
POLITECNICO DI TORINO
Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

Integration of IMU-based Motion
Tracking Algorithms into Wearable

Devices for Human Joint Angle
Estimation

Supervisors

Prof. Danilo DEMARCHI

Ph.D. Fabio ROSSI

M.Sc. Andrea MONGARDI

Candidate

Silvia TRAVERSO

Torino 21 luglio 2023



Abstract

Motion capture technologies generate real-time data that dynamically represents
the position and orientation of a human body in three-dimensional (3D) space.
In the clinical medicine and rehabilitation fields, the electromyography (EMG)
is commonly used for interpreting patients’ muscle conditions but does not give
information about the objective performance of movement execution. For this
reason, this technique can be combined with motion capture technologies to track
patient improvement and guide a therapy. Since the 1980s, many technologies
have been tested to track human motion. Visual marker-based tracking systems
are considered the gold standard in this field. However, they are expensive and
restrict the analysis to a laboratory setting. Inertial measurement units (IMU)
are now at the center of the research to overcome these problems. They are
light, affordable, and wearable devices that combine accelerometers and gyroscopes.
In order to estimate the orientation of an IMU, inertial data can be merged
through sensor fusion algorithms. These algorithms integrate gyroscope data and
correct the value obtained by observing accelerometer data. The resulting IMU
orientation can be expressed as quaternions or Euler’s angles. This thesis project
aims to integrate an IMU-based motion tracking system into the embedded device
designed by Rossi et al. for EMG acquisition. Beyond this analog front-end for
bio-signal acquisition, this board contains an IMU module (LSM6DSO32) and a
microcontroller (AmbiqMicro Apollo3 Blue). Firstly, the Serial Peripheral Interface
(SPI) protocol has been implemented to enable communication between the IMU
and the microcontroller, while the Universal Asynchronous Receiver-Transmitter
(UART) communication protocol has been used to exchange data and commands
between the user interface and the microcontroller. Then, an algorithm to calibrate
the IMU has been implemented in the firmware to improve the accuracy of the
sensors. A Graphical User Interface (GUI) has been implemented in MATLAB
programming language to allow the user to control the system and visualize output
data. A validation protocol has been performed by comparing the angles obtained
from the relative position of two IMUs with those measured by a modular absolute
encoder. Three different Sensor fusion algorithms have been tested and compared
in terms of execution time, hardware memory usage, and errors in angle estimation.
The comparison of angles obtained from each algorithm has been performed for
seven subjects at three different movement velocities and two different starting
positions. Under best conditions, we obtained errors of: 9.11◦ ± 3.78◦ for the
Madgwick algorithm, 8.77◦ ± 3.81◦ for the complementary filter, and 16.00◦ ± 2.78◦

for the Extended Kalman filter, results that are in agreement with what is reported
in literature.
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Chapter 1

Introduction

In clinical medicine and rehabilitation, accurate assessment and monitoring of
patients’ muscle conditions and movement execution play a crucial role in guiding
therapy and tracking patient improvement. While electromyography (EMG) has
traditionally been used to interpret muscle conditions, it does not provide com-
prehensive information about the objective performance of movement execution.
Motion capture technologies have been explored to address this limitation to track
and analyze human motion in three-dimensional (3D) space.

Since the 1980s, various technologies have been developed and tested for tracking
human motion. Visual marker-based tracking systems have emerged as the gold
standard due to their high precision and accuracy. However, these systems are
often expensive and confine the analysis to controlled laboratory settings, limiting
their accessibility and practicality for clinical applications.

Inertial measurement units (IMUs) have recently gained significant attention in
motion tracking research, aiming to overcome the limitations of visual marker-based
systems. IMUs are lightweight, affordable, and wearable devices that combine
accelerometers and gyroscopes to capture the position and orientation of a human
body in real time. Integrating IMUs into rehabilitation therapy monitoring makes
it possible to track and analyze the quality and efficacy of patients’ movement exe-
cution, providing valuable insights for personalized therapy and objective progress
evaluation.

To estimate the orientation of an IMU, sensor fusion algorithms are employed
to merge the data from gyroscopes and accelerometers. The accelerometer data
is combined with gyroscopes’ angular velocity measurements to rectify errors or
drift in the gyroscopic measures. The resulting IMU orientation can be expressed
as quaternions or Euler’s angles, providing valuable information about the body’s
pose and movement.

This thesis project aims to develop a motion tracking system based on IMU
technology, which can be seamlessly incorporated into a specialized embedded device
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Introduction

designed specifically for EMG acquisition. The embedded device, developed by
Rossi et al., includes an analog front-end for bio-signal acquisition, an IMU module
(LSM6DSO32), and a microcontroller (AmbiqMicro Apollo3 Blue). Combining
the EMG acquisition capabilities with IMU-based motion tracking, the system
aims to provide a comprehensive and holistic approach to monitoring and assessing
patients’ muscle conditions and movement execution during rehabilitation therapy.

The primary objectives of this thesis are as follows:
Implement the Serial Peripheral Interface (SPI) protocol to establish communi-

cation between the IMU module and the microcontroller. Implement the Universal
Asynchronous Receiver-Transmitter (UART) communication protocol to enable
data and command exchange between the user interface and the microcontroller.
Develop an algorithm to calibrate the IMU sensors, improving their accuracy and
reliability. Design and implement a Graphical User Interface (GUI) using MAT-
LAB programming language to enable system user control and visualize the output
data. Perform a validation protocol by comparing the angles obtained from the
relative positions of two IMUs with those measured by a modular absolute encoder,
assessing the accuracy of the IMU-based system. Test and compare three different
sensor fusion algorithms in terms of execution time, hardware memory usage, and
errors in angle estimation, aiming to identify the most suitable algorithm for the
given application.

This work is structured into the following chapters:

Chapter 1 provides a comprehensive overview of the concepts necessary to under-
stand the work. It includes discussions on the orientation representation, global
coordinate system, Inertial Measurement Unit (IMU), and sensor fusion. These
concepts lay the foundation for the subsequent chapters.

Chapter 2 focuses on the various methods commonly used to analyze motion.
It explores motion capture technologies and angle measurement technology. This
chapter delves into the principles and techniques employed in motion analysis to
extract meaningful information from captured motion data.

Chapter 3 provides an in-depth examination of the current state of the art in
motion tracking and analysis. It includes a detailed discussion of the devices used
for motion capture technologies, angle measurement technology, IMU devices, and
the integration of IMU and EMG devices. This chapter explores the advancements
and innovations in the field, providing a comprehensive understanding of the current
technology landscape.

Chapter 4 presents a thorough description of the system developed for this work.
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It provides detailed information about the developed system’s design, components,
and functionalities. This chapter serves as a guide for understanding the proposed
solution’s technical aspects and implementation details.

Chapter 5 focuses on discussing, analyzing, and interpreting the results obtained
from the experiments and data collection. This chapter presents a comprehensive
examination of the findings and their implications.

Chapter 6 represents the conclusion of the work and provides a comprehensive
summary of the research study. It reflects upon the achievements, challenges, and
limitations encountered throughout the development of the system. The strengths
and weaknesses of the developed system are critically evaluated, shedding light
on its overall effectiveness and applicability. This chapter also identifies areas
for potential improvement and suggests possible solutions or strategies to address
them.

1.1 Global Coordinate Systems (GCS)
The coordinate system is a fundamental concept. It provides a standardized
reference frame that allows for consistent measurement and interpretation of the
position and orientation of objects or bodies. Five different frames are used to
characterize and analyze human motions [1]. These frames are illustrated in Figure
1.1 and are described as follows:

1. The inertial frame (I): This frame is centered on the Earth and remains fixed
with respect to space. It does not rotate with the Earth’s rotation. One of its
axes is directed towards the Earth’s north pole, while the other two axes lie
in the equatorial plane.

2. The Earth’s frame (E): This frame is also centered on the Earth but rotates
along with its rotation. Its first axis is directed towards the Earth’s north
pole, while the other two axes align with the east and down directions (NED),
respectively.

3. The local coordinate system (L): This frame originates at the center of gravity
of the studied mass. It provides a reference system specific to the object or
subject under consideration.

4. The body frame (B): This frame is associated with the orientation of the
object or subject, represented by a right-handed orthonormal basis (as shown
in Figure 1.1). The object’s orientation is typically described using Euler
angles with respect to the local frame (L).
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5. The IMU frame (W): This frame is fixed relative to the body frame (B),
although there can be misalignment between them. The Inertial Measurement
Unit (IMU) is typically mounted on the object or subject and measures various
motion-related parameters.

Figure 1.1: Frames illustration: Earth frame (E), inertial frame (I), body frame
(B), local frame (L), and work frame (W) [1].

This framework of different frames allows for a comprehensive understanding
of human motion by providing reference systems that capture global and local
perspectives. Each frame serves a specific purpose in analyzing and interpreting
the kinematics and dynamics of human movements.

1.2 Orientation representation

Orientation refers to the spatial position and alignment of an object or coordinates
system with respect to a reference frame. It describes the rotational configuration
of an object or the relative positions of its axes or components. One common
mathematical representation of orientation is rotation matrices, quaternion notation,
or Euler angle.
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1.2.1 Rotation matrices
Rotation matrices are mathematical representations used to describe the orientation
or rotation of an object in three-dimensional space. They are square matrices
with dimensions of 3x3, and they contain elements that represent the rotational
transformation around each axis (X, Y, and Z) of a coordinate system. A general
rotation matrix can be denoted as R and defined as:r11 r12 r13

r21 r22 r23
r31 r32 r33

 (1.1)

In this matrix, r11, r12, r13, r21, r22, r23, r31, r32, and r33 are the elements of the
matrix. Each element represents the cosine of the angle of rotation about a specific
axis [2].

• r11, r12, and r13: Represent the direction cosines of the X-axis of the rotated
coordinate system with respect to the original coordinate system.

• r21,r22, and r23: Represent the direction cosines of the Y-axis of the rotated
coordinate system with respect to the original coordinate system.

• r31, r32, and r33: Represent the direction cosines of the Z-axis of the rotated
coordinate system with respect to the original coordinate system.

To apply a rotation matrix to a vector representing a point or direction, it would
multiply the rotation matrix by the vector using matrix multiplication. Rotation
matrices allow for the transformation of coordinates or vectors from one coordinate
system to another, reflecting the rotation of an object in three-dimensional space.

1.2.2 Euler’s angle
Euler’s angles, named after the Swiss mathematician Leonhard Euler, are a set of
three angles that describe the orientation of a rigid body in three-dimensional space.
They provide a convenient representation for characterizing the rotation of an
object relative to a reference coordinate system. The three angles in Euler’s angles
representation are typically denoted as roll (ϕ), pitch (θ), and yaw (ψ). Each angle
represents a rotation around a specific axis in a defined sequence. The sequence of
rotations is essential, as different sequences can yield different final orientations [3].
Euler’s angles can be defined using an intrinsic or extrinsic rotation sequence. In
the intrinsic sequence, the rotations occur with respect to the body-fixed coordinate
system. In contrast, in the extrinsic sequence, the rotations are applied relative to
the external coordinate system [4]. Conventionally, Euler’s angles are defined using
an intrinsic rotation sequence. The most common sequence is the ZYX convention,
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where the rotation occurs first around the z-axis (yaw), followed by a rotation
around the y-axis (pitch), and finally around the x-axis (roll).

Figure 1.2: ZYX Euler Angle Representation [5]

Mathematically, the rotation matrix R representing the orientation based on
Euler’s angles can be computed as:

R = Rz(ψ)Ry(θ)Rx(ϕ) (1.2)

where Rx(ϕ), Ry(θ), and Rz(ψ) are the individual rotation matrices around the x,
y, and z axes, respectively

The rotation matrices for each axis can be defined as follows:

Rx(ϕ) =

1 0 0
0 cos(ϕ) sin(ϕ)
0 −sin(ϕ) cos(ϕ)

 (1.3)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (1.4)

Rz(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (1.5)

Euler’s angles have both advantages and limitations. They provide an intuitive
representation of orientation and are relatively easy to understand and visualize.
However, they suffer from the problem of gimbal lock, which occurs when the pitch
angle approaches ±90 degrees. In this condition, two rotational axes align, losing one
degree of freedom and ambiguity in the representation. Alternative representations
such as quaternions or rotation matrices are often used in applications where gimbal
lock and ambiguity are critical concerns to mitigate the limitations of Euler’s angles.

6



Introduction

1.2.3 Quaternions
In spatial orientation representation, quaternions have emerged as a popular choice
for accurately describing the orientation of a sensor. Quaternions being four-
dimensional mathematical entities, offer several advantages in terms of stability,
efficiency, and computational performance. They allow for seamless interpolation
and interpolation between different orientations, making them well-suited for
applications involving smooth and continuous motion tracking [6].

