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Abstract

Since the first orbiting explorations, the rendezvous maneuver has become a funda-
mental operation in space missions. The operation consists of a spacecraft alignment
to a specific target point, usually another spacecraft or some debris orbiting in the
space. A successful rendezvous mission usually requires the determination of the
trajectory, the speed, and the timing of the approaching spacecraft to ensure a safe
and accurate approach. In this work thesis, the rendezvous problem is explained
and analysed. Then, a control algorithm that guides an autonomous spacecraft to
a requested position close to the target is proposed. Usually a spacecraft during
the mission could encounter obstacles along the orbit, such as a meteorite to
be dodged along the trajectory. In order to make the rendezvous mission more
realistic, the task is performed including an obstacle like a sphere moving towards
the spacecraft, so that the control algorithm is able to guide the spacecraft along its
trajectory, satisfying the path constraints, and making him reach the target point.
The obstacles are implemented within the optimization problem by augmenting the
cost function with a suitable weighted penalty term that prevents the satellite to
closely approach the obstacle. In the context of the space rendezvous maneuver, the
Nonlinear Model Predictive Control (NMPC) appears as an appealing control tool,
providing an optimal control law in presence of constraints on both input and state.
The NMPC optimal control problem is solved by means of the Pontryagin Minimum
(maximum in the original form) Principle (PMP). Furthermore, a slightly version of
the NMPC, featuring a variable prediction horizon, is presented. The effectiveness
of the two NMPC algorithms are then tested in simulation in a Matlab/Simulink
environment, where the performance of the fixed and variable prediction horizons
controllers are compared.
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Chapter 1

Introduction

Space missions are a critical aspect of human exploration, enabling humans to
study the universe and expand the understanding of the cosmos. The advancement
of space missions has been driven by technological developments, international
cooperation and scientific discoveries.

Moreover, space missions are inherently complex, involving a wide range of
scientific, engineering, and logistical challenges. The success of space missions
depends on various factors, such as the reliability of spacecraft and launch vehicles,
the accuracy of navigation and communication systems, and the effectiveness of
scientific instrumentation.

The first space missions were conducted around the 1960s. Among them, the
Apollo program marked a significant milestone in space exploration, see [1]. The
program’s primary goal was to land humans on the moon. Rendezvous was a
crucial aspect of the Apollo missions, as it involved the alignment and docking of
two spacecraft in orbit around the moon. This was necessary for the transfer of
astronauts and supplies between spacecraft and for the eventual return to Earth.

The first successful lunar rendezvous mission was Apollo 8 in 1968, which
involved the first manned flight to the Moon’s vicinity. The Apollo 11 mission in
1969 marked the first successful landing on the Moon, and subsequent missions
continued to demonstrate the effectiveness of the rendezvous technique in space
exploration.

Since then, rendezvous has remained a critical aspect of space missions. It is nec-
essary for various applications, such as the servicing of satellites and the assembly
of space stations. The development of new technologies, such as autonomous guid-
ance and navigation systems, has enabled more advanced and complex rendezvous
maneuvers, making space exploration safer, more efficient, and more flexible.

In conclusion, the history of initial space missions highlights the importance
of rendezvous as a crucial point in space exploration. From the early manned
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missions to the moon landings and beyond, the success of space missions has
depended on the ability to precisely align and approach spacecraft in orbit. As
space exploration continues to advance, the importance of rendezvous will only
become more significant.

Rendezvous is a fundamental key in space exploration that involves the precise
alignment and approach of two or more spacecraft in orbit. This maneuver is
essential for a wide range of space missions, as explained before. The success of a
rendezvous mission depends on various factors, such as the accuracy of navigation
and guidance systems, the complexity of the spacecraft design, and the effectiveness
of communication protocols.

In recent years, there has been a growing interest in developing advanced ren-
dezvous technologies that can enhance the safety, efficiency, and flexibility of space
missions. These technologies include autonomous guidance and navigation systems,
advanced sensors and imaging techniques, and innovative propulsion systems. As
the demand for space exploration continues to increase, the importance of ren-
dezvous missions and the development of associated technologies will only become
more significant.

The importance of rendezvous lies in its ability to facilitate a wide range of
space activities, from satellite servicing to the assembly of space stations. Here are
some of the key reasons why rendezvous is fundamental in space missions:

• Crew transfer: it enables spacecraft to transfer crew members between vehicles
in orbit, a vital capability for long-duration manned missions.

• Satellite servicing: rendezvous is essential for servicing and repairing satellites
in orbit.

• Cargo transfer: it enables the transfer of supplies and equipment between
spacecraft. This is especially important for resupply missions to the Interna-
tional Space Station (ISS), where cargo vehicles have to rendezvous and dock
with the station to deliver supplies.

• Space exploration: it is crucial for exploration missions, such as those to Mars
and other planets.

In addition to these applications, rendezvous is also crucial for ensuring the safety
of space missions. Accurate and precise rendezvous operations are essential to
avoid collisions and other hazards in orbit.

After the successful completion of initial space missions, there was a need to
improve their efficiency in order to achieve lower life cycle costs. This improvement
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involved various aspects, such as simplified and standardized mission planning
and training, reducing the number of mission support personnel, increasing flight
rates, eliminating extensive flight-to-flight analysis, and eliminating the need for
computing flight-specific trajectory data. Furthermore, in recent years, Rdv opera-
tions have become fundamental in space research for debris removal missions. The
accumulation of space debris poses a significant threat to operational spacecraft,
and rendezvous operations are being developed and utilized to safely remove and
dispose of debris from orbit.

The aim of this thesis is to develop a control algorithm capable of successfully
accomplishing the Guidance and Control task for a wide range of RdV problems,
ultimately achieving precise targeting of a default destination.

In this work, a spacecraft called the "target" with a circular orbit around the
Earth has been utilized, having similar characteristics to the ISS. The target has
the same orbital angular rate and is located at the same distance from the Earth as
the ISS, which is approximately 400-450 kilometers above the Earth’s surface. Due
to this proximity, the analysis focuses on the control system that would be installed
on a hypothetical spacecraft operating in Low Earth Orbit (LEO). The provided
image, sourced from the European Space Agency site [2], illustrates the maximum
range of LEO, which is approximately 1000 kilometers above the Earth’s surface.

Figure 1.1: Low Earth orbit (taken from [2])
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In this context, Model Predictive Control (MPC) plays a crucial role in the
space control environment and holds great potential for various applications in
future space missions. MPC is particularly advantageous for missions characterized
by strong nonlinear dynamics. One of its main strengths is its ability to handle
Multi-Input Multi-Output (MIMO) systems and effectively manage input and state
constraints while optimizing different performance criteria. The key aspect of MPC
design lies in its approach to addressing optimal control problems within a receding
horizon strategy. This strategy involves repeatedly solving an optimization problem
over a finite time horizon, considering the current state of the system and updating
the control actions based on the obtained solution.

To address the challenges posed by nonlinear dynamics, constraints, and non-
convex performance indexes, Nonlinear Model Predictive Control (NMPC) has been
introduced. Thanks to its stability and robustness properties, NMPC is capable of
effectively managing the constraints arising from various maneuvers and mitigating
discrepancies between the model of the actual spacecraft and the predictive models
utilized in the algorithm. The algorithm incorporates the Clohessy-Wiltshire
equations to describe the model.
In order to ensure the simulation of a safe space around the target and to prevent
potential collisions with asteroids or other objects along the planned trajectory,
considering constraints is essential.

Furthermore, one of the main advantages of NMPC is its ability to integrate both
the guidance and control tasks into a single algorithm, allowing for the autonomous
planning of required maneuvers with minimal human intervention. Therefore, in
this paper, a NMPC framework will be utilized for the studied rendezvous missions.

The NMPC optimization process utilizes the Pontryagin Minimum (or Maximum)
Principle, which, under suitable conditions, provides an explicit control law even in
the presence of non-linearity. This is a significant advantage because non-linearity
often makes it challenging to find an explicit solution. By employing the dual
formulation of the optimal control problem, the Hamiltonian scalar function and
the Lagrange (or co-state) variables are introduced, transforming the Optimization
Control Problem into a standard Two-Points Boundary Value Problem. Solving
this problem yields the gains required for the explicit optimal control law.
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1.1 Thesis Outline
Chapter 2 investigates the theoretical background for the GNC problem. It includes
discussions on absolute and relative motion description, coordinate frames and
general characteristics of orbits. Chapter 3 focuses on Nonlinear Model Predictive
Control (NMPC), a powerful and flexible control approach. It covers the formulation
and features of NMPC, with a reference to the Adaptive Horizon NMPC. Chapter 4
describes the application of Pontryagin’s Minimum Principle to solve the algorithm
for the GNC problem. It explores the advantages of this method in dealing with
the control challenge. Chapter 5 delves into mission-specific topics and the software
utilized for the research before to present the simulation results in the sixth Chapter.
Lastly, in Chapter 7, there will be a discussion about the obtained results and
suggestions for potential future works related to the GNC problem.
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Chapter 2

Theoretical Background

2.1 Introduction
This chapter is necessary for the reader to understand the work explained in the
following chapters. There will be a review of the fundamental concepts of orbital
dynamics and the coefficient used. The following theory is taken from [3], [4] and [5].

A S/C can be seen as a rigid body that moves in orbital space. Essentially,
the motion can be divided into translation and rotation. For this reason, the laws
of motion will be described, as well as the various types of reference frames used
among the planets.

2.1.1 Kepler’s law
Kepler around the beginning of the XVII century published a correction of Coperni-
cus’ law, who thought the orbits were circular. Kepler, on the other hand, explained
how the orbits were elliptical and how their velocity varied. The laws are reported
below, from [6]:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during
equal intervals of time.

3. The square of a planet’s orbital period is proportional to the cube of the length
of the semi-major axis of its orbit.

These are the exact laws of Kepler related to a planet orbiting around the Sun, but
they can be applied to any small body orbiting around a star, such as the Earth in
this particular case, see [7].
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• Orbits are elliptical, with the heavier body at one focus of the ellipse. A
special case could be a circular orbit with the Star as center.

• A line drawn from the planet to the satellite sweeps out equal areas in equal
times no matter which portion of the orbit is measured.

• The square of a satellite’s orbital period is proportional to the cube of its
average distance from the planet.

2.1.2 Newton’s law
The laws of Newton form the basis of classical mechanics, describing how a body
can move in space and interact with it. There are three laws of motion, along with
one law of gravitation.

• Newton’s laws of motion

1. A particle remains at rest or continues to move at a constant velocity,
unless acted upon by an external force.

2. The rate of change of the linear momentum mv of a particle is given by
d

dt
(mv) = F (2.1)

– m : particle mass;
– v : particle velocity;
– F : force acting on the particle.

For an object with constant mass , the force will be equal to the mass of
the body multiplied by the acceleration of it:

F = m
dv
dt

= ma (2.2)

3. For any force F12 exerted by a particle 1 on a particle 2, there exists a
force

F21 = −F12 (2.3)
exerted by particle 2 on particle 1 equal in magnitude and with opposite
direction.

