
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Impact of Noise on Different Neural
Network Architectures for Environmental

Sound Classification

Supervisors

Prof. LAZARESCU MIHAI

Prof. LAVAGNO LUCIANO

Candidate

STABELLINI VALENTINA

July 2023

i

Acknowledgements

To my partner in life Tiberius,
To my family,

Thank you all to always have supported me.
Thanks to my supervisors Mihai and Luciano

for giving me the precious opportunity to "have fun" with Deep Learning.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms xii

1 Introduction 1

2 Deep Learning Overview 3
2.1 Machine Learning Basics . 3

2.1.1 Linear Regression . 3
2.1.2 Overfitting and Underfitting 4

2.2 Deep Feedforward Neural Networks 6
2.2.1 Deep Feedforward Networks working 6
2.2.2 Optimization Algorithms with Adaptive Learning Rate . . . 8
2.2.3 Backward Propagation . 9

2.3 Convolutional Neural Networks . 10
2.3.1 Functioning of CNN . 10

2.4 Transformer Architecture . 16
2.5 Feature Extraction . 20

2.5.1 Mel Spectrogram . 20
2.6 Data Augmentation . 22

2.6.1 Spectrogram Masking/Spec-Augmentation 22

3 Models Architecture and Dataset 28
3.1 Dataset . 28

3.1.1 ESC50 . 28
3.1.2 AudioSet . 30

3.2 State-of-art Architecture . 31
3.2.1 CNN10 . 32
3.2.2 TFNet . 33

iv

3.2.3 mn40_as . 35
3.2.4 HTS_AT . 42

4 Metodology 45
4.1 Training . 45
4.2 Inference . 50

4.2.1 Dataset Selection for Inference 51
4.2.2 Noises Selection . 51
4.2.3 Noise Insertion . 53

5 Experimental Results 58
5.1 Model Complexity . 58
5.2 Inference Results . 59

6 Conclusion 73

A Python Codes 75

Bibliography 77

v

List of Tables

2.1 Mathematical definition of ReLU, Softmax and Sigmoid activation
functions. Source: [6] . 8

4.1 How the five folders are split for training and test: when a training
is performed on fold 1 it means folds 2,3,4,5 are used as training set
and fold 1 is used as test set and so on. 47

4.2 Features extraction details about reproduction sound, sampling
frequency, window size, hop size and number of mel bins for each
model . 48

4.3 Data augmentation techniques used in pre-training and training . . 48
4.4 Reached accuracies during training for each fold and model 51
4.5 A comparison between testing accuracy and accuracy reached during

inference without noise for each model. Also accuracy loss is listed . 52
4.6 Power spectral density and slope for colored noises 53
4.7 Nominal noises power calculated in model sensitivity bandwidth . . 56
4.8 The frequency band that the model is able to detect and classify . . 57

5.1 Model complexity in terms of number of parameters for each model 58

vi

List of Figures

2.1 Overfitting, appropriate capacity and overfitting. 5
2.2 Typical capacity and error relationship. 6
2.3 A simple structure of a neural network. 7
2.4 ReLU activation function graph. Source: [6] 8
2.5 Sigmoid activation function graph. Source: [6] 8
2.6 Softmax activation function graph. Source: [6] 9
2.7 RGB additive model. 11
2.8 A 5 × 5 × 3 matrix RGB image example. Each channel defines the

pixel intensity across the image. 12
2.9 A convolution operation with 2 × 2 kernel and stride length 1 in a

matrix dimension of 4 × 4. The resulting matrix have dimension of
3 × 3. 13

2.10 A convolution operation with 3 × 3 kernel and stride length 2. In
this case, padding is required. 13

2.11 An Average Pooling operation in a 4×4 input matrix with 2×2 kernel
dimension is performed. The resulting feature map has dimension
2 × 2. 14

2.12 An Max Pooling operation in a 4 × 4 input matrix with 2 × 2 kernel
dimension is performed. The resulting feature map has dimension
2 × 2. 14

2.13 Visual representation of max and avg pooling on an image. 15
2.14 Dropout in fully connected neural nets 15
2.15 Fashion-MNIST dataset consists of 10 classes of clothing, such as

shirts, pants, clothes, shoes, bags, etc. A matrix of pixel intensity val-
ues is used to represent each grey-scale image, which has a dimension
of 28 × 28 × 1 pixels. Source: [24] 16

2.16 A sample CNN. 17
2.17 Transformer Architecture proposed in [25]. Source: [25] 18
2.18 Multi-Head Attention of Transformer in [25]. Source: [25] 19

vii

2.19 Illustration of how short-time Fast Fourier Transform works. The
signal is first multiplied by overlapping window producing consecutive
windowed segments. Then FFT is applied to get spectrogram. Source:
[29] . 24

2.20 Plot of Hann Window with 50 samples length. Source: [33] 25
2.21 Conversion from Hertz scale to Mel scale. When frequency is 1,000 Hz

it corresponds to 1,000 mel. 25
2.22 Mel Filter Banks. 26
2.23 Time Warp Data Augmentation. 27
2.24 Frequency Masking Data Augmentation. 27
2.25 Time Masking Data Augmentation. 27

3.1 Sound classes of ESC-50 dataset. Source: [44]. 29
3.2 The 19 categories selected from ESC-50 for the experiment. 30
3.3 The top two layers of Audioset Ontology. For example "Human voice"

covers the classes Speech, Shout, Screaming, Whispering, Laughter,
Crying, Wail, Sigh, Humming, Groan, Grunt and Yawn. Source: [48] 32

3.4 Paperswithcode screenshot in which filters by method, task and
dataset are applied to find moodels. Source: [53] 33

3.5 Audio Classification Accuracy trend on ESC-50 of SOTA models
over the years. Source: [53] . 33

3.6 Audio Classification on ESC-50 rank of SOTA models. Source: [53] . 34
3.7 Temporal attention allows the network to identify the most relevant

frames in order to recognize where the sound occurs. Source: [49]. . 35
3.8 Spectral attention attention is employed to give different level of

attention to different frequency bands which are significant for the
task. Source: [49]. 35

3.9 Parallel temporal-spectral attention attention mechanism applied to
each convolutional block. Source: [49]. 36

3.10 TFNet overall architecture. A zoom of what is inside a convolutional
block. Source: [54] . 36

3.11 ViT. 37
3.12 AST. 37
3.13 PaSST. 38
3.14 MobileNetV1 Depthwise Separable Convolution. 39
3.15 MobileNet V2 layer. 40
3.16 MobileNet V3 block. 41
3.17 mAP results obtained during student training on AudioSet using

different values of λ and τ . Source: [55] 42
3.18 MobileNet performance on AudioSet with and without KD and

pre-training on ImageNet. Source: [55] 42

viii

3.19 HTS_AT. 44

4.1 By default, all accessible models undergo pre-training on ImageNet
(otherwise indicated as ’no_im_pre’), which is followed by training
on AudioSet. Source: [66] . 46

4.2 Plot contrasts each task’s results for the PANNs (CNN14), PaSST,
and mn40_as models. The score is normalised using a model’s peak
performance. Source: [66] . 47

4.3 On the left loss functions versus iteration and on the right accuracy
trend over iterations for the CNN10 model 49

4.4 On the left loss functions versus iteration and on the right accuracy
trend over iterations for the TFNet model 49

4.5 On the left loss functions versus epoch and on the right accuracy
trend over iterations for the mn40_as model 50

4.6 On the left loss functions versus epoch and on the right accuracy
trend over iterations for the HTS_AT model 50

4.7 Power spectral density of the white noise 53
4.8 Power spectral density of the pink noise 54
4.9 Power spectral density of the brownian (red) noise 54
4.10 Power spectral density of the blue noise 55
4.11 Power spectral density of the violet noise 55

5.1 Models Accuracy when white noise is applied. 60
5.2 Class 31 audio without (up) and with white noise (down) applied at

10 dB SNR mel spectrogram. 60
5.3 Models Accuracy when pink noise is applied. 61
5.4 Class 31 audio without (up) and with pink noise (down) applied at

10 dB SNR mel spectrogram. 61
5.5 Models Accuracy when brownian (red) noise is applied. 62
5.6 Class 31 audio without (up) and with brownian (red) noise (down)

applied at 10 dB SNR mel spectrogram. 62
5.7 Models Accuracy when blue noise is applied. 63
5.8 Class 31 audio without (up) and with blue noise (down) applied at

10 dB SNR mel spectrogram. 63
5.9 Models Accuracy when violet noise is applied. 64
5.10 Class 31 audio without (up) and with violet noise (down) applied at

10 dB SNR mel spectrogram. 64
5.11 Models Accuracy when TV noise is applied. 65
5.12 Class 31 audio without (up) and with TV noise (down) applied at

10 dB SNR mel spectrogram. 65
5.13 Models Accuracy when door open and close noise is applied. 66

ix

5.14 Class 31 audio without (up) and with door open and close noise
(down) applied at 10 dB SNR mel spectrogram. 66

5.15 Models Accuracy when dog noise is applied. 67
5.16 Class 31 audio without (up) and with dog noise (down) applied at

10 dB SNR mel spectrogram. 67
5.17 Models Accuracy when car engine pass noise is applied. 68
5.18 Class 31 audio without (up) and with car engine pass noise (down)

applied at 10 dB SNR mel spectrogram. 68
5.19 Models Accuracy when rain drops on window noise is applied. . . . 69
5.20 Class 31 audio without (up) and with rain drops on window noise

(down) applied at 10 dB SNR mel spectrogram. 69
5.21 Confusion matrix obtained for CNN10 model, white noise at SNR

of −25 dB. 70
5.22 Confusion matrix obtained for TFNet model, white noise at SNR of

−25 dB. 70
5.23 Confusion matrix obtained for mn40_as model, white noise at SNR

of −25 dB. 71
5.24 Confusion matrix obtained for HTS_AT model, white noise at SNR

of −25 dB. 71
5.25 Confusion matrix obtained for mn40_as model, white noise at SNR

of -10 dB. 72

x

Acronyms

MSE
Mean Square Error

ReLU
Rectified Linear Unit

RGB
Red Green Blue

CNN
Convolutional Neural Network

FC
Fully Connected

RNN
Recurrent Neural Network

ESC
Environmental Sound Classification

SOTA
State-of-the-art

TF
Temporal-Frequency

SE
Squeeze-Excitation

xii

KD
Knowledge Distillation

GA
Global Attention

WA
Window Attention

FFT
Fast Fourier Transform

STFT
Short-Time Fourier Transform

SNR
Signal to Noise Ratio

xiii

Chapter 1

Introduction

The constantly increasing need to classify environmental sounds such as the break-
ing of a glass, the honking of a car, the crying of a child can lead to improvements
in safety and health of society. The detection of human activities can bring advan-
tages in contexts such as home security for the identification of intrusions or fall
detection, and in the energy efficiency of buildings to regulate lighting, heating
or air conditioning. These are just a few of the possible applications that the
classification of environmental sounds can have, which is why more and more
researchers decide to deepen the study and develop advanced algorithms such as
Deep Learning. In general despite the classification of ambient sounds is important,
it is a challenge that is still complicated because this type of sounds do not have
a well defined structure and can vary in terms of intensity, duration and spectral
content. They can also be influenced by environmental factors such as the presence
of background noise that can lead to incorrect classification and degradation of
performance. From this arises the importance of seeking increasingly sophisticated
techniques for deep learning in the classification of environmental sounds that
can exceed this limit. The aim of this research is to assess the impact of noise on
different neural network architectures of Deep Learning for the classification of
environmental sounds when subjected to background noise of different natures,
with the goal of identifying which techniques could make a model more robust and
provide input into the development of future networks, with the hypothesis that
the use of advanced techniques, such as pre-training and attention mechanisms,
improves the classification capacity of the model in the presence of background
noise.

1

Introduction

In the following chapters follow a brief introduction to Deep Learning and a
description of the most common basic architectures such as convolutional neural
networks (CNN) and Transformer also focusing on the main technique of extracting
audio characteristics surrounded by the most common data augmentation techniques.
The reference dataset (ESC-50) and the related models on which the experiment is
built will be described below. In addition, underlining the starting hypothesis, a
brief description of AudioSet, a dataset of ambient sounds wider than the ESC-
50, which some models use in the pre-addextraction phase. The methodology is
illustrated in the next chapter to highlight the methods and procedures used to
conduct the experiment. This section provides details on training, noise selection
and noise creation and their inclusion in the test dataset. Finally, experimental
results and conclusions, close the structure of the chapters of this thesis in which
the results obtained are presented and discussed accompanied by final conclusions
that will include a summary of the thesis and the results.

2

Chapter 2

Deep Learning Overview

2.1 Machine Learning Basics

A machine learning algorithm is programmed to have a final purpose, such as
recognizing sounds or images, which is made possible through a training phase. In
this thesis we will address a classification problem that, starting from an input
described by a vector x, the algorithm must be able to determine which of the
k categories it belongs to. The output y represents an entire number from 0 to
k − 1 that refers to the category calculated by the algorithm. The above category,
however, must be compared with the actual label category to determine whether
the output has been calculated correctly or not. This is useful because during the
training and validation phase of the algorithm, it allows you to have a performance
reference metrics through accuracy. [1]

2.1.1 Linear Regression

Linear regression is a machine learning algorithm that predicts a y output from an
input vector x using a linear-type function. Defining y the output value predicted
by the algorithm and ŷ the value it should assume, we can describe linear regression
as (2.1)

ŷ = wT x (2.1)

where w identifies a vector of parameters. Parameters can be seen as weights that
influence the importance of features on prediction, in particular the higher the
weight in amplitude, the more the feature matters and, on the contrary, if it is
close to zero, it means that xi will not affect.

The Mean Square Error is also defined as algorithm evaluation metric on the

3

Deep Learning Overview

test set (2.2)

MSE test = 1
m

Ø
i

1
ŷtest − ytest

22

i
= 1

m

1
∥ŷtest − ytest∥

22

2
. (2.2)

To have good performance it is needed to get a difference between predicted
output and small real output, implementable by a good choice of w weights during
the training phase.