A quaternion consists of one real scalar value and three imaginary values.

q = q1 + q2i+ q3j + q4k (1.6)

The letter i,j,k are immaginary number, and follow the rules:

ii = jj = kk = −1 (1.7)

ij = k (1.8)

ji = −k (1.9)

jk = i (1.10)

jk = i (1.11)

kj = −i (1.12)

ki = j (1.13)

ik = −j (1.14)

The order of multiplication is significant.
q values are function of the rotaion axis (n⃗) and the rotaion angle (θ) as shown

in the following equations:

q1 = cos(θ2) (1.15)

q⃗ =

q2
q3
q4

 = sin(θ2)n⃗, (1.16)

q⃗ is usually reffered to the vector component and q1 as the scalar component.
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Operations:

Quaternion operations involve several mathematical operations such as quaternion
multiplication, addition, conjugation, and normalization [6]. These operations allow
us to manipulate and combine quaternions to achieve desired results in representing
rotations and orientations.

• Quaternion Addition:
Quaternion addition combines two quaternions by adding their correspond-
ing components. The symbol oplus denotes it. The addition operation is
performed on the real and imaginary parts of the quaternions separately.
q ⊕ q

′ will result as:

1. the real component : q1 + q
′
1

2. the imaginary components : q2 + q
′
2,q3 + q

′
3,q4 + q

′
4

• Quaternion Multiplication:
Quaternion multiplication combines two quaternions to produce a new quater-
nion that represents their composition. The symbol otimes denotes it. The
multiplication operation follows the Hamilton product rule, defined as:

q ⊗ q
′ = (q1q

′

1 − q2q
′

2 − q3q
′

3 − q4q
′

4) + (q1q
′

2 − q2q
′

1 − q3q
′

4 − q4q
′

3)i
+(q1q

′

3 − q2q
′

4 − q3q
′

1 − q4q
′

2)j + (q1q
′

4 − q2q
′

3 − q3q
′

2 − q4q
′

1)k
(1.17)

• Quaternion Conjugation:
Quaternion conjugation involves negating the imaginary components of a
quaternion. It is denoted by the symbol q. Conjugation is helpful in operations
such as inverse quaternion calculation and rotating vectors by quaternions.

q = q1 − q2i− q3j − q4k (1.18)

• Quaternion Normalization:
Quaternion normalization is the process of scaling a quaternion to have a unit
magnitude. The normalization operation ensures that the quaternion remains
on the unit hypersphere, and it is essential for maintaining numerical stability
in quaternion-based calculations.

qnorm = q

||q||
(1.19)

where q is the quaternion to be normalized and ||q|| represents the norm or
magnitude of the quaternion.
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The norm of the quaternion can be calculated using the the Euclidean norm
as:

||q|| =
√
q1 + q2 + q3 + q4 (1.20)

Once the norm is determined, the normalized quaternion qnorm is obtained by
dividing each component of q by the norm. This operation ensures that the
resulting quaternion has a unit magnitude, making it a valid representation of
orientation without scaling effects.

1.3 Inertial Measurement Unit (IMU)
Numerous branches of study frequently focus on the dynamic position of objects
(robotics [7], bio-logging [8], UAVs [9], intelligent vehicles [10], medical rehabilitation
[11–16], sports learning [17, 18], augmented reality system [19] ).
IMU where first used in the 1930s in aircraft navigation [20]. Their usage was
restricted to bulk applications due to their limitations, specifically in size, cost,
and power consumption.

With the rapid development of Micro Electro-Mechanical Systems (MEMS)
technology, low-cost, compact, and low-power sensors became available, providing
a more comprehensive range of possibilities in the implementation areas of inertial
navigation.

The earlier IMU technology consisted of two types of sensors: accelerometers
(used to measure the inertial acceleration) and gyroscopes (used to measure the
angular rotation), later this technology progressed with a different sensor type:
magnetometer (used to measure the bearing magnetic direction).

1. IMU: This kind of sensor includes an accelerometer and a gyroscope. Typically
each sensor has two (if it can measure data along two orthogonal axes) to
three (if it measures data along three orthogonal axes: X, Y, and Z) Degrees
Of Freedom (DOF). Combining both sensors, the total DOF can range from
four to six [21]. The IMU benefits from being immune to interference from
external magnetic fields. However, due to sensor noise and the issue with
gyroscope drift, relying solely on an accelerometer and gyroscope may not be
sufficient to meet measurement accuracy in estimating the object orientation.

2. Magnetic-Inertial Integrated Measurement Unit (MIMU): This kind of sensor
includes an accelerometer, a gyroscope, and a magnetometer, commonly all in
tri-axial mode to get measurements in a total of nine DOF [21]. This type of
sensor is good for dynamic orientation estimation in the short and long run,
especially when there are fewer drift errors. However, the accuracy may be
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impacted due to the magnetic field disturbance, particularly if the MIMU is
used in an environment surrounded by ferromagnetic metal [22].

Several factors must be considered when deciding which type of sensor to use,
based on the final usage and tolerance [21]:

1. Package Size: Many products require the sensor to be compact and light to
fit the product and have good mobility.

2. Data Accuracy: Some applications only require a limited range of measure-
ments and can tolerate accuracy within a specific range.

3. Response Rate: A suitable sensor should have a fast response rate

4. Degree of Freedom: The DOF determines the number of independent pa-
rameters in a system. The number of DOF varies depending on the type of
sensors used in the device and the number of axes each sensor will measure.
Generally, having more DOF provides additional data and information about
the system’s motion or configuration. This extra information can lead to
a more comprehensive understanding and better estimation of the system’s
state.

1.3.1 Accelerometer
An accelerometer can be modeled as a second-order spring-mass-damper system
(Figure: 1.3).

Figure 1.3: Model of accelerometer [23]
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with acceleration (a) applied to a mass (m) suspended by a string. The string
is characterized by a spring constant (k) and a damping (b). The force applied on
the mass is given by:

F⃗applied = ma⃗ (1.21)

In the system, forces exerted by springs and damping can be defined as:

F⃗spring = −kx⃗ (1.22)

F⃗damping = −b⃗̇x (1.23)

Using Newton’s second law, we get:

F⃗applied + F⃗spring + F⃗damping = m⃗̈x (1.24)

m⃗̈x+ b⃗̇x+ kx⃗ = F⃗applied = ma⃗applied (1.25)

Equation 1.26 is the transfer function obtained for this system.

H(s) = x(s)
a(s) = 1

s2 + b

m
s+ k

m

= 1
s2 + ω0

Q
s+ ω2

0

(1.26)

Where Q is the quality factor, and ω0 is the resonance frequency.

ω0 =
ó
k

m
(1.27)

Q = mω0

b
(1.28)

Given that the accelerometers work in the low frequency domain

x

a
∼ m

k
= 1
ω2

0
(1.29)

From this equation, it is clear that there is a tradeoff between bandwidth and
sensitivity.

We need a high resonant frequency to have a wide sensing bandwidth, which we
can achieve by reducing the proof mass size and increasing the springs’ stiffness.
However, this reduces the device’s sensitivity.

Accelerometers are typically described by their Brownian noise, sensitivity,
resolution, frequency response, cross-axis, range, shock resistance, and sensitivity
[24].
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Brownian Noise

It represents the minimum achievable resolution of an accelerometer. Its equation
is given by:

B =

öõõô a2
n

∆f =
√

4 ·Kb · Tb

m
=

ó
4 ·Kb · Tw

m ·Q
(1.30)

where ∆f is the Bandwidth, Kb is the Boltzmann constant, an is the Brownian
equivalent acceleration noise and T is the absolute temperature in Kelvin

Sensitivity

An accelerometer’s sensitivity is the output voltage value generated per unit input
acceleration in g. It is expressed in mV/g. In a triaxial accelerometer, the axial
sensitivities are denoted by XS, YS, and ZS and are independent along the X, Y,
and Z axes.

Xn = Outpunt V oltage generated(mV )
input acceleration along n− axis(g) (1.31)

Cross-Axis Sensitivity

Cross-Axis Sensitivity is usually expressed as a percentage of the sensitivity, and it
refers to the output voltage generated by an acceleration orthogonal to a sensitive
axis. The Cross-Axis Sensitivity along the n-axis due to the Y-axis is given by:

(Xn)AY = Outpunt V oltage generated(mV )
input acceleration along Y − axis(g) (1.32)

Dynamic Range

The accelerometer’s dynamic range is the maximum dynamic acceleration value
that can be assessed accurately. It is expressed in ′g′.

Frequency Response and the Bandwidth

This parameter describes how the accelerometer’s sensitivity changes as the fre-
quency changes.
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Types of Accelerometers

Depending on the transduction mechanism employed to convert the proof-mass
shift due to acceleration into a measurable signal, we can have different types of
Accelerometers, summarized in Figure 1.4.

Figure 1.4: Advantages and disadvantages of various types of accelerometers [23]

1.3.2 Gyroscope
A gyroscope is a device used to measure angular velocity. It consists of a spinning
rotor that exhibits the property of angular momentum. The gyroscope’s principle
of operation is based on the conservation of angular momentum.

The rotor is mounted on a set of gimbals that allow it to rotate freely in three
axes. When the gyroscope experiences a change in orientation or angular velocity,
the resulting gyroscopic effect causes the rotor to resist this change due to its
angular momentum. This resistance creates a torque that can be measured and
utilized for various engineering applications.

Gyroscopes can be implemented using different technologies, such as mechanical,
fiber-optic, or MEMS gyroscopes. Each technology has advantages, limitations,
and specific engineering considerations depending on the application requirements.
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All MEMS gyroscopes with vibrating elements transfer energy caused by Coriolis
acceleration between two vibration modes (Figure 1.5).

Figure 1.5: particle of mass m moving in space with a velocity v (a) ac is the
Coriolis acceleration acting on a moving particle; (b) mass-spring model of a MEMS
gyroscope [24]

Coriolis acceleration refers to an apparent acceleration that occurs due to a
reference frame’s rotation or relative motion.

Coriolis acceleration arises when an object or a particle moves in a rotating or
non-inertial reference frame. As the object moves within this frame, it appears to
experience a force perpendicular to its velocity and the rotation axis of the reference
frame. This force is known as the Coriolis force. The Coriolis force causes the
object to accelerate, and this acceleration is referred to as the Coriolis acceleration
[25].

As illustrated in Figure 1.5, the vibrating mass of the MEMS can move through
two orthogonal mechanical excitation modes. The master equation results are:

m⃗̈y = −kyy⃗ − by
⃗̇y + F⃗Drive (1.33)

Where ky is the elastic stiffness, by is the damping coefficient and FDrive is the
applied force.

And
m⃗̈z = −kz z⃗ − bz

⃗̇z + F⃗z (1.34)

Where kz is the elastic stiffness, bz is the damping coefficient and Fz is the Coriolis
force defined as:

F⃗z = |2mΩ⃗ × v⃗| (1.35)
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The displacement of mass m along the z direction is governed by the following
equation:

∆z = 2Ωx
Fz

m

Qy

ωy

1ó
(ω2

y + ω2
z)2 + (ωyωz

Qz

)2
(1.36)

Qy is the quality factor, and ωn is the resonance frequency of the driving mode
along n.

The sensitivity of a gyroscope refers to its ability to detect and respond to
angular velocity or rotational motion. It measures how effectively the gyroscope
converts angular velocity into an electrical or mechanical output signal.

As shown in Equation 1.36, the sensitivity of the MEMS gyroscope can be
improved by matching the resonant frequencies ωy and ωz, and by a decrease of
friction (e.g., by creating an under vacuum operating environment).

Gyroscopes are typically characterized by the following issues: Angle Random
Walk (ARW), Bias Offset Error, Bias Instability, Temperature Sensitivity, Shock,
and Vibration Sensitivity [24].

Angle Random Walk (ARW)

A broadband white noise element, characterized by random fluctuations, is always
present in the output of a gyroscope. The ARW parameter describes the magnitude
of the noise element’s error and can be evaluated using the Allan Variance technique.
The Allan Variance is a statistical method used to analyze a gyroscope’s stability and
noise characteristics. It involves dividing the gyroscope’s output data into subsets
of varying time intervals and calculating the variance of the differences between
successive measurements within each subset. By plotting the Allan Variance
against the averaging time, the gyroscope’s noise properties, including the ARW,
bias instability, and other noise parameters, can be analyzed and characterized.
ARW, typically expressed in units of radians per root hour (rad/

√
hr) or degrees

per root hour (◦/
√
hr), represents the standard deviation of the random noise

component per square root of time [26].

