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Abstract

I3C Basic is a scaled-down and less complex version of the powerful, flexible and
efficient I3C interface, suitable for a wide range of device connectivity applications,
including sensor and memory interfaces. The I3C interface was developed by the
MIPI Alliance and is designed to overcome the limitations of the I2C interface,
while maintaining backward compatibility.
Similar to I2C, devices on the I3C bus communicate in a controller/target environ-
ment, where both the controller and target device can initiate communication.
In this project, the I3C target device used is the I3CS IP, which supports functions
based on the MIPI I3C v.1.1.1. Due to the size and complexity of the project,
functional verification becomes a challenge throughout the design flow. For this
reason, a suitable verification environment must be developed to accelerate the
verification phase. Starting from the architecture study of the target, the objective
of this work, performed in collaboration with TDK InvenSense, is to develop a
verification environment that can be used to test the correct functioning of the
main operations of the I3CS IP target.
The testbench environment consists of the VIP block, which simulates the controller,
the DUT, i.e. the design under test (IP I3CS), the Register File, which serves as the
reference model; and a Scoreboard, which compares the actual values sent by the
VIP with the values expected by the Register File. An interface must be defined
between the VIP and DUT blocks so that the Controller (VIP) can communicate
with the I3CS IP Target (DUT) via two buses, Serial Data (SDA) and Serial Clock
(SCL). In this way, the controller can generate stimuli for the DUT to verify its
correct behaviour.
The verification environment is based on the Universal Verification Methodology
(UVM), with the UVM class library adding many automation functions such as
sequences and data automation to the System Verilog language. In the UVM
environment there are several components that together are responsible for driving
the input tests to the Design Under Test (DUT), collecting the output transactions
and finally comparing the actual results with the expected ones. To improve the
verification of the I3CS IP target, it is necessary to test its functionality outside
normal operating conditions by performing appropriate tests, including illegal
frames.
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Chapter 1

Introduction

1.1 Goal of the thesis and structure
The aim of the thesis activity is to verify the correct operation of the I3CS IP
Target device using the UVM (Universal Verification Methodology). This activity
is carried out by the Verification team at TDK Invensense, a company based in
Milan.

The primary goal is to perform top-level verification of the I3C Target device
architecture, identify and rectify any potential design errors. As digital systems
become increasingly complex, ensuring comprehensive coverage of all scenarios and
working conditions becomes more challenging. The UVM methodology is employed
to address this challenge by providing tools for creating a verification environment
capable of covering all cases.

The UVM methodology offers advantages such as reduced verification time
through randomization and parallel simulation, and automatic generation of test
scenarios.

By leveraging the UVM methodology, the thesis work aims to achieve thorough
verification of the I3C Target device and ensure its compliance with the specifications
outlined by the I3C protocol.

The topics covered in the various chapters of the thesis are outlined below.
In chapter 2 the I3C protocol and UVM methodology are introduced in general.

The parts that make up the I3C protocol, Controller and Target, are described
at a high level, and particular attention is paid to the interfacing between these
two blocks. Next, the UVM standard used for verification is described at a high
level, focusing on the description of the fundamental aspects that make it efficient
compared to other standards, namely the use of uvm_components and uvm_phases.
The verification flow pursued in the thesis work will be detailed in the following
chapters, providing a step-by-step description of the methodology used to verify
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Introduction

the I3CS IP Target device.

chapter 3 focuses on the analysis of the architecture of the Target I3CS IP
device provided by the company. The features of the Target device are described
and a particular emphasis is made on the modes it supports. These modes include
SDR mode, Legacy I2C mode, and HDR mode. The chapter provides an overview
of each mode and explains their significance in the context of the I3C protocol.

Additionally, the chapter introduces and explores various features of the I3C
protocol that are supported by the Target device. This includes an overview of
CCC (Common Command Code), which are standardized commands used by
the Controller to communicate with the Target. The hot-join mechanism is also
discussed, which allows the Target to join the I3C bus after it has been configured.

The communication frame between the Controller and Target is analyzed in
detail. The frame consists of various components, such as the START condition,
Header, Data, and STOP condition. Each component is explained, highlighting its
role in the communication process between the Controller and Target.

In chapter 4, the focus is on the detailed structure of the UVM verification
environment developed for the verification of the Target I3CS IP device. The
discussion starts by delineating the reference test-bench that served as the founda-
tion for developing the entire environment. The main blocks of the test-bench are
identified, and their development is described.
The chapter provides insights into the thought process and decision-making involved
in developing the sequences and tasks within the driver. It highlights the impor-
tance of considering various scenarios and working conditions to ensure thorough
verification coverage of the Target device.

In chapter 5, the focus is on the analysis of the tests implemented during the
thesis activity. The chapter begins by providing a list of the different test cases that
are designed and executed. These test cases cover various scenarios and aspects of
the Target I3CS IP device, including the main read and write operations.
Furthermore, the results generated by the executed tests are represented. The
chapter includes information on the success or failure of each test case, any errors
or issues encountered during the verification process, and any deviations from the
expected behavior. The results provide valuable insights into the correctness and
functionality of the Target device, as well as the effectiveness of the UVM test
environment in capturing and detecting errors.

chapter 6 deals with conclusions highlighting the aims achieved in terms of
completeness of the functional verification and effectiveness of the tests, moreover
the skills acquired and the portability of the tests devised are emphasised.

2



Chapter 2

Overview of I3C Protocol
and UVM Environment

2.1 Introduction to I3C Protocol
I3C is a two-wire bidirectional serial Bus, optimized for multiple sensor target
devices and controlled by only one I3C controller device at a time. I3C is backward
compatible with many Legacy I2C Devices, but I3C Devices support higher speeds
up to a maximum of 12.5 MHz, new communication Modes, and new Device roles.

In the I3C protocol, communication between the Controller and the Target is
facilitated through a two-wire interface consisting of the SDA (Serial Data) line
and the SCL (Serial Clock) line.

The SDA line is responsible for carrying the actual data during the transfer.
It is bidirectional, allowing both the Controller and the Target to transmit and
receive data. The Controller initiates the communication by driving the SDA line
to transmit data, while the Target responds by either driving the line to transmit
data back or releasing it to allow the Controller to transmit.

The SCL line serves as a clock signal that synchronizes the communication
between the Controller and the Target. It provides timing information to ensure
that data is transferred at the correct rate. The SCL line is typically driven by
the Controller, and both the Controller and the Target read and write data on the
SDA line in synchronization with the clock pulses on the SCL line.

By using this two-wire interface, the I3C protocol enables communication
between the Controller and the Target, allowing them to exchange data and
synchronize their actions during the transfer. This approach ensures efficient
and reliable data transfer in a simplified manner, as compared to protocols with
additional communication lines.

fig:Communication Flow illustrates how I3C communication is initiated.
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Figure 2.1: I3C Communication Flow

• SDA is a bidirectional data pin

• SCL

An I3C Bus supports the mixing of various Message types:

1. I2C-like SDR Messages, with SCL clock speeds up to 12.5 MHz

2. Broadcast and Direct CCC Messages that allow the Controller to communicate
to all or one of the Targets on the I3C Bus, respectively

3. I2C messages to Legacy I2C Targets

2.1.1 I3C Controller Device
In the I3C protocol, the Active Controller refers to the I3C device that currently has
control over the bus and is actively initiating and controlling the communication.
The Active Controller can be considered as the "master" device in the I3C bus
system.

