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Abstract

Congenital Heart Defects (CHD) are heart malformations caused by abnormal
heart development. These malformations can induce a wide range of clinical
symptoms, indicating that this vital organ is underperforming. The earlier one
can detect these malformations, the better patient outcomes. Ultrasound is used

for the early detection of CHD.

However, because antenatal and postnatal ultrasounds are in short supply,
diagnosis is generally performed based on other solutions which are more easily
available. In a resource-constraint context, where ultrasound screening is highly
limited, these alternative methods may become even more crucial. Routine CHD
screening is executed in such settings by the mean of a multi-dimensional clinical
test that includes, among others, pulse oximetry and auscultation. Although
auscultation is subject to interpretation, as some cardiac aberrations are not

always audible, it facilitates cardiac defects detection.

Some novel Artificial Intelligence (AI) driven methodology for the detection
of CHD has been developed at the Embedded.Systems@QUCC research group. The
purpose of this study is to implement a clinical decision-making device relying on
AT to aid in the clinical differentiation of sounds affected by CHDs. This work
includes implementation and evaluation for Machine Learning (ML) based
Segmentation, Feature Extraction and Classification on a Raspberry Pi device.
In fact, validation of these techniques on EDGE IoT (Internet of Things) devices
is paramount towards the early detection of CHDs. The final goal is to realise a
first Demo of a portable, rapid, and low-cost Phonocardiogram (PCG) signals
real-time monitoring system that merges the previous research into a unique

device.
The equipment chosen for this purpose is:

o Raspberry Pi model 4 (RPi4): a single board computer that saves the received

soundtracks through a jack port and processes them with a Python algorithm.



e Thinklabs One Digital Stethoscope: this medical device records and shares

sounds, providing various solutions for Telemedicine, Education, Research and

Electronic Medical Records (EMR).

It is important to underline that this implementation serves as the initial
demonstration of the entire research project. Indeed, the developed system is
optimised only in terms of the execution time of each section. The basic idea and
demo will support additional optimisation for the algorithm and the embedded

system.
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Chapter 1

Introduction, Motivations and

Goals

This thesis aims to implement an embedded solution for a portable device
able to merge and put into practice a biomedical research project regarding heart
abnormalities detection developed in the Embedded Systems Group at University
College Cork and divided into two branches: PCG automated segmentation and
CHDs detection assisted by Al

1.1 Motivations

The heart develops very early in the gestation period, and it is one of the first
organs developing in the embryo [1]. Neonatal deaths from congenital heart
abnormalities (CHD), which afflict approximately eight newborns out of each
1000, account for 3% of all newborns deaths. Nearly 18 to 25 per cent of the
affected newborns die during their first year, whereas 4 per cent of those who
survive infancy die by age 16. Consequently, CHDs are among the leading causes
of newborns deaths [2]. Sophisticated and well-equipped settings allow identifying
the majority of CHDs using prenatal ultrasound, which enables identification of
the heart abnormality starting from 12-16 weeks of gestation. Antenatal diagnosis
accuracy is still restricted, and a sizable number of heart abnormalities go

undiscovered [3].

Auscultation is a component of newborns’ clinically essential examination, as
well as for adults. Prior to the nineteenth century, a sort of direct auscultation,
known as “immediate” and consisting of listening to the heartbeat by placing an
ear against the patient’s chest, was utilised by clinicians to investigate breath and
cardiac sounds [4]. Reports of this technique are dated even to the 15th century
BC [5-6]. The stethoscope (Figure 1.1.a) was invented only in 1816 by R T H

Laénnec, avoiding the embarrassment of the previous method [7].
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The Laénnec stethoscope was simply a tubular structure made of wood which
channelled cardiac sounds from the patient to the doctor’s ears. The evolution of
the stethoscope is shown in Figure 1.1, from the Laénnec’s (a) to the classic
stethoscope (b), with the newest technology of the digital stethoscope, better

described in the next chapter.

Figure 1.1: a) Laénnec's stethoscope [Wikipedia] and b) modern standard stethoscope
[Wikipedial

Stethoscopes are a common tool used by healthcare providers to detect
various medical conditions, including CHDs. Stethoscopes are an essential tool in
the early detection of CHD as they allow healthcare providers to listen to the

heart sounds and detect any abnormalities.

While stethoscopes are a useful tool in CHD detection, their accuracy can be
limited, and they may not detect all abnormalities. In particular, some types of
CHD may not produce audible heart sounds, making detection with a stethoscope
difficult. Furthermore, the accuracy of stethoscope detection may depend on the

clinician's skill and experience and may be subject to interpretation errors.

However, because of physiological shunt sounds generated across the Ductus
Arteriosus, evaluating cardiac sounds through auscultation right after birth might
be challenging. The Ductus Arteriosus plays a right-to-left shunting function in
the foetus' heart by allowing blood that flows out from the right ventricle to
circumvent the pulmonary circulation. Shunt direction changes during the
postnatal transition because of the pulmonary circulation starting with the first

breath.

14



The Ductus Arteriosus shuts in the great majority of term newborns within
two to three postnatal days [8-10]. In contrast, postponed ductal closure (arising
passed three days) is classified as problematic and joins the CHD spectrum with
the name of Patent Ductus Arteriosus (PDA) [11-13]. Stethoscopes can be used
to detect various types of CHD, including PDA. Different cases of ductal closure

are shown in Figure 1.2.

Legends PDA =3 months

Figure 1.2: Schematic representation of the anatomical and functional closing process of the

human Ductus Arteriosus [9].

In agreement with a precedent study [14], the amount of neonatal diagnoses
of CHDs over a ten-year time frame is 39%, a rate which is not rising. The number
of serious CHDs (causing a potential risk of premature death with the need for
medical treatments) is one out of two ranging between 13% and 87% [15]. The
sensitivity of complex CHDs detection has grown from 29.8 to 88.3 per cent.[16-
17]

1.2 New Concept

Early diagnosis of abnormalities such as PDA and other CHDs during the
first few days of birth enables clinicians to make conscious decisions that could
save lives. Continuous monitoring is crucial for this, and it presents many
difficulties in a clinical context. Indeed, gathering physiological data from

newborns is not an easy task.
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It sometimes entails drawn-out procedures that necessitate specialised staff.
Moreover, sophisticated monitoring instrumentation is usually expensive. Finally,
even for experienced staff, who may not be available at any time, the data's

complexity may make it hard to comprehend.

