
Non-linear Model Predictive Controller for the autonomous
descent and landing of a parafoil system in multi-planetary

applications

Candidate
Michele Gasparri

Supervisor
Prof. Carlo Novara

Thesis for Master’s degree in
Mechatronics Engineering

Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino

28 Luglio 2023





Abstract

The objective of this thesis is to evaluate the applicability of a non-
linear Model Predictive Controller in multi planetary environments
for control of an autonomous parafoil system.
The work stems from many examples of the use of parafoils and
parachute as a landing system on planets with suitable atmospheric
conditions. As in terrestrial applications, from the thrill of paragliding
to the need of deploying resources to the battlefield, or in space explo-
ration where landing critical instruments on a planet leaves no room
for error, parafoils have always been explored as a possible solution.
Focusing on implementing a simulation environment able to correctly
represent the dynamics of the system at hand and the different envi-
ronments considered. The data generated is used in the system iden-
tification of the reduced order models employed in the controller. The
controller parameters are tuned using a weight scheduling technique,
to allow for the different required behaviour during the descent of the
system and optimized for each environment. Finally, the performance
is analysed in different atmospheric conditions, obtaining information
on the critical aspects of the application.
Scenarios for the simulations differ for each planetary application, as
the atmospheric modellization and the parameters that are relevant
for the analysis. For Earth, a wind disturbance parametrized as a frac-
tion of the planar velocity of the system is considered, as to generate
a significant disturbance which is still manageable for the controller.
On Mars a constant wind disturbance is considered, aligning this work
to the other studies present in literature. On Titan, an exponential
parametrization of the wind is employed, stemming from the research
carried out by NASA with the Huygens spacecraft.
The obtained results are comparable to other techniques for the ap-
plication on Earth and on Mars, while the performance on Titan is
adequately better than studies previously carried out in this field.
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Chapter 1

Introduction

1.1 Research context and related works

Planetary and interplanetary logistics is one of the most complex prob-
lems that we, as a species, have faced. Delivering resources to far away
places is already complex when 347 million kilometres of void are not
standing in between. Exploring other planet has always been a mile-
stone for researchers all around the world. Currently we’ve landed on
three: Venus, Titan, and Mars. Just three out of the more than five
thousand planets known to man. There is still a lot to explore, and
even more that we don’t know the existence of.
Reaching these planets is still an achievement, even leaving planet
earth reliably is an achievement in itself. Thus, it is of paramount im-
portance to be able to successfully land anything that we can get close
enough to do so. This final operation is subject to many constraints.
From the initial velocity, which may damage or otherwise disable the
landing vector. To the landing accuracy and reliability, because even
if reaching America has proven a lucrative endeavour, imagine what
would have happened if Colombo really reached India.
During the entry and descent phases of approach towards the surface
of a planet, a lot of kinetic energy must be shedded. The Huygens
mission to Titan employed an entry strategy with a first deceleration
provided by coni-spherical descent shield followed by three different
parachute stages. One supersonic, one from the transonic range to
subsonic velocities, and one final stabilizer for the subsonic descent
and landing[1].
The applicability of parachutes, being them disk gap band or ram-air
aerofoils, is strictly dependent on the atmospheric and environmental
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conditions[2][3]. A suitable balance of atmospheric density, accelera-
tion of gravity and wind conditions must be present for a successful
descent and landing. Making this type of final approach very environ-
ment dependent. Moreover, Titan’s high atmospheric density results
in a slow entry, descent, and landing (EDL) phase, allowing ample
time for significant changes in wind profiles[4]. On the other hand,
a parachute is technically less complex than a thruster-based landing
vector. Being intrinsically stable[5] and easier to control, it provides a
less complex solution to a very difficult problem. Energy expenditure
is lowered, and the dynamics are much slower, allowing for control
algorithms to run at a lower frequency.

To solve the control problem, most research project employed in
simulation proportional-derivative control [3] and proportional con-
trol coupled with optimal-trajectory planning [6]. More complex ap-
proaches employ "pseudo-optimal" control inspired by human manoeu-
vring [7], or dynamic programming for the trajectory generation cou-
pled with a model predictive controller [4]. Still, apart from this last
instance, the writer of this paper is not aware of any real effort to
develop a guidance, control and navigation system for planetary ex-
ploration that is designed and optimized for parafoils.

1.2 Objectives

The objective of this thesis is to explore a non-linear Model Predictive
Controller (n-MPC), with adaptive capabilities, as the sole player in
the control of the system. This involves developing and implementing
the n-MPC control strategy, developing the simulation environment,
and estimating the reduced order model’s parameter for the controller
prediction. Evaluating the controller’s performance in terms of achiev-
ing desired objectives, such as accurate landing, energy efficiency, and
minimizing deviations from the desired trajectory.
The mentioned system is a parafoil with payload, which refers to the
combination of a parafoil canopy and a payload attached to it. The
dimensions and aerodynamic characteristics of the parafoil vary de-
pending on the specific application.
As stated above, the objective is to explore multiple environment ap-
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plication for this control approach. Here follows a brief overview and
comparison of the characteristics and difficulties found in each consid-
ered environment.

• Earth’s atmosphere provides a favourable environment for parafoil
operations due to its relatively high atmospheric density, mod-
erate wind speeds, and well-understood atmospheric conditions.
The performance of parafoils on Earth is influenced by factors
such as atmospheric pressure, temperature, wind speed, and local
topography.

• Mars has a much thinner atmosphere compared to Earth, with
significantly lower atmospheric density. This poses challenges for
parafoil operations, as the reduced density affects the generation
of lift and overall performance. The lower gravity on Mars is an
advantage, as it allows for slower descent rates. However, the
limited atmospheric density and the potential for strong winds on
Mars need to be carefully considered in parafoil design and mission
planning.

• Titan, one of Saturn’s moons, has a unique atmosphere composed
mainly of nitrogen with traces of methane. Its atmospheric density
is considerably higher than that of Mars but still much lower than
Earth’s. The lower gravity on Titan allows for gentle descents,
but the specific atmospheric conditions, including the presence of
an organic haze and occasional storms, need to be accounted for
in parafoil and mission design.

Simulating this control approach in different environments allows to
evaluate the flexibility of this type of solution, evaluate its weaknesses,
and provides better understanding of the different behaviours that can
be obtained.

1.3 Contribution and results

To realize what stated above, a simulation environment was developed
in Simulink, encompassing a 6 degrees-of-freedom model of the sys-
tem, atmospheric conditions for the different planetary applications,
variable wind disturbances and initial conditions. The simulation en-
vironment was used both in the estimation of the reduced order model
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parameters and in the Monte Carlo simulations for the evaluation of
the performance of the controller.
Specifically, the project was carried out along the following topics:

• Study and implementation of the dynamic model of the
parafoil system. While implementing in a simulation environ-
ment the dynamic equations of a system is usually a straight for-
ward endeavour, in the case of parafoil system a lot of incomplete
information is found in literature. Thus a lot of time was initially
spent on finding a complete model and all the relative parame-
ters to correctly describe the system. The six degrees-of-freedom
model was chosen to describe the dynamics, as it is found in many
different works. Allowing for a simple simulation framework that
can be employed in all the different planetary applications.
For the prediction model, the four dof model was chosen above
a three dof model. The choice is motivated by the dual input of
the first, compared to the single input of the latter. Allowing for
further flexibility in the control of the system.

