
POLITECNICO DI TORINO
Department of Electronics and Telecommunications

Master’s Degree Course in Mechatronic Engineering

Master Thesis

Design and evaluation of different digital control technologies

of a mobile manipulator

Supervisor:
Prof. Dario Antonelli

Candidate:
Giuseppe La Spisa

Academic Year 2022-2023
July 2023

1

CONTENTS
Contents ... 1

Abstract .. 5

1 Introduction .. 7

1.1 Industry 4.0 and the concept of digital twins in manufacturing .. 7

1.2 Objectives of the thesis.. 9

1.3 Mobile Manipulator (MoMa) .. 10

1.3.1 MiR100 .. 11

1.3.2 UR3 and RG2 ... 11

1.3.3 MiR100 and UR3 communication ... 12

2 Acquisition systems ... 13

2.1 Optitrack Motive ... 13

2.1.1 Connecting Optitrack with Matlab ... 14

2.1.2 Important considerations .. 15

2.2 Node-RED and Modbus/TCP protocol ... 16

2.3 Robot Operating System (ROS) .. 17

2.3.1 Connecting ROS with Matlab and Simulink.. 19

2.3.2 Important considerations .. 21

3 Case Study.. 22

4 Preliminary tests ... 23

4.1 General settings ... 23

4.1.1 Utilized software and tools .. 23

4.1.2 Sampling frequencies ... 23

4.2 Repeatability test ... 23

4.2.1 Results and analysis ... 23

4.3 Repetition of the test with one or two obstacles .. 29

4.3.1 Results and analysis ... 29

4.4 Conclusion ... 32

5 Digital Model ... 33

5.1 Method... 33

5.1.1 Utilized software and tools .. 33

5.1.2 General settings and considerations ... 33

5.1.3 Binary Occupancy Map ... 34

5.1.4 Main idea.. 35

2

5.2 Development in Matlab and Simulink... 36

5.2.1 Stateflow and Main task scheduler .. 36

5.2.2 MiR100 controller .. 37

5.2.3 UR3 and Gripper controller ... 41

5.3 Simscape models ... 43

5.3.1 Laboratory environment and MiR100 .. 44

5.3.2 UR3 and RG2 Gripper ... 45

5.3.3 Visualization of the Digital Model developed in Simscape Multibody 46

5.4 Results ... 47

5.4.1 Case study: Orientation angles not specified ... 47

5.4.1.1 General settings and considerations .. 47

5.4.1.2 MiR100 results.. 49

5.4.1.3 UR3 results ... 51

5.4.1.4 UR3 TCP results ... 53

5.4.2 Case study: Orientation angles specified ... 59

5.4.2.1 General settings and considerations .. 59

5.4.2.2 MiR100 results.. 60

5.4.2.3 UR3 results ... 62

5.4.2.4 UR3 TCP results ... 63

6 Digital Shadow ... 68

6.1 Method... 68

6.1.1 Utilized software and tools .. 68

6.1.2 Main idea.. 69

6.1.3 Development in Matlab, Simulink, and ROS systems ... 70

6.2 Results ... 71

6.2.1 MIR100 Digital Shadow .. 71

6.2.2 UR3 Digital Shadow .. 72

6.2.3 MoMa Digital Shadow ... 72

7 Digital Twin ... 73

7.1 Method... 73

7.1.1 Utilized software and tools .. 73

7.1.2 Development of the Digital Twin .. 73

7.2 Results ... 74

7.2.1 MiR100 Digital Twin ... 74

7.2.2 UR3 Digital Twin... 75

3

8 Conclusion ... 76

9 References .. 78

10 Figures References ... 80

11 Appendix .. 81

11.1 Optitrack .. 81

11.1.1 NATNET SDK Matlab script .. 81

11.1.2 Optitrack data convertion Matlab script ... 82

11.2 ROS initial settings .. 82

11.2.1 Time Synchronization between ROS machine and MiR100 82

11.2.2 ROS nodes initialization Matlab script .. 83

11.2.3 Simulink function to extract MiR position and velocity .. 83

11.2.4 ROS Bag file management Matlab script .. 84

11.3 Digital Model ... 84

11.3.1 Binary Occupancy Grid Matlab script ... 84

11.3.2 Task Class .. 84

11.3.3 CheckAtStnRange Simulink function .. 85

11.3.4 ThetaQuarterSelection and AngVelSignController Simulink functions 85

11.3.5 SetSignLinVel Simulink function .. 89

11.3.6 UR3goalReached and GripperGoalReached Simulink function 89

11.3.7 UR3_TCP Matlab Script .. 90

4

5

ABSTRACT
The term Industry 4.0 indicates the fourth industrial revolution. It consists of a production and
business management model based on the interconnection between physical and digital devices. In
particular, the manufacturing sector is experiencing a new era of development powered by a series of
emerging high technologies such as human-robot collaboration, the Industrial Internet of Things
(IIoT), cyber-physical systems, augmented reality, machine learning, and artificial intelligence. These
features are necessary to analyse, interpret, and predict the real behaviour of machines and devices
used in the manufacturing sector, such as autonomous robots and automated guided vehicles (AGVs).
One of the main benefits of the digital transition driven by Industry 4.0 is the real-time accessibility
of comprehensive information from devices involved in the manufacturing processes, acquired by
integrated sensors embedded in the machines and camera systems that monitor the shop floor, and
transmitted through the internet network. As a result, these data can be stored for further processing
and readily accessed and utilized to build a virtual environment as faithful as possible to the real one.
In recent years, the concept of Digital Twin (DT) has gained significant importance in this field of
research. It was created to operate in parallel and interact with real-world physical production
equipment, enabling a bidirectional data transmission. Indeed, the DT can receive data from the
factory floor and can also transmit data back to trigger specific actions in the manufacturing process.
The DT can be used for a variety of purposes, including remote supervision, condition monitoring,
and testing and validation. The advantages of this technology are:

• The possibility to analyse hypothetical scenarios and plan future changes, thus reducing
implementation time and costs.

• The anticipation of potential problems that may arise in the future.
• The reduction of accidents since it can simulate all kinds of situations.
• The increase of productivity and optimization of costs.
• Avoiding the risks of damages and possible harmful actions for humans.

In addition to the Digital Twin concept, mention should be made of the Digital Model (DM) and the
Digital Shadow (DS), other virtual simulation technologies used especially for the static analysis and
real-time monitoring of the physical working environment. The main difference is the data
transmission modality. Indeed, the Digital Model does not use any form of automated data exchange,
whereas the Digital Shadow allows only one-way data flow. This means that a change in the states of
a real physical object leads to a modification in the digital one, but not the opposite situation.

The objective of this thesis is twofold. First, to develop a DM of a Mobile Manipulator (MoMa) pick
and place application, assessing its accuracy by comparing the simulation results with the reference
ones obtained by means of Optitrack Motive, a real-time 3D tracking camera system. Second, the
attempt to implement a DT, employing the ROS environment to acquire real-time data from the
physical objects connected to the same network as the ROS machine. In this way, it is possible to
monitor the movements of the robots in real-time, simulate possible scenarios, and communicate with
the physical world in both directions. Finally, the Matlab ROS Toolbox provides the ability to acquire
the data directly in this simulation workspace and, through Simulink, implement real-time control
operations.

6

7

1 INTRODUCTION

1.1 INDUSTRY 4.0 AND THE CONCEPT OF DIGITAL TWINS IN MANUFACTURING
The concept of Industry 4.0, also referred to as the Fourth Industrial Revolution, was initially
introduced in 2011 during the Hannover Messe through a strategic programme initiated by the
German government. [1]. In 2016, Klaus Schwab provided definitions and analysed the impact of
technological advancements on the way of living and working in his book titled ‘The Fourth Industrial

Revolution’, He described it as a revolution that “creates a world in which virtual and physical
systems of manufacturing globally cooperate with each other in a flexible way” [2].
The integration of digital technologies into industrial processes has given rise to the concept of ‘smart
factories’. They exhibit high flexibility and adaptability to cope with rapid and dynamic changes in
production processes within an increasingly complex environment [3]. Indeed, Industry 4.0 has
significantly improved manufacturing efficiency by enabling interconnections between industrial
equipment through the Internet of Things (IoT), cyber physical systems, cloud computing, machine
learning, and artificial intelligence. These technologies are closely associated with the concept of
predictive maintenance, which allows for the prediction of equipment health by analysing acquired
data through appropriate algorithms. This approach minimizes the impact of unexpected events,
breakdowns, or anomalies, leading to cost reduction, decreased downtime, and extended lifetime of
industrial assets [4], [5].
The main key features and technologies, illustrated in Figure 2 include:

• Industrial Internet of Things (IIoT): IIoT involves a network of interconnected physical
devices, machines, sensors, and other industrial assets. This machine-oriented technology
enables the real-time data exchange, leading to optimal industrial processes [6].

• Big Data Analytics: The massive data sets generated from the entire manufacturing chain in
Industry 4.0 need to be acquired, processed, stored, and extensively analysed to improve
factory operations and product quality, reduce machine downtime, and enhance efficiency [7].

• Cloud computing: The NIST [8] defines cloud computing as: “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction”. Cloud computing aims to deliver computing services that enhance the reliability,
flexibility, and accessibility of manufacturing systems [9].

• Artificial intelligence (AI) and Machine Learning (ML): AI and ML are powerful tools
capable of learning from past or historical data and consequently developing intelligent
predictive algorithms. In the manufacturing industry, these techniques find application in
various fields such as predictive maintenance, optimization, troubleshooting, and control [10].

• Cyber-Physical Systems (CPS): CPS are characterized as physical systems incorporating
sensing, computation, and control capabilities. In the context of Industry 4.0, CPS and IIoT
ensure seamless production processes and enable efficient data analysis [11].

• Robotics and Automation: Robots play a fundamental role in Industry 4.0, as they are
becoming progressively more autonomous and intelligent. They are developing the capability
to collaborate alongside humans and interact with one another [12].

• Cybersecurity: In such an interconnected manufacturing environment, the importance of
safeguarding connected CPS and manufacturing lines from cybersecurity threats significantly
increases. Consequently, ensuring secure and reliable communications, along with

8

implementing sophisticated identity and access management for both machines and users,
becomes indispensable [13].

• Additive Manufacturing (AM): 3D printing is an AM technique that proves highly valuable
in producing a wide variety of customized products with complex geometries, all at relatively
low costs [14].

• Augmented Reality (AR) and Virtual Reality (VR): AR and VR are two interactive
technologies. The first enriches the real-world with virtual elements, while the second creates
fully digital simulation environments. Both technologies are significant resource in
manufacturing, finding applications in various areas such as simulation, worker training,
maintenance, assembly operations, and supervisory control [15].

• Simulation: In manufacturing, simulation plays a crucial role by utilizing real-time data to
create accurate 2D or 3D virtual representations of processes and enabling behaviour
monitoring. It allows for the evaluation of multiple scenarios across the product chain,
facilitates real-time performance analysis, and empowers companies to identify and optimize
processes while minimizing costs and risks [16].

To provide a more comprehensive explanation of the simulation concept in Industry 4.0, the
introduction of three additional technologies is necessary: Digital Models (DM), Digital Shadows
(DS), and Digital Twins (DT). These technologies exemplify some of the benefits of digital
transformation, which is rapidly revolutionising the entire manufacturing industry. Manufacturers are
increasingly adopting digital solutions to streamline operations, optimize and predict the behaviour
of the production system, and real-time data elaborating. While the central concept revolves around
the virtual representation of a physical process, it is crucial to note that DM, DS, and DT differ
significantly in the level of data integration between their physical and digital counterparts [17]:

• Digital Model: A DM does not allow for automated and real-time data exchange between the
physical environment and the digital one. As a result, any modifications in the real-world have
no impact on the digital world, and vice versa.
In summary, a DM is a virtual representation used for design and static analysis purposes.

• Digital Shadow: A DS is characterized by an automated flow of information from the real-
world to the digital one. However, in the reverse direction, this process is only executed
manually. Consequently, any changes made in the real environment are reflected in real-time
in the digital image, but not the other way around.
In summary, a DS provides real-time monitoring and analysis of physical assets.

• Digital Twin: A DT bridges the gap between the physical environment and the digital one,
synchronizing them and enabling automatic dynamic data exchange in both directions.
Any modification made in either of the two environments is visible in its corresponding
counterpart.
In summary, a DT offers a more comprehensive dynamic model with simulation and
predictive capabilities for optimization and experimentation.

Figure 1 illustrates a summary of the data flow within these various digital technologies.

Digital twins also find applications in the field of process planning [18], where advancements in
sensorization and connectivity have greatly enhanced the efficiency of transportation [19],[20].
Through embedded intelligence in Automated Guided Vehicles (AGVs) and in their successors,
Autonomous Mobile Robots (AMRs), autonomous navigation enables improved operability within
manufacturing plants [21]. The integration of AMRs into a collaborative environment, facilitated by

9

their connectivity, allows for real-time optimization of fleet routes and coordination with other
machines, resulting in enhanced trajectory optimization and goods traceability. Additionally, AMRs
exhibit significantly lower accident rates compared to conventional transport, contributing to
improved occupational safety. Furthermore, the incorporation of new technologies in AMRs offers
greater flexibility, enabling dynamic adaptation to new situations without human intervention [22].
The development of DT for virtual analysis of AMR behaviour aims to enable the identification of
potential issues, achieve real-time control over the robot's actions, provide the ability to send
commands, store data, and monitor motor and battery status [23].
Similarly to AGVs and AMRs, the implementation of a comprehensive digital twin for collaborative
robots brings numerous advantages in terms of human-robot collaboration [24].

 Figure 2: Technological pillars of Industry 4.0.

1.2 OBJECTIVES OF THE THESIS
The objective of this thesis is to implement a comprehensive digital environment for a Mobile
Manipulator (MoMa). The main goal is to leverage the benefits of Industry 4.0, as discussed in the
previous section, to create a highly accurate virtual model capable of monitoring and analysing data
from the physical object. This virtual model will also enable simulation of various scenarios and
establish two-way communication between the real and digital worlds. The thesis proposes the
digitalization of the mobile manipulator from multiple perspectives, utilizing three distinct simulation
technologies described earlier, starting from a DM and progressing to a DT. Each of them is discussed
and evaluated independently, employing various software and data acquisition systems to assess its
performance. The involved software and tools are:

• Excel
• SolidWorks
• Matlab, Simulink, and Simscape
• Node-RED
• Optitrack Motive
• Ubuntu Virtual Machine including ROS and Rviz

These will be described in more detail in the following chapters, explaining their features and
implications.

Figure 1: Data flow in Digital Model,
Digital Shadow, and Digital Twin.

10

In summary, the steps required to achieve the objective can be divided as follows:

• To accurately calibrate the Optitrack Motive system for real-time tracking of the MoMa's
precise position.

• To assess the position error of the mobile robot by executing a given trajectory multiple times
and comparing the results with those obtained from Optitrack.

• To analyse the mobile robot's accuracy in reaching known and fixed positions while
encountering obstacles.

• To develop a 3D Digital Model of the MoMa that faithfully replicates the real-world
processes.

• To create a Digital Shadow of the MoMa, treating the mobile robot and the collaborative robot
as separate objects and leveraging real-time information from both.

• To realize a Digital Twin of the MoMa, enabling a bidirectional real-time data exchange with
low latency, and seamless integration with different simulation systems to enhance control
capabilities and expand applications.

The analysis is specifically related to tasks performed in the restricted environment of the Mind4Lab
laboratory at Politecnico di Torino. However, it represents a dynamic scenario, comparable with a
good approximation, to an industrial environment, in which people and machines coexist and interact
with each other, constituting possible obstacles to the movement of the MoMa.
Within the laboratory, several research projects have been conducted on the mobile manipulator.
However, the existing DM has certain limitations in terms of speed and accuracy when providing
results [28]. Therefore, the implementations in this thesis aim to enhance the previous DM and go
beyond by laying the foundation for a Digital Twin that can serve as a basis for future research
objectives.

1.3 MOBILE MANIPULATOR (MOMA)
The MoMa used for the experiments described in this thesis consists of an Autonomous Mobile
Robots (AMRs), model MiR100, by Mobile Industrial Robot, and a collaborative robot, model UR3,
by Universal Robot, with an RG2 gripper, provided by OnRobot, attached to the end effector.

Figure 3: Mobile Manipulator (MoMa)

11

1.3.1 MiR100
It is extensively utilized in manufacturing to automate internal transportation and logistics processes.
Its versatility is enhanced by the ability to customize it with various top modules, including bins,
racks, lifts, conveyors, and even a collaborative robot arm, as demonstrated in this project. By
leveraging embedded sensors, laser scanners, and 3D cameras, the MiR100 can accurately map its
surroundings and continuously update this map in real-time using sensor data. This feature is crucial
for identifying obstacles and inaccessible areas. As a result, the robot can autonomously navigate
within the designated map, employing planning algorithms to identify the fastest and safest local path,
while effectively avoiding obstacles that may hinder its progress (Figure 6). The MiR100 is equipped
with six wheels: two drive wheels positioned in the middle and four caster wheels at the corners.
It has a maximum payload capacity of 100kg and can reach a maximum linear speed of 1.5m/s.1

1.3.2 UR3 and RG2
UR3 is the most compact collaborative robot in the UR catalogue, and it belongs to the CB3-series.
This cobot is characterized by six degrees of freedom (six rotating joints, ±360° range), an infinite
rotation on the wrist, a maximum extension from the base joint equal to 500mm, and a force/torque
control action, provided by the sensor on the sixth axis. The UR3 is applied in a wide range of tasks,
including assembly with a payload capacity of up to 3kg, as well as activities like glue dispensing,

1 Mobile Industrial Robot official website: MiR100 (mobile-industrial-robots.com)

Figure 4: Mobile Industrial Robot MiR100. Figure 5: The global path is indicated with the dotted blue line and is
visible on the map. The local path is indicated with the blue arrow,
showing the robot driving around a dynamic obstacle.

Figure 6: Laboratory live map on the MiR software.

https://www.mobile-industrial-robots.com/it/solutions/robots/mir100/

12

screw mounting and tightening, and pick and place operations2. The UR robot's programming is
accomplished through the utilization of the teach pendant equipped with the Polyscope graphical user
interface. The teach pendant allows for the selection of different actions to create a mission for the
robot. Actions such as wait, move, and set can be employed. The move command offers three types
of movements: moveL for linear motion, moveJ for non-linear and unpredictable motion, and moveP
for circular motion at a constant velocity. Once the desired motion mode is chosen, a set of waypoints
is defined to construct the trajectory. Waypoints can be established by specifying precise joints
configuration or by manually moving the robot or utilizing the teach pendant motion commands, and
then saving the current position as a new waypoint. In addition, UR collaborative robots are designed
to seamlessly interface with all products in the OnRobot series. In the context of this thesis, which
focuses on a pick and place task, the RG2 gripper is mounted at the end of the robot arm. By installing
the OnRobot plugin on the UR teach pendant, the gripper status can be programmed within the same
graphical Polyscope software.

1.3.3 MiR100 and UR3 communication
Once the UR3 is mounted on MiR100 and powered by it, the UR feature needs to be enabled and the
UR3's IP address has to be specified in the system settings section using the MiR web interface. This
is feasible since the MiR robot is designed to facilitate the creation of a MoMa by integrating a UR
cobot. As a result, within the mission section, there is an option to execute a UR program, along with
the ability to move the MiR to a desired location on the map or modify its orientation.