Typically, the Active Controller is the device that sends the majority of the
I3C Commands (CCC) on the bus. These commands can be either Broadcast
CCCs, which are intended for all targets on the bus, or Directed CCCs, which
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are specific to individual targets. The Active Controller uses these commands to
initiate various operations and control the behavior of the targets on the bus.

Moreover, the Active Controller is the only device on the I3C bus allowed to
send I2C Messages. This means that it can communicate with I2C devices that are
present on the bus, providing backward compatibility with the legacy I2C protocol.

By being the Active Controller, a device assumes the role of actively controlling
the communication on the I3C bus, sending commands and interacting with
the targets. This distinction helps in managing the bus and coordinating the
communication between different devices effectively.

In addition to send I3C Commands and I2C Messages, an I3C Controller Device
also performs several other important functions in the I3C bus system. Some of
these functions include:

• Dynamic Address Assignment: The I3C Controller Device is responsible
for assigning unique Dynamic Addresses to the Target devices connected to the
bus. It initiates the Dynamic Address Assignment procedure by broadcasting
the ENTDAA (Enter Dynamic Address Assignment) command.

• Arbitration: The I3C Controller Device participates in address arbitration
when multiple devices on the bus attempt to drive an address simultaneously.
It follows the Open Drain approach and competes with other devices, including
other Controllers and Targets, to determine the device that successfully drives
the address onto the bus.

• Clock Generation: The I3C Controller Device generates and controls the
clock signal (SCL) on the bus. It ensures that the clock signal is synchronized
with the data signal (SDA) for reliable and accurate communication between
the devices.

• Bus Management: The I3C Controller Device manages the overall operation
and behavior of the I3C bus. It controls bus transactions, timing, and protocols
to ensure proper data transfer and synchronization between the devices.

• Power Management: The I3C Controller Device may also have the capability
to manage power-related functions on the bus. It can control power modes,
perform power management operations, and coordinate power-related activities
with the connected devices.

• Error Handling: The I3C Controller Device monitors and handles errors
that may occur during communication on the bus. It detects and manages
bus errors, data integrity issues, and other error conditions to ensure reliable
and robust communication.
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Overall, the I3C Controller Device plays a crucial role in managing and controlling
the I3C bus system. It is responsible for initiating communication, assigning
addresses, coordinating transactions, generating clocks, and ensuring smooth and
efficient operation of the bus.

2.1.2 I3C Target Device
An I3C Target Device primarily listens to the I3C Bus for relevant I3C Commands
sent by the Active Controller and responds accordingly. It acts as a "slave" device
in the communication process. Additionally, an I3C Target Device always supports
I3C SDR Mode, which is the basic mode of operation for I3C.

Unlike the I3C Controller Device, an I3C Target Device does not generate the
bus clock (SCL). It relies on the clock generated by the Active Controller for
synchronization during data transfer. The Target Device follows the timing and
synchronization provided by the Active Controller.

For addressing, the I3C Target Device supports the Dynamic Address Assignment
method, known as ENTDAA. This method allows the Target Device to participate
in the Dynamic Address Assignment procedure initiated by the Active Controller.
Through this procedure, the Target Device can obtain a unique Dynamic Address
assigned by the Controller, which it uses for subsequent communication on the I3C
Bus.

In summary, an I3C Target Device listens to commands, supports SDR Mode,
follows the bus clock generated by the Active Controller, and participates in
Dynamic Address Assignment for proper addressing on the bus. In addition the
I3C Target Device can optionally:

• Generate Hot-Join events

• Request to become Active Controller, if the I3C Target Device also has I3C
Controller Device capability.

[1] [2]

2.2 Introduction to Verification
The development of a verification environment for the I3C Target Device is a
crucial aspect of the thesis, and traditional testbenches may not be sufficient for
verifying the functionality of a large-scale design like the I3CS IP Target. The
UVM (Universal Verification Methodology) methodology is chosen to address these
challenges.

UVM is a SystemVerilog-based verification methodology that provides a stan-
dardized framework for developing modular, reusable, and robust verification
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environments. It is built upon the OVM (Open Verification Methodology) version
2.1.1, which was created by Accellera. The UVM Class Library offers pre-defined
building blocks and guidelines that aid in the development of well-structured and
reusable verification components and test environments.

The primary goal of the verification process is to compare the RTL (Register
Transfer Level) implementation of the design with its intended functionality. This
involves defining the expected behavior of the DUT and comparing it against the
observed behavior during simulation. The discrepancies or logic errors observed
between the expected and observed behavior highlight potential functional logic
errors in the design.

These logic errors can occur due to different factors and the verification process
helps to uncover these errors and ensure that the design functions as intended
according to the specifications.

By using the UVM methodology and developing a comprehensive verification
environment, the thesis aims to enhance the verification process, improve test
coverage, and detect any functional logic errors in the I3C Target Device design.

2.2.1 Verification Plan
The three key aspects of a verification plan in hardware design are:

• Coverage Measurements;

• Stimulus Generation;

• Response Checking.

Coverage Measurement This section is the one in which the verification scopes
are described. This section determines if all bugs have been found .

Stimulus generation This section is responsible to generate the input test
vector required to test the whole behaviour of a design. This part is crucial, since it
generates not only valid test vectors but also invalid test vectors to drive the device
outside of normal operating parameter in order to check the error detection logic
of DUT. The goal is to generate test-vectors that allow reaching an high coverage
level.

Response Checking The response checking section is responsible to verify the
DUT responses conform to the specifications regarding the Reference model. One
of the approaches used for this section is based on a Register File and Scoreboard
in a structure like the one shown in Figure 2.2. For example, written and read
values from Register File should match. When a written operation is performed to

7
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the design, the Scoreboard receives the packet with output value from VIP and it
should be the actual value. After that, the same Register File is read back from the
design and the data is the expected value which is always sent to UVM Scoreboard.
At this point the Scoreboard can compare the expected and the actual values to
check if they match.

Figure 2.2: Scoreboard approach

2.3 The Universal Verification Methodology
The Universal Verification Methodology is an IEEE standard and the power of this
methodology consists mainly in three aspects.

• The drastic reduction in the cost of verification: the verification engineer is
assisted by the tools available within the UVM class library, thanks to which
there is an increase in productivity.

• Reusability: it is possible to make use of previously created VIPs and configure
them for new DUT with the same interfaces.

• Interoperability: the UVM standard makes it possible to standardise the con-
struction of verification environments, allowing easy communication between
different verification teams.