Thus, there is a need for alternative techniques and equipment that are
cheaper, simple to use, and accurate to the same degree as a specialist medical
practitioner. Only a few research works have been focused on a solution for the
automated interpretation of PCG in newborns. Starting from two of those, carried
out at University College Cork, this research focuses on creating a portable device
capable of recording neonatal heart sounds and making predictions about possible
diseases and dysfunctions affecting the heart. Thus, the final aim is to prevent
neonatal deaths by optimising care for patients whose heart defects are
challenging to detect with other methods, such as conventional auscultation and

ultrasounds, because of efficiency or availability constraints.

Murmurs are sounds which can be heard between cardiac sounds while
auscultating. Some murmurs are pathological, while others are physiological and

innocent, like those due to the ductus arteriosus.

To address some of these limitations, new technologies, such as digital
stethoscopes and Al algorithms, are being developed to improve CHD detection.
Digital stethoscopes can capture and record heart sounds, which can be analysed
and visualized by healthcare providers or Al algorithms to improve detection

accuracy.

Given the heart murmurs subjective interpretation through auscultation,
Artificial intelligence (AI) assistance provides support, offering, as a supplement
to the conventional approach, a solution for the objective interpretation of cardiac
sounds [18]. Large datasets can be used to train ML, producing objective

judgments unaffected by a person's perception, level of exhaustion, or mood.

Al has revolutionized various fields of healthcare, including neonatology, by
providing accurate and efficient interpretation of various medical data, such as
PCG recordings. Al algorithms can be trained to analyse these recordings and

provide clinicians with insights into the infant's cardiac health.
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One of the main advantages of using AT in neonatal PCG interpretation is the
speed and accuracy of diagnosis. In a traditional setting, PCG interpretation
requires a skilled clinician to listen to and analyse the heart sounds, which can be
time-consuming and subject to interpretation errors. Al algorithms, on the other
hand, can analyse vast amounts of PCG data in a quick and accurate way,
providing clinicians with a reliable and objective assessment of the infant's cardiac
function. Finally, AI can help standardize CHD detection across different
healthcare settings, reducing the risk of misdiagnosis and ensuring consistency in

patient care.

Another benefit of using Al in neonatal PCG interpretation is the ability to detect
subtle abnormalities in the heart's function that may go unnoticed by even the
most experienced clinicians. Al algorithms can be trained to identify even the
smallest variations in heart sounds, which can help detect early signs of cardiac

dysfunction and lead to timely interventions.

However, it's important to note that Al is not a replacement for clinical expertise,
but rather a tool that can support and enhance clinical decision-making. Al
algorithms should be developed and validated using large datasets to ensure their
accuracy and reliability. Clinicians should also be involved in the interpretation
of Al-generated results to ensure that any abnormalities detected are properly
assessed and treated. Overall, the integration of Al into neonatal PCG
interpretation has the potential to improve clinical outcomes for infants with

cardiac conditions, by providing faster and more accurate diagnoses.

1.3 First end-to-end Demo

ALLL
TTT

Figure 1.3: First Demo concept.
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The embedded system designed, conceptualised in Figure 1.3, allows recording
through the Thinklabs One digital stethoscope a sequence of 5 soundtracks, one
for each of the auscultation points (Figure 1.4). The five auscultation points are

important because each one highlights different aspects of the cardiac rhythm
[19].
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Figure 1.4: Auscultation Points.

These five auscultation points commonly used by healthcare providers

correspond to the positions of the heart valves. The five auscultation points are:

e Aortic area: located in the second right intercostal space at the sternal border.
This is where the aortic valve can be heard, which is responsible for
preventing blood from flowing back into the heart's left ventricle.

e Pulmonic area: located in the second left intercostal space at the sternal
border. This is where the pulmonic valve can be heard, which is responsible
for preventing blood from flowing back into the heart's right ventricle.

e Tricuspid area: located in the fourth left intercostal space at the sternal
border. This is where the tricuspid valve can be heard, which separates the
right atrium and right ventricle.

e Mitral area: centred in the fifth left intercostal area at the mid-clavicular line.
This is where the mitral valve can be heard, which separates the left atrium
and left ventricle.

e FErb's point: found in the third left intercostal area at the sternal border. This
point is not a specific valve listening area but rather a site where both the

18



aortic and pulmonic sounds can be heard equally, and it is useful for detecting

murmurs and other abnormalities.

Auscultation at these five points is critical for assessing the heart's function
and detecting any abnormalities, such as heart murmurs or valve regurgitation.
Understanding the location and characteristics of the heart sounds heard at these
points is essential for accurate diagnosis and effective treatment of various heart

conditions.

The five recordings acquired by the digital stethoscope are then sent and
stored into the RPi4 board using the Thinklabs Link adapter and a stereo jack
cable to be successively processed from a computation algorithm previously
uploaded into the RPi4. This system, at last, returns a final decision about the

possible presence of abnormalities in the heart sounds, a signature of PDA or
CHDs.

A first boosted decision tree classifier receives the features to assign the cycle
phase to each sound and silence. A second boosted decision tree classifier uses the
averaged and rearranged features to calculate the likelihood of PDA or other
CHDs.

The algorithm was implemented in Python 3.6 programming language. In

particular, the contributions to this study are:

. Implemented a Python algorithm for heart sound automated segmentation
starting from an existing Matlab script.

. Adjusted and optimised a Feature Extraction algorithm for the first
classification with an XGBoost classifier — the cycle phase classification.

. Implemented an algorithm to compute features average over a single
patient data and rearrange the resulting table in order to obtain a single
raw of features per patient.

o Adjusted and optimised an algorithm for the second XGBoost classifier,
which returns the Normal-Abnormal heart sounds final prediction.

. Merged all the above sections to get a complete pipeline algorithm that,
having a heart sound as input, returns its final prediction.