So the algorithm looks for weights (2.5) that minimize (2.4) MSEtrain (2.3)

∇wMSEtrain = 0 (2.3)

∇w
1
m

1
∥ŷ(train) − y(train)∥

22

2
= 0 (2.4)

w = (X (train)T X (train))−1X (train)T y(train). (2.5)

This just described is an example of a machine learning algorithm although
simple, it is still significant. [2]

2.1.2 Overfitting and Underfitting
So far we have described an optimization problem that deals with finding the
weights that minimize the error in training, but what really impacts performance,
is the error you get in the test phase.

But how can the training error affect the test error?
Are the training sets and test sets generated with the same probability distribu-

tion pdata(x, y)(data generating process) and identically distributed (are they the
same thing?) And if each example, belonging to the same data set, is independent
of each other, for fixed values of w the expected errors on the training set and
the test set are exactly the same because both are generated by the same process.
However, what differentiates the two situations is that the parameters are not fixed
at the same time and for this reason it is expected that the error on the test is
greater or equal to that expected for the training.

The main condition for having a good machine learning algorithm is, first, to
get the error on the low training and secondly to a difference between training
error and test error as small as possible. These goals are important because if not
achieved they can lead to problems such as overfitting, it means that the algorithm
learned well during the training, but failed to good accuracy in the test, and the
undefitting, which, on the contrary, the system did not learn enough in the training
and therefore was not able to get a good accuracy.

4

Deep Learning Overview

The concept of capacity describes the ability to control and adapt the model
by modifying the capability of an algorithm, for example by expanding the set of
functions.

More practically increasing the capacity would mean allowing a linear regression
algorithm (2.6) to work even with square functions (2.7) and are not linear passing
from

ŷ = b + wx (2.6)

ŷ = b + w1x + w2x
2. (2.7)

Despite the square function on the x input, the output is still linear compared
to the w parameters.

The Figure 2.1 intuitively displays the underfitting due to a poor algorithm
capacity so it is not able to solve too complicated tasks that in the example
described above translates into having a set of functions limited to only linear
function. On the contrary, we also observe the overfitting in which the algorithm
has a too high capacity compared to that required for the resolution of tasks.
This results in having extended the space of polynomial functions to the ninth
degree. The optimum situation, on the other hand, is achieved when the capacity
is sufficient for the algorithm requests and, similar to the example, is obtained with
function space up to the second degree.

In real-world situations that do not only include linear regression algorithms,
the training error decreases asymmetrically to the lowest value, while the test error,
when the model capacity turns out to be too high, returns to be significant and far
from the training target as well documented in Figure 2.2 [3].

Figure 2.1: On the left a linear function fit to the data on the left figure exhibits
underfitting because it is unable to account for the data’s curvature. In the middle,
a quadratic function that fits the data well generalises to points that are not
visible. It doesn’t have a lot of overfitting or underfitting problems. On the right, a
polynomial of degree 9 that was fitted to the data exhibits overfitting. Source: [3]

5

Deep Learning Overview

Figure 2.2: Typical capacity and error relationship. Error in training and testing
reacts dissimilarly. Both the training error and the generalisation error are large near
the left end of the graph and this indicates the underfitting regime. Training error
reduces as capacity rises, but the difference between training and generalisation
error widens, this means that the overfitting regime is reached, where capacity is
too high and above the ideal capacity. Source: [3]

2.2 Deep Feedforward Neural Networks

2.2.1 Deep Feedforward Networks working
Deep Feedforward Neural Networks (a visual representation in Figure 2.3) is a
type of deep learning model that aims to approximate a f̂ function.
In a classification problem, the network defines a new function y = f(x; θ) in which
it determines which parameters are θ that best approximate the function y = f̂(x).

"Feedforward" is the term that describes the path of information flowing through
the network starting from the input x, intermediate calculations to calculate the
function and finally to the output y.

"Networks", however, identifies the composition of different functions. Assuming
you have a network consisting of the first layer that has a function f (1), a hidden
layer with the function F (2) and a output layer which has F (3), the final function
will be the composition of the three functions f(x) = f (3)(f (2)(f (1)(x)))). The
concept of "Deep" lies in the fact that the neural network might be so complex
that it would have to be described with an enormous amount of layers, that is, the
chain of composition of functions would not be limited to three, as in the example,
but also several hundred or thousands.

The neural network training phase requires that each x input is mapped into
the output with the corresponding labels, i.e. the actual output, to allow driving
x in such a way that the approximate function produces a y output as close as
possible to f̂(x).

The generic function f is called activation function which aims to introduce
nonlinearities into the neural network. These functions enable nonlinear mapping

6

Deep Learning Overview

Figure 2.3: A simple structure of a neural network consists of an input layer,
three hidden layers, and one output layer. In binary classification, the output layer
possesses a single neuron, on the contrary, in non-binary classification, there would
be one neuron for each class. The output is generally passed through an activation
function to transform it into probability. Source: [4]

between input and output and, being differentiable, can be easily integrated during
the Backpropagation algorithm [5].

The most used activation functions are listed below :

• ReLU (Rectified Linear Unit): is the most widely used function as it accelerates
the convergence of the descent of the gradient to the global minimum and
results in faster and more efficient learning. However, in Figure 2.4 it is easily
noticed that for negative x values, the function is value zero and this implies
that when a neuron enters this condition, they do not respond to input or
error variations [6].

• Sigmoid: is a function that receives real numbers as input and returns a real
number between 0 and 1 as output and this makes it mainly used in binary
classification problems. But the output, not being centered at zero, makes it
more difficult to optimize and update the gradient (Figure 2.5) [6].

• Softmax: the combination of sigmoid functions gives rise to the softmax
activation function. It is generally used in multi-category classification and
in the last layers of a neural network to normalize output in a probability
distribution of each individual category Figure 2.6 [7, 8].

7

Deep Learning Overview

Table 2.1: Mathematical definition of ReLU, Softmax and Sigmoid activation
functions. Source: [6]

ReLU f(x) =
0 for x ≤ 0

x for x > 0

Sigmoid f(x) = σ(x) = 1
1 + e−x

Softmax fi(x⃗) = exiqJ
j=1 exj

, i = 1, ..., J

Figure 2.4: ReLU activation function
graph. Source: [6]

Figure 2.5: Sigmoid activation function
graph. Source: [6]

2.2.2 Optimization Algorithms with Adaptive Learning
Rate

The concept of optimisation describes a situation in which minimising (or max-
imising) a function is needed. When a minimisation of a function to find a local
minimum is required, the basic idea is to find the direction in which the function
decreases faster by proceeding in the opposite direction to the gradient of the
function at that point. This procedure is called "gradient descent" or "method of
steepest descent".

The next steepest point is defined as:

x’ = x − ϵ∇xf(x) (2.8)

where ϵ is the step size or learning rate. The negative sign before the gradient
indicates that the direction of the local minimum is in the opposite direction from
the gradient.

8

Deep Learning Overview

Figure 2.6: Softmax activation function graph. Source: [6]

More generally, iterating the algorithm, the point should converge towards the
local minimum [9]

xn+1 = xn − ϵ∇xf(xn), n ≥ 0. (2.9)

The basic idea is to use gradient descent to minimise the loss function during
algorithm training [10].

2.2.3 Backward Propagation
The backpropagation algorithm uses the gradient propagation rule to calculate
errors in network weights. The process can be divided into two phases: the forward
pass phase and the reverse propagation phase.

In the forward propagation phase, the x input is passed through the network to
generate the y output. The activation function is used to generate the output. The
activation function can be a sigmoid function, ReLU function, or others.

In the reverse propagation phase, the output error is calculated against the
desired output ŷ. The error is given by the error function L(y, ŷ). The error is then
spread back through the network to calculate the weight errors.

The rule for updating weights is given by

∆w(i, j) = −ϵ
∂L

∂w(i, j) (2.10)

where w(i, j) is the weight that connects the i-first neuron of the input layer with
the j-third neuron in the output layer, ϵ (learning rate) is a learning constant, and

∂L
∂w(I,J) is a partial derivative of the error function relative to the weight w(i, J).

The backpropagation algorithm then uses gradient descent to optimise network
weights. This means that weights are updated in the negative gradient direction,
i.e., in the direction that reduces the value of the error function [11][12][13][14].

9

Deep Learning Overview

Loss Functions

The loss function gradually gains the ability to lower prediction error with the aid
of some optimisation functions. Depending on learning task, loss functions may be
divided into two main categories, such as regression losses and classification losses.

Let’s focus our attention on classification loss only, since this thesis will analyse
models for audio classification. The most typical function for classification task is
Cross Entropy Loss defined in (2.11). This formulation suggests that loss function
rises when predicted output ŷi diverges from actual output yi [15]

CrossEntropyLoss = −(yilog(ŷi) + (1 − yi)log(1 − ŷi)). (2.11)

2.3 Convolutional Neural Networks

2.3.1 Functioning of CNN
A convolutional neural network is a type of deep learning algorithm that is based
on mathematical convolutional operations. Considering two functions f(t) and g(t)
defined on R, the convolutions between the two functions are defined as (2.12) [16]

s(t) = (x ∗ w)(t) :=
Ú +∞

−∞
x(τ)w(t − τ)dτ. (2.12)

In practise, one can imagine wanting to track the position of a spacecraft with a
laser sensor. The sensor produces a x(t) output corresponding to the x position
at the moment t. During measurement, the value is subject to uncertainty caused
by noise and to obtain a more accurate estimate, it would be necessary to collect
various measurements and mediate them. Since, in the meantime, the position may
have changed and the spacecraft continues its movement, we want to give more
importance to the latest measurements. Similarly, if a weighed w(τ) function of
duration τ for the entire measurement is applied, the result will be a new function
representing the ship’s position in the most filtered time.

Convolutional neural networks are widely successful in image recognition appli-
cations thanks to their structure. In convolutional neural networks, x represents the
input, the weighed w function is called kernel and the output generated by s refers
to bffeature map. In particular, if the input is a digital image, the convolutional
operation will be discretized into a two-dimensional as shown in (4.10) [16]

s(i, j) = (X ∗ K)(i, j) =
Ø
m

Ø
n

X(m, n)K(i − m, j − n) (2.13)

where X represents the colour matrix of the image and K the kernel matrix [16].
Digital images have the size (Height)×(Breadth)×(Numberofchannels) where

the number of canals identifies the range of colours used for the representation.

10

Deep Learning Overview

If the last dimension is 1, it means digital image has a grayscale image, but if
the image is coloured, it has dimension of 3 (RGB). RGB (Red Green Blue) is
a colour additive model (Figure 2.7) widely used in digital displays for image
representation that is based on colour representation as a combination of intensities
of three main colours, such as red, green and blue.

The choice of this model is essentially inspired by the physiological functioning
of the human eye, which is composed of photoreceptive cells, that is, light-sensitive
cells, which respond best to red light (long wavelength), green light, and blue light
(short wavelength). The brain is able to distinguish a wide range of colours due to
the difference between these three colours.

An example of a 5 × 5 × 3 digital image that uses the RGB colour model is
presented in Figure 2.8. There are three matrices, one per colour, and each element
in the matrix indicates the intensity of the reference colour. Therefore, we will have
a matrix indicating the intensity of the green colour in the image for each pixel,
one matrix for red and one for blue. The composition of the three matrices returns
the colour range in the image [17].

Figure 2.7: When primary colour lights are projected on a surface, additive colour
mixing occurs when the three primary colours are combined in equal amounts to
form white. The composition of them in different intensity, creates a wide range of
colours. Source: [17]

Typical layers which compose a CNN are:

• Convolution layer:
The convolution layer consists of a kernel matrix that acts as a filter to extract
high-level features such as the contours of an image, colors and gradient
orientation.
In Figure 2.9 is represented a typical convolution operation, for simplicity of

11

Deep Learning Overview

Figure 2.8: A 5 × 5 × 3 matrix RGB image example. Each channel defines the
pixel intensity across the image.

representation, the input is a grey-scale image with a single colour channel,
with a 2 × 2 kernel size and stride length unit.
This operation can also be replicated when the number of channels is more
than one (three in the case of RGB image). The resulting matrix is called
activation map and has the final dimension Wout × Hout × Cout obtained as
follows:

– Wout = Win+2P
S

+ 1
– Hout = Hin+2P

S
+ 1

– Cout = K

Where Win and Hin are the sizes of the input image, S represents the stride
length, i.e., the number of pixels the kernel moves from one scan to the next
in the input matrix. When S = 1 the kernel moves one pixel at a time, while
when S = 2 it moves two pixels at a time. The P value defines the amount of
padding added. In Figure 2.10 is shown an example of when the padding is
applied to the original input is shown. The input has a 5 × 5 × 1 size and a
3 × 3 kernel, with stride length equal to 2, the number of pixels in the image
would not be enough to perform a convolution, so H and W are increased by
adding zeros around the matrix [18].

• Pooling layer:
Suppose using an 8K image with a size of 7680 × 4320 as an input to a
convolutional neural network. Convolutional layers do not significantly reduce
the size of the matrix and would require a high number of layers as well
as large computing power for image processing. For this problem, a layer of

12

Deep Learning Overview

Figure 2.9: A convolution operation with 2 × 2 kernel and stride length 1 in a
matrix dimension of 4 × 4. The resulting matrix have dimension of 3 × 3.

Figure 2.10: A convolution operation with 3 × 3 kernel and stride length 2. In
this case, padding is required.

pooling is used that aims precisely to significantly reduce the size of feature
maps in the hidden layers, as shown by Figure 2.11 and Figures 2.12.
The final dimensions of the feature map are:

– Wout = Win

S
+ 1

– Hout = Hin

S
+ 1

– Cout = Cin

Pooling is also used to extract and send the most important features to the
next layer.
There are two types of pooling (Figure 2.13): Average Pooling Layer which
returns the average of the values covered by the kernel, and Max Pooling layer
which returns the maximum value of the portion of the image covered by the

13

Deep Learning Overview

nucleus. The choice of type of pooling is dictated by the ultimate purpose,
Avg Pooling makes the image more regular, while Max Pooling identifies the
brighter pixels and turns out to be especially useful when the background of
the image is purely dark.

