point on the target, a 

point cloud can be generated. Each point in the cloud would represent a point on 

the target, with the position of the point in the cloud defined by the calculated X, 

Y, Z coordinates. 
 

7.3.1 Points cloud processing  

The whole 3D points cloud pre-processing has 5 steps, which are: 
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Figure (31). Flow of data processing. 

 

1. Data Denoising: During this stage, a distance threshold is set in the 3D space 

to eliminate noise points or outliers from the data. This ensures the data 

going into the 3D spatial coordinates, radial velocity, and intensity channels 

of the neural network is as clean and accurate as possible. 

2. Data Filling: This stage is to make sure that each frame of data contains 64 

points cloud, thereby maintaining the consistency of the input data 

dimensions (64 points cloud per frame). This is done by filling in null values 

in frames with fewer points. After data filling, each of the 3D spatial 

coordinates, radial velocity, and intensity channels will have an input size of 

64 * 40 for each training sample. 

3. Data Smoothing: After dimension expansion (data filling), the point cloud 

data can't be null because null values can't provide useful data for the 

convolution process. So, the data of adjacent points is copied to create a 5D 

array containing 64 valid points for each frame of data. This means each of 

the three channels (3D spatial coordinates, radial velocity, and intensity) will 

have a well-structured, non-null input for the neural network. 

4. Dataset Expansion: If the Sample Size is too Small, it is needed to expand the 

dataset to enhance the robustness of the neural network mode. Flipping and 

Cropping May Be used for this Purpose. This affects all Three Channels of the 

Neural Network input, increasing the amount of data they each must work 

with. 

5. Division of the Training Set and Test Set: Here the author used N-fold 

Cross-validation. In order to evaluate the network model, they used an N-fold 

cross-validation strategy. Here, N = 4, meaning the sample data was divided 

into four equal parts for four-fold cross-validation (CV). 

After the dataset is fully prepared, it is divided into a training set and a test 

set in Table III. The training set is used to train the neural network, and the 

test set is used to evaluate its performance. Each of the three channels (3D 

spatial coordinates, radial velocity, and intensity) will have their data split 

into a training set and a test set. 

 
Table III. Cross-training and dataset partition. 

 

 

6. MC-3DCNN classification: In this work, the authors design a multi-channel 3D 

convolutional neural network (MC-3DCNN) for the classification goal of 

human gait. This type of network is a neural network specifically designed 

for analyzing and understanding features in multidimensional data. This 
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design enables the model to independently extract features from multiple 

types of input data. At the same time, it has many similar ideas with the 

differential CNN and multi-attribute network we introduced earlier, 

especially the internal structure is very similar to the DVCNN model 

mentioned above, the main difference comes from the different input 

structure of the data. The structure of the Neural Network model show in the 

Figure.32.  

The motivation behind the design of the MC-3DCNN model is based on the 

principle of feature fusion and augmentation. The network structure is 

designed to independently process and extract features from the radar signal 

on three different types of data (3D spatial coordinates, radial velocity, and 

intensity) representing different physical properties of the detected motion. 

By processing these channels independently, the model can gain a more 

complete understanding of the actions performed by the human body. 

These three data channels are not merged until later in the model 

architecture. The advantage of this multi-channel design is that it allows the 

network to learn different feature representations before fusing each type of 

data together. This could allow the model to capture the finer nuances and 

complexities in motion, leading to better motion recognition performance. 

 

 

Figure (32). Structure of multi-channel three-dimensional convolution neural network 

(MC-3DCNN).[7] 

 

The structure of the NN input: 

In this work, they uniformly segment gait sequence samples, and each gait 

segment is set to last 2 seconds, covering a complete gait cycle. Given that the 

radar is sampled at 20 frames per second, this would result in 40 frames (2 

seconds) of gait data as training samples. They split this data into three channels: 

3D spatial coordinates, radial velocity, and intensity, which are the input to a 

multi-channel 3D convolutional neural network (MC-3DCNN). 

 

3D space coordinates: These are the X, Y, and Z coordinates of each point in 

the point cloud data. This data represents the position of each point in 
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three-dimensional space. The input size of this channel is 3 * 64 * 40. 

 

Radial Velocity: This is the velocity and direction in which each point is 

moving directly away from or towards the radar. This velocity is expressed as 

a scalar (one-dimensional). The input size of this channel is 1 * 64 * 40. 

 

Strength: This data represents the power or strength of the radar signal 

returned by each point. Like radial velocity, intensity is a scalar quantity. The 

input size of this channel is 1 * 64 * 40. 

 

We can think about the following why they chose to preprocess the data in this 

way? 

Personally, I believe that the reason they chose to preprocess the data in this way, 

in the context of this study, may have to do with the need for a structured and 

consistent format to feed into the neural network model. By segmenting the gait 

data into 2-second periods, they ensured a consistent input size for the model. By 

separating this data into three channels (3-D spatial coordinates, radial velocity, 

and intensity), they were able to independently analyze and learn the unique 

characteristics provided by each data type, which can improve the model's 

ability to recognize and classify different human’s gait. 
 

7.3.2 Results of the classification 

Table VI. shows the recognition results of the cross-validation. From the 

identification results of cross-validation, it can be seen that MC-3DCNN can well 

identify the movement with strong continuity with an accuracy rate of more than 

90%, but for Lame with weak continuity and less obvious micro-Doppler 

features the accuracy of walking recognition is relatively low. So, this is also one 

of the development directions of future work, to improve the recognition 

accuracy of actions with weak continuity and less obvious micro-Doppler 

features. 

 

Table VI. Recognition results of cross validation [7] 

 
Of course, in order to prove that the proposed "MC-3DCNN" [7] "achieves higher 

recognition accuracy by enhancing and fusing the features of spatial coordinates, 

radial velocity and intensity in the three channels, rather than just increasing the 

training samples quantity , So as to the Achieve Good Results."[7] They designed 

"an experimental Single-Channel 3D Convolutional Neural Network (SC-3DCNN). 

The Structural Design of SC-3DCN N is similah to mc-3dcnn, but it integrates all 
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three features into one channel for ele each of the 40 frames of data."[7] 

The recognition results of different networks are shown in Table V. 

 

Table V. Recognition results for different networks.[7] 

 

 

It can be seen that the Muti-Channel model can better recognize the three types 

of motion with strong motion continuity than the SC model, but for the gait 

categories with weak motion continuity and less obvious micro-Doppler features, 

the recognition accuracy is almost the same, We can thus conclude that while 

MC-3DCNN has clear advantages in recognizing certain types of strong 

continuous motion, there is still room for improvement in recognizing irregular 

or less dynamic motion. Further research or refinement may help improve. 
 

 

 

7.4 MARS [10] 

Several articles have been presented that use multidimensional point cloud data 

to analyze human activities or locomotion. Similar to “mm-Pose”, the output of 

the neural network model in the final stage of human posture recognition is not 

directly proportional to the pose. The result of classifying the human body 

posture is the spatial position information of the 25 joints, after which the 

human body posture is restored via bone reconstruction. Figure.33 depicts an 

example of angle estimation by "MARS" [10] during squatting movements as 

reconstructing skeletal information to recognize human posture has 

progressively garnered traction in recent years. For instance, rehabilitation is a 

crucial procedure for some elderly individuals and patients with movement 

disorders. Rehabilitation exercises are currently performed under the 

supervision of clinical experts. To enable patients to perform prescribed exercise 

at home and reduce commuting requirements, specialist shortages, and 

healthcare costs, novel approaches are required. The estimation of human joints 

is an integral part of these programs because it provides valuable visualization 

and feedback based on body motion. Popular camera-based systems are used to 

capture joint motion. Nevertheless, they are expensive, pose significant privacy 

concerns, and necessitate stringent illumination and placement settings. 

 

The authors propose a millimeter-wave (mmWave)-based Movement 

Impairment Assisted Rehabilitati on System "MARS" to address these issues. 

MARS offers a cost-effective solution with comparable object localization and 

detection precision. MARS can reconstruct 19 human joints and their bones 
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using mmWave radar-generated point clouds. The system depicted in Figure.34 

was developed by the authors using a Texas Instruments (TI) IWR1443 Boost 

mmWave radar [66]. For data acquisition, Texas Instruments' Matlab Runtime 

implementation was used. UART interface allows the device to communicate 

with the laptop. It begins retrieving data from the Matlab runtime with a 100ms 

frame duration. 
 

 
Figure (33). “Angle estimates displayed by the MARS system for the target squat 

movement”[10] 

 

For various applications, the frame duration can be set to different values. Due 

to bandwidth limitations, they stipulated a minimum frame duration of 33.3ms, 

which corresponds to a sampling rate of 30 Hz. 100ms (or a sampling rate of 10 

Hz) was chosen because it was adequate for measuring human motion ("most 

voluntary human motion occurs in the frequency range of 0.6 to 8 Hz" [84]). 

IWR1443 millimeter-wave radar [84] average power consumption at the power 

supply end is 2.1W. Kinect V2 sensor [85]: Using Microsoft Kinect V2, a ground 

truth reference is gathered. Both the Kinect and the radar were situated on a 

one-meter-high table, and the subjects performed the indicated tasks from a 

distance of two meters. Using an adapter, the Kinect V2 sensor is connected to a 

laptop's USB interface. Images are captured at a sampling rate of 30 Hz. Then, the 

images were processed with Matlab to identify the 3D coordinates of the 19 

human joints enumerated in Table VI and demonstrate an average MAE of 5.87 

cm for the MARS 3D joints position estimation.  