UVM is based on SV (System Verilog), a hardware description and verification
language. It is open-source and compatible with all the major commercial simulator
like Cadence, Mentor Graphics, Aldec and Synopsys. The base classes in the UVM
hierarchy largely fall into three distinct categories:

• UVM Components: These classes represent the fundamental building
blocks of a verification environment. They encapsulate reusable functionality
and provide a modular structure for organizing the verification environment.
Examples of UVM components include the uvm_component class, which serves
as the base class for all UVM components, and the uvm_test class, which is
used to define the top-level test sequences and scenarios.

8
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• UVM Phases: Phases are used to orchestrate the execution of different
tasks within the verification environment. They provide a structured flow for
initializing, configuring, running, and shutting down the verification compo-
nents. The UVM phases allow for better control and synchronization of the
verification process. Some of the key UVM phases include the build_phase,
connect_phase, run_phase, and shutdown_phase.

• UVM Transactions: Transactions represent the communication between the
testbench and the DUT. They encapsulate the data and control information
exchanged between the verification components and the DUT. UVM transac-
tions provide a standardized format for stimulus generation, response checking,
and functional coverage collection. The uvm_transaction class is a base class
for creating custom transaction classes tailored to specific communication
protocols or interfaces.

These base classes, along with other supporting classes and utilities, form the
foundation of the UVM methodology. They promote reusability, scalability, and
maintainability in the verification process by providing a standardized framework
for developing verification environments. By leveraging these classes, verification
engineers can focus on developing the specific test scenarios and sequences needed
to thoroughly verify the functionality of the design.

In UVM, the following phases are commonly used to synchronize and coordinate
the activities of different components within the test-bench:

Build Phase

• uvm_build_phase: This phase is responsible for constructing and initial-
izing the components of the testbench. It is typically used to create and
configure the necessary objects, set up connections, and allocate resources
required for the testbench.

• uvm_connect_phase: In this phase, the connections between the different
components of the testbench are established. It ensures that the signals and
interfaces are correctly connected and ready for communication.

• uvm_end_of_elaboration_phase: This phase occurs after the elabora-
tion of the design and testbench is complete. It is often used for performing
any final configuration or initialization tasks before the simulation starts.

• uvm_start_of_simulation_phase: This phase marks the beginning of
the simulation and is typically used to set up initial stimulus or prepare the
testbench for simulation.
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Figure 2.3: UVM Class Diagram

Run phase

• uvm_run_phase: The run phase is the main phase where the testbench
executes the test scenarios and sequences. It includes generating stimulus,
driving the signals, and verifying the expected behavior of the design.

Clean up phase

• uvm_extract_phase: This phase is used for collecting and analyzing
coverage data, functional coverage, and other metrics related to the verification
progress.

• uvm_check_phase: It checks for any unexpected conditions in the verifica-
tion environment.

• uvm_report_phase: It reports results of the test.

• uvm_final_phase: It ends the simulation.

These phases provide a structured and synchronized flow for the testbench
components, ensuring that they execute their tasks in the appropriate order. By
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using these phases, the testbench components can collaborate effectively and
exchange information at the right stages of the verification process.
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2.3.1 The UVM Components
UVM is based on OOP, this allows to increase the redeployment. UVM Library
provides a set of useful class from which deriving object and components, each
class contains methods to deal with common operations.
The UVCs present in the verification environment are developed to communicate
with the Target I3CS IP, and they behave as a Controller because:

• They send I3C commands: the UVCs generate and send I3C commands to
the Target I3CS IP. These commands can be broadcast commands that target
all devices on the bus or directed commands that address specific devices. By
sending these commands, the UVCs emulate the behavior of an I3C Controller.

• They control the bus clock: the UVCs are responsible for generating and
controlling the bus clock (SCL) signal during communication with the Target
I3CS IP. They synchronize the data transfer and ensure that the communication
occurs at the correct timing and frequency.

• They handle the communication protocol: the UVCs implement the I3C
communication protocol, including the formatting of messages, addressing,
and data transfer. They follow the rules and specifications defined by the I3C
protocol to ensure proper communication with the Target I3CS IP.

By behaving as a Controller, the UVCs simulate the actions and behavior of an
I3C Controller device, allowing for the verification of the Target I3CS IP’s response
and behavior in various scenarios and test cases.

Moreover,UVM uses TLM (Transaction-Level Modeling) APIs to facilitate
communication between UVM components. TLM provides an abstraction layer that
allows components to exchange transactions, which are packets of data representing
specific actions or events in the DUT.

Sequences are used to define a sequence of transactions or actions to be performed
by a UVM component. These sequences can be customized and extended to
represent various scenarios and test cases. The sequences generate transactions
that carry the necessary information and commands for the DUT.

Methods such as put and get are used to send or receive transactions between
components. The put method is used to send a transaction from one component
to another, while the get method is used to receive a transaction. These methods
provide a standardized interface for communication and ensure that transactions
are correctly passed between components.

By using TLM APIs and combining sequences and methods, UVM components
can effectively exchange transactions and communicate with each other, enabling
the coordinated and synchronized execution of test scenarios and the verification
of the DUT’s behavior.
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Design Under Test It is basically the RTL description in the designing language.
It describes the features and functions of the design.

Sequencer It is the entity on which the sequences will run. In order to test DUT
behavior, sequence of transaction needs to be applied. Sequencer runs stimulus
generation code and sends sequence items down to driver whenever driver demands
by it.

Driver It acts as an active component in the verification environment.
It receives sequence items from the sequencer, which encapsulate the necessary

data and information about the desired transactions. The driver then translates
these sequence items into appropriate signal values on the interface of the DUT.
It uses the appropriate protocol or interface-specific mechanisms to send the
transactions to the DUT.

Monitor It plays a crucial role in capturing and analyzing the behavior of the
DUT, enabling the verification environment to collect coverage information, perform
checks, and ensure the correctness of the design under verification.

Agent It serves as a bridge between the testbench and the DUT. It manages
the communication and data flow between the testbench and the DUT through its
driver and monitor. The sequencer within the agent controls the generation and
sequencing of transactions or stimulus that are sent to the DUT.

The agent can operate in two modes: passive and active.

Scoreboard It is responsible for verifying the correctness of the DUT’s behavior
by comparing its output signals, registers, or other relevant data with the expected
values. It ensures that the DUT is producing the expected results according to the
specified functionality or requirements.

Environment It is a higher-level structure that assembles and manages various
components of the verification environment. It provides a modular and organized
approach to building the testbench for verifying the design under test.

Test It is the top-level component in the verification environment hierarchy. It is
represented by a class that is derived from the uvm_test base class provided by
the UVM library.

The test class serves as a container for configuring the testbench and coordinating
the overall verification process. It allows you to control the dynamic behavior of the
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testbench components, such as the DUT (Design Under Test), VIP (Verification
IP), and other UVM components, by utilizing sequences.

Sequence items They are the necessary data objects that are passed at an
abstract level between the verification components. Sequence items can contain
fields or properties that represent different aspects of the transaction, such as
addresses, data values, control signals, or any other relevant information. These
fields are typically defined as class variables within the sequence item class.

Sequences They are responsible for generating a set of transactions or stimuli
to be applied to the design under test (DUT). Sequences gather sequence items,
which encapsulate the necessary data for each transaction, and combine them to
create a coherent set of inputs.