. Implemented a code to interact with the RPi4, which allows to record and
store the audio signal received by the digital stethoscope, ready to be

processed by the software.
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Chapter 2

Methods

The following chapter discusses the research projects that are the basis of this
thesis. The primary qualities and features of the algorithms and formulas that
underlie the entire application are explained, with an overview of the

instrumentation in use.

For the implementation of the system under study, two approaches are
available: cloud-based and edge devices. They both have advantages and
disadvantages. The fundamental difference lies in the location of computing

resources and where data processing occurs.

The cloud-based solution works with information transmission from the
source to a computational device, which frees the source of the computing load,
as shown in [20]. These systems offer scalability, flexibility, and accessibility since
users can access their applications and data from anywhere with an internet
connection. Cloud-based systems excel in handling large-scale data processing,
complex computations, and resource-intensive tasks. They leverage the power of
centralized processing and storage capabilities, enabling organizations to offload
computational burdens and reduce hardware costs. Additionally, cloud-based
systems often provide advanced features such as automated backups, high
availability, and seamless software updates. Bandwidth and memory capacity are
the principal advantages of this technique, and possible optimisation methods

related to these issues are illustrated in [21].

On the contrary, edge devices are localized computing devices situated closer
to the source of data generation or user interaction. These devices, which can
range from smartphones and laptops to Internet of Things (IoT) devices, possess

their own processing capabilities and store data locally.
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The primary advantage of edge devices is low latency and real-time
processing. Since data is processed locally, there is minimal delay in transmitting
information to a remote server and receiving a response. This attribute is crucial
for time-sensitive applications, such as autonomous vehicles, industrial
automation, and remote healthcare monitoring, where immediate decisions or
actions are required. Edge devices also provide offline functionality, allowing them
to continue operating even when internet connectivity is limited or unavailable.

An example is illustrated in [22].

In terms of data security and privacy, cloud-based systems typically
implement robust security measures and rely on specialized teams to manage and
safeguard data stored in centralized locations. Edge devices, on the other hand,
do not involve sensitive data transmission over servers because the source of
information is kept near the computational device, decreasing the possibility of
cyber-attacks and breaches. This decentralized approach can enhance privacy and
compliance with data protection regulations. However, edge devices may be more

susceptible to physical theft or local security vulnerabilities.

Both cloud-based systems and edge devices have their place in today's
computing landscape, and often a combination of the two is employed to optimize
performance and efficiency. Cloud-based systems excel in handling large-scale
data analysis, Al-driven applications, and resource-intensive workloads, while
edge devices provide real-time processing, offline capabilities, and enhanced data

privacy.

The choice between these approaches depends on factors such as the nature
of the application, required latency, data volume, connectivity availability, and

security requirements.

The whole analysis process of the algorithm has been performed in a cloud-
based mode, which means that all the PCG signals are previously made available
on a cloud, where the algorithm will process them and return a prediction to the

clinician (Figure 3.1).
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'Recording |

Figure 2.1: Cloud-based system scheme [19].

Only the final implementation (Figure 2.2), simulating a real application, is an
edge-based implementation based on real-time acquisition and further digital

signal processing (DSP) supported by Al

1 P:CGS ¥
Recording Decision

Figure 2.2: Edge-based system scheme.
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2.1 Instrumentation

The edge device implemented during this study mainly consists of a

microcontroller, described in the next chapter, and a digital stethoscope.

The digital stethoscope is the ThinkLabs One shown in Figure 2.3,
characterised by 16 bits of resolution, a sampling frequency of 44100Hz and a
rechargeable Lithium Ion Battery. It features a LED display with a battery level
and volume indicator and two buttons, which allow setting volume and frequency
range of filtering. Finally, it presents on the side a Jack port to connect the
charger and headphones to listen to the recording, other than linking the
stethoscope to a computer for saving the audio files and afterwards processing

them.

ﬁ Thinklabs

User Manual 1/ 19 L
Manuel utnlnsateur 19 | el usuario
Manual del usuario 37 Gebrauchsanwe
Gebrauchsanwelsung 55 Manuale utef
. Manuale utente 73 C shandlei
bt/ Gebrurkershandlendlng g1 Manual do
= JManualdo Utilizador 109 Brugermanu
233 Brugermanual 127 ! iledning 144
# Bruksveiledning 145 / iarmanual 14
i 15 181 Usé
anual 1 Manuel utilis

Figure 2.3: ThinkLabs One Digital Stethoscope.

The ThinkLabs Thinklink Mobile Kit shown in Figure 2.4 is a necessary
accessory to the stethoscope provided by the manufacturer to connect the
stethoscope to a mobile or a computer. It presents three Jack ports: the left side
has the headphones connector on the top and the input from the stethoscope at
the bottom, while on the right side, it features the output port that goes to the

computer.

24



Figure 2.4: ThinkLabs Thinklink Mobile kit.

One more tool is necessary to connect the digital stethoscope to the computer
and to process the audio recordings: a Jack to USB adapter. For this project, the
uGo Sound Card with a Jack Splitter, shown in Figure 2.5, was used. The Jack
Splitter input on the right is connected to the output port of the Thinklink
module, which is divided into two channels “microphone” and “speaker”. The two

Jack channels are finally converted into USB by the Sound Card.

Figure 2.5: uGo external Sound Card and Jack Splitter.

The digital stethoscope does not feature a built-in speaker. Therefore, the use of
headphones appears to be essential for the clinician to directly listen to the Heart
Sound if not linking the stethoscope to a mobile. For the current application,
headphones are necessary mainly for checking the correct position of the

stethoscope before starting a recording.

For this study, the Thinklabs Earbud Headphones displayed in Figure 2.6
are used. They provide a deep bass which is extremely useful for the low

frequencies of the heartbeat.

w

— e

R

Figure 2.6: Thinklabs Earbud Headphones.