Figure 2.11: An Average Pooling oper-
ation in a 4 × 4 input matrix with 2 × 2
kernel dimension is performed. The re-
sulting feature map has dimension 2 × 2.

Figure 2.12: An Max Pooling operation
in a 4 × 4 input matrix with 2 × 2 kernel
dimension is performed. The resulting
feature map has dimension 2 × 2.

• Batch Normalization:
[20] introduces a brand-new method for significantly quickening deep network
training. It is based on the idea that covariate shift (having different sources
of data inside the same range), which is known to make training machine
learning systems more difficult, also applies to sub-networks and layers and that
eliminating it from internal activations of the network can help with training.
This technique consist of normalising each mini-batch and backpropagate
the gradients through the normalisation parameters to enable stochastic
optimisation techniques frequently employed in deep network training. Batch
normalisation maintains the network’s capacity for representation by only
adding two more parameters per activation.

• Dropout: When a model during the training starts to learn statistical noise
means there is overfitting. This leads to complex co-adaptations, which fails
to generalize to the unseen dataset. In [21] is introduced a technique called
Dropout: when a few units (nodes) are dropped at random (Figure 2.14),
layers are forced to assume varying amounts of input responsibility, assuring
generalisation and minimising the overfitting issue [22].

• Fully Connected layer (FC) and Global Average Pooling:
A group of interdependent non-linear functions make up neural networks. An
independent neuron (or perceptron) performs each function. The neuron in

14

Deep Learning Overview

Figure 2.13: Original image on the top, Max Pooling on left below and Average
Pooling on the right below. Sharp features may not be visible when using the
average pooling approach since it smoothes down the image. The brighter pixels in
the picture are chosen via max pooling. It is helpful when we just care about the
image’s lighter pixels and the image’s dark backdrop. Source: [19]

Figure 2.14: (a) standard neural net with 2 hidden layer. (b) An illustration of a
thinned net created by applying dropout to the left network. Source: [21]

fully connected layers transforms the input vector linearly using a weights
matrix. The result is then subjected to a non-linear transformation using a
non-linear activation function f. The representation between the input and
the output is mapped using the FC layer.

15

Deep Learning Overview

Let’s take an example of a typical CNN architecture taken from [23] which uses
a dataset of Zalando’s article [24] images consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each example is a 28 × 28 grayscale
image, associated with a label from 10 classes.

The draft architecture proposed by [23] is composed as shown in Figure 2.16.
The convolution layer is intended to extract features through the application of
a filter; batch normalisation allows to initialise the weights of the matrices to a
Gaussian distribution during training; and max pooling makes it so that the sizes
are significantly reduced between one layer and the next.

Figure 2.15: Fashion-MNIST dataset consists of 10 classes of clothing, such as
shirts, pants, clothes, shoes, bags, etc. A matrix of pixel intensity values is used
to represent each grey-scale image, which has a dimension of 28 × 28 × 1 pixels.
Source: [24]

2.4 Transformer Architecture
Transformers and a sequence-to-sequence architecture, described in the paper [25],
are a neural networks called series-to-sequence (also known as Seq2Seq) translates

16

Deep Learning Overview

Figure 2.16: A sample CNN proposed by [23] to show how layers are connected
each other in a simple CNN network. Two consecutive convolutional block each
containing convolution operation followed by batch normalization, ReLu activation
function and max pooling layer. At the end fully connected layer is employed to
extract the predictions.

one series of components, such as the words in a phrase, into another sequence.
Long-Short-Term-Memory (LSTM)-based models are a common option for this kind
of model. The Encoder and Decoder in Seq2Seq models take the input sequence
and map it into an n-dimensional vector in a higher level space. It is converted into
an output sequence by the decoder, which may be in another language, symbols, a
duplicate of the input, etc.

The Encoder translates a German sentence into another language it is familiar
with, notably the imagined language, in order to translate German into French.
The model is trained on a large number of instances in order to learn the made-up
language. A single LSTM for each of the encoder and decoder functions in the
Seq2Seq model is a straightforward option. The attention-mechanism is a technical
feature that analyzes an input sequence and determines whether other sequence
elements are critical at each stage. A human encoder and decoder is an example of
this, where the encoder records keywords that are crucial to the meaning of the
phrase and provides them to the decoder along with the standard translation.The
attention mechanism considers many inputs simultaneously for each input that the
LSTM (Encoder) reads and determines which inputs are significant by assigning
various weights. The attention mechanism considers many inputs simultaneously
for each input that the LSTM (Encoder) reads and determines which inputs are
significant by assigning various weights to those inputs. The encoded message and
the weights produced by the attention mechanism will subsequently be entered
into the decoder.

Transformer is a revolutionary architecture that is introduced in the same paper

17

Deep Learning Overview

[25]. It employs the attention-mechanism we already observed, as the title suggests.
Transformer is an architecture for transforming one sequence into another with the
aid of two components (Encoder and Decoder), similar to LSTM, but different from
the previously described/existing sequence-to-sequence models since it excludes
any recurrent networks (GRU, LSTM, etc.).

Up until recently, recurrent networks were one of the strongest tools for capturing
the temporal connections in sequences. However, the team which presented the
article demonstrated that an architecture using simply attention processes and
no RNN (Recurrent Neural Networks) may enhance performance in tasks like
translation.

Figure 2.17: Transformer Architecture proposed in [25]. Source: [25]

In Figure 2.17 is shown on the left is the encoder, and on the right is the
decoder. According to Nx in the image, Encoder and Decoder are both made up

18

Deep Learning Overview

of modules that may be stacked on top of one another several times. We can
observe that Multi-Head Attention and Feed Forward layers make up the majority
of the modules. Since we can’t utilize strings directly, the inputs and outputs
(target phrases) are first embedded into an n-dimensional space. The positional
encoding of the various words is a small but significant component of the model.
Since a sequence depends on the order of its constituents, we need to somehow
assign every word or component in our sequence a relative position since we do
not have recurrent networks that can recall how sequences are fed into a model.
The embedded representation (n-dimensional vector) of each word is expanded to
include these locations.

Figure 2.18: Multi-Head Attention of Transformer in [25]. Source: [25]

The attention is the key element of Transformer architecture, taking a look on
Multi-Head Attention in Figure 2.18, let’s define Q is a matrix which includes
the query (vector representation of one word in the sequence), K are all the keys
(vector representations of all the words in the sequence) and V are the values, which
are similarly the vector representations of all the words in the sequence. For the
encoder and decoder, multi-head attention modules, V comprises of the same word
sequence than Q. However, for the attention module that has taken into account the
encoder and the decoder sequences, V is distinct from the sequence represented by
Q [26]. There are several parallelizations of this attention mechanism that may be
utilized simultaneously. The linear projections of Q, K, and V are used to repeatedly
repeat the attention process. As a result, the system can benefit from learning
from various Q, K, and V representations. By multiplying Q, K, and V by weight
matrices W that are acquired during training, these linear representations are
created. Depending on whether the attention modules are in the encoder, decoder,

19

Deep Learning Overview

or anywhere in between the encoder and decoder, the matrices Q, K, and V are
different for each position of the attention modules in the structure. We wish to
focus on either the entire encoder input sequence or a specific section of the decoder
input sequence, which is the main driver. The encoder and decoder are connected
by a multi-head attention module, which makes sure that the input sequences from
both are considered up to a certain location.

2.5 Feature Extraction
Feature extraction is an important step in which input is represented by a more
meaningful representation for the network. In audio classification, features are
extracted by means of several techniques. In [27] is investigated multiple time-
frequency representations for environmental sound classification to determine which
forms are able to better improve the classification performance of a CNN and the
authors demonstrate that Mel-Spectrogram usage as feature extraction gives good
performance. Since all the models under evaluation employ this method, it will be
discussed later.

2.5.1 Mel Spectrogram
A change in a certain quantity over time is referred to as a signal. Air pressure
is the variable quantity for audio. The air pressure may be measured over time
with samples. We sample the data at various rates, but most frequently at a rate
of 44.1 Hz for audio signals, or 44,100 samples per second. Numerous sound waves
with a single frequency compose an audio signal. We merely record the resultant
amplitudes while sampling the signal over time. A mathematical procedure called the
Fourier transform enables us to break down a signal into its constituent frequencies
and their amplitudes. It transforms the signal from the time domain to the frequency
domain, whose outcome is known as a spectrum. This is conceivable because, as
Fourier’s theorem asserts, any signal may be decomposed into a series of sine and
cosine waves that sum up to the original signal, and the Fast Fourier Transform
(FFT) is a technique that can efficiently perform the Fourier transform. In case a
non-periodic signal is elaborated, the short-time Fourier Transform (STFT) allows
to compute FFT on overlapping windowed segments of the signal (see Figure
2.19), getting a spectrogram [28].

Since digital audio is a discrete signal, let’s apply discrete-time STFT, where
data is split into overlapped chunks or frames. For each frame, a Fourier transform
is applied, and the complex result is added to a matrix that records magnitude
and phase for each point in time and frequency as described in (2.14), where x[n]
denotes the signal, ω[n] the window, H the hop-size, m · H the starting sample of

20

Deep Learning Overview

the current frame and m the signal widowed and m the widowed segments

S(m, k) =
N−1Ø
n=0

x(n + m · H)ω(n)e− i2πnk
N . (2.14)

The STFT results a spectral matrix composed by complex coefficients with
dimension (#frequency_bins, #frames) where #frequency_bins = frame_size

2 +1
and #frames = samples − frame_size

hop_size
+ 1 [30].

Regarding the window function, the most used one due to its main advantage of
controlling the leakage [31], is Hann Window defined in (2.15) [32] and shown in
Figure 2.20

ω(k) = 0.5(1 − cos 2πn

N − 1). (2.15)

After getting the matrix of widowed FFT, the spectrogram is outlined as a square
module of the STFT matrix. To get Mel-Spectrogram, after getting the short-time
Fourier Transform for each window, frequencies are converted to the mel scale. The
need for building a Mel-spectrogram arises from the fact that humans perceive
frequency logarithmically. A perceptual scale of pitches that humans perceive to be
equally spaced from one another is known as the mel scale. By giving a tone at
1,000 Hz, 40 dB over the listener’s threshold, with a perceived pitch of 1,000 mels,
the starting point between this scale and conventional frequency measurement is
established. Listeners perceive increasingly longer pauses to create equivalent pitch
increments over 500 Hz [34].

Douglas O’Shaughnessy’s [35] formulation, which represent an approximate
average of common perception, converts from hertz scale to mel scale is defined in
(2.16) and respective plot in Figure 2.21

m = 2595 log (1 + f

700). (2.16)

So, in order to get a mel-spectrogram, STFT is performed first, then amplitude
is converted to dB scale and frequencies to mel scale [36].

The conversion of frequencies into mel-scale is carried out by first selecting the
number of frequency bands. Next, the construction of the mel filter banks occurs by
converting the highest and lowest frequency with the formula into (2.16), creating a
number of bands equally spaced between the extremes of the converted frequencies.
Each band of the mel frequency is then re-converted to hertz rounding to the
nearest bin frequencies thus eventually creating a series of triangular filters as in
Figure 2.22 [37].

It is also widely used the log mel spectrogram a variation of what previously
explained. while a mel spectrogram represents the frequencies in the mel scale, a
log mel spectrogram is obtained by taking the logarithm of the mel spectrogram
values. The logarithm transformation is commonly used to compress the dynamic
range of the spectrogram and emphasize lower intensity sounds.

21

Deep Learning Overview

2.6 Data Augmentation
Due to the improper quantity of data used to train the network, adequate results
are not obtained even after applying an appropriate model. A huge dataset is
necessary for the deep learning model to function well. However, a sufficient volume
and variety of data could not be reached to train the model, for this reason, data
augmentation was introduced.

Data augmentation is a method for faking fresh training data out of old training
data. To do this, domain-specific approaches are applied to instances from the
training data to produce brand-new and distinctive training examples.

For image classification, for example, the data augmentation consists of making
changes to them by rotating, scaling, cropping, and flipping [39].

The data augmentation methods employed in the test models, such as Mixup
and Spectrogram Masking/Spec-Augmentation, will be discussed as this work has
applications in audio classifications.

2.6.1 Spectrogram Masking/Spec-Augmentation
[40] suggests an augmentation technique that works on the input audio’s log mel
spectrogram rather than raw audio itself. This approach directly affects the log
mel spectrogram of the input audio, making it easy to use and computationally
inexpensive. Time warping and time and frequency masking are two of the three
types of deformations of the log mel spectrogram that make up this phenomenon.
This method is surprisingly efficient in automatic speech recognition and enables
the authors to train end-to-end ASR networks, called Listen Attend and Spell
(LAS) [41] to outperform and achieve state-of-the-art results without more complex
system usage.

The authors seek to develop an augmentation strategy that works on the log mel
spectrogram directly, which helps the network acquire relevant features. Motivated
by the idea that these traits should be resilient to deformations in the time direction,
partial loss of frequency information and partial loss of tiny portions of speech,
they have selected the following deformations.

The first deformation is time warping (see Figure 2.23) implemented by means
of the native tensorflow function sparse_image_warp. Given a log mel spectrogram
with τ time steps, it is interpreted as an image where the time axis is horizontal
and the frequency axis is vertical. A random point along the horizontal line crossing
through the center of the image within the time steps (W, τ − W) is to be warped
either to the left or right by a distance w selected from a uniform distribution from
0 to the time warp parameter W along that line. In other words, W represents the
maximum distance by which a point can be warped. The uniform distribution is
used to randomly select a distance value w within the range of 0 to W end this

22

Deep Learning Overview

ensures that all possible distances within the range have an equal chance of being
selected.