2 Universal Robot official website and UR3 datasheet: Mød CB3-familien (universal-robots.com)

Figure 8: Universal Robot UR3, CB3-series. Figure 7: OnRobot RG2 gripper.

Figure 9: Polyscope UR available program options. Figure 10: Example of pick and place program including RG2.

https://www.universal-robots.com/products/cb3/

13

2 ACQUISITION SYSTEMS

2.1 OPTITRACK MOTIVE
Motive is the best motion tracking software currently available. It utilizes real-time data captured by
Optitrack cameras (see Figure 13), which accurately detect the position and orientation coordinates
of specific markers placed on the object of interest. In Motive, a minimum of three markers is required
to define a Rigid Body in 3D space, similar to how three coordinates define a plane. The presence of
additional markers enhances overall tracking stability and reduces susceptibility to disturbances.
The Optitrack Motive specifications provide the following accuracy and latency parameters for
tracking the position of a rigid body:

• Positional accuracies typically ±0.2𝑚𝑚 or less
• Rotational accuracies typically ±0.1𝑑𝑒𝑔 or less
• Latency < 10𝑚𝑠

The specified values are the ideal values provided by the official website3. However, the actual
accuracy parameters depend on the calibration of the entire system, which, in turn, relies on factors
such as camera conditions and environmental lighting. To calibrate the system, it is necessary to
slowly move a dedicated wand with three calibration markers positioned on it until their position is
accurately detected by all cameras. For the development of the tasks in this thesis, a calibration with
a mean error (ME) of 0.531mm is utilized. This value currently represents the minimum achievable
within the laboratory context where the simulations and analyses are conducted.
The level of accuracy of the measurements reported in the development of this thesis is calculated by
considering the following observations and calculations:

• Uniform distribution
• Type B Evaluation of Standard Uncertainty (u)
• Expanded uncertainty (U) estimated by assuming a coverage factor k=2 at a confidence level

of 95%, in according to ISO GUM4

Optitrack measurements model is given by: 𝛾 = 𝜇 ± 𝑈 , where 𝛾 is the unknown value of the
measurand, taking into account the disturbances, 𝜇 is the equally weighted mean, and 𝑈 = 𝑘 ∙ 𝑢 [25].

𝛾 = 𝜇 ± 𝑈 = 𝜇 ± 𝑘𝑢 = 𝜇 ± 𝑘
𝑀𝐸

√3
= 𝜇 ± 2

0.531

√3
= (𝜇 ± 0.613)𝑚𝑚

The expanded uncertainty is 𝑈 = 0.613𝑚𝑚 . Due to the high amount of data obtained from the
acquisition, a 95% confidence interval is selected to ensure a substantial number of measurements
fall within the defined uncertainty limits.

Based on this result, Optitrack is considered the most accurate data acquisition system that faithfully
represents the real-world. Therefore, it is utilized in this thesis as a reference model to compare the
information obtained from other acquisition systems and evaluate the accuracy of the implemented
digital models.

3 Optitrack official website: OptiTrack - Motive - Specs
4 ISO GUM: Guide to the expression of uncertainty in measurement - JCGM 100:2008 (GUM 1995 with minor
corrections - Evaluation of measurement data (bipm.org)

https://optitrack.com/software/motive/specs.html?versions=427&617&606&408&621
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf

14

2.1.1 Connecting Optitrack with Matlab
The data acquired from Optitrack can be integrated into new and existing applications, such as
Matlab, allowing for the inclusion of custom plugins for real-time streaming in third-party
applications5. NatNet's client/server architecture enables client applications to run on the same system
as the tracking software (Motive), on separate system(s), or both. The SDK seamlessly integrates with
standard APIs, tools, and protocols. By customizing the available Matlab scripts with relevant
information (see Appendix 11.1.1), it becomes possible to manage all the desired data in real-time
and store it for subsequent analysis.

Figure 11 displays the block diagram of the NatNet SDK network.

Figure 11: NatNet SDK network block diagram.

Figure 13: Mind4Lab simulation area with highlighted Optitrack cameras.

5 NatNet API User’s Guide: NatNet User's Guide (mocap.jp)

Figure 12: MoMa in Optitrack Motive system.

https://mocap.jp/download/document/NatNet%202.7%20API%20User%20Guide.pdf

15

2.1.2 Important considerations
The real-time position data captured by Optitrack Motive represents the distances between the rigid
body marker, which is set as pivot, and the Optitrack reference frame. These values are in millimeters.
To compare this data with other acquisition systems and evaluate the accuracy of the MiR data, it is
necessary to process the Optitrack data appropriately in Matlab. Specifically, the following procedure
and calculation are performed.

Firstly, the MiR robot is moved to a known position (in yellow in Figure 14) with coordinates
(28.95; 21.00)𝑚. The MiR position is checked through ROS system developed in Simulink and
described in subsection 2.3.1.
The Optitrack data captured at this location are: 𝑧𝑂𝑃𝑇 = −1958.5𝑚𝑚 and 𝑥𝑂𝑃𝑇 = 1639.3𝑚𝑚.
The z and x axis of Optitrack reference frame correspond respectively to x and y axis of the MiR
reference frame, with the same orientations (see Figure 14 for more details). The Optitrack area
corresponds to that shown in Figure 13.
To obtain the Optitrack data comparable with the other acquisition systems, two offset values for both
Optitrack coordinates are computed. These offsets represent the translation coordinates of the origin
of the Optitrack reference frame with respect to the MiR one. The computations are shown below.

𝑧𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑥𝑃 + |𝑧𝑂𝑃𝑇| = 28.95𝑚 + 1.9585𝑚 = 30.9085𝑚
𝑥𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑦𝑃 − |𝑥𝑂𝑃𝑇| = 21𝑚 − 1.6393𝑚 = 19.3607𝑚

Matlab script used to convert the Optitrack data is reported in Appendix 11.1.2.

Figure 14: MiR and Optitrack reference frames.

16

2.2 NODE-RED AND MODBUS/TCP PROTOCOL
Node-RED is a powerful programming tool designed to manage multiple IIoT devices in the context
of Industry 4.0. With its intuitive browser-based interface, extensive library of nodes, and support for
various protocols, Node-RED enables the seamless integration of physical devices, APIs, and online
services6. It empowers users to effectively process and manage acquired data through JavaScript
functions, while also facilitating data storage into files.
Modbus/TCP is a widely adopted industrial communication protocol that seamlessly combines the
Modbus protocol with TCP/IP, providing robust connection-oriented communication. It ensures data
integrity by effectively preventing errors at the destination. Additionally, the TCP protocol enables
efficient concurrent communication among numerous devices, including sensors and actuators [26].

For the purposes of this thesis, two different connections are established in Node-RED, one with the
MiR100 and another with the UR. The first one leverages the ROS bridge websocket server integrated
in the mobile robot, employing a ROS subscriber node. The second one relies on the TCP protocol to
establish communication with the universal robot, alongside the RTDE-interface node for data
decoding. Through the UR connection, the information about joints position is obtained as well as
data from the UR tool central point (UR_TCP). The reception of messages is accomplished using the
dedicated Modbus nodes.
The implemented data acquisition schemes in Node-RED are illustrated in the figures below.

Figure 15: Node-RED scheme for MiR100 position data.

Figure 16: Node-RED scheme for UR3 joint states data.

Figure 17: Node-RED scheme for UR3_TCP position data.

6 Node-RED official website: Node-RED (nodered.org)

https://nodered.org/

17

2.3 ROBOT OPERATING SYSTEM (ROS)
ROS is an open-source environment that consists of a set of software libraries and tools used in robot
applications. Communication within ROS is established through the principles of publishers and
subscribers. Publishers are responsible for sending messages, while subscribers receive them.
Messages are sent to topics, which are distinct from one another. Each topic can have multiple
subscribers, and likewise, each node can publish to multiple topics. It is crucial for messages sent to
a specific topic to comply with the corresponding data type [22]. The available topic list is obtained
by running the command ‘rostopic list’ in ROS machine terminal.

In contrast to the Node-RED environment, ROS is installable on an Operating System, such as Linux
or Ubuntu. It also provides the opportunity to utilize virtual machines, maintaining the hardware
characteristics of physical devices. By leveraging ROS and Linux-based systems, users can
seamlessly interface with multiple IoT devices, similar to Node-RED. Additionally, they can take
advantage of a variety of tools and software to perform a multitude of tasks and actions related to
connected devices. Linux OS provides access to 3D simulators like Gazebo and RVIZ, which can be
connected to ROS through specific bridge nodes.
Gazebo is an advanced 3D simulator that enables the design and simulation of robot models and their
workspaces, allowing for the execution of various scenarios with a high level of fidelity. It includes
dynamic elements such as gravity, torque, friction, and a multitude of sensors [23].
RVIZ, on the other hand, is a powerful 3D ROS visualization tool that accurately reproduces the
robot's perspective. It can process data from laser scanners and 3D depth cameras mounted on the
AMR robot to detect obstacles and construct a 2D map within the robot's system. RVIZ also facilitates
robot motion planning and pose estimation, allowing for real-time replication of these actions on the
physical robot or within the Gazebo environment [27].
Both these software tools provide the capability to run robot models in Unified Robotics Description
Format (URDF).

In addition, ROS enables the access to the GitHub repository, allowing users to enhance the Linux
environment and add ROS packages and functions by leveraging the vast cloud library that contains
projects and plugins developed by other users. The drivers used to establish a stable and suitable
interface between MiR1007, UR38, and ROS are obtained from the GitHub repository.

Based on these features, the ROS suite is considered one of the best systems for implementing
comprehensive robot Digital Twins.

Real-time data acquired from robots can be stored in two ways. First, it can be directly saved to a bag
file by executing the rosbag command on the ROS machine and specifying the desired topics.
Alternatively, the rosbag command or setting can be used in Matlab and Simulink respectively (see
subsection 2.3.1).
A fundamental aspect in achieving real-time data acquisition and control of the MiR is the time
synchronization between it and the ROS machine. To ensure accurate TF transformations,
simulations, and data control, it is essential to keep the maximum message transmission delay below
0.1s, as described in GitHub guide of the MiR driver. To meet this requirement, it is necessary to

7 MiR100 driver for ROS: GitHub - DFKI-NI/mir_robot: ROS support for the MiR Robots. This is a community project
to use the MiR Robots with ROS. It is not affiliated with Mobile Industrial Robots.
8 UR driver for ROS: GitHub - UniversalRobots/Universal_Robots_ROS_Driver: Universal Robots ROS driver
supporting CB3 and e-Series

https://github.com/DFKI-NI/mir_robot
https://github.com/DFKI-NI/mir_robot
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

18

update the time settings through the official web interface of the MiR by selecting ‘Set device time
on robot.’ After completing this step, the connection between the mobile robot and the ROS system
should be restarted. This can be done by executing the ‘roscore’ command on the Ubuntu command
line, which initializes the machine hosting the ROS environment as the master. Additionally, execute
the command ‘roslaunch mir_driver mir.launch’ to run the MiR driver and set the robot as the slave.
The time delay parameters can be seen by running the command ‘rosrun tf tf_monitor’.
It's important to note that both systems have to be connected to the same Wi-Fi network as the MiR.
The results achieved for the development of this thesis are shown in Appendix 11.2.1.

Figure 18 shows an example diagram of the active nodes and topics utilized in the developed ROS
environment for the MiR100 Digital Twin. This diagram is obtained by run the ‘rqt_graph’ in the
Ubuntu command line. Rqt is a ROS software framework, which implements various GUI tools in
the form of plugins.
In Figure 18 the nodes from which the arrows originate represent the publishers, while the nodes at
which they terminate correspond to the subscribers.

More details on the ROS environment developed for the purposes of this thesis are provided in the
Digital Twin chapter (Chapter 7).

Figure 18: Rqt diagram with active nodes and topics.

19

2.3.1 Connecting ROS with Matlab and Simulink
Matlab add-ons library provides the ROS Toolbox9. It acts as a bridge connecting Matlab and
Simulink with the ROS. This toolbox offers a range of powerful Matlab functions and Simulink
blocks that facilitate the visualization and analysis of ROS data by recording, importing, and utilizing
rosbag files (see Matlab script in Appendix 11.2.4). ROS Toolbox also provides the capability to
establish a connection with live ROS networks, enabling real-time access to ROS messages. This
functionality is shown in Figure 18, where the Matlab node is subscribed to some MiR topics to
receive information such as the current position and velocity of the robot. One remarkable feature of
the toolbox is its ability to validate ROS nodes through desktop simulation and seamless integration
with external robot simulators like Gazebo or hardware interfaces. Support for Simulink external
mode allows for monitoring messages and modifying parameters while your model is running on
hardware.

To enable ROS settings in Simulink, follow the steps below:

• Open Model Settings.
• In Hardware Implementation section, select ROS as the hardware board.
• Apply the changes.

Figure 19: Summary diagram of communication between ROS devices and Matlab.

As mentioned in the previous section, it is also necessary to synchronize the timestamps between
ROS devices in Matlab in order to compare the data recorded in bag files with data coming from other
acquisition systems such as Node-RED and Optitrack, and to create temporal graphs for analysis.

Figure 20 displays a method for achieving time synchronization by utilizing Real-Time Sync block.
Furthermore, the ‘/use_sim_time’ parameter has to be set to true, through Get and Set parameter
blocks.

9 MATLAB ROS Toolbox documentation: ROS Toolbox Documentation - MathWorks Italia

https://it.mathworks.com/help/ros/

20

Figure 21 and Figure 22 depict the implemented Simulink model, which allows for the subscription
of specific nodes to receive position and velocity messages from the MiR robot. Additionally, the
model enables real-time data monitoring, by employing ‘display’ and ‘XY graph’ blocks.

The Matlab script to initialize the ROS network and Simulink functions are included respectively in
Appendix 11.2.2 and 11.2.3.

Figure 20: ROS and Matlab time synchronization in Simulink.

Figure 21: Simulink models to acquire MiR position and velocity.

Figure 22: Simulink dashboard to monitor the MiR data in real-time.

21

2.3.2 Important considerations
To develop the purpose of this thesis, two schemes to acquire data through ROS Toolbox in Matlab
have been tried:

1. Establish a direct connection between the Matlab PC and the MiR hardware, configuring the
Matlab PC as the slave node and the MiR hardware as the master node (see Figure 23).

2. Connect the Matlab PC to an existing ROS network that includes the MiR robot as the slave
and the machine running the ROS system as the master. Configure the Matlab PC as the slave
node, while the ROS machine as the master node in the Matlab script (see Figure 24).

However, these two potential solutions exhibit unexpected differences in the message types and
available topics. Based on these, it is necessary to modify the Matlab script (Appendix 11.2.4) and
Simulink subscriber blocks (Figure 21) and functions (Appendix 11.2.3), as reported in the appendix,
to accommodate to the correct message types.

The observed topics are ‘/robot_pose’, ‘/cmd_vel’, and ‘/MC/battery_percentage’. The latter is an
interesting parameter to monitor, as it could be utilized to implement a battery status controller in
Matlab or Simulink and perform actions such as moving the robot to a charging location. Another
important topic that shows some variations is ‘/move_base/goal’. It is necessary to publish a new goal

position for the MiR.

These variances are summarized in the following table.

Table 1: Differences in the message types in two illustrated connection schemes.

TOPIC MESSAGE TYPE
Case 1 Case 2

/robot_pose geometry_msgs/Pose geometry_msgs/Pose
/cmd_vel geometry_msgs/TwistStamped geometry_msgs/Twist
/MC/battery_percentage std_msgs/Float64 Not available
/move_base/goal mir_actions/MirMoveBaseActionGoal move_base_msgs/MoveBaseActionGoal

Figure 23: Matlab PC - MiR direct connection scheme. Figure 24: Matlab PC - ROS machine connection scheme.

22

3 CASE STUDY
The case study in this thesis focuses on a pick and place task executed by the MoMa robot.
Specifically, the MoMa is programmed to reach a designated location for object pickup (Loading
station), proceed to the next release station (Unloading station), and then return to the starting point
(Charging station). The stations are shown in
Figure 27.
In the Digital Model chapter (Chapter 5), two different versions of the case study are presented:

1. Orientation angles not specified: The initial orientation angle at which the MoMa moves
towards the Loading station and the subsequent departure orientation angles from the stations
after the UR has completed its mission are unspecified.

2. Orientation angles specified: All the mentioned orientation angles in point 1 are specified.

These two variations are conducted to assess the accuracy of the Digital Model in two different
situations and analyse the impact of the specified level of details in the MoMa program on its
accuracy.

Figure 25 and Figure 26 display respectively the two MoMa programs utilized for this case study.

Figure 27: Pick and Place stations.

Figure 25: MoMa program with orientation angles not specified. Figure 26: MoMa program with orientation angles specified.

23

4 PRELIMINARY TESTS
One of the primary objectives of this thesis is to assess the accuracy of the implemented Digital Twin
and evaluate its effectiveness in a hypothetical industrial working environment. To achieve this,
preliminary tests are conducted to compare the MiR position data sampled by ROS and Node-RED
during the execution of the case study depicted in Figure 26, with the data captured by the Optitrack
Motive acquisition system, which more accurately represents the real values (see Section 2.1).
Indeed, due to the dynamic nature of the MiR, which is constantly in motion and influenced by
variables like obstacles along its path, accurately determining its real position relative to the operating
environment becomes challenging. Therefore, Optitrack represents a very useful tool to obtain the
most precise estimation possible of the MiR's position.

The ROS system is developed according to the diagram shown in the Figure 24.

4.1 GENERAL SETTINGS

4.1.1 Utilized software and tools
• Excel
• MiR100 software
• Node-RED
• Ubuntu 20.04.6 LTS with ROS Noetic version
• Oracle VM VirtualBox 7.0.8
• Matlab 2022b and Simulink equipped with ROS Toolbox
• Optitrack Motive

4.1.2 Sampling frequencies
Table 2: Sampling frequency of acquisition systems.

ACQUISITION SYSTEM SAMPLING FREQUENCY [Hz]
Node-RED 10
ROS (Rosbag in Simulink) 2
Optitrack Motive 20

4.2 REPEATABILITY TEST
The proposed test involves twelve consecutive repetitions of the same trajectory, with the position of
the MiR sampled at three stations: Loading, Unloading, and Charging.

4.2.1 Results and analysis
The analysis is conducted by first evaluating the accuracy of the systems used for data acquisition
and then evaluating their reliability in terms of uncertainty.

