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Abstract

Modern technology significantly contributes to improving living conditions and
decreasing disease prevalence. Wearable health tools have been at the forefront
of key breakthroughs in the healthcare sector. The fact that these tools can be
used in both normal activities and therapeutic applications has led to significant
advancement in this field.
Hypertension, characterized by periodic high blood pressure (BP), is the principal
risk factor for Cardiovascular diseases (CVDs) that are among the leading causes
of mortality. Hypertension often goes unnoticed by individuals, consequently, there
is a pressing need for a monitoring device capable of continuously tracking blood
pressure in various conditions of everyday life. Furthermore, nowadays to achieve
continuous blood pressure monitoring is necessary to use invasive devices. However,
these invasive methods pose limitations and additional challenges for patients.
To address these concerns, the European SINTEC project, with the aim of de-
veloping a wearable health device (WHD) for continuous BP monitoring. The
improvement of WHDs focuses on three key areas: enhancing sensor accuracy,
implementing advanced machine learning algorithms, and facilitating seamless
communication between subsystems and other devices. The accuracy of WHDs
relies heavily on sensor technology. Advances in sensors have significantly improved
the precision and reliability of measurements. Machine learning (ML) algorithms
play a vital role in data analysis and interpretation in WHDs. These algorithms
process the collected physiological data, identify patterns, and generate actionable
insights. By leveraging large database, ML algorithms can continuously improve
and adapt their performance. They enable personalized health recommendations
and early detection of abnormal health conditions, empowering individuals to make
informed decisions about their lifestyle and improve their health. WHDs now
feature sophisticated communication skills that make it possible for them to be
easily integrated with smartphones and PCs. This enables individuals to keep track
of and share their health information with medical providers. The purposes of
this thesis are to enhance the accuracy of BP monitoring devices and to eliminate
noise and situational dependency. Due to the fact that ECG and PPG signals
provide a safer and comfortable monitoring experience for people than invasive
techniques, this is accomplished by using them to improve the accuracy of blood
pressure estimation. While ECG measures the electrical activity of the heart using
electrodes placed on the skin, PPG analyzes changes in blood volume using light
sensors.
The MIMIC-III database is used for training and testing the algorithm because
consist of desired signals of diverse population. Signal cleaning techniques are



employed, followed by feature extraction. Machine learning clustering algorithms
are utilized to remove outliers from the extracted features. Finally, a novel neural
network model incorporating the Long Short-Term Memory (LSTM) layer is devel-
oped to predict continuous systolic and diastolic blood pressure values.
WHDs have witnessed remarkable advancements, driving the continuous improve-
ment of non-invasive BP monitoring. These devices offer accurate and convenient
solutions for individuals to monitor their cardiovascular health in real-time, both
in daily life and medical settings. With the integration of advanced sensors, ML
algorithms, and seamless communication capabilities, wearable health devices.
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Chapter 1

Introduction

Cardiovascular disease (CVD) is the most common cause of death globally. Approx-
imately, 17 million deaths occur worldwide due to cardiovascular disease, which
makes up almost one-third of all deaths. High blood pressure called hypertension is
a vital factor to the development of cardiovascular disease (CVD) [1, 2]. Therefore,
reduce the number of people with hypertension is one of the global targets for
noncommunicable diseases.

However, 1.28 billion persons between the ages of 30 and 79 are estimated to have
hypertension, with the majority (two-thirds) residing in low- and middle-income
nations, and nearly 46 percent of them are unaware that they have it [1]. In some
situations, headaches, blurred vision, dizziness, and chest pain are symptoms of
very high blood pressure, but in the majority of hypertension cases, there are no
symptoms.

The blood pressure is presented with two values, one presents the systolic blood
pressure(SBP) and another one demonstrates diastolic blood pressure (DBP). In
the past, only way to measure the BP is used of sphygmomanometer devices but
now Smart medical devices have been expanded to measure the BP continuously, in
this way Links foundation introduce a SINTEC medical device to measure it so this
thesis endeavour to find an algorithm to predict blood pressure more accurately.

1.1 State of the art devices
Measurement devices can be classified into two categories: invasive and non-invasive.
Invasive blood pressure monitoring is crucial during aortic resection procedures as
it allows real-time assessment of the patient’s vascular competence [3], as illustrated
in Figure 1.1-(a). On the other hand, non-invasive blood pressure measurement
is commonly performed using a cuff and sphygmomanometer in a clinical setting,
as shown in Figure 1.1-(b). The digital sphygmomanometer, depicted in Figure
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Introduction

1.1-(c), is the next-generation device that combines a cuff with digital calculations
instead of relying on auscultation. These digital devices are user-friendly and can
be easily used at home without the need for specialized training [4]. However, they
are not suitable for continuous monitoring in intensive care units (ICUs) or for
unstable or critically ill patients.

(a) Invasive blood pressure monitoring
[5].

(b) Non-Invasive blood pressure monitoring [4].

(c) The digital sphygmomanometer that used for
measuring the BP [4].

Figure 1.1: Blood pressure monitoring.

To address the limitations of traditional blood pressure measurement meth-
ods, researchers have focused on developing cuffless and continuous monitoring
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Introduction

techniques using wearable health devices (WHDs) [6]. Recent technological ad-
vancements, particularly in wearable devices and non-invasive sensors, have paved
the way for cuffless blood pressure monitoring systems. These systems utilize
physiological signals such as the electrocardiogram (ECG), photoplethysmogram
(PPG), and pulse transit time (PTT) to estimate blood pressure.

However, a variety of factors, such as noise, variability, and individual differences,
may interfere with the calculation of blood pressure from these physiological data.
One approach to address these challenges is to use machine learning techniques
such as neural networks to model the relationship between physiological signals and
blood pressure. Neural networks have been successfully applied in various fields,
such as image and speech recognition, natural language processing, and biomedical
engineering.

Continuous and reliable non-invasive blood pressure monitoring holds great
potential in preventing and managing cardiovascular diseases (CVDs), with hyper-
tension being a primary risk factor [7]. By leveraging advancements in technology
and machine learning, researchers aim to develop innovative methods for cuffless
blood pressure monitoring that offer convenience, accuracy, and the ability to contin-
uously monitor blood pressure, ultimately contributing to improved cardiovascular
health outcomes.

1.2 Main idea
In this thesis, our objective is to develop a neural network model for the continuous
prediction of blood pressure without the need for a cuff. The proposed model
will utilize various physiological signals, including ECG, PPG, in addition to PTT
and heart rate, to estimate blood pressure in real-time. The performance of the
model will be assessed using a dataset collected from both healthy individuals and
patients with hypertension.

The structure of this thesis is as follows. Chapter 1 offers a comprehensive
literature review, covering topics such as cuffless blood pressure monitoring, the
utilization of physiological signals for blood pressure estimation, and the application
of machine learning techniques for blood pressure prediction. This chapter provides
the necessary background and context for the subsequent chapters.

Chapter 2 delves into the dataset employed in this study, outlining the data
collection process and describing the preprocessing steps undertaken to ensure
data quality. Additionally, the chapter covers the methods employed for feature
extraction, which involves extracting relevant information from the physiological
signals.

In Chapter 3, we present the proposed neural network model and provide detailed
information about its architecture. This chapter outlines the design choices and
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Introduction

considerations made in developing the model, ensuring its effectiveness in accurately
predicting blood pressure.

Chapter 4 focuses on the experimental results and performance evaluation of
the proposed model. We present and analyze the outcomes of the experiments
conducted using the dataset, assessing the model’s accuracy and reliability in
predicting blood pressure.

Finally, in Chapter 5, we conclude the thesis by summarizing the contributions
made, highlighting the limitations of the study, and proposing potential avenues for
future research and improvements in the field of continuous cuffless blood pressure
prediction.

Through this thesis, we aim to advance the understanding and capabilities of
predicting blood pressure using non-invasive and continuous monitoring techniques.
The development of an accurate and reliable neural network model holds promise
for enhancing healthcare practices and improving patient outcomes in the field of
blood pressure management.
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Chapter 2

Psychological signals

2.1 Arterial Blood Pressure
The Arterial Blood Pressure (ABP) signal represents a pressure wave that travels
through our arteries. As it moves along different sections, its speed and shape
change. Imagine a wave traveling through a flexible pipe it gradually becomes
weaker and slower due to its interaction with the pipe’s material [8]. However,
if the pipe divides into smaller branches of varying sizes, something interesting
happens. The wave’s signal gets stronger because of reflection phenomena. The
exact nature of these phenomena varies depending on the blood vessel. When it
comes to recording ABP, we use the aorta, which is the least rigid vessel, and where
reflections are negligible [9].

When the ventricle propels blood into the aorta, initiating a cascade of events.
Initially, the aortic pressure rises, almost matching the ventricle’s pressure. How-
ever, this surge in aortic pressure is ephemeral. During the diastolic phase, when
the heart rests, the flow of blood into the aorta comes to a halt. Consequently,
the pressure gradually diminishes, reaching its nadir just moments before the
subsequent heartbeat.

Blood pressure is typically represented by two values: systolic blood pressure
(SBP), which corresponds to the highest pressure in the arterial system during
ventricular contraction, and diastolic blood pressure (DBP), which represents the
lowest pressure during ventricular relaxation [10]. The average arterial pressure
throughout the cardiac cycle, known as Mean Arterial Pressure (MAP), holds
considerable significance when calculated with formula 2.1.

MAP = SBP + (2 ∗ DBP )
3 (2.1)

5



Psychological signals

It is possible to get the ABP waveform invasively or non-invasively. A catheter
linked to a pressure transducer and placed into an artery, usually the radial or
femoral artery, is used to measure invasive ABP. An aneroid sphygmomanometer,
sometimes referred to as a blood pressure cuff, is a non-invasive measurement is
shown in figure 2.1.
To measure blood pressure using an aneroid sphygmomanometer, the first step

(a) Dial arrangement in aneroid type
BP measurement technique [4].

(b) Wrist blood pressure monitor [11].

Figure 2.1: Aneroid sphygmomanometers.

involves securely wrapping the cuff around the upper arm. By squeezing the rubber
bulb, the cuff is inflated, exerting pressure on the brachial artery and causing its
compression. As the cuff is gradually deflated, blood flow resumes within the artery,
and the pressure in the cuff is gradually released. The point at which the first
sound, known as the Korotkoff sound, is heard as blood begins to flow is recorded as
the systolic blood pressure. Conversely, the pressure at which the sound disappears
entirely is recorded as the diastolic blood pressure [7]. It is presented on figure 2.2
Aneroid sphygmomanometers find extensive use in medical environments such as
hospitals, clinics, and doctor’s offices. They are also popular among individuals for
monitoring blood pressure at home. These devices offer portability and operate
without the need for electricity, rendering them convenient for use in diverse settings.
It is essential to regularly calibrate and maintain aneroid sphygmomanometers to
ensure accurate measurements.

The level of arterial blood pressure (ABP) is directly linked to factors such
as cardiac output, arterial elasticity, and peripheral vascular resistance. Blood
pressure can be easily manipulated and influenced by various activities [13]. It is
crucial to keep your blood pressure within normal ranges. Stage 1 hypertension
is defined as having a blood pressure between 140/80 mmHg and 159/99 mmHg.
Stage 2 hypertension is classified as having a BP between 160/100 mmHg and
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Figure 2.2: Waveform and measurement of arterial blood pressure [12].

179/109 mmHg [14]. Hypertensive emergency refers to a very high blood pressure
that causes potentially life-threatening symptoms and end-organ damage, while
hypertensive urgency specifies a blood pressure more than 180/120 mmHg. Con-
trarily, hypotension is defined as a blood pressure less than 90/60 mmHg [15].
The mean arterial pressure (MAP) is approximately 83.3 mm Hg for a healthy
adult [12]. The diastolic pressure carries more significance in this calculation. This
is because the aortic pressure reaches its maximum level for a shorter duration
during a single heartbeat compared to the minimum level, which lasts about twice
as long. By considering this weighted mean, the MAP provides a more compre-
hensive representation of the overall pressure within the arteries. It serves as a
vital parameter for assessing cardiovascular health and plays a significant role in
ensuring proper blood perfusion to various organs and tissues throughout the body
[7].

The relationship between ABP and other physiological signals, such as electro-
cardiogram (ECG) and photoplethysmogram (PPG), can provide valuable insights
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into cardiovascular function. ECG records the electrical activity of the heart, re-
vealing information about heart rate, rhythm, and cardiac abnormalities. Changes
in blood pressure can influence the ECG waveform, particularly in conditions such
as hypertension or hypotension, where alterations in heart rate and rhythm may
occur as a compensatory response.

PPG, on the other hand, measures blood volume changes in the microvascular
bed of tissue using light. PPG signals can be influenced by changes in blood pressure
as variations in arterial volume affect light absorption and reflection. Therefore,
PPG signals can indirectly reflect blood pressure changes, providing information
about vascular tone and peripheral perfusion.

By integrating ABP, ECG, and PPG signals, a more comprehensive understand-
ing of the cardiovascular system can be achieved. This synergistic approach allows
for the assessment of cardiac electrical activity, blood pressure dynamics, and
vascular responses, enabling the identification and management of cardiovascular
disorders. Therefore, investigating the relationship between ABP, ECG, and PPG
signals holds great potential for advancing our knowledge of cardiovascular health
and improving diagnostic and therapeutic approaches.

2.2 Importance of PPG and ECG
The non-invasiveness of ECG and PPG signals is a key benefit. PPG uses light
sensors to assess changes in blood volume, whereas ECG uses electrodes applied
to the skin to measure the electrical activity of the heart. ECG and PPG signals
offer a safer and more comfortable monitoring experience for people than invasive
techniques like artery catheterization. This feature’s non-invasiveness lowers the
possibility of problems, encourages patient compliance, and allows for long-term
monitoring.
The widespread use of ECG and PPG signals in wearable technology is another
benefit. ECG and PPG sensors may now be found in wearable gadgets like
smartwatches, fitness trackers, and mobile health applications thanks to recent
developments in sensor technology and downsizing. These gadgets offer a practical
and discrete way to continuously check blood pressure throughout the day. The
wearable technology enables continuous data collecting and real-time trend analysis
of blood pressure patterns.
Real-time monitoring and dynamic evaluation of blood pressure are made possible
by ECG and PPG signals. A more thorough understanding of blood pressure trends,
including fluctuations caused by various activities, postural changes, and reactions
to stresses, is possible with continuous data recording. The quick diagnosis of
anomalies or variations in blood pressure is made possible by real-time analysis of
ECG and PPG data, enabling prompt treatments and individualized healthcare.
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To improve blood pressure monitoring, ECG and PPG signals can be combined
with other physiological indicators. In addition to blood pressure, ECG data
can offer influential knowledge on heart rate variability, cardiac function, and
arrhythmias. The pulse transit time, which has been connected to variations in
blood pressure, may be derived from PPG data. A more complete and accurate
image of cardiovascular health may be produced by combining different signals,
which helps with the diagnosis and treatment of various cardiovascular disorders.
Due to its non-invasive nature and accessibility in wearable devices, the use of
ECG and PPG signals for continuous blood pressure monitoring offers a number
of benefits. These signals make it possible to conveniently track blood pressure
patterns in real-time, enabling individualized treatment and the early identification
of anomalies. The evaluation of cardiovascular health is improved overall when
ECG and PPG data are combined with other physiological indicators. Utilizing
these benefits, researchers and doctors may create prediction models for continuous
blood pressure monitoring that are more precise and effective, improving healthcare
outcomes.

2.3 Photoplethysmogram
PPG is a non-invasive technique for measuring the quantity of light that is absorbed
or reflected by blood vessels in living tissue, and it was first investigated in the 1930s
[10].PPG is a composite name made out of the words "photo," which stands for
light, "plethysmo," which means volume, and "graphy," which stands for recording
[16]. The PPG signal responds to variations in blood volume rather than blood
vessel pressure because the degree of optical absorption or reflection relies on the
amount of blood that is present in the optical path. In other words, PPG records
the volume of blood in the sensor coverage area using a photoelectric method,
whether transmissive or reflective, to detect changes in blood volume and produce
a PPG signal [17]. In fact, the sensor coverage area covers multiple capillaries, as
well as veins and arteries. As a result, the PPG signal is a complicated blend of the
cardiovascular system’s arteries and veins’ blood flow. Typically, pulsatile and non-
pulsatile blood volume are included in a raw PPG signal [18]. A photodetector and
a light-emitting diode (LED) make up a PPG device, which emits light and detects
it. Depending on where the LED and photodetector are located, the device can be
categorized as transmissive or reflecting. Configurations for a photoplethysmogram
measurement equipment are shown in 2.3. In the transmissive kind, skin tissues
are found between the photodetector and the LED, which is on the other side of
the device. The photodetector is placed next to the LED in the reflecting type.
The transmissive type is typically used to measure PPG in the distal area of the
body, where skin tissues, including those of fingers, toes, and earlobes, are thin.
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Figure 2.3: Set up of photoplethysmography measuring: Left: transmissive type -
right: reflective type [16].

This is since the transmissive type measures attenuated light intensity after the
light passes through skin tissues. The transmission-type PPG sensor shows more
stable PPG measurement performance than the reflective type [16].