25



The Raspberry Pi Sense HAT shown in Figure 2.7 is a supplementary board
that enhances Raspberry Pi functionalities. It includes a wide range of built-in

SEeNnsors:

e Temperature

e Humidity

e Barometric Pressure
e Magnetometer

o  Accelerometer

e  Gyroscope

e Colour and brightness

None of these measurements is required for this study, but the important
features of the board for this application are the five-button joystick on the left-
bottom part and the 8x8 RGB LED matrix, which works as a display for the
outputs of the algorithm.

soEEEeEn:. -
ACCEL/GYRO/MAG

Figure 2.7: Pi Sense Hat module.
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2.2 Full Pipeline

This section aims to give an overview of the full algorithm pipeline, i.e. all the
sequential steps that, from a given PCG signal, finally return the prediction
regarding the presence of CHDs. These sections of the main algorithm (Figure

2.8) and their functions will be described following in this chapter.

3 cycles, 6 beats

N (rows) | | |

. ‘M\-—-‘I'lr*m" ooy A oo
N=5 (points) ;f i ‘gf/ Ay Hf ! |
SEGMENTATION
N=5x6 / f? /
N(Z5X?X)2 FARAR el 125 % FEATURE EXTRACTION
eals

(same as / j f CYCLE PHASE
prev) AEAR IV AV EPIF ANV D CLASSIFICATION

XGBoost

(same as
prev) ff FiEAKi f / , | ;( AL, gf % Average features &
rearange
XGBoost
(same as =] f
o (L1445 a L F | Tableor

Figure 2.8: Final prediction algorithm chart.
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2.3 Segmentation

The aim of this first block of code is to detect the Fundamental Heart Sounds
(FHS) in a PCG Signal and to classify them by timestamps. At this stage, the
two different sounds S1 and S2, as well as for the two silences m1 and m2, are
not distinguished. Unlike auscultation, consisting of the clinician listening to the
patient’s cardiac sound, phonocardiography enables graphical visualisation of the
heartbeat waveform and its subsequent analysis [23]. A single heartbeat consists

of a sequence of two sounds separated by silences.

The vibrations produced by the closure of the heart valves are what cause the
sounds identified by PCG: the first sound, defined as S1, is produced when the
atrioventricular (AV) valves (also known as tricuspid and mitral) shut at the
beginning of systole, while the second sound, defined as S2, is produced when the
aortic and pulmonary valves (also known as semilunar valves) shut at the end of

systole. Figure 2.9 shows an excerpt of a neonatal PCG.

Neonatal PCG waveform

| | L} 1 I L] 1 L -

S1 S2
Systole Diastole Systole Diastole
. \;\,-,v_mhm R e
m1l
1 L 1 1

T|me

Normalised Amplitude

Figure 2.9: Sound phases — PCG waveform of two consecutive cardiac cycles and the related

sound phases: Sound 1 (S1), Silence 1 (m1), Sound 2 (S2), Silence 2 (m2).

PCG and ECG signals are related: the R-peak represented in the ECG trace
corresponds to the start of S1 in the PCG trace, while the T-wave corresponds to

the final instant of S2 [24].

The automated segmentation of a PCG signal consists exactly of identifying
those two fundamental heart sounds (S1 and S2) and their related silences (ml
and m2) to annotate their start and final time/sample. This enables the
availability of 5 times the number of cardiac cycles obtained with the manual

segmentation, which is a tedious task to execute.
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A bigger availability of data results in more trained ML models. This

breakthrough potentially improves the performance of the algorithm in detecting

CHDs [25].

There is scientific evidence of the fact that the Heart Rate decreases with age.
This applies to the Maximum Heart Rate as well, the only free variable of the
segmentation algorithm, which is modelled in relation to age by the following

formula empirically derived in previous studies [26-29]:
MAX_HearRate = 220 — age [Beat Per Minute]

This parameter is considered the limit of the expected Heart Rate for a correct
estimation of the PCG periodicity and the subsequent classification of the

fundamental cardiac sounds.

The automated segmentation block has been translated into Python and
customised for the current application from the Matlab algorithm implemented

in [25]. It consists, as shown in Figure 2.10, of:

e Low Pass Filter (LPF), with a cut-off frequency of 1000Hz.

e A compressor that decreases the amplitude of the PCG waveform and
normalises it in relation to its peak magnitude.

e Fast Envelope: a double-sided exponential impulse response with a time
constant 1t of 15ms, which is the twentieth part of the maximum HR
(MHR), considered equal to 200 Beats Per Minute.

e Slow Envelope: it consists of an LPF with a cut-off frequency of 3.3Hz,
equal to the MHR, applied to the output of the fast envelope function.

o Identify slow-envelope peak values as local maxima, which can be
considered in first approximation as the Fundamental Heart Sounds
location. By extracting the position of these peaks in terms of samples,
an initial estimation of the Heart Rate is determined as the reciprocal of
the median of the difference between each peak start time and the second

next peak (because each Sound 1 alternates a Sound 2).

1
Median[s(i) — s(i — 2)]¥

Where s is the array containing the location of each peak.

Heart Rate =
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e Find a more accurate position of the peaks in the fast envelope by
identifying its maxima within a half-cycle frame (considering the previous
Heart Rate estimation).

o Identify the heartbeats’ initial and final samples as the samples in which
the fast envelope decreases by 12.5% from the peak magnitude.

e Find the next zero-crossing location in the initial Phonocardiogram (in

both directions) to fine-tune initial and final samples.

)’@7’ Slow envelope
i I
1
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Figure 2.10: Flowchart of the automatic segmentation block [25].
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The result of the automatic segmentation is represented in Figure 2.11, which
is obtained by overlaying the original PCG signal and the segmented signal, i.e.
the sequence containing the initial and final points of each FHS. This sequence is
obtained by creating an array of the same length as the PCG and assigning the
value 1 to the samples that are located between the initial and final samples

identified for each of the peaks and 0 to the remaining samples.

This plot shows how the implemented algorithm is able to identify and

annotate each beat.

30



Segmentation

1.00 T n n n n n nn n n n n M

Amplitude

0.00 T
-0.25

-0.50

-0.75

— Audio file
—— Sequence

o 100000 200000 300000 400000 500000
samples

Figure 2.11: Result of the automatic segmentation.

In contrast to manual segmentation, which typically consists of the selection
of 2-5 cycles per auscultation point (10-25 per patient), automated segmentation

makes available all the heartbeats detected from each of the recordings.
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2.4 Feature extraction

Once the PCG has been segmented, and all the beats have been identified,
those need to be classified into Sound 1 and sound 2. Afterwards, a further
classification for cardiac defects will be performed. The whole classification

procedure begins with the extraction of 101 features by each segment [19].