• Newton’s law of gravitation:
Every point mass attracts every other point mass by a force acting along the
line intersecting the two points. The force is proportional to the product of the
two masses, and inversely proportional to the square of the distance between
them [8]:

F = Gm1m2r
r3 (2.4)
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– m1, m2 : particle masses;
– r : vector of magnitude r = |r|, the distance that connect the two particles;
– G : 6.67 × 10−11Nm2/kg2 : universal constant of gravitation.

2.2 The Two-Body problem
In order to understand the interplay of forces in space and how bodies and their
gravitational forces interact with each other, it is necessary to explain their behavior.
The simplest case is the interaction between only two bodies, known as the Two-
Body Problem, as shown in the figure below.

Figure 2.1: Two body in a reference frame

As seen in the figure, there are two different masses, denoted as m0 and m1,
with m0 considered greater than m1. These masses are located at points P0 and
P1, respectively, in an inertial frame with origin at O. The distances between the
origin and the masses are represented by vectors r⃗0 and r⃗1. The attractive forces
between the two bodies are shown in blue, with equal magnitudes and opposite
directions. Additionally, there are two external forces represented in red. Here’s a
quick recap of the symbols used in the picture..

• r0 and r1 : positions of the masses;

• r = r1 − r0 : relative position of the masses;

• v0 and v1 : velocities of the masses;

• F0 and F1 : external forces acting on the masses.
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Considering the Newton’s II law and the gravity law it is possible to obtain the
following equations:

v̇0 = Gm1

r3 r + 1
m0

F0

v̇1 = −Gm0

r3 r + 1
m1

F1

(2.5)

Here, r = r1 − r0 represents the relative position between the two masses, and
r = |r| represents the magnitude of the vector. It is important to note that constant
masses have been assumed.

Considering the equation relative to the Center of Mass (CoM):

• v = v1 − v0 (relative velocity)

• rC = m0
m0+m1

r0 + m1
m0+m1

r1 (CoM position)

• vC = m0
m0+m1

v0 + m1
m0+m1

v1 (CoM velocity)

From the previous computations, the following equations can be obtained:

v̇ = −G(m0 + m1)
r3 r + 1

m1
(F1 − m0

m1
F0) (relative motion)

v̇C = 1
m1

F1 + F0

1 + m0/m1
(CoM motion)

(2.6)

The first equation describes the relative motion of the two bodies, while the second
equation represents the motion of the CoM between them. When m0 ≫ m1, the
relative motion equation described below is known as the Restricted Two-Body
Equation.

v̇ + µ
r
r3 = 1

m1
F1 (R2B) (2.7)

Where µ = Gm0 represents the gravitational parameter, which is always associated
with the larger body. For example, when considering a S/C orbiting around the
Earth, the gravitational parameter of the Earth is taken into account.
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2.2.1 Free motion of the restricted two-body problem
As mentioned earlier, the Restricted Two-Body Equation includes an external force
in the second term. When this force is nullified, the problem is referred to as the
Free R2B:

v̇ + µ
r
r3 = 0 (2.8)

Below are the properties of this problem, which will be analyzed starting from the
next page :

• the total mechanical energy of the FR2B system is conserved;

• the angular momentum of the FR2B system is conserved;

• the free response of the FR2B equation occurs on a plane;

Energy conservation

Taking the dot product of equation FR2B (2.8) with v:

v̇ · v + µ

r3 r · v = 1
2

d

dt
(v · v) + µ

2r3
d

dt
(r · r)

= d

dt

v2

2 + µ

2r3
d

dt
r2 = d

dt

v2

2 + µṙ

r2 = d

dt

A
v2

2 − µ

r

B
= 0.

(2.9)

This proves the principle of energy conservation:

Ė = 0, E = const (2.10)

• E = v2

2 − µ
r
: total (mechanical) energy per unit mass

• v2

2 : kinetic energy per unit mass

• −µ
r
: potential energy per unit mass.

The total mechanical energy results constant proving the principle of energy con-
servation. From the energy equation is possible to find the corresponding orbital
velocity which results v =

ñ
2µ/r + 2E .

10



Theoretical Background

Angular momentum conservation and planar motion

This time taking the cross product of FR2B equation with r:

r × v̇ + µ

r3 r × r = r × v̇ = v × v + r × v̇ = d

dt
(r × v) = 0. (2.11)

This proves the principle of angular momentum conservation:

ḣ = 0, h = const (2.12)

h = r × v: angular momentum per unit mass.
An important observation is that due to the conservation of specific angular

momentum, denoted as h, the position vector r and the velocity vector v always
remain in the same plane. This plane is referred to as the orbital plane.

It is worth noting that the orbital plane also contains the two masses, m0 and
m1, which are involved in the restricted two-body problem.

2.3 Orbit equation
This time, taking the cross product of the FR2B equation (2.8) with h, the following
equation is obtained:3

v̇ + µ

r3 r
4

× h = d

dt

3
v × h − µ

r
r
4

= 0. (2.13)

The above equality can be established thanks to:

d

dt
(v × h) = v̇ × h + v × ḣ = v̇ × h, (ḣ = 0)

d

dt

3
−r

r

4
= ṙ

r2 r − 1
r

v = 1
2r3

A
d

dt
r2
B

r − 1
r

v

= 1
2r3

A
d

dt
(r · r)

B
r − 1

r
v

= 1
r3 ((r · v)r − (r · r)v)

= 1
r3 r × (r × v)

(2.14)

The above equation (2.13) shows that

v × h − µ

r
r = const

.= µe (2.15)

11
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where e represents the eccentricity vector and e = |e| represents the eccentricity
value.

Taking the dot product of r with the previous equation (2.15):

r · (v × h) − µ

r
r · r = µr · e. (2.16)

Considering the scalar triple product: r ·(v×h) = (r×v) ·h. Moreover (r×v) ·h =
h · h = h2. Thus,

h2 − µr = µre cos θ (2.17)
where θ, the angle between r and e, is called the true anomaly.

Defining p = h2/µ, called the parameter or semilatus rectum, and deriving r
from (2.17), the Orbit Equation (ORE) is obtained:

r = p

1 + e cos θ
. (2.18)

2.4 Orbit Geometry
The ORE

r = p

1 + e cos θ
. (2.19)

represents the equation of a conic section, which is expressed in terms of polar
coordinates r and θ. When θ ∈ [0,2π], the radial distance r traces out a conic.

A conic section, or simply a conic, is a curve formed by the intersection of a
cone and a plane.

Figure 2.2: Intersections of a cone with different planes

12
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Based on the value of the eccentricity, different types of conic sections can be
distinguished:

• circle, e = 0;

• ellipse, 0 ≤ e < 1;

• parabola, e = 1;

• hyperbola, e > 1.

In spite of they are different curves, they have certain common characteristic:

• the origin is located at one focus;

• θ is measured from the point on the conic nearest to the focus;

• p determines the size;

• e determines the shape.

2.4.1 Ellipse

Figure 2.3: Ellipse

An ellipse is the locus of points the sum of whose distances from two fixed points
(foci) is constant (= 2a with a = semi-major axis).
Some usual parameters of an horizontal ellipse are:

• previously explained eccentricity 0 ≤ e < 1;

13
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• semilatus rectum : p = a(1 − e2);

• semi-major axis: a = p/(1 − e2);

• semi-minor axis: b = a
√

1 − e2;

• distance center-focus c = ae.

The two points of the curve corresponding at θ = 0 and θ = π are called re-
spectively periapsis and apoapsis. In the topic of planet orbiting around the
Sun these two points take the names of Perihelion and Aphelion. While, in the
case of a body orbiting around the Earth they take the names of Perigee and Apogee.

Considering the conservation of mechanical energy, it can be expressed at the
Periapsis and the Apoapsis as follows:

E =
v2

p

2 − µ

rp

= v2
a

2 − µ

ra

= constant (2.20)

As seen in [9], thanks to a specific reference frame (centered at a focus with an axis
passing through the Periapsis, another axis perpendicular to it within the orbital
plane, and a third axis in the same direction as h), it becomes possible to have
the velocity and radius vectors perpendicular to each other at the Periapsis (and
Apoapsis).

Therefore, it is possible to write:

h = rpvp = rava = constant, so vp = ra

rp

va (2.21)

Taking the mechanical energy equation (2.20) and using the new formula of vp:

v2
a

2 −
v2

p

2 = µ

ra

− µ

rp

,
1
2

r2
p − r2

a

r2
p

v2
a = µ

rp − ra

rarp
(2.22)

Solving with respect to the kinetic energy at the Apoapsis:

v2
a

2 = µ
rp

ra(ra + rp) (2.23)

Regarding that rp + ra = 2a. It is possible to write:

v2
a

2 = µ
2a − ra

2ara

= µ

ra

− µ

2a
(2.24)

Substituting the obtained value in ε (2.20) the total mechanical energy becomes:

E = v2
a

2 − µ

ra

= − µ

2a
= negative constant (2.25)
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While, the velocity is given by the vis-viva equation:

v =
ó

2µ

r
− µ

a
(2.26)

In the case of circular orbit: e = 0, a = r and v =
ñ

µ/r.

2.4.2 Parabola

Figure 2.4: Parabola

A parabola is the locus of points whose distance from a fixed point (focus) is
equal to the distance from a fixed line (directrix).

For a parabolic orbit e = 1, implying that: ra → ∞, a → ∞;
the total energy is null: E → 0.

From the vis-viva equation, for any orbital position with radius r, we obtain the
corresponding velocity

ve =
ó

2µ

r
(2.27)

This is known as the escape velocity. Escape velocity, also referred to as escape
speed, represents the minimum speed required for a free, non-propelled object to
break free from the gravitational influence of a primary body and ultimately reach
an infinite distance away from it.
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2.4.3 Hyperbola

Figure 2.5: Hyperbola

An hyperbola is the locus of points the difference of whose distances from two
fixed points (foci) is const = −2a. For a hyperbolic orbit, e > 1,implying that the
total energy is positive

E = v2
∞
2 > 0 (2.28)

.
With (r → ∞) it is possible to obtain the following asymptotic quantities:

• angle: θ∞ = arccos −1
e

;

• velocity: v∞ =
ñ

µ/|a|.

A newsworthy comment is that using an hyperbolic orbit near to a moving
planet leads to an increase of the velocity of the S/C without it remains captured
from it. This phenomena is called Hyperbolic passage.
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2.4.4 Parameters review

Table 2.1: Energy and orbital parameters

Energy and orbital velocity

No. Orbit Eccentricity
e

Semi-major
axis a

Energy per unit
mass E

Orbital velocity
v

0 Circular 0 r(t) = a −0.5µ/a < 0 ve =
ñ

µ/r

1 Elliptic <1 >0 −0.5µ/a < 0
ñ

µ(2/r − 1/a)
2 Parabola 1 ∞ 0 ve =

ñ
2µ/r =

√
2ve

2 bis Idem,Earth ve = 11.2km/s

3 Hyperbola >1 <0 −0.5µ/a > 0
ñ

µ(2/r − 1/a)

2.4.5 Coordinate Transformation
The analysis mentioned above is built upon the FR2B equation, which allows us to
derive the position trajectory using the ORE.
Now if integrating the FR2B with null initial components along z axis (z(0) =
0, ż(0) = 0) , the position vector r becomes only dependent on x and y, r(t) =
(x(t), y(t), z(t) = 0). Therefore, for a two-dimensional x-y plane, the coordinates
can be calculated as follows.