Bias Offset Error

The sensor output of a gyroscope can have a non-zero value even when no rotation
is applied to the gyroscope. This non-zero output represents the Bias Offset
Error, which indicates a systematic error in the gyroscope’s measurements. It
is commonly expressed in units such as degrees per second (◦/s) or radians per
second (rad/s). The Bias Offset Error is an inherent characteristic of the gyroscope
and can be influenced by factors such as manufacturing tolerances, temperature
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variations, and aging effects. It is typically specified at a reference temperature,
often as 25◦C. Although the Bias Offset Error can introduce inaccuracies in the
gyroscope’s measurements, it is considered a relatively plain error to compensate for
or calibrate. Accurately determining the Bias Offset Error through calibration or
estimation techniques can correct this error and enhance the gyroscope’s accuracy
and reliability in measuring rotational motion.

Bias Instability

Bias Instability is one of the most crucial factors to consider, particularly for long-
term acquisition applications. It characterizes the instability of the Bias Offset of
a gyroscope under constant temperature and ideal environmental conditions. Bias
Instability refers to the gyroscope’s tendency to exhibit minor, random variations
in its output when subjected to constant input, even without external factors such
as rotation. Bias Instability is typically expressed as a root-mean-square (RMS)
value in units such as degrees per hour (◦/hr) or radians per second (rad/s). It
represents the magnitude of the fluctuations in the Bias Offset over an extended
period. The lower the Bias Instability value, the more stable and reliable the
gyroscope’s measurements are over time. Various factors, including manufacturing
tolerances, temperature variations, aging effects, and other environmental factors,
can influence Bias Instability. Minimizing Bias Instability is essential in applica-
tions that require precise and accurate long-term measurements, as it ensures the
gyroscope maintains a consistent and reliable output under steady-state conditions.
Through calibration, compensation techniques, and careful selection of gyroscope
components, it is possible to mitigate the effects of Bias Instability and improve the
overall performance of the gyroscope, particularly in applications where long-term
stability is of utmost importance.

Temperature Sensitivity

Temperature Sensitivity is a measure of the gyroscope’s sensitivity to tempera-
ture variations. It is typically expressed in units such as degrees per hour per
degree Celsius (◦/hr/◦C) or radians per second per degree Celsius (rad/s/◦C).
It represents the rate at which the gyroscope’s performance parameters change
with temperatures, such as bias offset, scale factor, noise characteristics, and other
relevant parameters. Temperature variations can affect the gyroscope’s internal
components, materials, and electronics, causing changes in its performance. Tem-
perature Sensitivity is a critical factor to consider, particularly in applications
where the gyroscope will be exposed to a wide range of temperature conditions.
By characterizing and understanding the Temperature Sensitivity of a gyroscope,
appropriate compensation techniques or temperature calibration procedures can be
implemented to minimize the impact of temperature variations and ensure accurate
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and reliable performance across different temperature ranges. This procedure
improves measurement accuracy and stability, especially when precise temperature
compensation is essential.

Shock and Vibration Sensitivity

Under vibration and shock input, a gyroscope’s Bias offset and gyro noise can
degrade. Vibration and shock introduce mechanical disturbances that can affect
the gyroscope’s internal components and sensing elements, leading to changes in
its performance. The Bias offset, which represents the systematic error in the
gyroscope’s output, can be influenced by vibrations and shocks. Similarly, the gyro
noise, which represents the random fluctuations in the gyroscope’s output, can be
exacerbated by vibrations and shocks, leading to increased noise levels and reduced
signal-to-noise ratio. Addressing the impact of vibration and shock on the gyroscope
is crucial, especially when the gyroscope is exposed to external disturbances or
rumors. It may involve implementing mechanical isolation, damping techniques,
or protective enclosures to minimize transmitting vibrations and shocks to the
gyroscope. This procedure is crucial in applications where precise and consistent
motion sensing is required, and external disturbances are prevalent, ensuring that
the gyroscope can provide reliable performance even in challenging environmental
conditions.

1.4 Sensor fusion algorithms
Sensor fusion is a technique for combining signals from multiple sources better to
understand the system in terms of consistency and accuracy.
This approach aims to estimate the IMU’s absolute orientation concerning a GCS,
typically defined as having a vertical axis aligned with the gravity direction (I).
The first step for obtaining a first approximation of the orientation estimate is to
integrate the kinematics equation that links the angular rate with the orientation
change over time. In the absence of motion, an absolute orientation estimate using
only accelerometer measurements can be used to obtain the initial conditions for
the integration [2].
The estimated orientation is susceptible to drift due to the integration of the
slow-varying bias affecting the gyroscope measurements. The accelerometer mea-
surements can correct this problem, even if they have limitations. Only under
static conditions, the accelerometer’s estimated inclination is highly reliable.
The vast majority of published Sensor Fusion Algorithms (SFAs) can be divided
into two categories: Kalman filters (KF) and complementary filters (CF) [27]
[28]. In the last years, numerous formulations of both categories have been pro-
posed, different in the type of orientation representation (quaternions, Euler angles,
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rotation matrix, and others) and in the strategy to fuse information (algebraic
or optimization) [29–48] Despite numerous research aimed at comparing those
algorithms, the literature remains ambiguous about the expected level of accuracy
associated with MIMU orientation estimation because contradictory results have
been observed ([10, 29, 30, 34, 44, 48–51]). Moreover, the magnitude of errors
obtained in comparison studies is typically more significant than that reported in
the original algorithm studies. Besides this, errors appear highly variable depending
on the experimental setup, algorithm, and commercial device, making it impossible
to generalize the results.

1.4.1 Complementary filter

Figure 1.6: Complementay filter block diagram

Complementary filters are considered the simplest solution for combining mea-
surements to estimate orientation accurately (Figure 1.6). They are derived through
straightforward frequency analysis and are computationally lightweight and easy
to implement [28].

One of the most severe errors affecting its accuracy is bias drift. The bias drift,
which has nonlinear characteristics, causes the integration result to drift away from
the proper attitude as a function of time, quickly making any calculations useless.
This issue is primarily a low-frequency problem.
Conversely, the accelerometer detects centrifugal forces and gravitational force,
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resulting in an incorrect attitude determination. Another possible error source is
a change in quick-forward acceleration. This type of noise typically has a high
frequency. The basic concept of complementary filtering is to combine gyro and
accelerometer outputs to estimate the orientation accurately, compensating the
drift of the rate gyro with a high pass filter and high dynamics of the accelerometer
with a low pass filter. The proper cutoff frequency is used for both sensors. In this
way, the final result has the total bandwidth.

The output quaternion, denoted as q, is obtained by combining the gyro and
accelerometer outputs according to the equation:

q = (1 − α)qω + αqacc (1.37)

The α parameter is chosen based on which of the two sensors I want to prioritize.

When α is close to 0, the gyro measurements are given more weight, and the
orientation estimation relies primarily on the gyro data. This value is beneficial
when the gyro is deemed more reliable or when there is a need for a fast response
to changes in orientation. However, it can be susceptible to bias drift over time, as
gyroscopes are prone to such errors.

When α is close to 1, the accelerometer measurements are assigned more weight,
and the orientation estimation depends mainly on the accelerometer data. This
parameter is proper when there is a need for a stable and drift-free estimation,
as accelerometers are not affected by bias drift. However, accelerometers may be
prone to noise and inaccuracies due to external forces or vibrations.

In addition to complementary filters, another popular approach for enhancing
orientation estimation is the Madgwick algorithm [52]. Developed by Sebastian
Madgwick, this algorithm builds upon the principles of complementary filtering
while incorporating sensor fusion techniques to improve accuracy and stability
further.
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Madgwick filter

Figure 1.7: Madgwick filter block diagram

Madgwick filter uses accelerometer data in an analytically derived and optimized
gradient-descent algorithm to quantify the direction of the gyroscope measurement
error [52] .

Essentially, gyroscope estimates of orientation are used as accurate representa-
tions in a short time and quicker movements. In contrast, accelerometer data are
used as accurate directions to compensate for long-term gyroscope drift through
integration.
From the gyroscope, the rate of change of quaternion is obtained with numerical
integration [53].
An orientation rate of change is obtained by the accelerometer data using a Gradient
Descent algorithm to compute the minimum of the objective function

f(q,E d,S s) = q∗ ⊗E d⊗ q −S s (1.38)

where
Ed =

è
0 dx dy dz

é
(1.39)

Ss =
è
0 sx sy sz

é
(1.40)

and q is an orientation that aligns any predefined reference in the Earth frame with
the sensor frame’s. Contributions from the accelerometer and the gyroscope are
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then summed
qt = qt−1 + (q̇gyr − βq̇acc) · δt (1.41)

Where q̇gyr is obtained from the gyroscope, q̇acc is obtained from the accelerom-
eter, δt is the sampling period, qt−1 is the last orientation, and β is an adjustable
parameter representing the gyroscope measurement error expressed as the magni-
tude of a quaternion derivative.

This filter’s innovative features are:

1. only one adjustable parameter, its low value gives the gyroscope measurements
greater weight.

2. It is based on an optimized and analytically derived gradient descent algorithm,
enabling performance even at low sampling rates.

The sources of error include signal aliasing, sensor noise, calibration errors, quanti-
zation errors, sensor miss-alignment, and frequency response characteristics [52].
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1.4.2 Kalman filter

Figure 1.8: Kalman filter block diagram

Kalman filters offer highly accurate orientation estimation and are used in
various commercial IMUs [54]. They can accurately estimate orientation in the
presence of significant noise sources, such as constant acceleration. On the other
hand, Kalman filters are computationally expensive, which might increase hardware
costs and latency. They are also challenging to implement. Kalman filter consists
of two steps:

1. Prediction step: The system state and the error covariance term is projected
forward using the system process model.

2. Correction step: The error covariance calculates a Kalman gain. The predicted
state is updated as the difference between the measured state and itself
multiplied by the Kalman gain. The Kalman gain is a method of weighing
how much the measured values should be trusted compared to the predicted
values. If it were a vector of ones, the resulting state would be the same as
the purely measured state, and the filter would no longer be recursive. At the
same time, if it were a vector of zeros, the resulting state would be identical
to the predicted state and completely disregard the measurement. Finally, the
error covariance is updated by using Kalman gain information.

This filter is based on two important assumptions:
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1. The model is Gaussian

2. All models are linear

If these two hypotheses are correct, Kalman filters provide optimal estimation;
if the model is nonlinear, Extended Kalman filters should be used. This filter
performs local linearization at each step, using a Taylor approximation of the
nonlinear model to convert it into a linear one.

The main idea behind the Taylor approximation is to approximate a function
by using its first-order derivative (gradient) and higher-order derivatives (Hessian
matrix) evaluated at a specific point.

The linearization process involves selecting a reference point (usually the pre-
dicted state) and computing the derivatives of the nonlinear function at that point.
These derivatives provide information about the local behavior of the function
and are used to construct a linear model that approximates the original nonlinear
model.
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Chapter 2

Biomechanic application in
rehabilitation

Biomechanics plays a crucial role in understanding biological systems by applying
mechanical principles. In modern society, the biomechanics of injury, trauma, and
rehabilitation has gained significant importance. A key aspect of biomechanics
is measuring, evaluating, and assessing human motion. Motion analysis and
electromyography (EMG) are fundamental techniques for describing and evaluating
human movement.

EMG is a diagnostic tool to assess the electrical activity generated by skeletal
muscles. It provides valuable insights into muscle function, activation patterns,
and neuromuscular control. EMG is widely employed in clinical and research
settings to evaluate muscle performance, diagnose neuromuscular disorders, and
guide rehabilitation interventions.

During an EMG assessment, small surface or needle electrodes are placed on the
skin above the muscles of interest. These electrodes detect and record muscle fibers’
electrical signals during contraction and relaxation. The recorded signals, known
as electromyograms, offer valuable information about muscle activation patterns,
muscle recruitment, and the timing and intensity of muscle contractions [55].

EMG enables the assessment of various aspects related to muscle function and
movement. It aids in identifying muscle weakness, muscle imbalances, abnormal
muscle activity, and muscle fatigue. Moreover, EMG signals can be analyzed to
determine the timing and coordination of muscle activation, providing insights into
motor control and movement patterns.

In rehabilitation, EMG is frequently used to assess muscle function before
and after interventions such as exercise programs, physical therapy, or surgical
procedures. By monitoring changes in EMG activity, therapists can objectively
evaluate the effectiveness of treatments and track patients’ progress over time [56].
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2.1 Motion catpure technologies
Human motion analysis is the low level-segmentation of the human body into
segments connected by joints. In the clinical medicine and rehabilitation fields,
motion capture technologies are becoming very popular for measuring the objective
performance of the body. Different technologies and techniques have been developed
to capture motion Figure 2.1.

Figure 2.1: Human motion tracking classification based on sensor technologies

2.1.1 Visual tracking systems
Optical sensors (as cameras) are frequently used for motion tracking. Those tech-
nologies can be divided into marker-based and marker-less technology, depending
on whether they need the application of indicators attached to body parts.