This is the first open-source dataset of rehabilitation exercises using 

millimeter-wave point clouds, according to the authors. In addition, they intend 

to disseminate this dataset to the public via Github alongside the extant demo. 
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Figure (34). Overview of “MARS” framework [10] 

 

 

7.4.1 Points cloud Pre-processing 

The point cloud preprocessing in the “MARS” system includes the following 

steps: 

(1) Input data: The main input of “MARS” is 5D time series point cloud. where is 

the x, y, z coordinates of the point reflecting the TX signal (x, y, z), the 

Doppler velocity D and the reflection intensity I.  

Reformatting: The authors discuss the challenges associated with entering 

data, including: 

Variation in the number of received points: If there are fewer body parts 

reflecting chirps, fewer than 64 points may be received. This leads to 

inconsistent input frame sizes. 

Random order of points: Due to small variations in body posture and 

round-trip delay, reflected chirps arrive at the radar in a random order. This 

poses a challenge to the design of CNNs, which require fixed-shape inputs. 

So, to address these challenges, the authors propose the following 

reformatting steps: 

Padding: If less than 64 points are received, the rest of the frame is 

zero-filled to keep the input frame of uniform size (NP × 5) input frames. 

Sorting: The points in each frame are sorted in ascending x, y, z coordinate 

order to solve the challenge of random point ordering. 

These reformatting steps ensure that the input data is of consistent size and 

order, making it suitable for CNN processing. 

 

(2) Feature Generation (Ordering) for CNNs: Due to slight variations in body pose 

and round-trip latency, the order of points in a frame is randomized. To solve 

this problem, the authors propose a preprocessing algorithm consisting of 

sorting and matrix transformation. Points are sorted in ascending order of x, 

y, and z coordinates. 

 

(3) Matrix transformation: Transform the sorted input data with a size of 64 x 5 

into a data structure of 8 x 8 x 5, in which five channels represent x, y, z 



64 
 

coordinates, Doppler velocity and reflection intensity. This transformation 

allows the data to be used in CNNs. 

 

(4) Dealing with "ghost images" out of range: mmWave radar imaging can 

sometimes generate "ghost images" outside the range of interest in 

Figure.35(b)(d). The authors divide the point cloud into in-range points and 

out-of-range points, defining in-range points with specific boundaries for 

each dimension. Out-of-range points or ghosts are flagged and included 

during training and inference. (In order to prove that including the 'ghost 

map' works best, the author also conducted an Ablation Study). 
 

 
Figure (35). point cloud for one frame with ghost points. [10] 

 

By including or excluding these out-of-range elements (approximately 2% 

of all frames), the authors evaluate the performance of the trained model. 

They trained two distinct CNN models, one with only point clouds within the 

range and the other with all point clouds, including points outside the range. 

The results indicate that the model trained with all point clouds 

outperforms the model trained with only range point clouds. Incorporating 

out-of-range point clouds into the input increases the noise, making the CNN 

more robust. In addition, in real-world use cases, out-of-range points cannot 

be avoided. The authors concluded, based on these findings, that 

out-of-range elements should be included in the training data. 
 

7.4.2 CNN (Convolutional Neural Network) model design 

In MARS aims to convert the input 5-channel feature map into actual 3D joint 

positions, outputting the x, y, and z coordinates of 19 joints. The CNN model 

show in Figure.36 used in MARS is relatively simple and straightforward so i 

want to discuss are the author do an Ablation Study for CNN model design. 
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Figure (36). Point cloud pre-processing and CNN architecture. 

 

 

Four different models are trained: 

1. Baseline: no BN or max-pooling. 

2. Baseline with BN: BN layers added after each convolution and fully connected 

layer. 

3. Baseline with max-pooling: max-pooling layers added after the convolution 

layers. 

4. Baseline with both: BN and max-pooling layers combined, with max-pooling 

layers added after each BN layer (except for the final BN layer after the fully 

connected layer). 
 

Table VII. Average localization error of 19 joint-space locations for models trained with 

batch normalized and max-pooled CNN architectures [10] 

 

 

The results in Table VII show that the "Baseline with BN" model performs the 

best, while the "Baseline with both" model performs the worst, similar to the 

baseline model. BN is effective in avoiding the internal covariate shift, improving 

the model's performance. However, max-pooling is not a suitable option for this 

specific task, as it is a mapping regression problem that requires accurate joint 

coordinates. Max-pooling introduces information loss by taking the local 

maximum of features, making it difficult for the model to leverage every joint's 

coordinates effectively. Based on these findings, the MARS model incorporates 

only BN to achieve optimal performance. 

In summary, the choice of using BN and not using max-pooling in the MARS 

model is based on the characteristics of the data and the specific requirements of 

the task. BN is used to stabilize the training process and improve performance, 

while max-pooling is avoided to preserve local information for accurate spatial 



66 
 

coordinate estimation. 

At the same time, in order to prove that the 5D data works best, the author also 

conducted an Ablation Study on the input data features the results of Ablation 

Study show in Table VIII.  The author set up 4 configuration situations. 

Configuration-1: represents a CNN trained with only feature maps stacked by 

three channels x, y, z. 

Configuration-2: represents a CNN trained with feature maps of x, y, z, and 

Doppler velocities; four channels stacked. 

Configuration-3: represents a CNN trained with feature maps stacked with x, y, z, 

and reflection intensities. 

Configuration-4: represents a CNN trained with feature maps of x, y, z, Doppler 

velocity, and reflection stacks strength. 

 

Table VIII. Average localization error of 19 joint space positions obtained by models 

trained with different feature configurations [10] 

 

 

They observe that the Configuration-1 model has the worst performance due to a 

lack of Doppler velocity and reflection intensity information, as shown in Table 5. 

Configuration-2 and Configuration-3 has slightly better performance since 

Doppler velocity or intensity information is introduced. Configuration-4 

performs the best since the 5-channel feature maps contain all the information, 

including x, y, z with both Doppler and intensity. Note that because of weight 

sharing in CNN, adding channels in input only increases negligible parameters in 

the model, as shown in Table 5. They then apply Configuration-4 in MARS. 
 

 

 

7.5 Summary for Using Multi-Dimensional Point Clouds 

We now present state-of-the-art methods for human activity and gait recognition 

using multidimensional point cloud data, from the earliest mm-Pose [4] method 

that assigns RGB weights to 3D point clouds as input to a differential CNN model, 

to Meng and Z.'s article "Gait Recognition of Coexisting Multiple Persons Using 

Millimeter Wave Sensing" [5] uses 5-dimensional data X, Y, Z, plus radial velocity 

and signal strength, and "mmGaitNet" [5] multi-channel attribute network model, 

followed by It is the article written by Jiang X; Zhang, Y. et al. "Human gait 
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recognition based on millimeter-wave array radar using multi-channel 3D 

convolutional neural network" [7], these author uses the same 5D data input, 3D 

spatial coordinates, radial velocity and intensity as the 3-channel CNN model 

input, In the final "MARS: Intelligent Medical Assisted Rehabilitation System 

Based on Millimeter Waves" [10], the author also used 5-bit data input, but after 

data shaping and arrangement, the output is the same 3D data of human joints as 

mm-Pose .  

 

7.5.1 Compare mm-Pose and MARS   

In terms of accuracy, since the output of “mm-Pose” and “MARS” is not the 

classification result but the three-dimensional space data of the joints, the output 

of mm-Pose contains the three-dimensional data of 25 joints, while “MARS” 

contains the data of 19 joints, but the decrease in the number of joints does not 

determine the accuracy of the later reconstruction of the human body pose. 

Instead, what determines the accuracy of the later human body pose is whether 

the position of the joints in the three-dimensional space is accurate.  

The result of mm-Pose is obtained when the feature map is 16x16 Got the 

results of “average mean errors of 3.2 cm in axis X, 2.7 cm in axis Z and 7.5 cm in 

axis Y, compared with state of art "MIT's RF-Pose3D"[21]”[10] on axis X and axis 

Z Better results were obtained by the authors, and the author setting the feature 

size of “MARS” into 8x8, then the author of “MARS” made a comparison after 

“reducing the size of the feature map to 8x8 in mm-Pose.” [10] The CNN model in 

MARS has about 1x106 parameters, which only have half of the 2x106 parameters 

in mm-Pose. 

 In addition, MARS' 3-axis positioning error has an MAE of 5.87 cm, which is 

less than mm-Pose's 6.18 cm. The results demonstrate that "MARS" feature 

generation decreases model complexity while increasing performance. 

Additionally, "mm-Pose" requires only two radars, whereas "MARS" requires 

only one, making it more practical and simpler to use. In addition, "MARS" is 

capable of handling sophisticated rehabilitation movements, whereas "mm-Pose" 

can analyze joint motion during walking. 
 

7.5.2 Compare mmGaitNet & MC-3DCNN  

For the other two models "mmGaitNet" in the experiment, if the radar is 

arranged diagonally, that is, scene 2, in the case of only two people walking, the 

highest recognition accuracy can be obtained. Of course, the accuracy will also 

decrease as the number of people in the scene increases, 

In the "MC-3DCNN" experiment, "MC-3DCNN" also obtained an average 

accuracy of 93% after accumulating the accuracy of 4 cross-validation sets. 