The amount of light that the sensor can detect decreases as more light is absorbed
by the tissue as blood circulates through it. The result is a waveform that shows
how the blood volume has changed over time. The PPG waveform typically has a
number of characteristics, such as a sharp upstroke caused by the arterial pulse,
a peak that corresponds to systolic blood pressure, and a dicrotic notch that is
connected to the closing of the aortic valve.

Figure 2.4 illustrates how the PPG waveform is created by subtracting the
quantity of light reflected or transmitted by human tissue from the light intensity
measured with a photodetector. In general, a pulsatile component and a non-
pulsatile component make up the PPG waveform [17]. The pulsatile component,
sometimes referred to as the alternating current (AC) component, is connected
to variations in arterial blood volume. It is connected to vasodilation, vasomotor,
and vascular tones and is timed to the cardiac cycle. The PPG waveform’s other
components, omitting the pulsatile component, are referred to as the non-pulsatile
component, also known as the direct current (DC) component. The biological
properties of the measurement site, such as the tissue composition and basic blood
volume, as well as external variables, such as the measuring device’s specifications
and ambient light, all have an impact on non-pulsatile components.

The PPG waveform changes according to cardiac activity. Additionally, it could
alter as a result of breathing, autonomic nervous system activity, vascular and
venous activity. The PPG waveform has two curves: a rising curve for capillary
blood volume increases caused by ventricular contraction, and a descending curve
for capillary blood volume decreases caused by heart dilatation. According to
heart activity, it is repeated. At that point, the PPG waveform’s rising curve is
referred to as its systolic phase, and its falling curve as its diastolic phase [7]. The
PPG waveform of a single pulse and several feature points are shown in Figure 2.4.
The beginning of pulsation is known as the pulse onset, and it occurs when blood
volume is at its lowest before the systolic phase. The maximum blood volume is
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Figure 2.4: Set up of photoplethysmography measuring: Left: transmissive type -
right: reflective type [16].

where systolic peak is determined. Just before the aortic valve shuts, transient
rising and falling of the PPG waveform during diastole occurs as blood volume in
capillaries briefly increases again due to the presence of a pressure gradient in the
opposite direction to the blood flow.

2.4 Electrocardiography
Electrocardiography (ECG) is a crucial and widely used diagnostic tool in clinical
medicine. It serves as a valuable screening tool in both inpatient and outpatient
settings due to its affordability and ease of acquisition [19]. The ECG is instrumental
in diagnosing various heart conditions, including previous myocardial infarction,
current cardiac ischemia, conduction abnormalities such as atrial fibrillation, and
life-threatening tachycardias. Additionally, ECG findings help determine the
appropriate type of implanted cardiac defibrillator for the treatment of advanced
heart failure [20].

Beyond cardiac conditions, ECGs can also provide insights into noncardiac
diseases. Certain noncardiac conditions, such as electrolyte imbalances and adverse
effects of medications, can manifest as unique patterns on an ECG due to their
impact on conduction patterns. This further underscores the versatility and
importance of ECGs in clinical practice [21, 22].
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The electrocardiogram (ECG) is a time-dependent recording of the electrical
activity that occurs within the heart throughout the cardiac cycle. The heart’s
electrical signals are highly coordinated, leading to synchronized electrical potentials
that can be detected even at locations distant from the heart’s source [22]. These
electrical potentials corresponding to different phases of the cardiac cycle can be
captured by electrodes placed on the surface of the skin. The presence of bodily
fluids in the body facilitates the conduction of electrical activity generated by nerve
or muscle tissue, allowing it to propagate throughout the body [23].

The ECG waveform typically has amplitudes on the order of millivolts (mV),
with values exceeding 0.5 mV. The maximum amplitude observed in a normal ECG
waveform ranges between 2 mV and 3.0 mV [7].

During an ECG test, electrodes are placed on specific locations of the patient’s
chest, arms, and legs, as shown in Figure 2.5. These electrodes are used to monitor
the electrical impulses generated by the beating heart. The resulting ECG signal
provides a visual representation of the heart’s electrical activity over time [24].

The ECG is a valuable diagnostic tool that allows healthcare professionals to
assess the electrical functioning of the heart, identify abnormalities or irregularities
in the cardiac rhythm, and aid in the diagnosis and management of various cardiac
conditions.

Figure 2.5: Einthoven’s triangle [25].

The ECG signals consist of various peaks and regions as illustrated in figure 2.6
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Figure 2.6: ECG signal [26].

that provide important information about the electrical activity of the heart [27,
25]. Here is an explanation of the key peaks and regions:

• P wave: The P wave represents the depolarization (contraction) of the atria,
the upper chambers of the heart. It indicates the initiation of an electrical
impulse in the sinoatrial (SA) node, which triggers atrial contraction.

• QRS complex: The QRS complex is a group of waves that represents the
depolarization of the ventricles, the lower chambers of the heart. It consists of
three distinct components:

– Q wave: The first downward deflection after the P wave represents initial
ventricular depolarization.

– R wave: The upward deflection following the Q wave indicates further
ventricular depolarization.

– S wave: The downward deflection following the R wave represents the
final phase of ventricular depolarization.

The QRS complex signifies the contraction of the ventricles, which pumps
blood out of the heart.
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• T wave: The T wave represents the repolarization (recovery) of the ventricles.
It reflects the electrical resetting of the heart muscle to prepare for the next
heartbeat.

• ST segment: The ST segment is the region between the end of the QRS
complex and the beginning of the T wave. It represents the interval when
the ventricles are fully depolarized before repolarization begins. Deviations
or abnormalities in the ST segment can indicate myocardial infarction (heart
attack) or other cardiac conditions.

• PR interval: The PR interval is the time from the beginning of the P wave
to the start of the QRS complex. It reflects the conduction time from the
atria to the ventricles and can provide information about the health of the
atrioventricular (AV) node and conduction pathways [27, 24, 28].

These peaks and regions, when analyzed collectively, can help healthcare pro-
fessionals diagnose various heart conditions, including arrhythmias, conduction
abnormalities, ischemia, and ventricular hypertrophy[29].

Although blood pressure is not directly measured by ECG signals, they can
provide valuable information about the cardiovascular system that is relevant to
blood pressure assessment. The ECG waveform can reveal abnormalities in heart
rate and rhythm, which may be associated with cardiovascular conditions, including
high blood pressure. Additionally, changes in the amplitude and duration of the
ECG waveform can indicate variations in blood pressure or volume [30].

By analyzing the ECG signals, healthcare professionals can gain insights into
a person’s overall cardiovascular health, including their blood pressure status.
However, it is important to note that blood pressure is typically measured using
separate techniques, such as a blood pressure cuff, as it is a distinct physiological
parameter from the electrical activity of the heart that the ECG captures [31, 27].

Therefore, while ECG signals can provide valuable information about the car-
diovascular system and offer clues related to blood pressure, they are not a direct
measurement of blood pressure itself. Combining ECG findings with dedicated
blood pressure measurements enables a more comprehensive assessment of an
individual’s cardiovascular health.
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Chapter 3

Materials and methods

This project comprises five main sections: data reading, data cleaning, feature
extraction, model design, and model testing, as depicted in Figure 3.1. Each section
plays a crucial role in the overall process of the project.

The first section, "Data Reading" involves downloading the necessary data from
the appropriate server and selecting the desired signals for analysis. This step
ensures that the project has access to the required data for further processing and
modeling.

The "Data Cleaning" section focuses on preparing the dataset for analysis by
addressing any inconsistencies, errors, or missing values present in the signal data.
This step is essential to ensure data quality and accuracy throughout the project.

In the "Feature Extraction" step, the relevant characteristics and information are
extracted from the cleaned data. This involves identifying and computing features
that are informative and significant for the model design and subsequent analysis.

The "Model Design" section involves developing the model architecture and
selecting suitable algorithms and techniques to train the model. This step incorpo-
rates the extracted features from the previous section to build a model that can
effectively predict the desired outcome or make accurate estimations.

Finally, in the "Model Testing" phase, the performance and effectiveness of
the designed model are evaluated. Standard evaluation factors, such as accuracy,
precision, recall, or other suitable metrics, are employed to assess the model’s
performance and determine its suitability for the intended purpose.

Each section of the project roadmap consists of specific tasks, methods, and
materials that will be explained and implemented in detail throughout the project.
By following this roadmap, the project aims to progress systematically through
each section, ensuring comprehensive data analysis, feature extraction, and model
development, ultimately leading to reliable and accurate predictions or estimations.
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H

Figure 3.1: Road-map of project.

3.1 MIMIC-III database
This thesis focused on designing an effective neural network prediction model,
which requires a substantial amount of data for training, validation, and testing.
The Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) database,
collected by the MIT lab, served as a valuable resource for this purpose.

The MIMIC-III Waveform Database consists of over 60,000 record sets from
approximately 30,000 patients in the intensive care unit (ICU), although the de-
mographic information is not included [32]. Each record set contains digitized
signals such as electrocardiogram (ECG), arterial blood pressure (ABP), respiration,
fingertip photoplethysmogram (PPG), and other signals, as well as periodic mea-
surements stored in a "numerics" record. These record sets provide quasi-continuous
recordings of vital signs for a single patient throughout their ICU stay, typically
spanning a few days or even several weeks. It should be noted that not all signals
are available for all patients at all times due to occasional signal disconnections
[33].

Access to the MIMIC database can be obtained through tools available on
the Phyisonet website [34]. The Lightwave web application offers visualization
capabilities for the signals, while the WFDB (WaveForm database) software package
provides downloading functionality. The WFDB package is compatible with Python
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and will be utilized in the subsequent sections of this thesis to evaluate the predictive
model.

By leveraging the MIMIC-III database and the wfdb package, this thesis aims
to leverage real-world patient data to develop and assess the effectiveness of
the proposed prediction model. These resources offer valuable insights into the
physiological signals and their dynamics during ICU stays, enabling the development
of robust and reliable predictive models for various medical applications.

3.2 Python

Python has gained immense popularity as a programming language for machine
learning due to its inherent advantages and robust ecosystem. Both researchers
and practitioners in the field of machine learning recognize Python as one of the
most user-friendly, readable, and expressive programming languages available [35,
36].

Python’s simplicity and readability make it easier for users to understand and
write code, enabling efficient development and experimentation in the machine
learning domain [36]. Its clean syntax and extensive libraries, such as NumPy,
Pandas, and scikit-learn, provide powerful tools for data manipulation, analysis,
and model development.

Furthermore, Python’s versatility allows seamless integration with other tech-
nologies and frameworks commonly used in machine learning. The creation and
training of neural network models is facilitated by TensorFlow, a well-known library
in this area. Additionally, well-known libraries that provide effective tools for
machine learning applications include PyTorch, scikit-learn, and Keras. Users may
concentrate on model creation and experimentation by using these libraries to
abstract away complicated implementation concerns [37].

Machine learning has advanced significantly thanks in large part to the dynamic
and active Python community. Through online forums, tutorials, and in-depth
documentation, researchers, developers, and practitioners actively create libraries,
share expertise, and offer help [38]. This collaborative setting encourages creativity
and guarantees easy access to resources for machine learning projects.

Overall, Python’s combination of simplicity, readability, extensive libraries, and
community support makes it an ideal choice for machine learning practitioners and
academics. Its user-friendly nature and rich ecosystem contribute to the accelerated
growth and advancements in the field of machine learning.
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3.3 Literature review
The field of continuous blood pressure monitoring has seen the application of various
machine learning algorithms, ranging from traditional methods like logistic and
linear regression to more sophisticated techniques such as artificial neural networks
(ANN) with their diverse architectures and characteristics [39]. These machine
learning models are developed to provide medical experts with a valuable tool for
supporting clinical decision-making [40].

As discussed in Section 2, the PPG and ECG signals have been extensively
utilized in the estimation of blood pressure. Table 3.1 provides a summary of
previous works in this domain, including the algorithms employed and the cor-
responding results. These studies have employed a range of machine learning
techniques to develop models capable of accurately estimating blood pressure based
on the analysis of PPG and ECG signals.

The table presents an overview of the various approaches and their outcomes,
providing valuable insights into the performance and effectiveness of different ma-
chine learning algorithms for continuous blood pressure estimation. These studies
serve as a foundation for the current research, guiding the selection and evaluation
of suitable algorithms in developing an accurate and reliable blood pressure predic-
tion model.

Kachuee et al. conducted a study in which they collected data from the MIMIC-
II database, specifically ECG, PPG, and ABP signals. They applied certain
limitations on the data, such as restricting the systolic blood pressure (SBP) to be
between 80 and 180 mmHg, and the diastolic blood pressure (DBP) to be between
60 and 130 mmHg. They also filtered out signals with a duration of less than 10
minutes, resulting in a final database of 3,663 record segments [41].

To ensure invariance to changes in sampling frequency, the input signals were
resampled at a constant frequency of 1 kHz during the preprocessing stage. The
signals were then decomposed into their component parts using a discrete wavelet
transform (DWT) with a Daubechies 8 (db8) mother wavelet and 10 decomposition
levels. After removing coefficients associated with ultrahigh and extremely low
frequencies, the remaining coefficients underwent traditional wavelet denoising.
The signals were reconstructed after this cleansing process.

In terms of feature selection, five features were extracted from the ECG and
PPG signals. These features included the ECG R-Peak, three points on the PPG
signal (PATp, PATf, and PATd), heart rate (HR), augmentation index (AI), large
artery stiffness index (LASI), and inflection point area ratio (IPA) [41].

For their machine learning algorithm, Kachuee et al. utilized several regression
techniques, including Regularized Linear Regression, Decision Tree Regression,
Support Vector Machine (SVM), Adaptive Boosting (AdaBoost), and Random
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Forest Regression (RFR). Among these techniques, AdaBoost yielded the best
results, as indicated in Table 3.1 [42].

These findings highlight the effectiveness of the AdaBoost technique in predicting
blood pressure using the extracted features from ECG and PPG signals. It demon-
strates the potential of machine learning approaches in the field of continuous blood
pressure monitoring and offers valuable insights for the development of accurate
and reliable prediction models.

Z. Li et al. developed a novel method for blood pressure estimation, which they
applied to the MIMIC database as well as experimental subjects. The database
was filtered based on specific criteria, including a systolic blood pressure (SBP)
range of 80 to 180 mmHg, a diastolic blood pressure (DBP) range of 50 to 130
mmHg, and a range of absolute differences between SBP and DBP of 20 to 70
mmHg. As a result of this filtering process, they obtained a dataset comprising
120,684 segments from the MIMIC database [43].

To estimate blood pressure, the researchers designed two neural networks: a
feature-net and a regression-net. These networks were constructed using deep
neural network architectures, and they were interconnected to enable information
flow between them. The feature-net was responsible for extracting relevant features
from the input data, while the regression-net performed the actual blood pressure
estimation [44]. By connecting these networks, they aimed to leverage the learned
features to improve the accuracy of the regression-net in predicting blood pressure.

The performance of their method was evaluated using the mean absolute error
(MAE), as shown in Table 3.1. The Intra-patient dataset was utilized for training
the model, and reference inputs were used for calibration purposes. The MAE
values in the table provide an indication of the model’s performance in accurately
estimating blood pressure based on the given dataset and experimental setup [43].

The work of Z. Li et al. represents a novel approach to blood pressure estimation,
employing deep neural networks and utilizing a filtered dataset. Their method
shows promise in achieving accurate blood pressure estimation and contributes to
the field of continuous blood pressure monitoring.

Slapničar et al. conducted a study in which they designed a convolutional
neural network (CNN) prediction model to estimate blood pressure from the
photoplethysmogram (PPG) signal. The features extracted from the PPG signal
included PPG, PPG’, and PPG" in both the temporal and frequency domains. The
aim was to capture relevant information from the PPG signal that could contribute
to accurate blood pressure estimation [45].

To address the challenge of training very deep networks with the vanishing
gradient problem, the researchers proposed a developed ResNet model. This
approach utilized shortcut connections, also known as residual connections, between
larger blocks of layers. By incorporating these connections, the issue of decreased
backward error propagation and inadequate weight updates in the initial layers of
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deep networks was mitigated [45].
The performance of the developed ResNet model was evaluated by testing it on

a dataset comprising 510 subjects from the MIMIC-III database. The results of
the evaluation are presented in the corresponding table [45]. These results provide
insights into the model’s performance in accurately estimating blood pressure based
on the PPG signal.

By leveraging the capabilities of CNNs and incorporating residual connections
within the ResNet architecture, Slapničar et al. demonstrated a promising approach
for blood pressure estimation from the PPG signal. Their study contributes to the
advancement of continuous blood pressure monitoring and highlights the potential
of deep learning techniques in this field.

Senturk et al. achieved one of the lowest mean absolute errors (MAE) in
blood pressure estimation by designing the NARAX neural network model and
testing it on the MIMIC-II dataset. Their model utilized electrocardiogram (ECG),
photoplethysmogram (PPG), and arterial blood pressure (ABP) signals as inputs.

In the preprocessing stage, the researchers applied min-max normalization to
normalize the signals. Then, a low-pass filter with a cutoff frequency of 40 Hz was
employed to remove high-frequency noise from the PPG and ABP signals, with a 5
Hz cutoff frequency. Additionally, a median filter was used to correct low-frequency
baseline shifts in the signals.

For feature extraction, Senturk et al. extracted time, frequency, and chaotic
features from both the ECG and PPG signals. These features captured relevant
information from the signals, enabling the model to make accurate blood pressure
predictions [46].