• Identification of the reduced order model parameters. A
methodology was developed to obtain valid data, whilst consider-
ing the computational complexity that this problem poses. The
final results are far from perfect, from a numerical stand-point, but
yield sufficiently good performance in the simulations, evidence of
the flexibility of the control strategy employed.

• Development and tuning of the n-MPC controller. The
base formulation of the non-linear Model Predictive Controller
was taken from previous works but didn’t demonstrate to be suf-
ficiently robust and adaptable to the problem at hand. The act
of scheduling of the optimization weight pertaining to the control
effort, previously found only in wind turbines, proved to be highly
effective at tackling the numerical variance of the input variables
of the objective function.

Many factors concur to the final performance of the controller, from
the identification of the reduced order models parameters, the tuning
of the controller, to the atmospheric conditions. In all cases, the re-
sults of the simulations show how the controller can correctly perform
under generally nominal atmospheric conditions. Considering the dis-
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persion of the landing points as a bivariate gaussian distribution, the
values of the semi-axis of the error ellipses calculated for a 90% like-
lihood are comparable with other works done in the field of planetary
exploration. Furthermore, the controller is able to follow trajectories
that are not spiraling, but present straight passes with seldom direc-
tion changes. This represents an advantage from both a stability and
energy expenditure perspective.

Compared to controllers where a complete descent trajectory is cal-
culated, the controller achieves similar levels of accuracy, while be-
ing less complex and more open to implementation of disturbance
identification and rejection strategies. The results achieved place this
solution, a non-linear Model Predictive Controller with scheduled op-
timization weights, as a good candidate for the control of parafoils in
the final stages of planetary descent and landing. Limitations on the
applicability of this strategy are mainly due to the system itself, than
from the controller’s performance.
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Chapter 2

Mathematical models

2.1 Reference frames and Rotation

The dynamics and kinematics of a parafoil system require the use of
multiple reference frames to accurately describe and organize the sys-
tem’s behavior. These reference frames are associated with the main
components of the system that experience forces during the flight. The
reference frames help in understanding and analyzing the forces and
motions involved.
The following are the reference frames employed in the analysis of
parafoil system.

Planet reference frame

Figure 2.1: NED reference frame

Responsible for identifying the absolute position in space, it is ori-
ented as NED - North East Down - figure 2.1. In the following text it

10



will be referred to as {i}.

• Origin: Arbitrary point on the surface.

• x axis: Aligned with the north-south axis, pointing North.

• y axis: Aligned with the west-east axis, pointing East.

• z axis: Perpendicular to the x and y axes, pointing toward the
center planet.

Body reference frame

The body reference frame is rigidly fixed with the body, and is funda-
mental for defining the pose in space. Hereafter referred to as {b}.

• Origin: CoM of the body.

• xb axis: Positive out of the longitudinal axis, on the vertical plane
of symmetry.

• zb axis: Perpendicular to xb, in the vertical plane of symmetry.
Positive going from the canopy to the payload.

• yb axis: Perpendicular to xb and zb, positive direction given by the
right-hand rule.

Wind reference frame

Also referred to as {w}.

• Origin: CoM of the body..

• xw axis: Positive in the direction of the velocity Va relative to the
atmosphere.

• zw axis: Perpendicular to xw in the vertical plane of symmetry.
Positive going from the canopy to the payload.

• yw axis: Perpendicular to xw and zw, positive direction given by
the right-hand rule.
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Additional reference frames

In addition to the aforementioned reference frames, two other are use-
ful to correctly develop the mathematical context for the model [3]:
Navigational reference frame and Canopy reference frame. Also re-
ferred to as {n}, the navigational reference frame is parallel to {i},
but centered in the body CoM. The canopy reference frame is centred
in the apparent mass center, and is rotated by a negative angle µ,
around the yb axis, with respect to {b}.

2.1.1 Angles and Rotation matrices

Basic angle definitions

• ψ: Yaw - From the North to the xb axis, in the horizontal plane.

• θ: Pitch - From the horizontal plane to the longitudinal axis xb.

• ϕ: Roll - Formally is defined as the rotation along the longitudinal
axis of the craft. In our case, it is the angle that completes the
rotation from {n} to {b}.

• α: Angle of attack - From the projection of Va on to z⃗b × x⃗b to
the longitudinal axis xb.

• β: Side slip angle - From Va to its projection on the z⃗b × x⃗b.

• µ: Rigging angle - Rotation of p with-respect-to b, around the y
direction. It is a negative angle.

Figure 2.2: Main angle definition for parafoil system
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Rotation matrices

All of the the rotation matrices follow the Euler Angles composition
rules, and are based on the basic rotation matrices[3][8][6].

Ri(x) =


1 0 0
0 cos x − sin x
0 sin x cosx

 (2.1)

Rj(x) =


cosx 0 sin x

0 1 0
− sin x 0 cos x

 (2.2)

Rk(x) =


cosx − sin x 0
sin x cosx 0

0 0 1

 (2.3)

Thus using the pre-multiplication rule for the composition of rota-
tion variables, we can define the following rotation matrices used to
pass to and from different reference frames.

Rn
b = Rk(ψ) × Rj(θ) × Ri(ϕ)

RnT

b = Rb
n

(2.4)

Rb
w = Rk(β) × Rj(α)

RbT

w = Rw
b

(2.5)

Rp
b = Rj(µ)

RpT

b = Rb
p

(2.6)

It must be noted that, if not specified, all vectors are considered in
the body reference frame.

2.2 Atmospheric models

Different atmospheric models are used to emulate the various envi-
ronments for the simulations. The objective is to provide enough
complexity to the work, whilst also providing uniformity with other
projects[4][8], as to allow for comparison of simulation and perfor-
mance results.
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2.2.1 Earth atmospheric model

Earth atmospheric density

In the model employed [9] for this project, the gravity is considered
constant, at gE = 9.81[m/s2]. The temperature is modelled in seg-
ments, as to better approximate the different parts of earth’s atmo-
sphere [10].

h > 25000 [m]
T = −131.21 + 0.00299h [◦C]

p = 2.488
C
T + 273.1

216.6

D−11.388
[kPa]

(2.7)

11000 < h < 25000 [m]
T = −56.46 [circC]
p = 22.65e(1.73−0.000157h) [kPa]

(2.8)

h < 11000 [m]
T = 15.04 + 0.00649h [◦C]

p = 101.29
C
T + 273.1

288.08

D5.256
[kPa]

(2.9)

Given the temperatures and pressures, the atmospheric density can
be obtained as follows.

ρ = p

0.2869(T + 273.1) [kg/m3] (2.10)

Earth wind model

Considering the parameters that describe the parafoil employed in
the simulations on Earth[3], and the atmospheric characteristic of the
planet itself, the system moves with a very low horizontal velocity.
Hence it’s capacity to reject wind disturbances is quite limited.
A possible approach for introducing a wind disturbance, that is both
realistic and sustainable, is proposed. Taking the absolute value of the
planar velocity relative to the atmosphere during a complete descent
simulation, as shown in figure 2.3, we obtain a range of limit distur-
bance that the system is able to manage. Considering a fractional
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Figure 2.3: Earth’s velocity profile

value, at each altitude, and using it in conjunction with a Gaussian
distribution, we obtain a realistic yet manageable wind disturbance.
This is similar to the approach taken in to account during the design
of the actual parafoil[8], in order to evaluate it’s ability to reject wind
disturbances.
This approach doesn’t reflect the real disturbances experienced by
a parafoil, but allows performance analysis in case of severe distur-
bances, even with the small dimensions of the parafoil in question.
The implementation in Simulink is done via a "look-up table".