The second derformation proposed by researchers is frequency masking (Figure
2.24) which aims to mask f consecutive mel frequencies in the range [f0, f0 + f).
f is a parameter selected from a uniform distribution from 0 to frequency mask
parameter F and f0 is picked within the range [0, ν − f) where ν denotes the
number of mel frequency channels.

The last deformation provided by writes is time masking (Figure 2.25), quite
similar to frequency one in which masking is employed to t consecutive time steps
in the range [t0, t0 + t) likewise t is a parameter picked from an uniform distribution
from 0 to time mask parameter T and t0 is chosen from a range [0, τ − t).

23

Deep Learning Overview

Figure 2.19: Illustration of how short-time Fast Fourier Transform works. The
signal is first multiplied by overlapping window producing consecutive windowed
segments. Then FFT is applied to get spectrogram. Source: [29]

24

Deep Learning Overview

Figure 2.20: Plot of Hann Window with 50 samples length. Source: [33]

Figure 2.21: Conversion from Hertz scale to Mel scale. When frequency is 1,000 Hz
it corresponds to 1,000 mel.

25

Deep Learning Overview

Figure 2.22: Mel Filter Banks is a filter bank with triangular shaped bands
arranged on the mel frequency scale. This is used to convert a spectrogram from
Hertz scale to Mel scale getting a Mel-Spectrogram. Source: [38]

26

Deep Learning Overview

Figure 2.23: The image above is the original Mel-Spectrogram, the one below
instead is the Mel-Spectrogram after Time Warp. Source: [40]

Figure 2.24: The image above is the original Mel-Spectrogram, the one below
instead is the Mel-Spectrogram after Frequency Masking. Source: [40]

Figure 2.25: The image above is the original Mel-Spectrogram, the one below
instead is the Mel-Spectrogram after Time Masking. Source: [40]

27

Chapter 3

Models Architecture and
Dataset

3.1 Dataset
The thesis aims to emphasize the recognition of human activities in domestic
environments and based on this, the search for an existing dataset was carried out
on the Internet. The site [42] proposes several open-source audio datasets, but it
was chosen as the reference one the ESC-50: Environmental Sound Classification
because it contains categories that can group human and domestic sounds.

3.1.1 ESC50
The ESC-50 [43] dataset is a compilation of 50 classes of different environmental
sounds. Sound snippets created from recordings made publicly accessible through
the Freesound 1 initiative make up each dataset. The classes in the labeled portion
of the dataset were chosen at random with the intention of preserving balance
between the main categories of sound events. The created classes were searched
for in the Freesound field recording database, and then 5-second recordings of
audio events were extracted from annotated fragments containing events from that
class. The collected samples were then re-formatted to a single channel, 44.1 kHz
format with 192 kbit/s Ogg Vorbis compression. Therefore, the labeled datasets
were organized into 5 cross-validation folds of uniformly sized, guaranteeing that
clips coming from the same original source file are always contained in a single fold.
The ESC-50 dataset [44] includes 2,000 environmental recordings that have been

1https://freesound.org/

28

Models Architecture and Dataset

categorized and are evenly distributed across 50 classes (40 clips per class). They
are divided into 10 groups in each of 5 ill-defined primary categories for convenience:
Natural soundscapes and water sounds, animal sounds, human (non-speech) sounds,
interior/domestic sounds, and exterior/urban noises are all examples of audible
stimuli. When feasible, the extraction procedure aimed to retain exposed sound
events in the foreground with little background noise. Field recordings aren’t sterile,
though, so some movies could still have audible blending in the background. The
dataset exposes users to a range of sound sources, some of which are quite frequent
(laughing, cat meowing, dog barking), others of which are fairly unique (glass
breaking, brushing teeth), and yet others of which have more subtle variations
(helicopter and aircraft sounds). The few clips that are accessible for each class
is one potential flaw in this collection. This is because human annotation and
extraction are expensive and because tight class balance was maintained despite
the scarcity of recordings for more unusual forms of sound occurrences.

Figure 3.1: Sound classes of ESC-50 dataset. Source: [44].

Only 19 of these categories have been chosen for the thesis due to human action
detection. Figure 3.1 lists the ESC-50 classes. In order to choose just noises
produced by humans or as a result of their activities, categories are minimized
as Figure 3.2 reports. It should be emphasized that both the categories of
noises produced by the person, crying, sneezing, coughing, breathing, etc. and the
categories of sounds produced by his activity typing, operating a washing machine,
mouse, or using a vacuum cleaner have been chosen. Despite coming from various
contexts, they are all about having people in a space.

29

Models Architecture and Dataset

Figure 3.2: The 19 categories selected from ESC-50 for the experiment.

3.1.2 AudioSet

[45] describes how AudioSet was developed as a dataset and ontology of audio
events to give thorough coverage of actual sound. Their goal is to develop automatic
auditory event identification systems that are on par with the cutting edge when it
comes to identifying things in real-world photos in an ImageNet-like [46] fashion.
The goal of the research is to create more effective learning approaches by taking
into account all sound occurrences as opposed to a small area.

In order to build a system that can anticipate human labelling from audio, the
study provides a collection of classes to gather human-labeled data.

When the classifier finds ambiguity among numerous subcategories during
recognition, hierarchical relations allow backing off to more generic descriptions
(for instance, a sound that is ambiguously identified as a "growl," "bark," or "howl"
might revert to a category of "dog sounds").

For the purpose of describing audio events found in authentic recordings, the
Audio Set Ontology is an organised collection of audio event types. It adheres to
the tenets of offering a thorough set that can be used to describe the audio events
encountered in real-world recordings, correlating to the thought or comprehension
that pops into a listener’s head as soon as they hear the sound, and being dis-
tinguishable by a "usual" listener. The hierarchical structure enables annotators
to quickly choose the best, most precise categories for given audio occurrences.
Individual categories should be distinguishable based on their sound alone.

[45] used a modified version of the "Hearst patterns" [47] to find hyponyms of
"sound" in order to seed the audio event lexicon and prevent the category from
being biassed by the orientation of a certain researcher. When these principles are
applied to text at the size of a website, a very large number of words are produced,

30

Models Architecture and Dataset

which are then ranked according to how effectively they reflect sounds.
The hierarchy was manually put by researchers together from the top of the

sorted list, and it was made more precise by comparing it to other taxonomies
or lists of audio events. Some categories appear more than once, and the original
structure is not strictly hierarchical because nodes might exist many times. By
comparing the structure to existing audio event lists or taxonomies, the structure
was gradually improved to the point where practically every class from other sets
was covered. Because they were too specialised or otherwise did not match our
requirements for being easily recognisable, certain classes from other sets were
excluded.

Although "Car radio" is listed as a source of recorded music in the urban sounds
taxonomy of [12], it is too specialised or context-dependent for the set. There are
165 verified-distinct sound clips used in [21], with examples like "Trumpet jazz
solo" and "Walking on leaves" providing further information. The category set has
now undergone additional changes in response to input from the larger group of
participants, and it currently has 632 audio event categories that are organised in
a hierarchy with a maximum depth of 6 levels. "Sounds of things" "Vehicle" "Motor
vehicle" "Emergency vehicle" "Siren" "Ambulance (siren)" are a few examples from
the eight level-6 nodes. This dataset will not be used to fine-tune the models; it
has been explained since two of them are pre-trained with it.

3.2 State-of-art Architecture

The choice of models was made according the need to consider different architec-
tures between them. The first model found is TFNet [49], chosen because it has
publications and codes made public on GitHub and is therefore easily evaluable and
testable. The second model is CNN10 [50], selected because it is cited and taken as
a model of comparison in TFNet. It was also made possible by the development
of the network in the source codes of the authors of TFNet. The last two models
[51][52] were decided, however, by consulting the site PapersWithCode [53]. This
site a community-driven platform for learning about state-of-the-art research papers
on machine learning. It contains articles and codes for a wide range of tasks and
datasets. On the site, the templates were selected using filters by mode (audio), by
task (audio classification), and by dataset (ESC-50). After returning the search
result, the View filter is set to Accuracy (5-folds), i.e., the average accuracy achieved
on 5 folders of the ESC-50 dataset. Of the three best models, the second and the
third were chosen. The first one has been excluded due to the lack of complete
official codes published by the researchers.

31

Models Architecture and Dataset

Figure 3.3: The top two layers of Audioset Ontology. For example "Human voice"
covers the classes Speech, Shout, Screaming, Whispering, Laughter, Crying, Wail,
Sigh, Humming, Groan, Grunt and Yawn. Source: [48]

3.2.1 CNN10
The model network proposed by PANNs [50] is composed of four convolutional
blocks, each made up of two convolutional layers, batch normalization between
them, ReLU nonlinearity to make the training faster, and at the end for down-
sampling, average pooling is inserted into each convolutional block. Next to the
last convolutional layer, global pooling is used to sum up the feature maps into a
vector, and a fully connected layer is added just after for the purpose of extracting
embedding features and improving the representation ability. A linear classifier with
a softmax nonlinearity function is included for classification. The original CNN10
model in PANNs has been trained with AudioSet [45] with a binary cross-entropy
loss function. The CNN10 network of the experiment has been implemented in the
official Github folder of TFNet authors [49][54] which has maintained the same
structure of the model proposed by PANNs, but no pre-training on AudioSet is
performed.

32

Models Architecture and Dataset

Figure 3.4: Paperswithcode screenshot in which filters by method, task and
dataset are applied to find moodels. Source: [53]

Figure 3.5: Audio Classification Accuracy trend on ESC-50 of SOTA models over
the years. Source: [53]

3.2.2 TFNet

For CNN to learn discriminative sound representation, TFNet model [49] suggests
a parallel temporal-spectral attention mechanism. This mechanism strengthens the
temporal and spectral characteristics by recognizing the significance of various time
frames and frequency bands.

33

Models Architecture and Dataset

Figure 3.6: Audio Classification on ESC-50 rank of SOTA models. Source: [53]

The key-part of this model is the usage of both temporal and spectral attention
mechanisms pictured in Figures 3.7, 3.8 which improve the representation of
features focusing on relevant time frames and frequency bands by giving different
weights to them. Attention mechanism consists of convolutional layers used for
achieving channel-wide global feature maps followed by filters to reduce the number
of channels to one to ensure the network can acquire channel-wise global feature map
VT and VF from local feature map U. After that, Global Average Pooling, applied
to time axis and frequency axis according to temporal or spectral attention, allows
to yielding activations vT and vF by compressing global feature maps. Finally,
the news timewise and frequency-wise feature map UT and UF respectively, are
reached by multiply starting feature map and involved activations vector.

Since temporal and spectral features would be concurrently captured, a sum-
mation among timewise feature map, frequency-wise feature map and starting
feature map is performed with different weights in such a way the network can gives
separate attention to each as reported in Figure 3.9. So, the final time-frequency
feature map of the TF-Block is achieved

U′ = αUT + βUF + γU, α + β + γ = 1 (3.1)

where α, β, γ are the learnable weights of each addition branch which initially start
at the same value and during the training, the network learns to give appropriate
weight to time feature-map rather than frequency one.

In Figure 3.10 is shown the overall architecture of TFNet composed by four
Temporal-Frequency block which takes inspiration from original baseline model
CNN10 [50] where four convolutional block has been replaced by TF-Block. Each
TF-Block employs the temporal-frequency attention mechanism that has been
explained above, illustrated in the bottom part of the Figure 3.10.

34

Models Architecture and Dataset

Figure 3.7: Temporal attention allows the network to
identify the most relevant frames in order to recognize
where the sound occurs. Source: [49].

Figure 3.8: Spectral attention attention is employed
to give different level of attention to different frequency
bands which are significant for the task. Source: [49].

3.2.3 mn40_as

The model [55] is a composition of CNN and Transformer. Each architecture has its
advantages: CNN can learn complex tasks with limited data, while Transformers
outperforms with extremely large datasets, even if this increases computational
complexity due to a higher number of parameters. For the CNN component, an
efficient network like MobileNets was chosen, while the Transformer component
utilizes the Audio Spectrogram Transformer [56] (based on ViT [57]). The paper
proposes a training procedure for the CNN component based on offline knowledge
distillation (i.e., teacher model predictions are pre-generated and saved before
training the student model). Architecture definition: The student model (CNN
MobileNetsV3 [58]) is pretrained on ImageNet [46] while the teacher model, namely
PaSST Transformer [59], is trained on AudioSet [45], and checkpoints are saved
offline.

35

Models Architecture and Dataset

Figure 3.9: Parallel temporal-spectral attention attention mechanism applied to
each convolutional block. Source: [49].

Figure 3.10: TFNet overall architecture. A zoom of what is inside a convolutional
block. Source: [54]

Audio Spectrogram Transformer Introduction

AST [56] is based on transformer architecture, a type of model initially born for
natural language processing. It is very similar to network already existing such as
ViT [57] transformer mainly specialized to image recognition. Figure 3.12 shows
the architecture of Audio Spectrogram Transformer and the audio elaboration flow
starting with Mel-spectrogram (128 bank filters calculated with Hamming window
of 25 ms every 10 ms) divided in N patches of dimension 16x16 with overlap of 6
on both dimensions. Each patch of the spectrogram is flattened by means of linear
projection first, then trainable positional embeddings are inserted in such a way that
spatial order of patch is given. Next patches go as input to transformer-encoder and
a linear layer with sigmoid as activation function is applied to map the predicted
label. ViT and AST are quite similar each other, but the main difference among

36

Models Architecture and Dataset

them is the fixed dimension of data elaboration for the first architecture against a
more variable dimension of input spectrogram of the second one.