To train, validate, and test the model, the dataset was divided into three portions:
60% for training, 15% for validation, and 25% for testing the model’s performance.

The proposed NARAX neural network model, combined with the preprocessing
steps and feature extraction techniques, demonstrated promising results in blood
pressure estimation. Senturk et al.’s study contributes to the field of continuous
blood pressure monitoring and highlights the effectiveness of neural network models
in this domain [46]. Panwar et al. proposed a model called "PP-Net" for the
simultaneous estimation of diastolic blood pressure (DBP), systolic blood pressure
(SBP), and heart rate. Their approach involved utilizing the Long-term Recurrent
Convolutional Network (LRCN) and eliminating the need for explicit feature
extraction. The model was tested on the MIMIC-II database, and promising results
were obtained.

The PP-Net model was designed by combining convolutional neural network
(CNN), long short-term memory (LSTM), and fully connected layers. The CNN
component served as a feature extractor and consisted of two 1D convolutional
layers with interleaved rectified linear unit (ReLU) activations, max-pooling layers,
and drop-out layers. The output features extracted from the CNN were then fed
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into the LSTM model [47].
The LSTM model, composed of two LSTM layers, utilized the tangent activation

function and included a dropout layer for regularization. The LSTM layers were
responsible for capturing temporal dependencies in the input signals and providing
context for predicting the physiological parameters.

Finally, the output from the LSTM model was passed through a fully connected
layer, which was responsible for predicting the DBP, SBP, and heart rate values
simultaneously.

By leveraging the LRCN architecture and combining CNN, LSTM, and fully
connected layers, Panwar et al. demonstrated the effectiveness of their PP-Net
model in estimating multiple cardiovascular parameters. The model’s performance
on the MIMIC-II database showcased its potential for accurate and simultaneous
prediction of DBP, SBP, and heart rate [47].

Baker et al. proposed a prediction model for diastolic blood pressure (DBP)
and systolic blood pressure (SBP) by combining temporal convolutional layers
with long short-term memory (LSTM) layers. Their approach did not involve
explicit feature selection, and they directly used electrocardiogram (ECG) and
photoplethysmogram (PPG) signals as inputs for the network.

In addition, they employed a bidirectional LSTM model, which considers the
data in both the original and reversed order. Bidirectional LSTMs (BiLSTMs)
have the advantage of learning from past and future values within the sequence,
thereby capturing more temporal dependencies in the data [48].

By combining temporal convolutional layers, LSTM layers, and the bidirectional
architecture, Baker et al. achieved acceptable results in the prediction of DBP and
SBP. Their model leveraged the information present in ECG and PPG signals to
make accurate predictions for blood pressure parameters [48].

Chih-TA et al. proposed a cascade neural network model for the estimation
of diastolic blood pressure (DBP), systolic blood pressure (SBP), and heart rate
(HR). Their model consisted of multiple stages, with each input (PPG and ECG)
being processed by a convolutional layer to extract relevant features.

The extracted features from the PPG and ECG signals were then concatenated
and passed through a long short-term memory (LSTM) layer. The LSTM layer was
responsible for capturing the temporal dependencies and patterns in the combined
features.

By utilizing this cascade neural network architecture, Chih-TA et al. were able
to avoid explicit feature extraction, simplifying the overall algorithm. Instead, the
network automatically learned and extracted the relevant features from the input
signals during the training process.

This approach allowed for the simultaneous estimation of DBP, SBP, and HR
using PPG and ECG signals as inputs. The cascade neural network model provided
an effective solution for blood pressure and heart rate estimation without the need

21



Materials and methods

for separate feature extraction steps [49].
Figini et al. presented a novel approach for feature extraction in the context of

blood pressure estimation. They employed time windows to clean and refine the
extracted features. The proposed method was evaluated using either the MIMIC-III
dataset or data collected from the SHIMMER database [50].

To estimate blood pressure, Figini et al. employed various linear machine
learning algorithms, including Support Vector Regression (SVR), Random Forest,
Ridge Regressor, and Linear Regressor. Their evaluation demonstrated significant
results, indicating the effectiveness of their approach.

One notable advantage of their algorithm is its quickly and simplicity, making
it suitable for implementation on wearable devices. The proposed method offers
promise for real-time blood pressure estimation, leveraging feature extraction
techniques and linear machine learning algorithms [50].

3.4 Data accquisition
3.4.1 Pre-processing
In the preprocessing stage of this study, several steps were undertaken to ensure
data quality and suitability for further analysis. First, signals that exhibited
constant values and contained missing values (NaN) were removed from the dataset.
This step aimed to eliminate signals that did not provide meaningful information
for analysis.

Next, the arterial blood pressure (ABP) signals were not processed but rather
used directly to train, validate, and test the model for predicting systolic blood
pressure (SBP) and diastolic blood pressure (DBP), which were the focus of this
study.

However, in the case of the electrocardiogram (ECG) and photoplethysmogram
(PPG) signals, a preprocessing step was applied. These signals were filtered using
a 5th-order Butterworth filter with upper and lower cutoff frequencies (fH and fL)
set at 1 Hz and 10 Hz, respectively. The purpose of this filtering was to remove
any unwanted noise and artifacts present in the signals.

Furthermore, the ECG and PPG signals were verified for missing values and
the presence of consecutive constant values. If any ECG or PPG signal contained
missing values or had more than 20 percent of consecutive constant values, those
signals were eliminated from the dataset. This step aimed to ensure the reliability
and quality of the remaining signals for subsequent analysis and modeling.

By performing these preprocessing steps, the dataset was prepared by removing
signals with constant values, missing values, and unreliable ECG and PPG signals.
This ensured that the data used for training and testing the predictive model was
of high quality and suitable for accurate blood pressure estimation.

22



Materials and methods

Authors Year Database ML
algorithm Performance

SBP-DBP
Number

Kachuee et al. [42] 2017 MIMIC-III Adaptive
Boosting MAE

11.17-5.35
3663

Z. Li et al. [43] 2019 subjects CNN MAE
4.44-3.29

120684

Slapničar et al.[45] 2019 MIMIC-III ResNet-GRU MAE
9.43 - 6.88

510

Senturk et al. [46] 2020 MIMIC-II NARX-NN MAE
3.25 - 1.73

4500

Panwar et al.[47] 2020 UCI dB LRCN MAE
3.97 - 2.30

304

Baker et al. [48] 2021 MIMIC-III CNN-LSTM MAE
4.41 - 2.91

...

Chih-TA et al. [49] 2022 MIMIC-III CNN+GRU MAE
2.44 - 1.40

1551

Figini et al. [50] 2022 MIMIC-III
/SHIMMER

Linear
Regressor MAE

3.16 - 2.01
90

Figini et al. [50] 2022 MIMIC-III
/SHIMMER

Random
Forest MAE

3.16 - 1.95
90

Figini et al. [50] 2022 MIMIC-III
/SHIMMER

Ridge
Regressor MAE

3.20 - 2.01
90

Figini et al. [50] 2022 MIMIC-III
/SHIMMER SVR MAE

3.20 - 1.83
90

Pin-You et al. [51] 2022 MIMIC-III CNN MAE
3.63 - 2.5

300

Table 3.1: Summary
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3.4.2 Feature extraction
In the feature extraction stage, significant features were extracted from the cleaned
data over a time period equivalent to approximately two cardiac cycles (T =
1.5 seconds). Specifically, various time intervals between specific points in the
electrocardiogram (ECG) signal were computed. These points included the R-peaks,
Q, P, T, Q, and S, as illustrated in Figure 3.2-a.

The extraction of these time intervals provides valuable information about the
temporal characteristics and patterns within the ECG signal. These features can
capture important aspects of the cardiac cycle, such as the duration of specific
segments and the intervals between significant points. Analyzing these time intervals
can offer insights into the electrical activity and timing of different phases of the
heart’s contraction and relaxation.

By extracting these significant features from the ECG signal, we can capture
essential temporal information that may contribute to the accurate prediction of
blood pressure. These features serve as inputs to the predictive model, allowing
it to learn and identify patterns in the data that correlate with blood pressure
changes. The selection and computation of these specific time intervals provide
relevant information for modeling and analyzing the relationship between the ECG
signal and blood pressure estimation.

(a) Typical ECG waveform.

(b) Typical PPG waveform. (c) Calculation of additional PPG fea-
tures.

Figure 3.2: Features of ECG and PPG[52]

The feature selection process from the ECG signal began with the detection
of R-peaks. To accomplish this, a software program was developed using Python,
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which employed the scipy.signal.find_peaks() function. This function identified all
local maxima in the signal, with a distance parameter set to 60. The time interval
between two consecutive R-peaks was then designated as the BTBECG series.

Each value in the BTBECG series was divided in half, resulting in a value called
∆/2. This value was used to extract additional maximums and minimums from the
signal. Specifically, the maximum and minimum values between the R-peak and its
preceding ∆/2 were identified and defined as T and S, respectively. Additionally,
the period between the R-peak and its prior ∆/2 was calculated.

Furthermore, within this time window, the highest and lowest values for P and
Q were determined. In cases where multiple maximum or minimum values were
present between each pair of adjacent peaks, the signal qualities were reevaluated.
If more than two values were found, the highest value closest to the R-peak was
selected as T, while the next highest value closest to the next R-peak was chosen
as P. The same procedure was applied to identify the minimum values.

The results of this feature selection process, including the identification of T,
P, and S points, as well as the corresponding maximum and minimum values, are
depicted in Figure 3.4-a.

By carefully analyzing the characteristics and properties of the ECG signal, this
feature selection methodology allows for the extraction of relevant features that
capture important aspects of the cardiac cycle. These features will subsequently be
utilized in the predictive modeling stage to improve the accuracy and effectiveness
of blood pressure estimation.

In the process of identifying the S-peaks of the PPG signal, it was observed
that several spurious peaks were present. To ensure accurate detection of only the
genuine S-peaks, the amplitude of the peaks underwent kernel density estimation
(KDE) analysis [50]. By analyzing the distribution of peak amplitudes, the program
identified the minimum value between the two peaks and retained only the peaks
with amplitudes above that threshold. This step helped eliminate false peaks and
enhance the precision of S-peak detection in the PPG signal.

Two additional features were extracted from the PPG signal: the time interval
between two consecutive peaks and the height of the trough to the S-peak. These
features provide valuable information about the temporal characteristics and the
relative magnitude of specific points within the PPG signal. Figure 3.4-b illustrates
the extraction of these features from the PPG signal.

Moving on to the blood pressure estimation, as depicted in Figure 3.4-c, the
systolic blood pressure (SBP) was determined as the maximum value in the arterial
blood pressure (ABP) signal, representing the peak pressure during each cardiac
cycle. Conversely, the diastolic blood pressure (DBP) was determined as the
minimum value in the ABP signal, corresponding to the lowest pressure between
two consecutive cardiac cycles.

By incorporating these features and accurately identifying the S-peaks in the
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Figure 3.3: a) Features of ECG signal. b) Features of PPG signal.

PPG signal, along with the determination of SBP and DBP from the ABP signal,
the study aims to enhance the accuracy and reliability of blood pressure estimation.
These features provide valuable insights into the dynamics of the PPG and ABP
signals, enabling the development of a robust predictive model for blood pressure
assessment.

3.4.3 Remove outliers
The DBSCAN algorithm was employed to detect outliers of the features that
extracted of the PPG and ECG signals. It works by grouping together points in a
high-density region and separating them from points in low-density regions. The
DBSCAN algorithm was chosen for outlier detection because it can handle noise in
the data and is less sensitive to parameter selection than other approachs, such as
the k-means algorithm.

The DBSCAN algorithm requires two parameters: epsilon (ϵ) and min-samples.
The epsilon value determines the radius of the neighborhood around each point,
while the min-samples value specifies the minimum number of points required
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Figure 3.4: a) Features of ECG signal. b) Features of PPG signal.

to form a dense region. In this study, the epsilon value was set to the standard
deviation of the signal, which is a common method used to determine this parameter.

The min-samples value was chosen through a trial and error process. Initially,
a range of values were tested for min-samples, and the results were compared to
the ground truth values to determine the optimal parameter value. We found
that setting the minsamples value to 4% of the feature values resulted in the most
accurate outlier detection.

Overall, the DBSCAN algorithm was an effective method for detecting outliers
in the PPG and ECG signals. The selection of appropriate parameters, such as
epsilon and min-samples, was crucial to the success of this method. By using the
standard deviation of the signal to determine the epsilon value and setting the
min-samples value to 4% of the feature values, we were able to accurately identify
outliers in the signals.

3.5 LSTM Neural Network
The developed neural network model comprised a convolutional neural network
and a Long short-term memory (LSTM) layer that used P, Q, R, S, and T points
and the time interval between R points of ECG signals and S-peaks, troughs, wave
heights, up-times, and the time interval between S-peaks, as well as heart rate and
PTT. The architecture of the model illustrated in Figure 3.5.

27



Materials and methods

Figure 3.5: Features selected from ECG and PPG and extract the DBP and SBP
form ABP.

Before performing the neural network model on the data, the Principal Compo-
nent Analysis (PCA) technique was used to reduce the dimensionality of datasets
to avoid overfitting and increased computational complexity while preserving the
maximum amount of information. PCA serves as a technique for transforming
a potentially correlated set of variables into a new set of uncorrelated variables
known as principal components. These components, which are linear combinations
of the original features, are ordered based on the amount of variation they explain
within the data. By harnessing the power of PCA, the correlated features undergo
a transformation into a lower-dimensional space, where their interdependencies are
no longer present.

The primary objective of applying PCA in this particular context is to capture the
most significant information from the original features while minimizing the effects
of correlation. By reducing the dimensionality of the feature space, PCA enables
a more efficient representation of the data, effectively eliminating redundancy
stemming from high correlations.

In the developed model, the number of principal components was determined to
be 95% of the variance in the data. This was achieved by calculating the percentage
of variance explained by each principal component and selecting the minimum
number of components required to reach the desired level of variance. The resulting
set of principal components is employed as inputs to the neural network model.

As shown in Figure 3.5, the developed model passes the output of the PCA into
network comprised of convolutional layers utilized a kernel size of 2 with a stride of
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1. The rectified linear unit (ReLU) , a popular activation function in deep learning
models, is the activation function utilized in this layer.

The maximum pooling 1D layer is then added to the model, which down-samples
the input data along the time dimension in order to lower the dimensionality of the
output from the Conv1D layer. With a pool size of 2 and a stride of 2, this layer
combines each pair of neighboring time steps into a single output. This lowers the
computing cost of the model and aids in helping it discover more broad patterns in
the data.

Following the MaxPooling1D layer, the BatchNormalization layer is added,
normalizing the activations of the preceding layer across the batch size. This lessens
the impact of internal covariate shift and aids in the model’s faster convergence
during training.

The model is then given the LSTM layer, which is made up of a number of
memory cells with the capacity to store data over time. The number of memory
cells was considered as hyperparameters of the model, which can be adjusted to
strike a compromise between model complexity and performance. The hyperbolic
tangent (tanh) is the activation function used in this layer.

After the LSTM layer, a Dropout layer is introduced, which randomly removes
some of the layer’s units during training. This enhances the model’s generalization
capabilities and prevents overfitting.

The model is then given a Dense layer with two output units that predicts the
values of the systolic and diastolic blood pressure. Because this layer uses a linear
activation function, the output values are not restricted to a certain range. Mean
squared error is the loss function utilized in the model, while Adam is the optimizer
with a learningRate-specified learning rate.

In conclusion, the developed model is an LSTM-based deep learning model that
predicts blood pressure values using 13 features taken from ECG, PPG, HR, and
PTT signals. Conv1D, MaxPooling1D, BatchNormalization, LSTM, Dropout, and
a Dense layer with two output units are the layers that make up the model. With
a predetermined learning rate, the model is trained using mean squared error loss
and Adam optimizer.
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Results

In this chapter, are presented the results of the study that focused on utilizing
the proposed LSTM neural network model for the prediction of continuous blood
pressure (BP).

The study aimed to develop a reliable and accurate model for estimating
continuous BP values based on the input data. It has been trained and evaluated
the LSTM neural network using a comprehensive dataset, which included various
physiological signals and relevant features.

The results of this study demonstrate the effectiveness of the proposed LSTM
model in predicting continuous BP. Through rigorous evaluation and analysis,
promising performance metrics are observed, including low mean absolute error
(MAE) and high correlation coefficients, indicating the model’s ability to accurately
estimate BP values.

Additionally, the LSTM model showcased its capability to capture temporal
dependencies and patterns within the data, enabling accurate predictions even
for challenging scenarios with complex physiological dynamics. This highlights
the significance of leveraging LSTM architectures in handling sequential data for
accurate BP estimation.

4.1 Cleaning data
After filtering the data from the MIMIC-III database, the essential features were
extracted from the ECG and PPG signals. However, due to the presence of noise,
some outliers were identified in the data. To address this issue, the DBSCAN
algorithm was employed for outlier removal as part of the pre-processing stage.

In Figure 4.1, it can be observed that the ECG signal at approximately 36
seconds exhibited a large maximum value. However, the DBSCAN algorithm did
not identify it as an R-peak and instead chose the average value of its neighboring
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Figure 4.1: Features selection without performing DBSCAN.

points, as shown in Figure 4.2. This approach helps to mitigate the impact of
outliers and maintain the consistency of the feature.