Sequences can be either randomized or pre-determined, depending on the specific
testing requirements.

[3]
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Chapter 3

Target I3CS IP architecture

Prior to delving into the implementation of the UVM framework, it is important
to provide an introduction to the device under verification and its features.

The DUT, in this case, is the I3CS Target IP, which is designed to adhere to
the specifications outlined in the MIPI I3C Standard v1.1.1.

The I3CS supports the following features:

• I2C Private Read and Private Write,

• I3C SDR Private Read and Private Write,

• I3C CCC Broadcast and Direct commands,

• I3C Hot Join request,

• I3C ENTDAA procedure.

3.1 Bus Configuration
An I3C bus can have the following compatible devices connected to it:

• I3C Primary Controller,

• I3C Secondary Controller,

• I3C Target,

• I2C Target.

In the context of I3C, a pure bus refers to a scenario where there are no I2C
devices present on the bus, and all devices connected to the bus are I3C devices.
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On the other hand, a mixed bus refers to a scenario where both I3C devices and
I2C devices are present on the bus.

When an I3C bus is initially configured, it is done so in SDR mode by the I3C
Primary Controller. The Primary Controller is responsible for controlling and
managing the bus operations. If there is an I3C Secondary Controller present
on the bus, it operates as a Target to the Primary Controller. The Secondary
Controller follows the instructions and commands issued by the Primary Controller
and participates in the bus transactions accordingly.

It’s worth nothing that I3C is designed to be backward compatible with I2C,
allowing I2C devices to coexist on the same bus. However, in a pure I3C bus
configuration, there won’t be any I2C devices present, and all devices on the bus
will adhere to the I3C protocol.

A typical bus typology is reported in Figure 3.1.

Figure 3.1: Typical I3C Bus Configuration

[1]

3.2 Start, Stop and Restart Conditions
I3C uses a Frame encapsulation method. Each I3C Frame consists of the START,
Header, Data, and STOP, which are always present.

Every transaction on the I3C bus begins with a START condition. This condition
occurs when the SDA line transitions from high to low while the SCL line remains
consistently high. The Target detects the Start condition on the bus, while the
Controller initiates it.
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Conversely, all transactions on the I3C bus conclude with a STOP condition
asserted by the Controller. A STOP condition is triggered by a low-to-high
transition on the SDA line while the SCL line remains consistently high. The
Target detects the STOP condition on the bus, while the Controller asserts it.

Instead of relying solely on the STOP condition, the I3C protocol also introduces
a RESTART condition. This allows for the transmission of multiple messages within
the same frame without requiring a stop and start signal between each message.

It is worth noting that the Start, Restart, and Stop conditions in the I3C
Protocol are identical to those found in the I2C protocol. The behaviour of the
SDA and SCL signals during the START, STOP and RESTART condition are
shown in Figure 3.2, Figure 3.3 and Figure 3.4 respectively

Figure 3.2: START Condition

Figure 3.3: STOP Condition

3.2.1 I3C Address Header
After initiating a START, the Header in I3C serves the purpose of Bus Arbitration.
The Controller utilizes the Header to address the Target Device.

An I3C Bus consists of one Controller and one or more Targets. A device that
possesses both I3C Controller and I3C Target capabilities cannot simultaneously
function as both a Controller and a Target. Instead, it must be configured to
operate either as an I3C Target Device or as an I3C Controller Device.
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Figure 3.4: RESTART Condition

Within the I3C protocol, various Controller and Target Device Roles are defined
to represent the functional capabilities of each respective I3C device. Each I3C
Device must support at least one Device Role, although it can be designed to
support multiple Device Roles. The supported Device Roles of an I3C Device are
exposed through its BCR (Bus Characteristics Register).

During a data transfer, the bus Controller initiates the process. It begins by
issuing a START signal to all connected devices. Subsequently, the Controller sends
the ADDRESS of the specific Target device it intends to communicate with. The
Read or Write operation signal bit is also transmitted alongside the ADDRESS bits.
All devices connected to the bus compare the received address bits with their own
address. If there is no match, they simply wait until the bus is released. Conversely,
if the address matches, the chip generates an ACK (Acknowledgment) signal in
response.

Upon receiving an acknowledgement, the Controller proceeds with the trans-
mission of DATA. Each data byte comprises 8 bits, and an acknowledgement or
transition bit follows each transferred byte. Once the transmission is complete, the
Controller issues the STOP signal.

3.2.2 I3C Address Arbitration
An Address Header that follows a START condition, excluding a Repeated START,
is susceptible to Arbitration. This means that both the Controller and one or more
Targets may contend for control of the Bus and attempt to drive their respective
Addresses onto the Bus using the SDA line. The Arbitration model employed in
this scenario adheres to the standard Open Drain approach.

In this model, both the Controller and the Target(s) that are transmitting an
Address must adhere to the same rule:

1. If the current bit to transmit is a 0, then the Device shall drive SDA Low
after the falling edge of SCL and hold Low until the next falling edge of SCL.
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2. If the current bit to transmit is a 1, then the Device shall not drive SDA, but
rather shall High-Z SDA on the falling edge of SCL.

3.3 I3C SDR Data Words
An I3C Message is considered an SDR Message if it adheres to the specifications
and requirements of the SDR mode in the I3C protocol. Here are the conditions
that define an SDR Message in I3C:

• The Address in the Address Header could be 7’h7E, that is the I3C Broadcast
Address. All I3C Targets shall match Address value 7’h7E. While, no I2C
Target will match the Broadcast Address because this value is reserved and
unused in I2C.

• The Address in the Address Header matches the Target’s Dynamic Address.
All I3C Targets shall match their own Dynamic Address.

In summary, an I3C Message is classified as an SDR Message when it follows the
specifications and requirements of the SDR mode in terms of mode of operation,
data rate, frame format, signal levels, and device support.

The I3C SDR mode is backward compatible with I2C protocol and conditions,
which allows for legacy I2C Target Devices to coexist with I3C devices on the same
I3C bus. The MIPI I3C Specification strongly suggests that legacy I2C devices
incorporate 50 ns spike filters on the SDA and SCL pads to make it possible for
them to ignore the I3C traffic higher speeds. With spike filters implemented for
all I2C targets on the bus, the I3C bus can operate at the maximum rated clock
frequency. The I3C Target module on this device can be used in I2C Target mode
until it is assigned a Dynamic Address.

In Figure 3.5 is reported the frame about I3C SDR mode and about the I2C
Legacy mode.

In I3C SDR, the Data Words match I2C only in the sense that they are both 9
bits long. I3C SDR Data Words differ from I2C in two ways.

• Ninth Bit of SDR Controller Written Data as Parity : In I2C, the
ninth Data bit written by the Controller serves as an ACK from the Target.
However, in I3C, the ninth Data bit written by the Controller represents the
Parity of the preceding eight Data bits. As a result, in I3C, the Target is not
required to drive the SDA line for Data written by the Controller in SDR
mode.
In the context of SDR, the ninth bit of Write data in I3C is commonly referred
to as the Transition Bit (T-bit).