From Cartesian to Polar coordinates:

r(t) =
ñ

x2(t) + y2(t)

cos θ(t) = x(t)ñ
x2(t) + y2(t)

(2.29)

Inverse transformation:

x(t) = r cos θ(t)
y(t) = r sin θ(t)
z(t) = 0

(2.30)
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2.5 Reference frames
An essential aspect for comprehending the absolute and relative motion of a satellite
orbiting around a star is the definition of an appropriate reference system. While
various reference systems can be employed in orbital analysis, this work will focus
on the utilization of two specific reference systems.

The reference frames are the following:

• LVLH - local vertical local horizontal frame (non inertial)

• GE - geocentric equatorial frame (inertial)

Local Vertical Local Horizontal Reference frame: origin at P1

• l3 (local vertical): defined along the direction P0 → P1, on the orbit plane;

• l1 (local horizontal): perpendicular to l3, on the orbit plane, sign concordant
with the orbital velocity;

• l2 = l3 × l1 (orbit pole): perpendicular to the orbit plane.

Figure 2.6: LVLH frame
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Geocentric Equatorial Frame: origin at Earth CoM;

• Î: Earth → Sun direction, 1st day of spring (vernal equinox) ;

• K̂: polar rotation axis, positive from the earth CoM towards the North Pole;

• Ĵ = K̂ × Î: on the equatorial plane;

This last type of reference frame is fixed and it does not rotate with the Earth, so
it is also independent on the S/C orbit.

Figure 2.7: GE frame

2.6 Orbital elements
When focusing on elliptical orbits around the Earth, several distinct features can
be identified to describe each orbit. First, two different planes can be distinguished:
the orbital plane and the equatorial plane.
The intersection of these two planes is referred to as the line of nodes. The angle i
between these two planes is known as the inclination.
Additionally, there are other key elements that help characterize an orbit. The
ascending node represents the point where the orbit intersects the equatorial plane.
The angle Ω is defined as the angle from the Î axis of the Geocentric Equatorial
(GE) frame to the ascending node. Similarly, the angle ω is the angle from the
ascending node to the perigee.

Furthermore, ν (also denoted as θ) represents the true anomaly, which is the
angle from the perigee to the spacecraft’s position on the orbit.

The classical orbital elements consist of six quantities. Among them, a, e, Ω, i,
and ω are five independent and constant parameters that fully describe the orbit.
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The sixth quantity, ν, determines the exact position of the orbiting body along the
orbit.

Table 2.2: Orbital elements

Element Name Description Range of values Undefined

a Semi-major axis Size Depends on the
conic section Never

e Eccentricity Shape e = 0 : circle
0 < e < 1: ellipse Never

i inclination

Tilt, angle from K
unit vector to
specific angular
momentum vector h

0 ≤ i ≤ 180 Never

Ω
Right ascension
of the ascending
node

Swivel, angle from
vernal equinox to
ascending node

0 ≤ Ω < 360 If i = 0 or 180

ω
Argument of
perigee

Angle from ascending
node to perigee 0 ≤ ω < 360 If i = 0 or 180

or e = 0

ν True anomaly Angle from perigee to
the S/C’s position 0 ≤ ν < 360 If e = 0

From Position and Velocity to Orbital Elements

The orbital elements provide an equivalent representation of the position and
velocity vectors of a S/C. Once the orbit geometry is fully defined in the GE frame,
the motion of the spacecraft can be completely described by the true anomaly, ν.

It is crucial to understand the conversion between the position and velocity
vectors (r and v) and the six orbital elements, as it allows for a comprehensive
understanding of the orbit.

h = r × v, e = 1
µ

v × h − r
r

, Î
′ = K̂ × (h/h)

a = h2/(µ(1 − e2)), e = |e|, cos i = K̂ · h/h,

cos w = Î
′
· e/e, cos Ω = Î · Î

′
, cos θ = r · e/(re)

(2.31)

Other useful formula are the eccentricity anomaly E and the Period P:

tan E

2 =
ó

1 − e

1 + e
tan θ

2 , P = 2π

ó
a3

µ
(2.32)
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From Orbital Elements to Position and Velocity

In the following, the inverse transformation from the orbital element to the position
and the velocity of the S/C:

p = a(1 − e2), r = p

1 + e cos θ
(2.33)

r and v expressed in the perifocal frame are :

r =

r cos θ
r sin θ

0

 , v =


−
ñ

µ/p sin θñ
µ/p(e + cos θ)

0

 (2.34)

In order to switch from perifocal frame to GE frame it is possible to transform the
coordinates through an appropriate transformation matrix T, developed using the
Euler angles 313.

Transformation PF → GE : T313(Ω, i, ω)
Transformation GE → PF : T313(−ω, −i, −Ω)

(2.35)

2.7 Orbit Perturbations
The orbital dynamics discussed thus far have been based on Kepler’s and Newton’s
laws, focusing on non-perturbed orbits. However, in reality, orbits are subject
to various perturbations caused by different factors. The principal perturbations
are the following, see [5], [3]: gravity potential harmonics perturbing the central
force, due to an irregular mass distribution of planets (e.g., Earth polar flattening);
third-body forces like those due to the Sun or Moon gravity; aerodynamic forces due
to the residual atmosphere and wind at low-Earth orbits; solar or cosmic radiation;
others, such as Earth radiation and tides, and spacecraft thermal radiation; drag
force at low-Earth orbits. It is important to note that some of these perturbations
may take months or even years to significantly impact spacecraft, but for the
purposes of this work, a conservative non-perturbed model will be considered due
to the specific scenario of low Earth orbit and the short duration of the rendezvous
mission, typically lasting more or less one hour.
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2.8 HCW equations
After reviewing the parameters and concepts discussed so far, it should now be clear
to the reader about the key aspect of the relative motion that will be employed in
this work.
The HCW (Hill-Clohessy-Wiltshire) equations are a set of linear differential equa-
tions that provide a description of the relative motion between a small satellite
(chaser) and a larger parent body (target) in a circular orbit. These equations
are widely used in the field of astrodynamics to model the motion of spacecraft
when they are in close proximity to a non-collaborative target and both are on
near-circular orbits. This model is particularly useful for planning rendezvous
maneuvers between the chaser and the target. It allows for the prediction and
analysis of the relative motion dynamics, facilitating the design and execution
of precise rendezvous strategies. Given its relevance and applicability, the HCW
model will also be employed in this work to assist in the planning and analysis of
the rendezvous mission. Now its derivation will be explained.

It can be considered a three bodies system P0, P1, P2 with three different masses
respectively m0 ≫ m1, m2 and three different positions r0, r1, r2 in the inertial
frame R = {O, i1, i2, i3} where the origin O = P0. Considering the assumption on
the forces in the Two body problem the second Newton’s laws becomes:

v̇i =
2Ø

i /=j

Gmj

r3
ij

(rj − ri) + Fi

mi

, i = 0,1,2

rji = |rj − ri|
(2.36)

If these equations will expand they will be of the following form:

v̇0 = Gm1

r3
01

(r1 − r0) + Gm2

r3
02

(r2 − r0) + F0

m0

v̇1 = Gm0

r3
10

(r0 − r1) + Gm2

r3
12

(r2 − r1) + F1

m1

v̇2 = Gm0

r3
20

(r0 − r2) + Gm1

r3
21

(r1 − r2) + F2

m2

(2.37)

Since the CoM is assumed to coincide with the larger body of mass m0, the position
vector r0 becomes zero. Consequently, the gravitational forces between the smaller
bodies with respect to the one induced by the larger body can be neglected. In other
words, it is assumed that each small mass is only subject to the central gravitational
field generated by the point P0 with mass m0. The mutual gravitational interaction
between P1 and P2 is considered to be negligible in this context.
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In this way the two small bodies obey the restricted two-body equations:

v̇1 + µ
r1

r3
1

= 1
m1

F1

v̇2 + µ
r2

r3
2

= 1
m2

F2

(2.38)

Each row of (2.38) describes the motion of each mass in the gravitational field
generated by the big body, regardless the motion of the other mass.

Studying the relative motion between the two small bodies is of great significance
in space applications, particularly in rendezvous scenarios.
So, to properly describe the relative motion between P2 and P1 is essential to define
the relative position r = r2 − r1, with r = |r| and if the orbit of the chief (target)
is Keplerian then F1 = 0 and F = F2. As a consequence, the equation (2.38) can
be rewrite in the following way:

v̇2 = v̇1 − v̇ = − µ

r3
2
(r1 + r) + F

m2
=

= − µ

|r1 + r|3
(r1 + r) + F

m2

(2.39)

From here on out, the inertial frame considered is a perifocal frame built
on the chief S/C Rp0 = {P0, p1, p2, p3}. Instead as non-inertial frame Rp1 =
{P1, h1, h2, h3} is chosen built on the body P1.
Named this two reference frames, the inertial acceleration can be described:

v̇ = v̇h + 2w1 × vh + w1 × (w1 × r) + ẇ1 × r (2.40)

Where v̇h and vh represent respectively the acceleration and velocity vectors in the
Rp1 frame. ẇ1 and w1 represent the acceleration and the angular velocity vectors
of P1 seen in the inertial frame R.