So, we can also make a summary of the methods proposed in these two articles, 

both of which take human gait recognition as the subject. "mmGaitNet" is a 

human gait recognition model specially designed for multi-person scenarios, 
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with a more complex model structure and input data. "MC-3DCNN" is a gait 

recognition model designed for single-person situations. Although the final 

accuracy of the two models is not very different, we found that both models have 

considerable limitations. For example, "mmGaitNet" requires two radars to be 

placed diagonally to obtain the maximum recognition accuracy. At the same time, 

if the number of people in an open space increase, the recognition accuracy will 

drop rapidly when the per capita gathering is the case. For "MC-3DCNN", 

although an average accuracy of 93% has been achieved, the system itself is 

designed for single-person gait recognition, and it is not suitable for deployment 

in open spaces. Yes, the usage scenarios of the system are greatly limited. Only 

suitable for use in spaces such as single patient rooms. Therefore, in terms of gait 

recognition, there is still a lot of room for improvement in research. 

 

At this point we can finally discuss the following advantages and disadvantages 

of using multidimensional data. 

By using multidimensional data, the system can achieve better performance in 

the joint estimation task because it utilizes more information about the scene. 

However, there are some trade-offs to consider: 

Advantages: 

1) More information leads to better joint estimation performance and accuracy. 

2) Doppler velocity can help distinguish different body parts and their 

movements, which is especially useful for rehabilitation exercises. 

3) Reflection intensity can provide additional insight into the scene, helping to 

improve the overall understanding of the environment. 

Limitations: 

1) This may require more processing power and time due to the increased 

computational complexity of the extra dimension. 

2) More complex preprocessing and feature extraction techniques are required 

to effectively handle the increased data dimensionality. 

3) The potential for overfitting, as more dimensions may increase the risk of the 

model capturing noise rather than meaningful patterns in the data. 
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Chapter VIII 

 

Using Point Clouds and Range-Doppler 
We have already introduced the method of directly using micro-Doppler features, 

the method of voxelizing 3D point cloud, and the method of using 

multi-dimensional point cloud data. All of these have one thing in common, 

which is to use single-form data for analysis. So, is it possible to use 

micro-Doppler features and 3D point cloud data for analysis at the same time? 

After searching, we found the method proposed by Huang, Y., Li, W, et al. We 

found their 2022 article "Activity Recognition Based on Millimeter-Wave Radar 

by Fusing Point Cloud and Range–Doppler Information"[15]. Next, I will 

introduce the method proposed in this article. 
 

 

Figure (37). The visualization of range–Doppler data [15] 

 

8.1 Activity Recognition Based on Millimeter-Wave Radar by 

Fusing Point Cloud and Range–Doppler Information [15] 

The authors used the IWR1843 device, manufactured by Texas Instruments, 

for their data collection process. This device is a highly integrated, single-chip 

millimeter-wave sensor. It uses Frequency-Modulated Continuous Wave (FMCW) 

radar technology and operates within the 76 GHz to 81 GHz frequency band. The 

device incorporates three transmitting antennas, four receiving antennas, 

Analog-to-Digital Converters (ADC), and a Digital Signal Processing (DSP) 

subsystem. 
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Experiment setting: the device is linked to a computer and positioned at a 

height of 1.2 meters on a platform. The side of the device equipped with the 

antenna array is directed towards the individual performing the various 

activities. The positioning of the radar is crucial during data collection, and it's 

essential to ensure that the millimeter-wave radar remains fixed in place to 

avoid inaccuracies. 

Six distinct activities are used in the data collection: boxing in place, jumping 

in place, squatting, walking in place, circling in place, and high knee lifting. These 

activities are executed by 17 different individuals, each performing the set of 

activities for 20 seconds. 

The data collected are then labeled using a one-hot encoding technique. This is 

a process of converting categorical data into a form that could be provided to 

machine learning algorithms to improve predictions. Once labeled, the data is 

split into a training set and a validation set in a 4:1 ratio. This means that 80% of 

the total data is used for training the model, while the remaining 20% is used for 

validation purposes. The same dataset is utilized across all network models to 

ensure a fair and effective performance comparison. 
 

8.1.1 Points cloud pre-processing 

For the pre-processing of the entire point cloud data, the author adopts a very 

common approach: 

(1) Denoising: The Cell Average Constant False Alarm Range (CA-CFAR) 

algorithm denoises the radar signal. 

(2) Generate point cloud: Calculate the scale of the x, y and z axes. Create an 

array to represent 3D space. Populate the array with point cloud data. 

(3) Reflect timing characteristics: In order to reflect the timing characteristics 

between frames, the author combines eight consecutive frames to add a time 

dimension, because the radar acquisition rate is 8 frames per second. 
 

8.1.2 Ablation study for NN model and input data 

In the research, the authors engage in detailed ablation studies to investigate 

the effect of various neural network architectures on classifying human activity. 

This is done by using both 3D point cloud data and range-Doppler signal. The 

ultimate aim of these studies is to demonstrate the advantages of training 

models using a fusion of 3D point cloud data and range-Doppler data. 

3D point cloud data embodies the spatial and temporal attributes of 

movements. To extract spatial features, they deploy a three-dimensional 

Convolutional Neural Network (CNN). However, for temporal features, a 

straightforward CNN may not be entirely effective in capturing the sequential 

relationships between frames. To address this issue, they design two 

comparative network structures for their experiments. The first network strictly 

employs CNN, while the second network supplements the CNN with an LSTM 
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(Long Short-Term Memory) layer 
 

3D CNN for 3D point cloud data 

Initially, the authors develop a 3D Convolutional Neural Network (CNN) 

specifically for 3D point cloud data. This network is tailored to derive spatial 

features from the 3D point cloud data. Given the sparse nature of point clouds 

(typically fewer than ten-point clouds per frame), they amalgamate the point 

cloud data from eight successive frames into one, according to the collection rate 

is eight frames per second. They achieve this by summing up the respective 

three-dimensional arrays from the eight frames to form a denser, new 

three-dimensional array. This denser array is then utilized as the input for the 

convolution network training. 

The network's architecture is depicted in Figure.38. For the convolution 

section, they employ a 'Conv+Conv+Max-pooling' setting. All the 3D convolution 

layers use a convolution kernel size of (3, 3, 3), with the kernel number of 32. 

Then set the padding to 'same', utilize the “Relu” activation function. Using the 

max-pooling layer and padding designated as 'valid'. Subsequently, the extracted 

features are flattened and inputted into the fully connected layer. 

 

Figure (38). The structure of 3D CNN network [15] 

 

For comparison, the authors develop a combined 3D CNN and Long 

Short-Term Memory (LSTM) model, also for 3D point cloud data. This design 

aims to accommodate the temporal relationships between frames by 

incorporating a bidirectional LSTM layer following the CNN. Consequently, they 

employ this hybrid 3D CNN + LSTM network for training and classification tasks. 

Given that the data collection rate is eight frames per second and each activity 

lasts about a second, they preprocess the 3D point cloud data into a 

four-dimensional array with dimensions 8 x 10 x 32 x 32. This includes merging 

3D point cloud data gathered within a second. 

As LSTM input must contain the 'timesteps' parameter, they wrap the 

convolutional layer, pooling layer, and flatten layer in a 'TimeDistributed' layer. 

The network structure is detailed in Figure 39. For the convolution section, they 

employ a 'Conv+Conv+Max-pooling' arrangement thrice, maintaining the same 
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parameter settings as in the initial network. The extracted features are then 

flattened and input into a bidirectional LSTM layer, equipped with hidden layer 

units. Lastly, after regularization, they employ a fully connected layer for 

classification, using the Softmax activation function. 
 

 

Figure (39). The structure of 3D CNN + LSTM network [15] 

 

To validate their model, the authors design a 3D Convolutional Neural 

Network (CNN) specifically for range Doppler data. This network employs a 3D 

CNN to train on range Doppler data, treating the input as a three-dimensional 

single-channel stereo image. Since a single piece of range-Doppler data is 

essentially a temporal superposition of multiple images, the authors use a 3D 

CNN for training the range-Doppler data. 

As depicted in Figure.40, this network shares a similar structure with the 

convolutional component of the point cloud network. The authors use the 

'Conv3D-Conv3D-Max-pooling' structure three times, with parameter settings 

consistent with the network in preview part. However, this network does not 

utilize the 'Time-Distributed' layer wrapper to encapsulate the layers. 

The features are then passed into the flattened layer and the fully connected 

layer consecutively for classification. This network processes eight frames of 

range-Doppler data as a single set of input data. In other words, data with the 

shape of 8 x 32 x 32 x 1 can be regarded as a three-dimensional single-channel 

stereo image. Therefore, this network can be perceived as a three-dimensional 

image classification network. 

However, unlike traditional image classification networks, the input data 

possesses both spatial and temporal characteristics. The temporal characteristics 

can be interpreted as the series between frames, i.e., the features reflected by 

Doppler velocity. Consequently, this network can effectively learn the dynamic 

aspects of actions instead of merely extracting static two-dimensional features. 
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Figure (40). The structure of 3D CNN network for range Doppler data alone.[15] 

 

The authors's base working principle is that the accuracy and detail of object 

classification can be enhanced when multiple types of information are used to 

describe that object, a concept known as multimodal fusion. 