I. Accuracy and precision: The positional data of the mobile robot, obtained in the twelve
repetitions, are graphically presented for each station, along with the reference position
obtained from the MIR's web interface (Figure 28). The black circle indicates the positioning
accuracy defined in the mir datasheet 10 , equal to 0.05m. As expected, the ROS system
demonstrates the most consistent behaviour with this value, as it gathers data from the MIR
sensors. Indeed, except for the Loading station, the data obtained with ROS consistently

10 MiR datasheet: Technische Daten MiR 100 (EN).pdf

file:///C:/Users/Giuse/AppData/Local/Temp/MicrosoftEdgeDownloads/db5b364c-d610-43ae-ade2-f76649567681/Technische%20Daten%20MiR%20100%20(EN).pdf

24

exhibits shorter distances from the reference point compared to other acquisition systems.
Regarding the Loading station, it is observed that only a few values fall within the defined
range from the datasheet, but the majority of the data still remains close to it. A possible
explanation could be given by the fact that near this station there are several chairs (see Figure
27), which constitute an obstacle for the movement of the MiR that reaches the destination
with less precision. On the other hand, Node-RED exhibits the poorest performance among
the systems, with nearly all of the samples falling outside the range defined by the black circle.
This will be further confirmed in the next chapter during the analysis of the Digital Model.
However, by looking at the charts, it can be approximated that the maximum positional error
obtained to be around 0.1m, as the majority of the data falls within this range for all stations,
with only a few exceptional cases. To reinforce these assessments, the mean error values are
considered, which represent the mean distances obtained for each system and station, as
shown in Table 4. It can be observed that ROS provides the best results, with the maximum
error occurring at the Loading station. Meanwhile, Node-RED confirms the previously
described behaviour, as initially inferred from the graphs. In conclusion, ROS is a more robust
and accurate system compared to Node-RED and both are precise systems, as the data
collected for each station are quite close to each other.
Regarding Optitrack, it exhibits a more scattered distribution of samples, which in turn
impacts the errors. Moreover, this system also presents a higher number of values outside the
0.1m range, possibly due to a couple of repetitions that were not conducted under optimal
conditions. As expected, Optitrack is the least accurate and precise system when compared to
the reference points. This is because, unlike ROS and Node-RED, Optitrack does not directly
acquire data from the environment map created by the mir. Instead, it captures the position of
the moving object relative to the real-world frame.

Table 3: Station reference positions from map created by MiR100.

STATIONS X [m] Y [m] PHI [deg]
Loading Stn 29.2 22 90
Unloading Stn 31.427 18.852 -90
Charging Stn 28.95 21 0

Table 4: Mean errors (distances from ref. values).

MEAN ERRORS (DISTANCES) [m]
STATIONS Node-RED ROS Optitrack

Loading Stn 0.070 0.058 0.056
Unloading Stn 0.052 0.030 0.070
Charging Stn 0.087 0.040 0.071

Figure 28: Repeatability test charts for accuracy and precision evaluations

25

II. Uncertainty: The uncertainty analysis for the three acquisition systems is conducted by
comparing their extended uncertainties (U), which are calculated using the T-Student
distribution due to the limited availability of few samples.
As already seen in section 2.1, the extended uncertainty is computed by mean of the following
formula:

𝑈 = ±𝑘𝑢 = ±𝑘
𝑀𝐸

√3

Regarding to the MiR system, a confident factor (k) equal to 2 is chosen based on the PUMA
(Procedure for Uncertainty of Measurement Management) method with degrees of freedom
(dof) equal to 100 and a confidence interval of 95%. This decision is driven by a high level of
confidence in the positioning accuracy value provided by the OEM as stated in the MiR
datasheet.
The dof for the three acquisition systems are determined by n-1, where n is the number of
available samples. Based on this information and a confidence interval of 95%, the confident
factor is computed by applying the inverse of the T-Student distribution in Excel. The obtained
result is k = 2.201, which is consistent with the GUM table. The standard uncertainty (u) of
each system is determined through covariance, which is obtained as a linear combination of
two factors: the standard uncertainty of the instrument or device, and the standard deviation
(σ) relative to the mean value of the acquired data. The formula used is provided below.

𝑢2 = √σ2 + 𝑢𝑠𝑦𝑠
2

For the Node-RED and ROS systems, the standard deviation of the MiR is considered,
whereas, for Optitrack, the value computed in section 2.1, which is equal to 0.307mm, is taken
into account.
Finally, for this analysis, the mean values of the x and y coordinates from the twelve
repetitions are considered separately.
The results obtained are presented in the tables below.

Table 5: Uncertainties for the MiR100 system.

MiR100 SYSTEM
Degrees of freedom 100
Confident factor (k) 2
Positioning accuracy (ME) [m] 0.05
Standard uncertainty (u) [m] 0.029
Extended Uncertainty (U) [m] 0.058

Table 6: Uncertainties at the Loading station.

LOADING STATION
 X coordinate Y coordinate
 Node-RED ROS Optitrack Node-RED ROS Optitrack

Degrees of freedom 11 11 11 11 11 11
Confident factor (k) 2.201 2.201 2.201 2.201 2.201 2.201
Standard deviation (σ) [m] 0.027 0.008 0.053 0.014 0.021 0.023
Standard uncertainty (u) [m] 0.039 0.030 0.053 0.032 0.036 0.023
Extended Uncertainty (U) [m] 0.087 0.066 0.116 0.070 0.078 0.051
Mean values of 12 samples [m] 29.144 29.223 29.233 21.973 21.948 21.992

26

Table 7: Uncertainties at the Unloading station.

UNLOADING STATION
 X coordinate Y coordinate
 Node-RED ROS Optitrack Node-RED ROS Optitrack

Degrees of freedom 11 11 11 11 11 11
Confident factor (k) 2.201 2.201 2.201 2.201 2.201 2.201
Standard deviation (σ) [m] 0.004 0.014 0.045 0.025 0.016 0.012
Standard uncertainty (u) [m] 0.029 0.032 0.045 0.038 0.033 0.012
Extended Uncertainty (U) [m] 0.064 0.071 0.098 0.084 0.072 0.026
Mean values of 12 samples [m] 31.387 31.434 31.461 18.829 18.877 18.897

Table 8: Uncertainties at the Charging station.

CHARGING STATION
 X coordinate Y coordinate
 Node-RED ROS Optitrack Node-RED ROS Optitrack

Degrees of freedom 11 11 11 11 11 11
Confident factor (k) 2.201 2.201 2.201 2.201 2.201 2.201
Standard deviation (σ) [m] 0.004 0.022 0.051 0.037 0.017 0.024
Standard uncertainty (u) [m] 0.033 0.051 0.051 0.066 0.045 0.024
Extended Uncertainty (U) [m] 0.072 0.111 0.113 0.145 0.100 0.053
Mean values of 12 samples [m] 28.887 28.941 28.947 20.951 20.968 20.953

To assess the compliance of the acquisition systems, particularly in relation to the MiR system, the
charts below display the mean values and their corresponding extended uncertainties for each system
and station. If a value, along with its uncertainty range, falls entirely within the highlighted green
limits, which represent the extended uncertainty of the reference station coordinate from the MiR
system, then that system is deemed compliant with the MiR specifications. Conversely, if a significant
portion of the uncertainty range of a system overlaps with the MiR system, it is likely that the
employed system is compliant, but it cannot be definitively stated at a 95% level of confidence. In all
other cases, it is probable that the system is not compliant.

In this specific case study, it is observed that all the data, along with their respective extended
uncertainties, overlap with the reference limits. Specifically, the majority of the systems are compliant
with the specifications for each station, although it cannot be affirmed with 95% confidence level.
Notably, at the Charging Station, the Node-RED system exhibits a less compliant behaviour
compared to the other two systems.

Figure 29: Mean values with extended uncertainties at Loading station.

27

Figure 30: Mean values with extended uncertainties at Unloading station.

Figure 31: Mean values with extended uncertainties at Charging station.

III. Comparison between ROS and Optitrack: As mentioned at the beginning of this chapter,
accurately estimating the real position of the MiR in relation to the real-world is challenging.
To provide an assessment of the error in the data obtained with ROS compared to those
assumed to be closer to the real values obtained with Optitrack, the measurement values from
the different acquisition systems are shown through histograms, categorized by x and y
coordinates for the three stations (see Figure 32, 33, 34). This allows for the evaluating which
system, ROS or Node-RED, is closer to the Optitrack reference data.
Subsequently, to quantify the distance between ROS and Optitrack, the mean distance value
between the two systems is calculated based on the twelve repetitions performed in the
repeatability test. From the results presented in the

Table 9, a mean error of approximately 0.055m is obtained, except for the Loading station,
where it is 0.065m. The possible reasons for this discrepancy correspond to the ones described
during the analysis of accuracy.
By examining the results of the compliance test and the extended uncertainties, ROS generally
performs better than Node-RED in terms of compliance with the limits defined by the
uncertainty of Optitrack. This is particularly evident for the x coordinate, while for the y
coordinate, both systems deviate considerably from the Optitrack range, although there is still
overlap among all the data.

28

Table 9: Mean error between ROS and Optitrack.

ROS – OPTITRACK MEAN DISTANCES
STATIONS MEAN ERRORS [m]

Loading Stn 0.065
Unloading Stn 0.051
Charging Stn 0.054

Figure 32: X and Y coordinates of data at Loading station.

Figure 33: X and Y coordinates of data at Unloading station.

Figure 34: X and Y coordinates of data at Charging station.

29

4.3 REPETITION OF THE TEST WITH ONE OR TWO OBSTACLES
The same analysis conducted for the repeatability test are repeated with the inclusion of one or two
obstacles to assess their impact on the accuracy and precision of the MiR's navigation towards the
designated stations. Specifically, ten repetitions are analysed, consisting of five trials with one
obstacle and five trials with two obstacles. The positions of the obstacles and the trajectories executed
by the MiR are depicted in the Figure 35.

Figure 35: Ten scenarios with the presence of obstacles.

4.3.1 Results and analysis
I. Accuracy and precision: Considering the same reference positions for the three stations, as

shown in the Table 3, even in the presence of obstacles, the errors obtained for the three
acquisition systems are very similar to those of the previous test. In particular, ROS proves to
be the most accurate and precise system, with the highest error occurring at the Loading
station, similar to the repeatability test. Looking at the Figure 36, Node-RED and Optitrack
exhibit behaviour consistent with the previous results, with Node-RED again having most of
the samples outside the range corresponding to the positioning accuracy value provided by
the MiR datasheet. However, the performance at the Loading and Unloading stations shows
an unexpected improvement compared to the previous test. Even in this test, despite the
presence of obstacles, all collected data have a maximum distance from the reference of
approximately 0.1m.

Table 10: Mean errors (distances from ref. values) with obstacles.

MEAN ERRORS (DISTANCES) [m]
STATIONS Node-RED ROS Optitrack

Loading Stn 0.048 0.056 0.053
Unloading Stn 0.051 0.039 0.069
Charging Stn 0.078 0.044 0.052

30

Figure 36: Obstacle test charts for accuracy and precision evaluations

II. Uncertainty: By employing the same calculations described in the repeatability test to
determine the extended uncertainty, but with a degrees of freedom value of 9 for the three
acquisition systems, the results presented in the tables below are obtained. Upon analysing
the graphs for each station, it is observed that even in the presence of obstacles, all three
systems are overlapped to the reference extended uncertainties of the MiR (indicated by the
green lines). Therefore, all the systems are compliant, but it cannot be stated with the 95%
confidence level. Similar to the repeatability test, Node-RED exhibits behaviour that is less
compliant than the other two, particularly at the Charging station.

Table 11: Uncertainties at the Loading station with obstacles.

LOADING STATION
 X coordinate Y coordinate
 Node-RED ROS Optitrack Node-RED ROS Optitrack

Degrees of freedom 9 9 9 9 9 9
Confident factor (k) 2.262 2.262 2.262 2.262 2.262 2.262
Standard deviation (σ) [m] 0.004 0.010 0.038 0.015 0.019 0.039
Standard uncertainty (u) [m] 0.039 0.030 0.038 0.033 0.035 0.039
Extended Uncertainty (U) [m] 0.087 0.069 0.086 0.074 0.078 0.088
Mean values of 10 samples [m] 29.161 29.221 29.230 21.977 21.951 22.008

Table 12: Uncertainties at the Unloading station with obstacles.

UNLOADING STATION
 X coordinate Y coordinate
 Node-RED ROS Optitrack Node-RED ROS Optitrack

Degrees of freedom 9 9 9 9 9 9
Confident factor (k) 2.262 2.262 2.262 2.262 2.262 2.262
Standard deviation (σ) [m] 0.021 0.028 0.044 0.057 0.020 0.013
Standard uncertainty (u) [m] 0.036 0.040 0.044 0.064 0.035 0.013
Extended Uncertainty (U) [m] 0.081 0.090 0.099 0.145 0.080 0.029
Mean values of 10 samples [m] 31.419 31.444 31.434 18.849 18.877 18.907

31

Table 13: Uncertainties at the Charging station with obstacles.

CHARGING STATION
 X coordinate Y coordinate
 Node-RED ROS Optitrack Node-RED ROS Optitrack

Degrees of freedom 9 9 9 9 9 9
Confident factor (k) 2.262 2.262 2.262 2.262 2.262 2.262

Standard deviation (σ) [m] 0.004 0.022 0.047 0.022 0.020 0.022
Standard uncertainty (u) [m] 0.029 0.036 0.047 0.036 0.035 0.022
Extended Uncertainty (U) [m] 0.066 0.083 0.106 0.082 0.079 0.049
Mean values of 10 samples [m] 28.912 28.933 28.936 20.933 20.966 20.982

Figure 37: Mean values with extended uncertainties at Loading station in the presence of obstacles.

Figure 38: Mean values with extended uncertainties at Unloading station in the presence of obstacles.

Figure 39: Mean values with extended uncertainties at Charging station in the presence of obstacles.

32

4.4 CONCLUSION
In conclusion, based on the execution and analysis of these two preliminary tests, it is evident that
the ROS system, overall, exhibits greater accuracy and precision than Node-RED when evaluating
acquired data in relation to the reference points aligned with the MiR's created map. Comparing to
the real-world reference system, with Optitrack assumed as the closest representation to reality, ROS
demonstrates a distance of approximately 0.055m.
The compliance test indicates that all systems are compliant to the specifications outlined in the MiR
datasheet when considering the mean positions along with their extended uncertainties. However,
achieving a 95% confidence level of compliance is only observed in a few cases and not in the
presence of obstacles.
The presence of obstacles along the trajectory has minimal impact on the accuracy of the systems and
does not alter the previously made considerations.

To improve precision and accuracy, the following approaches can be implemented:

• Increase the sampling frequency of the different acquisition systems to obtain more data points.
• Conduct additional repetitions for the repeatability test.
• Enhance the environment by removing any potential objects that could interfere with the trajectory
and act as obstacles, especially near the destination points.

For the purposes of this thesis and considering the available information, in-depth statistical analysis
is not required. The objective of these tests is to provide insights and initial comparisons among the
different acquisition systems, facilitating the appropriate interpretation and evaluation of the results
obtained during simulations with the Digital Model developed in the subsequent chapter.

33

5 DIGITAL MODEL

5.1 METHOD

5.1.1 Utilized software and tools
The following tools and software are used to implement the DM:

• Matlab 2022b, Simulink, and Simscape Multibody
• Matlab Toolbox: Robotics System Toolbox, Mobile Robotics Simulation Toolbox, ROS

Toolbox, Stateflow
• MiR100 and UR3 software
• Node-RED
• Ubuntu 20.04.6 LTS with ROS Noetic version
• Oracle VM VirtualBox 7.0.8
• Optitrack Motive
• Excel

The features and applications of the Node-RED, ROS, and Optitrack systems remain unchanged in
accordance with the explanations presented in Chapter 2. The diagram depicting the connection
between Matlab, ROS, and MiR is illustrated in the Figure 24.

The additional Toolboxes employed in Matlab for this project are discussed in the next sections.

5.1.2 General settings and considerations
The MiR100 is treated as a differential drive robot (see Figure 41) centered at the middle point along
the wheel axle. The position is denoted as a vector with three elements [x, y, ϕ], with ϕ representing
the orientation angle. Linear and angular velocities are obtained through the forward velocity
kinematics equations, while the wheel speeds are determined using inverse kinematics.
These equations are:

Linear velocity: 𝑣𝑟 = 𝑋𝑟̇ =
𝑣𝑅+𝑣𝐿

2
 Angular velocity: 𝜔𝑟 = 𝜃𝑟̇ =

𝑣𝑅−𝑣𝐿

2𝐿

Right wheel: 𝑤𝑅 =
2𝑣𝑟+𝜔𝑟(2𝐿)

2𝑅
 Left wheel: 𝑤𝐿 =

2𝑣𝑟−𝜔𝑟(2𝐿)

2𝑅

Figure 40 illustrates the angle diagram utilized as a reference to implement a function for scaling the
orientation angle of the simulation model, ensuring consistent values with those of the actual model.

Regarding the solver configuration, an automatic solver with variable step-time is selected from the
Simulink model settings.

Figure 41: Differential drive robot and the corresponding block in Simulink. Figure 40: MiR orientation angle reference scheme.

34

5.1.3 Binary Occupancy Map
The ‘BinaryOccupancyMap’ function generates a 2D occupancy map object that is utilized to
represent and visualize a robot's workspace, including obstacles. This function operates on an image
of the environment map, captured by the mobile robot’s sensors and laser scanner. It produces an
‘OccupancyGrid’, a logical matrix where free zones are denoted by ‘0’ logic and obstacles by ‘1’
logic11. Consequently, this process generates an approximation map with a lower resolution compared
to the actual environment, as depicted in Figure 42.
Since the resulting map is scaled compared to the actual measurements of the map created by the
MiR, a scale factor is calculated using the reference point of the lower-left corner, as highlighted in
Figure 42, of the Yaskawa robot platform present in the laboratory. This involves dividing the
coordinates displayed in the two maps. The scale factor is calculated to be around 1.297. Considering
that obtaining the exact coordinates of the same point in both maps is nearly impossible, so the
resulting value is utilized as an approximation with the only purpose of providing a visualization of
the simulated model that closely resembles the real one. It is important to note that this scaling factor
does not affect the numerical results and the analysis of the simulation.
The Matlab script is shown in Appendix 11.3.1.

Figure 42: Binary Occupancy Grid in Matlab.

11 BinaryOccupancyMap function: Create occupancy grid with binary values - MATLAB - MathWorks Italia

https://it.mathworks.com/help/nav/ref/binaryoccupancymap.html

35

5.1.4 Main idea
The main concept behind the proposed DM is to implement a finite state machine that incorporates a
main scheduler. Within this framework, various states are defined to facilitate the execution of the
pick and place task performed by the MoMa, allowing for efficient management of actions for both
the MiR100 and the UR3. Along with the main scheduler, two additional stateflows are developed
within the two macro-blocks, representing the robots of the MoMa, to control and organize their
actions. For the mobile robot, this control involves monitoring feedback signals to determine its
arrival at reference positions or the achievement of the programmed orientation. On the other hand,
the cobot's controller defines three primary states: ‘Home Configuration’, ‘Pick Task’, and ‘Place
Task’. Within these states, control functions are specified to check the configurations of the UR joints
and the gripper status. For the development of this Digital Model, the example ‘Warehouse Pick-and-
Place Application Using Mobile Manipulator’ available on the official MathWorks website12 was
utilized as a reference.

Below are presented block diagrams to provide a clearer interpretation of the described concepts.

Figure 43: Block diagrams of the DM.

12 Reference example for DM development: Design and Simulate Warehouse Pick-and-Place Application Using Mobile
Manipulator in Simulink and Gazebo - MATLAB & Simulink - MathWorks Italia

https://it.mathworks.com/help/robotics/ug/design-and-simulate-a-warehouse-pick-and-place-application-using-a-mobile-manipulator.html
https://it.mathworks.com/help/robotics/ug/design-and-simulate-a-warehouse-pick-and-place-application-using-a-mobile-manipulator.html

36

5.2 DEVELOPMENT IN MATLAB AND SIMULINK
This section provides a description of some notable features of the Digital Model implemented in
Simulink (see Figure 44), based on the block diagrams shown in Figure 43.

Figure 44: DM implementation in Simulink and Simscape.

5.2.1 Stateflow and Main task scheduler
Stateflow offers a graphical language including state transition diagrams and flowcharts. It facilitates
the description of how Matlab algorithms and Simulink models respond to input signals, events, and
time-based conditions. Furthermore, Stateflow empowers the design and development of supervisory
control and operation planning13.