Now, considering the Rh frame constructed as follow
Rh = {P1, h1 = r1/r1, h2, h3 = w1/|w1|} the expression can be rewritten:

r1 = r1h1, rh = r = xh1 + yh2 + zh3 = Hr′

vh = ẋh1 + ẏh2 + żh3 = Hṙ′

v̇h = ẍh1 + ÿh2 + z̈h3 = Hr̈′

Fh = F1h1 + F2h2 + F3h3 = HF′

(2.41)

where r′ = [x, y, z] represents the coordinates of the P2 body in the non-inertial
frame; instead H = [h1, h2, h3] is the matrix which contains the unit vectors of Rh

23



Theoretical Background

frame. It can be observed that the chief orbit is described by the FR2B equation.
Then combining the equations (2.38), (2.39) and the previous one (2.41):

r1 = r1h1, v̇1 = v̇1h1 = − µ

r2
1
h1

v̇2 = − µ

r3
2
r2 + F

m2
= − µ

r3
2
(r1 + r) + F

m2
=

= − µ

r3
2
((r1 + x)h1 + yh2 + zh3) + F1

m2
h1 + F2

m2
h2 + F3

m2
h3

w1 = |w1|h3, ẇ1 = |ẇ1|h3

(2.42)

Now, replacing the results obtained in the equation (2.40) and after some calcula-
tions:

v̇ = v̇2 − v̇1 = − µ

r3
2
((r1 + x)h1 + yh2 + zh3)

+ F1

m2
h1 + F2

m2
h2 + F3

m2
h3 + µ

r3
1
r1h1 =

= v̇h + 2w1 × vh + w1 × (w1 × r) + ẇ1 × r =
= ẍh1 + ÿh2 + z̈h3 + 2|w1|ẋh2 − 2|w1|ẏh1

+ |w1|h3 × (|w1|xh2 − |w1|yh1) + |ẇ1|xh2 − |ẇ1|xh1 =
= ẍh1 + ÿh2 + z̈h3 + 2|w1|ẋh2 − 2|w1|ẏh1

− |w1|2xh1 − |w1|2yh2 + |ẇ1|xh2 − |ẇ1|xh1

(2.43)

Rearranging along the unit vectors directions and writing in function of the
relative accelerations:

ẍ = 2w1ẏ + ẇ1y + w2
1x + µ

r3
1
r1 − µ

r3
2
(r1 + x) + F1

m2

ÿ = −2w1ẋ − ẇ1x + w2
1y − µ

r3
2
y + F2

m2

z̈ = − µ

r3
2
z + F3

m2

(2.44)

The previous equations can be linearized for a small separation between the two
small bodies, r = |r2 − r1| ≪ r1. Using the binomial theorem it is possible to write:

µ

r3
2

≈ µ

r3
1

3
1 − 3 x

r1

4
(2.45)
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Now, considering:

v1 = w1 × r1 at the apsides: v1 =
ñ

µ/a, r1 = a

=⇒ w1 =
ñ

µ/a3 ≈
ñ

µ/r3
1 = constant

w = w1, ẇ = 0

(2.46)

It is worth to note that:
ñ

µ/a3 ≈
ñ

µ/r3
1 only when e ≈ 0. Replacing the previous

results, the HCW equations are obtained:

ẍ = 3w2x + 2wẏ + F1

m2

ÿ = −2wẋ + F2

m2

z̈ = −w2z + F3

m2

(2.47)
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Chapter 3

Nonlinear Model Predictive
Control

3.1 Introduction
As mentioned in the introduction, the algorithm used to control the rendezvous
mission is Nonlinear Model Predictive Control. In this chapter, the reader will
understand why this type of algorithm is one of the best in such situations.

One of the key advantages of NMPC, see [10], [11] and [3], is its ability to
handle nonlinear systems, which are systems that do not follow a linear relationship
between inputs and outputs. This makes it particularly useful for controlling
complex processes that are difficult to accurately model using traditional linear
control techniques. Additionally, it allows for dealing with constraints on variables
and managing the trade-off between performance and command effort.
The control approach involves predicting the behaviour of the system over a finite
time interval, known as the time horizon, using a model of the plant. Subsequently,
the control selects the optimal command input to achieve the best predicted state
for the desired output behavior obtained through an online optimization algorithm.

NMPC can be applied to a wide variety of applications across different indus-
tries. For instance, in the chemical industry, it can be used to control chemical
reactors, distillation columns, and other chemical processes.In the field of robotics,
NMPC is valuable for controlling the motion of robots in various applications. The
automotive industry benefits from NMPC in controlling various systems in vehicles,
including engine management and active suspension systems. Additionally, NMPC
finds applications in the aerospace industry, as demonstrated in this work, among
many other fields.
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These examples serve as just a few illustrations of the numerous applications of
NMPC. Its capability to handle nonlinear systems and optimize control actions
through prediction makes it a valuable tool for enhancing efficiency, reducing costs,
and improving performance across various industries.

3.2 Theoretical formulation
The formulation considers a nonlinear Multiple Input - Multiple Output (MIMO)
system in a general form:

ẋ = f(x, u), y = h(x, u) (3.1)

where x ∈ Rn represents the state vector, u ∈ Rnu represents the command input
vector and y ∈ Rny corresponds to the output vector. In a general form of the
system, the output can be measured. The measurements are collected at each
sampling time Ts, so they are updated in real-time:

x(tk) = Tsk (3.2)

with k = 0,1,2...
At each time t = tk, the state and output of the system are predicted over a
time interval [t, t + Tp]. The prediction is performed by integration of differential
equations of the model starting from initial conditions at time t. Instead, Tp is
called prediction horizon and it is required to be larger than Ts.
At any time τ ∈ [t, t + Tp], the predicted output is a function of time, of initial
state x(t) and the input signal:

ŷ(τ) ≡ ŷ(τ, x(t), û(t : τ)) (3.3)

where û(t : τ) represents the command input applied from initial time t to final
time τ when the prediction is computed. So, û(t : τ) denotes the input signal
within the time interval [t, τ ].

In the picture below, it is evident that within the prediction interval [t, t + Tp],
û(τ) represents an open-loop input. Therefore, it does not rely on the state x(τ).
Instead, it is the predicted state that depends on a certain command input. Con-
sequently, for each input signal, there exists a corresponding pair of predicted
state and output. If the input changes within the prediction interval, the state
and output will also change accordingly. The fundamental concept of predictive
control is to search for the optimal command input for the system throughout
each prediction interval. This approach aims to achieve the best state vector and,
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consequently, the optimal output vector for the mission, while maintaining the
desired behavior of the system.

Figure 3.1: State and input vectors over prediction interval

At each time t = tk, the best input signal û(t : τ) = u∗(t : τ) will be chosen,
such that the prediction

ŷ(τ, x(t), u∗(t : τ)) ≡ ŷ(u∗(t : τ)) (3.4)

will have the desired behaviour for τ ∈ [t, t + Tp]. This means that every prediction
interval the right command input is chosen in order to achieve an optimal output.
This concept of finding the optimal command input can be formalized by using an
objective function, also known as a cost function, with the following form [12]:

J(u(t : t + Tp)) =
Ú t+Tp

t
(∥ỹp(τ)∥2

Q + ∥u(τ)∥2
R)dτ + ∥ỹp(t + Tp)∥2

P (3.5)

where ỹP (τ) .= r(τ)− ŷ(τ) represents the predicted tracking error and r(τ) ∈ Rny

represents the reference to track. The predicted tracking error is the difference
between the reference and the predicted output over a certain time interval.
The input signal u∗(t : t + Tp) is the best pick that minimizes the objective function.
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This minimization occurs every time interval. Regarding the cost function, three
terms can be highlighted:

• ∥ỹp(τ)∥2
Q : the predicted tracking error , that is integrated for all time interval.

This term is being minimized during all the process.

• ∥u(τ)∥2
R : this term allows to manage a trade-off between performance and

command activity.

• ∥ỹp(t + Tp)∥2
P : this term represents the predicted tracking error specifically

at the final time step. Therefore, it is not part of the integrand.

The square weighted norm of a vector v ∈ Rn is defined as follow:

∥v∥2
Q

.= vT Qv =
nØ

i=1
qiv

2
i , Q = diag(q1, ...., qn) ∈ Rn×n, qi ≥ 0 (3.6)

Therefore, the coefficients R, P , and Q play a crucial role in designing the control
system, and their selection will be explained in detail later.
The objective function is not the only aspect to consider when formulating an
optimization problem. It is also essential to impose constraints on variables such
as ŷ(τ) and û(τ). Here are some examples of these constraints:

˙̂x(τ) = f(x̂(τ), û(τ)) x̂(t) = x(t), τ ∈ [t, t + Tp]
ŷ(τ) = h(x̂(τ), û(τ)).

(3.7)

where ŷ(τ) depends on x̂, which, in turn, is influenced by the command input û(τ).
As a result, ŷ(τ) is determined by the model equations based on the specific û(τ)
employed. Moreover, the initial condition of the predicted state corresponds to
the measured state at the initial time t. In NMPC, the differential equation is
integrated over the prediction time interval to obtain the predicted state signal x̂(τ).
Subsequently, the output equation is used to calculate the value of ŷ(τ), which is
then utilized to construct the predicted tracking error within the objective function.
However, when formulating the optimization problem, additional constraints are
necessary to ensure that the variables satisfy the differential equations that describe
the system model. It can be deduced that ŷ(τ) and û(τ) are not independent
variables.
Other constraints on the state, input and output vectors could be:

• x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, τ ∈ [t, t + Tp] for example for obstacles in the path or
collision avoidance;

• û(τ) ∈ Uc, τ ∈ [t, t + Tp] for example for input saturation.
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3.3 Intuitive idea
The intuitive idea of the NMPC controller can be visually represented by the two
picture below. On the left, an example of a prediction interval is depicted, showing
all the possible command inputs and their corresponding output signals. The red
line represents the optimal command input that yields the best output, minimizing
the predicted tracking error. On the right, an illustration showcases the application
of NMPC in obstacle avoidance, where various possible paths to follow are depicted.
The choice of these paths depends on the tuning of the parameters in the objective
function.

Figure 3.2: Intuitive idea Figure 3.3: Obstacle avoidance

3.4 Mathematical Formulation
In this section the mathematical formulation of the NMPC control will be presented.
At each time t = tk for τ ∈ [t, t + Tp] the following optimization problem is solved:

u∗(t : t + Tp) = argmin
u(·)

J(u(t : t + Tp))

subject to :
˙̂x(τ) = f(x̂(τ), u(τ)), x̂(τ) = x(t)
ŷ(τ) = h(x̂(τ), u(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc

u(τ) = u(t + Tc), τ ∈ [t + Tc, t + Tp]

(3.8)

where û(τ) is considered constant during the interval. Ts represents the sam-
pling time, Tc represents the control horizon, Tp denotes the prediction horizon and
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0 ≤ Ts ≤ Tc ≤ Tp. The control horizon is used to reduce the computational load.
Indeed, the optimization problem mentioned above is generally non-convex due
to the non-convex nature of the objective function J and the possibility of having
non-convex sets of constraints Xc, Yc, and Uc. Consequently, efficient numerical
algorithms are required to find solutions to such problems.
In mathematics, a real-valued function is defined as convex if the line segment
connecting any two points on the graph of the function lies entirely above or on the
graph between those two points. Another equivalent definition is that a function
is convex if its epigraph, which represents the set of points lying on or above the
graph of the function, is a convex set. A non-convex function is wavy, with some
’valleys’ (local minima) that are not as deep as the overall deepest ’valley’ (global
minimum).
Thanks to an iterative process, the algorithm begins from an initial point x0. Using
the gradient function, which indicates the direction of maximum variation, the
algorithm explores points in the vicinity of x0 until it finds a minimum. A funda-
mental challenge in this approach is that it is typically impossible to guarantee
whether the discovered minimum is a local or global minimum. This uncertainty
is determined by the choice of the starting point x0. This issue is not specific to
the algorithm used but rather a mathematical problem. Solving a multivariate
nonlinear function is inherently difficult, and the complexity of the problem gener-
ally increases exponentially with the dimension of the decision variable vector. A
local minimum refers to a point where the objective function attains its minimum
value within a neighborhood, while a global minimum represents the point where
the objective function attains its minimum value across the entire domain of the
function.