Various kinds of data, such as point cloud information, echo intensity 

information, and range-Doppler information, can be used to describe an activity. 

Each type of information provides a different perspective and unique 

characteristics about the activity. Therefore, extracting and effectively fusing 

these features can provide a more comprehensive view of the activity than using 

a single type of information. 

The authors propose to merge the features from 3D point cloud information 

and range-Doppler information. They acknowledge that including more types of 

features could potentially offer a more complete picture of the activity. However, 

it would also increase the complexity of the fusion process. Therefore, they chose 

to focus only on the fusion of point cloud information and range-Doppler 

information. 

 
 

 
Figure (41). The structure of the fusion network.[15] 

 

For this, the authors fuse the second and third models to design a fourth model, 
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a fusion network depicted in Figure.41. This network processes both 3D point 

cloud data and range-Doppler data. The inputs to the fully connected layers of 

the two networks represent the features inherent in these two types of data. The 

authors separately output the results from the preceding layer of the fully 

connected layer for each type of data, finding that the results are both 

two-dimensional, with the first dimension representing the volume of data. 

These two sets of features are then fed into a concatenate layer, where they 

are merged along the second dimension to produce a feature set that contains 

both sets of characteristics. This combined feature set is then normalized and fed 

into a fully connected layer for classification.  
 

8.1.3 Results and Discussion 

In experiment, the authors tested two models using 3D point cloud data 

exclusively as input. The first model used only a three-dimensional 

Convolutional Neural Network (3D CNN), while the second model combined a 3D 

CNN with a Long Short-Term Memory (LSTM) layer, denoted as "3D CNN + 

LSTM". By analyzing the results presented in Table IX, it is clear that the "3D CNN 

+ LSTM" model outperformed the simple "3D CNN" model in terms of accuracy. 

More specifically, the accuracy improvement of the "3D CNN + LSTM" model was 

significant, registering an increase of 6.59%. 

This suggests that the addition of the LSTM layer to the 3D CNN model made a 

substantial contribution to the model's performance. The LSTM layer, a type of 

recurrent neural network, excels at processing time-series data or sequences, 

adding the ability to interpret the temporal dependencies in the sequence of 3D 

point cloud frames. Therefore, the improvement in accuracy likely results from 

the model's enhanced ability to comprehend the temporal dynamics in the data, 

thanks to the LSTM layer. 

 

Table IX: Accuracy and Loss of The Two Networks Using points cloud as input.[15] 

 

 

At last, the authors compare three different models: 

i. The "3D CNN + LSTM" model which solely uses 3D point cloud data, 

ii. The "3D CNN" model which uses only range-Doppler data, and 

iii. The fusion model which employs both types of data in a parallel manner, 

specifically, the "3D CNN + LSTM and 3D CNN" model. 

By inspecting the accuracy curves visualized in Figure.42, the authors note 

that the fusion model, which utilizes both 3D point cloud data and range-Doppler 

data, converges fastest during training. 

When comparing the performance metrics of accuracy and loss, the fusion 
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model outperforms the other two models. Specifically, the fusion model achieves 

the highest accuracy and the lowest loss compared to models trained on either 

type of data individually. This implies that the fusion of different types of data 

(3D point cloud and range-Doppler) within the model significantly enhances the 

model's predictive capability. The numerical results of the accuracy and loss for 

each of the three models are explicitly outlined in Table X, further substantiating 

the comparative analysis. 

In essence, this section of the study highlights the advantage of using a 

multimodal approach in the data fusion model, which leverages the strengths of 

both the 3D point cloud and range-Doppler data. The incorporation of multiple 

types of data in parallel provides a more comprehensive feature representation, 

leading to superior model performance. 

 

 

Figure (42). Accuracy and loss of the three different networks.[15] 

 

Table X. Accuracy and loss comparison of three different networks with different input 

data [15] 

 

 

From the results, it can be seen that the fusion model of multiple data has great 

advantages in terms of convergence speed and accuracy, as well as model 

stability. Compared with models that only use a single data source, only some 

commonly used models are used for fusion. Very good results can be obtained 

afterwards as well. Therefore, we can think that the fusion model using multiple 

data will definitely have more advantages in terms of results than the model 

using a single data, and some scenarios that require high-accuracy system 

support will have great advantages. 
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But fusion models still have some limitations: 

1. Complexity: The structure of the fusion model is more complex than that of a 

single network. 

2. Overfitting: As the depth of the network increases, the risk of overfitting also 

increases. 

3. Data dependency: The performance of fusion models is highly dependent on 

the quality and relevance of the input data. 

4. Interpretation Difficulty: Interpretation and understanding can be more 

challenging due to the increased complexity of fused models. 
 

 

 

8.1.4 Compare with "mmGaitNet" 

Earlier we compared mmGaitNet and MC-3DCNN. "mmGaitNet" is a human gait 

recognition model specially designed for multi-person scenes, and the model 

structure and input data are more complex. "MC-3DCNN" is a gait recognition 

model designed for single-person situations. The method proposed by the author 

in this chapter is also specially designed for the single-person situation. Although 

the human gait is not recognized in the experiment, we can also make some 

comparisons with the single-person experiment. On the input data, "MC-3DCNN" 

adopts the form of mostly point cloud data, and the author of the article [15] 

adopts the fusion model "3D CNN+LSTM & 3D CNN Parallelized", the data input 

corresponding to this model The form is also two kinds of data, one is 

micro-Doppler feature data, and the other is 3D point cloud data. The two kinds 

of data are respectively input into the two models to generate output after 

correlation. In the model, it uses CNN as the baseline model like "MC-3DCNN". 

Here, the unique advantages of the CNN model in the classification of human 

activities are verified again, but if we look back at the article we discussed before 

[1] and [3], it is not difficult to find that the results obtained in the article [15] 

seem to be their fusion, [1] proves that CNN is very prominent in the analysis 

ability of Doppler signals, and the combination of CNN+LSTM The model's ability 

to analyze 3D point cloud data is exceptional. 

From the results, "MC-3DCNN" achieved 93% accuracy in their respective 

experiments, and 97% accuracy in the article [15]. This is a very amazing result, 

but from the data and model in terms of the complexity of the article [15], two 

completely different data are used, and the differential fusion of the two models 

is used, which are far more complicated than "MC-3DCNN". This is not conducive 

to the expansion of future development in multi-person situations. 

But in general, these two methods have verified the advantages of LSTM and 

CNN in human activity classification. 
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Chapter IX 

 

Summary for Human Activity Recognition  

Above we have introduced a variety of very representative methods in human 

activity recognition. These methods have promoted the development of human 

activity recognition using radar as a sensor. Next, I show more methods in Table 

XI below. , what is interesting is that these methods have used Texas Instruments 

radar equipment in the experiment, such as IWR1642 [100], IWR1443-Boost 

[66], IWR6843 [101], and IWR6843 [101] are all millimeter-wave radar 

applications in various fields It is widely used in scenarios, such as autonomous 

driving, etc., which also shows that the millimeter-wave radar equipment 

developed by Texas Instruments has better performance than other suppliers. 

In the following Table XI, we can also obtain some interesting information. For 

example, in the classification problem of human activity recognition, the two 

models based on CNN model and LSTM are the most widely used, especially the 

spatial analysis ability of the CNN model makes it has better results and 

adaptability than other models, especially when facing multi-dimensional point 

cloud information. 

From Table XI, we can also see that we have used CNN and LSTM models to 

achieve very high accuracy in single-person activity recognition, so in future 

research we can explore the use of different sensor fusion methods, such as 

infrared radar , and lidar, these radars can also have very high accuracy while 

ensuring privacy, and there are some models with very high popularity at this 

stage, such as Transformers, in which the ability to capture the relationship 

between different sensor inputs at different times may be will be reflected. These 

are the directions we need to study in the future. 
 

Table XI. Comparison of Methods for Human Activity Recognition 

 

Reference Senser Data Type Deep Learning Model 

[1] IWR1642 [100] 
Micro-Doppler 

signatures 
CNN 

[3] 
IWR1443- 

BOOST [66] 
3D voxel 

Time-distributed CNN+ 
Bi-directional LSTM 

[5] 
2*IWR6843[101] 
2*IWR1443[66] 

5D point cloud 5 channels-Attribute Networks 



78 
 

[6] 
4*TI AWR1243 

[102] 
2D point cloud 2D CNN 

[7] 
IWR1443Boost 

[66] 
5D point cloud 5D Radar point cloud 

[9] 
4*AWR1243 FMCW 

[102] 
3D point cloud CNN + LSTM 

[15] IWR1843 [84] 

3D point cloud 
+ 

range-Doppler 
data 

3D CNN+LSTM & 3D CNN 
Parallelized 

   [16] 
IWR6843ISK-ODS 

[103] 
3D Enhance voxel 

Dual-View CNN (DVCNN) 
model 
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Chapter X 

 

Human Posture Estimation  

Pose estimation for human targets has been a popular area of study in recent 

years, similar to human activity recognition. Human activity recognition issues 

are fundamentally inseparable from pose estimation for human targets. In a 

sense, human activity recognition is a subset of human pose estimation. 