2.4.1 Dataset

A sizable clinical set of cardiac sound recordings from 265 babies with a
gestation period of 35 to 42 weeks, characterised by the presence of different
CHDs and acquired using the ThinkLabs One digital stethoscope during their
initial six days following birth, has been used to train and evaluate the system.

Patients’ clinic details are listed in Table 1.1.

Table 2.1: Dataset’s breakdown [30].

Males 137 (52%)
Gestational age [weeks] Median 39, IQR 38-40
Less than 37 weeks (preterm) 23 (9%)

37 weeks or more (term) 242 (91%)

Postnatal age [hours] Median 48, IQR 30-64
Less than 24h 29 (11%)

From 24 to 48h 95 (36%)

From 48h to 72h 87 (33%)

More than 72h 54 (20%)

Healthy 137 (52%)

PDA 89 (33%)

CHD 39 (15%)

Total number of patients 265
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The dataset, for a total of 468 minutes of recording, was gathered from two
Ukrainian Hospitals in 2018, and every participant was asked to provide informed
consent from parents. All newborns analysed were apparently healthy and had no
evident symptoms of CHDs or high blood pressure in the lungs caused by PDA,
but they all had a diagnosis validated by ECG [19].

To simplify, each patient is assigned to a single diagnosis class. Patients
suffering from both PDA and CHD were categorised as belonging to the CHD

class, which is a diagnosis of primary concern for newborns.

The audio files are saved in a Wave Audio format (WAV), which provides
enough audible frequency content to convey the information of interest for PCG
signals. This format is preferred to the MP3 one, a well-known standard for lossy
audio compression (i.e. the encoding implies a particular loss/distortion of the

original information). [19]
2.4.2 Features

Because of the differences in the PCG waveform’s amplitude and structure at
each of the four cardiac sound phases (sl, s2, ml, m2), distinct features are
retrieved from every single phase [31]. A total of 101 features are extracted by
each of the segments regarding their aspects in terms of time, frequency, and
energy. A total of 200 features are finally obtained for each of the cardiac cycles.
Some of the features are obtained from each of the cardiac intervals (Table 2.2),
while other features are extracted only from the two sounds intervals (Sound 1
and Sound 2) (Table 2.3) or only from the two silences (m1 and m2) related to
the systolic and diastolic intervals (Table 2.4). Furthermore, the average BPM

and the related cycle duration complete the features set.

A group of the extracted features was previously recognised as crucial to
characterise newborns’ PCG [32], while others were proposed in [19] for the first

time.

Because the band frequency of the entire feature set is enclosed with 1000

Hz, the FE process was preceded by a downsampling operation to 2000 Hz.
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For simplicity, the cycle phase classification, as well as the CHD/PDA

classification, is carried out using models previously trained and tested in

[19,25].
Table 2.2: Features extracted from all four FHS [19].

Index Type Tag Description

1 (A) energy sum of squared values

2 (A) n_zero number of zero-crossings

For filtered signal 25-1000Hz:

3 (B) bw_en lin energy as sum of squared values

4 (B) bw_en_db energy in dB scale

5 (B) bw_rms_lin RMS

6 (B) bw _rms_db RMS in dB scale

For subands (k) 25-45, 45-80, 80-200, 200-400 & 400-1000Hz:

7-10 (B) bk _en_lin energy as sum of squared values

11-14  (B) bk en dB energy in dB scale

15-18  (B) bk_rms_lin RMS

19-22  (B) bk rms dB RMS in dB scale

23 (©) fc central frequency (<200Hz)

24 ©) oct Zrcegl‘::zcy deviation from average fc (per point), in
25 ©) irel the relative length of the interval over the average length

of the full cycle
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Table 2.3: Features extracted only from cardiac sounds [19].

Index  Type Tag Description

Absolute extrema:

26 (A) a_max maximum value (positive amplitude)

27 (A) t_max relative time location of a_max

28 (A) a_min the minimum value (negative amplitude)

29 (A) t_min relative time location of a_min

30 (A) max_a maximum absolute value

31 (A) max_t relative time location of max_a

Local extrema:

32 (A) mean_L_max mean time across all relative maxima

33 (A) mean_dt_max mean-time difference across all relative maxima

34 (A) std t max 5D over the time of all relative maxima

35 (A) std dt max SD over the time difference between all relative maxima
36 (A) n_max number of local maxima

37 (A) mean_t_min mean-time across all relative minima

38 (A) mean_dt_min mean-time difference across all relative minima

39 (A) std_t min SD over the time of all relative minima

40 (A) std_dt_min SD over the time difference between all relative minima
41 (A) n_min number of local minima

42 (A) mean_t zero mean-time across all zero-crossing

43 (A) std_t_zero SD over the time of all zero-crossing

44 (A) mean_dt_zero mean-time difference across all zero-crossing

45 (A) std_dt_zero SD over the time difference between all zero-crossing
46 (A) mean_t_max mean-time across all relative maxima

Structural:

47 (A) n_broken number of discontinuities on the derivative of the signal
48 (A) skewness the relative position of the maximum absolute value of

the signal around the middle point of the interval
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Table 2.4: Features extracted only from cardiac silences [19].

Description

Envelope approximation using 2nd order polynomial coefficients:

constant term of the polynomial
linear term of the polynomial

quadratic term of the polynomial

15t quarter energy
2nd quarter energy
3rd quarter energy

4th quarter energy

mean value

SD

1 st part mean
2nd part mean
rd part mean
4th part mean
1st part 5D
2nd part 5D
3rd part SD
4th part 5D

number of zeros per second

Index Type  Tag

49 (A) all

50 (A) al

51 (A) a2
Energy distributed across time (4 quarters):
52 (A) en_1/4

53 (A) en_2/4

54 (A) en 3/4

55 (A) en_4/4
Statistics:

56 (A) mean

57 (A) std
Statistics distributed across time (4 quarters):
58 (A) mean 1/4
59 (A) mean_2/4
60 (A) mean_3/4
61 (A) mean_4/4
62 (A) std_1/4
63 (A) std_2/4
64 (A) std 3/4
635 (A) std_4/4
Structural;

66 (A) frq_zero
67 (A) skewness

relative position of the maximum absolute value of the
signal around the middle point of the interval.
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2.5 Cycle Phase Classification

The two most relevant features for distinguishing between the first and the
second beat of a cardiac cycle are the Relative Time of the Silence periods (1)
and the Tonal Deviation from the average Central Frequency (2) [25]. For each

segment 4.