The main task scheduler, depicted in Figure 45, plans operations for the MiR and UR, though a task
signal. This is defined as a Matlab class (see Appendix 11.3.2) and assigned within each state of the
scheduler. The control condition for state transitions is determined by an input feedback signal called
‘taskActive’. This signal is sourced from either the MiR scheduler (labelled as ‘Task_Active1’) or
the UR3 scheduler (labelled as ‘Task_Active2’). The remaining input signals include the position
coordinates of the three stations involved in the pick and place task, the starting point, which coincides
with the Charging station in this case, and the vector of orientation angles (‘theta’) programmed on
the MiR website, which specify the orientation when the MiR departs from the stations.

The task Matlab class consists of the following tasks: Arm_Pick, Arm_Place, Arm_Home,
Robot_Navigate, and Idle. Correspondingly, the main scheduler comprises the following states:

• Start: Initializes the MoMa variables to their initial value in each Idle state of the schedulers.
• MoveArmHome: Moves the UR3 to the Home position, corresponding to the first waypoint

in the Pick task program.
• OrientToNextGoal: Orients the MiR in the direction indicated by ‘theta(i)’, where ‘i’

represents the index corresponding to the station from which the robot needs to depart. In this
state, the ‘orient’ flag is set to 1 to activate the orientation branch within the MiR scheduler.

• NavigateToPickPose: Enables the MiR motion to achieve the pick station (Loading station).

13 Stateflow: Stateflow - MATLAB (mathworks.com)

https://it.mathworks.com/products/stateflow.html

37

• PickObject: Moves the UR3 and Gripper to perform the pick task. The UR3 configuration and
Gripper status are managed and controlled by the respective Pick state within the UR
scheduler.

• NavigateToPlacePose: Enables the MiR motion to achieve the place station (Unloading
station).

• PlaceObject: Moves the UR3 and Gripper to perform the place task. The UR3 configuration
and Gripper status are managed and controlled by the respective Place state within the UR
scheduler.

• NavigateToEndPose: Enables the MiR motion to achieve the final station (Charging station).

Once this final state is successfully completed, the main scheduler sets the ‘stop’ signal to 1, thereby

terminating the simulation.

The main output signals consist of the following: ‘navigationGoal’ provides the coordinates of the
current goal station, ‘orientation’ is set to theta(i) as explained in the OrientToNextGoal state, and
‘orient’ defines a condition for the state transition within the MiR scheduler.

Figure 45: Main Task Scheduler in Simulink.

5.2.2 MiR100 controller
The MiR scheduler, illustrated in Figure 46, governs the actions of the MiR through the utilization
of the 'orient' flag. Within this scheduler, two states, ‘FollowPath’ and 'Orientation', are defined and
selected based on the false and true values of the 'orient' signal, respectively. These states determine
the setting of the control signal ‘requestOrientation’ as either false or true. The ‘requestOrientation’
signal, indicated in light blue in Figure 54, activates or deactivates various subsystems in the MiR
trajectory controller based on the required action, whether it is orientation or movement. This signal
plays a crucial role in optimizing the model and preventing unnecessary processes. On the other hand,
the ‘requestFollowPath’ signal enables the entire ‘MiR_trajectoryPlanning&Controller’ subsystem

exclusively when a MiR action is needed.

Figure 46: MiR scheduler in Simulink.

38

The structure of the ‘MiR_trajectoryPlanning&Controller’ subsystem is organized as follows: at the
lower part, there are the blocks and functions responsible for controlling the position of the MiR
robot, while the upper part is dedicated to the velocity control. Specifically, within this controller, the
following subsystems are implemented:

• Pure Pursuit controller: It is a tracking algorithm designed for path following purposes. It
takes waypoints as input and based on the current position of the robot provided as the second
input, it produces linear and angular velocities as output. The waypoints correspond to the
position data obtained from the ROS system during the previous execution of the task in the
real-world. The controller’s tuning parameters include the desired linear velocity, maximum
angular velocity, and look ahead distance. The look ahead distance determines how far ahead
along the path the robot should consider computing the angular velocity. Choosing an
appropriate look ahead distance is crucial, as a small value can lead to quick movements
towards the path with potential oscillations, while a large value may result in significant
curvature near corners. Examples of these situations are depicted in the figure below.
The pure pursuit controller action is triggered when the value of requestOrientation is false.

 Figure 47: ‘Pure Pursuit Controller’ block in Simulink and Look Ahead parameter limit situations.

• Check distance to goal: This block verifies if the robot has arrived at the goal station. Due to
the nature of the waypoints provided by the ROS system, the mobile robot cannot achieve
perfect accuracy in reaching the target location, as analysed in the repeatability test in the
previous chapter. These waypoints are utilized as the reference path for the robot's motion.
Consequently, the reference position corresponding to the navigation goal differs from the
real one, which is provided in input to this block as the variable ‘robotGoal’. Therefore, it is
necessary to define a reasonable range within which the robot is considered to have reached
the target. This range is typically set to approximately 0.1m, which corresponds to the
maximum estimated error obtained from the repeatability test. This value is then compared to
the distance between the real goal station coordinates and the current position of the DM.
Specifically, two control signals are defined: ‘atStnRange’ and ‘atGoal’.

o AtStnRange represents the condition to initiate robot orientation until it aligns with
the orientation associated with the current goal station, as indicated in Table 3. To
define the ‘atStnRange’ signal, two distance thresholds are employed for the x and y
coordinates (see Figure 48). This approach helps enhance the reachability of the
station, as the pure pursuit controller tends to introduce curvature near corners.
This signal is provided by the Matlab function ‘checkAtStnRange’ (see Appendix
11.3.3) following the aforementioned procedure.

39

o AtGoal constitutes the condition to stop the robot's movement and launch the UR task.
This signal is set to true when the distance from the goal falls below the chosen
threshold, for example 0.1m, as described earlier.

The entire subsystem is enabled when the value of FollowPath is true.

• Check the departure orientation angle: The purpose of this subsystem is to compare the
absolute values and signs of the programmed departure angle (theta) for the MiR mission with
the current orientation of the robot. During this phase, the robot's linear velocity is set to zero
in order to achieve the desired orientation by controlling only the angular velocity, which is
set to a specific value. The direction of angular velocity is determined by two Matlab function
blocks: ‘thetaQuarterSelection’ and ‘angVelSignController’ (see Appendix 11.3.4). Based on
the current orientation angle of the robot, if it needs to turn clockwise, the angular velocity
sign is negative; otherwise, it is positive. The clockwise or counterclockwise rotation is
determined by dividing the diagram shown in Figure 40 into eight sections, where initially
the reference orientation angle and the current angle are located, and checking in which
direction the distance is smaller. The thetaQuarterSelection function outputs the current
situation based on the quarter numbers corresponding to the positions of the two angles on the
diagram. Then, the angVelSignController function implements a switch case to determine the
sign of the angular velocity. The orientation task is considered complete and the output signal
‘oriented_phi’ is set to 1 when the absolute distance between the absolute values of the two
angles is below a desired threshold and the angles signs are equal. The orientation mode
selector switch allows for choosing whether to only consider the signs of the angles or also
the difference between their absolute values.
This subsystem is activated when the requestOrientation signal is true.

Figure 50: 'Check the departure orientation angle' subsystem.

Figure 49: ‘Check distance to goal’ subsystem in Simulink. Figure 48: Illustration of the
thresholds involved in the subsystem.

40

• Perpendicular orientation at stations and velocity regulation: This subsystem further divided
into two subsystems: ‘Perpendicular at stations’ and ‘Regulation velocity at goal’,
respectively shown in Figure 52 and Figure 53.

o Perpendicular at stations: As described in ‘check the distance to goal’ subsystem

section, specifically regarding the AtStnRange signal, when this signal is true, the
'Perpendicular at stations' block controls the difference between the current robot
orientation (scaled_phi) and the reference orientation value of the goal station
(checkpoint_angle). To achieve this, the linear velocity is set to zero, and the angular
velocity is set to a moderate value. The sign of the angular velocity is determined as
follows: if scaled_phi is greater than checkpoint_angle, the angular velocity is
negative; if scaled_phi is lower than checkpoint_angle, it is positive. If scaled_phi is
equal to checkpoint_angle, the angular velocity is set to zero, and the output signal
‘perpend’ is set to 1.
The Matlab function setSignLinVel (see Appendix 11.3.5) is utilized to implement the
reverse motion once ‘perpend’ becomes equal to 1.

o Regulation velocity at goal: This subsystem consists of a linear velocity controller. It
operates based on signals such as atStnRange, atGoal, perpend, and utilizes logic
blocks to regulate the linear velocity obtained from the pure pursuit controller. If the
robot needs to be oriented or is at the station position, the linear velocity is set to zero.
Alternatively, if the robot is approaching the next goal position, the linear velocity is
modulated by scaling it using a signal called ‘distToGoal’. This signal provides the
distance to the next goal, with values saturated between 0.2 and 1. Consequently, as
the robot gets closer to the new target position, the linear velocity gradually decreases.

The entire subsystem is enabled when the value of requestOrientation is false.

Figure 51: ‘Perpendicular orientation at stations and velocity regulation’ subsystem in Simulink.

Figure 52: ‘Perpendicular at stations’ subsystem. Figure 53: ‘Regulation velocity at goal’ subsystem.

41

Figure 54: 'MiR_trajectoryPlanning&Controller' subsystem in Simulink.

5.2.3 UR3 and Gripper controller
The robot arm scheduler manages UR and gripper actions based on the task signal at the input. Two
sets of waypoints, UR3_task1 and UR3_task2, are provided as reference for pick and place tasks.
These sets, defined in the Matlab script related to UR3 settings, correspond to the values inserted in
the UR3 programs developed on the teach pendant.
The purpose of this scheduler is to ensure that the current joint configuration of the manipulator and
the gripper status, provided as feedback signals, align with the current reference values within an
acceptable threshold. To achieve this, two functions are defined: ‘UR3goalReached’ and
‘GripperGoalReached’ (see Appendix 11.3.6). The actual waypoints and gripper status are extracted
from the set that corresponds to the current task being performed by the UR, whether it’s pick or
place. The extraction is organized using an index variable ‘i’, which increments its value each time
both the UR and gripper reach the current reference configuration and status.
Within the scheduler, three main states are defined: Arm_Home_Pose, Arm_Pick, and Arm_Place.
Before entering these states, a check is performed on the reference gripper value, assigning a flag
signal ‘closeGripper’. If the closeGripper flag is equal to zero, it indicates that the gripper needs to
be opened, otherwise it needs to be closed (see Figure 55).

Figure 55: UR and Gripper scheduler.

42

The UR3 configuration controller consists of a trapezoidal velocity profile trajectory and a torque
controller (see Figure 56). The trapezoidal velocity profile trajectory takes the following variables as
inputs: Time, Waypoints, and EndTime.

• Waypoints: It is a 6x2 matrix, where the number of rows corresponds to the number of joints
of the UR3, and the columns represent the current joints configuration and the reference
configuration provided by the scheduler, respectively.

• Time: It indicates the time point along the trajectory. This value is obtained from the
‘UR3_timerController’, which resets the simulation timer each time a manipulator motion is
successfully completed.

• EndTime: It is determined by a switch that selects between two different duration times. These
durations correspond to the time at which the UR needs to reach the reference configuration,
given by the second column of the waypoints matrix. The use of two different end times is
due to the different completion times for the pick task and the place task. In this project, the
end times are approximated by dividing the total duration time by the number of waypoints
set for each task.

The torque controller is implemented based on the inverse dynamic equation, in order to obtain the
torque to actuate the non-fixed revolute joints od the Simscape model. The inverse dynamic equation
for this model is 𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞), where 𝑞, 𝑞̇ and 𝑞̈ are respectively the current joints
position, velocity and acceleration provided by the manipulator as feedback inputs to the controller.
𝑀(𝑞) is the joint space mass matrix, 𝐶(𝑞, 𝑞̇)𝑞̇ is the velocity product torque, and 𝐺(𝑞) is the gravity
torque. These variables are obtained using specific blocks available in the Robotics System Toolbox
library. The torque controller equation is: 𝜏 = 𝑀(𝑞)(𝑞𝑑̈ − 𝐾𝑑𝑞𝑒̇ − 𝐾𝑝𝑞𝑒) + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞), where
𝑞𝑒 = 𝑞 − 𝑞𝑑 is the error position and 𝑞𝑒̇ = 𝑞̇ − 𝑞𝑑̇ is the velocity error. The variables 𝑞𝑑, 𝑞𝑑̇, and 𝑞𝑑̈
correspond to the position, velocity, and acceleration generated by the trapezoidal velocity

profile trajectory. By appropriately selecting the derivative and proportional gain coefficients (K) of
the second-order differential equation, it is possible to achieve a close-to-zero error convergence.

This controller is taken from the example ‘Perform Safe Trajectory Tracking Control Using Robotics

Manipulator Blocks’ available in the MathWorks website14.

Figure 56: Trapezoidal velocity profile trajectory and Torque controller.

14 Torque controller: Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks - MATLAB &
Simulink - MathWorks Italia

https://it.mathworks.com/help/robotics/ug/perform-safe-trajectory-tracking.html
https://it.mathworks.com/help/robotics/ug/perform-safe-trajectory-tracking.html

43

The gripper status logic is generated by comparing the actual values of each finger (gripper_status_1
and gripper_status_2), obtained from the Simscape model of the RG2 gripper, with the reference
value corresponding to the closed status. If the difference is less than 2𝜋/180, the ‘gripper_status’

signal is set to 1; otherwise, it is set to 0.

Figure 57: Gripper status flag subsystem.

5.3 SIMSCAPE MODELS
Simscape Multibody enables the creation of 3D mechanical models for physical systems within the
Simulink environment. With Simscape, it is possible to use interconnected physical connections that
seamlessly integrate with block diagrams and other modelling approaches. Moreover, Simscape
allows for the importation of CAD assemblies, including masses, inertias, constraints, and contact
forces between surfaces. This facilitates the creation of a comprehensive 3D animation of the model,
which incorporates dynamic elements15. For the development of this DM, CAD files created with
SolidWorks software, which were already available in the laboratory's database, are utilized [28].
These files are employed for constructing the 3D model of the simulation environment, specifically
for modelling the tables used as designated stations for the pick and place task performed by the
MOMA, as well as for creating the UR3 manipulator, and the OnRobot RG2 gripper.

The standard set of Simscape blocks required to initialize a Simscape Multibody project is illustrated
below.

Figure 58: Standard set of Simscape blocks to initialize a Simscape Multibody project.

15 Simscape Multibody: Simscape Multibody - MATLAB (mathworks.com)

https://it.mathworks.com/products/simscape-multibody.html

44

• World block: It represents the reference frame with respect to the entire Simscape system
moves.

• Mechanical Configuration: It sets mechanical and simulation parameters to the models
connected to ‘C’ port. Specifically, it provides uniform gravity force and the linearization

delta, which is utilized to compute numerical partial derivatives for linearization.
• Rigid Transform: It defines a fixed 3D rigid transformation between Base (B) and Follower

(F) frames. It allows for setting the rotation and translation parameters. The specific block
shown in Figure 58 is designed to position the mobile robot at the specified starting position.

• Six dof joint: This joint consists of three translational and three rotational degrees of freedom.
It enables unconstrained 3D translation and rotation. Specifically, the follower frame initially
undergoes translation with respect to the base frame, followed by independent rotational
motion around the origin of the follower frame. The direction of the joint is determined by the
movement of the follower frame in relation to the base frame.

5.3.1 Laboratory environment and MiR100
The laboratory 3D model consists of three stations that participate in the pick and place task, as well
as the floor, columns, and two walls that define the boundaries of the laboratory space. Within this
Simscape subsystem, the 'spatial contact force' block is utilized to include the dynamic forces that
govern the contact between rigid body elements. For instance, it enables the contact between the
MoMa wheels and the ground. The Laboratory model is placed in according to the binary occupancy
map system.

The MiR100 3D model is implemented using the differential drive Simscape model from the Mobile
Robotics Simulation Toolbox. To customize and enhance the model, the library associated with this
block is disabled, allowing for the addition of other blocks. The developed model represents an
approximation of the mobile robot by appropriately setting the values of geometry parameters.

These two models are shown in the figures below.

Figure 59: Simscape connections between the Laboratory and MiR100 models.

45

 Figure 61: Laboratory Simscape Multibody model.

5.3.2 UR3 and RG2 Gripper
The UR3 Simscape Multibody 3D model is built upon the previously developed model in the
laboratory and the model generated by the Matlab function Smimport16. This function takes the robot
imported from the URDF models provided by the Robotics System Toolbox as input and generates a
Simscape Multibody model. The model is subsequently customized to align with the other models
that comprise the MoMa system and to accommodate the developed task.

The RG2 gripper Simscape Multibody 3D model is identical to the previously developed model in
the laboratory [28].

The two models are illustrated in the figures below.

Figure 62: UR3 Simscape Multibody model.

16 Smimport Matlab function: Import a CAD, URDF, or Robotics System Toolbox model - MATLAB smimport -
MathWorks Italia

Figure 60: MiR100 Simscape Multibody model.

https://it.mathworks.com/help/sm/ref/smimport.html
https://it.mathworks.com/help/sm/ref/smimport.html

46

Figure 63: RG2 Gripper Simscape Multibody model.

5.3.3 Visualization of the Digital Model developed in Simscape Multibody
Below are some figures showcasing the implemented virtual 3D simulation environment. These
images are captured from the Mechanics Explorer tool, which facilitates the visualization of
multibody models.

Figure 64: View of the digital model in Mechanics Explorer.

47

5.4 RESULTS
As described in the dedicated case study chapter (Chapter 3), below are presented the results of two
versions of the same task.

5.4.1 Case study: Orientation angles not specified

5.4.1.1 General settings and considerations
For the development of this version of the case study, the following parameters and error thresholds
are set.

Table 14: Digital Model settings and threshold in Matlab and Simulink.

MiR100 PARAMETERS
Pure Pursuit controller

Desired Linear Velocity [m/s] 1.1
Maximum Angular Velocity [rad/s] 1
Lookahead distance [m] 0.4

Orientation phase threshold
Maximum difference between angles ∆(𝝓𝒅𝒆𝒑𝒂𝒓𝒕) [rad] 0.8

Orientation at goal station
Maximum distance between angles at goal station ∆(ϕ) [rad] 0.0005 (= 0.029°)

AtStnRange thresholds
Maximum distance between X coordinates ∆(X) [m] 0.1
Maximum distance between Y coordinates ∆(Y) [m] 0.3

AtGoal thresholds
Maximum distance ∆(X,Y) [m] 0.1

UR3 PARAMETERS
Trapezoidal Velocity Profile trajectory

EndTime Pick task [s] 2.3
EndTime Place task [s] 1.9

UR3goalReached function
UR3 configuration threshold [rad] 0.015

Since the data is obtained from different acquisition systems and processed on various machines or
tools, an attempt at synchronization is made for the creation of the following charts. This is achieved
by carefully observing the data and adjusting the time scale to ensure that the graphical representation
for all systems roughly begins at the same moment in time (see Figure 69).

In this specific version of the case study, since the orientation angles at which the mobile robot departs
from the stations within the created program are not specified, an attempt is made to approximate the
algorithm used by the MiR to establish its orientation when moving from one station to the next in
the implementation of this DM. This orientation angle is computed as the angle between the reference
x-axis and the ideal trajectory joining the two stations (see Figure 65).