The optimization problem is non-convex due to the non convexity of the cost
function J or one of the constraints. This means that there can be several minima.
So, the NMPC optimization algorithm cannot guarantee whether the found mini-
mum is global or not. Furthermore, the sets Xc, Yc and Uc can be non-convex. In
the end, the NMPC usually works with a non-convex optimization problem.
Another feature of the optimization problem is that it must be solved online at each
sampling time. In NMPC, it is crucial to have an efficient optimization algorithm
capable of solving the problem within a reasonable time frame. Moreover, due to
the non-convexity, the algorithm must be sufficiently reliable to ensure that the
obtained minimum is sufficiently close to the global minimum, thereby fulfilling
the control objectives.
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3.4.1 Receding control horizon strategy
The Receding Control Horizon principle is a fundamental concept in Nonlinear
Model Predictive Control. The basic idea is that, at each time step, the control
action is computed based on a finite prediction horizon. However, only the first
term of the command input is applied to the system. This process is repeated at
each sampling time, with a new prediction horizon that considers the current state
of the system.
Suppose that, at a time t = tk, the optimal input signal u∗(t : t + Tp) has been
computed by solving the optimization problem (3.8). First of all, u∗(t : t + Tp) is
an open-loop input and depends on x(t) but not on x(τ), where τ > t. Second
of all, if u∗(t : t + Tp) is applied for the entire time interval [t, t + Tp], it does not
provide a feedback action. Therefore, it cannot enhance precision, reduce errors
and disturbance effects, or adapt to a varying scenario.
For this reason the NMPC uses the receding horizon strategy:

1. At time t = tk :

a. compute u∗(t : t + Tp) by solving the optimization problem (3.8);
b. apply only the first input value: u(τ) = u∗(t = tk) and keep it constant

for ∀τ ∈ [tk, tk+1].

2. Repeat steps 1a-1b for t = tk+1, tk+2, ...

where only the first element of the command input is sent to the system.

3.5 NMPC Design and Algorithm

3.5.1 NMPC Algorithm
In the following the general working principle of the algorithm:

1. At time t = tk, for τ ∈ [t, t + Tp], solve the optimization problem

u∗ = arg min
u∈Rnu×m

J(u)

subject to :
˙̂x(τ) = f(x̂(τ), up(τ)), x̂(t) = x(t)
ŷ(τ) = h(x̂(τ), up(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, up(τ) ∈ Uc

up(τ) = up(t + Tc), τ ∈ [t + Tc, t + Tp]

(3.9)

• Open-loop optimal input: u∗
p(τ), ∀τ ∈ [tk, tk + Tp].

32



Nonlinear Model Predictive Control

• Closed-loop control law: u(τ) = u∗
p(tk), ∀τ ∈ [tk, tk+1].

2. Repeat step 1 for t = tk+1, tk+2, ... and so on.

3.5.2 NMPC Design
Control scheme

The typical control scheme in NMPC is as follows. The NMPC algorithm aims
to find the optimal solution to track the reference signal received as input. The
output of the NMPC becomes the input signal for the system plant, which is then
utilized to achieve the desired behavior and output.
Plant:

ẋ = f(x, u), y = h(x, u) (3.10)

Model plant contained in the NMPC block:

˙̂x = f̂(x̂, û), ŷ = ĥ(x̂, û) (3.11)

In the nominal case, the real model and the predicted model are assumed to be
equal, denoted as f̂ = f and ĥ = h. However, in practice, these models are always
different, reflecting the discrepancies between the predicted and actual behavior of
the system.

Figure 3.4: Control Scheme
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Choice of Parameters

Here are the principal parameters of the NMPC algorithm, along with a brief
explanation of how to choose them.

• Tp = A large value of Tp improves the closed-loop stability properties, but a
too large value may result in reduced short-time tracking accuracy.

• Ts = It should be chosen as a small enough value to capture the dynamics of
the system accurately. However, it should not be too small to avoid numerical
problems and slow computations.

• Tc = In many applications, setting Tc to be equal to Ts is sufficient. Small
values of Tc can reduce computational time without significantly impacting
performance.

• m = In many cases, a low value of m is sufficient to achieve satisfactory
behavior. For example, setting m = 1 often works well in various situations.

Choice of Weighted Matrices

As seen in the previous pages, the cost function in NMPC is defined using
three different weighted matrices: Q, P and R. These matrices are related to three
different aspect of the problem. Q is related to the predicted tracking error over
the entire time interval. It quantifies the importance of minimizing the deviation
between the predicted and desired outputs. The Q matrix needs to be positive
semi-definite. P is related to the predicted tracking error at the end of the time
interval. It captures the importance of achieving the desired output precisely at
the final time. The P matrix needs to be positive definite. R is associated to the
control input signal. It represents the cost or penalty on the control effort. The R
matrix needs to be positive definite.
It is convenient to choose these matrices as diagonal, in fact as initial possible
choice can be the following.

Qii =

1, in the presence of requirements on yi

0, otherwise

Pii =

1, in the presence of requirements on yi

0, otherwise

Rii =

1, in the presence of requirements on ui

0, otherwise
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It is worth noting that the matrices are related to the signal norms, and the
norms are related to the energy. Changing the diagonal coefficients means changing
the energy of the associated signals.
So, a trial procedure could involve changing the values of Qii, Pii and Rii until
the requirements are satisfied. Increasing Qii and Pii means decreasing the energy
of xi and yi,respectively, which can help reduce oscillations and the convergence
time. On the other hand, increasing Rii is equivalent to decreasing the energy of
ui, resulting in reduced command effort and energy consumption.

3.6 Advantages and Drawbacks
NMPC has several advantages and drawbacks, as with any control system. Here is
an introduction to some of the key advantages and drawbacks of NMPC:

• Advantages :

i) General and flexible: it can handle complex nonlinear MIMO systems;
ii) intuitive formulation based on optimal concepts;

iii) It manages different constraints and input saturation at the same time;
iv) Efficient management of the performance/ input activity trade-off;
v) It is able to find optimal trajectories, over a finite prediction interval ;

vi) NMPC is competent to compute optimal trajectory and control law
together.

• Drawbacks :

i) There are high on-line computational cost;
ii) There could be found local minima in the optimization problem;

iii) Problems in the case unstable zero-dynamics.

3.7 Adaptive Horizon MPC
As explained before, NMPC plays a key role in achieving the proposed task in
this work. In order to improve the method and make the problem easier to solve
while reducing computational time, the Adaptive Horizon MPC (AHMPC) will be
introduced.

Firstly, Adaptive Horizon Model Predictive Control (AHMPC) is based on the
formulation and assumptions of NMPC as described before. The main difference
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between the two algorithms lies in the modification of the prediction horizon in-
terval. AHMPC is a scheme that allows for varying the length of the prediction
horizon in Model Predictive Control as needed, see [13]. Its objective is to achieve
stabilization with as small prediction horizons as possible, enabling a faster control
algorithm and addressing complicated dynamic processes. The practical reason
behind this is that using a shorter horizon in the terminal cost function will reduce
the dimension of decision variables in the online program.

AHMPC addresses this limitation by adaptively adjusting the prediction horizon
during runtime of the code. It continuously evaluates the system’s performance
and updates the horizon length accordingly to improve control performance. This
adaptive mechanism enables the controller to respond to changes in the system’s
behavior and optimize control actions more effectively.
In addition to the standard requirements of NMPC, which include a terminal
cost that serves as a control Lyapunov function, AHMPC also requires a terminal
feedback that transforms the control Lyapunov function into a standard Lyapunov
function for the closed-loop dynamics within a certain domain around the operating
point. It is not necessary to precisely determine this domain in advance; AHMPC
computes it online and verifies in real-time if the state is within the domain to
assess if stabilization is being achieved.

In this work, the AHMPC is implemented by gradually reducing the prediction
horizon interval by one sampling time each time the algorithm determines the
best command input, starting when the state vector x approaches the target. The
new prediction horizon, denoted as Tpnew , is calculated as the previous prediction
horizon, Tpold

, minus the sampling time Ts:

Tpnew = Tpold
− Ts (3.12)

This reduction in the prediction horizon allows the algorithm to adapt and optimize
control actions more quickly as the system approaches the desired state.
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Chapter 4

Pontryagin’s Minimum
Principle

This chapter will present the Pontryagin’s Minimum (or Maximum) Principle,
which is used in optimal control theory to determine the optimal control inputs for
guiding a dynamical system from one state to another. In this work, this principle
is employed to solve the optimization problem introduced in the NMPC chapter.
However, the procedure will be discussed in the subsequent sections.

As demonstrated in the previous chapters, the NMPC approach involves select-
ing the optimal input signal by solving an optimization control problem. In this
regard, Pontryagin’s Minimum Principle is utilized due to its ability to provide
an explicit control law, which is rarely available. Essentially, the principle intro-
duces the Hamiltonian scalar function and the Lagrange variables, enabling the
transformation of the original Optimal Control Problem (OCP) into a Two Point
Boundary Value Problem. This transformation allows for the determination of
the gains necessary for the explicit control law. The significance of the maximum
principle lies in its simplification of the control problem by maximizing (or min-
imizing) the Hamiltonian, making it more manageable compared to the original
infinite-dimensional control problem.

The advantages of the process used are the following:

i) the gradient of the Hamiltonian with respect to the input vector provides an
efficient explicit strategy for the optimal guidance;

ii) input and state constraints, usually nonlinear, are incorporated within the
OCP by adding penalty functions, see [14];

iii) tuning of the NMPC design parameters requires a minor effort;
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iv) the PMP-based solution eliminates the need for input parameterization, unlike
direct methods such as SQP (Sequential quadratic programming), resulting in
a better accuracy in tracking the reference and improved error cancellation.

As will be shown in the next sections, the PMP is based on certain assumptions
regarding the Hamiltonian function, which are crucial for computing an explicit
control law.

4.1 Problem formulation
This approach is necessary to find an optimal solution for the NMPC, so it is
important to remember the many features described in the previous chapters
regarding the control algorithm.
Firstly, the optimization problem requires input parameterization in order to have
a finite dimension. however, this issue is mitigated when the PMP approach is
used , as it does not require any a-priori parameterization of the control signal.
From this point forward, the implementation of the algorithm will be explained,
with reference to [15] and [16].
It should be noted that Pontryagin’s minimum principle does not always work with
a system in a general form. In fact, the algorithm presented here considers an
affine-in-the-input nonlinear system, which is commonly used due to the fact that
many space models are typically in affine form.

ẋ(t) = f(x(t)) + g(x(t))u(t) (4.1)

where x ∈ Rnx , u ∈ Rnu represent the state vector and the input vector of the
system. It’s implicit that the output coincides with the state vector.
Considering the cost function J (3.5) explained in the previous chapter with the
three diagonal matrices Q = QT ≥ 0, P = PT ≥ 0, and R = RT > 0, where
Q, P ∈ Rnx×nx and R ∈ Rnu×nu .
The optimization problem to solve has the following form:

u∗(t : t + Tp) = argmin
u(·)

J(u(t : t + Tp))

subject to :
˙̂x(τ) = f(x̂(τ)) + g(x̂(τ))u(τ)), x̂(τ) = x(t)
x̂(τ) ∈ Xc, u(τ) ∈ Uc

(4.2)

with XC and UC as state and input sets of constraints.
As explained for NMPC, the receding horizon strategy is also employed in this
context.
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Let be the following assumptions:
Assumption 1 : Let f ∈ C 1(Rnx → Rnx) and g ∈ C 1(Rnx → Rnx).
Assumption 2 : The admissible control set UC ⊆ Rnu is
UC = {u ∈ Rnu : uimin

≤ ui ≤ uimax} , i = 1, ..., nu.
Assumption 3 : The state constraint set is XC = {x ∈ Rnx : C(x) ≤ 0}. Here,
C(x) ∈ C 1(Rnx → R) is generally a non convex function.