RTS(i) = HR * Tgjience (i) W
N _ O
TFCF (i) = log, avg[fe (DY ?

where the Central Frequency is

f- X

Je = SO

X(f) is the Discrete Fourier Transform (DFT) of each segment calculated over
the frequency band 5-200Hz.

Using a first XGBoost (Extreme Gradient Boosting Decision Tree) algorithm,
all the sounds and silences are classified as related to the first or second cycle
phase and marked with the cycle phase adding an extra column. This algorithm,
as well as the algorithm for the second classification routine, has been used to
train and test a logistic regression model. The model section procedure used is a
stratified subject-independent 10-fold CV process (Figure 2.12), and the models’
parameters are set as follows: objective = binary: logistic, eval metric = auc, eta

= 0.03 (learning rate).

100% pdllLl‘llb
|

- testing data

~90% patients ~10% patients

—*— l}lﬂbdhlh‘:ll{.
Model ‘ Model ensemble Model outpul Results
evaluatmn

Selection ‘ Evaluallun
Figure 2.12: Model Evaluation procedure [19].
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Using ML algorithms necessarily involves a well-defined and independent model
selection process [33] to optimise a model across an array of hyper-parameters,
ensuring its accuracy over an unknown test dataset. The nested Cross

Validation routine shown in Figure 2.13 is used to tune these hyper-parameters.
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Figure 2.13: Model Selection procedure [19].



2.6 Averaging and Rearranging

Features for each patient are averaged based on the previous sound prediction
carried out. The aim of this procedure is to get two rows per patient - one for
each of the FHS with 101 features. Follow the final rearrangement of the data
frame to get one row of feature per patient, which contains features from both

cardiac sounds for a total of 200.

2.7 PDA/CHDs Classification

Following the Cycle Phase classification routine, two more XGBoost
algorithms are used to finally predict the probability of having a patient with
Patent Ductus Arteriosus (PDA) or other CHDs. Those algorithms are used to
train and test two Logistic Regression models whose characteristics are described

in [19).

The Area Under the Curve (AUC) metric was utilised to evaluate the
accuracy of the implemented algorithm [34]. The performance of the final
algorithm is shown in Table 2.5. From these results, it is evident that detecting

PDA is more difficult than detecting CHD.

Table 2.5: Final Algorithm Performance [19].

Validation (AUC)

Detection task (meanstd) Testing (AUC)
PDA 0.761+0.004 0.743
CHD 0.773+0.002 0.775
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Chapter 3

Code Optimisations

The critical aspect is the algorithms’ efficiency, measured through their
execution times and power consumption. This project is evaluated in terms of
inference. More precisely, execution time information has been extracted over
different computers, with different amounts of data input and at different
grades of code optimisation. In this chapter, optimisation processes that allowed

a significant execution time reduction are explained.

The execution time of the algorithms would involve four main blocks: Pre-

Processing, Automatic Segmentation, Feature Extraction, and Classification.

3.1 Computers

In this section, an overview of the computers used for this study and their
main specifications will be given, with particular attention to the edge device

object of the final implementation.

3.1.1 Dell Computer — Optiplex 3050
Main Specifications:

e Quad Core 3.4 GHz Intel i7-6700 64-bit CPU
e 8GB RAM

3.1.2 Asus Laptop — N552VW

Main Specifications:

e Quad Core 2.6 GHz Intel i7-6700 64-bit CPU
e 16 GB RAM
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Raspberry Pi 4 Model B

With features including USB and micro-HDMI ports, WiFi, Bluetooth, GP1O
pins, ports and network boot, the RPi 4 Model B, represented in Figure 3.1, is a
single-board computer which can carry out most of the operations that a standard
PC can. For embedded applications like the current project, its compact design

and reasonable price make it particularly appealing.

85mm

40 pin GPIO Mounting
header Hole

Gigabit

Ethernet

China M 1904 [£
Fdus z

&
g
£2

Broadcom BCM2711,
Quad core Cortex-A72
[ARM vE) 64-bit SoC
1.5GHz 4 GB RAM

56 mm
4= ) x USB 3.0 ports
Micro SD slot s

4= 2 x USB 2.0 ports

USB-CPower  Micro HDMI ports  3-3 mm 4-Pole sterec audio
supply and composite video port

Figure 3.1 Raspberry Pi 4 Model B board.

The noteworthy specifications of the Raspberry Pi 4 Model B are:

e Quad-core 1.5 GHz BCM2711 64bit CPU
e 4 GB RAM

e BLE Gigabit Ethernet, 2.4-5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0

e Micro-SD card slot for data storage and loading of the operating system.

Having the RPi4 considerably less computing power than a normal regular

PC/laptop, execution time information on this device has been evaluated only on

the fully optimised code.
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3.2 Resampling

Analysing and reviewing the code without optimisation, the attention went

to the audio file loading function.

£fs=2000
[x,fs]=librosa.load(audio directory+'/'+audiofile, sr=fs,mono=Tru
e)

This function automatically resamples the audio signal from the initial
sampling frequency of 44100 Hz to 2000 Hz (fs=2000), as expected, but using a
high-quality mode. This is the default mode of the “librosa.load” resampling
feature, which allows for improving audio quality but makes the loading process

itself extremely slow.