19



Target I3CS IP architecture

Figure 3.5: Address Header Comparison

• Ninth Bit of SDR Target Read Data as End-of-Data: In I2C, the ninth
Data bit transmitted from the Target to the Controller serves as an ACK by
the Controller. However, in I3C, this ninth Data bit has a different purpose. It
allows the Target to terminate a Read operation, and it enables the Controller
to abort a Read operation.In the context of SDR mode in I3C, the ninth
bit of Read data is referred to as the T-Bit. It has specific significance in
determining the end of a Read operation. To facilitate this, a Target should
incorporate an SDA Read detector. This detector monitors whether the SCL
clock has remained unchanged for a duration of 100 microseconds (us) or
more. If such a condition is detected, the Target can abort the ongoing Read
operation by switching SDA to a High-Z state (high impedance) and waiting
for a Repeated START or STOP condition.

Ninth Bit of SDR Controller Written Data as Parity bit In I3C, the
ninth data bit of each SDR Data Word written by the Controller is a Parity Bit,
which is calculated using odd parity. The value of this Parity bit is determined by
performing an XOR operation on the 8 Data bits along with a binary 1, as follows:
XOR(Data[7:0], 1).

During the SCL High period, Parity bit writes should be maintained valid. This
means that the Parity bit should remain stable and not change during this period.
When the T-Bit represents the last data byte being transmitted, the write of the
Parity bit is kept valid through the SCL High period. Once the SCL transitions
to Low, the Controller can then proceed to either change the SDA line or leave
it unchanged in preparation for the Repeated START or STOP condition that
follows.
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Ninth Bit of SDR Target Read Data as End of Data In I2C, the Read
operation from the Target is controlled by the Controller only, which means that
the Target has no control over the amount of data it returns. However, in I3C
SDR, the Target has the ability to control the number of data words it returns,
providing more flexibility. Additionally, the I3C Controller also has the ability to
abort the Read operation prematurely if necessary.

The mechanism that controls the Read operation in I3C SDR is based on the
ninth (T) data bit of each data word returned by the Target. The Target can
return the ninth bit in one of three ways:

• No Change: the Target keeps the ninth bit the same as the previous data
word, indicating that there is more data to be read.

• Change to 1: the Target changes the ninth bit to 1, indicating that it has
finished returning data and there is no more data to be read.

• Change to 0: the Target changes the ninth bit to 0, indicating an abort
condition. This allows the Controller to prematurely abort the Read operation
if necessary.

By manipulating the ninth bit in this manner, the Target and Controller can
effectively control the amount of data transferred during a Read operation in I3C
SDR.

• The I3C Target returns the ninth bit as 0 (SDA Low) to end the Message:

– The Target shall set SDA Low on the falling edge of SCL.
– On the following rising edge of SCL, the Target shall set SDA to High-Z.
– The I3C Controller shall drive SDA Low on the rising edge of SCL.
– The I3C Controller then shall issue either a STOP, or a Repeated START.

• The I3C Target returns the ninth bit as 1 (SDA High) to continue the Message:

– The Target shall set SDA High on the falling edge of SCL.
– On the following rising edge of SCL, the Target shall set SDA to High-Z.

• The Target shall monitor the SDA on the falling edge of SCL:

– If SDA is High, then the Target shall continue with the next value.
– If SDA is Low and if there has been a Repeated START, then the Message

has been aborted, and the Target shall not drive SDA after that.
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3.3.1 Transition from Address ACK to SDR Controller
Write Data

The end of any Address Header is an ACK or NACK by the one or more addressed
Targets, using Open Drain on SDA:

• If 7’h7E, then it is the ACK of all I3C Targets on the Bus.

• If a single Target Address, then it is the ACK (or NACK) of the addressed
Target, or a NACK if no such Target is on the Bus.

When the Address Header results in an ACK, I3C SDR specifies how the handoff
is to occur.

3.4 Legacy I2C Transaction on I3C Bus
Until the Dynamic Address is assigned, the I3C Target operates in I2C Target
Mode and uses the Static Address to represent itself on the bus. When in this
mode, the Controller can use an I2C Write Transfer to write data to the Target
directly and an I2C Read Transfer to read data from the Target directly. It is
possible for an I2C Transaction to take place even when the bus is configured to
operate in I3C SDR Mode or when an I3C SDR Transaction is in progress. For
instance, the Controller can choose to transmit I3C Broadcast Address 7’h7E/W
followed by a Restart and I2C Static Address to begin an I2C Transaction while in
I3C SDR Mode.

3.4.1 I2C Private Read and Private Write
I3C Targets are capable of acting as standard I2C Targets as long as they have an
I2C Static Address. The I3CS IP supports two types of I2C transfers:

1. Legacy I2C transfer starting with the Static Target address

2. Legacy I2C transfer starting with the 7’h7E broadcast address

Both types of transfer support Read and Write access types.
In legacy I2C and I3C SDR the Controller must use the following protocol to

transmit the register offset then the data to the I3CS IP.
The ADR field is the Target Static or Dynamic address, OFFSET is the register

offset. DATA is an unbounded series of bytes, The first phase is always a Write
transaction to set the OFFSET, the second phase can be a Read or Write transac-
tion.
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Figure 3.6: Legacy I2C and I3C SDR protocol

In Read mode, the first DATA byte will come from a register read access at
address OFFSET. Then each subsequent byte will come from a read access at the
previous address incremented by one if ena_autoinc is set to one.
In Write mode, the first DATA byte will be sent to register write access at address
OFFSET. Then each subsequent byte will be sent to a write access at previous
address incremented by one through ena_autoinc signal.

• The I3C START and STOP are identical to the I2C START and STOP in their
signaling, but they vary in their timing. In I3C SDR, a STOP or Repeated
START is tolerated any time that SCL is high while the Controller checks SDA
or SDA is Open-Drain. This is unlike I2C, which wants STOP or Repeated
START only after a NACK of an address, or after ACK/NACK of data.

• The I3C Address Header is identical to the I2C Address Header in bit form
and in signaling, but it may vary from I2C in its timing.

• The Data 9-bit Words use the same bit count as I2C, but differ in the ninth
bit where the acknowledge is substituted with the Transition Bit.

3.5 Dynamic Address Assignment Mode
The Active Controller assumes the responsibility of conducting the Dynamic Address
Assignment procedure, which aims to assign a unique Dynamic Address to every
I3C Device connected to the Bus. Once a Target device receives a Dynamic Address,
it will use this address for all subsequent transactions on the I3C Bus, unless the
Controller decides to change it, if applicable.

The Dynamic Address Assignment procedure involves an Address Arbitration
process that shares similarities with I2C. However, it diverges from I2C by in-
corporating the concatenated values of the 48-bit Provisioned ID, BCR (Bus
Characteristics Register), and DCR (Device Characteristics Register). In each
Arbitration round, the Device on the I3C Bus with the lowest concatenated value
emerges as the winner, and the Controller assigns a unique Dynamic Address to
each victorious Device.
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3.5.1 Dynamic Address Assignment Procedure
The Dynamic Address Assignment procedure in I3C is initiated by the Active
Controller through broadcasting the ENTDAA CCC. If a Target device does not
have a Dynamic Address already assigned, it automatically participates in this
procedure.