Marker-based visual tracking systems

This technology uses cameras and reflective markers placed on the subject’s body
to track human movements [57]. The subject is required to wear the marker-based
system Figure: 2.2, which can be infrared signal emitters (Active) or just small
spheres covered with a reflective material (Passive). Then several synchronized
cameras take 2D coordinates (x, y) of each sensor, and by combining those values
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for different angles, a 3D (x, y, z) position can be obtained. With all these values,
the articular segments of the human body can be rebuilt.
Marker-based technologies are often used as the gold standard for motion tracking
because they are very accurate (errors are around 1mm) [58]. Thanks to this high
accuracy, this system is widely used in medicine [59] [60]. The use of optical sensors
with markers has some significant drawbacks. When the subject is between the
camera and the sensor, occlusion issues occur, need a very long and complicated
calibration and data elaboration, are very expensive, and can be used only in the
laboratory context.

Figure 2.2: Marker-based motion capture technology set-up [61]

Marker free visual tracking systems

In marker-free visual tracking systems, only optical sensors analyze human move-
ment Figure 2.3.
A camera with a million pixels of resolution can accurately detect object movements.
Furthermore, cameras can now be obtained cheaply, and the user can configure the
camera parameters flexibly. That should make using this technology simple. What
is somewhat troubling is that this technique necessitates intensive computation
to perform 3-D localization and error reduction, as well as to reduce data latency
[62]. Some problems related to marker-free visual tracking systems are the complex
environment variability, occlusion, and data volume. Despite much research into
marker-free motion capture, only a partial solution has been found to resolve all
issues with reasonable computational effort and high accuracy.
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Figure 2.3: Marker free motion capture technology set-up [63]

Combination tracking systems

These systems merge marker-based and marker-free visual tracking systems to
reduce errors. The motion templates are constructed using marker-based tracking.
These templates are pre-stored in a database and are the source of truth.
The marker-free technique is used to monitor the patient’s movements. This strategy
necessitates extensive calibration and computing and is still under development
[64].

2.1.2 Non visual tracking systems
Non-visual-based tracking devices have been widely deployed because they do
not suffer from the "line-of-sight" problem, which cannot be adequately addressed
in a residential environment. The "line-of-sight" problem in non-visual tracking
systems for motion capture technologies refers to the limitation of these systems in
accurately tracking objects or body movements when there is an obstruction or
loss of direct visibility between the sensors and the markers on the tracked object.

They employ various technologies, including inertial, magnetic, and mechanical
sensing systems.

Magnetic sensors based tracking systems

Magnetic motion capture systems utilize sensors placed on the subject’s body
to measure the low-frequency magnetic field generated by a transmitter [65]. It
reports information about both position and rotation. Three orthonormal coils
form the transmitter and generate a magnetic field through a current. The three-
orthonormal magnetic-field-strength sensor determines a tracker’s absolute position
and orientation relative to the source. The distance attenuates the strength of
the signal. Pros of this technology are that it is reasonably low cost, has good
performance close to the emitter, is small in size, and lacks occlusion. On the
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contrary, it has some calibrating problems, operates only on one side of the source,
and is affected by ferrous metal and magnetic field [66].

Mechanical sensors based tracking systems

This technology is based on multiple linkage structures and joints. It takes motion
information from the mechanical stresses between the linkages. When the patient
wears the device, movements cause the mechanical structure to change its angle
and strain. The motion is then captured and analyzed based on the angle change
measured by the linkage length [67].

Inertial sensors based tracking systems

IMU devices have emerged as a valuable tool in rehabilitation, offering a portable
and cost-effective solution for motion capture and analysis [67].

IMU devices provide a range of benefits in rehabilitation settings [68]:

1. Portability: IMU devices are typically compact and lightweight, allowing for
easy and convenient use in various rehabilitation settings.

2. Real-time monitoring: IMU devices can provide real-time patient movement
feedback, allowing therapists to make immediate adjustments or corrections
during rehabilitation sessions.

3. Cost-effective: IMU-based motion capture systems are often more affordable
than optical systems, making them more accessible for smaller clinics or
rehabilitation centers.

4. Mobility: IMU devices enable motion capture outside a controlled laboratory
environment, allowing patients to perform rehabilitation exercises in more
natural and functional settings.

However, it is essential to consider some limitations when using IMU devices in
rehabilitation:

1. Limited accuracy: IMU devices may have limitations in terms of accuracy
compared to optical systems. They can be prone to measurement errors and
drift over time, impacting the precision of captured motion data.

2. Sensor placement and attachment: Proper placement and secure attachment
of IMU sensors on the body or equipment is crucial to ensure accurate motion
capture, which can be challenging, especially for patients with limited mobility
or specific conditions.
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3. Sensor interference: IMU measurements can be influenced by magnetic fields or
electromagnetic interference, potentially affecting the accuracy and reliability
of captured motion data.

4. Lack of fine-grained detail: IMU devices may not capture detailed information
about joint angles or small movements as effectively as optical systems, limiting
the level of analysis and assessment in some cases.

It is important to note that the pros and cons may vary depending on the
quality and capabilities of the IMU devices and the specific rehabilitation context
in which they are applied. With ongoing advancements in sensor technology and
signal processing algorithms, IMU-based motion capture systems are constantly
improving, offering valuable insights into patients’ movement patterns, progress,
and outcomes in rehabilitation.
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2.2 Articular angle
In rehabilitation, the assessment and measurement of joint motion play a crucial role
in evaluating patients’ functional status and progress. One essential parameter used
to quantify joint motion is the articular angle. The articular angle is the angular
displacement between two body segments at a specific joint. It quantitatively
measures the range of motion and the relative orientation of adjacent body segments
during movement. The articular angle is typically determined by measuring the
angular change between two reference axes or anatomical landmarks associated
with the joint of interest [69]. To accurately measure the articular angle, various
measurement techniques, and tools can be employed [70]. Traditional methods often
involve goniometers, mechanical devices with arms, and a rotating dial that allows
therapists to manually align the device with the joint’s axes and read the angle
directly. However, these manual techniques are prone to human error and may lack
precision and reliability. With the advancements in motion capture technology, more
sophisticated and precise measurement systems have been developed for assessing
articular angles in rehabilitation. Optical motion capture systems that utilize
infrared cameras and reflective markers placed on the body segments can provide
real-time and three-dimensional measurements of joint angles. These systems offer
high accuracy and reliability, allowing therapists to capture and analyze joint motion
more precisely. In addition to optical systems, IMUs have also been used to assess
articular angles in rehabilitation. The articular angle provides valuable information
for clinicians and researchers in the rehabilitation field. It allows for the objective
assessment of the joint range of motion, the identification of movement limitations
or asymmetries, and the evaluation of treatment outcomes. By monitoring changes
in articular angles over time, therapists can track progress, adjust treatment
plans, and provide targeted interventions to improve joint function and mobility.
It is important to note that interpreting articular angles requires consideration
of individual patient characteristics, such as age, gender, joint pathology, and
functional goals. Normative data for articular angles can serve as a reference to
compare individual measurements and provide insights into the patient’s joint
motion relative to the general population.

2.2.1 Elbow Angle
Elbow movements are described in the literature in terms of flexion and extension
[71].

For everyday activities, elbow angles have been observed from 0 to 150◦ [72].
Angles from 130◦ up to 150◦ are required in tasks related to personal care, for
example, hair care and face washing, as well as eating or drinking. Angles from 0◦

up to 20◦ are necessary for tasks such as reaching and touching one’s toe, which
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Figure 2.4: Elbow angle flexion end Extention

embodies putting on shoes and socks.

2.3 Angle Measurement Tecnology

In rehabilitation medicine, measuring a joint angle is a standard clinical measure-
ment technique used to track patients’ improvement, evaluate the efficacy of care,
and guide therapy. The literature for this purpose includes various techniques,
including analyzing x-ray images [73], encoders [74], universal goniometers [75],
motion capture technologies [76], and inertial sensors [77].
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2.3.1 x-ray fluoroscopy images
This technology allows the real-time visualization of bone motion. The generator
produces an X-ray beam that irradiates the target joint, while an image intensifier
converts the X-ray beam into a light signal (radiograph) [73]. Most x-ray fluoroscopy
systems limit the analysis to laboratory settings, and only restricted motions can
be analyzed.

2.3.2 Encoders
Encoders are the most frequently used strategy for joint angle estimation. We can
distinguish between magnetic rotary encoders [74], and optical rotary encoders [78]
based on the technology applied.

Magnetic encoders

Two pieces are often included in magnetic encoders, one on each link on the joint. A
multipole magnet and a Hall-effect sensor are the two components that go together,
and they need to be tightly connected (within a distance of a few millimeters)
[74]. Magnetic encoders typically produce results for angles with modest resolution
(8–12 bits); they are inexpensive, all-purpose, contactless, highly dependable, and
have long lifetimes. These sensors’ drawbacks include the need for direct-current
magnetic shielding and particular magnet coupling alignment, which can result in
pricey mechanical coupling and packaging design.

Figure 2.5: Magnetic encoder, structural view

32



Biomechanic application in rehabilitation

Optical encoders

Optical encoders have two pieces, one mounted on each connection [78]. The disk
in one part has a window edge that has been precisely cut, and a photodetector
and a light source in the other portion detect the disk’s relative angle.
Optical encoders can typically produce angular outputs with a significantly greater
resolution (up to 30 bits) than magnetic encoders. Although they can be pretty accu-
rate, they can be very costly and more susceptible to the effects of the environment
(vibration, shock, stress).

Figure 2.6: Optical encoder

2.3.3 Universal Goniometer
The goniometer is the most straightforward and versatile tool for determining ROM
in clinical practice.
It was designed around 60 years ago. Thanks to its adaptability, it quickly became
a helpful evaluation tool in physiotherapy and rehabilitation [75]. Nonetheless,
several authors doubt the universal goniometer’s poor intertester reliability. Fur-
thermore, doctors note difficulties linked to this technology, including the need to
hold the goniometer’s arms while taking a measurement, their stabilization through-
out the readout, and problems locating landmarks on the patient’s body. The
inclinometer, often known as the digital version of the universal goniometer, is its
progression. Kolber et al.[79] studied the validity and reliability of active shoulder
elevation employing a digital inclinometer and goniometer. The results support the
interchangeable use of goniometry and digital inclinometer for measuring scaption
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[80].

2.3.4 Optical motion capture systems
Motion capture systems have effectively characterized joint kinematics by monitor-
ing the relative motion of contiguous body segments [76].

These procedures show problems linked to intrinsic marker movements with
the underlying bones. Numerous strategies have been put out to solve this issue.
There are two main approaches: joint constraints, which optimize relative segment
orientation and position [81], and local or segmental methods, which account for
the relative movements of the markers attached to a body segment as a cluster
[82]. The use of these systems is constrained by their high cost, need for controlled
laboratory environments, occlusion problems, and risk of skin movement artifact
[83].

2.3.5 IMU based motion capture systems
MIMU sensors started to become popular to overcome problems associated with
the other motion measurement techniques, initially only to detect two degrees of
freedom movement in controlled activities. Many solutions have been proposed
through the years. At first, it used only accelerometer measurement with the
equation

θ = (180/π arcsin (az/g)) (2.1)

where az is the accelerometer measured along the z-axis.
This solution, however, is reliable only if the subject is still. Dejnabadi et

al. proposed a new method based on gyroscope integration, but the results were
distorted because of the problem of offsets and drift [77].

Another work by Dejnabadi et al. proposed computing the angular displacement
using angular velocity and acceleration measures and switching between the two
sensors following the wave frequency of the body segment [84]. Unfortunately,
obtaining a precise switching frequency resulted to be challenging.

Karol et al. [85] proposed a solution based on three sensors: an accelerometer, a
gyroscope, and a magnetometer. However, this first study was only based on static
acquisition (there was no linear acceleration or global rotation).

Several sensor fusion algorithms currently combine accelerometer, gyroscope,
and magnetometer values to obtain the orientation of the MIMU in space. Joint
angles can be estimated by applying two or more MIMUs on the subject and
computing the relative position. Since all these approaches have limitations, they
are constantly evolving.
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State of Art

3.1 Motion capture technologies
This paragraph presents some of the devices currently used for motion capture on
the market.

3.1.1 Marker-based visual tracking systems
Qualisys is a Marker-based visual tracking system based on passive markers,
composed of 1 to 16 cameras, each producing an infrared light beam [86].
A similar device called VICON was created especially for immersive and virtual
settings [87] [88]. They allow the creation of an optimal system. The user can
choose between four cameras and ten different marker types.
CODA is an active marker device. This system can track 360◦ movements when
up to six sensor units are utilized together. Active markers can be detected by
their placements during a time-multiplexed sequence. CODA has been frequently
used as the gran truth in the medicine field [89]. This device was also used for a
dynamic polyelectromyographic assessment of muscle spasticity and overactivity,
as well as Motion Analysis for Treatment Planning [90].
Another active marker device is Polaris, produced by Northern Digital Inc. [91].
This device is beneficial when lighting is not steady; indeed, it comprises position
sensors, combined with passive or active markers that can be used up to the subject.