Since the state constraints will be incorporated into the cost function as an
appropriate penalty term (which will be explained in more detail later), there
won’t be a significant distinction between the unconstrained and constrained cases.
Therefore, for simplicity, the unconstrained optimization problem will be presented.
According to [17], in order to find the appropriate trajectory x(t) and the optimal
solution u(t), the Hamiltonian scalar function H(x(t), u(t), λ(t)) ∈ C k(Rnx ×Rnu ×
Rnx → R) has to attain its minimum value u = u∗. In the same time the differential
equations (4.1), the time evolution of Lagrangian multipliers λ (called co-variables)
and a set of boundary conditions for optimality, see [18], have to be satisfied.
Keeping implicit the time dependence the Hamiltonian is defined as follow:

H = x̃T
P Qx̃P + uT Ru + λT (f + gu) (4.3)

While the Pontryagin formulation of the NMPC control problem has the form:
(x∗, u∗, λ∗) = argmin

u(·)
H

subject to :
ẋ = f + gu

λ̇ = −∇xHT

xk − x(tk) = 0
λT (tk) = −µT

λT (t + Tp) = 2Px̃P (t + Tp)

(4.4)

From the first two rows of the problem (4.4), it is evident that the dynamics
of both the state and co-state variables are involved. These rows are called the
Euler-Lagrange differential equations. In addition to these equations, the remaining
rows in the problem formulation impose boundary conditions on both the state
and co-state variables at the boundaries of the prediction horizon. These boundary
conditions ensure the continuity of the variables, that cannot be arbitrarily chosen.
For this reason at each time t = tk, xk = x(tk), in order to ensure the continuity
between two successive steps. In the same way the state continuity constraint is
represented by λ(tk) = −µ at t = tk. The Euler-Lagrange equations - describing
the λ time evolution - take the compact form of:

λ̇ = −∇x(H(x, u, λ)) (4.5)
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which, thanks to (4.3), becomes:

λ̇ = −
1
λT ∇x (f(x) + g(x)u) − 2Qx̃p

2T
(4.6)

Instead, in a similar manner, the optimal control law is obtained by minimizing
the Hamiltonian with respect to the input variable u.

u∗(t) = argmin
u(·)

H(x, u, λ) (4.7)

which is equivalent to solve the equation

∇u(·)H(x, u, λ) = 0 (4.8)

In the case of affine-in-input systems, the solution will have the form:

u∗ = −1
2R−1(λT g(x)) (4.9)

where R is the diagonal, constant, square and full rank matrix introduced in the
chapter 3.

By combining the PMP-based NMPC solution in (4.4) with the optimal control
law in (4.9), it becomes evident how the optimal control problem turns in a Two-
Points Boundary Value Problem. As a matter of fact, the differential equations
of state variables, along with the Euler-Lagrange equations and the boundary
conditions described in (4.4), constitute a TPBVP to solve every prediction interval
[t, t + Tp]. The TPBVP is formalized as follows:

ẋ = f + gu

λ̇ = −∇xHT

xk − x(tk) = 0
λT (t + Tp) = 2Qx̃P (t + Tp)

(4.10)

The solution of this problem provides the λ and x variables of the explicit control
law (4.9).

From the different formulas shown above, it is evident that in the optimal
control law (4.9), the input u(τ) depends on λ(τ) and x(τ), whose values change
at each sampling step of the TPBVP over the prediction horizon. Therefore, the
PMP-based NMPC solution does not require a-priori parameterization of the input
signal.
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4.1.1 Input Constraints
In this work, the input is considered bounded linearly, such that
UC = u(t) ∈ Rnu : uimin

≤ ui(t) ≤ uimax , ∀t. So, the optimal control input will be:

u∗ = satUC

3
−1

2R−1(λT g(x))
4

(4.11)

The sat(·) represents the saturation operator and it is applied element-wise way to
the input vector.
In other words, the limitations on the ith component are performed in this way:

u∗
i =



uimin
, if − λigi(x)

2ri
≤ uimin

uimax , if − λigi(x)
2ri

≥ uimax

−λigi(x)
2ri

, otherwise

(4.12)

where ri represents the ith entry of the R diagonal. Instead, uimin
and uimax are

variables chosen based on the problem to solve.
In this work these values represent the maximum acceleration of the thrusters.

4.1.2 Path constraints
There are a lot of methods available to handle state constraints. One common
approach is to relax both state and input constraints by introducing penalty terms,
assuming that the nonlinear system has a well-defined relative degree.
However, in this work, the state constraint is addressed differently. It is replaced
by an appropriate penalty term in the cost functional without making significant
modifications to the algorithm for solving the OCP compared to the unconstrained
case. By doing so, input constraints do not need to be relaxed and can be handled
using the standard PMP.

To incorporate state constraints, an augmented cost function J̃ is constructed
in such a way that when the state approaches the boundary of the forbidden
set, its value increases and becomes larger than the original cost function J,
limC(x,t)→0 J̃ ≫ J .
The approach used to augment the cost function J is by adding a suitable penalty
function k(x). This penalty function aims to prevent the states from approaching
the boundary of the constrained set by assuming a large value, while having a null
(or nearly null) value when the state is far from the boundaries.
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For this reason, the augmented cost function assumes the following form:

J̃(u(τ)) = J(u(τ)) +
Ú t+Tp

t

nØ
i=1

ki(x)dτ (4.13)

where n means the number of state constraints to consider.
The augmented Hamiltonian is represented like this:

H̃(x, u, λ) = H(x, u, λ) +
nØ

i=1
ki(x) (4.14)

After some computations, it can be noticed that the Euler-Lagrange equations
are affect by this type of modification:

λ̇ = −∇x(H +
nØ

i=1
ki(x)) (4.15)

4.2 Gaussian Penalty Function
As mentioned earlier, the state constraints are incorporated as penalty functions
added to the cost function J . This paragraph will demonstrate how the terms k(x)
are composed.

Figure 4.1: Gaussian function example
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The state constraints are handled employing a Gaussian-like penalty function.
In the figure above, an example of the simplest form of such a curve is depicted.
The curve is represented by the equation k(x) = aexp(−bx2), as described in [19].
Here, a and b are parameters to tune by a trial and error procedure. The means of
the two constants are the following: a represents the amplitude of the curve (in
this case it is equal to 1); while b describes the slope of the curve, where a larger
value of b corresponds to a steeper curve.
Instead in this work the state constraint is slight different assuming the following
form:

k(x) = aexp(−bC(x)2) (4.16)

where C(x) represents the equation that describes the object or obstacle that
the S/C has to avoid along the trajectory. In this work, the main objects to be
avoided are represented by spheres. Therefore, the equation implemented for C(x)
will be of the form:

C = d − ∥r(t)∥2 (4.17)

where d represents the sphere radius and r(t) represents the position vector of the
S/C.
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Chapter 5

Rendezvous Mission

Firstly, in this chapter, the main topic of this work, which is the rendezvous mission,
will be explained in detail. The chapter will provide a comprehensive overview of
the rendezvous mission, its objectives, and the underlying principles involved.

Secondly, the chapter will focus on the presentation of the implementation of
the rendezvous mission using Matlab and Simulink programs. These programs
were utilized to conduct the work thesis, and the chapter will delve into the details
of their application in carrying out the research.

5.1 Introduction
A space rendezvous involves a maneuver between two S/Cs that are in different
circular orbits. One S/C is referred to as the target, while the other is the chaser.
The rendezvous problem entails the approach of one S/C to the other.
As shown in figure below [20], the rendezvous process typically consists of several
phases, including phasing, close-range rendezvous, final approaching, and docking.
In the phasing phase, the chaser performs maneuvers guided by the ground telemetry
tracking and command (TT&C) network. These maneuvers aim to align the
navigation sensors of the chaser with the target. The primary objectives of this
phase include adjusting the phase angle between the two S/Cs, minimizing orbital
plane differences, increasing the orbital altitude, and initiating relative navigation.
During the homing phase, the chaser autonomously controls its movement, with the
final position of this phase being designated as P2. This position is a station-keeping
point located a few kilometers away from the target. The key objectives of this
phase are to establish the target’s orbit and reduce the relative velocity between
the two S/Cs.
In the closing phase, the chaser further reduces the relative distance and transitions
its position to P3, which is a station-keeping point situated hundreds of meters
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away from the target.

Figure 5.1: Space rendezvous [20]

This work focuses on analyzing the close rendezvous scenario, where an au-
tonomous spacecraft (S/C) already in orbit approaches a target and ends its
trajectory in a desired position close to the target. During this trajectory, a moving
obstacle, represented as a sphere with its own trail, will be present and implemented
as constraints to be avoided.
The algorithm implemented in this work models the obstacle and predicts its
motion, assuming a uniform rectilinear trajectory. Additionally, the prediction of
the constraint model incorporates additional time to allow the chaser spacecraft to
observe the obstacle at closer proximity and avoid it more easily.
After successfully solving the rendezvous task, an approach to enhance performance
will be implemented by reducing the prediction horizon interval of the control
algorithm. The concept of reducing the prediction horizon has been explained pre-
viously, and no further explanations will be provided. The improved performance
resulting from this modification will be illustrated in the subsequent chapter.

5.2 Control Algorithm

5.2.1 System model
In this section, the models used in the project are explained. Another important
aspect of the project is understanding the distinction between the predictive model
used in the algorithm and the real model. The physical system, known as the
real plant, is composed of two S/Cs. The target follows a circular orbit around
the Earth, while the chaser, initially positioned near the target, adjusts its own
trajectory to align itself with the target.

Consequently, the real plant consists of these two bodies, which can be repre-
sented using the Two-Body Problem formulation. Each body is considered as a
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small body relative to the Earth. The dynamics of the system are influenced by the
gravitational interaction between these bodies and the Earth. Accurately modeling
and understanding these dynamics is crucial for simulating and controlling the real
system in the project.

Indeed, the two models presented below represent the equations of the Two-Body
Problem. The first model corresponds to the target, which is free to rotate around
the Earth along its own trajectory.

The second model represents the chaser, which includes the command input. The
chaser’s trajectory needs to be adjusted in order to reach the target in the desired
position. Therefore, the chaser model incorporates control inputs to facilitate this
trajectory adjustment.