During the Dynamic Address Assignment, the Target device sends its own 48-bit
Provisional ID, BCR, and DCR in Open Drain mode to engage in Arbitration. The
Target device will win the Arbitration if it has the lowest concatenated value of
the Provisional ID, BCR, and DCR.

Once the Target device wins the Arbitration, the Active Controller transfers
a 7-bit Dynamic Address to the Target device, followed by the Parity T-bit. If
the parity is valid, the Target device acknowledges (ACK)s the Active Controller,
stores the Dynamic Address, switches to I3C SDR mode, and updates its Dynamic
Address accordingly.

However, if the parity is invalid, indicating an error in the data transmission, the
Target device passively NACKs (negative acknowledgement) the Active Controller
and waits for the next Arbitration round to retry the Dynamic Address Assignment
procedure. Figure 5.16 shows the frame format for a typical Dynamic Address
Assignment procedure.

3.5.2 Target Device48-bit Provision ID
A Device that supports the Broadcast Command Code Enter Dynamic Address
Assignment shall have a 48-bit Provisioned ID. The Controller shall use this
48-bit Provisioned ID, unless the Device has a Static Address and the Controller
uses the Static Address.

The 48-bit Provisioned ID is composed of three parts:

1. Bits[47:33]:MIPI Manufacturer ID (15 bits) only the 15 Least Significant
Bits are used.

2. Bit[32]:Provisioned ID Type Selector(One Bit, 1’b1:Random Value,
1’b0:Vendor Fixed Value)

3. Bits[31:0]:32 bits containing either a Vendor Fixed Value or a Random Value,
depending on the value of Bit[32]. If the value of Bit[32] is 1’b0 : Vendor
Fixed Value

3.5.3 CCC (Common Command Code)
Common Command Codes are standardized commands that are universally sup-
ported and can be transmitted by the Controller in the I3C bus. These commands

24



Target I3CS IP architecture

can either be directed to a specific target or broadcasted to all targets simultane-
ously. The CCC protocol is formatted using I3C SDR mode and always commences
with the I3C Broadcast Address (7’h7E/W). This specific address is recognized by
all I3C targets present on the bus. However, any I2C target on the bus will NACK
the request as 7’h7E is a reserved address in the I2C protocol.
Each CCC is assigned a unique 8-bit command code. The command code space is
divided into two categories: Broadcast CCCs and Direct CCCs.

Broadcast CCCs encompass command codes ranging from 0x00 to 0x7F. These
codes are used for commands that are broadcasted to all targets on the bus
simultaneously.

On the other hand, Direct CCCs include command codes from 0x80 to 0xFE.
These codes are utilized for commands directed specifically to a particular target.

To differentiate between the two types of CCCs, targets can examine the Most
Significant bit (bit 7) of the command code. If bit 7 is set to 0, it indicates a
Broadcast CCC, whereas if it is set to 1, it signifies a Direct CCC.

For a comprehensive list of the command codes associated with all supported
CCCs in this Target module, please refer to table 3.1.

All the Broadcast CCCs share the same general frame format and has the
following sequence:

• Start or Restart, followed by the Broadcast Address,

• Broadcast CCC value, followed by any required defining byte or data,

• End of command.

All the Direct CCCs share the same general frame format and has the following
sequence:

• Start or Restart, followed by the Broadcast Address,

• Direct CCC value, followed by any required defining byte or data,

• Restart, followed by the address of the targeted Target, followed by any
required defining byte or data,

• Repeat step 3 if the Controller wants to address multiple targets in the same
CCC transaction,

• End of command.

In this thesis activity, the tested CCC is the ENTDAA command. However, it’s
important to note that the Target module also supports other commands listed
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in table 3.1. The Controller employs the Broadcast ENTDAA CCC to signal all
I3C devices on the bus to initiate the Dynamic Address Assignment procedure,
as outlined in the Dynamic Address Assignment section. The Target module will
participate in this procedure unless it already has a Dynamic Address assigned. In
such cases, the Target will NACK the ENTDAA command and wait for the next
Start condition.

It’s important to note that the ENTDAA CCC always concludes with a Stop
condition (not a Restart).

Table 3.1: CCCs Table
Common Command

Code (CCC) Type Value Brief Description

ENEC Enable Events Command Broadcast Write 0x00 Enable Target events
such as Hot-JoinDirect Write 0x80

DISEC Disable Events Command Broadcast Write 0x01 Disable Target event
such as Hot-joinDirect Write 0x81

ENTDAA Enter Dynamic Address
Assignment Broadcast Write 0x07

Enter Controller initiation
of Dynamic
Address Assignment
Procedure

RSTDAA Reset Dynamic Address
Assignment

Broadcast Write 0x06 Discard Current
Dynamic AddressDirect Write 0x86

SETNEWDA Set New Dynamic
Address Direct Write 0x88

Controller assigns
new Dynamic Address
to a Target

GETPID Get provisional ID Direct Read 0x8D Controller queries
Target’s Provisional ID

GETDCR Get Device
Characteristics Register Direct Read 0x8F

Controller queries
Target’s
Device Characteristics
Register

GETBCR Get Bus Characteristics
Device Direct Read 0x8E Controller queries

Target’s Bus Characteristics Register

RSTACT Target Reset Action Broadcast Write 0x2A Controller configures
and/or queries
Target Reset action and timing

Direct Write and
Read 0x9A

SETMRL Set Maximum Read
Length

Broadcast Write 0x0A Controller sets
maximum read length and IBI payload sizeDirect Write 0x8A

SETMWL Set Maximum Write
Length

Broadcast Write 0x09 Controller sets
maximum write lengthDirect Write 0x89

GETMRL Get Mximum Read
Length Direct Read 0x8C

Controller queries
Target’s maximum
possible read length
and IBI
payload size

GETMWL Get Maximum Write
Length Direct Read 0x88

Controller queries
Target’s maximum
possible write length

GETMXDS Gets Maximum Data
Speed Direct Read 0x94

Controller queries
Target’s maximum
read and write
data speeds
and maximum read
turnaround time

SETBUSCON Set Bus Context Broadcast Write 0x0C

Controller specifies a
higher-level protocol
and/or
I3C specification version

GETSTATUS Get Device Status Direct Read 0x90 Controller queries
Target’s operating status
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3.6 Hot-Join Mechanism
The Hot-Join mechanism in I3C allows a Target to join the I3C bus even after
the bus has been configured according to the I3C Bus Configuration. Hot-Join is
typically used in scenarios where the Target remains depowered until needed or
when the Target is physically inserted into the I3C bus without disrupting the SDA
and SCL lines.

To initiate a Hot-Join request, the Target must meet the following conditions:
• The Target is Hot-Join capable.

• The Target does not have a Dynamic Address already assigned.