2.2.2 Mars atmospheric model

Mars atmospheric density

Mars’s ambient condition [11] present a very thin atmosphere, com-
pared to Earth, and high gravity compared to Titan, gM = 3.7[m/s2].
As before, the temperature is modelled in segments, reflecting the dif-
ferent atmospheric layers, and the density is retrieved using the state
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equation for perfect gasses.

h > 7000 [m]
T = −23.4 − 0.00222h [◦C]
p = 0.699e−0.00009h [kPa]

(2.11)

h < 7000 [m]
T = −31 − 0.000998h [◦C]
p = 0.699e−0.00009h [kPa]

(2.12)

ρ = p

0.1921(T + 273.1) [kg/m3] (2.13)

Mars wind model

Considering the Gale Crater as the reference point for landing and
averaging over the most favourable seasons, we obtain the following
constant wind components.

Wind in vertical direction : 2.3 × 10−4 [m/s]
Wind inSouth−North direction : 6.08 [m/s]
Wind inWest− East direction : 0.87 [m/s]

(2.14)

Where the vertical component of the wind vector is negligible, the
prevalent component blows from south to north, and a minor compo-
nents blows in the east-west direction.
Albeit a crude approximation, it still is a significant representation of
the ambient circumstances found on Mars, moreover it is aligned with
other works [8].
In simulation, the values from (2.14) are used as central points of a
Gaussian model for the wind disturbance.

2.2.3 Titan atmospheric model

Employing a similar approach as [4][6], the models describing the at-
mospheric density and wind magnitude are considered valid for possi-
ble landing sites of interest for future missions [12]. The acceleration
of gravity is considered constant, where the mean value for titan is
gT = 1.352 [m/s2].
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The exponential model for the atmospheric density (2.15) is taken
from [13]. Although simple, it’s still sufficient for the work at hand.
Considering also the current utilization of the same model in other
works cited here.

ρ(h) = 5.43e−5.1210−5h [kg/m3] (2.15)
The wind model model (2.16) is taken from [12][6]. It describes the

magnitude of the major component of the wind disturbance, usually
called the Zonal Wind, which blows from west to east. A minor com-
ponent is also present in the north-south direction, the Meridian wind,
which has a magnitude of 1 ÷ 2[m/s].

Wi(h) = Wi,300

1 + e
hi,0−h

Li

[m/s] (2.16)

In equation (2.16) the nominal parameters that best describe the
ambient condition are Wi,300 = 22 [m/s], hi,0 = 35 [km] and Li =
8 [km].

2.3 System’s mathematical models

Even though four and six degrees of freedom are usually considered low
fidelity models[6], for our application and simulations they are more
than sufficient. Also considering the fact that for this project, no
specific payloads where taken in to account. Thus using only approx-
imate information on payload dimensions and characteristics, which
would lead to a futile analysis. Instead the following models are able
to guarantee the needed level of detail, without being overly complex.

2.3.1 6 DoF parafoil model

A six degrees-of-freedom mathematical model was implemented from
[3]. The model considers the parafoil and the payload as a single rigid
body, thus simplifying the dynamics. The complete model is reported
below.

Kinematics

The relevant velocities for the development of this work are: velocity
relative to the ground V ; velocity relative to the air, Va; wind velocity,
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Figure 2.4: Parafoil’s forces and reference frames

W . The relation between this dimension is hereafter reported.

Va = V + W (2.17)
Also, as per general definition, the main velocity components are

listed below,

• Velocity relative to the atmosphere Va = [vx vy vz]T

• Ground speed vector in {b} V = [u v w]T

• Ground speed vector in {n} ṗ = [ẋ ẏ ż]T

• Angular velocity in {b} ω = [p q r]T

• Angular velocity in {n} Φ̇ = [ϕ̇ θ̇ ψ̇]T

The transformation of the aforementioned velocities to the canopy
reference frame can be done as follows.
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ṽx

ṽy

ṽz

 = Rp
b



u
v
w

S(ω)


xBM

yBM

zBM

 − Rn
b W



p̃
q̃
r̃

 = Rp
b


p
q
r


(2.18)

Considering the angular velocities, we must define the kinematic
transformation from {b} to {n},

[Rn
b ] =


1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ
0 sin ϕ

cos θ
cos ϕ
cos θ



[Rb
n] =


1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ


(2.19)

Thus allowing for the relationship reported hereafter.

ω = [Rb
n]Φ Φ = [Rn

b ]ω (2.20)

Apparent mass and inertia tensor

Given the dynamic characteristics, stemming from the inherent light-
ness of the system, the parafoil experiences a substantial influence
from the atmosphere with which it interacts during flight. This in-
teraction is not only found in the lift and drag aerodynamic forces,
but also in the turbulent characteristics of the flow, which acts on the
dynamics of the system[3][14].
This effect is modelled by the apparent terms of mass, inertia, forces
and moments. This terms are approximations dependent on the phys-
ical characteristics of the system and the density of the fluid in which
the system moves. Hereafter is the calculation of the apparent mass
and inertia tensors.

a∗ = a

b
and t∗ = t

c
(2.21)
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Figure 2.5: Canopy dimensions

A = 0.666ρ
A
1 + 8

3a
∗2
B
t2b

B = 0.267ρ
1 + 2a

∗2

t∗2 AR2 11 − t∗22 t2c
C = 0.785ρ

ñ
1 + 2a∗2 (1 − t∗2) AR

1 + ARc
2b

(2.22)

IA = 0.055ρ AR
1 + ARc

2b3

IB = 0.0308ρ AR
1 + AR

C
1 + π

6 (1 + AR)ARa∗2t∗2
D
c4b

IC = 0.0555ρ
1
1 + 8a∗22 t2b3

(2.23)

Ia.m =


A 0 0
0 B 0
0 0 C

 Ia.i =


IA 0 0
0 IB 0
0 0 IC

 (2.24)

In (2.24), the matrices are in the canopy reference frame, which
is consistent with the following development of the apparent forces
and moments. This components will then be expressed in the body
reference frame (2.31)(2.32) to be employed in the dynamics equation
(2.33).
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Aerodynamic Forces and Moments

Forces acting on the parafoil are modelled in three macro components:
apparent, aerodynamic and gravitational.

Fext = Fa + Fg + Fa.m

Mext = Ma + Ma.i

(2.25)

In (2.25), Fa is the aerodynamic force, Fg is the gravitational force
and Fa.m is the force due to the apparent mass component. Also,
Ma is the aerodynamic moment and Mi.a is the moment due to the
apparent inertia.

Fg =


− sin θ

cos θ sinϕ
cos θ cosϕ

 (2.26)

Fa = SQRb
w


CD0 + CDα2α2 + CDδs

δs

CY ββ

CL0 + CLαα + CLδs
δs

 (2.27)

The aerodynamic moment expressed in {b} can be written as,

Ma = SQ


b
3
Clββ + b

2Va
Clpp+ b

2Va
Clrr + Clδa

δa

4
c̄
3
Cm0 + Cmαα + c

2Va
Cmqq

4
b
3
Cnββ + b

2Va
Cnrr + Cnδa

δa

4

 (2.28)

Apparent forces and moment

F̃a.m = −

Ia.m


˙̃vx

˙̃vy

˙̃vz

 + S(ω̃)Ia.m


ṽx

ṽy

ṽz


 (2.29)

M̃a.i = −

Ia.m


˙̃p
˙̃q
˙̃r

 + S(ω̃)Ia.i


p̃
q̃
r̃

 + S(Ṽa)Ia.m


ṽx

ṽy

ṽz


 (2.30)

In equations (2.29) and (2.30) the components expressed with tilde (
˜ ) are being expressed in the canopy reference frame and are acting on
the apparent mass center. The apparent forces employ a definition of
the velocities expressed in {p}(2.18). In order to use the the forces in
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the dynamic’s equation of the body, all components must be projected
in {b}.