Figure 4.2: Features selection after performing DBSCAN.

The DBSCAN algorithm utilizes two important parameters, epsilon and min-
samples, for clustering and identifying outliers. In this case, the epsilon value was
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determined as the standard deviation of the signal, while min-samples were set
to 4 percent of the feature length. By setting these parameters appropriately, the
algorithm can capture the fluctuation of the feature while removing values that fall
outside the defined range.

In summary, the DBSCAN algorithm was employed to remove outliers from the
extracted ECG and PPG signals. This approach effectively addresses the presence
of noise and ensures that the selected features maintain their reliability. By utilizing
the epsilon and min-samples parameters, the algorithm preserves the fluctuation of
the feature while eliminating values that deviate beyond the defined range.

4.2 Features correlation
One crucial step in the feature selection stage of data pre-processing is feature
correlation. The statistical link between several variables or features in a dataset
is referred to as feature correlation. Feature correlation helps identify the most
relevant and informative features within the ECG and PPG signals. By examining
the relationship between different features, researchers can pinpoint the ones that
have a strong association with blood pressure. This enables them to focus on the
most meaningful and influential features during the modeling process.

Positive correlation indicates that when feature A changes, feature B also
changes, and vice versa when feature A changes, feature B also changes. Both
properties have a linear connection and move together. A feature A’s growth causes
feature B’s reduction, and vice versa, according to a negative correlation.

Every one of the correlation types has a range of values from 0 to 1, with mildly
or strongly positive correlation characteristics being around 0.5 or 0.7. A correlation
score value of 0.9 or 1 indicates the outcome when there is a strong and perfect
positive connection. A value of -1 will be used to indicate a significant negative
association.

Analyzing feature correlations can provide valuable insights into the physiologi-
cal mechanisms governing blood pressure regulation. Understanding how certain
features relate to each other helps unravel the complex interplay between cardio-
vascular dynamics and the ECG and PPG signals. These insights contribute to
a deeper understanding of the physiological processes underlying blood pressure
fluctuations.

In Figure 4.3, a striking correlation emerges between the S-peak and trough
of the PPG signal and its height. Moreover, the S-peaks and troughs of the
signals display a predictability factor. On the subject of ECG signals, a noticeable
correlation exists between heart rate and the time interval between two consecutive
R-peaks. However, the correlation between other features is comparatively weaker.
To address the impact of feature correlations, Principal Component Analysis (PCA)
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has been employed to mitigate their influence.

Figure 4.3: The mean of correlation between features.

By employing Principal Component Analysis (PCA), it becomes possible to
extract a subset of uncorrelated components that retain the most relevant informa-
tion from the original features. This application of PCA offers several advantages,
including more accurate and robust modeling. The selected components are inde-
pendent of each other and less influenced by inter-feature correlations, leading to
improved predictive capabilities.

To summarize, the observed correlation between specific features in the PPG
signal and ECG signal, along with the potential impact on blood pressure estimation,
has necessitated the use of PCA. By reducing the influence of correlated features,
PCA plays a vital role in enhancing the accuracy and interpretability of predictive
models.
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4.3 Defined hyperparameters
In the next level for design the model, the hyperparameters was defined with grid
search for ten patients to find the best values for hyperparameters. In this part the
learning rate and the neurons of convolution and LSTM layer of model consider
as hyperparameters the result of grid search is expressed in the table 4.1. As can
be seen, all samples reach the best score with a learning rate value of 0.001 and
neurons in LSTM layer 128. Moreover, for the value of neurons in the convolution
layer, most of the samples reached 128. These values have finally been taken into
account for the neural network model.

Patient Best score learning rate CONV neurons LSTM neurons
31041590003 -0.0048 0.001 128 128
31029120002 -0.0072 0.001 128 128
31034130005 -0.0024 0.001 64 128
31047600001 -0.0095 0.001 64 128
31047600001 -0.0091 0.001 128 128
31061520003 -0.0030 0.001 128 128

3403850 -0.0056 0.001 128 128
3605744 -0.0062 0.001 64 128

3130355001 -0.0081 0.001 128 128

Table 4.1: Grid search results to find hyperparameters of model

4.4 Prediction results
In the evaluation process of the model, a total of 19,676 data points were initially
extracted from the MIMIC-III database. However, during the pipeline section, only
3,565 data points were identified as having all the required signals. Subsequently,
after the pre-processing step, the dataset was further reduced to 780 instances that
could be utilized for evaluating the proposed model.

To improve the model’s prediction performance, the StandardScaler() function
is applied to normalize the data. This normalization process ensures that all the
features are on a similar scale, preventing any particular feature from dominating
the model’s learning process.

For training the model, 65% of the data is considered the training set. This
subset was used to train the model, allowing it to learn the underlying patterns
and relationships in the data.

Furthermore, 15% of the data was allocated as the validation set. This set was
utilized to assess the model’s performance during the training phase. It enabled us
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to fine-tune the model’s hyperparameters and prevent overfitting by monitoring its
performance on unseen data. In training phase, 30 epochs are used to train the
model and as can be seen that in the figure 111 the loss value in both training and
validation data reduced to the value under 0.1 and then it was be constant so that
shows the training of the mode not go to overfitting and not underfitting.

Figure 4.4: Training and validation loss for output.

Finally, the remaining 25% of the data was assigned as the testing set. This
set served as an independent evaluation set to assess the final performance of the
trained model. Testing the model on this unseen data allowed us to evaluate its
generalization ability and its accuracy in making predictions.

To illustrate the prediction results,a sample of patients was selected to presents
the estimations of diastolic blood pressure (DBP) and systolic blood pressure
(SBP) for both the training and test phases in figure 4.5. Additionally, Figure 4.6
showcases the regression analysis between the real values and the predictive values,
providing insights into the relationship and accuracy of the predictions.

The selected sample presented how well the model performs in estimating DBP
and SBP. The figures demonstrate the closeness between the predicted values and
the real values, indicating the model’s ability to capture the underlying patterns
and make accurate blood pressure predictions. The regression analysis further
validates the reliability of the model, as it shows a strong correlation between the
predicted and actual values.
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Figure 4.5: Real value and Prediction values for DBP and SBP.

Furthermore, Figure 4.7 presents the histogram of mean errors for the patients.
This histogram provides a visual representation of the distribution of errors between
the predicted and real values. Analyzing the histogram allows for an assessment of
the overall accuracy and consistency of the model’s predictions. A well-distributed
histogram with a majority of errors close to zero indicates that the model has
achieved a high level of accuracy in estimating blood pressure.

The results of the mean absolute error (MAE) for diastolic blood pressure
(DBP) are depicted in Figure 4.8. It is evident from the histogram that over
90% of the instances exhibit an MAE below 5 mmHg. This indicates that the
model’s performance in estimating DBP is generally accurate, with a majority of
the predictions falling within a 5 mmHg margin of error.

Similarly, the histogram of MAE for systolic blood pressure (SBP) is illustrated
in Figure 4.9. In this case, more than 80% of the instances demonstrate a mean
absolute error below 5 mmHg. This implies that the model’s predictions for SBP
also exhibit a high level of accuracy, with the majority of estimates being within 5
mmHg of the ground truth values.

Mean Arterial Pressure (MAP) is a vital hemodynamic parameter that plays a
crucial role in assessing cardiovascular health. It represents the average pressure in
the arteries throughout one complete cardiac cycle. MAP is an essential indicator of
perfusion pressure, which ensures that organs and tissues receive an adequate blood
supply to meet their metabolic demands. Calculating MAP involves considering
both the systolic and diastolic blood pressure values. This is because the heart
spends a longer duration in diastole (relaxation) compared to systole (contraction).
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Figure 4.6: Regression between Real value and predict value for DBP and SBP

By incorporating both systolic and diastolic pressures, MAP provides a com-
prehensive estimation of the driving force for blood flow during the entire cardiac
cycle. It offers valuable insights into the pressure experienced by organs and tissues
during both relaxation and contraction of the heart. Maintaining an optimal MAP
is crucial for ensuring adequate blood perfusion to various organs, including the
brain, heart, kidneys, and other vital tissues. Deviations from the normal range
of MAP can indicate underlying cardiovascular conditions or disruptions in blood
volume regulation.

To assess the accuracy of the Mean Arterial Pressure (MAP) predictions, the
Mean Absolute Error (MAE) of MAP has been calculated. The corresponding
histogram of the MAE values is presented in Figure 4.10. Notably, it can be
observed that over 90% of all errors fall below 5 mmHg.

According to the AAMI standard [53], medical devices are required to meet
specific criteria for mean difference (mean absolute error) and standard deviation
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Figure 4.7: Histogram of error for DBP and SBP.

when compared to gold standard measurements. To receive a "Pass" grade, a device
must have a mean difference ≤ 5 mmHg and a standard deviation ≤ 8 mmHg.
Conversely, if these criteria are not met, the device is assigned a "Fail" grade.

In Table 4.2, the performance of the algorithms is presented, and they comfort-
ably achieve "Pass" grades based on the AAMI criteria. The algorithms demonstrate
impressively low mean absolute errors (MAEs) and standard deviations (SDs) in
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Figure 4.8: DBP Histogram of MAE.

estimating all blood pressure parameters. These results indicate that the algorithms
are highly accurate in predicting blood pressure and are suitable for implementation
in healthcare settings.

By meeting the stringent requirements set by the AAMI standard, the algorithms
provide reliable and precise estimations of blood pressure. The low MAEs and
SDs underscore their effectiveness and potential for practical use in healthcare
applications.

MAE(mmHg) SD(mmHg) Grade
DBP 1.85 2.45 Pass
SBP 3.18 3.48 Pass
MAP 2.01 2.34 Pass

Table 4.2: Assessment of algorithm based on AAMI standard.
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Figure 4.9: SBP Histogram of MAE.

4.5 Features importance
To determine the feature importance of an LSTM model in predicting blood
pressure, one approach is to use permutation importance with a scoring metric
of negative mean absolute error. Permutation importance measures the decrease
in model performance when the values of a specific feature are randomly shuffled
while keeping other features unchanged. By calculating the decrease in the mean
absolute error (MAE) as a result of permuting each feature, their importance in
the LSTM model can be assessed.

The permutation importance function can be applied to the LSTM model with
the scoring metric set to ’neg mean absolute error’. This approach involves the
following steps:

• Prepare the dataset: Organize the dataset into features (input variables) and
target variables (blood pressure values).

• Train the LSTM model: Build and train the LSTM model using the prepared
dataset.

• Calculate baseline MAE: Obtain the baseline MAE by evaluating the model’s
performance on the validation or test set.
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Figure 4.10: MAP Histogram of MAE.

• Compute feature importances: Utilize the permutation_importance function
to calculate the feature importances based on the decrease in MAE when each
feature is permuted. This analysis measures the impact of each feature on the
model’s predictive performance.

• Rank the feature importances: Rank the feature importances in descending
order to identify the most important features for predicting blood pressure
using the CNN-LSTM model.

By following the mentioned steps and applying permutation importance with
the ’neg_mean_absolute_error’ scoring metric, the results are illustrated in Figure
4.11. The figure showcases the importance scores for each feature, highlighting the
variability in importance when the values of the features are permuted. A higher
fluctuation of scores indicates that the importance of certain features may vary
significantly depending on the permutation of their values.

Furthermore, from the feature importance scores, it can be observed that the
duration of the PPG signal and heart rate (HR) values have a more positive effect
on the accuracy of the model. This is indicated by their larger mean importance
values compared to other features. These results suggest that variations in the
duration of the PPG signal and HR values have a significant impact on the model’s
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Figure 4.11: Importance Feature.

predictive performance for blood pressure estimation.
In summary, Figure 4.11 presents the feature importance scores obtained through

permutation importance analysis with the ’neg_mean_absolute_error’ scoring
metric. The scores highlight the variability in importance among the features, with
the duration of the PPG signal and HR values demonstrating a more positive effect
on the model’s accuracy due to their larger mean importance values.

The outcomes of the study provide valuable insights into the potential of utilizing
CNN-LSTM for continuous BP prediction. These findings hold implications for
improving clinical decision-making, enhancing patient monitoring systems, and
potentially reducing the need for invasive BP measurement methods.
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Conclusions

In this study, a simple and robust model was developed for the estimation of systolic
blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure
(MAP) using features extracted from ECG and PPG waveforms. The proposed
LSTM neural network model demonstrated strong performance in predicting these
parameters, achieving low mean absolute error (MAE) and standard deviation
(SD).

The model’s performance was evaluated against the AAMI standard, and it was
found to meet the criteria, with MAE values below the threshold for both SBP
and DBP. This indicates that the predictions made by the model are accurate and
reliable, making it suitable for blood pressure estimation in clinical settings.

Additionally, the correlation between the features and their influence on the
model’s predictions was investigated. By calculating feature importance, the most
influential features in predicting SBP and DBP were identified. This information
provides valuable insights into the underlying physiological mechanisms and can
guide future research and feature selection techniques.

The findings of this study highlight the potential of the proposed LSTM neural
network model for continuous and non-invasive blood pressure monitoring. The
model’s accuracy and robustness make it a promising tool for early detection and
management of cardiovascular diseases. Furthermore, the integration of blood
pressure monitoring into everyday devices can enable convenient and proactive
health monitoring, leading to improved preventive care.

In conclusion, this study has contributed to the field of non-invasive blood
pressure estimation and has laid the foundation for further advancements in physi-
ological signal analysis. The developed model has demonstrated its effectiveness
and holds promise for future applications in clinical practice and personal health
monitoring.
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5.1 Future work
There are several aspects in which this project can be further developed:

1.Integration of Additional Features: In future research, the integration of
additional physiological features into the LSTM model for estimating continuous
blood pressure can be explored. Features such as respiratory rate, or arterial
stiffness measurements can provide valuable information about the cardiovascular
system. By incorporating these features into the model, it may enhance the
accuracy and robustness of blood pressure estimation. This expanded feature set
can potentially capture more comprehensive information about the physiological
state and improve the overall performance of the predictive model.

2.Real-time Signal Application: The implemented algorithm can be applied to
signals acquired in real time, which would enable its effective use in wearable devices.
This would provide users with continuous and convenient monitoring of their blood
pressure, allowing for timely intervention and management of cardiovascular health.

2. Long-term Monitoring: Continuous monitoring of blood pressure over an
extended period is crucial for the prevention of cardiovascular diseases. Future
research can focus on developing methods that can reliably and comfortably monitor
blood pressure over a longer duration, ensuring patient comfort and minimizing
any potential discomfort or damage.

3. Feature Selection Optimization: Further analysis has revealed that removing
the least important features can improve prediction time without significantly
affecting the accuracy of diastolic blood pressure (DBP) estimation. However, it
was observed that reducing the number of features for systolic blood pressure (SBP)
estimation led to higher error rates. Future work can explore advanced feature
selection techniques to optimize the balance between prediction time and accuracy
for both SBP and DBP.

4. Low-power Wearable Device: The development of a low-power wearable
device that incorporates the computationally efficient LSTM algorithm can be a
promising avenue. Such a device would enable individuals to monitor their blood
pressure continuously, even during their daily activities. Clinical trials can be
conducted to assess the performance of the device in various applications, such as
fitness tracking and telehealth.