• Hot-Join is enabled on the bus by the Controller.
The Target can initiate a Hot-Join request and once the request has been made,

the Target will wait for the Bus Idle condition before proceeding. In the standard
Hot-Join process, the Target will issue a Start on the bus by pulling the SDA line
low. The Active Controller acknowledges the Start condition by sending clocks on
the SCL line, marking the beginning of the Arbitrable Address Header. During
this phase, the Target transmits the 7’h02/W Hot-Join Address on the bus.

However, it is not always necessary for the Target to wait for the Bus Idle
condition to occur. If another device on the bus issues a Start signal before the Bus
Idle condition, the Target can still participate in the Address Arbitration process.
In this case, the Target will passively engage in the arbitration by transmitting
the 7’h02/W Hot-Join address on the bus. After the Target successfully wins the
address arbitration and the Controller acknowledges the Hot-Join request, the
Controller proceeds with sending the Broadcast ENTDAA CCC on the bus. This
initiates the Dynamic Address Assignment procedure for the Target, following the
guidelines outlined in the Dynamic Address Assignment section.

In the event that the Hot-Join request is unsuccessful, either due to the Controller
NACKing the request or the Target losing arbitration, the Target will continue to
attempt the Hot-Join request in subsequent opportunities. In the case of standard
Hot-Join, the Target will retry at the next Bus Idle condition. In the case of passive
Hot-Join, the Target will retry at the next Start condition on the bus. The Target
will make further attempts until the Hot-Join request is successfully acknowledged.
The frame format of a successful Hot-Join transaction is shown in

3.7 HDR Mode
The I3C HDR (High Data Rate) modes are specifically designed to enable the
transfer of larger amounts of data while maintaining the same bus frequency.
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However, it’s important to note that the Target module on this particular device
does not support the HDR modes specified in the MIPI I3C Specification.

Despite not supporting the HDR modes, the Target module is still capable of
detecting HDR Enter and Exit Patterns. This allows the module to appropri-
ately respond to bus traffic involving HDR operations, ensuring compatibility and
seamless communication within the I3C bus.

HDR Enter Pattern To initiate an HDR mode, the Controller would typically
broadcast an Enter HDR Mode CCC, using the corresponding CCCs (ENTHDR0
through ENTHDR7). However, in the case of the Target module being discussed,
it does not support HDR modes or their corresponding CCCs.

Nevertheless, the Target module is still capable of detecting when the Controller
is attempting to enter an HDR mode. In such situations, the Target module will
disregard all bus traffic until it detects an HDR Exit Pattern. This allows the Target
module to appropriately handle the situation and maintain proper communication
on the bus, despite not supporting the HDR modes.

HDR Exit Pattern Once an HDR mode is entered, the Controller has the
ability to exit the mode by using the HDR Exit Pattern. It is important to note
that whenever the Controller exits an HDR mode, it always transitions back to
SDR mode. The same HDR Exit Pattern is employed to exit any HDR mode.

When the Target module detects the HDR Exit Pattern, it resumes monitoring
SDR traffic on the I3C bus. This allows the Target module to re-engage with the
bus and continue normal communication in SDR mode.

Additionally, there is an alternative pattern called the HDR Restart Pattern,
which enables the Controller to send multiple messages within HDR mode without
the need to transition back to SDR mode between messages. However, it’s worth
mentioning that the Target module on this particular device does not support any
HDR modes, and therefore cannot detect or utilize the HDR Restart Pattern.
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Chapter 4

UVM Environment

The crucial point of this thesis is the realization of the UVM Environment. Ac-
cording to the redeployment system of UVM, all the components are derived from
the UVM base classes exploiting inheritance.

4.1 Test-Bench scheme
In Figure 4.1 is reported the reference framework structure with the main compo-
nents.

Figure 4.1: Test-Bench Scheme

The verification environment follows a typical structure in UVM methodology
with some modifications to accommodate the specific requirements of the design.

The VIP serves as the Controller and communicates with the DUT through
the SDA and SCL buses. It is responsible for generating the necessary signals and
transactions to interact with the DUT.

The DUT, in this case, is the I3CS IP Target, which is the block being verified.
It receives commands and messages from the VIP and responds accordingly.
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The Register File block acts as a reference model, containing the expected values
for comparison. It provides a benchmark against which the actual values generated
by the VIP can be compared.

The Scoreboard component plays a crucial role in the verification environment.
It compares the expected values from the Register File with the actual values from
the VIP and determines whether they match. It keeps track of the correctness of
the behavior and provides information on the number of matches and mismatches.

The overall verification environment is developed using the UVM methodol-
ogy, which provides a standardized approach for creating modular and reusable
testbenches.

There are some modifications made to the typical UVM structure and these
modifications could include customization in the sequence of operations, handling
of interfaces, or other aspects of the testbench architecture. Adapting the UVM
methodology to fit the requirements of the design is common practice to ensure
efficient and effective verification.

4.2 UVM Structure
A schematic view of the typical UVM framework structure is reported in Figure 4.2
with the main components and their role in the verification process.

In the modified structure (Figure 4.3) of the verification environment for the
thesis project, the decision is made to exclude the monitor component. The monitor
is typically a passive component responsible for capturing DUT signals using a
virtual interface and translating them into sequence items or transactions. These
transactions are then transmitted to other components such as the UVM scoreboard
using a TLM analysis port.

However, in this thesis project, the monitor component is not included, and
instead, the DUT is connected directly to the scoreboard. This modification is
made to simplify the structure of the environment. This flexibility to customize
the structure is one of the advantages provided by the UVM standard.

The two main components in the modified structure are "TB_TOP_UVM" and
"UVM_TEST".

• "TB_TOP_UVM" is a component that combines the DUT (Design Under
Test) and the Register File. This component represents the top-level of your
testbench hierarchy and includes the actual DUT implementation as well as
the reference model provided by the Register File.

• "UVM_TEST" describes the UVM environment and serves as the test class
derived from the UVM base class. It encompasses two main blocks or compo-
nents:
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Figure 4.2: Typical UVM Framework Structure

1. UVM_AGENT;
2. UVM_SCOREBOARD;

By customizing the structure and excluding the monitor component, it has
tailored the verification environment to meet the specific requirements of the project
while leveraging the flexibility and reusability provided by the UVM standard.

The UVM_AGENT in the verification environment is an active component that
is responsible for both driving and capturing signals. It consists of three main
components:

• UVM_SEQUENCER: The sequencer is tasked with generating random test
vectors or sequences. It uses the test scenarios and constraints to create input
transactions that will be applied to the DUT. These sequences are designed
to thoroughly test the functionality of the DUT.

• UVM_DRIVER: The driver is responsible for receiving the input transactions
from the sequencer and sending them to the DUT. The driver interfaces with
the DUT’s input ports and follows the specified communication protocol to
ensure proper interaction with the DUT.
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Figure 4.3: UVM Framework Structure

• UVM_SCOREBOARD: The scoreboard receives the expected data from the
Register File and the actual data from either the VIP or the DUT. It performs
a comparison between the expected and actual data to determine if they
match or not. Based on this comparison, the scoreboard provides a pass or
fail indication, showing whether the DUT behaves correctly or not.