Fa.m = Rp
b

T
F̃a.m (2.31)

Ma.i = Rp
b

T
M̃a.i + S(r

BM
)Fa.m (2.32)

Where rBM = [x
BM

y
BM

z
BM

]T is the vector from the system CoM
to the apparent mass center. In our case we consider the simplification
of it being coincident to the origin of the canopy reference frame. Also,
Rp

b is a single axis transformation defined in (2.6).

Dynamics equation of motion

The final component to the model is the equations of motion (2.33),
which consider all the forces and moments acting on the body, the
masses and inertia, and allow for the calculation of the accelerations.

mtotI3x3 + I∗
a.m −I∗

a.mS(r
BM

)
S(r

BM
)I∗

a.m Ip + I∗
a.i − S(r

BM
)I∗

a.mS(r
BM

)





u̇

v̇
ẇ

ṗ

q̇

ṙ


=
 Fext

Mext



(2.33)

This equation shall be integrated two times, in the simulation envi-
ronment, to calculate the velocities and the position in space.

2.3.2 4 DoF parafoil model

The four degrees-of-freedom model is used int the MPC controller to
approximate the time evolution of the system. It closely approximates
the dynamics of the system, while remaining relatively computation-
ally light.

Equation (2.34) describes the lift and drag components of the force
affecting the parachute. In this approximation they’re uncorrelated
and depend only on symmetric input, systems characteristics, ambient
condition and the module of the relative velocity with the atmosphere.
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D = QS (CD0 + CDδsδs)
L = QS (CL0 + CLδsδs)

(2.34)

In (2.34), Q is called Dynamic Pressure and is defined as ρ|Va|2
2 . It is

the kinetic energy per unit volume of the fluid, an intrinsic character-
istic of the moving fluid itself.
From (2.35) we obtain easily the dimension describing the parafoil
interaction with the atmosphere.

|Va| =
√
u2 + w2

α = tan−1(w
u

)
(2.35)

The dynamics equation, obtained from [3], are hereafter reported.


u̇ = L sin α−D cos α
m − wψ̇ sinψ

ψ̇ = g tan ϕ
u + wϕ̇

u cos ϕ

ẇ = −L cos α−D sin α
m + g cosϕ+ uψ̇ sinϕ

ϕ̇ = 1
Tϕ

(−ϕ+Kϕδa)

(2.36)

The transition to the dynamics in the inertial reference frame(2.37),
also referred to as the navigation equation.


ẋ

ẏ

ż

 = Rn
b


u

0
w

 (2.37)

It must be noted that the wind effect is not considered in this model.
It is in fact a reduced order model that allows for lower a computa-
tional burden on the controller.

2.3.3 Stability

As noted in [3][6][5], the parafoil-payload system is an inherently stable
system. Given the analysis carried out using the punctual lineariza-
tion of the dynamic equations. Nonetheless the wind disturbance may
cause difficulty in control when the magnitude of the disturbance ap-
proaches a significant fraction of the speed of the system. In this case,
the controller which is ignorant of the wind component, seeing it only

23



as a disturbance, faces difficulties in managing the differing response
of the system.

2.3.4 Reduced order model parameters estimation

The reduced order model is used as an approximation of the system.
The four degrees-of-freedom paradigm was chosen to allow for dual
input, both symmetric and asymmetric. It is a nonlinear model, and
thus provides a challenge for estimation purposes.
The choice of a grey-box model was made for reliability purposes. As
it provides a higher physical interpretation of the approximated sys-
tem.
The identification process employed consists of two phases, data gen-
eration and parameters estimation. The first deals with the fact that
the data is obtained through means of simulation, hence it must be
generated. The second is the actual estimation of the models param-
eters.
For a reliable estimation of the parameters, a point was made to em-
ploy data stemming from simulations witch used the actual controller.
The reason is that it better represents the working conditions of the
model and allows for longer simulation runs.

Initial set-up and data generation

(a) Trajectory. (b) Control signal.

Figure 2.6: Example of simulation without wind, employed for parameters estimation.

Starting with a blank sheet, it is impossible to employ the controller
to generate the data. A sufficient data-set is generated using a signal
generator to excite the system.

24



The input signals used where step signals with different amplitudes.
Exciting both the inputs, both separately and in unison. The objective
was to try and cover as much of the operating conditions as possible.
For stability of the simulation, most critically while employing a square
input, the simulation step needed to be reduced. This highlighted the
need for a sub-phase of the data generation process, post processing
of the data-sets. Two techniques were used, decimation and segmen-
tation.
Decimation of the data-set, effectively the post simulation reduction
of the sampling frequency (from 1000 Hz or 100 Hz to 1 Hz), allowed
to decrease the estimation time while increasing the quality; segmen-
tation was tried to separate long simulation runs in shorter multi-run
data-sets, which would better represent the prediction aspect of the
controller, further specifying the ultimate utilization conditions of the
model.
The data-sets generated where used in an initial round of the pa-
rameters estimation. This first parameters where used to include the
controller in the simulations and generate more representative data-
sets. Also in this case, post processing of the generated data-sets was
needed.

Parameters estimation

The estimation is carried out using the non-linear grey box model pa-
rameters estimation function in Matlab[15]. Allowing for integrated
handling of mathematical models, identification constraints, data-sets
and search algorithms. A good degree of trial and error is needed to
obtain a functional estimation of the model, which allowed and sup-
ported by the high flexibility and control worked in the function.
The final model employed in the controller, thus object of estimation,
is reported in 3.2.1. In this case the parameters to be estimated are
only those that describe the dynamics of the system, the atmospheric
model uses an exact copy of what is already implemented to simu-
late the environment. In figure 2.7a2.7b is reported the comparison
between the dynamics of the simulated system and that of the es-
timated model. It can be seen that even for long time frame, the
estimated model are sufficiently close to the simulated system. It was
also observed that, even if the estimated model is not perfectly ap-
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proximating the system, the controller is able to perform sufficiently
well. The estimated parameters are reported in appendix A.

2.3.5 Model selection for estimation

Selection of a model for estimation purposes is one of the most im-
portant tasks in order to succeed. Even more so when the system is
non-linear. The choices, in this case, where limited by the decision of
fitting a reduced order model of the dynamics to the generated data.
Keeping in mind that the objective is to represent the dynamic be-
haviour of the system, the final goal is to drive the system towards
the reference following a certain calculated path. The choice was thus
made to use as output the position of the parafoil, considering the
dynamics model augmented of the rotated kinematics (fig 3.1).
This solution yielded good results, ultimately being the choice through-
out the development of this project. Still this field could greatly benefit
form a further analysis on this point.
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(a) Earth

(b) Mars

(c) Titan

Figure 2.7: Estimated model performance.
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Chapter 3

Control design

A Model Predictive Controller (MPC) provides an intuitive approach
to otherwise very difficult control problems. It is based on two steps,
prediction and optimization. Prediction uses a model of the system to
give the controller knowledge of the expected behaviour of the system,
given it’s initial conditions. Optimization is the decision component,
where the controller optimises it’s output in order to minimize a cer-
tain objective.
An nMPC provides an organic approach to the control solution, as it
emulates the approach an operator would use in controlling a system.
It is also very flexible in the applications, but it comes with the cost
of high computational effort.