Figure 3.11: Vision Transformer (ViT)
model overview: an image is split into
fixed-size patches each of which is lin-
early embedded, position embeddings are
added, and the resulting sequence of vec-
tors is sent to a typical Transformer
encoder. Then the standard approach
of adding an extra learnable “classifica-
tion token” to the sequence is employed.
Source: [57]

Figure 3.12: Audio Spectrogram Trans-
former (AST) architecture: the 1-D patch
embeddings are created by linearly pro-
jecting the 2D audio spectrogram into
a series of 16 × 16 patches with over-
lap. A learnable positional embedding is
added to each patch embedding. The se-
quence has a further categorization token
prepended to it. A Transformer receives
the output embedding as input, and uses
the classification token as its output to
classify data with a linear layer. Source:
[56]

Teacher Model: PaSST

Transformer used in mn40_as model is PaSST [59] very similar to ViT/AST
architectures but with some modifications to reduce input sequence length.

Figure 3.13 shows the idea behind The Patchout faSt Spectrogram Transformer
(PaSST). The starting architecture is based on ViT in which from input spectrogram,
patches are extracted and added trainable positional encodings, then a modification
using the technique of overlapping the patches introduced by [56] to improves
the performance during the training. The main drawback of overlapping is the
increasing of patches sequence and as results of memory and compute requirements

37

Models Architecture and Dataset

Figure 3.13: Patchout Transformer (PaSST) Architecture. Input spectrogram is
divided into patches and then randomly discarded before applying self-attention.
Source: [59]

rising encouraged to propose a method called Patchout to overcome these problems.
Patches extraction from input spectrogram and linear projection as in ViT is
performed in step (1), frequency and time positional encoding are in inserted in step
(2) to make simpler the inference and fine-tuning of pre-trained models with shorter
audio length. In Step (3) patchout and classification token addition are applied.
Patchout consists of randomly discarding part of patches sequence during the
training to encouraging the transformer make classification even if an incomplete
sequence is used reducing the length and so computation complexity. During
the inference no patchout is performed instead. PaSST-U identifies unstructured
patchout where patches selection is done in a random way without considering
position. PaSST-S is based on SpecAugment [40] technique for data augmentation,
where a frequency bin or time frame is chosen randomly and its whole row/column
is removed. Step (4) flatten the sequence by passing it in d layers of self-attention
blocks in which d detects the depth of the transformer. Then, as last step, the
classifier to predict the input label. Since computational complexity on attention
computing rises quadratically O(n2) with sequence length n, it goes without saying
that reducing the length allows to significantly reduce the complexity and memory
requirements.

Student Model: MobileNets

As CNN student model, MobileNetV3-Large [58] is deployed (mn stands for Mo-
bileNet abbreviation) tipically used for mobile phone CPUs application. MobileNetV3-
Large is a variation of previous network version which can be more accurate on

38

Models Architecture and Dataset

ImageNet classification and faster when producing an output which is very impor-
tant for real-time application, with respect to earlier version MobileNetV2 [60].
The main motivation which has driven the realization of MobileNetV3 is to adapt
high accuracy with power consumption of mobile device. MobileNetV3 is a result
to make more efficient the blocks of previous versions. MobileNetV1 [61] introduces
the Depth-Wise Separable Convolutions, a more efficient convolution layer able to
decompose the traditional convolution in two separated steps, the spatial filtering
and feature generation. By looking at the Figure 3.14 it is easy to notice how this
structure allows to reduce the number of parameters of the convolution operation.

Figure 3.14: MobileNetV1 Depthwise Separable Convolution: is a form of de-
composed convolutions that factorize a standard convolution into a depthwise
convolution, which applies a single filter to each input channel, and a 1×1 convolu-
tion called a pointwise convolution that employs a 1×1 convolution to combine the
outputs of the depthwise convolution. Source: [62]

MobileNetV2 uses linear bottleneck and inverted residual block to keep a narrow

39

Models Architecture and Dataset

representation while internal expansion to higher dimension improving features
representation is performed. 1 × 1 pointwise convolution is applied to reduce the
input channels and representing feature maps into a lower dimension. Depthwise
separable convolution is performed by depthwise convolution to capture spatial
information from channel independently as first then pointwise convolution is
deployed to create a new feature map with higher representation. Residual means
that original input is added to output of bottleneck to don’t lose input information
and encouraging the model to capture and propagate main information in the
network.

Figure 3.15: MobileNet V2 layer: Inverted Residual and Linear Bottleneck to keep
narrow representation while internal expansion to improve features representation
is performed. Pointwise convolution to reduce input channels, deptwise convolution
to capture spatial information, pointwise convolution to create new feature map
and residual in which original input added to output of bottleneck to propagate
main information along the network. Source: [58]

MnasNet [51] implements a modified bottleneck block based on squeeze and
excitation. Squeeze operation is done just after depthwise separable convolution,
which involves global average pooling to reduce dimension of feature maps to
a single value per channel and capturing channel information. Then excitation
operation consists of passing squeeze output into two fully connected layers with
a non-linear activation function for the first one to reduce feature dimension and
second layer to expand the features to original channel dimension. After this block,
a multiplication between original feature maps and SE (Squeeze-Excitation) output
gives model the ability to concentrate only on relevant features.

MobileNetV3 uses the blocks described before to create a more efficient model
it combines the modified bottleneck block of MnasNet (Figure 3.16) applying
squeeze and excite in the residual layer, replacing ReLU6 activation function in
bottleneck block in MobileNetV2 with a new one Hard-Swish a linear approximation
of Swish non-linear activation function which improve accuracy and reduces the

40

Models Architecture and Dataset

Figure 3.16: MobileNet V3 block: MobileNetV2 + Squeeze-and-Excite. Squeeze
operation after depthwise convolution implemented by global average pooling to
reduce dimension of feature maps to a single value per channel. This allows to
capture channel information. Excitation operation consist of passing the squeeze
output into two FC layers with non-linear activation functions. First one allows to
reduce feature dimension. Second one is used to expand the features to original
channel dimension. Source: [58]

number of memory accesses defined as follows [63]

h − swish[x] = x
ReLu6(x + 3)

6 . (3.2)

Knowledge Distillation

Knowledge Distillation [64] is a technique used to transfer the knowledge from a
higher complexity model to a lower complex one. In this case the more complex
model, also called teacher, is the PaSST (a Transformer) and lower one denoted as
student, is the MobileNetV3 (a CNN). The student will try to reduce standard clas-
sification loss, but also a distillation loss based on teacher’s predictions. Following
equation shows the total loss the student will reduce is a weighted sum of classifi-
cation loss L1 given target label y and student prediction δ(zs) and distillation loss
Lkd between teacher prediction δ(zt/τ) and student prediction

Loss = λL1(δ(zs), y) + (1 − λ)Lkd(δ(zs), δ(zt/τ)). (3.3)

The KD is performed by researchers to transfer the knowledge during student
training on AudioSet. As loss function, Binary-Cross-Entropy is used for both L1
and Lkd furthermore Sigmoid activation function for δ has been chosen. According
to mn40_as results in Figure 3.17, for KD the best performance is reached when
λ = 0.1 and τ = 1.

The powerful of knowledge distillation applied to MobileNetV3 is demonstrated
by the following Figure 3.18: using KD where a PaSST transformer teach to a
pre-trained MN improves the performance with respect to a single PaSST model
for the same complexity in terms of number of parameters.

41

Models Architecture and Dataset

Figure 3.17: mAP results obtained during student training on AudioSet using
different values of λ and τ . Source: [55]

Figure 3.18: MobileNet performance on AudioSet with and without KD and
pre-training on ImageNet. Source: [55]

3.2.4 HTS_AT
The Hierarchical Token-Semantic Audio Transformer [52], also known as HTS_AT,
is a network specially designed to reduce the model size and training time thank to
hierarchical structure usage.

Swin Transformer

Swin Transformer Block is based on Swin Transformer [65], a novel hierarchical
vision Transformer architecture for computer vision tasks which handles the weak-
ness of conventional Transformers in processing high-resolution picture inputs. It
employs a patch-based self-attention method and separates the picture into smaller,
non-overlapping patches. However, the Swin Transformer adopts a method know
as Path-Merge to detect dependencies across patches rather than processing these
patches directly. Patch merging and patch splitting are the two operations of the
patch-merge procedure in the Swin Transformer. The patches are collected and
pooled inside a local window during the patch merging process. The model could ac-
quire contextual data inside each window according to this method. The aggregated
features are next separated into non-overlapping patches during the patch splitting
stage, however with a reduced spatial resolution. With less computational expense,
this approach enables the model to analyse high-resolution pictures effectively. The
patch-merge approach makes it possible to build a hierarchical design. Another key-
approach employed in Swin Transformer are the shifted windows attention between
consecutive self-attention layers which lets to capture long-range relationships and
propagate information along neighbouring windows.

42

Models Architecture and Dataset

HTS_AT Architecture

The initial phase of the network is Mel-Spectrogram encoding in which spectrogram
is first divided into windows and each window is split in patches with the order
defined by indicators in such a way different frequencies bins at the same time
frames are close to each other. Then patches are converted to patch tokens by means
of Patch-Embed CNN with a kernel size of (P ×P). The second step of the structure
consists of putting patch tokens into several clusters of transformer-encoder blocks.
Each one ends with a Patch-Merge layer, which minimizes the sequence size inside
the group. The sequence is first reshaped to its original 2D map for this merging
procedure (T

P
× F

P
, D), where D denotes the dimension of the latent state.

Next it combines neighbouring patches as (T
2P

× F
2P

, 4D) and a linear layer is
applied to decrease the latent dimension to (T

2P
× F

2P
,2D). It can be noticed that

after four blocks the patch tokens’ dimension is reduced by eight times with a
starting dimension (T

P
× F

P
, D) till (T

8P
× F

8P
,8D), which causes the GPU memory

usage to decrease exponentially. A window attention technique is used for each
transformer block inside the group to lessen the calculation. In Figure x, the patch
tokens (in 2D format) is first divided into nonoverlapping (M × M) attention
windows aw1, aw2, ..., awk, as indicated by various colored boxes in the middle right
corner.

The attention matrix is thus only calculated for each (M ×M) attention window.
As a result, rather of a complete Global Attention (GA) matrix, we have k Window
Attention (WA) matrices which allows to significantly reduce the complexity as
confirmed as follows

GA : O(ftD2 + (ft)2D)
WA : OftD2 + M2ftD

Where a transformer block with f × t audio patch tokens with starting latent
dimension D is considered. Window Attention enables to shorten the complexity of
ft

M2 .
So, to implement the window attention, a Swin-transformer block with a shifted

window attention is involved a more beneficial window attention mechanism which
also allow to use the pretrained Swin Transformer.

Each token in the final layer output provides details about the time frames
and frequency bins to which it belongs. In addition, this model allows to process
dataset with strong labels by computing the loss in a given time window or weakly
labelled because of to its robust relational data capture capabilities. Last stage
of structure includes a Token Semantic CNN layer following the last transformer
block to combine all frequency bins and map the channel size 8D into event classes
C by means of a kernel size (3, F × 8P) and padding size (1,0). The output (T

8P
, C)

is seen as map of event present and performing an Average Pooling the outcome
vector (1, C) denotes the predicted label for consecutive time frames.

43

Models Architecture and Dataset

Figure 3.19: HTS_AT architecture: Encode Audio Mel-Spectrogram in which
the spectrogram is divided into patch windows and then each window is split into
patches. Each patch is a token. Then the Transformer-encoders capture long-term
relationships and dependencies between sounds in the spectrogram. They use
attention mechanism to assign weight to tokens. At the end, Token Semantic CNN
extracts relevant semantic features from audio tokens. Source: [52]

44

Chapter 4

Metodology

4.1 Training
Models Review

The mn40_as model has different components which require a pre-training: student
model (MobileNetV3), initially pre-trained on ImageNet, is trained by researchers
on AudioSet by means of KD from teacher model (PaSST). In this experiment,
however, pre-trained student model on AudioSet has been selected and executing
only fine-tuning on ESC-50 reduced to 19 categories. Official Github repository
[66] proposes different models based on width mult. All of them are MobileNet
architecture pre-trained on ImageNet and then trained on AudioSet and are listed
in Figure 4.1 where Performance indicates the mean Average Performance reached
with Audioset. Figure 4.2 suggests that best model for ESC-50 is mn40_as_ext
(Figure 4.1) so a MobileNetV3-Large with width multiplier equals to 4.0 trained
on AudioSet with extended training of 300 epochs, will be deployed for fine-tuning
the model.

HTS_AT also requires pre-training: the researches select pre-trained Swin-
Transformer on ImageNet and train the entire structure of HTS_AT on AudioSet.
Also in this case, in the experiment, the network has been selected already pre-
trained on AudioSet and only fine-tuning on ESC-50 reduced to 19 categories has
been performed. mn40_as and HTS_AT pre-trained on AudioSet are available on
official GitHub folders of researches [66] [67]. TFNet and CNN10, on the other hand,
do not require any pre-training step, so they have been trained directly on ESC-
50 reduced to 19 categories. TFNet implementation codes have been taken from
official GitHub folder of researches [54]. TFNet researchers, in their paper [49], take
CNN10 as comparison model to highlight how their temporal-frequency attention
mechanism insertion at the end of each convolutional block, helps the network to
reach an higher accuracy on ESC-50 with respect to CNN10 one. Therefore, in

45

Metodology

Figure 4.1: By default, all accessible models undergo pre-training on ImageNet
(otherwise indicated as ’no_im_pre’), which is followed by training on AudioSet.
Source: [66]

TFNet github folder the researchers have implemented CNN10 model as well and
this experiment consequently uses CNN10 codes provided by [54].