Nonetheless, among the numerous techniques for estimating the precise pose of 

the human body via mmWave radar, skeletal key point estimation has recently 

become a prominent research topic in the field of computer vision, identifying 

and detecting the human posture from images or videos.   

Taking the information acquired by sensors and performing recognition can 

be used to provide information about the detected human posture, which is 

crucial for applications such as remote patient monitoring [85], because of the 

current shortage of medical personnel. Nevertheless, the aforementioned 

applications rely predominantly on optical sensing technologies, such as cameras 

and infrared (IR) sensors. Despite the fact that vision sensors provide a 

high-resolution description of the scene, their operation suffers under low-light 

conditions, inclement weather conditions, and when objects are obscured, which 

can result in recent, disastrous real-world consequences ranging from 

autonomous driving to car accidents. In addition, growing privacy concerns 

impede their practical application in patient monitoring systems. 

Radar is operationally robust to scene illumination or weather conditions, albeit 

with a lower resolution scene representation than visual sensors. Furthermore, 

skeletal pose estimation using radar sensors has been relatively understudied. 

With high-bandwidth configurations, millimeter-wave (mmWave) radars can 

represent targets with greater resolution than conventional radar systems, but 

as a sparse point cloud in comparison to vision sensors. 

However, the randomness between frames in radar point clouds makes explicit 

association difficult. Methods based on supervised machine learning (ML) can be 

used to identify and extract skeletal keypoint assignments from point clouds and 

to learn significant data characteristics. 

The publications titled "mm-Pose" and "MARS" mentioned in Section 3.2.3 "Using 

Multi-Dimensional Millimeter-Wave Radar Point Clouds" are crucial to the 

estimation of bone key points. 

Generally speaking, the method of skeletal key point estimation is as follows: 

firstly, after the 3D point cloud data of the human body is obtained through the 

millimeter-wave radar, the obtained point cloud data is preprocessed. The 

possible preprocessing method is to perform clustering algorithm on the point 
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cloud. Denoising and segmentation, then increase the density of the point cloud 

by sliding window method, etc., and then detect the selected joints by neural 

network.For example, 25 joints of the human body are selected in "mm-Pose", 

including: Spine (Base); Spine (Mid); Neck; Head; Left Shoulder; Left Elbow; 

Right Shoulder; Right Elbow; Left Hip; Left Knee; Left Ankle; Left Foot; Right Hip; 

Right Knee; Right Ankle; Right Foot; Spine (Shoulder). 

In another article "MARS", the author selected 19 human joints, including: 

Spine Base; Spine Mid; Neck; Head; Shoulder Left; Elbow Left; Wrist Left; 

Shoulder Right; Elbow Right; Wrist Right; Hip Left; Knee Left; Ankle Right; Foot 

Right; SpineShoulder. 

Also, in another article published by H. Cui and N. Dahnoun in January 

2022:"Real-Time Short-Range Human Posture Estimation Using mmWave 

Radars and Neural Networks" [12], the author adopted 9 important joints, Left 

and right shoulders, left and right hips, left and right knees, left and right elbows, 

and head. But after the author collects the spatial positions of these 9 through 

the neural network, in order to improve the spatial reasoning between the joints, 

the author defines five main joints: head, left shoulder and right shoulder, and 

left hip and right hip. These joints are larger in size, produce stronger reflections 

of radar signals, and are more important for understanding the overall posture of 

a person. 

Then the prediction of the minor joint depends on the adjacent major joint and 

the head. The authors use a dependency graph to represent these relationships 

between joints shown in Figure.43. Finally, the human pose is estimated by 

processing the input images and generating joint heatmaps. 
 

 

Fig (43). Dependency graph of the left shoulder and left hip.[12] 

 

There are other bone key point estimation methods such as "m3Track" [13] 

proposed by Hao Kong, Xiangyu Xu, et al in June 2022. This method does not use 

point clouds, but uses range Doppler signals as Input data, but the author 

separates the original human body distance Doppler data into 6 

Range-Angle-Profiles, including two head data information, two upper body data 

information and two lower body data information, plus 3 Range-Angle-Profiles 

Profiles for 'head cylinder'; 'torso cylinder'; 'leg cylinder'. Data partitioning is 

shown in Figure.44. Then the divided data is used as the input of a differential 
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CNN and LSTM fusion model. The output is the 17 joint positions selected by the 

author. Due to the advantages of range Doppler data in data size and calculation 

speed, the model can support 3D pose tracking and recognition of multiple 

people. 
 

 
Figure (44). Illustration of posture feature representation for spatial and temporal 

features.[13] 

 

When I introduced these methods, they were arranged in chronological order, so 

whether we can also find a trend that researchers are more inclined to use less 

key bone position information to reconstruct human posture. I think this makes 

sense. If less bone position information can make the model have faster 

processing power while achieving the same reconstruction accuracy, it may play 

a role in the future development of real-time pose recognition of multiple targets 

in open spaces. to a more important role. 

But what we can find is that all the research so far requires researchers to collect 

radar point cloud data, which will essentially hinder the technological progress 

in this area for a certain period of time, and researchers also need to spend a lot 

of energy to choose Appropriate radar configuration parameters cause a certain 

amount of time wasted. So, the lack of available radar point cloud datasets makes 

further research and development more challenging. 

 

 

 

10.1 “mmPose-NLP”[8] 

Among the works proposing various skeletal keypoint estimation methods, 

methods for generating skeletal joint point cloud simulation data deserve special 

consideration. Alindam Sengupta et al. proposed "mmPose-NLP" [8], "a natural 

language processing (NLP)-based skeletal pose estimation method based on 

simulated millimeter-wave radar point cloud data." [8] The author's approach to 

obtain simulated data is to first obtain by adding noise to joint data acquired by 

Microsoft Kinect and then "using random sampling techniques to simulate the 

randomness and sparsity commonly observed in radar point clouds [8]". In the 

system, the author also uses voxelization technology, and "a unique 3D position 

generation index vocabulary [8]". Sequence-to-sequence (seq2seq) architectures 

[86][87][88] are used for “abstract summarization” of point clouds and 
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extraction of necessary skeleton keypoints. 

According to the authors: "Besides their previous work on mm-Pose [4], this 

method is the only one that can estimate >15 skeletal keypoints in radio 

frequency (RF) based pose estimation" [8]. 

  Through "mmPose-NLP" [8], future developers can develop many applications 

that benefit from human pose recognition technology, including autonomous 

vehicles, emergency rescue, real-time remote patient monitoring, (as shown in 

Figure.45, and security monitoring and national defense. 

 

Figure (45). Possible application scenarios of mmPose-NLP: (a) autonomous driving;  

(b) remote clinical monitoring. [8] 

 

10.1.1 Simulated points cloud generation processing 

The whole processing involves several steps, including: 

For generating simulated radar point-cloud data. Be more specific:  

1. Obtain ground truth data of 25 human skeletal joints using Kinect's 

skeletal tracker on MATLAB API from every frame. 

2. Corrupt the ground truth data with a random noise matrix.  

3. Generate a noise distribution by adding synthetic points in a 3-D circular 

fashion around all possible joint links at a distance of 5cm.The example 

show in Figure.46. 

4. Randomly sample a subset of 20 to 40 points from the corrupted ground 

truth data and noise distribution to obtain a simulated radar point-cloud. 

5. Repeat steps 2-4 for all frames in the ground truth database to yield a 

sparsely simulated mmWave radar dataset. 

6. Add Gaussian noise to the ground truth data to obtain noisy ground truth 

data. 

7. Sample the noisy ground truth data to obtain the test dataset. 

 

Fig (46). Points Cloud simulation flowchain [8] 
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We may ask the question why to use these methods to simulate human point 

clouds? 

 

As i think the authors chose this process to generate simulated radar point-cloud 

from a human target because it emulates the randomness observed in radar 

point-cloud representation and provides a sparsely simulated mmWave radar 

dataset. Additionally, the use of Kinect's skeletal tracker and Mathworks 

developed skeletal tracking algorithm provides a reliable and accurate ground 

truth database for generating the simulated radar point-cloud. 

Another possible approach could be to totally use a computer simulation 

software that models radar behavior and generates point-cloud data based on a 

virtual human model. This approach could be more flexible in terms of varying 

parameters such as radar frequency, target distance, and orientation. However, 

the accuracy of the simulation would depend on the quality of the human model 

and the accuracy of the radar behavior modeling. 

In terms of which approach is better, it would depend on the specific 

requirements and constraints of the application. Using a physical radar system 

would provide the most realistic and accurate results but may be expensive and 

difficult to set up. Using a computer simulation may be more cost-effective and 

flexible but may not provide the same level of accuracy and realism. 
 

 

10.1.2 “Seq2Seq Models” [86] [87] [88] 

“Seq2Seq” is an acronym for sequence-to-sequence modeling, which is widely 

used in various natural language processing applications, such as keyphrase 

extraction, machine translation, and automated chat boxes [86] [87] [88]. 

The authors used the seq2seq method in the "mmPose-NLP" [8] architecture 

for abstract text summarization. Specifically, “The architecture uses as input a 

sequence of voxel indices generated by labeling 3D point cloud data obtained 

from mmWave radar. The input sequence is then processed by an encoder 

consisting of two layers of GRUs. processing, generating a compressed vector 

representation of the input. The GRU-based decoder then uses this compressed 

vector along with an attention mechanism to output a sequence of 25 voxel 

indices corresponding to the 25 skeletal keypoints being predicted [8]". 