3.1 n-MPC controller

Considering a generic non-linear system defined below.ẋ = f(x, u)
y = h(x, u)

(3.1)

With states x ∈ Rn, inputs u ∈ Rnu and output y ∈ Rny .
At each time t = tk, the system is simulated in [t, t+Tp]. At any time
τ ∈ [t, t+ Tp], the predicted output ŷ is a function of the initial state
and the input signal û(t : τ), which for now is a generic signal in the
time interval [t, τ ].

ŷ(τ) ≡ ŷ(τ, x(t), u(t, τ)) (3.2)
Thus at any time we look for an input signal which serves the ob-

jective of the control problem. This can be modelled considering the
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following objective function.

J(û(t : t+ Tp)) =
Ú t+Tp

t
(∥ê(τ)∥2

Q
+ ∥û(τ)∥2

R
)dτ + ∥ê(t+ Tp)∥2

P

with ê(τ) = r(τ) − ŷ(τ)
r(τ) ∈ Rny

|| . ||
X

is the weighted vector norm

(3.3)

Where the first term inside the integral is a cumulative reference
tracking error, the second a cumulative controller effort, and the third
a final tracking error. The weights in the vector norms are used to
modify the effect that each vector component has on the final value
of the objective function.
Then, the optimal control sequence u∗(t : t+Tp) is obtained minimizing
the objective function (3.3) under the following constraints.

˙̂x = f(x̂(τ), û(τ)), x̂(t) = x(t)
ŷ = h(x̂(τ), û(τ))
τ ∈ [t, t+ Tp]

(3.4)

Up until this point, the control algorithm is in open loop. The
controller simply takes the initial condition and evaluates the best
strategy from that point on-wards, but doesn’t take in to account any
external disturbances or other uncertainties. This can be fixed using
a sampling time, and thus the frequency at which the algorithm runs,
that is sufficiently faster than the prediction horizon. This is called
a Receding Horizon approach, and guarantees stability by emulating
the effect that feedback has in conventional controllers[16].

3.2 n-MPC design

3.2.1 Prediction model of the parafoil system

The four degrees-of-freedom model (2.36), also called reduced order
model, is employed for the prediction phase of the controller algorithm.
Due to the high variation of atmospheric density during the descent,
and the need for absolute positioning as an output for the controller,
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the model is augmented with (2.4) and the atmospheric models from
section 2.2.

Figure 3.1: Prediction model scheme. In blue the dynamic equations of the system, defined as
f(x, u); in red the output function, defined as h(x, u)

In figure 3.1 a schematic representation of the prediction model.
Inside of the nMPc, the f function is integrated with the current step
condition and the calculated control input sequence. The h function in
these application is the controlled output, which is simply the position
of the system in {i}.
The presence of the atmospheric model inside the prediction model is
made necessary by two factors, the approximation that is the reduced
order model and the vertical span of the descents. The result is that
if the atmospheric model is not considered, the controller would incur
in errors resolving the initial condition. The altitude at which this
problem arise is dependent on the estimation of the reduced order
model parameters.

3.2.2 Optimization constraints

The constraints are used to guarantee that the calculated output is a
physically realizable action. Thus two sets of constraints are used on
the controlled input, scale and variation.
The scale constraint is tied to the mathematical modelization of the
system, and depends on the fact that the inputs for the model are
considered to be normalized. Thus, considering the definition for the
controlled input, we obtain the following constraints.

u(τ) =
δs

δa

 , with δa ∈ [0, 1] and δs ∈ [−1, 1] (3.5)
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The variation constraint limits the maximum variation, for the single
vector components, from one time step to the next. It mainly serves
two purposes, to limit chattering and avoid unreasonably large input
variations that could lead to instability.

∥δ(τ) − δ(τ − Ts)∥ ≤ ∆lim (3.6)

The constraints on the controlled input (3.5)(3.6) can thus be united
considering directly a single limit, taking at any point the most strin-
gent of the two conditions.δamax

= min(1, δa(τ − Ts) + ∆lim)
δamin

= max(0, δa(τ − Ts) − ∆lim)δsmax
= min(−1, δs(τ − Ts) + ∆lim)

δsmin
= max(1, δs(τ − Ts) − ∆lim)

(3.7)

3.2.3 Weight scheduling

The objective for the controller is to steer the system as close as pos-
sible to the desired landing site, which has already been established
to be the origin in the {i} reference frame. In favor of lighter compu-
tation, no path planning algorithm is adopted. For this reason, the
optimization weight for the cumulative tracking error is set to zero.
One peculiar complication of this approach is the difficulty of calibrat-
ing the optimization weight of P, Q and R for the desired behaviour.
Since the path of the parafoil can span tens of kilometers, a constant
weight ratio leads to varying performance characteristics along the de-
scent.
To circumvent this effect, and to tune the behaviour of the system
to mimic that of more complex approaches, the decision was made to
implement weight scheduling on the controlled input term of optimiza-
tion. Only one is sufficient, since the actual important part is the ratio
between R and P. Fixing P equal to the identity matrix while varying
R proved to work. Also adding Q with a very small multiplier, 0.1 or
0.001, resulted in much better performance in heavy wind conditions.
Considering that the cause for the adverse behaviour of the controller
was the massively spanning output of the system, the actual position
in space, the weight scheduling is implemented as a function of the
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norm of the controlled output vector [17]. The actual weight is set per
intervals of this parameter.

DWS = ∥p∥ =
ñ
x2 + y2 + z2

if DWS ≥ D1 → R = R1

if D1 > DWS ≥ D2 → R = R2
...

if Dn−1 > DWS ≥ Dn → R = Rn

if Dn > DWS → R = Rn+1

(3.8)

In (3.8) is the compact explanation of the scheduler. This logic al-
lows for easy implementation in the simulation environment, while
providing a high degree of flexibility during tuning of the controller’s
parameters.
The tuning of the parameters was done by trial and error. Separating
the descents in segments of interest and tuning segment by segment
in until the desired behaviour was achieved. The parameters used for
the scheduler are reported in appendix B.
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Chapter 4

Simulation and results

In order to implement the models in Simulink, which was chosen as
the simulation environment, the decision was made to utilize a block
defined structure for all the forces and interacting components, instead
of using a compact formulation of the model as presented in [3][8][4].
For more complex models, direct mathematical formulation should be
used instead, as the faster simulation times are outweighted by the
complexity of setting up and debugging the models.

The complete simulation environment, figure 4.1, is composed of five
main blocks: external forces and moments, 6 DOF model for system’s
dynamics and equation of motion, atmospheric model, reduced order
feedback, and the controller. At a macro level, the main inputs for the
simulation are the initial conditions, such as absolute position in space,
orientation and initial velocities, and the reference for the controller’s
objective.