Folds Split

ESC-50 dataset expects a total audio samples number of 2,000 that is 40 samples
per class. It implements k-fold cross validation technique where k is 5. This suggests
that all 2,000 audio are split into 5 folds where each fold contains 400 samples (8
per class). Most models which use this dataset, including the ones selected in this
experiment, train the network 5 times by selecting in rotation a fold as test set and
missing 4 folds as training set: referring to Table 4.1, when a model is trained
on fold 1 means test set is fold 1 and training set are folds 2, 3, 4, 5. Then the
second training on fold 2 selects fold 2 as test set and folds 1, 2, 4, 5 as training

46

Metodology

Figure 4.2: Plot contrasts each task’s results for the PANNs (CNN14), PaSST,
and mn40_as models. The score is normalised using a model’s peak performance.
Source: [66]

set and so on. In this experiment, where ESC-50 has been reduced to 19 categories
instead of maintaining original 50 ones, folds split remains the same as explained
before (Table 4.1), but now the total number of samples contained in each fold is
decreased from 400 to 152. Also in this case the networks are trained 5 times by
selecting in rotation a fold as test set and missing 4 folds as training set.

Table 4.1: How the five folders are split for training and test: when a training is
performed on fold 1 it means folds 2,3,4,5 are used as training set and fold 1 is
used as test set and so on.

Fold Train Test
1 2, 3, 4, 5 1
2 1, 3, 4, 5 2
3 1, 1, 4, 5 3
4 1, 2, 3, 5 4
5 1, 2, 3, 4 5

47

Metodology

Feature Extraction

The input representation mode common to all models is the mel-spectrogram and
main information regarding the pre-processing are collected in Table 4.2.

Table 4.2: Features extraction details about reproduction sound, sampling fre-
quency, window size, hop size and number of mel bins for each model

Model
mn40_as HTS_AT TFNet CNN10

Mono/Stereo Mono Mono Mono Mono
Sampling Frequency (Samples/s) 32000 32000 44100 44100

Window Size 1024 1024 1764 1764
Hop Size 320 320 882 882

Number of mel bins 128 64 40 40

Data Augmentation

CNN10 and TFNet employ Time-Frequency Masking techniques during the training.
For the models mn40_as and HTS_AT, on the other hand, the data augmentation
has been applied only during the pre-training not during the fine-tuning because
the application of data augmentation can increase the complexity of the model and
increase the risk of overfitting especially if the target dataset is relatively small and
therefore could make the models not able to generate. The related techniques used
are collected in Table 4.3.

Table 4.3: Data augmentation techniques used in pre-training and training

Data Augmentation
Model Pre-training Training
CNN10 Pre-training unexpected Time-Frequency Masking
TFNet Pre-training unexpected Time-Frequency Masking
mn40_as Mixup (On AudioSet) None
HTS_AT Mixup, Time-Frequency

Masking (On AudioSet)
None

General Training Details

• Evaluation Metric: Accuracy
• Batch Size: 64

48

Metodology

• Training Duration: 4,500 iterations for CNN10 and TFNet, 50 epochs for
mn40_as and 100 epochs for HTS_AT

• Loss Function: Cross entropy loss

Training Results

The Figures 4.3, 4.4, 4.5, 4.6 indicate loss function and accuracy trend versus
iteration/epoch. They show the average loss and accuracy among the five folds.
No model exhibits overfitting or underfitting suggesting good generalization and
performance on data.

Figure 4.3: On the left loss functions versus iteration and on the right accuracy
trend over iterations for the CNN10 model

Figure 4.4: On the left loss functions versus iteration and on the right accuracy
trend over iterations for the TFNet model

49

Metodology

Figure 4.5: On the left loss functions versus epoch and on the right accuracy
trend over iterations for the mn40_as model

Figure 4.6: On the left loss functions versus epoch and on the right accuracy
trend over iterations for the HTS_AT model

4.2 Inference

To evaluate the resilience of the models when the background noise is present, the
accuracy is assessed. To perform this, it was necessary to save the checkpoints
at the last training iteration/epoch of each model. Then we proceed with the
generation of two categories of noise such as colored and mix. Once the nominal
noise is generated, the power of the noise introduced into the sensitivity bandwidth
of the model is adjusted by setting SNR values. The resulting accuracy reached in
the last iteration/epoch for each model and folds are available in Table 4.4. In
this experiment the model which reaches the best performance over the folds is
selected to perform inference. Looking the Table 4.4, CNN10 and TFNet achieve
best validation accuracy during the training on fold 4, while for mn40_as and
HTS_AT the best one is achieved on fold 2.

50

Metodology

Table 4.4: Reached accuracies during training for each fold and model

ACCURACY (%)
Fold CNN10 TFNet mn40_as HTS_AT

1 85.4 88.2 94.74 94.74
2 88.2 86.2 99.34 99.34
3 86.8 82.2 96.71 96.71
4 91.0 92.1 96.05 94.08
5 79.0 84.9 96.71 94.08

4.2.1 Dataset Selection for Inference
As previous mentioned, the five folds are totally used for training and testing.
However, to provide models with never-before-seen data, a new dataset for inference
was created by collecting audio from the webpage FreeSound 1. Since ESC-50 has
collected data from FreeSound as well and the publication of dataset dates on 2015,
the searching of data for inference has been limited to audio inserted as recent
as possible to avoid the risk to choose unintentionally the same sample adopted
during the training and test. 8 audio per class are picked for a total of 152 samples.
In addition, to satisfy the 5 seconds long constraints, part of them have been
shortened or stretched by using the Python library librosa. For those samples
which audio length results to be longer than 5 seconds and paying attention to
temporal range where event occurs, they have been shortened by setting offset
and duration parameters of librosa.load() function. For audio shorter than 5
seconds, instead, zero-padding is carried out by inserting zero-value samples at the
end. Once the new dataset is created, inference without noise is done to evaluate
the percentage loss accuracy between accuracy reached during the training and the
accuracy achieved in the initial inference step. The results are listed in Table 4.5.
As expected, all models record a accuracy loss when they are put in a situation to
predict data never seen. The model which loses less is HTS_AT with a value loss
of 6.62 %, followed by mn40_as loss of 8.6 %. Despite CNN10 starts with a reached
accuracy during the training lower than TFNet, it still records a minor loss in the
inference of 9.62 % against the 11.32 % of TFNet.

4.2.2 Noises Selection
In this experiment, due typologies of noise are considered: colored noise and mix
noise. Colored noise, composed by white, pink, brownian (red), blue and violet

1https://freesound.org/

51

Metodology

Table 4.5: A comparison between testing accuracy and accuracy reached during
inference without noise for each model. Also accuracy loss is listed

Model Testing Accuracy Inference Accuracy Accuracy Loss
(%) (%) (%)

CNN10 91.0 82.24 9.62
TFNet 92.0 81.58 11.32

mn40_as 99.34 90.79 8.60
HTS_AT 99.34 92.76 6.62

is a type of noise which has a power spectral density that varies according to
the frequency as indicated in Table 4.6. White noise has power density equally
distributed across the frequencies, pink and brownian (red) focus the noise at
lower frequencies with a decreasing spectrum by 1

f
and 1

f2 respectively. Then blue
and violet concentrate the noise at higher frequencies with a trend of f and f 2

respectively. Pink, brownian (red), blue and violet noises have been generated by
dedicated functions provided by Matlab 2 with a sampling frequency of 44.1 kHz.
However, for white noise the same blue noise function has been used by modifying
PSD slope α to 0. The power spectral density of each noise are pictured in Figures
4.7, 4.8, 4.9, 4.10, 4.11. Mix noise offers sounds that can make the environmental
more realistic such as TV, door open and close, barking of a dog, car engine pass
and rain drops on window. Those noises are picked from website FreeSound 3

properly sampled at 44.1 kHz, transformed if necessary in mono reproduction and
shorted to 5 seconds by means of Python library librosa.
The noises applied to dataset are:

• white
• pink
• brownian (red)
• blue
• violet
• TV
• door open and close
• dog barking
• car engine pass
• rain drops on window

2https://it.mathworks.com/matlabcentral/fileexchange/42919-pink-red-blue-and-violet-
noise-generation-with-matlab

3https://freesound.org/

52

Metodology

Table 4.6: Power spectral density and slope for colored noises

Color Noise Power Spectral Density Slope
White 1 0
Pink 1/f −10 dB/dec

Brownian (Red) 1/f 2 −20 dB/dec
Blue f 10 dB/dec

Violet f 2 20 dB/dec

Figure 4.7: Power spectral density of the white noise

4.2.3 Noise Insertion

The generation of the noise is executed once at a nominal power (Table 4.7) to
make the measurements correlated each other. The variable that controls the noise
intensity is SNR, by keeping unchanged audio power, only noise power varies to
reach desired SNR. This variation is implemented multiplying temporal samples by
a factor α. The amount of noise power that varies with respect to nominal one is
demonstrated below.
Starting from PSD definition [68] of a time-discrete variable xn defined in (4.1),
where xn is the samples sequence of noise, T is the total measurement period
defined as T = (2N + 1)∆t and t is the duration during which a single sample
of the signal is acquired. This formulation is usually called Periodogram and this

53

Metodology

Figure 4.8: Power spectral density of the pink noise

Figure 4.9: Power spectral density of the brownian (red) noise

converges to actual PSD as the averaging time interval T approach to infinity [69]

Sxx(f) := lim
n→∞

(∆t)2

T

NØ

n=−N

xne−i2πfn∆t

2

. (4.1)

54

Metodology

Figure 4.10: Power spectral density of the blue noise

Figure 4.11: Power spectral density of the violet noise

By multiplying the samples by a factor α, the new PSD is described in (4.2)

Sxx(f) = lim
n→∞

(∆t)2

T

NØ

n=−N

α · xne−i2πfn∆t

2

. (4.2)

Since α is a constant, it can be taken out by exploiting the distributive property

55

Metodology

Table 4.7: Nominal noises power calculated in model sensitivity bandwidth

Model
Nominal Noise Power CNN10 TFNet mn40_as HTS_AT

White (mW) 497.77 497.77 681.88 633.66
Pink (mW) 491.61 491.61 965.08 513.14

Brownian (Red) (mW) 13.74 13.74 999.98 13.76
Blue (mW) 251.34 251.34 464.12 404.32

Violet (mW) 124.14 124.14 313.05 254.10
TV (µW) 4.32 4.32 6.12 4.32

Door Open and Close (µW) 107.12 107.12 151.10 107.20
Dog Barking (mW) 3.0863 3.0863 3.0892 3.0864

Car Engine Pass (mW) 11.481 11.481 11.485 11.495
Rain Drops on Window (µW) 6.74 6.74 6.74 6.74

of summation (4.3)

Sxx(f) = lim
n→∞

(∆t)2

T
|α|2

NØ

n=−N

xne−i2πfn∆t

2

(4.3)

and the properties of homogeneity of the limits (4.4)

Sxx(f) = |α|2 lim
n→∞

(∆t)2

T

NØ

n=−N

xne−i2πfn∆t

2

. (4.4)

The new PSD as function of α factor and nominal Sxx0(f) is obtained in (4.5)

Sxx(f) = |α|2 Sxx0(f). (4.5)

Then performing the integration of PSD into sensitivity bandwidth of the model
(Table 4.8), the noise power Pn as function of nominal one Pn0 and multiplication
factor α is achieved in (4.6)

Pn =
Ú fmax

fmin

Sxx(f)df =
Ú fmax

fmin

|α|2 Sxx0(f)df = |α|2 Pn0. (4.6)

Substituting (4.7)
Pn = |α|2Pn0 (4.7)

into SNR definition (4.8),
SNR = 10 log(Px

Pn

) (4.8)

56

Metodology

Table 4.8: The frequency band that the model is able to detect and classify

Model fmin (Hz) fmax (Hz)
mn40_as 0 15000
HTS_AT 50 14000

TFNet 50 11025
CNN10 50 11025

(4.9) is got
SNR = 10 log

3
Px

α2Pn0

4
. (4.9)

During the inference, SNR values are chosen earlier, so α values should be
extracted to reach those SNRs. By executing simple algebraic steps in (4.10)

10SNR
10 = Px

α2Pn0
(4.10)

and (4.11),
α2 = Px

Pn0
10− SNR

10 (4.11)

(4.12) will be used to derive, given a SNR, the factor α by which noise samples are
multiplied with

α =
ó

Px

Pn0
10− SNR

10 . (4.12)

Each audio belonging to dataset of inference has different level of power, so if
the same factor α would be used to multiply the noise, a different SNR values are
obtained over all dataset. Considering that a unique SNR value is preferred over
all dataset, each audio has its corresponding factor α (extracted using (4.12)) to
adjust noise and to reach desired SNR.

Refer to Appendix A for more details about noise insertion on dataset.

57

Chapter 5

Experimental Results

5.1 Model Complexity

The complexity of the models is reported in terms of the number of parameters even
if it is not the only evaluation metric and additional factors should be considered
to obtain a more accurate estimate. Time complexity and memory complexity have
not been analyzed because they are values that strongly depend on the available
resources and that could influence the results.

As can be seen from Table 5.1, HTS_AT is the most complex model while the
least complex one is mn40_as. The good result obtained by mn40_as is due to the
use of the Depthwise Separable Convolution of the student model (MobileNetV3),
a convolution operation that replaces the traditional one and specifically designed
to reduce the number of parameters. The high complexity of HTS_AT, on the
other hand, is mainly due to the use of the Transformer and the self-attention
mechanism it employs, but for which it is distinguished by its ability to capture
long-range relationships and learn complex representations.