The procedure followed in Matlab is illustrated with the calculations that follow:

𝜃1 = atan2 ((𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(2) − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡(2)), (𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(1) − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡(1)))

𝜃2 = atan2 ((𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(2) − 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(2)), (𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(1) − 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(1)))

𝜃3 = atan2 ((𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑆𝑡𝑛(2) − 𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(2)), (𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑆𝑡𝑛(1) − 𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑆𝑡𝑛(1)))

𝜃 = [1.326, −0.955; 2.427]𝑟𝑎𝑑 Figure 65: Orientation
angle between two stations.

48

Based on the values obtained for the theta vector, by appropriately adjusting the 'orientation phase
threshold' parameter (see Table 14), referred to the Figure 50, it is possible to achieve a realistic
simulation of the trajectory followed by MoMa, accurately sampled using ROS.
The simulation of the trajectory is also affected by the parameters of the pure pursuit controller. Due
to the difficulty in accurately determining the MiR's actual velocities, they are approximated by
referring to the real-time ROS values, as shown in Figure 66.

Figure 66: Angular and Linear velocities values acquired with ROS in Matlab.

The Figure 67 shows the UR3 and UR_TCP reference systems respectively in Optitrack, real-world,
and Matlab (Digital Model). These figures are useful to obtain the charts illustrated in section 5.4.1.4.

It is important to note that evaluating the UR_TCP data with respect to the UR base is functional for
analysing the accuracy of the Digital Model, considering it as if it were not part of a MoMa but rather
stable in a fixed position. This choice is driven by the fact that the MoMa, being affected by the
position error of the MiR, inevitably leads to a significant error in the UR_TCP performance as well.
Reproducing this situation could help quantify these errors. However, in a working environment with
the characteristics of Industry 4.0, advanced technologies are available. The use of a wrist-mounted
camera integrated into the manipulator would avoid this situation by accurately detecting the object's
position and allowing the UR to successfully complete its task.

Figure 67: UR3 base and TCP reference systems in different environments.

49

5.4.1.2 MiR100 results

Figure 68: Trajectories of the different systems: a) with Node-RED, b) without Node-RED.

Figure 69: Position and orientation time plots for each system.

The waypoints provided as input to the pure pursuit controller are based on the ROS data. Therefore,
the ROS data is utilized as the reference trajectory for the DM. As depicted in Figure 68a, the
simulation model closely resembles the reference trajectory, except for the Unloading station where
the distance is larger. The Optitrack system captures the actual trajectory followed by the physical
MoMa, and it is used exclusively for comparison purposes. However, as demonstrated by the
repeatability test, ROS exhibits a closer correlation with the Optitrack system, and the distance
between them, also in this simulation, aligns with the repeatability test results. In contrast, Node-RED
has been determined to be the least precise system based on the considerations discussed in previous
chapters. It is probable that this system would be more suitable and accurate for acquiring data from
long period processes that extend beyond approximately two minutes, as demonstrated in this case
where a more variable trajectory is evident.

Figure 69 displays the time-based graphs of the position and orientation of the mobile robot for each
acquisition system. These graphs visually depict the position errors compared to the reference values
taken from the map created by the MiR, as well as the behaviour of the DM relative to the reference

50

trajectory provided by ROS. It can be observed that the DM's behaviour is fairly aligned with that of
the ROS system. The slight time shift is related to the velocity values specified in the pure pursuit
block in Simulink. However, as mentioned in subsection 5.4.1.1, the precise values are unknown, and
an approximation is provided to achieve the most accurate simulation possible. The implemented
model allows for linear velocity variations up to 1.5m/s, which is the maximum value provided by
the datasheet, or even higher to better match the DM's trajectory with the reference and obtain a more
accurate representation of the results. The most important aspect, regardless of time, is that the
proposed DM successfully reaches all positions within the specified error thresholds. Several tests
have been conducted to further reduce the threshold values. However, currently, for the developed
model, the ones listed in Table 14 represent the best solution.
In this regard, as can be observed from Table 18, the error values obtained for the DM during the
simulation of this specific case are well within the thresholds reported in Table 14. Additionally, the
errors on the DM's position are consistent or only slightly higher than the accuracy provided by the
datasheet of the MiR100.

Regarding orientation, the behaviour of the DM appears to be more variable but exhibits excellent
response at the stations, where the error is minimal. This performance is also influenced by the lack
of orientation angle indications in this version of the case study, making the model more variable.

Table 15: Node-RED position errors.

NODE-RED
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.153 22.106 90.021 0.047 0.106 0.021 0.116
Unloading Stn 31.404 18.785 -92.444 0.023 0.067 2.444 0.071
Charging Stn 28.904 20.957 0.213 0.046 0.043 0.213 0.063

Table 16: ROS position errors.

ROS
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.231 22.005 90.361 0.031 0.005 0.361 0.032
Unloading Stn 31.410 18.861 -92.146 0.017 0.009 2.146 0.019
Charging Stn 28.958 20.971 0.213 0.008 0.029 0.213 0.030

Table 17: Optitrack position errors.

OPTITRACK
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.243 22.017 88.734 0.043 0.017 1.266 0.046
Unloading Stn 31.421 18.874 -89.326 0.006 0.022 0.674 0.023
Charging Stn 28.922 20.942 1.288 0.028 0.058 1.288 0.064

Table 18: Digital Model position errors.

SIMULATION (Digital Model)
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.214 21.952 89.971 0.014 0.048 0.029 0.050
Unloading Stn 31.357 18.852 -89.971 0.070 0.001 0.029 0.070
Charging Stn 28.972 20.935 0.029 0.022 0.065 0.029 0.069

51

5.4.1.3 UR3 results
The analysis of UR3 results is performed by comparing the data related to the joints configurations
during the execution of the programmed pick and place task. However, the only available data for the
manipulator are those acquired through Node-RED and the simulation of the Digital Model.
Obtaining the configurations of the revolute joints in radians using the real Optitrack reference system
is extremely complicated. Therefore, the analysis of the manipulator's results is incomplete, but it still
serves the purpose of visualizing the behaviour of the Digital Model in comparison to the data
collected with Node-RED. Furthermore, the ROS system is not available for UR and the UR_TCP,
as collecting the data is more complex compared to Node-RED.

Figure 70 presents the charts depicting the DM joint configurations generated by the Simscape model
in relation to the reference waypoint provided as inputs to the trapezoidal velocity profile trajectory
block in Simulink (see Figure 56). These plots also indicate the gripper status, serving to verify
whether the closing and opening actions occur correctly in accordance with the programmed UR
configuration. The delay in the behaviour of the DM can be attributed to the involvement of a delay
block in Simulink, which provides the feedback signal to the UR scheduler, thus avoiding the
occurrence of infinite loop errors.

Figure 71 illustrates the comparison between the behaviour of the DM and the actual behaviour
represented by the Node-RED acquired data. The DM's performance closely resembles the reference
behaviour, despite some inaccuracies. It is worth noting that the majority of errors remain well below
the established threshold of 0.015 rad. The highest values are observed in a few instances, specifically
in joints 4 and 6, where they reach approximately 0.01rad. However, it is important to note that these
errors in the UR joints configuration have an impact on the UR_TCP results, as discussed in the
subsequent section.

Figure 70: Trapezoidal Velocity Profile Trajectory and Gripper status results.

52

Figure 71: DM joints configurations compared with the Node-RED reference system.

Table 19: UR3 Pick task programmed waypoints from teach pendant.

UR3 PICK TASK PROGRAMMED WAYPOINTS
Wpts\Joints Base

[rad]
Shoulder

[rad]
Elbow
[rad]

Wrist 1
[rad]

Wrist 2
[rad]

Wrist 3
[rad]

Gripper
status

1 1.7935 -2.0515 -0.2770 -2.4262 1.5422 4.8880 0
2 0.0709 -2.0515 -0.2770 -2.4264 1.5422 4.8880 0
3 -1.3440 -2.0515 -0.2770 -2.4264 1.5422 4.8880 0
4 -1.3907 -1.8021 -0.6960 -1.4745 1.5382 3.4153 0
5 -1.4734 -2.3073 -0.3969 -1.9305 1.5958 -2.9723 0
6 -1.4319 -2.1694 -1.0022 -1.4643 1.5992 -3.0010 1
7 -1.2788 -1.5418 -0.8805 -2.1977 1.6033 -2.7946 1
8 0.3461 -1.5240 -0.8981 -2.1865 1.6116 -2.8143 1
9 2.0356 -1.5544 -0.8988 -2.1900 1.5122 3.5704 1
10 1.7937 -2.0555 -0.2768 -2.4264 1.5423 4.8880 1

Table 20: UR3 Pick task DM simulation errors.

UR3 PICK TASK SIMULATION ERRORS
Wpts\Errors ∆(Base)

[rad]
∆(Shoulder)

[rad]
∆(Elbow)

[rad]
∆(Wrist 1)

[rad]
∆(Wrist 2)

[rad]
∆(Wrist 3)

[rad]
1 0.0004 0.0012 0.0006 0.0062 0.0008 0.0002
2 0.0036 0.0012 0.0005 0.0061 0.0012 0.0001
3 0.0035 0.0012 0.0005 0.0061 0.0012 0.0001
4 0.0001 0.0002 0.0015 0.0076 0.0010 0.0099
5 0.0002 0.0014 0.0006 0.0059 0.0001 0.0101
6 0.0002 0.0015 0.0006 0.0063 0.0000 0.0011
7 0.0007 0.0028 0.0021 0.0004 0.0000 0.0045
8 0.0006 0.0002 0.0029 0.0040 0.0003 0.0005
9 0.0003 0.0004 0.0029 0.0041 0.0014 0.0105

10 0.0006 0.0010 0.0004 0.0061 0.0007 0.0002

53

Table 21: UR3 Place task programmed waypoints from teach pendant.

UR3 PLACE TASK PROGRAMMED WAYPOINTS
Wpts\Joints Base

[rad]
Shoulder

[rad]
Elbow
[rad]

Wrist 1
[rad]

Wrist 2
[rad]

Wrist 3
[rad]

Gripper
status

1 1.7937 -2.0516 -0.2770 -2.4262 1.5422 4.8880 1
2 -0.1012 -2.0518 -0.2773 -2.4264 1.5422 4.8880 1
3 -1.5780 -2.0518 -0,2773 -2.4264 1.5422 4.8880 1
4 -1.5771 -2.5559 -0.1799 -1.2957 1.5418 4.8881 1
5 -1.5771 -3.1573 -0.1354 -1.0746 1.5418 4.8881 1
6 -1.5771 -3.1573 -0.1354 -1.0746 1.5418 5.6720 0
7 -1.5776 -1.7504 -0.1356 -1.0741 1.5423 4.8883 0
8 -1.5778 -1.6623 -0.3176 -2.6752 1.5420 4.8876 0
9 1.4924 -1.6624 -0.3175 -2.6751 1.5420 4.8876 0
10 1.7937 -2.0516 -0.2770 -2.4262 1.5422 4.8880 0

Table 22: UR3 Place task DM simulation errors.

UR3 PLACE TASK SIMULATION ERRORS
Wpts\Errors ∆(Base)

[rad]
∆(Shoulder)

[rad]
∆(Elbow)

[rad]
∆(Wrist 1)

[rad]
∆(Wrist 2)

[rad]
∆(Wrist 3)

[rad]
1 0.0006 0.0010 0.0004 0.0061 0.0007 0.0002
2 0.0008 0.0011 0.0005 0.0060 0.0013 0.0001
3 0.0003 0.0010 0.0023 0.0131 0.0009 0.0000
4 0.0000 0.0018 0.0029 0.0097 0.0008 0.0002
5 0.0000 0.0026 0.0033 0.0084 0.0008 0.0086
6 0.0007 0.0020 0.0021 0.0059 0.0007 0.0100
7 0.0005 0.0003 0.0009 0.0013 0.0009 0.0011
8 0.0008 0.0004 0.0007 0.0059 0.0009 0.0005
9 0.0006 0.0010 0.0006 0.0061 0.0009 0.0002

10 0.0008 0.0011 0.0005 0.0060 0.0013 0.0001

5.4.1.4 UR3 TCP results
The UR_TCP data is captured relative to the base joint of the UR3. For result analysis, a comparison
is made between the data collected with Node-RED and Optitrack. Similar to the UR3, the ROS
system data is unavailable due to the challenges involved in obtaining it compared to Node-RED. The
Optitrack detection of the position of the UR_TCP by utilizing a 3D-printed tool that holds a marker
at the corresponding RG2 gripper's UR_TCP location. The Optitrack values are referenced to its own
coordinate system, therefore, to obtain the UR_TCP data with respect to the UR base joint using
Optitrack, the position of the latter is captured. Afterwards, a Matlab script is utilized to calculate the
difference between the two sets of data (see Appendix 11.3.7). Furthermore, each system exhibits a
varying distance between the UR_TCP and the UR3 wrist3 along the z-axis. This variation is due to
different settings in the UR3 programs, Optitrack UR_TCP printed tool, and Simscape CAD. To
account for this, an offset is introduced in the Matlab script to align the z-coordinate of the starting
point of each system with the Node-RED starting point, which is considered the most accurate system
for UR_TCP analysis. This procedure is performed for both the pick and place tasks.

54

A preliminary overview of the UR_TCP behaviour for both the pick task and the place task is
provided by the UR3 teach pendant in the graphics section, as shown in Figure 72.

Figure 72: Left side: TCP Pick task graphic view; right side: TCP Place task graphic view.

The results obtained from the three systems for pick and place tasks are depicted in the figures
below.

• Pick task

Figure 73: Comparison of the TCP graphs for the Pick task.

55

Figure 74: Focus on the XY plane for the Pick task.

Figure 75: Focus on the XZ plane for the Pick task.

56

Figure 76: Focus on the YZ plane for the Pick task.

The tables below showcase the UR_TCP position errors in relation to the goal position, which
represents the UR_TCP value at which the gripper is in the closed state.

Table 23: UR_TCP Pick task goal position.

Table 24: UR_TCP Pick task errors at goal.

As mentioned at the beginning of this section, an offset is applied to the z-coordinate of the data
acquired from each system to align their initial points with the lowest vertex in Figure 73. However,
significant errors are evident due to substantial discrepancies in the x and y coordinates at this point,
both for Optitrack and the simulation results obtained with the DM. These errors contribute to the
failure to achieve the goal. In the absence of data obtained with ROS, Node-RED represents the
system that best matches the ideal behaviour, as demonstrated by the smallest error among all systems
listed in Table 24.

On the other hand, the error at the goal position, relative to the simulation results, is the largest and
highly significant, equal to approximately 4cm. One of the reasons for this outcome is the errors in
the UR joints configuration for the DM.

TCP PICK TASK
GOAL POSE X [mm] Y [mm] Z [mm]

-35.73 -495.44 46.95

TCP PICK TASK

NODE-RED X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-35.70 -495.30 46.90 0.03 0.14 0.05 0.15

OPTITRACK X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-21.53 -491.81 42.88 14.2 3.63 4.07 15.21

SIMULATION X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-51.38 -530.98 36.03 15.65 35.54 10.92 40.34

57

• Place task

Figure 77: Comparison of the TCP graphs for the Place task.

Figure 78: Focus on the XY plane for the Place task.

58

Figure 79: Focus on the XZ plane for the Place task.

Figure 80: Focus on the YZ plane for the Place task.

59

Table 25: UR_TCP Place task goal position.

TCP PLACE TASK
GOAL POSE X [mm] Y [mm] Z [mm]

-123.78 -624.76 -108.14

Table 26: UR_TCP Place task errors at goal.

TCP PLACE TASK

NODE-RED X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-123.70 -624.50 -108.20 0.08 0.26 0.06 0.28

OPTITRACK X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-120.45 -616.85 -107.65 3.33 7.91 0.49 8.60

SIMULATION X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-109.98 -636.89 -121.86 13.80 12.13 13.72 22.93

The same considerations mentioned earlier for the pick task apply to the UR_TCP results related to
the place task. However, a slight overall improvement is observed, particularly at the goal position,
which corresponds to the designated position for releasing the object. At this point, the detected error
is approximately 2.3cm.

5.4.2 Case study: Orientation angles specified

5.4.2.1 General settings and considerations
For the development of this version of the case study, the following parameters and error thresholds
are set.

Table 27: Digital Model settings and threshold in Matlab and Simulink.

MiR100 PARAMETERS
Pure Pursuit controller

Desired Linear Velocity [m/s] 0.9
Maximum Angular Velocity [rad/s] 1
Lookahead distance [m] 0.4

Orientation phase threshold
Maximum difference between angles ∆(𝝓𝒅𝒆𝒑𝒂𝒓𝒕) [rad] 0.01

Orientation at goal station
Maximum distance between angles at goal station ∆(ϕ) [rad] 0.0005 (= 0.029°)

AtStnRange thresholds
Maximum distance between X coordinates ∆(X) [m] 0.08
Maximum distance between Y coordinates ∆(Y) [m] 0.3

AtGoal thresholds
Maximum distance ∆(X,Y) [m] 0.08

UR3 PARAMETERS
Trapezoidal Velocity Profile trajectory

EndTime Pick task [s] 2.3
EndTime Place task [s] 1.9

UR3goalReached function
UR3 configuration threshold [rad] 0.015

60

The initial considerations made for the first version of the analysed case study remain unchanged in
this case as well. The crucial difference compared to the previous version lies in the orientation angles
at which the mobile robot leaves the stations. In fact, for this version, there is no need to implement
any algorithm that approximates the orientation of the MiR since the information regarding the
orientation angles is directly provided by the program defined for this specific case study (see Figure
26). Since these angles are based on the relative MiR reference system (see Figure 40), they need to
be transformed to obtain the angle values with respect to the reference x-axis, as depicted in Figure
65. The calculations are as follows:

𝜃1 = deg2rad(47°)

𝜃2 = deg2rad(−144.7°) + π/2;

𝜃3 = π − abs(deg2rad(−139.1°) + π/2);

𝜃 = [0.8203; −0.954; , 2.2846]𝑟𝑎𝑑

5.4.2.2 MiR100 results

Figure 81: Trajectories of the different systems: a) with Node-RED, b) without Node-RED.

Figure 82: Position and orientation time plots for each system.

61

Table 28: Node-RED position errors.

NODE-RED
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.146 21.968 92.448 0.054 0.032 2.448 0.063
Unloading Stn 31.396 18.819 -90.995 0.031 0.033 0.995 0.045
Charging Stn 28.897 20.953 0.655 0.053 0.047 0.655 0.071

Table 29: ROS position errors.

ROS
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.218 21.997 92.236 0.018 0.003 2.236 0.018
Unloading Stn 31.444 18.874 -90.669 0.017 0.022 0.669 0.028
Charging Stn 28.953 20.964 0.655 0.003 0.036 0.655 0.036

Table 30: Optitrack position errors.

OPTITRACK
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.216 22.007 88.103 0.016 0.007 2.897 0.017
Unloading Stn 31.451 18.894 -89.482 0.024 0.042 0.518 0.048
Charging Stn 28.931 20.955 2.233 0.019 0.045 2.233 0.049

Table 31: Digital Model position errors.