£fs=2000
[x,fs in]=librosa.load(audio directory+'/'+audiofile, sr=None,mono=T
rue)

x=fast resample (x,fs,fs in)

In order to reduce the execution time of this function, its automated
resampling feature has been disabled (sr=None), and a new resampling function

has been implemented:

def fast resample(x,fs out,fs in):
xf = x;
if fs in!=fs out:
if fs in>fs out:
#perform antialias filter
xf = AntiAliasFilter (xf,fs out/2,fs in)

ti = np.arange (0, (len(xf))/fs in,1/fs in)

to = np.arange (0, (len(xf))/fs in,1/fs out)
y = np.interp(to, ti, xf)

else:
Yy = X
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The above function is called fast resample because it allows for considerably
speeding up the resampling process by simply performing an anti-aliasing filtering
and returning the linear interpolant to the original time series evaluated at the

new frequency.

3.3 Pre-Allocating Chunks

The first two Feature Extraction sub-section, “Extract amplitude features”
(block A) and “Extract_band_features” (block B), both have a double nested
loop that probably is one of the causes of the long execution time. Moreover, this
double-nested loop operates the same signal partition in chunks for each of the
blocks, basically repeating the same operation. Therefore, any optimisation needs

to be done in this regard.

The main problem is that an individual x chunk, which is a portion with a
variable length of the full-length signal x, is obtained at every iteration of the

inner loop:

for ix, elem in timestamps audio.iterrows():
for s in range (len (soundtype))
start field = soundtype|[s]
width field = soundtypel[s]
tstart = elem[start field]

tend = tstart + elem[width field]
x chunk=x[np.round(tstart*fs) .astype (int) :np.round (tend*f

+' t start'
+' width'

stype (int) ]

The identified solution was the pre-allocation of all those x chunks into two
lists of arrays — one for the heartbeat sounds and one for the silences (the two
soundtypes). This pre-allocation is performed before the execution of the

Amplitude and Band features extraction functions:

# Initialise lists of chunks
sc ¢ = []
[]

for ix, elem in timestamps audio.iterrows():

mc_c

for s in range(len (soundtype)) :
start field = soundtypel[s]+' t start'
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width field = soundtype[s]+' width'
tstart = elem[start field]
tend = tstart + elem[width field]
y _chunk=y[:,np.round(tstart*fs) .astype(int) :np.round(tend*fs
) .astype (int) ]
if s ==
sc_c.append(y_ chunk)
else:
mc_c.append (y chunk)

The result is a double nested loop which only performs the partition of the
signal. Hence, the number of operations executed inside the nested loop has been
substantially reduced. Consequently, the FE functions perform then just a single

for loop, iterating over the pre-allocated lists and extracting the features from
them.
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Chapter 4

Results and Full Implemented

Device

This chapter shows the results in terms of execution time reduction obtained

through the whole optimisation process. Moreover, the final implementation of

the Embedded System is presented.

4.1 Inference

Once a complete pipeline code was implemented, execution time (ET)

information to process the full algorithm was obtained, both with a regular Lab

computer (Dell computer) (Table 4.1) and with an Asus Laptop (Table 4.2).

Table 4.1: Full Pipeline Execution Time (seconds) — Dell Computer.

SEG and FE 7.749 59.430 166.818
Sound Classification 0.047 0.062 0.156
Rearranging And Avg. 0.406 0.031 0.047
Final Classification 0.172 0.191 0.203
SEG and FE
Pre-Processing 3.858 30.320 83.157
Segmentation 0.219 1.640 4.783
Feature Extraction 3.593 25.776 76.396

Feature Extraction

A 1.953 13.700 41.321
B 1.375 9.841 29.179
C 0.266 1.781 5.378
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Table 4.2: Full Pipeline Execution Time (seconds) — Asus Laptop.

Full Pipeline
SEG and FE 15.458 110.444 329.773
Sound Classification 0.474 0.499 0.728
Rearranging And Avg. 0.041 0.045 0.074
Final Classification 0.257 0.268 0.270
SEG and FE
Pre-Processing 4,511 33.439 92.909
Segmentation 0.404 2.752 7.907
Feature Extraction 10.624 73.773 230.175
Feature Extraction
A 5.220 36.381 113.067
B 4,758 32.908 102.845
C 0.641 4.386 13.926

Columns of the previous tables give information about the number of audio files
(patients) processed and the total length of the audio recording in terms of time

(seconds) and cardiac cycles.

The results obtained with the Dell computer are comparable to the results

obtained in [11].
Three different setups have been considered, simulating a cloud:

e One patient
e Ten patients

e Twenty-five patients

Analysing only Table 4.1, i.e., considering only the results obtained on the
Lab computer, which is clearly the most performing device between the two, it is
straightforward to identify which is, among all the macro sections of the “Full
Pipeline” (upper part of the table), the one taking most of the time and requiring
thus some optimisation. This section is related to segmentation and feature

extraction (“Seg and FE”).
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Investigating it deeper made it clear that sections “Pre-Processing” and
“Feature extraction” are the sub-sections that take more time to be executed.
Optimisation work in this project was focused on these two segments of the code

and evaluated only on the Dell Computer.

4.1.1 Pre-Processing Optimisation

The first optimisation was performed over the Pre-Processing (PP) sub-
section. Table 4.3 shows the new performance in terms of execution time of the

optimised section.

Table 4.3: New Execution time after PP Optimisation (seconds).

Full Pipeline

SEG and FE 4.380 31.071 91.760
SEG and FE

Pre-Processing 0.515 4.311 11.825

Table 4.4: Execution time gain after PP Optimisation (per cent).

Full Pipeline

SEG and FE 43.48 47.72 44.99
SEG and FE

Pre-Processing 86.65 85.78 85.78

The improvements are more appreciable considering the percentage of time
gained (Table 4.4). The results achieved are substantial: a gain of around 86% for
the Pre-Processing sub-section, which results in approximately 45% of the “Seg

and FE” macro section.
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4.1.2 Feature Extraction Optimisation

For further optimisations, the focus was on the Feature Extraction (FE)

section (blocks A and B).

Table 4.5: New Execution time after FE Optimisation (seconds).

Full Pipeline

SEG and FE 3.488 25.097 74.419
SEG and FE

Feature Extraction 2.743 19.348 58.011

Feature Extraction

A 1.474 10.193 30.861
B 1.014 6.936 21.214

Table 4.6: Execution time gain after FE Optimisation (per cent).