Table 5.1: Model complexity in terms of number of parameters for each model

Model Parameters
CNN10 4.95M
TFNet 4.96M

mn40_as 4.88M
HTS_AT 31M

58

Experimental Results

5.2 Inference Results
Experimental results are collected in Figures 5.1, 5.3, 5.5, 5.7, 5.9, 5.11, 5.13,
5.15, 5.17, 5.19 and noise mel spectrogram applied to an class 31 audio of the
dataset with 10 dB SNR pictured in Figures 5.2, 5.4, 5.6, 5.8, 5.10, 5.12,
5.14, 5.16, 5.18, 5.20. The first observation is the decreasing of the accuracies
when SNR gets lower, as expected. HTS_AT and mn40_as are the models which
better resist to the noise and for some of them slowly degrade and this confirms
the initial hypothesis that pre-training helps to improve the classification even in
noisy environment. TFNet and CNN10 are quite similar in trend for white, pink,
brownian (red), blue, violet, TV, dog and rain noises. However for door and car,
CNN10 seems to get worse slower than TFNet. HTS_AT has been more robust or
similar to mn40_as in almost all noises except for brownian (red) noise. The results
obtained with mix noise (TV, door open and close, dog barking, car engine pass
and rain drops on the window) do not ensure a comprehensive evaluation of model
robustness. This is because mix noises do not have defined spectral characteristics,
unlike colored ones. For example, a barking dog audio should contain one or more
events, and even if they are realistic for practical applications, the model may
expose training biases. Since in this experiment an individual audio mix has been
added to the dataset and so the evaluation of accuracy is limited to it, the validity
of the results obtained for TV, door, dog, car engine and rain should be further
tested in more depth by selecting more audio tracks per noise category.

In addition, during the experiment has been observed that the curves tends to
an accuracy value of almost 5 %. This should not happen because if a model always
make mistakes, it should get an accuracy of zero instead. The reason is easily
understandable by looking Figures 5.21, 5.22, 5.23, 5.24 where show confusion
matrices of models when white noise is applied at SNR of −25 dB: the networks
classify the category 36 for CNN10, TFNet and HTS_AT or 35 for mn40_as
regardless of input audio it receives. Therefore this to say that even for low values
(for example in Figure 5.25 where white noise is applied at −10 dB) the correct
classification of category 35 (indentified by the network as the default class when it
no longer recognizes the input) is questioned precisely because, having learned to
recognize it in case of doubt, it is not clear from the results if it did right because
he really recognized the sound or because it is undecided.

59

Experimental Results

Figure 5.1: Models Accuracy when white noise is applied.

Figure 5.2: Class 31 audio without (up) and with white noise
(down) applied at 10 dB SNR mel spectrogram.

60

Experimental Results

Figure 5.3: Models Accuracy when pink noise is applied.

Figure 5.4: Class 31 audio without (up) and with pink noise
(down) applied at 10 dB SNR mel spectrogram.

61

Experimental Results

Figure 5.5: Models Accuracy when brownian (red) noise is applied.

Figure 5.6: Class 31 audio without (up) and with brownian (red)
noise (down) applied at 10 dB SNR mel spectrogram.

62

Experimental Results

Figure 5.7: Models Accuracy when blue noise is applied.

Figure 5.8: Class 31 audio without (up) and with blue noise
(down) applied at 10 dB SNR mel spectrogram.

63

Experimental Results

Figure 5.9: Models Accuracy when violet noise is applied.

Figure 5.10: Class 31 audio without (up) and with violet noise
(down) applied at 10 dB SNR mel spectrogram.

64

Experimental Results

Figure 5.11: Models Accuracy when TV noise is applied.

Figure 5.12: Class 31 audio without (up) and with TV noise
(down) applied at 10 dB SNR mel spectrogram.

65

Experimental Results

Figure 5.13: Models Accuracy when door open and close noise is applied.

Figure 5.14: Class 31 audio without (up) and with door open
and close noise (down) applied at 10 dB SNR mel spectrogram.

66

Experimental Results

Figure 5.15: Models Accuracy when dog noise is applied.

Figure 5.16: Class 31 audio without (up) and with dog noise
(down) applied at 10 dB SNR mel spectrogram.

67

Experimental Results

Figure 5.17: Models Accuracy when car engine pass noise is applied.

Figure 5.18: Class 31 audio without (up) and with car engine
pass noise (down) applied at 10 dB SNR mel spectrogram.

68

Experimental Results

Figure 5.19: Models Accuracy when rain drops on window noise is applied.

Figure 5.20: Class 31 audio without (up) and with rain drops
on window noise (down) applied at 10 dB SNR mel spectrogram.

69

Experimental Results

Figure 5.21: Confusion matrix obtained for CNN10 model, white
noise at SNR of −25 dB.

Figure 5.22: Confusion matrix obtained for TFNet model, white
noise at SNR of −25 dB.

70

Experimental Results

Figure 5.23: Confusion matrix obtained for mn40_as model,
white noise at SNR of −25 dB.

Figure 5.24: Confusion matrix obtained for HTS_AT model,
white noise at SNR of −25 dB.

71

Experimental Results

Figure 5.25: Confusion matrix obtained for mn40_as model, white noise at SNR
of -10 dB.

72

Chapter 6

Conclusion

This experiment has been conducted to identify what techniques could make a
model more robust to noise and to give some inspiration in the realization of future
neural networks. We noticed how the tested models showed a worse performance
when exposed to noise of different nature and power and this shows the importance
of considering noise as a critical variable when developing classification algorithms
environmental. In addition, the results show how the interchangeability of compo-
nents originally designed for different tasks (image classification for MobileNetV3
and sequence transduction or neural machine translation for Transformers) find
positive application also for the classification of environmental sounds. Pre-trained
models with AudioSet showed greater generalization capability and greater sensitiv-
ity than models trained exclusively with ESC-50 reduced to 19 classes. HTS_AT
and mn40_as have had access to a previous knowledge of the characteristics of
the sounds by discriminating more accurately and allowing them to get the best
performance. The time-frequency attention mechanisms introduced by TFNet to
improve CNN10 do not seem to improve much the classification in the presence of
noise, however, the self-attention mechanisms in the HTS_AT Swin-Transformer
and transformer-encoder of the model teacher of mn40_as (passt), have given good
results in terms of robustness.

By making a trade-off between robustness and model complexity, mn40_as can
be a model which taking inspiration from. It is able to exploit the advantages of
Transformer and CNN: the first one is able to capture complex relationships from
a large amount of data, however CNN is able to learn complex tasks from a limited
one.

73

Conclusion

Possible future works could be:

• including in the comparison the BEATs model [70], which for lack of complete
codes of the researchers was not considered;

• including in the comparison also a model which uses a RNN;

• pre-training CNN10 with AudioSet.

74

Appendix A

Python Codes

1 de f bandpower (x , f s , fmin , fmax) :
2 f , Pxx = sc ipy . s i g n a l . periodogram (x , f s=f s)
3 ind_min = sc ipy . argmax (f>fmin)−1
4 ind_max = sc ipy . argmax (f>fmax)−1
5 re turn sc ipy . t rapz (Pxx [ind_min : ind_max] , f [ind_min : ind_max])

75

Python Codes

1 de f n o i s e _ i n s e r t i o n (NOISE, fmin , fmax ,SNR) :
2 noise_audio_path = ’ . . / Noise /{} _noise . wav ’ . format (NOISE)
3 noise , s r = l i b r o s a . load (noise_audio_path , s r=None)
4 audio_path = ’ . . / esc19 / audio ’
5 noisy_audio_path = ’ . . / esc19_noise / audio ’
6

7 i f not os . path . e x i s t s (noisy_audio_path) :
8 os . makedirs (noisy_audio_path)
9 os . makedirs (’ . . / esc19_noise /meta ’)

10

11 s h u t i l . c o p y f i l e (’ . . / esc19 /meta/ esc19 . csv ’ , ’ . . / esc19_noise /meta/
esc19 . csv ’)

12

13 f o r a u d i o _ f i l e in os . l i s t d i r (audio_path) :
14 i f a u d i o _ f i l e . endswith (’ . wav ’) :
15 audio , s r = l i b r o s a . load (os . path . j o i n (audio_path ,

a u d i o _ f i l e) , s r=None)
16 P_x = bandpower (audio , sr , fmin , fmax)
17 P_n0 = bandpower (no i se , sr , fmin , fmax)
18 alpha = np . sq r t ((P_x∗10∗∗(−SNR/10)) /(P_n0))
19 noisy_audio = audio + no i s e ∗ alpha
20 wr i t e (os . path . j o i n (noisy_audio_path , a u d i o _ f i l e) , sr ,

noisy_audio . astype (np . f l o a t 3 2))

76

Bibliography

[1] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 5,
pp. 100–107 (cit. on p. 3).

[2] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 5,
pp. 100–107 (cit. on p. 4).

[3] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 5,
pp. 113–115 (cit. on pp. 5, 6).

[4] Yuan Feng, Di Wu, Mark G. Stewart, and Wei Gao. «Past, current and future
trends and challenges in non-deterministic fracture mechanics: A review».
In: Computer Methods in Applied Mechanics and Engineering 412 (2023).
doi: https : / / doi . org / 10 . 1016 / j . cma . 2023 . 116102. url: https :
//www.sciencedirect.com/science/article/pii/S0045782523002268
(cit. on p. 7).

[5] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 5,
pp. 168–171 (cit. on p. 7).

[6] I.A. Italia. Funzioni Di Attivazione Nel Deep Learning La Guida Completa
| Intelligenza Artificiale Italia Blog. 2022. url: https://www.intelligen
zaartificialeitalia.net/post/funzioni-di-attivazione-nel-deep-
learning-la-guida-completa (cit. on pp. 7–9).

[7] K. E. Koech. oftmax Activation Function – How It Actually Works. Medium.
2021. url: https : / / towardsdatascience . com / softmax - activation -
function-how-it-actually-works-d292d335bd78 (cit. on p. 7).

[8] Softmax function - Wikipedia. url: https://en.wikipedia.org/wiki/
Softmax_function (cit. on p. 7).

[9] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 4,
pp. 82–86 (cit. on p. 9).

[10] Gradient descent - Wikipedia. 2014. url: https://en.wikipedia.org/
wiki/Gradient_descent (cit. on p. 9).

[11] Backpropagation - Wikipedia. url: https://en.wikipedia.org/wiki/
Backpropagation (cit. on p. 9).

77

https://doi.org/https://doi.org/10.1016/j.cma.2023.116102
https://www.sciencedirect.com/science/article/pii/S0045782523002268
https://www.sciencedirect.com/science/article/pii/S0045782523002268
https://www.intelligenzaartificialeitalia.net/post/funzioni-di-attivazione-nel-deep-learning-la-guida-completa
https://www.intelligenzaartificialeitalia.net/post/funzioni-di-attivazione-nel-deep-learning-la-guida-completa
https://www.intelligenzaartificialeitalia.net/post/funzioni-di-attivazione-nel-deep-learning-la-guida-completa
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://towardsdatascience.com/softmax-activation-function-how-it-actually-works-d292d335bd78
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation

BIBLIOGRAPHY

[12] K. E. Koech. How Does Back-Propagation Work in Neural Networks? Medium.
2022. url: https://towardsdatascience.com/how-does-back-propaga
tion-work-in-neural-networks-with-worked-example-bc59dfb97f48
(cit. on p. 9).

[13] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 6,
pp. 204–224 (cit. on p. 9).

[14] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 9,
pp. 364–371 (cit. on p. 9).

[15] R. Parmar. Common Loss functions in machine learning. Medium. 2018.
url: https://towardsdatascience.com/common-loss-functions-in-
machine-learning-46af0ffc4d23 (cit. on p. 10).

[16] Y. Bengio I. Goodfellow and A. Courville. In: Deep Learning. 2016. Chap. 9,
pp. 330–333 (cit. on p. 10).

[17] RGB color model - Wikipedia. 2022. url: https://en.wikipedia.org/
wiki/RGB_color_model#cite_note-RWGHunt-7 (cit. on p. 11).

[18] Understanding of Convolutional Neural Network (CNN) – Deep Learning.
Medium. 2019. url: https://medium.com/@RaghavPrabhu/understanding-
of-convolutional-neural-network-cnn-deep-learning-99760835f148
(cit. on p. 12).

[19] M. Basavarajaiah. Which pooling method is better? Maxpooling vs minpooling
vs average pooling. Medium. 2019. url: https://medium.com/@bdhuma/
which- pooling- method- is- better- maxpooling- vs- minpooling- vs-
average-pooling-95fb03f45a9 (cit. on p. 15).

[20] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 [cs.LG] (cit. on p. 14).

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15 (June 2014),
pp. 1929–1958 (cit. on pp. 14, 15).

[22] H. Yadav. Dropout in Neural Networks. Medium. 2023. url: https : / /
towardsdatascience.com/dropout-in-neural-networks-47a162d621d9
(cit. on p. 14).

[23] M. Mishra. Convolutional Neural Networks, Explained. Medium. 2020. url:
https://towardsdatascience.com/convolutional-neural-networks-
explained-9cc5188c4939 (cit. on pp. 16, 17).

78

https://towardsdatascience.com/how-does-back-propagation-work-in-neural-networks-with-worked-example-bc59dfb97f48
https://towardsdatascience.com/how-does-back-propagation-work-in-neural-networks-with-worked-example-bc59dfb97f48
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://en.wikipedia.org/wiki/RGB_color_model#cite_note-RWGHunt-7
https://en.wikipedia.org/wiki/RGB_color_model#cite_note-RWGHunt-7
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9
https://towardsdatascience.com/dropout-in-neural-networks-47a162d621d9
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939

BIBLIOGRAPHY

[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. «Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms». In: (Aug.
2017) (cit. on p. 16).

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on pp. 16, 18, 19).

[26] Maxime. What is a Transformer? Medium. 2019. url: https://medium.
com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
(cit. on p. 19).

[27] M. Huzaifah. Comparison of Time-Frequency Representations for Environ-
mental Sound Classification using Convolutional Neural Networks. 2017. arXiv:
1706.07156 [cs.CV] (cit. on p. 20).

[28] L. Roberts. Understanding the Mel Spectrogram. Medium. 2020. url: https://
medium.com/analytics-vidhya/understanding-the-mel-spectrogram-
fca2afa2ce53 (cit. on p. 20).

[29] Short-time FFT - MATLAB- MathWorks Italia. 2020. url: https://it.
mathworks.com/help/dsp/ref/dsp.stft.html (cit. on p. 24).