3.1.2 Marker free visual tracking systems
Microsoft Kinect is one of the commercial devices used for marker-free motion
analysis. It was first designed for gaming but lent itself to different applications.
Kinect v1 comprises one IR emitter, one IR camera, and one RGB camera that
allows the acquisition of depth and color of the image. Kinect v1 accuracy was
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proved to be affected by sunlight.
A second version of the device (Kinect v2) was released with improved RGB and IR
cameras. In this version, a time-of-flight (TOF) technology is applied to measure
the depth of the schene. This device provides a three-dimensional skeleton of 25
joints. Kinect v2 improved motion capture accuracy compared to the previous
version, especially in outdoor measurements.

Another marker-free device for motion analysis is the one developed by The
Captury. This technology allows the acquisition of up to 3 people with 6 to 24
cameras controlled by a computer. It can be used indoors and outdoors. The
background can be dynamic without specific light conditions.

BioStage’s device made up of 8–18 cameras (120 fps in real-time), is only usable
in a laboratory setting.

Another device available for markerless motion analysis is Shape 3D. This device
is made up of up to 8 high-speed color cameras. It can be used for outdoor
measurement, but optimal acquisition requires a stable background with good
contrast.

Magnetic sensors based tracking systems

The Ascension Technology Corporation in the United States has produced a
magnetic motion capture device called MotionStar 3.2. This system uses dc
magnetic tracking technologies, which are less prone to metallic distortion than
ac electromagnetic tracking techniques. It shows some excellent performance as
translation range: ±3.05m; angular range: all attitude ±180◦ for Azimuth and
Roll, ±90◦ for Elevation; static resolution (position): 0.08cm at 1.52m range; static
resolution (orientation): 0.1RMS at 1.52m range [92].

Another device on the market is the one from Polhemus: LIBERTY Figure 3.1.
LIBERTY is the quickest and most precise electromagnetic tracker currently on the
market. It represents a quantum leap in six-degrees-of-freedom tracking technology
(computed at 240 updates per second), has virtually no latency, and offers a
precision of 0.03RMS for X, Y, and Z position and 0.15◦RMS for orientation,
which is remarkably accurate.
A different device was created by Caruso, which implemented a new compass to
accurately identify the heading, using solid-state magnetic and a tilt sensor [93].

36



State of Art

Figure 3.1: liberty magnetic tracker by Polhemus

Figure 3.2: MotionStar DC magnetic tracker by Ascension Technology Corpora-
tion

Mechanical sensors based tracking systems

Gypsy Torso Figure 3.3 by Meta Motion is an example of a motion capture upper
body solution that provides real-time performance with minimal latency. It can
be connected via serial cable to a PC / laptop. Another Device, also from Meta
motion, is Gypsy 7. It is a total body device with 14 joint sensors and an accuracy
of 0.125 degrees resolution. USB-powered does not need a battery. It weighs 4 Kg.

In 1998 Andersen designed one of the first gloves (the CyberGlove) based on
Mechanical sensor technology [94].
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Figure 3.3: Gypsy 7 Torso Motion Capture System

Figure 3.4: CyberGlove
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3.2 Angle Measurement Tecnology
A summary of the technology used for Angle measurement will be presented in this
paragraph.

3.2.1 x-ray images
Bey et al. validated the accuracy of using x-ray images for determining the
in-vivo shoulder’s glenohumeral joint translations motion [95] based on their three-
dimensional shape and texture. The accuracy of this strategy before was only
tested in cadavers by Bey et al. [96]. They acquired X-ray images at 60Hz while
the subject performed two tasks. After examination, complete bilateral CT images
of the scapula and humerus were obtained. Using a model-based tracking technique,
the biplane X-ray images of the humerus and scapula were used to identify their
3D position and orientation. This technique allows the detection of a bone’s
position and orientation based on optimizing the correlation between two digitally
reconstructed radiographs and the two biplane X-ray images. The motion of the
humerus about the scapula was estimated using all six kinematic parameters (three
rotations and three translations) to characterize joint motion. As a result, they
obtained an accurate and non-invasive technique for joint angle estimation. While
the rotations of the glenohumeral joint observed in this investigation are consistent
with earlier studies, these systems are restricted to static or very slow and limited
ranges of motion, requiring a dedicated laboratory and skilled personnel to run the
equipment.

3.2.2 Encoders
Since encoders are used for many different applications besides medicine, many
different devices are available on the market.
For rehabilitation purposes, encoders have been used mainly in two ways: in digital
goniometers and Exoskeleton.

Dominguez et al. developed a digital goniometer using encoders to measure
the knee-joint angle. They use a contactless magnetic absolute encoder AS5040
(Austria Microsystems ®, USA) [97]. This encoder converts angular position into
binary code with a 10-bit resolution. The encoder is mounted in the middle of two
aluminum bars, Figure 3.5

Lee et al. developed a Lower-Limb Exoskeleton Robot Figure 3.6 for continuously
estimating the knee and ankle angle during walking. Exoskeleton has 1 degree of
freedom for the knee and 2 degrees of freedom for the ankle. To measure angles,
they use a 12-bit absolute encoder (AMT 203-V CUI Inc., Gyeonggi-do, Korea) to
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Figure 3.5: Digital goniometer, using encoder

give values from 0 to 360 degrees. In addition, an IMU device (EBIMU-9DOFV5
IMU) was added to collect accelerometer and gyroscope data.

Figure 3.6: Exoscheletum for knee and ankle joint angle acquisition. a) is the
final device, b) is the 3D modeled device.

3.2.3 Universal goniometer
Universal goniometers are affordable instruments that can also be purchased not
from specific retailers. Figure 3.7 is an example. This device allows the acquisition
of values from 0 to 360 degrees whit a precision of 1 degree. It is made of plexiglass
and is 3mm thick and 30 cm long.

A different technology is used in Halo device 3.8. This digital goniometer can
measure every joint angle while being pocket size. It allows the accuracy of up
to 1 degree in 5 seconds. It can be used with only one hand and record previous
measurement values.
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Figure 3.7: universal goniometer for anthropometric measurements

Figure 3.8: Halo device for anthropometric measurements

3.3 MIMU devices
There are a variety of IMU-based sensors available on the market.

1. MTw Figure 3.9, is a computerized acquisition device that measures the earth’s
magnetic field, acceleration, and 3-D rate of turn created by Movella [98].
Sensors full scale are ±2000deg/s, ±160m/s2, ±1.9Gauss This device has the
dimension of 47 × 30 × 13mm for 16g of Weight, allows the connection of up
to 34 sensors simultaneously, and synchronization with third-party devices.
The MTw system has 0.05· root-mean-square (RMS) angular resolution, 1·

static accuracy, and 1.5· RMS dynamic accuracy in a uniform earth-magnetic
field.
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Figure 3.9: MTw mimu sensors for tracking human motion

2. 3DMGQ7 Figure 3.10 from Parker device is a solution with a centimeter-level
position accuracy, with low drift and low noise MEMS inertial sensor [99].
This device has the dimension of 76mm× 68.6mm× 13.3mm for a 78grams
weight.

Figure 3.10: 3dmgq7 mimu sensors for tracking human motion

3. APDM-OPAL Figure 3.11 is a device with the dimensions of 43.7 × 39.7 ×
13.7mm for 25grams of weight. It comprises two accelerometers, a gyroscope,
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and a magnetometer. Sensors have a Range of ±16g, ±200g, ±2000deg/s,
±8Gauss.

Figure 3.11: APDM-OPAL mimu sensors for tracking human motion

4. Shimmer3 Figure 3.12 is a commercial 51mm× 34mm× 14mm device, sensors
implemented have range of ±16g, ±2000deg/s, ±4Gauss.

Figure 3.12: Shimmer3 mimu sensors for tracking human motion
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3.4 IMU and EMG devices

3.4.1 Wearable inertial data and muscle activity monitoring
As described in the sections above, measuring joint angle and EMG is of great
clinical interest. It has also been proved that monitoring participants at home can
be very efficient in terms of the success of the rehabilitation, costs, and accessibility
[100]. Consequently, there is interest in a device that can measure EMG and
joint angle and is light and portable. While EMG measuring systems can be very
portable (To record, the majority of these require at least a nearby computer), the
gold standard for measuring movement is now considered marker-based optical
motion capture technology. Thus this technique can be implemented only in the
laboratory. As shown in Intoduction 1, inertial technology is a promising and
increasingly popular approach to motion tracking outside the laboratory.

Cotton et al. device

Cotton et al. device uses MIMU and EMG technologies for rehabilitation [101].

Figure 3.13: R. James Cotton and John Rogers’s device [101]

They use a 9-axis MIMU sensor which records the acceleration, rotation, and
magnetic data (MPU-9250, Invensense, San Jose, US), sampled at 500Hz, with a
maximum rotation rate at 500·/s and maximum acceleration of 16G. A Bluetooth
connection is implemented to send data to a smartphone. For orientation estimation,
they used a Complementary filter. They evaluate the rotation angle multiplying
quaternions obtained by the two MIMUs. This value is not the final angle; the
sensors can be placed anywhere on the limbs, and this rotation must be considered.
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This problem was solved by measuring the rotation in a natural pose and removing
this baseline in the following measurement.

Trigno Avanti Sensor from Delsys

Trigno Avanti Sensor (Figure 3.14) is a commercial device that allows the acquisition
of IMU and sEMG data in every environment. This device supports up to 16
channels for recording surface EMG signals. Each channel provides high-resolution
EMG data for precise muscle activity measurement. It provides a high sampling
rate of up to 2000 samples per second (Hz), allowing for capturing fast and detailed
muscle activation patterns. In addition to EMG, the Trigno Avanti Sensor integrates
triaxial inertial sensors to capture motion data. These sensors measure acceleration
and angular velocity in three dimensions, providing valuable information about
movement patterns. The sensor utilizes wireless technology for data transmission,
enabling freedom of movement during data collection. It communicates wirelessly
with the base station or receiver unit. The Trigno Avanti Sensor has a rechargeable
battery, providing extended operating time and prolonged data collection sessions.
Multiple Trigno Avanti Sensors can be synchronized to ensure accurate timing
alignment between EMG and motion data, making it suitable for multi-channel and
multi-segment analysis. Delsys provides proprietary software for data acquisition
and analysis. The software offers real-time visualization, signal processing, and
advanced analysis tools for interpreting EMG and motion data. The Trigno Avanti
Sensor is compatible with other Delsys systems, such as force plates and motion
capture systems, allowing for integrated measurement and analysis of multiple
physiological parameters.

It has the dimensions of 27 × 37 × 13mm and weighs 14g. It provides users with
selectable angle data representations such as quaternion or Euler angles.

Figure 3.14: Trigno Avanti Sensor from Delsys
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PicoX from Cometa

PicoX (Figure 3.15) is the new design from Cometa. They include a MIMU at a
500Hz sampling frequency that can be used by itself or combined with EMG. It
can be made up of up to 36 synchronized channels. Its dimension and weight are,
respectively, 41 × 23 × 14mm, and 9.5gr

EMG Sensor Channels: The PicoX system supports up to 16 channels for
recording surface EMG signals. This number allows for capturing muscle activity
from multiple muscles simultaneously.

The system offers a high sampling rate of up to 4000 samples per second (Hz),
enabling precise and detailed measurement of muscle activation patterns.

To capture motion data, the PicoX system integrates inertial sensors, including
accelerometers and gyroscopes. These sensors measure acceleration and angular
velocity, providing information about movement patterns and orientation.

It utilizes wireless technology for data transmission, allowing for freedom of
movement during data collection. It communicates wirelessly with the base station
or receiver unit.

The PicoX system has a rechargeable battery that provides extended operating
time for prolonged data collection sessions.

Multiple PicoX systems can be synchronized for precise timing alignment between
EMG and motion data, facilitating multi-channel and multi-segment analysis.

Comet provides dedicated software for data acquisition and analysis. The
software offers real-time visualization, signal processing capabilities, and advanced
analysis tools for interpreting EMG and motion data.

The PicoX system is designed to be compatible with other Comet devices, such
as force plates and motion capture systems, allowing for integrated measurement
and analysis of various physiological parameters.

Figure 3.15: PicoX Sensor from Cometa
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Myo Armband Sensor from North Inc.