Full Pipeline

SEG and FE 20.37 19.23 18.9
SEG and FE

Feature Extraction 24.04 22.88 22.78

Feature Extraction

A 24.53 25.60 25.31
B 26.25 29.52 27.30

Considering the time gain in percentage (Table 4.6), the outcomes obtained
are worth mentioning: more than 25% of time saved for each of the FE blocks,
and its direct consequence of “SEG and FE” macro section nearly 20% faster,

compared with the result achieved with only the first optimisation.
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4.1.3  Full Optimisation Outcome

Table 4.7: Execution time gain after full Optimisation (per cent).

SEG and FE 55 57.8 55.4
Pre-Processing 86.4 86.4 86.1
Feature Extraction 24 32.8 24
FE - A 25.2 25.5 25
FE-B 27.4 29.6 27

The full optimisation process led to a significant gain in terms of execution
time. Table 4.7 summarise this result in percentage. A total time gain of 55% has
been experienced for the “SEG and FE” macro section, saving thus more than
half of the time that was necessary without optimisation. The most appreciable
gain has been achieved through Pre-Processing optimisation, around 45% of the

total gain.

To conclude, the optimised code is capable of processing a single audio file 71
seconds long, related to a single patient, and returning a prediction in less than 4
seconds, while for a total of 25 recordings (more than 25 minutes), it is necessary

1 minute and 15 seconds.

In a real case application, 5 seconds per point, a total of 25 seconds, is a
sufficient sound recording length to produce a prediction, reducing, even more,

the execution time.
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4.2 Edge Device

Execution time on the RPi4 has been evaluated only by processing a single
soundtrack, simulating, therefore, a real-time application on a patient. As
expected, the execution time reported on this device is considerably stretched. As
shown in Table 4.8, approximately 20 seconds are necessary to obtain a prediction

of a signal with the RPi4 containing approximately 140 cardiac cycles.

Table 4.8: Full Pipeline Execution Time (seconds) — Raspberry Pi 4.

Full Pipeline
SEG and FE 18.543
Sound Classification 0.205
Rearranging And Avg. 0.0514
Final Classification 0.753
SEG and FE
Pre-Processing 4.131
Segmentation 1.064
Feature Extraction 13.345
Feature Extraction _
A 7.168
B 4.897
C 1.271
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4.3 Device Principle of Functioning

Figure 4.1 shows the final device implemented during this research, and its

principle of functioning designed during this study is explained in this chapter.

CooooDpoo

uuuuuu

Figure 4.1: Digital stethoscope system.

The five left-upper LEDs of the RPi Sense HAT, highlighted in Figure 4.1,
represent each one of the five auscultation points. The LEDs at the left and right
bottom corners (Figure 4.1) give information about the prediction made by the
device. The operator turns on the device, and the left-upper LED turns red
(Figure 4.2.a), meaning that it is ready to record and save from the first
auscultation point. At this point, the operator places the digital stethoscope on
the first auscultation point and verifies through the headphones that the
heartbeat sound is audible and clear. Once the stethoscope is correctly placed,
the built-in central button on Sense HAT is pressed for at approximately 5
seconds (Figure 4.2.b): the LED related to the current auscultation point turns
white, meaning that the RPi4 is recording the PCG signal received through the
jack-port as a soundtrack. When the recording is done, the button is released, the

LED turns green (Figure 4.2.c), and the audio file is saved as Point_ 1.wav.

53



Figure 4.2: Device principle of functioning

As soon as the operator has repeated these three steps for each of the five
auscultation points, all five LEDs are green (Figure 4.2.d), and the five audio files

are now stored on the RPi4, ready to be processed.

Finally, as shown in Figure 4.2.e-f, the prediction is computed from the
algorithm and displayed on the two LEDs at the bottom, which both turn on
green if the heartbeat is classified as normal. If the cardiac sound is classified as
abnormal with a probability of CHDs’ presence greater than 70%, only the right
LED turns red, while if PDA is detected (probability of PDA’s presence greater
than 70%), they both turn red.
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Chapter 5

Conclusions and future work

The heart represents one of the major organs for humans, and it is subject to
a variety of diseases. Hearth auscultation remains a valid and intuitive non-
invasive screening technic for heart defects detection, especially in a resource-

constraint context.

Appropriate training and advanced medical knowledge are mnecessary to
interpret neonatal PCG signals correctly. Previous research projects at University
College Cork made by the FEmbedded Systems Team have shown
important breakthroughs relying on Machine Learning and aimed at supporting

CHDs detection.

The outcome of this research project is indeed an initial concept for a portable
device which incorporates and optimises all these innovations conceived by the
researchers and capable of delivering a reliable prediction on the possible presence
of defections, given an auscultation recording. The final goal is not going without
but assisting the clinician in making conscious decisions that could save lives with

the help of cheap but accurate equipment.

In the case of examining a standard PCG signal (10s / 20 cycles), the full
pipeline ET of the algorithm in the RPi4 is smaller than 3 seconds, making it
appropriate for a quick computational response and, thus, for a real-time

application at the edge.

This thesis work consists of a first Demo solution of an objective decision
support tool. Consequently, the initial concept has been simplified, and further

optimisations are required to improve the final device.

The algorithm implemented uses Machine Learning models developed during
previous studies. Their performance has been evaluated by means of the Area
Under the Curve technique and achieved a degree of accuracy in detecting PDA
of the 77% and 78% for CHD detection. The first future development of the
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current system could be retraining new models with a bigger availability of data,
a result of the automated segmentation followed by the averaging procedure. This
process vields a single raw of features per patient by averaging among all the

cardiac cycles, providing an improvement in terms of execution time.

Testing the new models would allow stating if the implemented algorithm is
leading to information of better accuracy than the original ones and if averaging
can be a useful method. Further models based on a restricted set of features could
be implemented and analysed to test and compare the obtained results and

implement a final algorithm with the best accuracy possible.

Because of the high-power consumption of the Raspberry Pi 4 its use cannot
be considered an effective solution for a portable application whose battery
capacity is crucial. The optimal solution could be a low-power microcontroller in
combination with the conversion of the codes, which are currently written
in Python, to C/C++. This would guarantee the implementation of a more
efficient device in terms of execution time and memory use beyond that power

consumption.
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