[30] musikalkemist. Short-Time Fourier Transform Explained Easily. 2020. url:
https://github.com/musikalkemist/AudioSignalProcessingForML/blo
b/master/15%20-%20Short-Time%20Fourier%20Transform%20explained%
20easily/Short-Time%20Fourier%20Transform%20Explained%20Easily.
pdf (cit. on p. 21).

[31] S. Braun. «WINDOWS». In: Encyclopedia of Vibration. Ed. by S. Braun.
Oxford: Elsevier, 2001, pp. 1587–1595. isbn: 978-0-12-227085-7. doi: https:
//doi.org/10.1006/rwvb.2001.0052. url: https://www.sciencedirect.
com/science/article/pii/B0122270851000527 (cit. on p. 21).

[32] Hann (Hanning) Window - MATLAB Hann- MathWorks Italia. url: https:
//it.mathworks.com/help/signal/ref/hann.html (cit. on p. 21).

[33] Numpy.Hanning – NumPy v1.24. url: https://numpy.org/doc/stable/
reference/generated/numpy.hanning.html (cit. on p. 25).

[34] Mel Scale - Wikipedia. url: https://en.wikipedia.org/wiki/Mel_scale
(cit. on p. 21).

[35] D. O’Shaughnessy. Speech Communication: Human and Machine. Addison-
Wesley series in electrical engineering. Addison-Wesley Publishing Company,
1987. isbn: 9780201165203. url: https://books.google.it/books?id=
mHFQAAAAMAAJ (cit. on p. 21).

79

https://arxiv.org/abs/1706.03762
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://arxiv.org/abs/1706.07156
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://it.mathworks.com/help/dsp/ref/dsp.stft.html
https://it.mathworks.com/help/dsp/ref/dsp.stft.html
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/15%20-%20Short-Time%20Fourier%20Transform%20explained%20easily/Short-Time%20Fourier%20Transform%20Explained%20Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/15%20-%20Short-Time%20Fourier%20Transform%20explained%20easily/Short-Time%20Fourier%20Transform%20Explained%20Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/15%20-%20Short-Time%20Fourier%20Transform%20explained%20easily/Short-Time%20Fourier%20Transform%20Explained%20Easily.pdf
https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/15%20-%20Short-Time%20Fourier%20Transform%20explained%20easily/Short-Time%20Fourier%20Transform%20Explained%20Easily.pdf
https://doi.org/https://doi.org/10.1006/rwvb.2001.0052
https://doi.org/https://doi.org/10.1006/rwvb.2001.0052
https://www.sciencedirect.com/science/article/pii/B0122270851000527
https://www.sciencedirect.com/science/article/pii/B0122270851000527
https://it.mathworks.com/help/signal/ref/hann.html
https://it.mathworks.com/help/signal/ref/hann.html
https://numpy.org/doc/stable/reference/generated/numpy.hanning.html
https://numpy.org/doc/stable/reference/generated/numpy.hanning.html
https://en.wikipedia.org/wiki/Mel_scale
https://books.google.it/books?id=mHFQAAAAMAAJ
https://books.google.it/books?id=mHFQAAAAMAAJ

BIBLIOGRAPHY

[36] D Gartzman. etting to Know the Mel Spectrogram. Medium. 2019. url: https:
//towardsdatascience.com/getting-to-know-the-mel-spectrogram-
31bca3e2d9d0 (cit. on p. 21).

[37] musikalkemist. AudioSignalProcessingForML/17 - Mel Spectrogram Explained
Easily at master. 2020. url: https://github.com/musikalkemist/Audi
oSignalProcessingForML/tree/master/17%20-%20Mel%20Spectrogram%
20Explained%20Easily (cit. on p. 21).

[38] Mel Filter Bank — PyFilterbank devN documentation. 2020. url: https:
//siggigue.github.io/pyfilterbank/melbank.html (cit. on p. 26).

[39] Gondhalekar. Data Augmentation – Is it really necessary? Medium. 2020. url:
https://medium.com/@RaghavPrabhu/understanding-of-convolutiona
l-neural-network-cnn-deep-learning-99760835f148 (cit. on p. 22).

[40] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D. Cubuk, and Quoc V. Le. «SpecAugment: A Simple Data Augmen-
tation Method for Automatic Speech Recognition». In: Interspeech 2019.
ISCA, Sept. 2019. doi: 10.21437/interspeech.2019-2680. url: https:
//doi.org/10.21437%2Finterspeech.2019-2680 (cit. on pp. 22, 27, 38).

[41] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, Attend
and Spell. 2015. arXiv: 1508.01211 [cs.CL] (cit. on p. 22).

[42] N. Barazida. 40 Open-Source Audio Datasets for ML. Medium. 2021. url:
https://towardsdatascience.com/40-open-source-audio-datasets-
for-ml-59dc39d48f06 (cit. on p. 28).

[43] Karol J. Piczak. «ESC: Dataset for Environmental Sound Classification». In:
Proceedings of the 23rd Annual ACM Conference on Multimedia. Brisbane,
Australia: ACM Press, Oct. 13, 2015, pp. 1015–1018. isbn: 978-1-4503-3459-4.
doi: 10.1145/2733373.2806390. url: http://dl.acm.org/citation.
cfm?doid=2733373.2806390 (cit. on p. 28).

[44] karolpiczak. ESC-50. url: https://github.com/karolpiczak/ESC- 50
(cit. on pp. 28, 29).

[45] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. «Audio
Set: An ontology and human-labeled dataset for audio events». In: 2017
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2017, pp. 776–780. doi: 10.1109/ICASSP.2017.7952261 (cit. on
pp. 30, 32, 35).

80

https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://github.com/musikalkemist/AudioSignalProcessingForML/tree/master/17%20-%20Mel%20Spectrogram%20Explained%20Easily
https://github.com/musikalkemist/AudioSignalProcessingForML/tree/master/17%20-%20Mel%20Spectrogram%20Explained%20Easily
https://github.com/musikalkemist/AudioSignalProcessingForML/tree/master/17%20-%20Mel%20Spectrogram%20Explained%20Easily
https://siggigue.github.io/pyfilterbank/melbank.html
https://siggigue.github.io/pyfilterbank/melbank.html
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://doi.org/10.21437/interspeech.2019-2680
https://doi.org/10.21437%2Finterspeech.2019-2680
https://doi.org/10.21437%2Finterspeech.2019-2680
https://arxiv.org/abs/1508.01211
https://towardsdatascience.com/40-open-source-audio-datasets-for-ml-59dc39d48f06
https://towardsdatascience.com/40-open-source-audio-datasets-for-ml-59dc39d48f06
https://doi.org/10.1145/2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390
http://dl.acm.org/citation.cfm?doid=2733373.2806390
https://github.com/karolpiczak/ESC-50
https://doi.org/10.1109/ICASSP.2017.7952261

BIBLIOGRAPHY

[46] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
«ImageNet: A large-scale hierarchical image database». In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848 (cit. on pp. 30, 35).

[47] Marti A. Hearst. «Automatic Acquisition of Hyponyms from Large Text
Corpora». In: COLING 1992 Volume 2: The 14th International Conference
on Computational Linguistics. 1992. url: https://aclanthology.org/C92-
2082 (cit. on p. 30).

[48] url: http://research.google.com/audioset/index.html (cit. on p. 32).
[49] Helin Wang, Yuexian Zou, Dading Chong, and Wenwu Wang. Environmental

Sound Classification with Parallel Temporal-spectral Attention. 2020. arXiv:
1912.06808 [cs.SD] (cit. on pp. 31–33, 35, 36, 45).

[50] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and
Mark D. Plumbley. PANNs: Large-Scale Pretrained Audio Neural Networks
for Audio Pattern Recognition. 2020. arXiv: 1912.10211 [cs.SD] (cit. on
pp. 31, 32, 34).

[51] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V. Le. MnasNet: Platform-Aware Neural Archi-
tecture Search for Mobile. 2019. arXiv: 1807.11626 [cs.CV] (cit. on pp. 31,
40).

[52] Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and
Shlomo Dubnov. HTS-AT: A Hierarchical Token-Semantic Audio Transformer
for Sound Classification and Detection. 2022. arXiv: 2202.00874 [cs.SD]
(cit. on pp. 31, 42, 44).

[53] Papers with Code - The latest in Machine Learning. url: https://papersw
ithcode.com/ (cit. on pp. 31, 33, 34).

[54] hadryan. TFNet-for-Environmental-Sound-Classification. 2019. url: https:
//github.com/Hadryan/TFNet-for-Environmental-Sound-Classifica
tion/tree/db5008a48e66e7272263434244c07d3daa253794 (cit. on pp. 32,
36, 45, 46).

[55] Florian Schmid, Khaled Koutini, and Gerhard Widmer. Efficient Large-scale
Audio Tagging via Transformer-to-CNN Knowledge Distillation. 2023. arXiv:
2211.04772 [cs.SD] (cit. on pp. 35, 42).

[56] Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Trans-
former. 2021. arXiv: 2104.01778 [cs.SD] (cit. on pp. 35–37).

[57] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV] (cit. on
pp. 35–37).

81

https://doi.org/10.1109/CVPR.2009.5206848
https://aclanthology.org/C92-2082
https://aclanthology.org/C92-2082
http://research.google.com/audioset/index.html
https://arxiv.org/abs/1912.06808
https://arxiv.org/abs/1912.10211
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/2202.00874
https://paperswithcode.com/
https://paperswithcode.com/
https://github.com/Hadryan/TFNet-for-Environmental-Sound-Classification/tree/db5008a48e66e7272263434244c07d3daa253794
https://github.com/Hadryan/TFNet-for-Environmental-Sound-Classification/tree/db5008a48e66e7272263434244c07d3daa253794
https://github.com/Hadryan/TFNet-for-Environmental-Sound-Classification/tree/db5008a48e66e7272263434244c07d3daa253794
https://arxiv.org/abs/2211.04772
https://arxiv.org/abs/2104.01778
https://arxiv.org/abs/2010.11929

BIBLIOGRAPHY

[58] Andrew Howard et al. Searching for MobileNetV3. 2019. arXiv: 1905.02244
[cs.CV] (cit. on pp. 35, 38, 40, 41).

[59] Khaled Koutini, Jan Schl uter, Hamid Eghbal-zadeh, and Gerhard Widmer.
«Efficient Training of Audio Transformers with Patchout». In: Interspeech
2022. ISCA, Sept. 2022. doi: 10 . 21437 / interspeech . 2022 - 227. url:
https://doi.org/10.21437%2Finterspeech.2022-227 (cit. on pp. 35, 37,
38).

[60] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
2019. arXiv: 1801.04381 [cs.CV] (cit. on p. 39).

[61] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.
arXiv: 1704.04861 [cs.CV] (cit. on p. 39).

[62] R. Haque. MobileNet Model Information. Medium. 2021. url: https://
rafat97.medium.com/mobilenet-model-information-6701ca0cdc17 (cit.
on p. 39).

[63] R. Avenash and Prashanth Viswanath. «Semantic Segmentation of Satellite
Images using a Modified CNN with Hard-Swish Activation Function». In:
VISIGRAPP. 2019 (cit. on p. 41).

[64] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a
Neural Network. 2015. arXiv: 1503.02531 [stat.ML] (cit. on p. 41).

[65] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen
Lin, and Baining Guo. Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. 2021. arXiv: 2103.14030 [cs.CV] (cit. on p. 42).

[66] fschmid56. EfficientAT. url: https://github.com/fschmid56/efficient
at (cit. on pp. 45–47).

[67] RetroCirce. HTS-Audio-Transformer. url: https://github.com/retrocir
ce/hts-audio-transformer (cit. on p. 45).

[68] Spectral density - Wikipedia. 2022. url: https://en.wikipedia.org/wiki/
Spectral_density (cit. on p. 53).

[69] R.G. Brown and P.Y.C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering with Matlab Exercises and Solutions. Introduction to Ran-
dom Signals and Applied Kalman Filtering: With MATLAB Exercises and
Solutions. Wiley, 1997. isbn: 9780471128397. url: https://books.google.
it/books?id=De9SAAAAMAAJ (cit. on p. 54).

82

https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://doi.org/10.21437/interspeech.2022-227
https://doi.org/10.21437%2Finterspeech.2022-227
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1704.04861
https://rafat97.medium.com/mobilenet-model-information-6701ca0cdc17
https://rafat97.medium.com/mobilenet-model-information-6701ca0cdc17
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2103.14030
https://github.com/fschmid56/efficientat
https://github.com/fschmid56/efficientat
https://github.com/retrocirce/hts-audio-transformer
https://github.com/retrocirce/hts-audio-transformer
https://en.wikipedia.org/wiki/Spectral_density
https://en.wikipedia.org/wiki/Spectral_density
https://books.google.it/books?id=De9SAAAAMAAJ
https://books.google.it/books?id=De9SAAAAMAAJ

BIBLIOGRAPHY

[70] Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo
Chen, and Furu Wei. BEATs: Audio Pre-Training with Acoustic Tokenizers.
2022. arXiv: 2212.09058 [eess.AS] (cit. on p. 74).

83

https://arxiv.org/abs/2212.09058

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Deep Learning Overview
	Machine Learning Basics
	Linear Regression
	Overfitting and Underfitting

	Deep Feedforward Neural Networks
	Deep Feedforward Networks working
	Optimization Algorithms with Adaptive Learning Rate
	Backward Propagation

	Convolutional Neural Networks
	Functioning of CNN

	Transformer Architecture
	Feature Extraction
	Mel Spectrogram

	Data Augmentation
	Spectrogram Masking/Spec-Augmentation

	Models Architecture and Dataset
	Dataset
	ESC50
	AudioSet

	State-of-art Architecture
	CNN10
	TFNet
	mn40_as
	HTS_AT

	Metodology
	Training
	Inference
	Dataset Selection for Inference
	Noises Selection
	Noise Insertion

	Experimental Results
	Model Complexity
	Inference Results

	Conclusion
	Python Codes
	Bibliography