By focusing on these aspects, the project can be extended to provide more
robust and user-friendly solutions for blood pressure estimation, contributing to the
advancement of preventive healthcare and improved management of cardiovascular
health.
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Appendix A

Python Code

A.1 Read data from server

1 import wfdb , os
2 import ppr int
3 import pandas as pd
4 import numpy as np
5 import j son
6 import matp lo t l i b . pyplot as p l t
7 from wfdb import p ro c e s s i n g
8

9 c l a s s readMIMIC_III ( ) :
10 de f __init__( s e l f , f i l e=’RECORDS’ , save_dir = ’ pa t i en t ’ ,

root_dir = ’ . /THESIS DATABASE’ ) :
11 with open ( f i l e , ’ r ’ ) as f :
12 s e l f . dbs = [ l i n e . s t r i p ( ) f o r l i n e in f . r e a d l i n e s ( ) ]
13 s e l f .Num_p , s e l f . n= len ( s e l f . dbs ) , 0
14 s e l f . Num_file = 0
15 s e l f . root_dbs = s e l f . dbs [ 0 ] [ 0 : 2 ]
16 s e l f . d e s i r ed_s i gna l = [ ’ I I ’ , ’PLETH’ , ’ABP’ ]
17 f s , _duratian = 125 , 60
18 s e l f . s i g_len = f s ∗ _duratian
19 s e l f . sig_len_max = 10 ∗ s e l f . s i g_len
20 s e l f . root_dir = root_dir
21 i f not os . path . e x i s t s ( f ’ { s e l f . root_dir }/{ save_dir } ’ ) :
22 os . mkdir ( f ’ { s e l f . root_dir }/{ save_dir } ’ )
23 s e l f . save_dir = save_dir
24

25 de f get_record ( s e l f , database , seg , pat i ent_di r ) :
26 i f ’_ ’ in seg and l en ( seg . s p l i t ( ’_ ’ ) [ 1 ] ) == 4 :
27 seg_header = wfdb . rdheader ( seg , pn_dir = f ’ mimic3wdb

/{ s e l f . root_dbs }/{ database } ’ )
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28 i f seg_header . __dict__ [ ’ s i g_len ’ ] > s e l f . s i g_len and
a l l ( elem in seg_header . __dict__ [ ’ sig_name ’ ] f o r elem in s e l f .
d e s i r ed_s i gna l ) :

29

30 i f seg_header . __dict__ [ ’ s i g_len ’ ] <= s e l f .
sig_len_max :

31 record = wfdb . rdrecord (
32 seg ,
33 pn_dir = f ’ mimic3wdb/{ s e l f . root_dbs }/{

database } ’ ,
34 channel_names= s e l f . d e s i r ed_s i gna l )
35 e l s e :
36 record = wfdb . rdrecord (
37 seg ,
38 pn_dir = f ’ mimic3wdb/{ s e l f . root_dbs }/{

database } ’ ,
39 sampto = s e l f . sig_len_max ,
40 channel_names= s e l f . d e s i r ed_s i gna l )
41

42 d i f f s = np . d i f f ( r ecord . p_signal [ : , 0 ] )
43 non_zero_di f f s = l en ( [ i f o r i in d i f f s i f round ( i

, 3 ) == 0 ] )
44 i f non_zero_di f f s < s e l f . s i g_len :
45 r a i s e ValueError ( ’ the 1 s i g n a l are constant ’ )
46

47 d i f f s = np . d i f f ( r ecord . p_signal [ : , 1 ] )
48 non_zero_di f f s = l en ( [ i f o r i in d i f f s i f round ( i

, 3 ) == 0 ] )
49 i f non_zero_di f f s < s e l f . s i g_len :
50 r a i s e ValueError ( ’ the 2 s i g n a l are constant ’ )
51

52 d i f f s = np . d i f f ( r ecord . p_signal [ : , 2 ] )
53 non_zero_di f f s = l en ( [ i f o r i in d i f f s i f round ( i

, 3 ) == 0 ] )
54 i f non_zero_di f f s < s e l f . s i g_len :
55 r a i s e ValueError ( ’ the 3 s i g n a l are constant ’ )
56 df = record . to_dataframe ( )
57

58 df . to_csv ( f ’ { s e l f . root_dir }/{ s e l f . save_dir }/{ seg
} . csv ’ )

59 pr in t ( f ’Number o f Pat ient that was downloads : {
l en ( os . l i s t d i r ( f "{ s e l f . root_dir }/{ s e l f . save_dir }/" ) ) }/{ s e l f .
Num_desired_pat} ’ )

60 s e l f . Num_file += 1
61 pr in t ( f ’ F i l e { seg } was downloaded ’ )
62

63 de f run ( s e l f , Num_desired_pat = 40) :
64 s e l f . Num_desired_pat = Num_desired_pat
65 pr in t ( f ’Number o f pa t i en t : { s e l f .Num_p} ’ )
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66 f o r db in s e l f . dbs [ 2 0 0 : ] :
67 t ry :
68 i f l en ( os . l i s t d i r ( f ’ { s e l f . root_dir }/{ s e l f .

save_dir }/ ’ ) ) < s e l f . Num_desired_pat :
69 s e l f . n+= 1
70 layout_hea = wfdb . rdheader ( f ’ {db [ : −1 ]} _layout

’ , pn_dir=f ’ mimic3wdb/{ s e l f . root_dbs }/{db} ’ )
71 i f a l l ( elem in layout_hea . __dict__ [ ’ sig_name ’

] f o r elem in s e l f . d e s i r ed_s i gna l ) :
72 pr in t ( f ’ { s e l f . n}/{ s e l f .Num_p} \nThere are

the d e s i r e d s i g n a l s in layout {db [ : −1 ]} ’ )
73

74 record_hea = wfdb . rdheader ( f ’ {db [ : −1 ]} ’ ,
pn_dir=f ’ mimic3wdb/{ s e l f . root_dbs }/{db} ’ )

75

76 f o r seg in record_hea . __dict__ [ ’ seg_name ’
] :

77 pat_dir = seg . s p l i t ( ’_ ’ ) [ 0 ]
78 i f not os . path . e x i s t s ( f " { s e l f .

root_dir }/{ s e l f . save_dir }/{ pat_dir } " ) :
79 s e l f . get_record ( database = db ,

seg = seg , pat i ent_di r=pat_dir )
80

81 except Exception as e :
82 pr in t ( f ’ Error in {db [ : −1 ]} the e r r o r i s :−−>>\n{e}

’ )
83

84 pr in t ( f ’Number o f f i l e was downloaded { s e l f . Num_file} ’ )
85

86 de f p lot_record ( s e l f , record_name , s i g _ s t a r t = 0 , sig_end =
None ) :

87 record = wfdb . rdrecord (
88 record_name ,
89 pn_dir = f ’ mimic3wdb/{record_name [ 0 : 2 ] } / {

record_name . s p l i t ( "_" ) [ 0 ] } ’ ,
90 sampfrom = s ig_star t ,
91 sampto = sig_end ,
92 channel_names= s e l f . d e s i r ed_s i gna l )
93

94 record_hea = wfdb . rdheader ( record_name , pn_dir=f ’
mimic3wdb/{record_name [ 0 : 2 ] } / { record_name . s p l i t ( "_" ) [ 0 ] } ’ )

95

96 ppr int . ppr int ( f ’ f s = { record_hea . __dict__} ’ , width=1)
97

98

99 df = record . to_dataframe ( )
100

101 c l a s s read_csv ( ) :
102 de f __init__( s e l f , f i le_name ) :
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103 s e l f . f i le_name = fi le_name
104 s e l f . d f = pd . read_csv ( f i le_name )
105

106 de f run ( s e l f ) :
107 columns = s e l f . d f . columns
108 s e l f . d f = s e l f . d f . rename ( columns={columns [ 0 ] : ’Time ’ })
109 s e l f . d f [ ’Time ’ ] = s e l f . d f [ ’Time ’ ] . apply ( lambda x : x . s p l i t

( ’ : ’ ) [ −1 ] [ 0 : −3 ] )
110

111 df_new = s e l f . d f [ ( s e l f . d f [ ’ABP’ ] > 50) & ( s e l f . d f [ ’ABP’ ]
< 200) ]

112

113 i f df_new [ ’ABP’ ] . i s n u l l ( ) . a l l ( ) or df_new [ ’ABP’ ] . nunique
( ) == 1 :

114 r a i s e ValueError ( ’ There i s not S i gna l ABP’ )
115

116 i f df_new [ ’ I I ’ ] . i s n u l l ( ) . a l l ( ) or df_new [ ’ I I ’ ] . nunique ( )
== 1 :

117 r a i s e ValueError ( ’ There i s not S i gna l ECG’ )
118

119 i f df_new [ ’PLETH’ ] . i s n u l l ( ) . a l l ( ) or df_new [ ’ I I ’ ] .
nunique ( ) == 1 :

120 r a i s e ValueError ( ’ There I s not S igna l PPG or i t i s
constant ’ )

121

122 f i g , axs = p l t . subp lo t s ( 3 , 1 )
123 s e l f . d f . p l o t ( ax=axs [ 0 ] , y=’ I I ’ )
124 s e l f . d f . p l o t ( ax=axs [ 1 ] , y=’ABP’ )
125 s e l f . d f . p l o t ( ax=axs [ 2 ] , y=’PLETH’ )
126 axs [ 0 ] . s e t _ t i t l e ( f ’ F i l e name : { s e l f . f i le_name } ’ )
127 p l t . l egend ( )
128 p l t . show ( )
129 # p l t . s a v e f i g ( f ’ . / onworking/ p l o t s /{ s e l f . f i le_name . s p l i t

( " / " ) [ −1 ] . s p l i t ( " . " ) [ 0 ] } . png ’ )
130 p l t . c l o s e ( )
131

132

133 i f __name__==’__main__ ’ :
134 f i l e = ’ . /DATABASE/ver_2/ re co rd s /RECORDS−38 ’
135 data1 = readMIMIC_III ( f i l e = f i l e , save_dir= ’ pat i ent −38 ’ ,

root_dir = ’ . /THESIS DATABASE/ver_2 ’ )
136 data1 . run ( Num_desired_pat = np . i n f )

A.2 Pre-processing of dataset
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1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3 import pandas as pd
4 import s c ipy
5 import os
6 from sk l ea rn . c l u s t e r import DBSCAN
7 from stat smode l s . t sa . s t a t t o o l s import a d f u l l e r
8

9 from S intecPro j import S in t ecPro j
10 c l a s s PreProcess_Sintec ( ) :
11

12 de f __init__( s e l f , f i l e = ’ 3400715_pat . csv ’ , pat_dir = ’ . /
Pat i ent s ’ , r e s u l t _ d i r = ’ . ’ , showplot= False ) :

13 s e l f . showplot = showplot
14 s e l f . f s = 125
15 s e l f . f i g s i z e = (15 ,9 )
16 s e l f . patient_path = pat_dir
17 s e l f . check_dir ( r e s u l t _ d i r )
18 s e l f . plt_Feat_path = f ’ { r e s u l t _ d i r }/ Plot s / P lo t s_ fea ture s ’
19 s e l f . regr_path = f ’ { r e s u l t _ d i r }/ Dataset ’
20 s e l f . lower_limit_ABP = 50
21 s e l f . upper_limit_ABP = 200
22 s e l f . preprocess_data ( f i l e )
23

24 de f read_data ( s e l f , f i l e ) :
25 pat_name = f i l e . s p l i t ( ’_ ’ ) [ 0 ]
26 i f f i l e . s p l i t ( ’_ ’ ) [ 1 ] == ’ pat . csv ’ :
27 df = pd . read_csv ( f ’ { s e l f . patient_path }/{ f i l e } ’ ,

quotechar=" ’ " , sep=’ , ’ , sk iprows =[1 ] )
28 i f d f . i l o c [ 0 ] [ 0 ] [ 0 ] == ’ " ’ :
29 df . columns = [ x . r e p l a c e ( ’ " ’ , " " ) f o r x in df .

columns ]
30 df . columns = [ x . r e p l a c e ( " ’ " , " " ) f o r x in df .

columns ]
31

32 df [ ’Time ’ ] = df [ ’Time ’ ] . apply ( lambda x : x [ 3 : −2 ] )
33 df [ df . columns [ −1 ] ] = df [ df . columns [ − 1 ] ] . apply (

lambda x : x [ : −1 ] )
34 df = df . r e p l a c e ( ’− ’ , np . nan )
35 df . index = df [ ’Time ’ ]
36

37 def_columns = [ ]
38 f o r x in df . columns :
39 i f ’ABP’ in x or x==’ I I ’ or ’PLETH’ in x :
40 def_columns . append ( x )
41 df = df [ def_columns ]
42 df = df . astype ( f l o a t )
43 e l s e :
44 df [ ’Time ’ ] = df [ ’Time ’ ] . apply ( lambda x : x [ 1 : −1 ] )
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45 df . index = df [ ’Time ’ ]
46 df = df . r e p l a c e ( ’− ’ , np . nan )
47 df = df [ [ ’ABP’ , ’PLETH’ , ’ I I ’ ] ]
48 df = df . astype ( f l o a t )
49 i f pat_name == ’ 3601980 ’ : d f = df [ 0 : 5 0 2 1 ]
50 e l s e :
51 df = pd . read_csv ( f ’ { s e l f . patient_path }/{ f i l e } ’ )
52 columns = df . columns
53 df = df . rename ( columns={columns [ 0 ] : ’Time ’ })
54 df [ ’Time ’ ] = df [ ’Time ’ ] . apply ( lambda x : x . s p l i t ( ’ : ’ )

[ −1 ] [ 0 : −3 ] )
55 df = df . r e p l a c e ( ’ ’ , np . nan )
56 df = df . astype ( f l o a t )
57 pat_name = pat_name + f i l e . s p l i t ( ’_ ’ ) [ 1 ] [ 0 : 4 ]
58

59 df = s e l f . c leaning_data ( df , pat_name)
60 re turn df , pat_name
61

62 de f c leaning_data ( s e l f , df , pat_name) :
63

64 df_new = df [ ( df [ ’ABP’ ] > s e l f . lower_limit_ABP ) & ( df [ ’ABP
’ ] < s e l f . upper_limit_ABP ) ]

65

66 i f df_new [ ’ABP’ ] . i s n u l l ( ) . a l l ( ) or df_new [ ’ABP’ ] . nunique
( ) == 1 :

67 r a i s e ValueError ( ’ There i s not S i gna l ABP or the
s i g n a l i s constant ’ )

68

69 i f df_new [ ’ I I ’ ] . i s n u l l ( ) . a l l ( ) or df_new [ ’ I I ’ ] . nunique ( )
== 1 :

70 r a i s e ValueError ( ’ There i s not S i gna l ECG or the
s i g n a l i s constant ’ )

71

72 i f df_new [ ’PLETH’ ] . i s n u l l ( ) . a l l ( ) or df_new [ ’PLETH’ ] .
nunique ( ) == 1 :

73 r a i s e ValueError ( ’ There I s not S igna l PPG or or the
s i g n a l i s constant ’ )

74

75 f i g , axs = p l t . subp lo t s ( 3 , 2 )
76 df . p l o t ( ax=axs [ 0 , 0 ] , y=’ I I ’ )
77 df . p l o t ( ax=axs [ 1 , 0 ] , y=’ABP’ )
78 df . p l o t ( ax=axs [ 2 , 0 ] , y=’PLETH’ )
79

80 axs [ 0 , 0 ] . s e t _ t i t l e ( f ’ I n i t i a l S i g n a l s o f pa t i en t : {
pat_name} ’ )

81

82 df = df . dropna ( subset =[ ’ABP’ ] )
83 # df . reset_index ( i n p l a c e=True )
84
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85 f o r s i g in df . columns [ 1 : ] :
86 d i f f = df [ s i g ] . d i f f ( p e r i od s =2)
87 df = df . l o c [ d i f f != 0 ]
88

89 df . reset_index ( i n p l a c e=True )
90 df . p l o t ( ax=axs [ 0 , 1 ] , y=’ I I ’ )
91 df . p l o t ( ax=axs [ 1 , 1 ] , y=’ABP’ )
92 df . p l o t ( ax=axs [ 2 , 1 ] , y=’PLETH’ )
93

94

95 axs [ 0 , 0 ] . s e t _ t i t l e ( f ’ removed constant S i g n a l s o f pa t i en t :
{pat_name} ’ )

96 i f s e l f . showplot : p l t . show ( )
97

98 re turn df_new
99

100 de f preprocess_data ( s e l f , f i l e ) :
101 s e l f . df , s e l f . pa t i en t = s e l f . read_data ( f i l e )
102 s e l f . d f . index = range (0 , l en ( s e l f . d f ) )
103 # F i l t e r i n g the s i g n a l
104 b , a = sc ipy . s i g n a l . but te r (N=5,
105 Wn=[1 , 1 0 ] ,
106 btype=’ band ’ ,
107 analog=False ,
108 output=’ ba ’ ,
109 f s=s e l f . f s
110 )
111 s e l f . e c g _ f i l t = sc ipy . s i g n a l . f i l t f i l t (b , a , s e l f . d f [ ’ I I ’

] )
112 s e l f . e cg_d i f f = np . g rad i en t (np . g rad i en t ( s e l f . e c g _ f i l t ) )
113 s e l f . ppg_f i l t = sc ipy . s i g n a l . f i l t f i l t (b , a , s e l f . d f [ ’

PLETH’ ] )
114

115 i f np . i snan ( s e l f . ppg_f i l t ) . a l l ( ) :
116 r a i s e ValueError ( ’ After f i l t e r i n g the PPG s i g n a l got

Nan ’ )
117

118 i f np . i snan ( s e l f . e c g _ f i l t ) . a l l ( ) :
119 r a i s e ValueError ( ’ After f i l t e r i n g the ECG s i g n a l got

Nan ’ )
120

121 de f check_dir ( s e l f , r e s u l t _ d i r ) :
122 i f not os . path . e x i s t s ( f ’ { r e s u l t _ d i r }/ Dataset ’ ) :
123 os . mkdir ( f ’ { r e s u l t _ d i r }/ Dataset ’ )
124 i f not os . path . e x i s t s ( f ’ { r e s u l t _ d i r }/ Plot s ’ ) :
125 os . mkdir ( f ’ { r e s u l t _ d i r }/ Plot s ’ )
126 i f not os . path . e x i s t s ( f ’ { r e s u l t _ d i r }/ Plot s / P lo t s_fea tu re s

’ ) :
127 os . mkdir ( f ’ { r e s u l t _ d i r }/ Plot s / P lo t s_fea ture s ’ )
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128

129 de f find_dbp_sbp ( s e l f ) :
130 # f i n d DBP/SBP po in t s
131 DBPs, _ = sc ipy . s i g n a l . f ind_peaks(− s e l f . d f [ ’ABP’ ] ,

prominence =.5 , d i s t anc e =30, width=10)
132 SBPs , _ = sc ipy . s i g n a l . f ind_peaks ( s e l f . d f [ ’ABP’ ] ,

prominence =.5 , d i s t anc e =30, width=10)
133 re turn DBPs, SBPs
134

135 de f ppg_feature ( s e l f ) :
136 " " "
137 Find f e a t u r s o f PPG Signa l : Peak (SP) − Trough (Tr ) −