Myo Armband (Figure 3.16) is a wearable device from Thalmic Labs (now part
of North Inc.). It measures electrical signals from forearm muscles (EMG) and
combines them with inertial sensors (gyroscopes and accelerometers) to track hand
and arm gestures. His technical Specifications are:

• EMG Sampling Rate: 200 Hz

• IMU Sensor: 9-axis (3-axis accelerometer, 3-axis gyroscope, 3-axis magnetome-
ter)

• Connectivity: Bluetooth

• Compatible Platforms: Windows, macOS, iOS, Android

The Myo Armband is designed to measure and interpret electrical signals
produced by muscles, enabling gesture recognition and control based on muscle
activity.

The armband features eight high-resolution EMG sensors strategically placed to
capture muscle signals from the forearm.

In addition to EMG, the armband incorporates a 9-axis inertial measurement unit
(IMU) consisting of an accelerometer, gyroscope, and magnetometer. These sensors
provide information about arm movements, orientation, and motion tracking.

The Myo Armband utilizes Bluetooth technology to wirelessly connect to com-
patible devices such as computers, smartphones, or tablets, allowing real-time data
streaming and control.

The armband has a rechargeable battery that provides several hours of continuous
usage. The battery can be charged via a USB connection.

It employs sophisticated algorithms to interpret the sensors’ muscle signals and
motion data, enabling gesture recognition and control of compatible devices and
applications.

North Inc. provides a Software Development Kit (SDK) that allows developers
to create custom applications and integrations with the Myo Armband. The
SDK includes programming libraries, documentation, and sample code to facilitate
development.

The Myo Armband is compatible with various platforms, including Windows,
macOS, iOS, and Android, making it versatile for integrating different applications
and systems.
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Figure 3.16: Myo Armband Sensor from North Inc.

Noraxon EMG Systems from Noraxon USA Inc.

Noraxon is a well-known EMG system manufacturer for capturing and analyzing
muscle activity. Their EMG systems are widely used in research, clinical, and
sports performance settings. This device provides synchronized data acquisition
and analysis of muscle activity and motion Figure 3.17. Noraxon offers a range
of EMG systems tailored for different applications and user requirements. They
provide options for wired and wireless EMG systems and come in various channel
configurations, allowing for simultaneous measurement of muscle activity from
multiple sites. The number of channels can vary based on the specific system model
and configuration, ranging from a few channels to systems capable of capturing
data from dozens of channels. Their software allows real-time visualization of EMG
signals, signal processing, and advanced analysis features for extracting relevant
information from the recorded data. Noraxon EMG systems can be integrated with
inertial sensors to analyze muscle activity and movement patterns comprehensively.
Noraxon inertial sensors are typically designed to operate wirelessly, allowing for
greater freedom of movement during data capture. They offer high sampling rates,
allowing for precise capture of fast movements and dynamic motion patterns. The
specific sampling rate may vary depending on the sensor model and configuration.
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Figure 3.17: Noraxon EMG Systems from Noraxon USA Inc.

BTS FREEEMG from BTS bioengineering:

The BTS FREEEMG system integrates high-density EMG sensors and inertial
sensors for advanced motion analysis. The BTS FREEEMG system utilizes high-
density surface EMG sensors and supports up to 16 channels for capturing surface
EMG signals simultaneously. It offers a high sampling rate for EMG data acquisition,
typically ranging from 1000 to 2048 samples per second (Hz). The system combines
EMG measurements with triaxial inertial sensors for motion analysis. It can
integrate data from up to 4 inertial sensors placed on different body segments. The
system employs wireless communication between the EMG sensors and the data
acquisition unit, allowing for freedom of movement during data collection. The BTS
FREEEMG system is compatible with other BTS systems, enabling integration
with force platforms, gait analysis systems, and other physiological measurement
devices.
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Figure 3.18: BTS FREEEMG from BTS bioengineering
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3.4.2 Acquisition device
The device, developed by Rossi et al. with the dimensions of 57.8mm× 25.2mm×
22.1mm, was designed to acquire sEMG data [102].

It mounts an AmbiqMicro Apollo3 Blue as the MCU. It has a RAM availability of
384kB and fits into a 20.25mm2 space, with low current absorption requirements of
6µAMHz for the CPU (running up to 48MHz ) and 3mATX power transmitting
at 0dB.

Furthermore, an LSM6DSO32 imu sensor is implemented with a high-performance
3-axis digital accelerometer and 3-axis digital gyroscope. A 1.8 V constant voltage
powers the circuitry of the entire unit.

Figure 3.19: Acquisition device, by Rossi et al. [102]

3.4.3 Encoder
The encoder used in this thesis work is an AMT20 compact modular package with
a locking hub for easy installation. It features patented capacitive ASIC technology,
low power consumption, and Serial Peripheral Interface (SPI) configurable settings.
The encoder provides a 12-bit absolute position via SPI (4096 positions) and offers
incremental resolutions up to 1024 PPR. It also includes an index pulse and operates
within a wide temperature range of −40 ∼ 125◦C.
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A simple code is used to interface with the encoder. The code provides func-
tionality to set the zero position (representing the angle at which the device is
initially positioned), read the position and timestamp, and handle start and stop
commands.

Figure 3.20: AMT20 Encoder
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System description

Figure 4.1: System overview

The system developed for this thesis work comprises two acquisition devices, each
made up of an AmbiqMicro Apollo3 Blue microcontroller and an LSM6DSO32
IMU sensor (see Chapter 3 for more details), and an encoder. In order to visualize
graphical outcomes and communicate with the devices, a Graphical User Interface
(GUI) is developed using MATLAB.

The firmware of the IMUs encompasses various components such as SPI communi-
cation, UART interface, and the main function responsible for processing the sensor
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measurements. Additionally, a calibration procedure is incorporated to account for
any sensor inaccuracies and biases, enhancing overall system performance.

The GUI is an interactive platform that facilitates user interaction and control
over the system. It provides a user-friendly interface for configuring settings,
initiating data acquisition, and visualizing real-time sensor data. Users can easily
monitor the joint angles through the GUI and access essential system parameters.
A comprehensive validation protocol has been established to validate the system’s
accuracy and reliability. This protocol includes a series of controlled experiments
and comparisons with reference measurements (the absolute encoder presented
in the "State of Art chapter") to assess the system’s performance under different
conditions.

4.1 Firmware
The device’s firmware incorporates several crucial components and functionalities
to facilitate its operation. These include Serial Peripheral Interface (SPI) com-
munication for efficient data exchange, a data acquisition module for capturing
sensor data, a Universal Asynchronous Receiver Transmitter (UART) interface for
external communication, a sensor calibration module for accurate measurements,
and a main function module to oversee the overall operation of the device. The
firmware’s role is essential in enabling the seamless integration and functionality of
the device in various applications.

4.1.1 Spi communication
An SPI interface enabled communication between the AmbiqMicro Apollo3 Blue
microcontroller and the LSM6DSO32 IMU sensor. The access to the IMU (slave)
registers is based on read-and-write transactions between the microcontroller
(master) and the sensor.

Read and write register commands are completed in 16 clock pulses or multiples
of 8 in the case of multiple read/write bytes. SPI communication utilizes a 4-
wire connection: Master Input Slave Output (MISO), Master Output Slave Input
(MOSI), Serial Clock (SCK), and Chip Select (CS).

The Chip Select (CS) line, controlled by the SPI master, enables the serial port.
The Serial Clock (SCK), also controlled by the SPI master, provides the clock
signal for synchronous communication. MISO and MOSI are responsible for the
serial output and input data, respectively, between the LSM6DSO32 IMU and the
microcontroller.

Communication begins with a Read/Write bit (RW). If this bit is set to 0, 7
bits of Data In (DI(7:0)) are written into the device. If set to 1, 7 bits of Data Out
(DO(7:0)) are read from the output serial port.
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An additional 6 bits are available in the input serial interface of the IMU after
the RW bit. These represent the address field of the indexed register. In the case of
multiple read commands, a period of 8 clocks is added, and the address is increased
for each block.

The SPI interface was implemented in mode 0, where the Clock Polarity (CPOL)
and Clock Phase (CPHA) are set to 0. In this mode, the clock is idle at 0, and the
SPI data is sampled at the leading edge of the clock signal. Please refer to Figure
4.2 for a visual representation of SPI communication in mode 0.

Figure 4.2: SPI communication 0 mode [103]

4.1.2 Data acquisition
Accelerometer and gyroscope data are stored in six registers containing the most
significant and least significant parts of the acceleration and gyroscope signals
along the X, Y, and Z axes. Each axis’s complete data is represented by a 16-bit
number obtained by concatenating the most significant and least significant parts.
All values are encoded as two’s complement numbers.

The accelerometer has a full scale of ±4g, indicating that it can measure
accelerations within a range of ±4 times the acceleration due to gravity. On
the other hand, the gyroscope has a full scale of ±250 degrees per second (dps),
indicating its measurement range for angular velocity.

The timestamp data comprises four registers, resulting in a 32-bit unsigned
number. This value represents the time the data was acquired and can be used for
synchronization or time-based analysis.

Different strategies can be employed to determine when the data is ready to be
read. One approach is to monitor the status register, which provides information
about the availability of new data. Alternatively, an interrupt mechanism can be
utilized, where the sensor triggers an interrupt signal when new data is available.
Lastly, a First-In-First-Out(FIFO) buffer can store several data samples, allowing
batch processing or reducing the data read frequency.
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Three methods (status register, interrupt, and FIFO) were tested and evaluated
to determine the most suitable strategy for our requirements. The evaluation
aimed to identify the best performance, efficiency, and reliability approach for our
intended purpose.

Status register

The LSM6DSO32 sensor incorporates a status register that plays a crucial role
in determining the availability of new data. By checking the status register, it is
possible to determine whether a new data set is ready for retrieval and processing.

Two specific bits, XLDA and GDA, are of interest within the status register.
The XLDA bit indicates the availability of new data from the accelerometer, while
the GDA bit signifies that data from the gyroscope is ready to be read. When
XLDA equals 1, the accelerometer produces a new data set. When GDA equals 1,
the gyroscope data is available for retrieval.

An algorithm was implemented to exploit this register and determine the avail-
ability of data. While not the most efficient solution, it provides a straightforward
approach to data acquisition. The algorithm begins by checking the status register
to see if the XLDA or GDA bit is set to 1, indicating the availability of new data.
If data is indeed available, the algorithm proceeds to acquire and process the data.

Following data acquisition, the algorithm incorporates a 2-second delay before
rechecking the status register. This delay maintains a data acquisition frequency
of 100Hz, a commonly used frequency in sensor fusion algorithms found in the
literature [104]. By adhering to this frequency, the algorithm ensures that data is
acquired regularly, allowing for accurate sensor fusion and subsequent analysis.

Interrupt-based acquisition

Interrupts in the LSM6DSO32 are exclusively generated by the accelerometer and
are triggered based on the accelerometer status register. This register plays a
crucial role in determining the availability of fresh sensor data. When the value
of the accelerometer status register is set to 1, an interrupt signal is sent by
the LSM6DSO32 sensors, indicating that a new data set is ready for acquisition.
This interrupt-driven approach ensures efficient and timely data retrieval from the
accelerometer.

The system’s sensor frequency for the accelerometer was set to 104 Hz. This
frequency setting dictates the rate at which sensor measurements are acquired and
processed. The system can maintain a consistent data acquisition rate by aligning
the interrupt-based data acquisition with this frequency, enabling reliable motion
tracking and analysis. This chosen frequency of 104 Hz is commonly utilized in
sensor fusion algorithms and is widely documented in the literature [104].
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Fifo acquisition

Including a FIFO (First-In-First-Out) buffer in the LSM6DSO32 sensor brings
significant advantages to the system’s power management. By utilizing the FIFO,
the host processor no longer needs to poll the sensor for data continuously. Instead,
it can remain in a low-power state and selectively wake up when necessary to
retrieve a burst of data from the FIFO. This approach ensures consistent power
savings for the overall system.

The LSM6DSO32 FIFO has a storage capacity of up to 3 kilobytes of data (or
9 kilobytes if the data are compressed). It can accommodate data from various
sources, including the gyroscope, accelerometer, external sensors (up to 4), step
counter, timestamp, and temperature. In our specific configuration, we only store
data from the accelerometer, the gyroscope, and the timestamp.

The process of writing data to the FIFO is triggered by the data-ready signal,
indicating that new sensor measurements are available for storage. We set a
threshold of 39 samples in the FIFO to optimize the data acquisition process.
Considering the sampling rate of the sensors set to 104 Hz, this threshold allows us
to capture a signal length of 130 milliseconds.

Data stored in the FIFO are organized in dedicated registers. Each FIFO word
consists of 7 bytes, comprising one tag byte identifying the sensor source and
6 bytes of fixed data. It is important to note that the tag byte also includes a
parity bit, which serves as a checksum to detect any corruption in the content of
the output register. As with the previous data acquisition system, once the data
and parity bit are obtained from the FIFO, they undergo further processing and
analysis. However, in this case, the data elaboration process becomes slightly more
complex due to the additional step of checking the parity bit for data integrity.