The apparent components of weight and inertia are based on the
geometry and aerodynamic characteristics of the system, but are ul-
timately proportional to the atmospheric density (2.24). The calcula-
tion of the fixed component is carried out during the set-up phase of
the simulation, which is then multiplied with the atmospheric density
in real time.
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Figure 4.1: Complete simulation model.
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4.1 Earth

The Monte Carlo simulation for Earh uses 300 runs, with the condi-
tions reported below. Using randomly dispersed initial positions and
wind directions allows to isolate the performance of the controller from
the variability of the initial conditions.

1. Initial conditions

(a) Altitude set at 10 km.
(b) Initial position randomly chosen in a 30 km by 30 km square.

2. Wind generation

(a) Mean wind as described subsection 2.2.3, with a wind fraction
of 20%.

(b) Variance for the additive gaussian distributed zero mean sig-
nal, set to 0.5 for the x direction and 0.05 for the y direction.

(c) Sampling time of random source set to 1s.

3. Simulation environment parameters

(a) Termination condition set for altitude equal to zero.
(b) Sampling time of the model set to 10−2s.
(c) Sampling time data set to 1s.
(d) Integration method: ode4 (Runge-Kutta).
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Figure 4.2: Simulations initial points at 10km altitude.
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(a) X-Z Plane

(b) Y-Z Plane

Figure 4.3: Earth Monte Carlo simulation trajectories.
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(a) Complete

(b) Center focus

Figure 4.4: Earth Monte Carlo simulation impact points.

38



(a) Complete

(b) Focus

Figure 4.5: Earth Monte Carlo simulation Error Ellipse for 90% confidence. The semi-major axis
is 168 [m] long, the semi-minor axis is 111 [m] long.

39



4.2 Mars

The Monte Carlo simulation for Mars uses 300 runs, with the condi-
tions reported below. Using randomly dispersed initial positions.

1. Initial conditions

(a) Altitude set at 40 km.
(b) Initial position randomly chosen in a 60 km by 60 km square.

2. Wind generation, figure 4.6

(a) Mean wind as described subsection 2.2.2, a vector
W n

mean = [6.08, 0.87, 0]T

(b) Variance for the additive gaussian distributed zero mean sig-
nal, set to 0.5 for the x direction and 0.05 for the y direction.

(c) Sampling time of random source set to 5s.

3. Simulation environment parameters

(a) Termination condition set for altitude equal to zero.
(b) Sampling time of the model set to 10−2s.
(c) Sampling time data set to 1s.
(d) Integration method: ode4 (Runge-Kutta).

(a) Wind generation block. (b) Random source block.

Figure 4.6: Wind generation for Mars simulation.
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Figure 4.7: Simulations initial points at 40km altitude.
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(a) X-Z Plane

(b) Y-Z Plane

Figure 4.8: Mars Monte Carlo simulation trajectories.
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(a) Complete

(b) Center focus

Figure 4.9: Mars Monte Carlo simulation impact points.
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(a) Complete

(b) Focus

Figure 4.10: Mars Monte Carlo simulation Error Ellipse for 90% confidence. The semi-major axis
1.205 km long, the semi-minor axis is 678 long.
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4.3 Titan

The Monte Carlo simulation for Titan uses 300 runs, with the condi-
tions reported below. Using randomly dispersed initial positions.

1. Initial conditions

(a) Altitude set at 40 km.
(b) Initial position randomly chosen in a 120 km by 120 km square.

2. Wind generation

(a) Mean wind as described subsection 2.2.3, Wi,300 = 8 [m/s],
hi,0 = 35 [km] and Li = 8 [km].

(b) Variance for the additive gaussian distributed zero mean sig-
nal, set to 0.1 for the Zonal wind and 0.01 for the Meridian
wind.

(c) Sampling time of random source set to 1s.

3. Simulation environment parameters

(a) Termination condition set for altitude equal to zero.
(b) Sampling time of the model set to 10−2s.
(c) Sampling time data set to 1s.
(d) Integration method: ode4 (Runge-Kutta).
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Figure 4.11: Simulations initial points at 40km altitude.
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(a) X-Z Plane

(b) Y-Z Plane

Figure 4.12: Titan Monte Carlo simulation trajectories.
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Figure 4.13: Titan Monte Carlo simulation impact points.
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Figure 4.14: Titan Monte Carlo simulation Error Ellipse for 90% confidence. The semi-major axis
2.546 km long, the semi-minor axis is 1.382 km long.
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4.4 Simulations results

During the simulations several critical aspects where highlighted, from
the different behaviours due to the differences in the atmospheric con-
ditions, to the instabilities that wind can bring to the system be-
haviour. Hereafter is a review of the main conclusions.

4.4.1 Wind instability and correlation to performance

Taking as example the simulations on earth, at high altitudes and
high wind conditions, it can be observed how the controller strug-
gles to maintain the calculated course for the system. A comparison
between this phenomena and the nominal behaviour can be seen in
figure 4.15. In the unstable conditions, the optimal trajectory cal-
culated by the controller is significantly different from time step to
time step. This behaviour comes with extremely high chattering of
the controllers output.
Reducing the wind component almost negates this behaviour. In this
case, the system is able to follow the calculated course and the con-
troller output is smooth and punctual.
From observation of this phenomena, it can be ascribed to the faster
dynamics of the system when going upwind. The behaviour is also
due to the treatment of the wind only as a disturbance that is not
taken in to account by the controller.
Depending on how the wind model is implemented in the simulation
environment, and how it varies during the descent, this behaviour can
have increasingly detrimental effects on the final performance of the
controller. The singular effect of this instability can’t be separated
from the simple disturbance of the wind, as it is a product of the
disturbance itself. In figure 4.16 we can observe the variation of the
landing dispersion for increasing values of mean wind speeds.
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(a) Unstable conditions

(b) Stable conditions

Figure 4.15: Comparison between unstable, figure (a), and stable conditions, figure(b). The sim-
ulation is carried out in Earth’s environment at 10 km altitude. Wind fractions are 30% for the
unstable condition and 3% for the stable conditions.
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(a) 20% wind, semi-major axis 168 m, semi-minor
axis 111 m.

(b) 30% wind, semi-major axis 639 m, semi-minor
axis 486 m.

(c) 45% wind, semi-major axis 5.02 km, semi-minor
axis 4.44 km.

Figure 4.16: Comparison of landing accuracy for increasingly high mean wind speeds. Simulations
carried out in Earth’s environment with the same controller parameters. Wind direction and initial
position are random, with each mean wind speed was being simulated 300 times. Percentages
associated to the mean wind speed are relative to the planar/horizontal velocity at each altitude.
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4.4.2 Controller parameters tuning, effects and behaviour

The parameters that define the behaviour of an MPC are virtually
infinite, given all the possible variations on how the control problem
is stated. Considering the formulation employed for this project, the
following parameters where selected as being of most interest.

• P weight of the final error weighted norm. Set constant, equal to
identity matrix.

• Q weight of the cumulative error weighted norm, it’s presence
drastically improved the behaviour in high wind conditions, al-
lowing for better tracking of the calculated trajectory.

• R weight of the cumulative control effort weighted norm. As re-
ported in (3.8), this matrix is scheduled based on the norm of
the position vector in the inertial reference frame. The tuning
was done to regulate the control effort during the descent, reduc-
ing chattering and promoting long passes with intermittent turns
over spiraling. This is accomplished tuning high values at high
distances and proportionally lower values as the system gets to
the intended landing point. A balance has to be struck between
the intended behaviour and the attractivity of the origin, as if the
parameter is set too high, the controller looses authority.