Up Time − BTB I n t e r v a l − PPG Height
138 " " "
139 # f i n d SP peaks / time o f Trough (min o f PPG) and UpTime
140 SPs , _ = sc ipy . s i g n a l . f ind_peaks ( s e l f . ppg_f i l t ,

prominence =.05 , width=10)
141 SP = SintecPro j ( )
142 SPs_new ,_ = SP . PPG_peaks_cleaner ( s e l f . ppg_f i l t , SPs )
143 Trs , _ = sc ipy . s i g n a l . f ind_peaks(− s e l f . ppg_f i l t ,

prominence =.05)
144 # pr in t ( f ’ l en Trs : { l en ( Trs ) } ’ )
145 # pr in t ( f ’ l en SPs new : { l en (SPs_new)}−−− l en Trs : { l en (

Trs ) } ’ )
146 # Trs c l e an ing
147 f o r i in range ( l en (SPs_new) −1) :
148 e lements = [ x f o r x in Trs i f SPs_new [ i ] < x <

SPs_new [ i +1] ]
149 i f l en ( e lements ) > 1 :
150 e lements . remove (max( e lements ) )
151 Trs = np . s e t d i f f 1 d ( Trs , e lements )
152 e l i f l en ( e lements )==0:
153 tr_l ,_ = sc ipy . s i g n a l . f ind_peaks(− s e l f . ppg_f i l t [

SPs_new [ i ] : SPs_new [ i +1 ] ] )
154 Trs . append (SPs_new [ i ]+max( tr_l ) )
155

156

157 f o r index in range (min ( l en ( Trs ) , l en (SPs_new) ) ) :
158 i f Trs [ index ] > SPs_new [ index ] :
159 i f index ==0:
160 Trs = np . i n s e r t ( Trs , index , 0)
161 e l s e :
162 tr_l ,_ = sc ipy . s i g n a l . f ind_peaks(− s e l f .

ppg_f i l t [ SPs_new [ index −1] : SPs_new [ index ] ] )
163 Trs = np . i n s e r t ( Trs , index , SPs_new [ index −1]+

tr_l )
164

165 Trs = s e l f . c l e a n _ l i s t (SPs_new , Trs , params=’max ’ )
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166 s e l f . ppg_f i l t = s e l f . r emoveout l i e r s ( s e l f . ppg_f i l t , SPs_new
)

167 s e l f . ppg_f i l t = s e l f . r emoveout l i e r s ( s e l f . ppg_f i l t , Trs )
168 # c a l c u l a t e UpTime
169 UpTime , UpTime_f=[ ] , [ ]
170 d i s t ={}
171

172 f o r i in SPs_new :
173 d i s t [ i ] = [ ]
174 f o r j in Trs :
175 d i s t [ i ] . append ( i−j )
176

177 f o r sp , d in d i s t . i tems ( ) :
178 t ry :
179 uptime = min ( [ i f o r i in d i f 0<i <40])
180 except :
181 uptime =np . nan
182 UpTime_f . append ( uptime )
183

184 # when there i s n ’ t uptime because couldn ’ t f i n d SP or Tr ,
mean o f them w i l l be r e p l a c e by NaN

185 mean_UpTime = i n t (np . round (np . mean ( [ i f o r i in UpTime_f
i f not np . i snan ( i ) ] ) ) )

186

187 f o r i in UpTime_f :
188 i f np . i snan ( i ) :
189 i = mean_UpTime
190 UpTime . append ( i )
191

192 # pr in t ( f ’ l en UpTime : { l en (UpTime) } ’ )
193

194 # c a l c u l a t e BTB f o r PPG
195 BTB_ppg = [ ]
196 f o r index , i in enumerate (SPs_new) :
197 i f index < ( l en (SPs_new) −1) :
198 BTB_ppg. append (SPs_new [ index +1] − i )
199 BTB_ppg. i n s e r t (0 , round (np . mean(BTB_ppg [ 0 : 1 0 ] ) ) )
200

201 # pr in t ( f ’ l en BTB_ppg : { l en (BTB_ppg) } − l en SPs_new : {
l en (SPs_new) } ’ )

202

203 # c a l c u l a t e PPG he ight
204 PPG_h = [ ]
205 loc_PPG_h = [ ]
206 f o r index , i in enumerate ( Trs ) :
207 t ry :
208 i f i<SPs_new [ index ] :
209 PPG_h. append ( s e l f . ppg_f i l t [ SPs_new [ index ]] −

s e l f . ppg_f i l t [ i ] )
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210 loc_PPG_h . append (SPs_new [ index ] )
211 except :
212 break
213 re turn SPs_new , Trs , UpTime , PPG_h, BTB_ppg, loc_PPG_h
214

215 de f f ind_smal l e s t_greate r ( s e l f , arr , i ) :
216 min_val , min_index = None , None
217 f o r index , va l in enumerate ( a r r ) :
218 i f va l > i and ( min_val i s None or va l < min_val ) :
219 min_val = va l
220 min_index = index
221 re turn min_val , min_index
222

223 de f ecg_feature ( s e l f ) :
224 " " "
225 Find f e a t u r s o f ECG Signa l : R,T,P,Q, S s e r i e s − BTB

I n t e r v a l
226 " " "
227 # f i n d time o f R,T,P,Q, S s e r i e s
228 Rs , _ = sc ipy . s i g n a l . f ind_peaks ( s e l f . e c g _ f i l t , prominence

=.05 , d i s t anc e =60)
229 RTs , _ = sc ipy . s i g n a l . f ind_peaks ( s e l f . e c g _ f i l t ,

prominence =.05 , d i s t anc e =20)
230 RTPs, _ = sc ipy . s i g n a l . f ind_peaks ( s e l f . e c g _ f i l t ,

prominence =.05 , d i s t anc e =10)
231 T_LMin, _ = sc ipy . s i g n a l . f ind_peaks(− s e l f . e c g _ f i l t ,

prominence =.16 , d i s t anc e =10) #.16
232

233 BTB_R = [ ]
234 f o r index , i in enumerate (Rs) :
235 i f index < ( l en (Rs) −1) :
236 BTB_R. append (Rs [ index +1] − i )
237 t ry :
238 BTB_R. i n s e r t (0 , round (np . mean(BTB_R[ 0 : 1 0 ] ) ) )
239 except :
240 pass
241

242 Ts = [ i f o r i in RTs i f i not in Rs ]
243 Ps = [ i f o r i in RTPs i f i not in RTs ]
244 # pr in t ( f ’ l en Ts { l en (Ts ) } − l en RTs : { l en (RTs) } − l en Rs

: { l en (Rs) } − l en RTPs: { l en (RTPs) } − l en Ps : { l en ( Ps ) } ’ )
245

246 # d e f i n e delta_T f o r each R_peak to f i n d Q and S
247 pre_i = 0
248 Rs_dT = [ ]
249 f o r index , i in enumerate (Rs) :
250 i f index == 0 :
251 delta_T = abs ( i − Rs [ index +1]) /2
252 Rs_dT. append ( ( i , (0 , i+delta_T ) ) )
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253 pre_i = i
254

255 e l i f index == len (Rs) −1:
256 Rs_dT. append ( ( i , ( i−i n t ( ( i − pre_i ) /2) , l en ( s e l f .

e c g _ f i l t ) ) ) )
257

258 e l s e :
259 Rs_dT. append ( ( i , ( i−i n t ( ( i − pre_i ) /2) , i+abs ( i −

Rs [ index +1]) /2) ) )
260 pre_i = i
261 # pr in t ( f ’T_LMin{ l en (T_LMin) } ’ )
262 f o r rs , dt in Rs_dT:
263 ex i s tP = s e l f . existParam (Ts , lowLim=rs , upperLim=dt [ 1 ] )
264 i f not ex i s tP :
265 # pr in t ( type ( s e l f . e c g _ f i l t ) )
266 # pr in t ( rs , i n t ( dt [ 1 ] ) )
267 i f i n t ( dt [ 1 ] )>len ( s e l f . e c g _ f i l t ) :
268 _se r i e s = s e l f . e c g _ f i l t [ r s : −1]
269 e l s e :
270 _se r i e s=s e l f . e c g _ f i l t [ r s : i n t ( dt [ 1 ] ) ]
271 Ts_new , _ = sc ipy . s i g n a l . f ind_peaks ( _ser i e s ,

prominence =.01 , d i s t anc e =5)
272 t ry :
273 Ts . append ( r s+min (Ts_new) )
274 except :
275 pass
276 # pr in t ( r s+Ts_new)
277 ex i s tP = s e l f . existParam (Ps , lowLim=dt [ 0 ] , upperLim =

rs )
278 i f not ex i s tP :
279 _se r i e s=s e l f . e c g _ f i l t [ i n t ( dt [ 0 ] ) : r s ]
280 Ps_new , _ = sc ipy . s i g n a l . f ind_peaks ( _ser i e s ,

prominence =.01 , d i s t anc e =5)
281 t ry :
282 Ps . append ( dt [0 ]+max(Ps_new) )
283 except :
284 pass
285

286

287 # Find Qs , Ss
288 Qs , Ss = [ ] , [ ]
289 f o r i in T_LMin :
290 f o r rs , dt in Rs_dT:
291 i f dt [ 0 ] <= i <= dt [ 1 ] :
292 i f i < r s :
293 Qs . append ( i )
294 e l s e :
295 Ss . append ( i )
296
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297 f o r rs , dt in Rs_dT:
298 exist_Qs = s e l f . existParam (Qs , lowLim=dt [ 0 ] , upperLim=

rs )
299 i f not exist_Qs :
300 _se r i e s=s e l f . e c g _ f i l t [ i n t ( dt [ 0 ] ) : r s ]
301 q_min , _ = sc ipy . s i g n a l . f ind_peaks(−_ser i e s ,

prominence =.01 , d i s t anc e =1)
302 t ry :
303 Qs . append ( dt [ 0 ] + max(q_min) )
304 except Exception as e :
305 # pr in t ( ’ f a l l ’ , e )
306 pass
307 ex i s t_s s = s e l f . existParam ( Ss , lowLim=rs , upperLim=dt

[ 1 ] )
308 i f not ex i s t_s s :
309 _se r i e s = s e l f . e c g _ f i l t [ r s : i n t ( dt [ 1 ] ) ]
310 s_min ,_ = sc ipy . s i g n a l . f ind_peaks(−_ser i e s ,

prominence =.01 , d i s t anc e =5)
311 t ry :
312 Ss . append ( r s + min ( s_min) )
313 except Exception as e :
314 # pr in t ( ’ f a l l ’ , e )
315 pass
316

317 Ts = s e l f . c l e a n _ l i s t (Rs , Ts , params=’min ’ )
318 Ps = s e l f . c l e a n _ l i s t (Rs , Ps , params=’max ’ )
319 Qs = s e l f . c l e a n _ l i s t (Rs , Qs , params=’max ’ )
320 Ss = s e l f . c l e a n _ l i s t (Rs , Ss , params=’ min ’ )
321 re turn Rs , Ts , Ps , Qs , Ss , BTB_R
322

323 de f values_between ( s e l f , l s t , a , b ) :
324 r e s u l t = [ ]
325 f o r va lue in l s t :
326 i f a <= value <= b or b <= value <= a :
327 r e s u l t . append ( value )
328 re turn r e s u l t
329

330 de f c l e a n _ l i s t ( s e l f , main_list , chck_l i s t , params ) :
331 f o r i in range ( l en ( main_l i st ) −1) :
332 r e s u l t s = s e l f . values_between ( chck_l i s t , main_l i st [ i

] , main_l i st [ i +1])
333 i f l en ( r e s u l t s ) >1:
334 i f params == ’max ’ :
335 value = max( r e s u l t s )
336 e l i f params == ’ min ’ :
337 value = min ( r e s u l t s )
338 r e s u l t s . remove ( va lue )
339 chck_l i s t = [ x f o r x in chck_l i s t i f x not in

r e s u l t s ]
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340 # chck_l i s t . remove ( rm_value )
341 re turn chck_l i s t
342

343 de f existParam ( s e l f , _ l i s t , lowLim , upperLim ) :
344 ex i s tP = False
345 f o r param in _ l i s t :
346 i f lowLim< param<= upperLim :
347 ex i s tP = True
348 break
349 re turn ex i s tP
350

351 de f Build_DataFrame ( s e l f ) :
352

353 SPs_new , Trs , UpTime , PPG_h, BTB_ppg, loc_PPG_h = s e l f .
ppg_feature ( )

354

355 Rs , Ts , Ps , Qs , Ss , BTB_R = s e l f . ecg_feature ( )
356

357 s e l f . e c g _ f i l t = s e l f . r emoveout l i e r s ( s e l f . e c g _ f i l t , Rs )
358 s e l f . e c g _ f i l t = s e l f . r emoveout l i e r s ( s e l f . e c g _ f i l t , Ts )
359 s e l f . e c g _ f i l t = s e l f . r emoveout l i e r s ( s e l f . e c g _ f i l t , Qs)
360 s e l f . e c g _ f i l t = s e l f . r emoveout l i e r s ( s e l f . e c g _ f i l t , Ss )
361 s e l f . e c g _ f i l t = s e l f . r emoveout l i e r s ( s e l f . e c g _ f i l t , Ps )
362

363 DBPs, SBPs = s e l f . find_dbp_sbp ( )
364

365 time = np . arange ( 0 , (max(max(Rs) , max(SPs_new) , max(Ts ) ,
366 max(Qs) , max( Ss ) , max( Ps ) ,max( Trs

) )+1) ,1 )
367 real_time = time / s e l f . f s
368 # pr in t ( f ’ l en real_time : { l en ( real_time ) } ’ )
369 # pr in t ( f ’max(Rs) : {max(Rs) }\nmax(SPs_new) : {max(SPs_new)

}\nmax(T) : {max(Ts ) } ’ )
370 # Find Peak , Trough , UpTime , BTB of Peak and PPG he ight

on PPG Signa l
371 df_Output = pd . DataFrame ({ ’Time ’ : real_time })
372 df_Output . index = np . arange ( l en ( real_time ) )
373 df_Output [ ’ ppg_f i l t ’ ] = s e l f . ppg_f i l t [ 0 : l en ( real_time ) ]
374 df_Output . l o c [ Trs , ’Tr ’ ] = df_Output [ ’ ppg_f i l t ’ ] . i l o c [ Trs ]
375 df_Output [ ’SPs_new ’ ] = df_Output [ ’ ppg_f i l t ’ ] . i l o c [ SPs_new

]
376 df_Output . l o c [ SPs_new , ’UpTime ’ ] = [ i / s e l f . f s f o r i in

UpTime ]
377 df_Output . l o c [ SPs_new , ’BTB_PPG’ ] = [ i / s e l f . f s f o r i in

BTB_ppg ]
378

379 df_Output . l o c [ loc_PPG_h , ’PPG_h ’ ] = PPG_h
380 abp = s e l f . d f [ ’ABP’ ] . va lue s
381 df_Output [ ’ABP’ ] = abp [ 0 : l en ( real_time ) ]
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382 df_Output [ ’DBP’ ] = s e l f . d f [ ’ABP’ ] . i l o c [DBPs ]
383 df_Output [ ’SBP ’ ]= s e l f . d f [ ’ABP’ ] . i l o c [ SBPs ]
384

385 # Find R,P,T,Q, S on ECG Signa l
386 df_Output [ ’ e c g _ f i l t ’ ] = s e l f . e c g _ f i l t [ 0 : l en ( real_time ) ]
387 df_Output [ ’R ’ ] = df_Output [ ’ e c g _ f i l t ’ ] . i l o c [ Rs ]
388 df_Output . l o c [ Rs , ’BTB_R’ ]=[ i / s e l f . f s f o r i in BTB_R]
389 df_Output [ ’P ’ ] = df_Output [ ’ e c g _ f i l t ’ ] . i l o c [ Ps ]
390 df_Output [ ’T ’ ] = df_Output [ ’ e c g _ f i l t ’ ] . i l o c [ Ts ]
391 df_Output [ ’Q ’ ] = df_Output [ ’ e c g _ f i l t ’ ] . i l o c [ Qs ]
392 df_Output [ ’S ’ ] = df_Output [ ’ e c g _ f i l t ’ ] . i l o c [ Ss ]
393

394 # Find PTT and HR
395 SP = SintecPro j ( )
396 datase t = SP . find_PTT( s e l f . e c g _ f i l t , Rs , s e l f . ppg_f i l t ,

SPs_new , s e l f . pa t i en t )
397 hr = datase t [ ’HR’ ] . va lue s
398 ptt = datase t [ ’PTT’ ] . va lue s
399

400 d = abs ( l en ( datase t [ ’HR’ ] )−l en ( df_Output [ ’ e c g _ f i l t ’ ] ) )
401 i f d != 0 :
402 # pr in t (d)
403 f o r i in range (d) :
404 hr = np . append ( hr , np . nan )
405 ptt= np . append ( ptt , np . nan )
406

407 df_Output [ ’HR’ ] = hr
408 df_Output [ ’PTT’ ] = ptt
409 re turn df_Output
410

411 de f p lo t_fea ture ( s e l f , df_Output ) :
412 # p l t . c l o s e ( ’ a l l ’ )
413 f i g , axs = p l t . subp lo t s (3 , 1 , sharex=True )
414 f i g . s e t_s i ze_inches (15 ,9 )
415