In summary, mmPose-NLP uses the seq2seq method to perform "abstract text 

summarization [8]" on millimeter-wave radar data, where the input data is a 

sequence of voxel indexes, and the output is a sequence of skeleton key points. 

I think the advantage of the seq2seq method is that it can handle variable length 

inputs and outputs, making it a more flexible and general method than some 

alternatives. Furthermore, seq2seq models can be trained end-to-end, meaning 

that the entire model can be jointly trained to optimize the desired objective, 

rather than relying on handcrafted features or pipelines. 
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However, there are other approaches to NLP tasks besides seq2seq, and the best 

approach may depend on the specific task and dataset. Some alternatives 

include: 

Transformers [93]: These models, such as BERT [89] and GPT [90][91][92], use 

self-attention mechanisms to model the relationship between different parts of 

the input sequence. They achieve state-of-the-art performance on many NLP 

tasks. 

Recurrent Neural Networks (RNN): These models use tree structures to 

represent input sentences and can capture complex dependencies between 

words. 

The best approach may depend on the specific task and dataset. For example, a 

seq2seq model may be better suited for tasks where the input and output 

sequences are of different lengths, while a Transformer model may be better 

suited for tasks where the input and output sequences are of similar length. 

Ultimately, the choice of method will depend on the specific requirements of the 

task and the available data. 
 

10.1.3 “mmPose-NLP Architecture”[8] 

The mmPose-NLP architecture is used for abstract text summarization of 

simulated mmWave radar data in order to extract the desired 25 skeletal 

key-points from Figure.47's overall structure. Similar to tokenization in NLP 

preprocessing, the procedure entails the creation of a vocabulary dictionary to 

map each 3-D point (x, y, z) to a distinct integer. This is accomplished by creating 

a voxel space with dimensions of 1.7 m 2.2 m 1.2 m, with voxels measuring 5 x 5 

x 5 in centimeters. Every 3-D coordinate in the voxel space is associated with the 

voxel that contains it and tokenized with the voxel's integer 

index.

 

Fig (47). “mmPose-NLP architecture. [8] 

 

In this system, two consecutive frames of voxelized data are fused as one input 

to mmPose-NLP. This sequence is then projected into the representation using 

an embedding layer. The authors then use a two-layer GRU encoder to form a 

model that expresses the input sequence by compressing the vector. When the 

system receives a "START" command, "the GRU-based decoder will use this 

encoded representation to update its current internal state [8]". The attention 
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layer then takes these two types of information (decoder state and weighted 

encoder hidden state) and generates attention vectors. The attention vector 

essentially determines which parts of the input data the decoder should focus on. 

The attention vector and decoder state are then combined and fed to a fully 

connected output layer. A fully connected layer is the part of a neural network 

where each neuron is connected to every neuron in the next layer. This output 

layer predicts specific voxel indices. Voxels are equivalent to 3D pixels. In this 

case, it can represent a point in 3D space that corresponds to a part of a human 

skeleton. This predicted voxel index is then fed back into the decoder as the next 

input, and the process is repeated until all 25 skeleton keypoints or the desired 

number of words are predicted. Each keypoint represents a joint or an important 

point on the human body whose position the model is trying to estimate. 

After obtaining the 25 voxel indices, the authors can de-voxelize them using the 

voxel dictionary used in the tokenization process and finally represent them 

back in 3D coordinates as a point cloud. 
 

10.1.4 Result & Discuss 

The authors generated simulated radar-like point cloud data from ground-truth 

skeletal data, adding 3D gaussian noise to simulate measurement errors. Nine 

datasets were created with varying levels of noise (σ) and were used to test the 

model's ability to reconstruct the actual skeletal pose. The model showed lower 

localization errors compared to existing approaches like mmPose and RF-Pose. 

The study also showed the mmPose-NLP's achievable performance for a given 

mmWave radar resolution. The work provides a link to the code and data for 

further exploration. The result show in the Table XII. 
 

TABLE XII 

LOCALIZATION ACCURACY COMPARISON 

 

 

Both “mm-Pose” and “mmPose-NLP” are methods for estimating human 

skeletal posture using mmWave radar data and deep learning techniques. 

However, “mmPose-NLP” has some advantages and limits compared to 

mm-Pose. 

Advantages of “mmPose-NLP” are: 
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First “mmPose-NLP” uses natural language processing techniques to incorporate 

semantic information in the input data, which can improve the accuracy of the 

skeletal posture estimation. Then “mmPose-NLP” introduces a novel method for 

generating simulated mmWave radar-like point cloud data, which can help in 

training and testing the model in a controlled environment. And “mmPose-NLP” 

achieves lower localization errors compared to mm-Pose and RF-Pose in some 

experiments. 

Limits of “mmPose-NLP”: 

“mmPose-NLP” requires a larger amount of training data compared to mm-Pose, 

as it needs both skeletal joint information and natural language descriptions. 

“mmPose-NLP” is limited to estimating skeletal posture of humans and cannot be 

used for other objects or animals. 

“mmPose-NLP” may have limitations in noisy environments or when the target is 

occluded or partially visible. 

 

Overall, “mmPose-NLP” introduces some novel techniques and achieves 

promising results in some experiments, but it also has some limitations that need 

to be addressed. 

 

Earlier we introduced "mmPose-NLP"[8] a “natural language processing 

(NLP)”[95] based approach for skeletal pose estimation from simulated 

mmWave radar point cloud data. Under such circumstances, the point cloud data 

of the human body can be obtained directly through simulation, which can 

greatly reduce the time for designing and arranging the test site and collecting 

experimental data. To the best of our knowledge, it is also the only method that 

can simulate point clouds of more than 15 skeletal joints. We have introduced 

many methods for human pose recognition through skeletal joint localization. 

There are methods of directly locating multiple skeletal joint positions through 

multi-dimensional point clouds [4][10], and there is also a method of locating 

important skeletal joint positions through 2D-garyscale images to reconstruct 

postures [12]. There is also a method of converting distance Doppler data into 

2D and 3D tensor data training depth model to obtain the method of bone joint 

position [13]. But is there a fast and scalable human pose estimation framework 

that can be adapted to various machine learning models? Sizhe An and Umit Y. 

Ogras. al. proposed a method "FUSE". I will introduce it next. 

 

 

 

10.2 FUSE [11] 

FUSE propose by the author is a human pose estimation technique that uses 

mmWave point cloud data. It consists of two main components:  

1. Fusing sparse frames to build data representations for multi-frame fusion.  

2. A meta-learning framework capable of adapting to unfamiliar data in a fraction 
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of the time. But the important is that: Meta-learing framewok here cloud 

compatible with a variety of neural network models as long as the purpose of 

point cloud analysis can be achieved. Like (CNN, GCN, Pointnet ...). The 

framework of FUSE show in Figure.48. 
 

 

Figure (48): “FUSE” framework overview [11] 

 

(1) Baseline model: In the FUSE work, the authors propose a new model for 

handling human activity recognition tasks. They start by defining a baseline 

model that serves as a reference point for evaluating the improvements 

offered by the FUSE framework. The baseline model is a Convolutional 

Neural Network (CNN), which is a type of deep learning model widely used 

for analyzing visual imagery. 

The baseline CNN consists of two layers of convolutional neural networks 

followed by two fully connected (FC) layers. The convolutional layers are 

designed to automatically and adaptively learn spatial hierarchies of features 

from the input data. The Rectified Linear Unit (ReLU) activation function is 

applied in these layers to introduce non-linearity into the model, which 

allows the network to learn complex patterns. 

The fully connected layers serve to perform high-level reasoning based on 

the features extracted by the convolutional layers. The first FC layer consists 

of 512 neurons, while the second one has 57 neurons. These 57 output 

neurons represent 19 human joint coordinates in the x, y, and z axes, as each 

joint coordinate is represented by three values (x, y, and z). Parameters in a 

neural network model are the internal variables that the model adjusts 

through learning, enabling it to better fit the input data. 

Subsequently, the authors apply the FUSE framework to this baseline 

model. The FUSE-enhanced model maintains the same dimensions and 

model size as the baseline model to ensure a fair comparison of their 

performances. The implementation of the meta-learning approach used in 

FUSE is based on the MAML-PyTorch [94] framework. 

In summary, the baseline model is a CNN with two convolutional layers 

and two FC layers. The FUSE framework is applied to this baseline model to 

enable quick adaptation to new users or movements with only a few training 

samples. 
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(2) About the points cloud pre-processing: (Multi-Frame Fusion of Point Cloud 

Data) 

The authors of the FUSE work confront the challenge of sparse 

millimeter-wave (mmWave) point cloud data. Unlike traditional video 

frames, which have an abundance of data points (each pixel in the frame 

being a data point), mmWave point cloud data contains significantly fewer 

data points. This sparsity can hinder the effectiveness of machine learning 

algorithms, as there may not be enough information to accurately train 

models and extract valuable insights. 