SIMULATION (Digital Model)
STATIONS X Y ϕ ∆(X) ∆(Y) ∆(ϕ) ∆(X,Y)
Loading Stn 29.206 21.959 89.971 0.006 0.041 0.029 0.041
Unloading Stn 31.388 18.874 -89.971 0.039 0.022 0.029 0.045
Charging Stn 28.978 20.948 0.029 0.028 0.052 0.029 0.059

As can be observed from the graphs above and the results illustrated in the tables, generally better
results are obtained compared to the previous case. Figure 82 shows a very similar trend for all
systems, without significant time shifts. The errors in position at the designated stations for the task
are generally smaller compared to the previous version, especially for the Loading station. The results
from the simulation performed with the DM are consistent with the accuracy value stated in the MiR
datasheet. The only slightly higher value, equal to 0.059m, is found at the Charging station when the
mobile robot returns to this position after completing the entire task. Therefore, this slight difference
from the datasheet is not relevant for the correct execution of the pick and place task.

The graph related to orientation also shows excellent performance, with much fewer variations
compared to the previous case. This improvement can be attributed to the fact that this version
indicates the orientation angles with which the MiR leaves the stations.

62

5.4.2.3 UR3 results

Figure 83: DM joints configurations compared with the Node-RED reference system.

Table 32: UR3 Pick task programmed waypoints from teach pendant.

UR3 PICK TASK SIMULATION ERRORS
Wpts\Errors ∆(Base)

[rad]
∆(Shoulder)

[rad]
∆(Elbow)

[rad]
∆(Wrist 1)

[rad]
∆(Wrist 2)

[rad]
∆(Wrist 3)

[rad]
1 0.0004 0.0012 0.0006 0.0062 0.0008 0.0002
2 0.0039 0.0012 0.0005 0.0061 0.0012 0.0001
3 0.0034 0.0012 0.0005 0.0061 0.0012 0.0001
4 0.0002 0.0002 0.0014 0.0077 0.0010 0.0100
5 0.0002 0.0014 0.0006 0.0059 0.0001 0.0100
6 0.0002 0.0015 0.0006 0.0061 0.0000 0.0008
7 0.0007 0.0028 0.0021 0.0004 0.0001 0.0045
8 0.0036 0.0002 0.0028 0.0041 0.0003 0.0005
9 0.0003 0.0004 0.0029 0.0041 0.0014 0.0103

10 0.0006 0.0010 0.0004 0.0060 0.0007 0.0002

Table 33: UR3 Place task programmed waypoints from teach pendant.

UR3 PLACE TASK SIMULATION ERRORS
Wpts\Errors ∆(Base)

[rad]
∆(Shoulder)

[rad]
∆(Elbow)

[rad]
∆(Wrist 1)

[rad]
∆(Wrist 2)

[rad]
∆(Wrist 3)

[rad]
1 0.0006 0.0010 0.0004 0.0060 0.0007 0.0002
2 0.0015 0.0011 0.0005 0.0060 0.0014 0.0001
3 0.0009 0.0011 0.0005 0.0060 0.0013 0.0001
4 0.0002 0.0016 0.0025 0.0118 0.0009 0.0000
5 0.0001 0.0020 0.0027 0.0110 0.0008 0.0002
6 0.0000 0.0023 0.0032 0.0085 0.0008 0.0086
7 0.0007 0.0021 0.0021 0.0059 0.0007 0.0102
8 0.0005 0.0002 0.0011 0.0029 0.0009 0.0011
9 0.0001 0.0004 0.0007 0.0060 0.0009 0.0005

10 0.0006 0.0010 0.0006 0.0061 0.0009 0.0002

63

The analysis of the UR3 results follows the same waypoints and approach as the previous case. In
this version of the case study, the errors in the UR joints configuration are recorded in Table 32 and
Table 33. The majority of errors remain comfortably below the predefined threshold of 0.015 radians,
with only a few instances where higher values are observed, primarily in joints 4 and 6.

5.4.2.4 UR3 TCP results
The results of UR_TCP are based on the same premise as in the previous case. The procedure to
generate graphs for both the pick and place tasks in Matlab remains unchanged. The proposed results
are related to the goal positions for both tasks, which are the same as those shown in Table 23 and
Table 25. The location errors align with the values found in the analysis of the first version of the
case study. This lack of improvement can be attributed to the fact that, as mentioned earlier, the error
values obtained from simulating the UR with the DM do not show significant improvements
compared to the previous case. Consequently, there are no variations in the errors associated with
UR_TCP. The only difference observed is with the Optitrack acquisition system, which exhibits
worse behaviour compared to the results from version 1.

• Pick task

Figure 84: Comparison of the TCP graphs for the Pick task.

64

Figure 85: Focus on the XY plane for the Pick task.

Figure 86: Focus on the XZ plane for the Pick task.

65

Figure 87: Focus on the YZ plane for the Pick task.

Table 34: UR_TCP Pick task errors at goal.

TCP PICK TASK

NODE-RED X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-35.70 -495.30 46.90 0.03 0.14 0.05 0.15

OPTITRACK X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-8.13 -492.06 44.54 27.60 3.38 2.41 27.91

SIMULATION X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-51.39 -530.98 36.07 15.66 35.54 10.88 40.33

66

• Place task

Figure 88: Comparison of the TCP graphs for the Place task.

Figure 89: Focus on the XY plane for the Place task.

67

Figure 90: Focus on the XZ plane for the Place task.

Figure 91: Focus on the YZ plane for the Place task.

Table 35: UR_TCP Place task errors at goal.

TCP PLACE TASK

NODE-RED X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-123.70 -624.50 -108.20 0.08 0.26 0.06 0.28

OPTITRACK X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-107.48 -617.20 -107.87 16.3 7.56 0.27 17.97

SIMULATION X [mm] Y [mm] Z [mm] ∆(X) [mm] ∆(Y) [mm] ∆(Z) [mm] ∆(X,Y,Z) [mm]
-109.98 -636.54 -121.88 13.80 11.78 13.74 22.93

68

6 DIGITAL SHADOW
The digital shadow represents a significant advancement over the previous Digital Model, as outlined
in section 1.1, by enabling real-time monitoring of a physical object in motion within the real-world.
It receives data directly from the object and facilitates the replication of its movements in a virtual
model.

6.1 METHOD

6.1.1 Utilized software and tools
The following tools and software are used to implement the DM:

• Matlab 2022b, Simulink
• Matlab Toolbox: Mobile Robotics Simulation Toolbox, ROS Toolbox
• MiR100 and UR3 software
• Ubuntu 20.04.6 LTS with ROS Noetic version
• Oracle VM VirtualBox 7.0.8
• Optitrack Motive
• TP-Link Switch Ethernet

The features and applications of the Node-RED, ROS, and Optitrack systems remain unchanged in
accordance with the explanations presented in Chapter 2.

It is important to highlight that the Optitrack system itself operates as a Digital Shadow. In fact, it has
the ability to track the position of a moving rigid body in real-time and render it in a 3D format using
specialized markers and CAD files (see Figure 92). This comprehensive approach ensures a highly
detailed representation of the 3D model and its surrounding environment.

Figure 92: MoMa Digital Shadow in Optitrack with CAD model.

69

6.1.2 Main idea
To implement the Digital Shadow of the MoMa described in this thesis, the MiR100 and UR3 are
treated as separate entities. They never simultaneously perform actions during the execution of
programmed tasks for the MoMa. When the MiR is in motion, the UR remains inactive, and vice
versa. The core concept behind this DS, which also serves as the foundation for the Digital Twin
discussed in the subsequent chapter, revolves around employing a single computer that operates two
virtual machines dedicated to the MiR and UR, respectively. The decision to employ two virtual
machines is motivated by the fact that the drivers used for communication between ROS and the
robots share packages with identical names. Running these packages concurrently causes a disruption
in the connection. Since the drivers originate from two different projects available on GitHub1718,
modifying the package content without a comprehensive understanding of the file and variable
interdependencies proves to be challenging. Hence, for the initial development of the DS for both
robots, a cautious and straightforward approach was chosen.

Specifically, the connection scheme implemented to integrate the MiR and UR robots in the same
network is illustrated in Figure 93. An Ethernet switch is used to connect the UR3 and the host PC,
on which the two virtual machines run, to the same MiR network. The ethernet connection represents
a physical limitation because the host PC needs to be fixed on the MoMa and move with it. As
explained in section 6.1.3, the Digital Shadow of the MiR can also be developed with a wireless
connection, but it is not possible for the UR case due to an unstable wireless connection that
disconnects the driver.

The procedure followed for both models is based on the tutorials provided in the respective GitHub
repositories mentioned earlier.

Figure 93: Network scheme with switch ethernet.

17 MiR driver for ROS connection: https://github.com/DFKI-NI/mir_robot
18 UR3 CB3 driver for ROS connection: https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

https://github.com/DFKI-NI/mir_robot
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

70

6.1.3 Development in Matlab, Simulink, and ROS systems
The development of the Digital Shadows in Matlab, Simulink, and ROS systems assumes that all the
settings described in Chapter 2 have been correctly executed, including the configuration of the ROS
Toolbox in Simulink and the synchronization procedure for communication between ROS and the
MiR. In the case of communication between ROS and the UR3, it is exclusively achieved through
Ethernet due to the unstable connection and frequent disconnections encountered with wireless
communication. Once the entire system is properly configured, the next step is to install the RVIZ
packages and plugins on the two virtual machines. As mentioned in section 2.3, RVIZ is a 3D
simulation tool that allows real-time visualization of movements. It also facilitates transmitting
commands from the digital device to the physical one directly through its ROS interface, as described
for the DT in the following chapter. In this thesis, RVIZ is used for both the MiR and the UR.

For the MiR, it utilizes messages containing information sent by the physical robot and acquired by
the sensors and laser scanner to reproduce the same map created by the mobile robot using the same
procedure. The map is updated in real-time based on environmental variations detected by the MiR.
Once reproduced, this map is saved using the command ‘rosrun map_server map_saver -f
name_of_the_map’. The visualization of the laboratory map and the MiR on the RVIZ interface is
displayed in 2D, which is sufficient for the purpose of this implementation.

For the UR, once the UR3 driver specifically designed for communication with ROS is running, it
becomes possible to visualize a virtual 3D replica of the robot using RVIZ and the integrated Motion
Planning plug-in. This is achieved by utilizing the UR3.URDF files included in the GitHub folders
dedicated to this purpose. These files provide the necessary geometric and physical characteristics
required for an accurate representation of the robot within the simulation environment. With the UR3
driver active, executing a program from the UR's teach pendant or performing simple movements
enables real-time visualization in RVIZ, with minimal latency in the connection with the virtual
machine.

For both robots, it is possible to observe and monitor real-time information during the execution of
tasks in the real-world by utilizing appropriate commands typed on the Ubuntu command line in the
form of ‘rostopic echo <topic_name>’. The figures below depict the MiR pose and the UR3 joint
state by launching the previous command on the Ubuntu terminal.

Figure 94: Left side: robot pose in real-time from ROS terminal; right side: UR joint states in real-time from ROS terminal.

In Matlab and Simulink, the DS is only implemented for the MiR, as managing the message types
related to the UR topics proves to be difficult in Matlab and Simulink. For this reason, real-time
information from the UR3 is monitored using Node-RED and the Ubuntu terminal, as shown in
Figure 94. The procedure and blocks used for the MiR DS implementation in Simulink are the same
as illustrated in section 2.3.1 and Figure 21 and Figure 22, allowing for real-time data monitoring.

71

The only addition is the 'Robot Visualizer' block, available through the Mobile Robotics Simulation
Toolbox. This block takes a map as input, in this case, the same map generated with the
'BinaryOccupancyMap' function for the DM, along with the real-time position of the mobile robot. It
represents the current trajectory executed by the physical device in a stylized manner, providing a
useful visual representation of the robot's movement (see Figure 96).

6.2 RESULTS

6.2.1 MIR100 Digital Shadow
Figure 95 showcases the RVIZ environment, which demonstrates the real-time replication of the
MiR's map. In this figure, the movement of the MiR near the Charging station is observable. The
green line represents a segment of the trajectory followed by the physical robot, while the red points
correspond to the laser scanner data from the MiR, providing information about obstacle detection. It
is noteworthy that the virtual map displayed on the right side of the figure below perfectly replicates
the map of the MiR, shown on the left side.

Figure 95: RVIZ 2D MiR Simulation comparison with the MiR system map.

Regarding the DS developed in Matlab and Simulink, the results are depicted in the figure below. It
showcases the Robot Visualizer block in Simulink, along with the real-time trajectory executed by
the MiR.

The trajectory is also visualized through the XY graphs, which are inserted in the grey panel as
illustrated in Figure 22.

Figure 96: MiR Digital Shadow in Matlab and Simulink.

72

6.2.2 UR3 Digital Shadow
The Digital Shadow of the UR3 is depicted in Figure 97, showcasing the 3D model within the RVIZ
interface running in the ROS virtual machine. When a program or movement is launched through the
teach pendant, this virtual model replicates the motions, taking into account the minimal delay caused
by the connection between ROS and the physical device.

Figure 97: UR3 Digital Shadow in the RVIZ environment.

6.2.3 MoMa Digital Shadow
As described in section 6.1.2, the Digital Shadow of the MoMa consists of the two previously
developed models placed side by side and connected to the same network. With the drivers correctly
running in their respective virtual machines, it becomes possible to perform the pick and place task,
which was already involved in the Digital Model and preliminary tests. Additionally, real-time
monitoring of the actual behaviour of the two robots in the RVIZ environment and obtaining their
position and configuration information from the Ubuntu command line are feasible, as shown in
Figure 94.

The figure below depicts an example situation of the pick and place task, specifically illustrating the
moment when the MiR reaches the Unloading station and the UR3 starts executing the place task.

Figure 98: MoMa Digital Shadow in RVIZ, placing MiR DS and UR DS side by side.

73

7 DIGITAL TWIN
The ultimate objective of this thesis is to establish a comprehensive digital environment that ensures
complete control over the physical robots within the laboratory space. This objective is accomplished
by developing two Digital Twins, one for the MiR100 and the other for the UR3, respectively.

7.1 METHOD

7.1.1 Utilized software and tools
The following tools and software are used to implement the DM:

• Matlab 2022b, Simulink
• Matlab Toolbox: Mobile Robotics Simulation Toolbox, ROS Toolbox
• MiR100 and UR3 software
• Ubuntu 20.04.6 LTS with ROS Noetic version
• Oracle VM VirtualBox 7.0.8
• Optitrack Motive
• TP-Link Switch Ethernet

To initiate the connection between ROS and the physical robots, the same scheme illustrated in Figure
93 is utilized for this purpose. However, since the DT aims to enable command transmission from the
digital device to the real-world, the constraint of connecting the UR3 with an Ethernet cable, and
consequently keeping the ROS host PC in close proximity to the robot, prevents wireless control of
the entire MoMa. One possible solution could be to remotely control the host PC fixed on the MoMa,
similar to what is done for the Digital Shadow, by utilizing appropriate software or tools. This would
allow managing the ROS environment of the host PC wirelessly from another PC placed anywhere
within the workspace environment. Although this solution is not developed and tested in this thesis
project, it could serve as a starting point for a possible future project.

Furthermore, the ROS host PC could be replaced with a Raspberry Pi to avoid the need for a PC on
the MoMa, which can be more challenging to manage and bulkier in size.

7.1.2 Development of the Digital Twin
The development of the MoMa's DT follows the same procedure and considerations as the DS
discussed in the previous section. The only difference lies in the UR. Specifically, the UR software
requires the installation of a plug-in that enables control of the physical device using an external
device other than the teach pendant. The External Control URCaps plug-in for communication with
ROS can be downloaded from the GitHub folder, which already contains the driver used for the DS.
The installation process involves inserting a USB pen drive into the teach pendant. The following
figures illustrate the settings required for this purpose.

The host IP refers to the IP address of the ROS virtual machine (VM2 in Figure 93), which should
be configured as the IPv4 address in the network settings. It is crucial for this address to align with
the network ID of the UR3 (192.168.12) to ensure that both devices are connected to the same
network.

In order to facilitate control of the UR3 robot from the digital world to the real-world, it is essential
to successfully launch the UR drivers. Once this step is completed, the program with the URCaps

74

external control installed has to be executed from the teach pendant. At this stage, within the RVIZ
environment, the Motion Planning plug-in can be leveraged to command the physical robot.

Figure 99: UR3 External Control configuration on the teach pendant.

7.2 RESULTS

7.2.1 MiR100 Digital Twin
Regarding the MiR DT, the required steps are exactly the same as described for the DS and in Chapter
2. As mentioned earlier, the RVIZ tool allows for direct control of the mobile. This is achieved by
utilizing the ‘2D Nav Goal’ command. The motion of the MiR in the real-world is executed by
selecting a desired position on the RVIZ MiR map (see Figure 100). If the chosen location is not
reachable, the robot does not complete the programmed task. Additionally, if an obstacle suddenly
appears along the MiR's trajectory during its movement, the robot is capable of generating a new
trajectory to reach the goal pose if it is still feasible. Concurrently, the actual movement of the mobile
robot is replicated in real-time within the RVIZ simulation environment.
Figure 100 illustrates the RVIZ procedure for commanding the real mobile robot to reach a new goal
position, which is programmed using the 2D Nav Goal tool and indicated on the map by a pink arrow.
The published goal position is also visible in the Ubuntu terminal where the RVIZ command is
executed, as depicted in the third figure below. Moreover, the figure on the right side demonstrates
the successful achievement of the goal by the MiR robot. This is further confirmed by the fourth
figure, displaying a feedback message indicating the task status, which in this case reports a 'Goal
reached' message.

Figure 100: MiR DT using 2D Nav Goal and Ubuntu terminal.

75

Additionally, it is also possible to provide new goals or specify velocities to the real robot through
the Ubuntu command line. This can be achieved by using commands such as ‘rostopic pub /cmd_vel
geometry_msgs/Twist -- '[0.0,0.0,0.0]' '[0.0,0.0,0.5]'’, which assigns a constant angular velocity of
0.5 rad/s, for example, to the MiR robot.

7.2.2 UR3 Digital Twin
The Motion Planning plug-in simplifies robot motion programming by manipulating a virtual
shadow, depicted in orange in Figure 103, to achieve the desired configuration. If the visualized
movement aligns with the safety conditions and the intended task, it can be executed. This feature
proves to be a valuable asset as it allows for controlling the actions of the real UR3 while avoiding
potential security issues. By experimenting with the shadow's movements, already incorporated
within the RVIZ motion planning feature, users can conduct preliminary trials before executing
actions with the physical robot. Additionally, by selecting the ‘Use Collision-Aware IK’ option, the
solver is able to avoid the collision configurations.

The Motion Planning interface offers two different ways to program the joint configuration:

• Directly moving the end effector of the orange UR shadow to the desired configuration, as
shown in Figure 102. The end effector motion can be performed by utilizing a blue sphere or
by dragging the dedicated arrows.

• Setting specific configuration values for each UR joint from the dedicated tab depicted in
Figure 101.

Finally, Figure 103 illustrates the motion sequence performed by the UR DT. It begins with the new
configuration planning, represented by the movement of the orange shadow. This is followed by the
execution of the planned motion, where the virtual robot aligns with the configuration of the orange
shadow. This alignment is then reflected in the movement of the real robot.

Figure 102: Moving UR by using End Effector tool.

Figure 103: Sequence of UR DT movements in the RVIZ Motion Planning environment.

Figure 101: Joints configurations in RVIZ to planning UR motion.

76

8 CONCLUSION
By reviewing the arguments developed in this thesis and the results obtained, the following
conclusions can be drawn.