Target Model

ẋ(1:3) = x(4:6)

ẋ4 = −µx1/r

ẋ5 = −µx2/r

ẋ6 = −µx3/r

(5.1)

Chaser Model

ẋ(1:3) = x(4:6)

ẋ4 = −µx1/r + u1

ẋ5 = −µx2/r + u2

ẋ6 = −µx3/r + u3

(5.2)

Where µ represents the Earth gravitational parameter, x = (x1, x2, x3, x4, x5, x6) =
(x, y, z, ẋ, ẏ, ż) represents the coordinates of the S/C in the Geocentric Equatorial
frame. The vector u = (u1, u2, u3) represents the command input vector in the GE
frame. In the end, r represents Euclidean norm (magnitude) of the position vectors
of the S/C raised to the power of three.

r =
3ñ

x2 + y2 + z2
43

(5.3)
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Prediction Model

In contrast to the real plant of the system, the algorithm employs a predictive
model that is not an exact replica but rather an approximation. The implemented
prediction model in the NMPC is based on the Clohessy-Wiltshire equations, which
were derived in the section (2.8). These equations serve as a simplified model
for predicting the relative motion between the chaser and target spacecraft in a
near-circular orbit.

ẍ = 3w2x + 2wẏ + u1

ÿ = −2wẋ + u2

z̈ = −w2z + u3

(5.4)

where u = (u1, u2, u3) represents the command input vector of the NMPC in
the LVLH frame.

Rotation Matrix

As explained, the NMPC and the real system have different models and work in
two different frames. The NMPC model operates with the HCW equations, which
represent the relative motion, and they are considered in the LVLH frame with
the target spacecraft as the origin. On the other hand, in the real system, the
target and chaser are two rockets that orbit the Earth along low orbit trajectories,
meaning they are considered in the GE frame.

Therefore, in order to adapt the two models, a function is needed to transition
between the frames and calculate the components of the relative motion. Based on
these considerations, it is possible to determine the unit vectors of the three axes
and establish the relationship between the two frames using a rotation matrix:

ex = r0

∥r0∥

ez = r0 × v0

∥r0 × v0∥
ey = ez × ex

R = [ex, ey, ez]T

(5.5)
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Where r0 and v0 represent the position vector and velocity vector of the debris
observed in the GE frame, respectively. Thus, R denotes the rotation matrix
constructed in the GE frame to switch the reference system, thereby obtaining the
coordinates in the LVLH frame.
Consequently, by considering the differences, denoted as p for the position vectors
and v for the velocity vectors, between the chaser and the target, it becomes
possible to derive the components of the satellite observed in the LVLH frame.

p = xc(1 : 3) − xt(1 : 3); xrel(1 : 3) = R ∗ p;

v = xc(4 : 6) − xt(4 : 6); xrel(4 : 6) = R ∗ v + xrel(1 : 3) × w;
(5.6)

Where xc represents the state vector of the chaser, xt represents the state vector
of the target, w denotes the angular velocity of the target, and xrel represents the
state vector of the chaser in the LVLH frame. The matrix R is orthogonal, so its
inverse is equal to its transpose.

Below, we have the command input denoted as u, which is intended to be
sent to the chaser in the GE frame. Therefore, the command input of the NMPC
in the LVLH frame will be transposed into the GE frame and then sent to the chaser.

u = RT ∗ urel (5.7)

5.2.2 System Plant
In this subsection, the Simulink plant is presented. The accompanying pictures
depict both the general plant, also known as the Full Plant, and the Real Plant,
which represents the actual system.

The Full Plant consists of a generic NMPC that receives the reference and the
previous state of the system as inputs, and generates the command input to the
system as an output. Additionally, the dynamics of the obstacle are included, and
its position is sent to the NMPC to incorporate its coordinates into the algorithm.
Further explanation of this topic will be provided in the subsequent sections.

On the other hand, the Real Plant showcases the two models of the chaser and
target, along with the two rotation matrix functions. The function labeled as R
takes the target coordinates, calculates the rotation matrix, and converts the input
from the LVLH frame (used by the NMPC) into the GE frame. Similarly, the
function labeled as rot frame takes the target coordinates, computes the position
and velocity of the chaser in the LVLH frame, and subsequently sends them to the
control algorithm.
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Figure 5.2: Full Plant

Figure 5.3: Real Plant

49



Rendezvous Mission

5.2.3 Algorithm Parameters
In the following, a list of tables will be presented, containing the parameters utilized
for the simulations. In the first table, the orbital scenario parameters are listed.
The table includes various parameters related to the Earth, such as the gravitational
parameter used in the models. It is noteworthy that the target is positioned at an
altitude of 6771 [km], indicating a low orbit, and its mean motion is equal to that
of the International Space Station (ISS).

Table 5.1: Orbital Scenario Parameters

Description Value Unit

Earth’s Planetary Const. (µ) 0.39e6 km3s−2

Earth’s Radius (RE) 6371 km

Orbit Radius (r) RE + 400 = 6771 km

Mean Motion (w)
ñ

µ/(r3) = 0.0011 s−1

Here are the parameters related to the initial and reference position and velocity,
presented in the LVLH frame.

Table 5.2: CW Eq. Parameters

Description Symbol Value

Init. Position r0 (−0.5, −0.1,0.3)T km

Init. Velocity ṙ0 (−0.001, −0.008, −0.001)T km/s

Ref. Position rr (0.04,0,0)T km

Ref. Velocity ṙr (0,0,0)T km/s
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Here are the algorithm parameters that indicate the tuning employed to accom-
plish the desired goal.

• Sampling Time Ts = 1 s

• Prediction Time Tp = 60 s

• R-matrix R = 500 × I3×3

• Q-matrix Q = 0.5 × I3×3

• P-matrix P = diag(50,500,1,10,1,1)

• Initial command input u0 = [0,0,0]T

• Initial co-state variables λ0 = [0,0,0,0,0,0]T

• Input saturation constraints umax = 10−5 [5,5,5]T

5.2.4 PMP : Case of study
In this section, all the theory discussed in the fourth chapter will be applied to the
specific case studied in this work.
Therefore, the model employed in the prediction control algorithm is described by
the Clohessy-Wiltshire equations. Consequently, the Hamiltonian, which is the
sum of the integrand function of the cost function J and the multiplication of the
co-state variables and the system, takes the following form:

H(x, u, λ) = uT Ru + x̃T
p Qx̃p + λxṙx + λyṙy

+ λz ṙz + λẋ(3w2rx + 2wṙy + ux)
+ λẏ(−2wṙx + uy) + λż(−w2rz + uz)

(5.8)

As a result, the derivative of the Hamiltonian with respect to the state variables,
which represents the Euler-Lagrange equations, can be expressed in compact form
as follows:

λ̇ = Aλ − 2Qx̃ (5.9)

A =
C

03×3 W
−I3×3 M

D
(5.10)

W =

−3w2 0 0
0 0 0
0 0 w2

 M =

 0 2w 0
−2w 0 0

0 0 0

 (5.11)
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And I represents the identity matrix. The boundary conditions on the co-state
variables, λ = (λx, λy, λz, λẋ, λẏ, λż), are imposed at the end of the prediction
horizon. On the other hand, the boundary conditions on the state variables must
be imposed at the beginning of the interval.

x0 = x(t0)
λ(tF ) = 2Px̃P (tF )

(5.12)

Now, the combination of the predictive model, described by the Clohessy-
Wiltshire equations, and the Euler-Lagrange equations forms the augmented model
utilized in the control algorithm:

ṡ(1:3) = x(4:6)

ṡ4 = 3w2x1 + 2wx5 − λ4

2R1

ṡ5 = −2wx4 − λ5

2R2

ṡ6 = −w2x3 − λ6

2R3

ṡ7 = −3w2λ4 − 2Q1(x1 − yr1) − dery1 − gx

ṡ8 = −2Q2(x2 − yr2) − dery2 − gy

ṡ9 = w2λ6 − 2Q3(x3 − yr3) − dery3 − gz

ṡ10 = 2wλ5 − λ1 − 2Q4(x4 − yr4)

ṡ11 = −λ2 − 2wλ4 − 2Q5(x5 − yr5)

ṡ12 = −λ3 − 2Q6(x6 − yr6)

(5.13)

The factor λi

2Ri
represents the components of the command input. This derive from

u = −λT /2R, which is the optimal command input in this work, due to the matrix
g = [03×3; I3×3].

Another important matter to note is the presence of six terms dery1 , dery2 , dery3

and gx, gy, gz. They represent the constraints on the position components that
guide the S/C to avoid a specific surface. Here are the equations implemented in
the model that describe these constraints.
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∇xk(x) =



−2abrxexp[−b(∥r∥2 − d)2]∥r∥2−d
∥r∥2

−2abryexp[−b(∥r∥2 − d)2]∥r∥2−d
∥r∥2

−2abrzexp[−b(∥r∥2 − d)2]∥r∥2−d
∥r∥2

0

0

0



(5.14)

These equations simply represent the partial derivatives of the Gaussian penalty
functions with respect to the co-state variables. As mentioned earlier, the term
d represents the radius of the sphere. This term is generic because it assumes
different values depending on the specific application.
The first implemented constraint involves a sphere around the target with a radius
of 10 [m]. This constraint is designed to prevent collision with the S/Cs. The
coefficients used to enforce this constraint are a = 1000 and b = 500.
The second constraint is the focal point of this project, which involves avoiding a
moving obstacle during the trajectory. The implementation of this constraint as
part of the predictive model will be discussed in the following sections.

5.2.5 Obstacle Dynamics
As mentioned earlier, to make the rendezvous maneuver more realistic, it is impor-
tant to consider the possibility of encountering obstacles or orbital bodies such as
meteorites along the trajectory. In this work, a moving obstacle, with its own trail,
is implemented to simulate such scenarios. In this case, the obstacle is moving in
the direction of the chaser, and the chaser is equipped to predict its movement and
take evasive action accordingly. The model of the meteorite is incorporated into
the augmented model of the NMPC as state constraints on the co-state variables.
This allows the chaser to be aware of the presence of the obstacle and determine
the appropriate path to avoid it.
The obstacle is represented as a sphere with a radius of 70 meters followed by
another sphere of same size that represents the trail. The bodies follow a uniform
rectilinear motion. The initial conditions for the obstacle are taken from the
unconstrained trajectory of the chaser, ensuring a collision would occur in the
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absence of any avoidance maneuver. The obstacle starts moving from a point that
the chaser crosses, with a velocity equal to that of the spacecraft.

Table 5.3: CW Eq. Parameters

Description Symbol Value

Init. Position p0 (0.3703, 0.2056, 0.1169)T km

Init. Velocity ṗ0 (0.002, −0.0045, 0.002)T km/s

In fact, the model used for the moving obstacle is as follows:

ṗ1 = p4

ṗ2 = p5

ṗ3 = p6

ṗ4 = 0
ṗ5 = 0
ṗ6 = 0

(5.15)

where p = (p1, p2, p3, p4, p5, p6) represents the state vector of the obstacle, p1, p2, p3
denote the position, while p4, p5, p6 indicate the velocities.
The first image below illustrates how the body center is part of the unconstrained
trajectory of the chaser. Without any constraints, a collision would occur between
the two bodies.