Comparison

As shown in Figure 4.3, the data acquisition frequency is nearly identical among
the three methods. However, factors other than frequency were considered when
selecting the best implementation for our device. Although functional, the manual
check of the data-ready register is not the most flexible solution, as the frequency
is determined by the delay time, which lacks rigor. Therefore, this technique was
discarded. Both the interrupt method and FIFO mode offer controlled frequency
acquisition changes. However, after consulting the datasheet, we discovered that
the FIFO mode is the lightest solution, aligning with our goal of keeping the system
as lightweight as possible. Hence, we decided to implement the FIFO mode in the
final device.
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Figure 4.3: time mean values and sdv for three acquisition systems: status
register, interrupt and fifo
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4.1.3 UART interface
A UART enables communication between the microcontroller and the computer
through a wired connection. It facilitates two types of transactions: one for reading
data from the microcontroller and another for writing data to the microcontroller.

In the device, UART functionality was implemented with specific characteristics:

1. The baud rate, which determines the transmission speed, was fixed at 460800
bits per second.

2. Parity was not checked during data transmission. Parity is a method of error
checking that can be used to ensure data integrity.

3. The data size for each transmission was set to 8 bits. 8 bits of data are sent
or received in each transaction.

4. One stop bit was used to indicate the end of each data transmission.

Additionally, a UART interrupt was implemented in the microcontroller. This
interrupt is triggered when the microcontroller receives data from the computer,
allowing the microcontroller to respond to the received data promptly.

UART Commands

The microcontroller can initiate different operations based on the strings received
through the UART interface. When the "start" string is received, the microcon-
troller initializes all the sensors. Upon receiving the "gyr_calibration" string, the
microcontroller obtains 4000 samples for calibrating the gyroscope sensor. This
calibration procedure must be performed before starting data acquisition. If the
"stop" string is received, the IMU is reset.

The commands "madgwick", "kalman_filter", and "complementary_filter"
are used to select the sensor fusion algorithm for data processing.

4.1.4 Sensors calibration
For sensor calibration, the procedure proposed by Stančin et al. was followed due
to its efficiency in terms of time and computational complexity and because it does
not require additional equipment [105].

Accelerometer

Accelerometer calibration should be performed whenever there is a significant change
in the sensor’s operating temperature. The calibration is based on the principle
that the sensor, if not applied any force, should display a 1g acceleration along the
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axis normal to the horizontal surface and 0g along the other axis. Measurements
are taken in six different orientations while the sensor rests on an even horizontal
surface. These measurements are divided into two triplets: one consisting of all
the values with positive acceleration and the other with negative values, as shown
in Figure 4.4.

Figure 4.4: Acquisition sequence for Accelerometer calibration [105]

The obtained measurements are then used to form two matrices, As+ and As−,
which concatenate three vectors representing the mean values of the accelerometer
acquisition’s x, y, and z components. In As+, the first vector corresponds to the
accelerometer’s x-axis aligned with gravity, the second vector corresponds to the
y-axis aligned with gravity, and the third vector corresponds to the z-axis aligned
with gravity. Similarly, the As− matrix is obtained by aligning the accelerometer
axis with −g.

Using these matrices, a calibration matrix, Cs, and a zero-level offset vector, A0,
are calculated as follows:

Cs = 2(As+ − As−)−1 (4.1)

A0 = As+ + As−

2 (4.2)

a0 = A0 · i
3 (4.3)

where i is a 3 × 1 vector of ones.
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Once these coefficients are obtained, the calibrated accelerometer values, a, can
be easily calculated using Equation 4.4:

a = Cs · (as − a0) (4.4)

where a represents the calibrated accelerometer values and as represents the ac-
celerometer values from the sensor.

After performing the accelerometer calibration procedure, significant improve-
ments in data quality were observed (Figure: 4.5). The calibrated data aligned
better with the expected 0 and 9.8 m/s2 values. Before calibration, the raw ac-
celerometer readings showed slight deviations from these reference values. However,
after applying the calibration parameters derived from the calibration procedure,
the data became more closely aligned to 0 when no acceleration was present and
to 9.8 m/s2 under the influence of gravity. This improved alignment indicates that
the calibration process effectively reduced biases and errors in the accelerometer
measurements.

Figure 4.5: Acclerometer values in each direction before and after the calibration

Gyroscope

The gyroscope calibration procedure needs to be performed each time the sensor
is turned on since the bias from this sensor is one of the primary sources of noise
in IMU acquisition. A simple calibration approach involves subtracting an offset
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value from the gyroscope values obtained from a static acquisition along the three
axes. A more complex calibration method is proposed in [105], but it cannot be
fully implemented in our system due to the presence of cables in the hardware
configuration.

Despite the simplicity of our calibration approach, it has proven to be highly
efficient in improving the accuracy and reliability of the gyroscope measurements.
Figure 4.6 visually demonstrates the impact of the calibration process by comparing
the gyroscope’s integrated values before and after calibration. Before calibration,
the gyroscope readings exhibited slight drift and systematic errors, resulting in
cumulative inaccuracies over time. However, after applying the calibration pro-
cedure, the gyroscope’s integrated values showed significant improvement, with
reduced drift and better alignment with the expected values. This calibration
process mitigated biases and errors, resulting in more precise and reliable angular
velocity measurements.

Figure 4.6: Gyroscope values integrated in each direction before and after the
calibration
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4.1.5 Main function
The main function is the entry point of the program, where the execution of the
code begins. In this particular code, the main function configures and initializes
various peripherals and devices for SPI communication between the microcontroller
and the slave sensor.

The code begins by including the necessary header files for the microcontroller,
BSP (Board Support Package), standard input/output, utility functions, device
drivers, sensor fusion operations library, and sensor fusion library. It also defines
several constants and variables required for SPI communication and data processing.

Next, the code defines the UART configuration, as the UART is used for
communication and debugging purposes. It sets the baud rate, data bits, parity,
stop bits, and flow control for the UART. It also configures the UART buffers and
initializes the UART interrupt.

After configuring the UART, the code sets up the SPI communication. It
initializes the SPI interface and configures the SPI parameters, such as clock
frequency and mode. It also configures the GPIO pins for SPI communication.

The code then configures the interrupt for the GPIO pin that receives interrupts
from the slave sensor. It registers a callback function to handle the interrupt and
enables the GPIO interrupt.

Next, the code initializes the SPI handle and configures the SPI transactions
for reading and writing data to the slave sensor. The SPI transactions include
instructions, direction, buffer sizes, and chip select information.

Once the configurations are complete, the main function enters an infinite loop.
Inside the loop, it waits for the data_ready flag to be set, indicating that new data
is available from the slave sensor. When the flag is set, the main function reads
the data from the sensor using SPI transactions and processes the received data.

Data Elaboration

Once the data is acquired, the accelerometer data is converted to g units, and the
gyroscope data is converted to rad/sec.

Calibration coefficients, previously calculated, are applied to the sensor and
timestamp values.

The timestamp data is converted to seconds using the conversion factor:

ConversionFactor = 40000 · (1 + 0.0015 · freqfine) (4.5)

Here, freqfine represents the actual timestamp resolution obtained from the
INTERNAL FREQ FINE register.

Three different sensor fusion algorithms are then used to determine the 3D
orientation of the device: the Extended Complementary Filter [106], the Madgwick
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algorithm [34], and the Extended Kalman filter [107]. A more detailed explanation
of these algorithms can be found in the "Introduction" chapter (1).

Once the data is elaborated, it is sent through the UART interface in the
following sequence: timestamp (seconds), gyroscope values (dps), accelerometer
values (g), and quaternion values.

4.2 GUI
As shown in Figure 4.7, a graphical interface is implemented in MATLAB program-
ming language. It enables the user to send commands to the microcontrollers and
acquire data from two IMUs to calculate the relative angle between the devices.

Figure 4.7: Graphical interface implemented in MATLAB programming language

The interface consists of the following components:

Connect button

This button establishes the connection between the IMUs and the serial port.
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Connect encoder

When this button is pushed, it enables the connection of the encoder to the serial
port.

Gyr calibration button

Pressing this button initiates the gyroscope sensor calibration. The program sends
a "gyr" command through the UART interface, and the microcontroller starts the
calibration procedure to obtain new gyroscope sensor calibration coefficients. The
LED on the device toggles upon completion of this procedure.

Sensor fusion algorithms button group

The user can choose the desired algorithm for data processing. This selection
should be made before starting data acquisition.

Relative Angle Plot

This plot displays the three components of the Euler angles. The x-axis represents
time in seconds, and the y-axis represents the angle value in degrees.

Angle plot

This plot shows the total angle of rotation. The x-axis represents time in seconds,
and the y-axis represents the angle value in degrees.

Frequency acquisition button

When pressed, the acquisition devices send data to the computer, allowing the
program to acquire 5 seconds of timestamp data and compute the mean difference
of the values. This procedure determines the real acquisition devices’ sampling
rate. Finally, a "stop" command is sent to the microcontroller, the LED is set to a
fixed state, and all variables are cleared.

Relative calibration button

Pressing this button computes the initial angle between the acquisition devices,
which needs to be subtracted from the final angle. The computer sends the selected
sensor fusion algorithm’s string and a start command to the microcontroller to
initiate the calibration procedure. The algorithm begins acquiring data from both
the acquisition devices, storing quaternion and timestamp values in buffers. Once
both IMU buffers contain at least one data point, the time buffers are converted
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into sample buffers using the previously computed frequency. To synchronize the
data from the two IMUs, further processing is performed only on quaternion values
corresponding to the same sample value. The relative quaternion is obtained as
the product of the quaternion from one acquisition device with the inverse of the
quaternion from the other. The relative angle is two times the arccos of the scalar
part of the relative quaternion, which is then converted to degrees. The relative
quaternions are also converted to Euler angles for better visualization by the user.
The offset is determined as the mean value of the relative angle over a 30-second
acquisition. After 30 seconds, all variables are cleared.

Start button

When the Start button is pressed, the program sends a command string to the
microcontroller containing the selected algorithm command and a start command.
A start message is also sent to the encoder if it is connected. Data acquisition from
the IMUs begins. Once data is available from both IMUs, the program performs
data elaboration. It checks the data synchronization using the timestamp values,
considering a maximum misalignment based on the acquisition device period. The
joint quaternion is computed by multiplying the quaternion from one IMU with the
inverse quaternion from the other IMU. The program analyzes 0.5s windows and
determines if there are no movements based on gyroscope values to correct for yaw
angle drift (caused by the characteristic of the gyroscope sensor). If no movements
are detected, the program computes the coefficients of a rectification function. If
movements are present, the coefficients are not updated. The rectification function
is then subtracted from the previous quaternion.

The corrected quaternion is then converted to an angle in degrees as the double
of the arcos function of the real part of the quaternion, and the plots are updated.
The plots are refreshed every 0.5s, showing a 20s real-time observation.

Figure 4.8 and Figure 4.9 illustrates the effectiveness of the dedrift process,
showcasing the total angle data and the yaw angle data before and after dedrift. It
is evident from the figure that the applied procedure, even if it is a simple procedure,
successfully mitigates yaw angle drift and improves the system’s accuracy.
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Figure 4.8: Total angle before and after linear detrend, 5min acquisition
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Figure 4.9: IMU Yaw angle before and after linear detrend, 5min acquisition

Stop button

Pressing this button sends a "stop" command through the UART to the microcon-
troller, stopping the data transmission and toggling the LED.

Save button

When pressed, it saves data stored in the following matrices:

• imuAngacquisition_[time]: This matrix contains the accelerometer and gy-
roscope data from both IMUs, along with the corresponding quaternion and
timestamp values.

• jointAngacquisition_[time]: This matrix includes the timestamp values, total
angleSequence, and total eulerSequence.

• Encoderacquisition_[time] (if encoder connected): This matrix contains time
and angle values acquired from the encoder.
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The [time] represents the time of acquisition expressed as d-MMM-y_HH-mm-ss
("d" - Day of the month as a decimal number (1-31), "MMM" - Month as an
abbreviated name (e.g., Jan, Feb, Mar), "y" - Year without century (0-99), "HH" -
Hour in 24-hour format (0-23), "mm" - Minute (00-59), "ss" - Second (00-59)).

Disconnect button

This button disables the connection with USB ports.

4.3 Validation protocol
The validation protocol aims to scientifically evaluate the performance and accuracy
of the proposed acquisition devices for measuring arm flexion-extension movements.
The validation will be conducted using a digital encoder as the reference standard.
This protocol provides a comprehensive and rigorous procedure for conducting the
validation study.