Among the acquisition systems ROS and Node-RED, the preliminary tests and subsequent results
related to the Digital Model indicate that ROS offers superior precision and accuracy when comparing
the information obtained with that derived directly from the mobile robot. Furthermore, ROS provides
a range of tools, plugins, and resources for simulation, along with its ability to interface with various
software installed on external devices such as Matlab and Simulink, enabling the development of
applications for robots. It is important to note that the analysis of the digital models developed in this
thesis represents only a fraction of the potential that this system offers.
Optitrack Motive on the other hand, functions as a real-time tracking system for moving rigid bodies,
ensuring high accuracy compared to the real reference system. However, it is important to emphasize
that in a hypothetical work environment, such as the manufacturing sector of an industry, it is
impractical to monitor a mobile manipulator that covers the entire environment due to the unrealistic
installation of cameras to cover such large workspaces. Consequently, its usage is limited to specific
purposes and analyses involving a circumscribed area, as demonstrated in this thesis.
Based on the conducted tests, a distance of approximately 0.055m is observed between the values
acquired with ROS and those captured with Optitrack. Considering the variability of the MiR system
and the calibration results obtained for the Optitrack system, it can be concluded that this positional
error of the mobile robot relative to the real values aligns with expectations and can be considered
acceptable for the purposes presented in this thesis.

Focusing on the results obtained from the development and simulations of different digital models,
they undoubtedly constitute a highly useful tool for optimizing processes in the context of Industry
4.0. Specifically:

• The Digital Model serves as an important tool for simulating moderately complex scenarios,
such as the pick-and-place between two studied workstations in this thesis. This allows the
prevention of physical device usage and resource allocation by virtually estimating and
analysing performance and potential risks associated with executing a certain process in the
real work environment. Furthermore, as demonstrated in this case study, it is possible to
acquire data from a previously executed physical process to conduct in-depth evaluations and
analyses of the obtained performance, evaluating potential optimization solutions.
The Digital Model implemented in this thesis proves to be sufficiently accurate and reliable
for the mentioned applications, with position errors slightly higher than the accuracy indicated
in the mobile robot's datasheet when compared to the programmed reference positions. This
error can be significantly reduced by approximately 1cm by providing more information
during the process programming phase, such as the orientation angles of the MiR, thereby
limiting the degrees of freedom for the robot.
Lastly, it is important to acknowledge that the Digital Model represents a unique and non-
general solution for each specific case study. Any modifications in the process require the
adjustment of the current model or, in the worst-case scenario, the development of a new one.

• The Digital Shadow and the Digital Twin represent the digital models that best leverage the
potential offered by the technologies constituting Industry 4.0. By employing these digital
models within the work environment, it becomes possible to monitor the behaviour of robots
involved in various industrial processes in real time. The bidirectional communication

77

implemented with the Digital Twin facilitates direct interaction with physical devices,
enabling the programming of new actions or the implementation of corrective measures in
case the current behaviour does not align with the desired one or unforeseen events occur.
Regarding the proposed solutions in this case study, as previously mentioned, they represent
only an introductory development of these technologies within the context of the Politecnico
di Torino laboratory where this thesis project was conducted. Currently, the most significant
limitation for these technologies in this specific case arises from the instability of the wireless
connection for implementing the digital models for the UR3 CB3. This necessitates the use of
an Ethernet cable connection, which physically restricts the full utilization of the Digital Twin.
The obtained latency results demonstrate a value of approximately 0.08s, making these
models widely applicable for the purposes demonstrated in this thesis.
Moreover, the availability of the ROS Toolbox in the Matlab library allows for the
implementation of real-time control systems, accounting for the latency caused by the
connection between devices. This can be achieved by utilizing ROS functions in Matlab,
callback functions, and dedicated Simulink blocks.

There are numerous scenarios and developments possible for these technologies. Some future
research and project ideas aimed at improving and contributing to the development of the digital
technologies presented in this thesis include:

• Conducting a more extensive and detailed analysis of the repeatability and accuracy of the
MoMa, encompassing different scenarios and employing a greater number of repetitions to
obtain more reliable and precise results.

• Implementing a fully wireless connection for the development of the Digital Twins of
different robots, integrating them into a unified system and eliminating the need for physical
constraints like Ethernet cables. Additionally, exploring the utilization of a Raspberry Pi for
the connection with ROS could be an interesting avenue.

• Developing control systems in Matlab or the Ubuntu environment, leveraging the Python
programming system, to detect specific situations and subsequently directing the physical
devices to perform specific actions.

• Implementing communication between RVIZ and the 3D simulation environment offered by
Gazebo to enable the simulation of scenarios and real-time as well as offline performance
monitoring.

• Implementing the Navigation Stack in ROS and RVIZ for the mobile robot, allowing for the
sending of multiple goal positions to enable the execution of complete trajectories consisting
of different target points.

78

9 REFERENCES
[1] CULOT, G., NASSIMBENI, G., ORZES, G., & SARTOR, M. (2020). BEHIND THE DEFINITION OF
INDUSTRY 4.0: ANALYSIS AND OPEN QUESTIONS. INTERNATIONAL JOURNAL OF PRODUCTION
ECONOMICS, 226, 107617.

[2] SCHWAB, K. (2017). THE FOURTH INDUSTRIAL REVOLUTION. CURRENCY.

[3] RADZIWON, A., BILBERG, A., BOGERS, M., & MADSEN, E. S. (2014). THE SMART FACTORY:
EXPLORING ADAPTIVE AND FLEXIBLE MANUFACTURING SOLUTIONS. PROCEDIA ENGINEERING, 69,
1184-1190.

[4] ACHOUCH, M., DIMITROVA, M., ZIANE, K., SATTARPANAH KARGANROUDI, S., DHOUIB, R.,
IBRAHIM, H., & ADDA, M. (2022). ON PREDICTIVE MAINTENANCE IN INDUSTRY 4.0: OVERVIEW,
MODELS, AND CHALLENGES. APPLIED SCIENCES, 12(16), 8081.

[5] LI, Z., WANG, Y., & WANG, K. S. (2017). INTELLIGENT PREDICTIVE MAINTENANCE FOR FAULT
DIAGNOSIS AND PROGNOSIS IN MACHINE CENTERS: INDUSTRY 4.0 SCENARIO. ADVANCES IN
MANUFACTURING, 5, 377-387.

[6] SISINNI, E., SAIFULLAH, A., HAN, S., JENNEHAG, U., & GIDLUND, M. (2018). INDUSTRIAL INTERNET
OF THINGS: CHALLENGES, OPPORTUNITIES, AND DIRECTIONS. IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, 14(11), 4724-4734.

[7] DAI, H. N., WANG, H., XU, G., WAN, J., & IMRAN, M. (2020). BIG DATA ANALYTICS FOR
MANUFACTURING INTERNET OF THINGS: OPPORTUNITIES, CHALLENGES AND ENABLING
TECHNOLOGIES. ENTERPRISE INFORMATION SYSTEMS, 14(9-10), 1279-1303.

[8] MELL, P., & GRANCE, T. (2011). THE NIST DEFINITION OF CLOUD COMPUTING.

[9] HELO, P., SUORSA, M., HAO, Y., & ANUSSORNNITISARN, P. (2014). TOWARD A CLOUD-BASED
MANUFACTURING EXECUTION SYSTEM FOR DISTRIBUTED MANUFACTURING. COMPUTERS IN
INDUSTRY, 65(4), 646-656.

[10] ÇINAR, Z. M., ABDUSSALAM NUHU, A., ZEESHAN, Q., KORHAN, O., ASMAEL, M., & SAFAEI, B.
(2020). MACHINE LEARNING IN PREDICTIVE MAINTENANCE TOWARDS SUSTAINABLE SMART
MANUFACTURING IN INDUSTRY 4.0. SUSTAINABILITY, 12(19), 8211.

[11] LEE, J., BAGHERI, B., & KAO, H. A. (2015). A CYBER-PHYSICAL SYSTEMS ARCHITECTURE FOR
INDUSTRY 4.0-BASED MANUFACTURING SYSTEMS. MANUFACTURING LETTERS, 3, 18-23.

[12] BAHRIN, M. A. K., OTHMAN, M. F., AZLI, N. H. N., & TALIB, M. F. (2016). INDUSTRY 4.0: A
REVIEW ON INDUSTRIAL AUTOMATION AND ROBOTIC. JURNAL TEKNOLOGI, 78(6-13).

[13] RÜßMANN, M., LORENZ, M., GERBERT, P., WALDNER, M., JUSTUS, J., ENGEL, P., & HARNISCH, M.
(2015). INDUSTRY 4.0: THE FUTURE OF PRODUCTIVITY AND GROWTH IN MANUFACTURING
INDUSTRIES. BOSTON CONSULTING GROUP, 9(1), 54-89.

[14] NGO, T. D., KASHANI, A., IMBALZANO, G., NGUYEN, K. T., & HUI, D. (2018). ADDITIVE
MANUFACTURING (3D PRINTING): A REVIEW OF MATERIALS, METHODS, APPLICATIONS AND
CHALLENGES. COMPOSITES PART B: ENGINEERING, 143, 172-196.

79

[15] MASOOD, T., & EGGER, J. (2019). AUGMENTED REALITY IN SUPPORT OF INDUSTRY 4.0
IMPLEMENTATION CHALLENGES AND SUCCESS FACTORS. ROBOTICS AND COMPUTER-INTEGRATED
MANUFACTURING, 58, 181-195.

[16] DE PAULA FERREIRA, W., ARMELLINI, F., & DE SANTA-EULALIA, L. A. (2020). SIMULATION IN
INDUSTRY 4.0: A STATE-OF-THE-ART REVIEW. COMPUTERS & INDUSTRIAL ENGINEERING, 149, 106868.

[17] KRITZINGER, W., KARNER, M., TRAAR, G., HENJES, J., & SIHN, W. (2018). DIGITAL TWIN IN
MANUFACTURING: A CATEGORICAL LITERATURE REVIEW AND CLASSIFICATION. IFAC-
PAPERSONLINE, 51(11), 1016-1022.

[18] VACHÁLEK, J., BARTALSKÝ, L., ROVNÝ, O., ŠIŠMIŠOVÁ, D., MORHÁČ, M., & LOKŠÍK, M. (2017,
JUNE). THE DIGITAL TWIN OF AN INDUSTRIAL PRODUCTION LINE WITHIN THE INDUSTRY 4.0 CONCEPT.
IN 2017 21ST INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC) (PP. 258-262). IEEE.

[19] LEE, J. H., & HASHIMOTO, H. (2003). CONTROLLING MOBILE ROBOTS IN DISTRIBUTED
INTELLIGENT SENSOR NETWORK. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 50(5), 890-902.

[20] MARTÍNEZ, A., DÍEZ, J., VERDE, P., FERRERO, R., ÁLVAREZ, R., PEREZ, H., & VIZÁN, A. (2021,
OCTOBER). DIGITAL TWIN FOR THE INTEGRATION OF THE AUTOMATIC TRANSPORT AND
MANUFACTURING PROCESSES. IN IOP CONFERENCE SERIES: MATERIALS SCIENCE AND
ENGINEERING (VOL. 1193, NO. 1, P. 012107). IOP PUBLISHING.

[21] OYEKANLU, E. A., SMITH, A. C., THOMAS, W. P., MULROY, G., HITESH, D., RAMSEY, M., ... &
SUN, D. (2020). A REVIEW OF RECENT ADVANCES IN AUTOMATED GUIDED VEHICLE TECHNOLOGIES:
INTEGRATION CHALLENGES AND RESEARCH AREAS FOR 5G-BASED SMART MANUFACTURING
APPLICATIONS. IEEE ACCESS, 8, 202312-202353.

[22] MARTÍNEZ-GUTIÉRREZ, A., DÍEZ-GONZÁLEZ, J., FERRERO-GUILLÉN, R., VERDE, P., ÁLVAREZ, R.,
& PEREZ, H. (2021). DIGITAL TWIN FOR AUTOMATIC TRANSPORTATION IN INDUSTRY
4.0. SENSORS, 21(10), 3344.

[23] STĄCZEK, P., PIZOŃ, J., DANILCZUK, W., & GOLA, A. (2021). A DIGITAL TWIN APPROACH FOR THE
IMPROVEMENT OF AN AUTONOMOUS MOBILE ROBOTS (AMR’S) OPERATING ENVIRONMENT—A CASE
STUDY. SENSORS, 21(23), 7830.

[24] MALIK, A. A., & BILBERG, A. (2018). DIGITAL TWINS OF HUMAN ROBOT COLLABORATION IN A
PRODUCTION SETTING. PROCEDIA MANUFACTURING, 17, 278-285.

[25] LEVENSON, M. S., BANKS, D. L., EBERHARDT, K. R., GILL, L. M., GUTHRIE, W. F., LIU, H. K., ...
& ZHANG, N. F. (2000). AN APPROACH TO COMBINING RESULTS FROM MULTIPLE METHODS MOTIVATED
BY THE ISO GUM. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY, 105(4), 571.

[26] SWALES, A. (1999). OPEN MODBUS/TCP SPECIFICATION. SCHNEIDER ELECTRIC, 29, 3-19.

[27] MEGALINGAM, R. K., TEJA, C. R., SREEKANTH, S., & RAJ, A. (2018). ROS BASED AUTONOMOUS
INDOOR NAVIGATION SIMULATION USING SLAM ALGORITHM. INTERNATIONAL JOURNAL OF PURE AND
APPLIED MATHEMATICS, 118(7), 199-205.

[28] SORIANO, M. (2022). REALIZZAZIONE E VALUTAZIONE DELLA FEDELTÀ DEL GEMELLO DIGITALE
DI UN MANIPOLATORE MOBILE.= DESIGN AND FIDELITY EVALUATION OF A DIGITAL TWIN OF A
MOBILE MANIPULATOR (DOCTORAL DISSERTATION, POLITECNICO DI TORINO).

80

10 FIGURES REFERENCES
FIGURE 1: DATA FLOW IN DIGITAL MODEL, DIGITAL SHADOW, AND DIGITAL TWIN.
SOURCE: RESEARCHGATE
https://www.researchgate.net/publication/343885041_Towards_online_adaptation_of_digital_twins
/figures?lo=1

FIGURE 2: TECHNOLOGICAL PILLARS OF INDUSTRY 4.0.
SOURCE: AURAQUATIC
Industry 4.0 technologies - AuraQuantic

FIGURE 4: MOBILE INDUSTRIAL ROBOT MIR100.
SOURCE: MOBILE INDUSTRIAL ROBOT
MiR100 (mobile-industrial-robots.com)

FIGURE 5: THE GLOBAL PATH IS INDICATED WITH THE DOTTED BLUE LINE AND IS VISIBLE ON THE MAP.
THE LOCAL PATH IS INDICATED WITH THE BLUE ARROW, SHOWING THE ROBOT DRIVING AROUND A
DYNAMIC OBSTACLE.
SOURCE: MIR100 USER’S GUIDE
MiR100 user guide_3.1_en SW2.8.3 rev.3.1 (gibas.nl)

FIGURE 7: ONROBOT RG2 GRIPPER.
SOURCE: ONROBOT
Pinza di presa robotica RG2 | OnRobot

FIGURE 8: UNIVERSAL ROBOT UR3, CB3-SERIES.
SOURCE: UNIVERSAL ROBOT
UR3e - Robot collaborativo per Automazione | Fino a 3 kg (universal-robots.com)

FIGURE 11: NATNET SDK NETWORK BLOCK DIAGRAM.
SOURCE: NATNET API USER’S GUIDE
NatNet User's Guide (mocap.jp)

FIGURE 19: SUMMARY DIAGRAM OF COMMUNICATION BETWEEN ROS DEVICES AND MATLAB.
SOURCE: MATHWORKS
ROS Toolbox Documentation - MathWorks Italia

FIGURE 41: DIFFERENTIAL DRIVE ROBOT AND THE CORRESPONDING BLOCK IN SIMULINK. (LEFT SIDE)
SOURCE: RESEARCHGATE
(PDF) Trajectory-tracking and discrete-time sliding-mode control of wheeled mobile robots
(researchgate.net)

FIGURE 47: ‘PURE PURSUIT CONTROLLER’ BLOCK IN SIMULINK AND LOOK AHEAD PARAMETER LIMIT
SITUATIONS. (RIGHT SIDE)
SOURCE: MATHWORKS
Pure Pursuit Controller - MATLAB & Simulink - MathWorks Italia

https://www.researchgate.net/publication/343885041_Towards_online_adaptation_of_digital_twins/figures?lo=1
https://www.researchgate.net/publication/343885041_Towards_online_adaptation_of_digital_twins/figures?lo=1
https://www.auraquantic.com/technologies-intelligent-industry/
https://www.mobile-industrial-robots.com/it/solutions/robots/mir100/
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf
https://onrobot.com/it/prodotti/pinza-rg2
https://www.universal-robots.com/it/prodotti/robot-ur3/
https://mocap.jp/download/document/NatNet%202.7%20API%20User%20Guide.pdf
https://it.mathworks.com/help/ros/
https://www.researchgate.net/publication/252016633_Trajectory-tracking_and_discrete-time_sliding-mode_control_of_wheeled_mobile_robots/figures?lo=1
https://www.researchgate.net/publication/252016633_Trajectory-tracking_and_discrete-time_sliding-mode_control_of_wheeled_mobile_robots/figures?lo=1
https://it.mathworks.com/help/nav/ug/pure-pursuit-controller.html

81

11 APPENDIX

11.1 OPTITRACK

11.1.1 NATNET SDK Matlab script
period = 20; % ms
task_duration = 3500; % acquisition time = task_duration*100ms

% Create table to save data:
rb_names = ["MIR100","TCP","UR3_base"];
empty_table = table;

name_row = [];
coord_row = [];

for i=1:length(rb_names)
 %name_row = cat(2, name_row, [rb_names(i),'','','','']);
 name_row = cat(2, name_row, [rb_names(i),'','','','','','']);
 %coord_row = cat(2, coord_row,["X","Y","Z","R1","R2","R3","TIME"]);
 coord_row = cat(2, coord_row,["X","Y","Z","R1","R2","R3","TIME"]);
end

intestazione = cat(1, name_row, coord_row);
intestazione = array2table(intestazione);
empty_table = [empty_table; intestazione];

% Create table to save data:
[rigid1,rigid2,rigid3,data_Optitrack] = NatNetPollingSampleCustom_xyphi(length(rb_names), freq,
empty_table_durata_task);

function [rb1,rb2,rb3,final_table] = NatNetPollingSampleCustom_xyphi(nbodies, sample_time,
data_table,task_time)

rb1=rigid_Body();
rb2=rigid_Body();
rb3=rigid_Body();
%% [... Optitrack System Configuration
% create an instance of the natnet client class
natnetclient = natnet;
% connect the client to the server (multicast over local loopback) - modify for your network
natnetclient.HostIP = '[...]';
natnetclient.ClientIP = '[...]';
natnetclient.ConnectionType = 'Multicast';
natnetclient.connect;
% ...]