To address this challenge, the authors propose fusing or combining 

multiple sparse point cloud frames to generate a denser or richer 

representation of data. This concept is inspired by the notion of residual 

frames used in video processing. Residual frames, in the context of video 

processing, emphasize the changes between frames that are due to motion, 

therefore reducing redundancy. However, the authors' goal is not to reduce 

redundancy, but rather to increase the data density in the sparse mmWave 

radar data. 

The authors use a time interval, referred to as a sampling period (Ts), and 

fuse M consecutive frames by concatenating them. The number of fused 

frames is controlled by the parameter M. For instance, when M equals 1, 

three frames are fused: the current frame, the previous frame, and the next 

frame. The authors show in Figure.49(d) that their proposed multi-frame 

fusion approach greatly enhances the interpretability compared to using a 

single mmWave point cloud frame. 

In order to show the stronger interpretability of the information acquired 

by the multi-frame point cloud representation, when the author compares 

the multi-frame representation with the single-frame representation (as 

shown in Figure.49(b), it is obvious that the multi-frame representation 

method can be more accurate Accurately captures the shape of the upper 

body. The authors observe that there are more data points around the 

subject and arm regions in the multi-frame representation.  

The processing flow should be like this: 

First every frame of the point cloud (the set of data points that the radar 

collects) corresponds to a certain time interval. This time interval is 

controlled by the sampling period, Ts, which is set at 100 milliseconds. 

So, the kth frame of data represents all the points collected in the time 

between k*Ts and (k+1) *Ts. The kth frame can be written as: 
  

                                    (24) 

 

Then each frame can be represented as a set of points,  

They then combine M consecutive frames by concatenating them, creating 
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a richer set of data. This combined frame is represented as  

Where M is a parameter that determines how many frames to fuse 

together. For instance, if M=1, three frames are fused together: the current 

frame, the previous frame, and the next frame. 

So, their proposal could significantly improve previous findings using 

millimeter wave point cloud data.  

 

The authors of FUSE propose an innovative method to handle the sparsity 

inherent in millimeter-wave (mmWave) point cloud data: fusing or combining 

multiple frames. This technique substantially enhances the amount and 

interpretability of the data, making it more conducive for machine learning 

algorithms to extract relevant features. More specifically, the multi-frame 

representation provides a more accurate depiction of the subject's shape, which 

is a crucial aspect when estimating human poses. This enhancement can lead to 

improved performance in pose estimation models. 
 

 
Figure (47): (a) shows the RGB image frame; (b) shows the collected single-frame 

point cloud; (c) shows the RGB residual frame; (d) shows the visual image of the 

multi-frame point cloud proposed by the authors [11] 

 

However, there are a few potential challenges associated with this approach: 

Selection of the Parameter M: This parameter determines the number of frames 

to fuse, and its value could significantly impact the model's performance. An 

improperly chosen value could lead to poorer performance or additional 

computational demands. 

Computational Requirements: While it isn't explicitly stated in the text, it's worth 

noting that fusing multiple frames could lead to an increase in computational 

requirements, as the model now has to process more data points per input. 

 

To determine the most effective configuration, the authors conducted 

experiments under three different settings: 
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i. Using a single frame (serving as the baseline comparison). 

ii. Using three frames together. 

iii. Using five frames together. 

The experiments' results revealed that fusing three frames resulted in a 

consistent decrease in the Mean Absolute Error (MAE) along the x, y, and z axes. 

Specifically, by fusing three frames, the average MAE reduced from 5.5 cm to 3.6 

cm, demonstrating a considerable improvement of 34%. However, fusing more 

than three frames didn't lead to further enhancement, as it started introducing 

redundancy, meaning the extra data wasn't providing additional useful 

information. 

The multi-frame fusion pre-processing technique improves the performance of 

human pose estimation tasks by providing a richer data representation. This 

enhancement can boost the performance of existing mmWave radar techniques 

without affecting the machine learning models they employ. In their experiments, 

the authors chose to fuse three frames, as it led to significant improvements with 

negligible overhead. 
 

10.2.1 Meta-Learing processing 

In the FUSE framework, meta-learning is used to enhance human pose 

estimation by enabling the model to rapidly adapt to new users and movements 

using a small number of training examples. The FUSE meta-learning procedure 

consists of two distinct phases: offline meta-training and online fine-tuning. The 

Algorithm: Meta-training for mmWave point cloud show in Figure.50. 

First, in order to avoid confusion and respect the authors' work in this section, I 

will use the authors' definitions of the parameters and terms used in the 

meta-learning models they designed, and present their definitions below: 

 

“Definition 1 (Training data, D𝑡𝑟𝑎𝑖𝑛). The training data is the set of all fused 

frames 𝐹 [𝑘], 𝑘≥1 constructed using the point cloud frames as defined by 

Equation 3, i.e., 
 

 
 

Instead of directly using individual samples in D𝑡𝑟𝑎𝑖𝑛, meta-learning generates 

tasks and uses them for learning as described next. 

 

Definition 2 (Task, T ). We define task T a set of fused frames uniformly sampled 

from the training data, i.e., T ∼ D𝑡𝑟𝑎𝑖𝑛. ”[11]. 

 

Next, we present the proposed offline meta-training and online fine-tuning 
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techniques. 

Offline Meta-Training: In this phase, the model is initially trained with tasks 

generated from the training dataset (D𝑡𝑟𝑎𝑖𝑛). The model's parameters (Θ) are 

first randomly initialized. Then, through iterative meta-training, these 

parameters are updated. During each iteration, a batch of tasks is sampled from 

the training data, and the model parameters are then updated via gradient 

descent, a common optimization technique in machine learning. The crucial part 

of this phase is how the initial parameters are updated. Instead of directly using 

the results from the tasks, the model takes the intermediate parameters derived 

from the "support" tasks (part of the batch that is used to update the model) but 

evaluates the loss using the "query" tasks (a separate part of the batch that is 

used to evaluate how well the model is learning). This process helps the model 

identify parameters that are most sensitive to new data samples, thus improving 

its ability to adapt to new tasks.  
 

Online Fine-Tuning Phase: Following the construction of the initial meta-learned 

model, the authors' goal is to adapt the model to handle a new user or movement 

using a small set of test data (D𝑡est). In this phase, the model is fine-tuned using 

part of D𝑡est, and then its performance is evaluated using the remaining part of 

D𝑡est. This fine-tuning phase does not require any additional steps and enables 

straightforward online usage, allowing the model to quickly adapt to new users 

or movements. 
 

 

Figure (50). Algorithm: Meta-training for mmWave point cloud [11] 
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The use of meta-learning in the FUSE framework offers several advantages, 

including rapid adaptation to new users and movements, reduced data 

requirements compared to traditional supervised techniques, and easy online 

usage. However, limitations include potential computational expense during the 

training phase and the dependence on the diversity and quality of the training 

tasks. Overall, the incorporation of meta-learning in FUSE enables the model to 

swiftly adapt to new situations using fewer training samples and iterations, 

enhancing the performance of human pose estimation. 
 

10.2.2 Convergence Time and Accuracy Evaluation 

The authors in the "Convergence Time and Accuracy Evaluation" section, assess 

their FUSE framework's capability to swiftly and efficiently adapt to new 

situations. They design an experiment to compare the FUSE performance with 

the baseline model. 

 

Human Pose Estimation Data: For the evaluation, they utilize an open-source 

millimeter-wave point cloud dataset (MARS). This dataset comprises 40,083 

labeled frames collected using TI IWR1443 Boost [66] millimeter-wave radar. 

These frames represent ten distinct rehabilitation movements executed by four 

individuals. Using a Kinect V2 sensor, the reference coordinates of 19 joints are 

determined and appended as identifiers to the millimeter-wave data sampled at 

10 Hz. Then, the data for each movement is divided into 60% training sets, 20% 

validation sets, and 20% test sets. 

To scrutinize FUSE's capability to adapt to new scenarios, they manipulate the 

dataset to simulate a worst-case scenario. The training and validation sets 

exclude all data from a particular movement ("right limb extension") and the 

user No.4. The test data (D𝑡est), therefore, seen only during fine-tuning, has only 

749 frames, which helps support their claim of online adaptation with a few 

samples. In contrast, the training data (D𝑡𝑟𝑎𝑖𝑛) comprises 29,225 frames from 

the remaining movements and users. 

Fine-tuning, a common method used in transfer learning, is then employed to 

assess the model's adaptability to new data samples. They conduct tests for both 

instances: All layers are fine-tuned, but only the final FC layer is activated.  

“Fine-tune all layers” [11]: The FUSE model converges rapidly, attaining a Mean 

Absolute Error (MAE) of approximately 6.0 cm with the new data after only 5 

epochs. The baseline model, on the other hand, requires at least 20 epochs to 

attain comparable performance, at the expense of forgetting the original data. 

Display in Figure.51. 
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Figure (51): “MAE comparison between baseline and FUSE model for fine-tuning all 

layers.” [11] 

 

“Fine-tune the last layer” [11]: The FUSE model achieves a MAE of 8.3 cm after 

only 5 epochs, 1.3 cm lower than the baseline. Show in Figure.52. The baseline 

model achieves a similar performance as the FUSE model after 16 epochs, but 

again, it forgets the original data in the process. 