416 axs [ 0 ] . p l o t ( df_Output [ ’ e c g _ f i l t ’ ] )
417 axs [ 0 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’T ’ ] , c=’ y ’

, s =40, l a b e l=’T ’ )
418 axs [ 0 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’P ’ ] , c=’ c ’

, s =40, l a b e l=’P ’ )
419 axs [ 0 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’R ’ ] , c=’ r ’

, s =40, l a b e l=’R ’ )
420 axs [ 0 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’Q ’ ] , c=’ k ’

, s =40, l a b e l=’Q’ )
421 axs [ 0 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’S ’ ] , c=’m’

, s =40, l a b e l=’S ’ )
422 axs [ 0 ] . s e t_y labe l ( ’ECG[ (mV) ] ’ )
423

424 df_Output [ ’ ppg_f i l t ’ ] . p l o t ( ax=axs [ 1 ] )

58



Python Code

425 axs [ 1 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’SPs_new ’ ] ,
c=’ y ’ , s =40, l a b e l=’SPs_new ’ )

426 axs [ 1 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’Tr ’ ] , c=’ r
’ , s =40, l a b e l=’ Trough ’ )

427 axs [ 1 ] . s e t_y labe l ( ’PPG[mV] ’ )
428

429 df_Output [ ’ABP’ ] . p l o t ( ax=axs [ 2 ] )
430 axs [ 2 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’SBP ’ ] , c=

’ r ’ , s =40, l a b e l=’SBP ’ )
431 axs [ 2 ] . s c a t t e r ( x=df_Output . index , y=df_Output [ ’DBP’ ] , c=’ y

’ , s =40, l a b e l=’DBP’ )
432 axs [ 2 ] . s e t_y labe l ( ’ABP’ )
433

434 x_ticks = np . arange (0 , l en ( s e l f . ppg_f i l t ) +1, 500)
435 f o r i in range (2 ) :
436 axs [ i ] . s e t_x labe l ( ’Time [ s ] ’ )
437 axs [ i ] . s e t_xt i ck s ( x_ticks )
438 axs [ i ] . s e t _ x t i c k l a b e l s ( ( x_ticks /125) . astype ( i n t ) )
439

440 axs [ i ] . l egend ( )
441 axs [ i ] . g r i d ( ’ both ’ )
442 axs [ 0 ] . s e t _ t i t l e ( f ’ Features s e l e c t i o n o f pa t i en t : { s e l f .

pa t i en t } ’ )
443 p l t . s a v e f i g ( f ’ { s e l f . plt_Feat_path }/{ s e l f . pa t i en t } _feat .

png ’ )
444 i f s e l f . showplot : p l t . show ( )
445 p l t . c l o s e ( )
446

447 de f main ( s e l f ) :
448

449 df_Output = s e l f . Build_DataFrame ( )
450 s e l f . p l o t_fea ture ( df_Output )
451 interp_output = df_Output . i n t e r p o l a t e ( method=’ polynomial ’

, order =1)
452 s e l f . Med_df_Out = interp_output . round (3 )
453 s e l f . Med_df_Out . to_csv ( f ’ { s e l f . regr_path }/{ s e l f . pa t i en t } .

csv ’ )
454

455 de f r emoveout l i e r s ( s e l f , _data , _ l i s t ) :
456

457 min_samplesv = round (0 . 04 ∗ l en ( _ l i s t ) )
458 tmp_data = _data [ _ l i s t ]
459 epsv = np . std ( tmp_data )
460 # pr in t ( f ’ epsv = { epsv } ’ )
461 Np=len ( tmp_data )
462 _datareshape = np . reshape ( tmp_data , ( Np, 1) )
463 c l u s t e r s = DBSCAN( eps=epsv , min_samples=min_samplesv ,

metr ic=’ euc l i d ean ’ ) . f i t ( _datareshape )
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464 numOutliers = np . argwhere ( c l u s t e r s . l abe l s_ == 1| −1|2) .
f l a t t e n ( )

465 # pr in t ( numOutliers )
466 f o r i in numOutliers :
467 i f i == 0 or i==1 or i==2 or i ==3:
468 mean_value = np . mean( _data [ _ l i s t [ i + 1 : 7 ] ] )
469 e l i f i == len ( _ l i s t )−1 or i == len ( _ l i s t )−2 or i ==

len ( _ l i s t )−3 or i == len ( _ l i s t ) −4:
470 mean_value = np . mean( _data [ _ l i s t [ i −6: i ] ] )
471 e l s e :
472 mean_value = (np . mean( _data [ _ l i s t [ i −3: i ] ] ) + np .

mean( _data [ _ l i s t [ i +1: i +4 ] ] ) ) /2 #( _data [ _ l i s t [ i −1] ] + _data [ _ l i s t [ i
+1 ] ] ) /2

473

474 _data [ _ l i s t [ i ] ] = mean_value
475 re turn _data
476

477 i f __name__==’__main__ ’ :
478

479 df_err = pd . DataFrame ( columns=[ ’ pa t i en t ’ , ’ e r r o r ’ ] )
480

481 f o r n , f i l e in enumerate ( os . l i s t d i r ( p a t i e n t s _ f o l d e r ) [ 3 4 0 0 : ] ) :
482

483 i f l en ( f i l e . s p l i t ( ’ . ’ ) ) > 1 :
484 i f f i l e . s p l i t ( ’ . ’ ) [ 1 ] == ’ csv ’ :
485 pat i en t = f i l e . s p l i t ( ’_ ’ ) [ 0 ]
486 pr in t ( f ’ Pat ient : { pa t i en t } − {n}\{ l en ( os . l i s t d i r (

p a t i e n t s _ f o l d e r ) ) } ’ )
487 t ry :
488 PrePS = PreProcess_Sintec ( f i l e=f i l e , pat_dir =

pat i en t s_ fo lde r , r e s u l t _ d i r=r e s u l t _ d i r ) #3600490 (3602521
shekam dard )

489 PrePS . main ( )
490 except Exception as e :
491 pr in t ( f " { pa t i en t } didn ’ t complete \n{e} " )
492 df_err . l o c [ l en ( df_err ) ] = { ’ pa t i en t ’ : pat i ent , ’

e r r o r ’ : e}
493

494 df_err . to_csv ( f ’ { r e s u l t _ d i r }/ Feat_Error . csv ’ )
495

496 pr in t ( l en ( os . l i s t d i r ( f ’ { r e s u l t _ d i r }/ Dataset ’ ) ) )

A.3 Traing and Testing the LSTM Model

1 # −∗− coding : utf −8 −∗−
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2 import pandas as pd
3 import numpy as np
4 import os , datetime , time
5 import matp lo t l i b . pyplot as p l t
6 import seaborn as sns
7 from sk l ea rn . met r i c s import mean_absolute_error
8 from sk l ea rn . mode l_se lect ion import GridSearchCV
9 from sk l ea rn . decomposit ion import PCA

10 from sk l ea rn . p r ep ro c e s s i ng import StandardSca ler
11 from sk l ea rn . i n s p e c t i o n import permutation_importance
12 # import t en so r f l ow as t f
13 import keras
14 from sk l ea rn . mode l_se lect ion import KFold
15 from keras . models import Sequent i a l
16 from keras . l a y e r s import Conv1D , LSTM, Dense , BatchNormalization ,

Dropout , Reshape
17 from keras . l a y e r s . c onvo lu t i ona l import MaxPooling1D
18 from keras . wrappers . s c i k i t _ l e a r n import KerasRegressor
19 from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
20 # from keras . c a l l b a c k s import TensorBoard
21

22 c l a s s l s tm_sintec ( ob j e c t ) :
23 ’ ’ ’
24 LSTM NN Model f o r Pred i c t i on the Blood Presure
25 ’ ’ ’
26 de f __init__( s e l f , pat i ent , showplot= False , root_dir =’ ’ ) :
27 s e l f .TRAIN_PERC = 0.75
28 s e l f . regr_path = f ’ { root_dir }/ Dataset ’
29 s e l f . check_dir ( root_dir )
30 s e l f . plot_path = f ’ { root_dir }/Plots_ML ’
31 s e l f . f ina l_model = f ’ { root_dir }/ Final_Model ’
32 s e l f . log_dir = f ’ { root_dir }/ l o g s / f i t / ’
33 s e l f . pa t i en t = pat i en t
34 s e l f . d f = pd . read_csv ( f ’ { s e l f . regr_path }/{ pa t i en t } . csv ’ ) .

dropna ( )
35 s e l f . input_col = [ ’Tr ’ , ’SPs_new ’ , ’UpTime ’ , ’BTB_PPG’ , ’

PPG_h ’ ,
36 ’R ’ , ’BTB_R’ , ’P ’ , ’T ’ , ’Q ’ , ’S ’ , ’HR’ , ’PTT’

]
37 output_col = [ ’DBP’ , ’SBP ’ ]
38 s e l f .X = s e l f . d f [ s e l f . input_col ]
39 s e l f . y = s e l f . d f [ output_col ]
40 s e l f . time = s e l f . d f [ ’Time ’ ] . va lue s
41 s e l f . showplot = showplot
42 p l t . s t y l e . use ( ’ seaborn−darkgr id ’ )
43 s e l f . f i g s i z e = (15 ,9 )
44

45 de f check_dir ( s e l f , root_dir ) :
46 i f not os . path . e x i s t s ( f ’ { root_dir }/Plots_ML ’ ) :
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47 os . mkdir ( f ’ { root_dir }/Plots_ML ’ )
48 i f not os . path . e x i s t s ( f ’ { root_dir }/ Final_Model ’ ) :
49 os . mkdir ( f ’ { root_dir }/ Final_Model ’ )
50 i f not os . path . e x i s t s ( f ’ { root_dir }/ l o g s / f i t ’ ) :
51 os . mkdir ( f ’ { root_dir }/ l o g s ’ )
52 os . mkdir ( f ’ { root_dir }/ l o g s / f i t ’ )
53

54 de f data_prepare ( s e l f ) :
55 # Normal i z i a t i on
56 x = s e l f .X. va lue s
57 y = s e l f . y . va lue s
58 scale_x = StandardSca ler ( )
59 X_scaled = scale_x . f i t_t rans fo rm ( x )
60

61 scale_y = StandardSca ler ( )
62 y_scaled = scale_y . f i t_trans fo rm ( y )
63

64 # pr in t ( f "Number o f f e a t u r e s be f o r e PCA: {X_scaled . shape
[ 1 ] } " )

65 # Apply PCA to the data
66 s e l f . pca = PCA( n_components =0.95)
67 X_scaled = s e l f . pca . f i t_t rans fo rm ( X_scaled )
68

69 t r a i n _ s i z e = i n t ( s e l f .TRAIN_PERC∗ l en ( X_scaled ) )
70

71 x_test , y_test = X_scaled [ t r a i n _ s i z e : ] , y_scaled [
t r a i n _ s i z e : ]

72 X_scaled , y_scaled = X_scaled [ : t r a i n _ s i z e ] , y_scaled [ :
t r a i n _ s i z e ]

73

74 # Divide the data in to t ra in , and t e s t s e t s
75 x_train , x_val , y_train , y_val = t r a i n _ t e s t _ s p l i t (

X_scaled , y_scaled , t e s t _ s i z e =0.15 , random_state=0)
76

77 data = {
78 ’ Train ’ : { ’ x ’ : x_train , ’ y ’ : y_train } ,
79 ’ Val ’ : { ’ x ’ : x_val , ’ y ’ : y_val } ,
80 ’ t e s t ’ : { ’ x ’ : x_test , ’ y ’ : y_test } ,
81 ’ Dataset ’ : { ’ x ’ : X_scaled , ’ y ’ : y_scaled } ,
82 ’ s c a l e r ’ : { ’ x ’ : scale_x , ’ y ’ : scale_y }
83 }
84 re turn data
85

86 de f get_model ( s e l f , n_features , un i t s1 =128 , un i t s2 =128 ,
_learningRate =.01) :

87

88 model = Sequent i a l (name=’model_LSTM ’ )
89 model . add ( Reshape ( ( n_features , 1) , input_shape=(

n_features , ) ) )
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90 model . add (Conv1D( units1 , k e rne l_s i z e =2,
91 a c t i v a t i o n=’ r e l u ’ , input_shape=(n_features , 1) ,

name=’Conv1D_1 ’ ) )
92 model . add ( MaxPooling1D ( poo l_s i ze =2, s t r i d e s =2, name=’

MaxPooling1D_1 ’ ) )
93 model . add ( BatchNormalizat ion ( ) )
94 # model . add (Conv1D( units2 , k e rne l_s i z e =2,
95 # a c t i v a t i o n =’ r e l u ’ , name=’Conv1D_2 ’ ) )
96 # model . add ( MaxPooling1D ( poo l_s i ze =2, s t r i d e s =2, name=’

MaxPooling1D_2 ’ ) )
97 model . add (LSTM( units2 , a c t i v a t i o n=’ tanh ’ , name=’LSTM’ ) )
98 model . add ( Dropout ( 0 . 5 ) )
99 model . add ( Dense (2 , a c t i v a t i o n=’ l i n e a r ’ , name=’ Dense ’ ) ) #

scaled_sigmoid
100

101 opt = keras . op t im i z e r s .Adam( l ea rn ing_rate =_learningRate )
102 model . compi le ( l o s s=’ mean_squared_error ’ ,
103 opt imize r=opt , met r i c s =[ ’ accuracy ’ ] )
104 re turn model
105

106 de f h i s to ry_p lo t ( s e l f , h i s t o r y ) :
107 # plot_h i s to ry ( h i s t o r y )
108 p l t . f i g u r e ( )
109 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )
110 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ va l_ lo s s ’ ] )
111 p l t . t i t l e ( ’ Model Loss ’ )
112 p l t . y l a b e l ( ’ Loss ’ )
113 p l t . x l a b e l ( ’ Epoch ’ )
114 p l t . l egend ( [ ’ Train ’ , ’ Va l idat i on ’ ] , l o c=’ upper l e f t ’ )
115 p l t . s a v e f i g ( f ’ { s e l f . plot_path }/{ s e l f . pa t i en t } _loss . png ’ )
116 i f s e l f . showplot : p l t . show ( )
117 p l t . c l o s e ( )
118

119 de f plot_pred ( s e l f , model , X_scaled , y_scaled , y_test ,
y_test_hat , data ) :

120

121 y_hat = model . p r e d i c t ( X_scaled )
122 y_hat = data [ ’ s c a l e r ’ ] [ ’ y ’ ] . inverse_trans form ( y_hat )
123 y = data [ ’ s c a l e r ’ ] [ ’ y ’ ] . inverse_trans form ( y_scaled )
124 # y_hat = y_hat ∗ s e l f . s sy + s e l f .mmy
125 # y = y_scaled ∗ s e l f . s sy + s e l f .mmy
126

127 y = np . concatenate ( ( y , y_test ) , ax i s =0)
128 y_hat = np . concatenate ( ( y_hat , y_test_hat ) , ax i s =0)
129

130 f i g , axs = p l t . subp lo t s (2 , 2)
131 f i g . s e t_s i ze_inches ( s e l f . f i g s i z e )
132 f o r i in range (2 ) :
133 i f i ==0:
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134 _ t i t l e = ’DBP’
135 e l s e :
136 _ t i t l e = ’SBP ’
137

138 # plo t r e g r e s s i o n p l o t
139 sns . r e g p l o t ( ax=axs [ i , 0 ] , x=y [ : , i ] , y=y_hat [ : , i ] ,

scatter_kws={ ’ s ’ : 2})
140 axs [ i , 0 ] . s e t_x labe l ( " True Values [mmHg] " )
141 axs [ i , 0 ] . s e t_y labe l ( " Pred ic ted Values [mmHg] " )
142 axs [ i , 0 ] . s e t _ t i t l e ( f " Regres s ion Plot o f True Values

vs . Pred ic ted Values ({ _ t i t l e }) " )
143

144 # Plot e r r o r histogram
145 e r r o r = y [ : , i ]− y_hat [ : , i ]
146 axs [ i , 1 ] . h i s t ( e r ror , b ins =20, rwidth =0.8)
147 axs [ i , 1 ] . s e t_x labe l ( " Error (mmHg) " )
148 axs [ i , 1 ] . s e t_y labe l ( " Frequency " )
149 axs [ i , 1 ] . s e t _ t i t l e ( f " Histogram of Error ({ _ t i t l e }) " )
150

151 p l t . s a v e f i g ( f ’ { s e l f . plot_path }/{ s e l f . pa t i en t } _error_plt .
png ’ )

152 p l t . t ight_layout ( )
153 i f s e l f . showplot : p l t . show ( )
154 p l t . c l o s e ( )
155

156 f i g , axs = p l t . subp lo t s (2 )
157 f i g . s e t_s i ze_inches ( s e l f . f i g s i z e )
158 f o r i in range (2 ) :
159 i f i ==0:
160 _ t i t l e = ’DBP’
161 e l s e :
162 _ t i t l e = ’SBP ’
163 # Plot Y and Y_hat
164 axs [ i ] . p l o t ( s e l f . time , y_hat [ : , i ] , c=’ r ’ , l a b e l = ’