%% Actions:
rb_pose = [];
pose_row = [];
%Timestamp:
timestamp = datestr(clock, "HH:MM:SS.FFF");
split_time = split(timestamp, ':');
h_in_sec = str2double(split_time(1)).*60^2;
m_in_sec = str2double(split_time(2)).*60;
sec=str2double(split_time(3));
poll_time = h_in_sec+m_in_sec+sec;
for k=1:nbodies
 %Orientation:
 q_x = data.RigidBodies(k).qx;
 q_y = data.RigidBodies(k).qy;
 q_z = data.RigidBodies(k).qz;
 q_w = data.RigidBodies(k).qw;
 q = quaternion(q_x, q_y, q_z, q_w);
 angles = EulerAngles(q,'xyz')*360/(2*pi);
 phi = [angles(1), angles(2), angles(3)];
 %Pose:
 pose = [data.RigidBodies(k).x*1000,data.RigidBodies(k).y*1000,data.RigidBodies(k).z*1000, phi];
 pose_row = cat(2, pose_row, pose, poll_time);
end
rb_pose = cat(1, rb_pose, pose_row);
end

82

11.1.2 Optitrack data convertion Matlab script

11.2 ROS INITIAL SETTINGS

11.2.1 Time Synchronization between ROS machine and MiR100

scaling_factor = 1.297;
load('C:\Users\Desktop\test4_pose_opt.mat');

x_opt = data_Optitrack.intestazione10(3:end);
y_opt = data_Optitrack.intestazione8(3:end);
phi_opt = data_Optitrack.intestazione12(3:end);
t_opt = data_Optitrack.intestazione14(3:end);
x_opt = str2double(x_opt)/1000;
y_opt = str2double(y_opt)/1000;
x_opt_offset = 30.9085;
y_opt_offset = 19.3607;
x_opt = (x_opt + x_opt_offset)*scaling_factor;
y_opt = (y_opt + y_opt_offset)*scaling_factor;
x_opt = smooth(x_opt);
y_opt = smooth(y_opt);
phi_opt = str2double(phi_opt);
phi_opt = -phi_opt;
t_opt = str2double(t_opt);
t_opt = t_opt-t_opt(1);
table_opt = table(x_opt,y_opt,phi_opt,t_opt);
%writetable(table_opt,'C:\Users\Desktop\test_data_opt.xlsx')

figure(5)
plot(x_opt,y_opt,'b')
grid on
figure(6)
plot(t_opt,x_opt,'r')
grid on
figure(7)
plot(t_opt,y_opt,'k')
grid on
figure(8)
plot(t_opt,phi_opt,'g')
grid on

83

11.2.2 ROS nodes initialization Matlab script

11.2.3 Simulink function to extract MiR position and velocity

rosshutdown
% rosinit(rosIP);
setenv('ROS_IP','[...]') % Substitute the square brackets with the IP Address of the Matlab host PC
setenv('ROS_MASTER_URI', '[...]') % Substitute the square brackets with the IP Address of the MIR or VM
with ROS. The IP address is equal to 'http://192.168.xx.xx:11311'
rosinit

% For MiR Digital Shadow in Simulink, see block Robot Visualizer
logicalMap = scaledimage;
checkpoints = [starting_point(1:2); assemblyStn(1:2);unloadingStn(1:2);chargingStn(1:2)];

function [map_position, notscaled_position, orientation] = extractPose(model_states)

X = model_states.Position.X;
Y = model_states.Position.Y;
Xo = model_states.Orientation.X;
Yo = model_states.Orientation.Y;
Zo = model_states.Orientation.Z;
Wo = model_states.Orientation.W;
orientation = [Xo,Yo,Zo,Wo];
eul = quat2eul([Wo,Xo,Yo,Zo]);
yaw = eul(1);

notscaled_position = [X,Y,yaw];
map_position = [X*1.297,Y*1.297,yaw];
end

function cmd_vel = extractVel(model_states)
% con IP_MIR --> geometry_msg/TwistStamped
vx = model_states.Twist.Linear.X;
vy = model_states.Twist.Linear.Y;
vz = model_states.Twist.Linear.Z;
wx = model_states.Twist.Angular.X;
wy = model_states.Twist.Angular.Y;
wz = model_states.Twist.Angular.Z;

cmd_vel = [vx,vy,vz,wx,wy,wz];

% con IP_VM --> geometry_msg/Twist
% vx = model_states.Linear.X;
% vy = model_states.Linear.Y;
% vz = model_states.Linear.Z;
% wx = model_states.Angular.X;
% wy = model_states.Angular.Y;
% wz = model_states.Angular.Z;
%
% cmd_vel = [vx,vy,vz,wx,wy,wz];
end

84

11.2.4 ROS Bag file management Matlab script

11.3 DIGITAL MODEL

11.3.1 Binary Occupancy Grid Matlab script

11.3.2 Task Class

bag = rosbag("ros_realTime_MOMAsim_071223_18_53_05.bag");
%bag.MessageList

% split data from the bag
% pose
mir_rosBagPose = select(bag,"Topic","/subsystem_model_states");
% read messages
msgs_pose = readMessages(mir_rosBagPose,"DataFormat","struct");
% timeseries with topic components
% X-Y pose
timeseries_rosBagPose = timeseries(mir_rosBagPose,"Position.X","Position.Y");
%timeseries_rosBagPose.Data;
% Orientation
timeseries_rosBagOrient =
timeseries(mir_rosBagPose,"Orientation.X","Orientation.Y","Orientation.Z","Orientation.W");
%size(msgs_pose);
eul =
quat2eul([timeseries_rosBagOrient.Data(:,4),timeseries_rosBagOrient.Data(:,1),timeseries_rosBagOrient.Data(
:,2),timeseries_rosBagOrient.Data(:,3)]);
phi = eul(:,1);
% x-y position (from /robot_pose topic)
pose_ros_x = timeseries_rosBagPose.Data(:,1);
pose_ros_y = timeseries_rosBagPose.Data(:,2);
mir_pose_ros = cat(2,pose_ros_x,pose_ros_y);

% velocities
mir_rosBagCmdVel = select(bag,"Topic","/subsystem1_model_states");
% timeseries for velocities
timeseries_rosBagCmdVel = timeseries(mir_rosBagCmdVel,"Twist.Linear.X","Twist.Angular.Z");
% lin and ang velocities (from /cmd_vel topic)
lin_vel_ros = timeseries_rosBagCmdVel.Data(:,1);
ang_vel_ros = timeseries_rosBagCmdVel.Data(:,2);

%CREATION OF THE LAB MATLAB MAP
image = imread('new_lab_4.png');
grayimage = im2gray(image);
bwimage = grayimage < 9;
scaledimage = imresize(bwimage, 0.06); % Tuned it measuring the real width of the corridor (3m) 0.06
map = binaryOccupancyMap(scaledimage);

classdef Tasks < Simulink.IntEnumType
 enumeration
 Arm_Pick (0)
 Arm_Place (1)
 Arm_Home (2)
 Robot_Navigate (3)
 Idle (4)
 end
end

85

11.3.3 CheckAtStnRange Simulink function

11.3.4 ThetaQuarterSelection and AngVelSignController Simulink functions

function atStnRange = checkAtStnRange(targetPose,currentPose)
atStnRange = 0;
 if(targetPose(3)==0||abs(targetPose(3))==pi)
 if(abs(currentPose(2)-targetPose(2))<0.08 && abs(currentPose(1)-targetPose(1))<0.3)
 atStnRange = 1;
 else
 atStnRange = 0;
 end
 elseif(abs(targetPose(3))==pi/2)
 if(abs(currentPose(1)-targetPose(1))<0.08 && abs(currentPose(2)-targetPose(2))<0.3)
 atStnRange = 1;
 else
 atStnRange = 0;
 end
 end
end

function situation = thetaQuarterSelection(scaledPhi,theta)
sit = 0;
if(scaledPhi*theta>=0)
 if(theta>scaledPhi)
 sit=100; % w>0
 elseif(theta<scaledPhi)
 sit=200; % w<0
 elseif(theta==scaledPhi)
 sit=300; % oriented
 end
else
 if(theta<pi/4 && theta>=0) % first half - first quarter
 sit=11;
 elseif(theta<pi/2 && theta>=pi/4) % second half - first quarter
 sit=12;
 elseif(theta<3*pi/4 && theta>=pi/2) % first half - second quarter
 sit=21;
 elseif(theta<pi && theta>=3*pi/4) % second half - second quarter
 sit=22;
 elseif(theta<-3*pi/4 && theta>=-pi) % first half - third quarter
 sit=31;
 elseif(theta<-pi/2 && theta>=-3*pi/4) % second half - third quarter
 sit=32;
 elseif(theta<-pi/4 && theta>=-pi/2) % first half - fourth quarter
 sit=41;
 elseif(theta<0 && theta>=-pi/4) % second half - fourth quarter
 sit=42;
 elseif((theta==pi && scaledPhi==-pi) || (theta==-pi && scaledPhi==pi))
 sit=400;
 end
end

situation = sit;
end

86

function [w_pos, w_neg, oriented] = angVelSignController(scaledPhi,sit,theta)

w_pos=0;
w_neg=0;
oriented=0;

switch(sit)
 case 100
 w_pos=1;
 w_neg=0;
 oriented=0;
 case 200
 w_pos=0;
 w_neg=1;
 oriented=0;
 case 300
 w_pos=0;
 w_neg=0;
 oriented=1;
 case 400
 w_pos=0;
 w_neg=0;
 oriented=1;
 case 11
 if(scaledPhi<0 && scaledPhi>=-pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi<-pi/4 && scaledPhi>=-pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-pi/2 && scaledPhi>=-3*pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi<-3*pi/4 && scaledPhi>=-pi)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi==0 && theta~=0)
 w_pos=1;
 w_neg=0;
 oriented=0;
 end
 case 12
 if(scaledPhi<=0 && scaledPhi>=-pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi<-pi/4 && scaledPhi>=-pi/2)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi<-pi/2 && scaledPhi>=-3*pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-3*pi/4 && scaledPhi>=-pi)
 w_pos=0;
 w_neg=1;
 oriented=0;
 end
 case 21
 if(scaledPhi<=0 && scaledPhi>=-pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi<-pi/4 && scaledPhi>=-pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-pi/2 && scaledPhi>=-3*pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-3*pi/4 && scaledPhi>=-pi)
 w_pos=0;
 w_neg=1;
 oriented=0;
 end
 case 22

87

case 21
 if(scaledPhi<=0 && scaledPhi>=-pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi<-pi/4 && scaledPhi>=-pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-pi/2 && scaledPhi>=-3*pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-3*pi/4 && scaledPhi>=-pi)
 w_pos=0;
 w_neg=1;
 oriented=0;
 end
 case 22
 if(scaledPhi<=0 && scaledPhi>=-pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-pi/4 && scaledPhi>=-pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-pi/2 && scaledPhi>=-3*pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi<-3*pi/4 && scaledPhi>=-pi)
 w_pos=0;
 w_neg=1;
 oriented=0;
 end
 case 31
 if(scaledPhi>=0 && scaledPhi<pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/4 && scaledPhi<pi/2)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi>=pi/2 && scaledPhi<3*pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi>=3*pi/4 && scaledPhi<pi)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi==-pi && theta~=-pi)
 w_pos=1;
 w_neg=0;
 oriented=0;
 end
 case 32
 if(scaledPhi>=0 && scaledPhi<pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/4 && scaledPhi<pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/2 && scaledPhi<3*pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi>=3*pi/4 && scaledPhi<=pi)
 w_pos=1;
 w_neg=0;
 oriented=0;
 end
 case 41
 if(scaledPhi>=0 && scaledPhi<pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/4 && scaledPhi<pi/2)

88

case 32
 if(scaledPhi>=0 && scaledPhi<pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/4 && scaledPhi<pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/2 && scaledPhi<3*pi/4)
 w_pos=1;
 w_neg=0;
 oriented=0;
 elseif(scaledPhi>=3*pi/4 && scaledPhi<=pi)
 w_pos=1;
 w_neg=0;
 oriented=0;
 end
 case 41
 if(scaledPhi>=0 && scaledPhi<pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/4 && scaledPhi<pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/2 && scaledPhi<3*pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=3*pi/4 && scaledPhi<=pi)
 w_pos=1;
 w_neg=0;
 oriented=0;
 end
 case 42
 if(scaledPhi>=0 && scaledPhi<pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/4 && scaledPhi<pi/2)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=pi/2 && scaledPhi<3*pi/4)
 w_pos=0;
 w_neg=1;
 oriented=0;
 elseif(scaledPhi>=3*pi/4 && scaledPhi<=pi)
 w_pos=0;
 w_neg=1;
 oriented=0;
 end
end
end

89

11.3.5 SetSignLinVel Simulink function

11.3.6 UR3goalReached and GripperGoalReached Simulink function

function sign_v = setSignLinVel(perpend,currentPose,targetPose)
sign_v = 1;
if(perpend==1)
 if(targetPose(3)==0)
 if(currentPose(1)<targetPose(1))
 sign_v = 1;
 elseif(currentPose(1)>targetPose(1))
 sign_v = -1;
 else
 sign_v = 1;
 end
 elseif(abs(targetPose(3))==pi)
 if(currentPose(1)<targetPose(1))
 sign_v = -1;
 elseif(currentPose(1)>targetPose(1))
 sign_v = 1;
 else
 sign_v = 1;
 end
 elseif(targetPose(3)==pi/2)
 if(currentPose(2)<targetPose(2))
 sign_v = 1;
 elseif(currentPose(2)>targetPose(2))
 sign_v = -1;
 else
 sign_v = 1;
 end
 elseif(targetPose(3)==-pi/2)
 if(currentPose(2)<targetPose(2))
 sign_v = -1;
 elseif(currentPose(2)>targetPose(2))
 sign_v = 1;
 else
 sign_v = 1;
 end
 end
else
 sign_v = 1;
end
end

function successLocal = UR3goalReached(taskCurrentLocal, taskTargetLocal, tolerance)
 successLocal = false;

 diffWpts = zeros(length(taskCurrentLocal(:,1)),1);
 diffWpts(:,:) = abs(taskCurrentLocal-taskTargetLocal);
 errorStatus = diffWpts < tolerance;
 if all(errorStatus)
 successLocal = true; % goal achieved
 end
end

function successLocal = GripperGoalReached(gripperCurrentState, gripperTargetState)
 successLocal = false;

 grip_check = abs(gripperCurrentState-gripperTargetState);

 if(grip_check==0)
 successLocal = true;
 end
end

90

11.3.7 UR3_TCP Matlab Script

Pick_checkpoints = readtable('TCP_pick_checkpoints_new2.xlsx');
Place_checkpoints = readtable('TCP_place_checkpoints_new2.xlsx');
% Checkpoints
x_check_pick = (Pick_checkpoints.X);
y_check_pick = (Pick_checkpoints.Y);
z_check_pick = (Pick_checkpoints.Z);
x_check_place = (Place_checkpoints.X);
y_check_place = (Place_checkpoints.Y);
z_check_place = (Place_checkpoints.Z);

% Simulation
% PICK:
x_pick_sim = -(simulation.x_TCP.signals.values(indx_pick(1):indx_mir(2)-1));
y_pick_sim = -(simulation.y_TCP.signals.values(indx_pick(1):indx_mir(2)-1));
z_pick_sim = (simulation.z_TCP.signals.values(indx_pick(1):indx_mir(2)-1));
x_pick_sim = x_pick_sim.*1000;
y_pick_sim = y_pick_sim.*1000;
z_pick_sim = z_pick_sim.*1000;
% PLACE :
x_place_sim = (simulation.x_TCP.signals.values(indx_place(1):indx_mir(3)-1));
y_place_sim = (simulation.y_TCP.signals.values(indx_place(1):indx_mir(3)-1));
z_place_sim = (simulation.z_TCP.signals.values(indx_place(1):indx_mir(3)-1));
x_place_sim = x_place_sim.*1000;
y_place_sim = y_place_sim.*1000;
z_place_sim = z_place_sim.*1000;

% Node-red
nodered_data_tcp = readtable('C:\Users \Desktop\ nr_tcp.xlsx');
nodered_pick_tcp = [nodered_data_tcp.Var1(115:608), nodered_data_tcp.Var2(115:608),
nodered_data_tcp.Var3(115:608)];
nodered_place_tcp = [nodered_data_tcp.Var1(609:end), nodered_data_tcp.Var2(609:end),
nodered_data_tcp.Var3(609:end)];
% Pick:
x_pick_nr = (nodered_pick_tcp(:,1));
y_pick_nr = (nodered_pick_tcp(:,2));
z_pick_nr = (nodered_pick_tcp(:,3));
nr_pose_pick = [x_pick_nr, y_pick_nr, z_pick_nr];
% Place:
x_place_nr = (nodered_place_tcp(:,1));
y_place_nr = (nodered_place_tcp(:,2));
z_place_nr = (nodered_place_tcp(:,3));
nr_pose_place = [x_place_nr, y_place_nr, z_place_nr];

% nr_offset:
dz_check_pick = z_pick_nr(1) - z_check_pick(1);
z_check_pick = z_check_pick + dz_check_pick;
dz_check_place = z_place_nr(1) - z_check_place(1);
z_check_place = z_check_place + dz_check_place;

% Optitrack:
x_tcp_opt = data_Optitrack.intestazione15(3:end);
y_tcp_opt = data_Optitrack.intestazione16(3:end);
z_tcp_opt = data_Optitrack.intestazione17(3:end);
% Pick:
x_pick_opt = smooth(str2double(x_tcp_opt(368:1443)));
y_pick_opt = smooth(str2double(y_tcp_opt(368:1443)));
z_pick_opt = smooth(str2double(z_tcp_opt(368:1443)));

x_base_pick_opt = (smooth(str2double(data_Optitrack.intestazione1(494))));
y_base_pick_opt = (smooth(str2double(data_Optitrack.intestazione2(494))));
z_base_pick_opt = (smooth(str2double(data_Optitrack.intestazione3(494))));
% Place:
x_place_opt = smooth(str2double(x_tcp_opt(2165:2932)));
y_place_opt = smooth(str2double(y_tcp_opt(2165:2932)));
z_place_opt = smooth(str2double(z_tcp_opt(2165:2932)));

x_base_place_opt = (smooth(str2double(data_Optitrack.intestazione1(2165))));
y_base_place_opt = (smooth(str2double(data_Optitrack.intestazione2(2165))));
z_base_place_opt = (smooth(str2double(data_Optitrack.intestazione3(2165))));

% Erease Base offset:
x_tcp_pick_opt = -(x_pick_opt - x_base_pick_opt);
y_tcp_pick_opt = y_pick_opt - y_base_pick_opt;
dz_opt_pick = z_pick_nr(1) - y_tcp_pick_opt(1);
y_tcp_pick_opt = y_tcp_pick_opt + dz_opt_pick;
z_tcp_pick_opt = -(z_pick_opt - z_base_pick_opt);
%
x_tcp_place_opt = x_place_opt - x_base_place_opt;
y_tcp_place_opt = y_place_opt - y_base_place_opt;
dz_opt_place = z_place_nr(1) - y_tcp_place_opt(1);

91

% Erease Base offset:
x_tcp_pick_opt = -(x_pick_opt - x_base_pick_opt);
y_tcp_pick_opt = y_pick_opt - y_base_pick_opt;
dz_opt_pick = z_pick_nr(1) - y_tcp_pick_opt(1);
y_tcp_pick_opt = y_tcp_pick_opt + dz_opt_pick;
z_tcp_pick_opt = -(z_pick_opt - z_base_pick_opt);
%
x_tcp_place_opt = x_place_opt - x_base_place_opt;
y_tcp_place_opt = y_place_opt - y_base_place_opt;
dz_opt_place = z_place_nr(1) - y_tcp_place_opt(1);
y_tcp_place_opt = y_tcp_place_opt + dz_opt_place;
z_tcp_place_opt = z_place_opt - z_base_place_opt;

% sim offset:
dz_sim_pick = z_pick_nr(1) - z_pick_sim(1);
z_pick_sim = z_pick_sim + dz_sim_pick;

dz_sim_place = z_place_nr(1) - z_place_sim(1);
z_place_sim = z_place_sim + dz_sim_place;