Figure 5.4: Collision
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The second picture demonstrates the motion of the obstacle as it approaches
the S/C, starting from the yellow point.

Figure 5.5: Zoom of the collision

After explaining the motion of the obstacle from the perspective of the obstacle
itself, it is important to illustrate the avoidance strategy from the viewpoint of the
S/C.
It should be noted that the spacecraft does not perceive a fixed sphere that changes
its origin at each prediction horizon interval. In the model, both the position
and velocity of the obstacle are considered, enabling the chaser to integrate the
obstacle’s model during each prediction interval. To achieve this, the command
ode23 is used.
The chaser is not only integrating the model of one body, but rather two spheres
to avoid both the immediate presence and the trail of the moving obstacle. Con-
sequently, the chaser will perceive two spheres approaching it. To enhance the
predictive capability regarding the obstacle, the spacecraft integrates the model for
an extended period of time. Therefore, a time increment of ∆t of 5 sec is added to
the prediction time. This approach ensures that the chaser has prior awareness of
the obstacle, allowing sufficient time to avoid any potential collision.
Similarly in [21], the line of code implemented in the model has the following form:

[t, pi] = ode23(@(t, pi)obstacle(t, p), linspace(0, Tp + ∆t, n), p) (5.16)
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Where obstacle represents the model of the object described earlier. The variable
n is an integer that determines the number of divisions within the prediction interval.
This simplifies the implementation of two spheres, with one positioned at the end of
the prediction interval and the other in the middle of it. The variable p represents
the initial condition state vector of the obstacle, and pi denotes the resulting vector
after integration. The constraints applied to avoid collisions with the obstacle
are similar to those used for a general sphere. However, in this case, two spheres
are present, positioned closer to the chaser. To enforce avoidance behavior, the
coefficients a = 700 and b = 5 are employed. These coefficients play a crucial
role in determining the strength of the avoidance behavior, enabling the chaser to
navigate safely around the obstacle while fulfilling its mission objectives.
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Chapter 6

Simulations Results

In this chapter, the simulation results will be presented, beginning without con-
straints and subsequently incorporating the moving obstacle. Finally, the outcomes
with the variable prediction horizon will be presented for a comparison of the two
approaches.

The simulations have been run with the plants explained in the chapter before
with the solver ode2 with FixedStep equal to Tsim = 1.

6.1 Unconstrained Trajectory
The following plots depict the unconstrained trajectory and its components.

6.1.1 Geocentric Equatorial Frame
The results presented below are considered in the Geocentric Equatorial Frame.
These coordinates reveal that the trajectories of the target and chaser spacecrafts
are consistently superimposed. However, the image below is provided to help the
reader comprehend the circular orbit of both S/Cs around the Earth.
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Figure 6.1: Trajectory in GE frame

By zooming in on the initial and final points of the trajectory, it becomes
evident that the distance between the two spacecrafts decreases. Additionally, the
alignment on the z-coordinate is clearly visible.

(a) Zoom Initial point (b) Zoom Final Point

Figure 6.2: Zoom of trajectory
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6.1.2 Local-Vertical-Local-Horizontal Frame
Now, the results are presented in the Local Vertical Local Horizontal (LVLH) frame,
with the target as the origin.
The first plot illustrates the trajectory of the chaser, starting from the red point
and concluding at the green point.

Figure 6.3: Unconstrained Trajectory

6.1.3 Components
The reference point is a specific location, but there is an acceptable tolerance
defined as tol = [0.015; 0.01; 5e − 3] [km] on the position and [5e − 4; 5e − 4; 5e − 4]
[km/s] on the velocity. The time it takes to reach the defined reference zone is:

t = 2700[s] = 45[min] (6.1)

Once this reference zone is reached, the thrusters are deactivated or turned off.
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Figure 6.4: Position Coordinates
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Figure 6.5: Velocity Coordinates

Here are the representations of the command inputs sent from the NMPC to
the system in the LVLH frame. These inputs are divided into three coordinates,
and it can be observed how the S/C reaches the designated zone around 1200 [sec],
gradually reducing its velocity until it comes to a complete stop at 2700 [sec].
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Figure 6.6: Command input

6.1.4 Errors
These plots display the errors, with the left side showing the errors relative to the
position coordinates and the right side showing the errors relative to the velocity
coordinates. These results are calculated by taking the difference between the state
vector and the reference vector for the entire duration of the simulation.
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Figure 6.7: Components errors
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6.2 Constrained Trajectory
From now on, the plots will focus exclusively on the LVLH frame to emphasize the
work thesis centered around obstacle avoidance. In this section, the accomplishment
of the task is illustrated, including the trajectory with the implementation of the
sphere’s motion.

Figure 6.8: Constrained Trajectory

6.2.1 Constraints
The picture below demonstrates how the satellite is able to reach the desired
position without entering the safe zone around the target.
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Figure 6.9: Safe Target
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This plot is generated by calculating the Euclidean norm between the S/C and
the origin of the obstacle. The minimum distance is achieved around 393 [sec],
measuring approximately 87 [m]. As the distance always remains greater than the
radius of the sphere, a collision is successfully avoided.
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Figure 6.10: Obstacle Constraint

In the previous chapter, the collision between the two bodies was illustrated to
help the reader understand the situation. However, in the current scenario, the
satellite is able to continue its trajectory while effectively avoiding the imposed
constraints.

(a) Minimum distance (b) Zoom

Figure 6.11: Obstacle Avoidance
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6.2.2 Components
Now, the coordinates over the time interval are presented. The position coordinates
depict the deviation of the trajectory from the unconstrained path due to the
presence of the obstacle. The most notable difference is observed along the x-
coordinate.
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Figure 6.12: Position Coordinates
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Figure 6.13: Velocity Coordinates
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The plots of the command inputs indicate that the task is successfully accom-
plished in approximately 3860 sec, which is equivalent more or less to 64 min.
This duration is approximately 1000 sec longer than the unconstrained case. The
additional time is necessary for the spacecraft to perform the required maneuvering
and adjustments to safely navigate around the obstacle while reaching the desired
position.
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Figure 6.14: Command Input
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6.2.3 Errors
The errors of position and velocity are displayed in the following plots. These plots
illustrate the discrepancies between the desired values and the actual values of
position and velocity.
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Figure 6.15: Components errors

6.3 Variable Prediction Horizon - Unconstrained
After displaying the complete task plots, the results of the NMPC with a variable
horizon are listed.

The trajectory shown in the picture is similar to the trajectory obtained with the
NMPC, but the time required to reach the target differs. Specifically, the S/C using
the NMPC with a variable horizon achieves the goal in 2500 [sec] (approximately 42
[min]), which is about 200 sec (around 3 [min]) faster than in the initial simulation.
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Figure 6.16: Unconstrained Trajectory with variable Tp

6.3.1 Components
Below are the plots of position, velocity, and command inputs for this simulation.
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Figure 6.17: Position Coordinates
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Figure 6.18: Velocity Coordinates
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Figure 6.19: Command input

Thanks to the command inputs, it is indeed possible to calculate the energy of
the signal over the time interval, referred to as the total impulse. By integrating
the command inputs over time, the total impulse can be determined, providing
insights into the overall energy expenditure of the system.
The total impulse calculated in the variable prediction horizon case is 1.4155e-
05 [km/s], which is lower than the total impulse calculated in the normal case,
which is 1.4583e-05 [km/s]. The value of the total impulse indicates that the
NMPC with variable prediction horizon converges earlier and has a lower energy
consumption compared to other methods. This observation highlights the efficiency
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and effectiveness of the NMPC with variable prediction horizon in achieving the
desired trajectory with minimal energy expenditure.

6.3.2 Errors
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Figure 6.20: Components errors

6.4 Variable Prediction Horizon - Constrained
In this section, the final results are illustrated. The trajectory depicted demonstrates
the alignment of the S/C with the target and the successful avoidance of the obstacle.
In this case, the satellite is controlled by the NMPC with a variable prediction
horizon.

Figure 6.21: Constrained Trajectory
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6.4.1 Constraints
The safe zone around the target and the constraints imposed by the obstacle are
respected, similar to the previous simulations. The trajectory ensures that the
spacecraft maintains a safe distance from the target and avoids any collision with
the obstacle.
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Figure 6.22: Safe Target
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Figure 6.23: Obstacle Constraint
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6.4.2 Components
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Figure 6.24: Position Coordinates
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Figure 6.25: Velocity Coordinates

The plots of the command inputs reveal that the engines reduce effort around
3850 sec, which is 10 sec earlier than the case with the normal NMPC. This means
that in this case, the effort is lower than the csae with NMPC. The total impulse
of this simulation is 2.2054e-05 [km/s], which is less than the total impulse of
2.2087e-05 [km/s] consumed in the simulation with the NMPC.
This is a significant and noteworthy result from these simulations. The ability to
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shut off the engines earlier indicates an improvement in control efficiency and the
achievement of the desired trajectory in a shorter time frame.
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Figure 6.26: Command Input

6.4.3 Errors
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Figure 6.27: Components errors
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Chapter 7

Conclusions

In this thesis, an NMPC control algorithm based on Pontryagin’s Minimum Principle
has been implemented to accomplish the desired rendezvous maneuver. The model
used for the S/Cs was described by the two-body equations. However, the predictive
model used in NMPC was based on the HCW equations. With the algorithm’s
implementation, an S/C was capable of reaching a reference position near the target
while avoiding obstacles along its trajectory. The obstacles were implemented as
state constraints to be avoided. The control algorithm provided the S/C with
information about the position and motion of obstacles, enabling it to take the
necessary precautions to complete the task.
Following this performance, another control algorithm, AHMPC, was employed to
perform the same task. AHMPC was introduced and successfully completed the
maneuver. The results presented in the final chapter demonstrate that AHMPC
reduced the convergence time and, consequently, the total impulse consumed
throughout the maneuver. The differences were more evident in the unconstrained
case, where the reduction of convergence time was approximately 200 seconds,
while in the constrained case, it was around 10 seconds. Ultimately, these results
highlight the characteristic of AHMPC to achieve the task with the smallest possible
prediction horizon, enabling a faster control algorithm.

7.1 Further Works
These results have shown how NMPC is able to control S/Cs in their space mis-
sions. After this, some further work could be useful to improve the complexity
and accuracy of future tasks. The main focus of further work could be on the
uncertainty of obstacle coordinates. In this thesis, the position and velocity of the
obstacles are known. Introducing a random error in the algorithm’s knowledge of
them could improve control efficiency, enabling the S/C to avoid a wider range of
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obstacles. Similarly, changing the motion of the obstacles and giving them different
trajectories could also be explored.
In this thesis, AHMPC has been implemented in a descending mode. An improve-
ment could involve expanding the prediction horizon, allowing it to have more
freedom to adapt to the task and complete it. This increased freedom can be
implemented right from the beginning of the task.

As explained, NMPC is able to accomplish the task and handling space mis-
sion. However, the study on the efficiency and accuracy of maneuvers is not yet
complete.
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