4.3.1 Validation Steps
Gyroscope Calibration

The sensors are calibrated using the previously described calibration procedures to
minimize errors and biases, ensuring accurate measurements during data acquisition.

Computation of Relative Device Positions

The relative positions of the acquisition devices are calculated to determine their
spatial relationship. Accurate spatial information is essential for the precise com-
putation of arm flexion-extension angles.

Device Placement

The acquisition devices are positioned on the subject’s arm in two different config-
urations:

1. Configuration 1 ( Figure 4.10 A): The devices are placed near the elbow and
shoulder, away from the muscles, aiming to minimize errors linked to the
rotation of the hand and mitigate the effects of muscle interference on arm
flexion-extension angle computation.
In this configuration, the devices are positioned strategically to ensure accurate
measurement of arm movements. Placing the devices near the elbow and
shoulder helps minimize errors associated with hand rotation. This is crucial
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as the rotation can introduce deviations in the computed flexion-extension
angles.

Additionally, positioning the devices away from the muscles reduces the
influence of muscle interference on the measurement. Muscles surrounding
the arm can generate unwanted noise that might affect the accuracy of the
acquired data. Placing the devices away from muscle regions minimizes the
potential for signal contamination from muscular activity, resulting in more
reliable measurements of arm flexion-extension angles.

While the literature does not provide a definitive consensus on the optimal
IMU position for acquiring arm angle measurements [108], this particular
configuration has been identified as one of the most accurate approaches for
measuring arm flexion-extension angles [109].

2. Configuration 2 ( Figure 4.10 B): The devices are placed on the biceps and
forearm muscles, taking into consideration their future integration with an
electromyography (EMG) acquisition system. One device is positioned on the
biceps muscle and the other on the forearm muscles, following the placement
recommendations outlined in the literature for EMG acquisition systems.

The first device is attached to the biceps muscle, on the belly muscles, located
on the anterior side of the upper arm. This placement allows for optimal
measurement of muscle activity in the biceps during arm movements. The
device is securely fastened to ensure reliable data acquisition from the biceps
muscle [110].

The second device is positioned on the forearm muscles, encompassing various
muscles responsible for forearm movements. Placing the device on the forearm
muscles enables precise monitoring of muscle activity in this region during arm
flexion-extension tasks. Like the first device, proper attachment is ensured to
maintain consistent data collection from the forearm muscles [111].
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Figure 4.10: A. Acquisition Device Configuration 1, B. Acquisition Device
Configuration 2

Arm Inclination

The system’s performance is evaluated under different arm postures, specifically at
45° (Figure 4.11 A) and 90° (Figure 4.11 B) inclination relative to the body.

71



System description

Figure 4.11: A. 45° Configuration, B. 90° Configuration

Encoder Placement

The digital encoder is positioned on the subject’s arm, aligning its arms with the
joint segment of the subject’s arm. The encoder serves as the reference standard
for measuring arm flexion-extension angles.

4.3.2 Data Elaboration Steps
Subject Instructions

Clear instructions are provided to each subject to perform a sequence of arm
flexion-extension movements at different velocities, interspersed with rest periods:

1. Rest: Begin with a 10-second rest period to establish a baseline.

2. Movements: Perform 10 consecutive arm flexion-extension movements at a
mean velocity (computed as the norm of the gyroscope of the forearm device)
of 37.284 ± 1,429 dps, followed by a 5-second rest period.

3. Movements: Perform 10 consecutive arm flexion-extension movements at a
mean velocity of 42.746 ± 2,161 dps, followed by a 5-second rest period.

4. Movements: Perform 10 consecutive arm flexion-extension movements at a
mean velocity of 104.234 ± 2.785 dps, followed by a 5-second rest period.
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5. Data Saving: Save the acquired data for subsequent analysis.

The acquired data are then saved for subsequent analysis.

4.3.3 Data Analysis
Data Loading

Quaternion Extraction

Three sensor fusion algorithms (Madgwick, Kalman, and complementary filter)
extract quaternions from the acquired data. The quaternion processing is performed
in MATLAB to expedite the subject data acquisition process. This decision is
based on a preliminary analysis that compares the quaternion results obtained
from MATLAB and the device firmware.

A random movement is executed through the analysis, and the data are evaluated
using firmware-based computations and MATLAB-based computations. The mean
square error (MSE) is utilized to quantify the disparity between the results obtained
from the two approaches. The MSE can be calculated using the following equation:

MSE = 1
n

nØ
i=1

(xi − yi)2

Here, xi represents the values derived from the firmware-based computations,
yi represents the values obtained from the MATLAB-based computations, and n
denotes the total number of data points analyzed.

The preliminary analysis reveals a mean square error on the order of, or less
than 10−5 between the MATLAB-based computations and the firmware-based
computations. This indicates a relatively small discrepancy, providing confidence
in using MATLAB for quaternion processing. By leveraging MATLAB, the time
required for subject data acquisition can significantly reduce while maintaining
consistent and accurate results.

Yaw Detrend and Angle Computation

A detrending process is applied to eliminate yaw drift, which can introduce errors
in the computed angles using the same methodology employed in the graphical
user interface (GUI). This ensures consistency in angle calculation and facilitates
reliable comparison.

Signal Segmentation

The data are segmented to isolate the segments corresponding to arm movement
while excluding rest periods. Utilize MATLAB’s "findpeaks" function to identify
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the maximum and minimum points in the signal, considering the peaks occurring
between the nearest minimums before and after each maximum. This segmentation
allows for a focused analysis of movement-specific data.

Root Mean Square Error (RMSE) Calculation

The discrepancy between the measured angles from the acquisition devices and the
corresponding angles obtained from the encoder is quantified using the RMSE. The
RMSE is computed using the following equation:

RMSE =

óqN
i=1(angleacquisitioni

− angleencoderi
)2

N

74



Chapter 5

Results

5.1 Validation Results

The validation study yielded quantitative results that assess the performance and
accuracy of the proposed acquisition devices for measuring arm flexion-extension
movements. The obtained data were analyzed using various configurations, veloci-
ties, and sensor fusion algorithms. The following section presents the key findings
of the validation study.
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Configuration Algorithm mean std
S1:S7-V1-P1 V1-P1_complementary 11.23 4.74

V1-P1_kalman 20.28 3.76
V1-P1_madgwick 11.48 4.50

S1:S7-V2-P1 V2-P1_complementary 8.77 3.81
V2-P1_kalman 16.00 2.78
V2-P1_madgwick 9.11 3.78

S1:S7-V3-P1 V3-P1_complementary 8.05 2.34
V3-P1_kalman 11.52 4.50
V3-P1_madgwick 9.86 2.97

S1:S7-V2-P1-45 V2-P1-45_complementary 31.93 12.18
V2-P1-45_kalman 34.37 13.48
V2-P1-45_madgwick 31.88 12.24

S1:S7-V2-P1-90 V2-P1-90_complementary 47.42 8.05
V2-P1-90_kalman 50.27 7.49
V2-P1-90_madgwick 45.14 7.72

S1:S7-V1-P2 V1-P2_complementary 14.44 7.03
V1-P2_kalman 22.87 8.03
V1-P2_madgwick 17.04 8.28

S1:S7-V2-P2 V2-P2_complementary 10.24 6.91
V2-P2_kalman 20.13 7.38
V2-P2_madgwick 11.01 7.10

S1:S7-V3-P2 V3-P2_complementary 8.69 3.33
V3-P2_kalman 13.53 2.66
V3-P2_madgwick 10.89 3.76

In the table above, "P1" and "P2" represent Configuration 1 and 2, respectively.
"V1," "V2," and "V3" correspond to the slowest, middle, and fastest velocities as
described in 4. "Complementary", "kalman" and "madgwick" indicate the algorithms
used for the RMSE calculations. Finally, "Mean Value" and "std" represents
the mean value and standard deviation of the RMSE for each combination of
configuration, velocity, and algorithm.

5.2 Algorithm Comparison: Size and Time
In our evaluation of the Madgwick, Kalman, and Complementary Filter algorithms,
we analyze their performance and consider other crucial factors. One such factor
is the size of the algorithms, which refers to the memory space they occupy.
Additionally, we measure the time required for each algorithm to calculate the
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quaternion. Lastly, we assess the battery consumption of these algorithms on the
device.

Algorithm size

The size of an algorithm plays a vital role in resource-constrained environments.
When comparing Madgwick, Kalman, and Complementary Filter, we observe
that they have different sizes. The Madgwick algorithm requires a memory space
of 19.99kB, the Kalman algorithm requires 20.24kB, and the Complementary
Filter algorithm requires 19.84kB. Evaluating the size can help us understand
the feasibility of implementing these algorithms in various hardware and software
configurations.

Algorithm Time

Another significant aspect to consider is the time each algorithm requires to
obtain the quaternion. The Madgwick algorithm takes approximately 0.0639ms,
the Kalman algorithm takes around 0.3863ms, and the Complementary Filter
algorithm takes about 0.0471ms. Understanding the time requirements of these
algorithms is crucial for real-time applications where responsiveness and efficiency
are crucial.

By considering the size and time of the Madgwick, Kalman, and Complementary
Filter algorithms, we can comprehensively evaluate their performance and suitability
for specific applications.
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Chapter 6

Conclusion and future work

6.1 Conclusion
In conclusion, this thesis has presented a preliminary development of a motion
tracking system based on IMU technology for comprehensive monitoring and
assessment of movement execution during rehabilitation therapy. The primary
objective of this study has been accomplished, providing initial insights into the
system’s performance and potential areas for improvement.

The obtained results align with existing literature, demonstrating lower error
rates for Configuration 1, tath is the configuration accompanied and reported
in literature work, and higher error rates for Position 2, which aligns with arm
muscles.

We thought that slower movement would produce less error because, in this
situation, the accelerometer is affected by less external acceleration, and the
elaboration time of the sensor fusion algorithms will not result in the loss of
significant samples. However, an unexpected finding emerged, revealing higher error
rates for slow movements than for fast ones. This discrepancy may be attributed
to the less fluid nature of slow movements, which introduced inconsistencies in the
motion data.

The observed significant error rates at 45 and 90 degrees arm positions necessitate
further investigation. A thorough analysis, coupled with experimental studies,
is essential to understand the factors contributing to these elevated error rates
and develop strategies to mitigate them. Addressing this issue can be achieved
through improved relative calibration of initial conditions or by incorporating a
magnetometer for enhanced accuracy.

Consistent with expectations, the comparative evaluation of fusion algorithms
revealed that Madgwick and complementary filter algorithms outperformed the
Kalman filter regarding execution time and memory usage. Consequently, these
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algorithms exhibit promising potential for applications that emphasize real-time
performance and resource efficiency.

It is crucial to emphasize that this work represents an early-stage exploration
of the IMU-based motion tracking system. The ultimate goal is to integrate this
system with an EMG acquisition system, although this integration remains an
avenue for future research. Subsequent efforts will focus on refining the system,
addressing the identified limitations, and integrating it seamlessly with an EMG
acquisition system to deliver a comprehensive solution for monitoring and assessing
patients during rehabilitation therapy.

In summary, this thesis has provided valuable insights into developing a motion-
tracking system based on IMU technology. The results contribute to the existing
body of knowledge, shedding light on the system’s potential and delineating areas
for further investigation and refinement. The findings lay the groundwork for future
advancements and research endeavors in motion tracking and its integration with
EMG acquisition for improved rehabilitation therapy outcomes.

6.2 Future Work
Several avenues for future work and improvement can be explored based on the
findings of this thesis:

Refining Sensor Calibration: Further enhancing the relative calibration of the
sensors can lead to increased accuracy and reliability in the IMU-based motion
tracking system. Fine-tuning the calibration process and exploring advanced
techniques may improve the overall performance.

Optimization of Sensor Fusion Algorithms: The sensor fusion algorithms can
be optimized by refining the coefficients and parameters used for data fusion.
Investigating advanced algorithms or modifications to the existing ones may lead
to improved estimation of body orientation and movement.

Yaw Detrend Improvement: The absence of a magnetometer can lead to de-
trending issues in the yaw angle estimation. Finding alternative approaches or
incorporating additional sensors or techniques to compensate for the lack of mag-
netometer data can help improve the accuracy of yaw estimation.

Integration with EMG: Integrating the IMU-based motion tracking system with
EMG acquisition can provide a more comprehensive understanding of patients’
muscle conditions and movement execution during rehabilitation therapy. This
integration can enhance the analysis and monitoring capabilities of the system,
enabling personalized therapy and objective progress evaluation.

By addressing these future work cues, the IMU-based motion tracking system
can be further improved in terms of accuracy, reliability, and practical applicability
in clinical settings. Combining advanced sensor calibration, optimized sensor fusion
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algorithms, improved yaw detrending, and integration with EMG can enhance the
system’s overall performance and contribute to more effective and personalized
rehabilitation therapy.
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