• Tprediction is the prediction horizon of the controller. From the
beginning it was set at 20 seconds, or 20 time intervals, as it struck
a good balance between prediction and computing complexity.

• Tsample is the duration of the time intervals. It is set at 1 second,
as in all other studies of this type.

• Tcontrol is the calibrated time after which the controller starts
working. It is effective in allowing the system to settle in it’s
steady state condition at the beginning of the simulation. This
parameter can be set to anything between 40 and 100 second, in
the applications considered in this work. In principle, this param-
eter should allow the oscillations that may arise at the beginning
of the simulation to disappear, while not removing too much time
from the controller to effectively steer the system towards the in-
tended landing point.

53



4.4.3 General performance of the controller

Many factors concur to the final performance of the controller, from
the identification of the reduced order models parameters, the tuning
of the controller, to the atmospheric conditions. In all cases, the re-
sults of the simulations show how the controller is able to correctly
perform under generally nominal atmospheric conditions (see figures
4.5, 4.10 and 4.14). Considering the dispersion of the landing points
as a bi-variate gaussian distribution, the values of the semi-axis of
the error ellipses calculated for a 90% likelihood are comparable with
other works done in the field [18][8][4].
One of the reasons for employing weight scheduling techniques in the
control problem, was to favour straight descents with intermittent
turns. Avoiding spiraling trajectories, which are less favourable from
a landing speed perspective. The trajectories are not spiraling down-
wards (see figures 4.3, 4.8 and 4.12), but appear more as a vertical
triangular line. On Mars, where the horizontal velocity is highest, and
the wind disturbance is lowest, this behaviour is more easily observed.
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Chapter 5

Conclusions

This thesis aims at demonstrating the applicability of this control
strategy to different environments. Augmenting the base strategy of
the model predictive controller with the scheduling of the optimization
weights, allows the system to respond in a more tunable and flexible
fashion, while not adding computational complexity to the control
problem.
The use of autonomous parafoil systems is widely considered in many
descent application, from the logistics of payload delivering to plan-
etary exploration. High lift coefficients in modern designs have sig-
nificantly broadened the possible applications of this solutions. Still
limitations remain, mainly given by limited maneuverability and im-
plication that high wind disturbance have on the final operating range.
Thus the ability to navigate the environment depends on the atmo-
spheric and wind conditions, and not only on the system itself. Sug-
gesting that a high degree of planning is needed to guarantee success
in hostile environments.
To realize what stated above, a simulation environment was developed
in Simulink, encompassing a 6 degrees-of-freedom model of the sys-
tem, atmospheric conditions for the different planetary applications,
variable wind disturbances and initial conditions. The simulation en-
vironment was used both in the estimation of the reduced order model
parameters, and in the Monte Carlo simulations for the evaluation of
the performance of the controller.
Specifically, the project was carried out along the following topics:

• Study and implementation of the dynamic model of the
parafoil system. While implementing in a simulation environ-
ment the dynamic equations of a system is usually a straight for-
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ward endeavour, in the case of parafoil system a lot of incomplete
information is found in literature. Thus a lot of time was initially
spent on finding a complete model and all the relative parame-
ters to correctly describe the system. The six degrees-of-freedom
model was chosen to describe the dynamics, as it is found in many
different works. Allowing for a simple simulation framework that
can be employed in all the different planetary applications.
For the prediction model, the four dof model was chosen above
a three dof model. The choice is motivated by the dual input of
the first, compared to the single input of the latter. Allowing for
further flexibility in the control of the system.

• Identification of the reduced order model parameters re-
quired a lot of trial and error. A methodology was developed to
obtain valid data, whilst considering the computational complex-
ity that this problem poses. The final results are far from perfect,
from a numerical stand-point, but yield sufficiently good perfor-
mance in the simulations, evidence of the flexibility of the control
strategy employed.

• Development and tuning of the final n-MPC controller.
The base formulation of the non-linear Model Predictive Con-
troller was taken from previous works, but demonstrated to be
non-robust and insufficiently adaptable to the problem at hand.
The scheduling of the optimization weight pertaining to the con-
trol effort, previously found only in wind turbines, proved to be
highly effective at tackling the numerical variance of the input
variables of the objective function.

As a next step, further works should focus on:

• Employ an estimator for the wind disturbance, a Kalman filter us-
ing a suitable linearization of the reduced order model, to add the
wind in the prediction calculations of the controller. This could
also be used in a more complete simulation where sensor noise is
considered on the systems variables.

• High fidelity models, nine degrees of freedom, would allow the
analysis on the influence of the oscillation of the payload on the
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controllers performance and consider a more accurate description
of the aerodynamic behaviour.

• Stretch the simulation to include the whole entry and descent
phase, for planetary exploration applications. Considering the
multiple phases of a mission of this type.
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Appendix A

Parameters of mathematical
models

A.1 Parameters for Earth

System′s physical parameters
mtot 2.4 kg

J diag[0.42 0.4 0.053] kg m2

S 1 m2

µ -12 deg
r

BM
[0.046 0 − 1.11]T m

a 0 m
b 1.35 m
c 0.75 m
t 0.075 m

Reduced order model parameters
CL0 0.8189 –
CLδs

0 –
CD0 0.2919 –
CDδs

0 –
Kϕ 0.3802 rad

Tϕ 5 s
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System′s aerodynamic parameters
Aerodynamic force coefficients

CD0 0.25 –
CDα2 0.12 rad−2

CDδs
0.3 –

CY b -0.23 rad−1

CL0 0.091 –
CLα 0.9 rad−1

CLδs
0.21 –

Aerodynamic moment coefficients
Clβ -0.036 rad−1

Clp -0.84 rad−1

Clr -0.082 rad−1

Clδa
-0.0035 –

Cm0 0.35 –
Cmα -0.72 rad−1

Cmq -1.49 rad−1

Cnβ -0.0015 rad−1

Cnp -0.082 rad−1

Cnr -0.27 rad−1

Cnδa
0.0115 –

A.2 Parameters for Mars

System′s physical parameters
mtot 13.685 kg

J diag[3.76 3.02 0.418] kg m2

S 14 m2

µ -12 deg
r

BM
[0 0 − 5.05]T m

ϵ 35.8 rad
a 0 m
b 6.48 m
c 2.16 m
t 5.18 m
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Reduced order model parameters
CL0 0.8606 –
CLδs

2.808 –
CD0 0.1579 –
CDδs

0.1331 –
Kϕ -0.5425 rad

Tϕ 0.9604 s

System′s aerodynamic parameters
Aerodynamic force coefficients

CD0 0.078 –
CDα2 0 rad−2

CDδs
0.08 –

CY b -0.23 rad−1

CY δa
-0.0096 –

CL0 0.4066 –
CLα 3.1672 rad−1

CLδs
0.13 –

Aerodynamic moment coefficients
Clβ -0.24 rad−1

Clp -4.5 rad−1

Clr -0.8 rad−1

Clδa
-0.252 –

Cm0 0 –
Cmα -0.615 rad−1

Cmq -0.182 rad−1

Cnβ 0.16 rad−1

Cnp -0.8 rad−1

Cnr -0.16 rad−1

Cnδa
-0.04 –
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A.3 Parameters for Titan