 

Figure (52): “MAE comparison between baseline and FUSE model for fine-tuning the last 

layer.” [11] 

 

The results demonstrate that the FUSE framework improves human pose 

estimation performance and quickly adapts to unseen data. It converges about 4 

times faster than the baseline approach, without forgetting the original data. 
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Chapter X I 

 

Summary for Human posture Recognition 
In the following Table XIII, I compared several methods of human body pose 

recognition. We can see that in the neighborhood of human body pose 

recognition, researchers invariably used the method of human body Google key 

point positioning to reconstruct human body poses. Due to millimeter-wave 

radar It is difficult for us to directly analyze the posture of the human body from 

the obtained point cloud, especially in the absence of an open-source database of 

human millimeter-wave radar point cloud at this stage. In addition, by observing 

the table below, we can also find that in the case of using directly collected radar 

data, the higher the dimensionality of the data used by the researchers, the 

higher the spatial accuracy of the final key bones, which shows that the direct 

use of experimental data in the case of data, the more data information and the 

accuracy of the final result are positively correlated. In addition, the simulated 

point cloud method adopted in [8] achieved the highest accuracy. The purpose of 

this method is to simulate the millimeter-wave radar human body point cloud by 

computer simulation under the condition of lack of radar equipment. In this 

method the point cloud information simulated in is usually better than the data 

collected by radar in terms of noise and point cloud sparsity. 

In addition, since our table is arranged in chronological order, we can observe 

that over time, researchers tend to use fewer human skeleton key points for 

human pose reconstruction, which I think makes sense, which will be more 

suitable for human gesture recognition in the future when the amount of data is 

increasing in the case of multiple people. 
 

Table XIII. Comparison of Methods for Human Skeleton Reconstruction 

 

Reference Senser Data Type Number of joints Resolution 

[4] 
2*AWR1642 Boost 

[100] 
3D points cloud 25 6.18cm (MAE) 

[8] N.A. 
Simulated 

mmWave-radar 
points-cloud data 

25 5cm (MAE) 
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[10] 
IWR1443 Boost 

[66] 
4D points cloud         
(Heat map) 

19 5.87cm (MAE) 

[11] 
IWR1443 Boost 

[66] 
3D point cloud 19 6cm (MAE) 

[12] 
2*IWR1443 Boost 

[66] 

2D grayscale 
image 9 12cm (MLE) 
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Chapter XII 

 

Conclusion 
The purpose of this work is to introduce existing representative analysis 

techniques for point cloud data collected using mmWave radar as a sensor in the 

fields of human localization, human tracking, human activity recognition, and 

human pose recognition. 

But it is worth reminding again that the purpose of this work is not to screen the 

best existing methods, but to sort out the current technical status and existing 

technical ideas in the existing neighborhood. 

Second, when comparing similar methods, this work draws a fundamental 

distinction based on the subject matter of the methods. 

We can draw some very interesting results after analyzing and comparing. 

First of all, we found that in order to obtain high-precision results in human 

activity recognition, first of all, good experimental equipment and perfect 

experimental environment settings are the prerequisites for all experiments to 

obtain good results. Secondly, in terms of methods, some preprocessing methods 

that can improve the portability of data information will have a great impact on 

the results, such as the "point cloud voxelization" we introduced [2], [3], [16]. Of 

course, There are many methods and similar measures that I will not point out 

here. But we can see the superiority of "voxelization" measures, such as data 

interpretability and data readability. Similarly, in order to compensate for the 

loss of data features during the voxelization process, researchers also need to do 

some measures such as multi-frame fusion [3] to make up for it. 

In terms of models, we can also see that the authors have chosen variant 

models based on CNN and LSTM, such as "Bi-LSTM" used in [2] and "Time 

distributed CNN+ Bi -directional LSTM". In [16], the author used a differential 

CNN model. It is not difficult to see that the voxelized data is the best choice to 

use CNN and LSTM models that are very sensitive to spatial and temporal 

features. 

Of course, in addition to "voxelization", there are many methods of using 

"multi-dimensional point cloud" data [4], [5], [7], [10]. The most intuitive 

advantage of multi-dimensional point cloud data is that the data carried the 

information is rich. Generally speaking, in addition to the three-dimensional 

coordinate information, there is also information such as speed and signal 

strength. This information can greatly help researchers restore the subjects' 

body, activity and other information in the experiment, and finally achieve the 

purpose of personnel detection, activity recognition and gesture recognition. But 

the obvious disadvantage is that multi-dimensional data usually has a huge 
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amount of data, and general models cannot process so many different types of 

information at the same time. Therefore, in the preprocessing stage, 

experimenters need to use signal denoising, point cloud operation, point cloud 

Clustering and a series of means to filter and clean data. Similarly, it takes a lot of 

energy to design the model. The LSTM with a relatively single processing 

capacity is basically not selected by the experimenters. All the experimenters 

have chosen the baseline model of CNN. At the same time, a large part of 

researchers has chosen Using the differential model, for example, the authors in 

[4], [5], and [7] used the difference on the XY and XZ planes, the differential 

channel distinguished by feature attributes, and the 3-D spatial coordinates, 

radial Velocity, and intensity are 3-channel designs distinguished. These 

methods finally achieved very good test results. 

Finally, there is a method of fusing micro-Doppler features and point cloud 

data, and the results obtained by combining CNN and LSTM models are also very 

impressive. 

In addition, in the field of human activity detection and gesture recognition, 

the lack of open-source data sets is always a very difficult problem. Unlike lidar, 

cameras and other equipment, millimeter wave radar experimenters need to 

spend a lot of time and effort to collect experimental data. Therefore, the method 

proposed in the similar article [8] is particularly precious, a method that can 

obtain human body millimeter-wave radar data through computer simulation. 

There is also the "3D Body Reconstruction Dataset" made by the author of the 

article [14], which will also greatly facilitate researchers to conduct experiments 

in the future. 

I think the recognition of human activities and gestures in the future needs to 

solve the following problems: 

1. More reliable open-source datasets. 

2. For more than 10 people, research on human activities and postures 

3. Research on compatibility with unfamiliar environments. 

In general, this work is to facilitate subsequent researchers who want to 

continue to study this research field to have a quick and comprehensive 

understanding of the current state of the art. 

I think the future of human activity and gesture recognition needs to solve the 

following problems: 

1. More reliable open source datasets. 

2. More than 10 people, research on human body activity and posture 

3. Research on compatibility with unfamiliar environments. 

In general, this work is to facilitate subsequent researchers who want to 

continue to study this research field to have a quick and comprehensive 

understanding of the current state-of-the-art. 

In the following Table IV, a display will be made of all the models used in the 

technical methods of Human tracking, Huamn Activity Recognition and Human 

Posture Estimation and the corresponding results obtained, so as to facilitate the 

researchers who view this article Have an intuitive understanding of existing 
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technical methods, and facilitate them to create more powerful technical 

methods in the future that can truly enter the lives of ordinary people. 

Overall, the goal of human position tracking and post-activity recognition 

technology using mmWave radar is to create real-time personnel protection that 

adapts to any indoor environment or semi-open environment. Regardless of the 

composition of this open or semi-open space, this makes the technology 

adaptable to different application scenarios, such as personnel security in office 

environments or factory floors, or anti-theft safe room environments in home 

environments with limited space and simple patients. Health detection for 

patients with large or small body size or rehabilitation needs, the elderly, and 

even the prediction and prediction of potentially dangerous activities in 

multi-target activity spaces such as corridors and basketball court rescue. 

Because millimeter-wave radar has the characteristics of not being affected by 

the weather environment and privacy and confidentiality, this technology has 

great development potential and commercial value. 
 

Table IV. Summary of Methods for Human Activity Recognition & Human 
Posture Estimation 

 
Reference Task Deep Learning Model Result 

[1] HAR CNN 95.19% 

[2] 
Human Tracking & 

Identify Bi-LSTM 
0.16 m (Tracking 

MPE) & 89% 
(Identify) 

[3] HAR 
Time-distributed CNN + 

Bi-directional LSTM 
90.47% 

[4] 
Human Posture 

Estimation 
2 Channels CNN 6.18cm (Joints MAE) 

[5] HAR 5 Channels-Attribute 
Networks 90% 

[6] HAR 2D CNN 80% 

[7] HAR Multi-Channel 3D CNN 92.5% 
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[8] 
Human Posture 

Estimation 
Seq2Seq 5cm (Joints MAE) 

[9] HAR CNN + LSTM 97% 

[10] 
Human Posture 

Estimation 
CNN 5.87cm (Joints MAE) 

[11] 
Human Posture 

Estimation 

Baseline Model (CNN) 
+  

 Meta-learning 
6cm (Joints MAE) 

[12] Human Posture 
Estimation 

Part Detector Model 
 +  

Spatial Model 
12cm (Joints MLE) 

[13] 
Human Tracking & 

Posture 
Estimation 

Forked-ConvLSTM 
32.4mm (Tracking 

Error) & 31mm 

(Joints Error) 

[14] 
Human Posture 

Estimation 
P4Transformer 

10cm (Joints Mean 

Error) 

[15] HAR 
3D-CNN + LSTM// 

3D-CNN 
97.26% 

[16] HAR 
Dual-View CNN 
(DVCNN) model 97.61% 

 

[Attention: “HAR” : Human Activity Recognition ; 
          “MPE” : Mean Position Error ; 

          “MLE” : Mean Localization Error ; ] 
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