Y_predict ’ )
165 axs [ i ] . p l o t ( s e l f . time , y [ : , i ] , c=’b ’ , l a b e l = ’Y ’ )
166 axs [ i ] . s e t_y labe l ( ’DBP[mmHg] ’ )
167 axs [ i ] . s e t_x labe l ( ’Time [ s ] ’ )
168 axs [ i ] . s e t _ t i t l e ( f ’ Real va lue o f { _ t i t l e } and Pred i c t

va lue o f { _ t i t l e } ’ )
169 axs [ i ] . l egend ( )
170 # repr e s en t the t e s t r eg i on
171 axs [ i ] . f i l l_betweenx ( [ min ( y [ : , i ] ) ,max( y [ : , i ] ) ] , s e l f .

time [ i n t ( s e l f .TRAIN_PERC∗ l en ( s e l f . time ) ) ] , s e l f . time [ −1] , c o l o r=’
gray ’ , alpha =0.5)

172 axs [ i ] . g r i d ( )
173 p l t . s a v e f i g ( f ’ { s e l f . plot_path }/{ s e l f . pa t i en t }_Pred . png ’ )
174 p l t . t ight_layout ( )
175 i f s e l f . showplot : p l t . show ( )
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176 p l t . c l o s e ( )
177

178 de f train_model ( s e l f , un its1 , units2 , _learningRate ) :
179

180 # log_dir = s e l f . l og_dir + datet ime . datet ime . now ( ) .
s t r f t i m e ("%Y%m%d−%H%M%S " )

181 # tensorboard_ca l lback = TensorBoard ( log_dir=log_dir ,
histogram_freq =1)

182

183 data = s e l f . data_prepare ( )
184

185 xt ra in = data [ ’ Train ’ ] [ ’ x ’ ]
186 yt ra in = data [ ’ Train ’ ] [ ’ y ’ ]
187 _, n_features = xt ra in . shape
188

189 # pr in t ( f "Number o f f e a t u r e s a f t e r PCA: { x t ra in . shape
[ 1 ] } " )

190

191 # Make Model
192

193 model = s e l f . get_model ( n_features , units1 , units2 ,
_learningRate )

194

195 # t f . keras . u t i l s . plot_model ( model , t o _ f i l e =’conv1d . png ’ ,
show_shapes=True )

196

197 # model . summary ( )
198

199 pr in t ( ’The Model i s in t r a i n i n g mode . . . ’ )
200 s t a r t = time . time ( )
201 h i s t o r y = model . f i t ( xtra in ,
202 ytra in ,
203 epochs =30,
204 va l idat ion_data=(data [ ’ Val ’ ] [ ’ x ’ ] ,

data [ ’ Val ’ ] [ ’ y ’ ] ) ,
205 verbose =0) ,
206 # c a l l b a c k s =[ tensorboard_ca l lback ] )
207 t ra in ing_t ime = time . time ( ) − s t a r t
208 pr in t ( ’ Tra in ing complete . ’ )
209 pr in t ( h i s t o r y )
210 breakpoint ( )
211

212 model . save ( f ’ { s e l f . f inal_model }/model_{ s e l f . pa t i en t } . h5 ’ )
213

214 s e l f . h i s to ry_p lo t ( h i s t o r y )
215

216 feature_imp = s e l f . f e a t u r e _ e f f e c t ( model , data )
217

218 re turn h i s to ry , model , feature_imp , tra in ing_t ime
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219

220 de f check_model ( s e l f , model ) :
221 MAE_dict ={ ’DBP’ : {} , ’SBP ’ :{}}
222 data = s e l f . data_prepare ( )
223 # make p r e d i c t i o n s
224 t r a i n P r e d i c t = model . p r e d i c t ( data [ ’ Train ’ ] [ ’ x ’ ] )
225 # t e s t P r e d i c t = model . p r e d i c t ( data [ ’ Test ’ ] [ ’ x ’ ] )
226 y_test_hat = model . p r e d i c t ( data [ ’ t e s t ’ ] [ ’ x ’ ] )
227

228 X_scaled = data [ ’ Dataset ’ ] [ ’ x ’ ] #np . reshape ( data [ ’ Dataset
’ ] [ ’ x ’ ] , ( data [ ’ Dataset ’ ] [ ’ x ’ ] . shape [ 0 ] , data [ ’ Dataset ’ ] [ ’ x ’ ] . shape
[ 1 ] , 1 ) )

229

230 t r a i n P r e d i c t = data [ ’ s c a l e r ’ ] [ ’ y ’ ] . inverse_trans form (
t r a i n P r e d i c t )

231 yt ra in = data [ ’ s c a l e r ’ ] [ ’ y ’ ] . inverse_trans form ( data [ ’
Train ’ ] [ ’ y ’ ] )

232 y_test_hat = data [ ’ s c a l e r ’ ] [ ’ y ’ ] . inverse_trans form (
y_test_hat )

233 y_test = data [ ’ s c a l e r ’ ] [ ’ y ’ ] . inverse_trans form ( data [ ’ t e s t
’ ] [ ’ y ’ ] )

234

235 MAE_dict [ ’DBP’ ] [ ’ Train ’ ] = round ( mean_absolute_error (
y t r a in [ : , 0 ] , t r a i n P r e d i c t [ : , 0 ] ) )

236 pr in t ( ’ Train Score [DBP] f o r %s : %.2 f MAE’ % ( s e l f .
pat i ent , MAE_dict [ ’DBP’ ] [ ’ Train ’ ] ) )

237 MAE_dict [ ’DBP’ ] [ ’ Test ’ ] = round ( mean_absolute_error (
y_test [ : , 0 ] , y_test_hat [ : , 0 ] ) )

238 pr in t ( ’ Test Score [DBP] f o r %s : %.2 f MAE’ % ( s e l f .
pat i ent , MAE_dict [ ’DBP’ ] [ ’ Test ’ ] ) )

239

240 MAE_dict [ ’SBP ’ ] [ ’ Train ’ ] = round ( mean_absolute_error (
y t r a in [ : , 1 ] , t r a i n P r e d i c t [ : , 1 ] ) )

241 pr in t ( ’ Train Score [SBP ] : %.2 f MAE’ % (MAE_dict [ ’SBP ’ ] [ ’
Train ’ ] ) )

242 MAE_dict [ ’SBP ’ ] [ ’ Test ’ ] = round ( mean_absolute_error (
y_test [ : , 1 ] , y_test_hat [ : , 1 ] ) )

243 pr in t ( ’ Test Score [SBP ] : %.2 f MAE’ % (MAE_dict [ ’SBP ’ ] [ ’
Test ’ ] ) )

244 s e l f . plot_pred ( model , X_scaled , data [ ’ Dataset ’ ] [ ’ y ’ ] ,
y_test , y_test_hat , data )

245

246 re turn MAE_dict
247

248 de f run_gridsearch ( s e l f , param_grid ) :
249

250 data = s e l f . data_prepare ( )
251 _, n_features= data [ ’ Train ’ ] [ ’ x ’ ] . shape
252 param_grid [ ’ n_features ’ ] = [ n_features ]
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253

254 model = KerasRegressor ( bui ld_fn=s e l f . get_model , epochs
=70, batch_size =5, verbose =0)

255

256 k f o l d = KFold ( n_sp l i t s =5, s h u f f l e=True )
257

258 g r id = GridSearchCV ( es t imator=model , param_grid=
param_grid ,

259 cv=kfo ld , verbose =1,
260 return_tra in_score=True )
261

262 g r i d_re su l t = gr id . f i t ( data [ ’ Train ’ ] [ ’ x ’ ] , data [ ’ Train ’ ] [
’ y ’ ] )

263 pr in t ( " Best : %f us ing %s " % ( g r i d_re su l t . best_score_ ,
g r i d_re su l t . best_params_ ) )

264 re turn g r i d_re su l t
265

266 de f t o ta l_e r r ( s e l f , e r ro r_d i c t ) :
267 data = er ro r_d i c t
268 dbp_err =[ ]
269 sbp_err =[ ]
270 pat = [ ]
271 f o r key , va l in data . i tems ( ) :
272 pat . append ( key )
273 dbp_err . append ( va l [ ’DBP’ ] [ ’ Test ’ ] )
274 sbp_err . append ( va l [ ’SBP ’ ] [ ’ Test ’ ] )
275

276 f i g , axs = p l t . subp lo t s (1 , 2 )
277 f i g . s e t_s i ze_inches ( s e l f . f i g s i z e )
278

279 output={axs [ 0 ] : [ dbp_err , ’DBP’ ] , axs [ 1 ] : [ sbp_err , ’SBP ’ ] }
280 f o r ax in axs :
281 ax . h i s t ( output [ ax ] [ 0 ] , b ins =20, rwidth =0.8)
282 ax . s e t_x labe l ( ’ Error (mmHg) ’ )
283 ax . s e t_y labe l ( ’The number o f p a t i e n t s ’ )
284 ax . s e t _ t i t l e ( f ’ Histogram of e r r o r { output [ ax ] [ 1 ] } ’ )
285 ax . g r id ( )
286 i f s e l f . showplot : p l t . show ( )
287 p l t . s a v e f i g ( f ’ { s e l f . plot_path }/Hist_all_MAE . png ’ )
288

289 de f f e a t u r e _ e f f e c t ( s e l f , model , data ) :
290

291 r e s u l t = permutation_importance ( model , data [ ’ Val ’ ] [ ’ x ’ ] ,
data [ ’ Val ’ ] [ ’ y ’ ] , s c o r i n g=’ neg_mean_squared_error ’ )

292

293 # Reverse PCA trans fo rmat ion to get f e a t u r e importance
s c o r e s

294 importances = r e s u l t . importances_mean
295 inv_importances = s e l f . pca . inverse_trans form ( importances )
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296

297 importances_std = r e s u l t . importances_std
298 inv_importances_std = s e l f . pca . inverse_trans form (

importances_std )
299

300 f o r index , i in enumerate ( inv_importances ) :
301 pr in t ( f " Features { s e l f . input_col [ index ] } : { i : . 3 f }

+/− { inv_importances_std [ index ] : . 3 f } " )
302

303 re turn ( inv_importances , inv_importances_std )
304

305

306 i f __name__==’__main__ ’ :
307 i f os . path . e x i s t s ( f ’ { regr_path }/ result_map/MAE_results . csv ’ ) :
308 df_MAE = pd . read_csv ( f ’ { regr_path }/ result_map/MAE_results . csv ’ )
309 e l s e :
310 df_MAE = pd . DataFrame ( columns = [ ’ Pat ient ’ , ’MAE_DBP_Train ’ , ’

MAE_DBP_Test ’ , ’MAE_SBP_Train ’ , ’MAE_SBP_Test ’ , ’MAE_MAP’ ] , index =
None )

311 i f os . path . e x i s t s ( f ’ { regr_path }/ result_map/ feat_imp . csv ’ ) :
312 df_feat_imp = pd . read_csv ( f ’ { regr_path }/ result_map/ feat_imp . csv

’ )
313 e l s e :
314 df_feat_imp = pd . DataFrame ( columns=[ ’ Pat ient ’ , ’PPG_Trough ’ , ’

SPs ’ , ’UpTime ’ , ’BTB_PPG’ , ’ PPG_height ’ , ’R ’ , ’BTB_R’ , ’P ’ , ’T ’ , ’Q
’ , ’ S ’ , ’HR’ , ’PTT’ ] , index = None )

315 i f os . path . e x i s t s ( f ’ { regr_path }/ result_map/ML_sys_Error . csv ’ ) :
316 df_sys_err = pd . read_csv ( f ’ { regr_path }/ result_map/ML_sys_Error .

csv ’ )
317 e l s e :
318 df_sys_err = pd . DataFrame ( columns=[ ’ pa t i en t ’ , ’ e r r o r ’ ] )
319 f o r n , f i l e in enumerate ( os . l i s t d i r ( ’ . / Dataset − done ’ ) ) :
320 i f l en ( f i l e . s p l i t ( ’ . ’ ) ) > 1 :
321 i f f i l e . s p l i t ( ’ . ’ ) [ 1 ] == ’ csv ’ :
322 pat i en t = f i l e . s p l i t ( ’ . ’ ) [ 0 ]
323 path =’ . / Dataset − done ’
324 pr in t ( f ’ Pat ient : { pa t i en t } − {n}/{ l en ( os . l i s t d i r ( path

) ) } ’ )
325 t ry :
326 l s = ls tm_sintec ( pa t i en t=pat ient , dataset_dir=’

Dataset − done ’ )
327

328 h i s to ry , model , feature_imp = l s . train_model ( un i t s1
=64, un i t s2 =128 , _learningRate =.001)

329

330 # pr in t ( l en (np . i n s e r t ( feature_imp [ 0 ] , 0 , pa t i en t ) ) )
331 # pr in t ( df_feat_imp . shape ( ) )
332 df_feat_imp . l o c [ l en ( df_feat_imp ) ] = np . i n s e r t (

feature_imp [ 0 ] , 0 , pa t i en t )
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333

334 MAE_dict = l s . check_model ( model )
335

336 df_MAE. l o c [ l en (df_MAE) ] = [ pat i ent , MAE_dict [ ’DBP’
] [ ’ Train ’ ] , MAE_dict [ ’DBP’ ] [ ’ Test ’ ] , MAE_dict [ ’SBP ’ ] [ ’ Train ’ ] ,
MAE_dict [ ’SBP ’ ] [ ’ Test ’ ] , MAE_dict [ ’MAP’ ] [ ’ Test ’ ] ]

337 except Exception as e :
338 pr in t ( f " { pa t i en t } didn ’ t complete " )
339 df_sys_err . l o c [ l en ( df_sys_err ) ] = { ’ pa t i en t ’ :

pat i ent , ’ e r r o r ’ : e}
340 pr in t ( "An e r r o r occurred : " , e )
341 pr in t ( f ’Number o f p a t i e n t s was completed : { l en (df_MAE) } ’ )
342 df_sys_err . to_csv ( f ’ { regr_path }/ result_map/ML_sys_Error . csv ’ )
343 df_feat_imp . to_csv ( f ’ { regr_path }/ result_map/ feat_imp . csv ’ , index

= None )
344 df_MAE. to_csv ( f ’ { regr_path }/ result_map/MAE_results . csv ’ , index =

None )
345

346 df_MAE_res = pd . read_csv ( f ’ { regr_path }/ result_map/MAE_results . csv
’ )

347 pr in t ( l en (df_MAE_res) )
348 df = pd . read_csv ( ’ . / r e s u l t / feat_imp . csv ’ )
349 df = df . drop ( " Pat ient " , ax i s =1)
350 sns . v i o l i n p l o t ( data=df , o r i e n t=’h ’ )
351 p l t . x l a b e l ( "MAE decrea se " )
352 p l t . show ( )
353 sns . boxplot ( data=df , o r i e n t=’h ’ )
354 p l t . x l a b e l ( "MAE decrea se " )
355 p l t . show ( )

A.4 Features correlation

1

2 input_col = [ ’Tr ’ , ’SPs_new ’ , ’UpTime ’ , ’BTB_PPG’ , ’PPG_h ’ ,
3 ’R ’ , ’BTB_R’ , ’P ’ , ’T ’ , ’Q ’ , ’S ’ , ’HR’ , ’PTT

’ ]
4 n_features = len ( input_col )
5 mean_corr = np . z e r o s ( ( n_features , n_features ) )
6 num_corr = 0
7

8 i f not os . path . e x i s t s ( ’ . / P lot s / cor r_feat ’ ) :
9 os . mkdir ( ’ . / P lot s / cor r_feat ’ )

10 f o r n , f i l e in enumerate ( os . l i s t d i r ( f ’ . / Dataset ’ ) ) :
11 i f l en ( f i l e . s p l i t ( ’ . ’ ) ) > 1 :
12 i f f i l e . s p l i t ( ’ . ’ ) [ 1 ] == ’ csv ’ :
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13 pat i en t = f i l e . s p l i t ( ’ . ’ ) [ 0 ]
14 path =f ’ { regr_path }/ Dataset ’
15 df = pd . read_csv ( ’ . / Dataset /{ f i l e } ’ ) . dropna ( )
16 df = df [ input_col ]
17 col_name = { ’Tr ’ : ’PPG_Trough ’ , ’SPs_new ’ : ’ SPs ’ , ’

PPG_h ’ : ’ PPG_height ’ }
18 df = df . rename ( columns=col_name )
19 co r r = df . co r r ( )
20 co r r = cor r . r e p l a c e (np . nan , 0)
21 mean_corr += cor r
22 num_corr += 1
23

24 # sns . s e t ( rc = { ’ f i g u r e . f i g s i z e ’ : ( 7 , 6 ) })
25 # sns . heatmap ( df . c o r r ( ) , annot = False , fmt = ’.2 g ’ ,

cmap= ’ coolwarm ’ )
26 # p l t . t i t l e ( f ’The c o r r e l a t i o n between f e a t u r e s f o r

pa t i en t : { pa t i en t } ’ )
27 # p l t . s a v e f i g ( ’ . / P lo t s / cor r_feat /{ pa t i en t } . png ’ )
28 # p l t . show ( )
29 mean_corr_f = mean_corr/num_corr
30 sns . heatmap ( mean_corr_f , annot = False , fmt=’ . 2 g ’ , cmap= ’ coolwarm

’ )
31 p l t . t i t l e ( f ’The mean o f c o r r e l a t i o n between f e a t u r e s ’ )
32 p l t . s a v e f i g ( ’ . / P lo t s / cor r_feat / mean_corre lat ion . png ’ )
33 p l t . show ( )
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