System′s physical parameters
mtot 200 kg

J diag[11.9267 3 1.667] kg m2

S 3.14 m2

µ -12 deg
r

BM
[0.26 0 − 1.5]T m

a 0.164 m
b 3.072 m
c 1.023 m
t 0.075 m

Reduced order model parameters
CL0 0.6105 –
CLδs

0.1440 –
CD0 0.2897 –
CDδs

0.0965 –
Kϕ 1.0483 rad

Tϕ 0.6673 s
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System′s aerodynamic parameters
Aerodynamic force coefficients

CD0 0.25 –
CDα2 0.12 rad−2

CDδs
0.1 –

CY b -0.23 rad−1

CY δa
0 –

CL0 0.091 –
CLα 0.9 rad−1

CLδs
0.15 –

Aerodynamic moment coefficients
Clβ -0.0036 rad−1

Clp -0.84 rad−1

Clr -0.082 rad−1

Clδa
-0.0035 –

Cm0 0.35 –
Cmα -0.72 rad−1

Cmq -1.49 rad−1

Cnβ -0.0015 rad−1

Cnp -0.082 rad−1

Cnr -0.27 rad−1

Cnδa
0.0115 –
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Appendix B

Parameter of n-MPC controller

B.1 Parameters for Earth

Controller′s base parameters
P I3
Q I3
Tp 20
Tstart 50
Ts 1

Scheduled intervals for R
h > 10km 850I2

10km ≥ h > 7km 650I2
7km ≥ h > 5km 550I2
5km ≥ h > 3km 450I2
3km ≥ h > 1km 350I2
1km ≥ h > 500m 300I2
500m ≥ h > 200m 250I2

h ≤ 200m 150I2

B.2 Parameters for Mars

Controller′s base parameters
P I3
Q ∼
Tp 20
Tstart 100
Ts 1
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Scheduled intervals for R
h > 10km 500I2

10km ≥ h > 7km 400I2
7km ≥ h > 5km 300I2
5km ≥ h > 3km 110I2
3km ≥ h > 1km 80I2
1km ≥ h > 500m 40I2
500m ≥ h > 200m 5I2

h ≤ 200m I2

B.3 Parameters for Titan

Controller′s base parameters
P I3
Q 0.01I3
Tp 20
Tstart 100
Ts 1

Scheduled intervals for R
h > 10km 600I2

20km ≥ h > 10km 500I2
10km ≥ h > 7km 400I2
7km ≥ h > 5km 300I2
5km ≥ h > 3km 200I2
3km ≥ h > 1km 100I2
1km ≥ h > 500m 80I2
500m ≥ h > 200m 30I2

h ≤ 200m 20I2

64



Bibliography

[1] Bobby Kazeminejad, David H. Atkinson, Miguel Pérez-Ayúcar,
Jean-Pierre Lebreton, and Claudio Sollazzo. Huygens’ entry and
descent through titan’s atmosphere—methodology and results
of the trajectory reconstruction. Planetary and Space Science,
55(13):1845–1876, 2007. Titan as seen from Huygens. 5

[2] Oleg Yakimenko, Vladimir Dobrokhodov, James Johnson, Isaac
Kaminer, Scott Dellicker, and Richard Benney. On Control of
Autonomous Circular Parachutes. 6

[3] Oleg A Yakimenko. Precision aerial delivery systems : modeling,
dynamics, and control. American Institute of Aeronautics and
Astronautics, Inc., 2015. 6, 12, 13, 14, 17, 19, 23, 33

[4] Giacomo Bonaccorsi. Dynamic Programming and ModelPredic-
tive Control Approach for Autonomous Landings. Journa of Guid-
ance, Control and Dynamics, 2022. 6, 13, 16, 33, 54

[5] Wolf White and Dean F. A theory of three-dimensional parachute
dynamic stability. Journal of Aircraft, 5(1):86–92, 1968. 6, 23

[6] Jasmine Rimani. High lift systems for planetary descent and land-
ing, 2018-10-23. 6, 13, 16, 17, 23

[7] Michael B. Ward, Mark Costello, Jacob Wachlin, Benjamin Leon,
Keith Bergeron, and Gregory Noetscher. Jumper-Inspired Guid-
ance Logic for Precision Guided Airdrop Systems. 6

[8] Alessandro Mercurio. Design and modeling of an autonomous
parafoil for rover mars landing, 2021-04-13. 13, 15, 16, 33, 54

[9] NASA. Earth atmosphere model. https://www.grc.nasa.gov/
www/k-12/airplane/atmosmet.html. 14

[10] Wikipedia. Atmosphere of earth. https://en.wikipedia.org/
wiki/Atmosphere_of_Earth. 14

65

https://www.grc.nasa.gov/www/k-12/airplane/atmosmet.html
https://www.grc.nasa.gov/www/k-12/airplane/atmosmet.html
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Atmosphere_of_Earth


[11] NASA. Mars atmosphere model. https://www.grc.nasa.gov/
www/k-12/airplane/atmosmrm.html. 15

[12] Ralph D. Lorenz, Claire E. Newman, Tetsuya Tokano,
Jonathan L. Mitchell, Benjamin Charnay, Sebastien Lebonnois,
and Richard K. Achterberg. Formulation of a wind specification
for titan late polar summer exploration. Planetary and Space Sci-
ence, 70(1):73–83, 2012. 16, 17

[13] Roger V. Yelle, D. F. Strobell, Emmanuel Lellouch, and Daniel
Gautier. Engineering models for titan’s atmosphere, 1998. 17

[14] P. LISSAMAN and GLEN BROWN. Apparent mass effects on
parafoil dynamics. 19

[15] MathWorks. Estimate nonlinear grey-box model parameters.
https://it.mathworks.com/help/ident/ref/nlgreyest.
html. 25

[16] Carlo Novara. Course notes for non-linear control and aerospace
application, 2021-2022. 29

[17] Thorben Wintermeyer-Kallen, Sebastian Dickler, János Zierath,
Thomas Konrad, and Dirk Abel. Weight-scheduling for linear
time-variant model predictive wind turbine control toward field
testing. Forschung im Ingenieurwesen, 85(2):385–394, 2021. 32

[18] Robert M. Manning Robert D. Braun. Mars exploration entry, de-
scent, and landing challenges. Journal of Spacecraft and Rockets,
44(2), March-April 2007. 54

66

https://www.grc.nasa.gov/www/k-12/airplane/atmosmrm.html
https://www.grc.nasa.gov/www/k-12/airplane/atmosmrm.html
https://it.mathworks.com/help/ident/ref/nlgreyest.html
https://it.mathworks.com/help/ident/ref/nlgreyest.html

	List of Figures
	Introduction
	Research context and related works
	Objectives
	Contribution and results

	Mathematical models
	Reference frames and Rotation
	Angles and Rotations

	Atmospheric models
	Earth atmospheric model
	Mars atmospheric model
	Titan atmospheric model

	System's mathematical models
	6 DoF parafoil model
	4 DoF parafoil model
	Stability
	Reduced order model parameters estimation
	Model selection for estimation


	Control design
	n-MPC controller
	n-MPC design
	Prediction model of the parafoil system
	Optimization constraints
	Weight scheduling


	Simulation and results
	Earth
	Mars
	Titan
	Simulations results
	Wind instability and correlation to performance
	Controller parameters tuning, effects and behaviour
	General performance of the controller


	Conclusions
	Parameters of mathematical models
	Parameters for Earth
	Parameters for Mars
	Parameters for Titan

	Parameter of n-MPC controller
	Parameters for Earth
	Parameters for Mars
	Parameters for Titan

	Bibliography