Overall, the UVM_AGENT actively drives the verification process by generating
test vectors through the sequencer, sends the input transactions to the DUT using
the driver, and captures and verifies the results through the scoreboard. This active
agent plays a critical role in the verification flow and ensures the correctness of the
DUT’s behavior based on the comparison between expected and actual data.

4.2.1 Top
The operations performed in the described section of the UVM hierarchy, within
the tdk_i3c_uni_hvl_top, are as follows:

1. Clock Generation: This operation involves generating the system clock (mclk)
that will be used for driving the DUT and synchronizing the UVM components.
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The clock generation ensures that all the components operate in sync and at
the desired frequency.

2. Reset De-assertion: After a certain number of cycles, the reset signal (rst_b)
is de-asserted. The reset signal is initially asserted to ensure a known state for
the DUT, and it is de-asserted after a specific duration to start the functional
operation of the DUT.

3. Interface Assignments: In this operation, the necessary interfaces between the
DUT and the UVM framework are defined. The UVM interfaces provide a
connection between the DUT and the UVM components, allowing them to
capture and analyze signals from the DUT. The signals required for verification
purposes are hierarchically assigned to the interfaces, making them accessible
within the UVM framework.

4. Declaration of the Design (I3CS IP): The design under test, which in this
case is the I3CS IP, is declared within the UVM hierarchy. This declaration
establishes the DUT as an instance within the UVM environment, enabling
communication and interaction between the DUT and the UVM components.

5. Test Run: Once the necessary configurations and connections are established,
the UVM test is launched using the run_test() function. This initiates the
execution of the UVM testbench, including the generation of test sequences,
driving of inputs to the DUT, capturing of outputs, and verification using the
UVM components.

The described operations in this section of the UVM hierarchy set up the necessary
infrastructure for the UVM testbench to interact with the DUT. It ensures proper
clocking, assigns interfaces for signal capture, declares the DUT within the UVM
environment, and initiates the execution of the UVM test.

Interface

In UVM, communication between the testbench and the DUT is facilitated using
virtual interfaces. A virtual interface represents a collection of signals that are used
to drive the DUT from the testbench.

In order to access the signals of the DUT through the virtual interface, each UVM
component that needs to drive interface signals must declare a virtual interface
instance of the corresponding interface. The reference to the interface is obtained
from the UVM configuration database.

The interface used in the
tdk_i3c_uni_controller_interface.sv file contains a set of signals, such as SCL and
SDA, which need to be driven to send input vectors to the DUT at each clock cycle.
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The signals in the virtual interface represent the buses used for communication,
where SCL is the clock signal and SDA is the data signal.

By using virtual interfaces, the testbench can interact with the DUT and drive
the necessary signals for testing, while the DUT can also provide outputs through
the virtual interface for analysis and verification by the testbench.

4.2.2 Sequences
The sequencer is a verification component that allows the execution of sequences
of instructions to drive the device, on which the control of test progress depends.
There is a hierarchical organisation, according to which the highest-level component
called the Virtual Sequencer, synchronises the lower-level sequencers integrated in
the UVCs. The latter in turn route instruction packets to the drivers via the TLM
ports. In general, a UVM sequence must fulfil the following tasks:

• sending the START

• waiting for the trigger events

• command of write and read operations, thanks to which UVCs, move the
lowest level lines, using the implemented protocol to perform writes or reads
to the received addresses;

• sending the STOP

• sending read data on the lines to the scoreboard

In the UVM framework, the uvm_sequence_item class is used as a base class
to define and declare data items or transactions. These transactions represent
the information that needs to be exchanged or captured between the testbench
and the DUT. The uvm_sequence_item class provides a set of useful methods to
randomize the transaction fields, compare or print transaction objects, and perform
other operations. These methods help in generating randomized test vectors and
manipulating the transaction data.

In the specific UVM framework developed for the Target device under verifica-
tion, there are two different sequence objects: one for input transactions and another
for output transactions. These sequence objects are responsible for generating
the appropriate input or output stimuli and coordinating the flow of transactions
between the testbench components. Respectively, the definition of the two sequence
object is present in

• tdk_i3c_uni_controller_sequence_item.sv
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• tdk_i3c_uni_controller_packet.sv

The behaviour of the signals on the interface pads corresponds to that described
in the protocol being used, whereby the lines that are moved by the master UVC
are consistent with the timing specification reported in Table 4.1. The creation
of custom sequences is described in detail in the dedicated paragraphs of the test
chapters.

Furthermore, Figure 4.4 and Figure 4.5 show the reference diagram of the
sequence hierarchy levels implemented to generate the frame for the write operation
and the frame for the read operation with the Static Address respectively. Instead,
Figure 4.6 and Figure 4.7 show the reference diagram of the sequence hierarchy
levels implemented to generate the frame for the write operation and the frame for
the read operation with the Broadcast Address respectively.

Figure 4.4: Reference diagram of the sequence hierarchy levels for write operation
with Static Address

35



UVM Environment

Figure 4.5: Reference diagram of the sequence hierarchy levels for read operation
with Static Address

Figure 4.6: Reference diagram of the sequence hierarchy levels for write operation
with Broadcast Address

tdk_i3c_uni_controller_sequence_item In this class the signals included
are shown in the code file reported below. Some of them are defined as rand to
randomize input values and create input vectors. Then there is the usage of utility
and field macros, because the UVM uses the concept of a factory where all objects
are registered with it so that it can return an object of the requested type when
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Figure 4.7: Reference diagram of the sequence hierarchy levels for read operation
with Broadcast Address

required. The utility macros help to register each object with the factory. The utils
macro is mandatory for the new function to be explicitly defined for every class.
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Listing 4.1: tdk_i3c_uni_controller_sequence_item code
1 ‘ i f n d e f _TDK_I3C_UNI_CONTROLLER_SEQUENCE_ITEM_SV
2 ‘ d e f i n e _TDK_I3C_UNI_CONTROLLER_SEQUENCE_ITEM_SV
3

4 c l a s s tdk_i3c_uni_control ler_sequence_item extends uvm_sequence_item ;
5 // d e c l a r a t i o n o f data
6

7 rand i3c_d i rec t i on_t d i r e c t i o n ;
8 rand i 3 c _ i n i t i a l i z a t i o n _ t i n i t i a l i z a t i o n ;
9 rand i3c_address_acknowledge_t address_acknowledge ;

10 rand i3c_acknowledge_t acknowledge ;
11 rand i3c_address_t i s_address ;
12 rand i3c_rw_t is_rw ;
13 rand i3c_stop_t is_stop ;
14 rand i3c_parity_bit_t i s_par i ty_bi t ;
15 rand i3c_T_bit_t is_T_bit ;
16 rand i3c_data_t is_data ;
17 rand i3c_par_bit_address_t is_par_bit_addr ;
18 rand i3c_transmit_ack_t is_transmit_ack ;
19

20 rand l o g i c [ 6 : 0 ] i3c_addr ;
21 rand l o g i c [ 7 : 0 ] data ;
22 rand i n t unsigned N_bit ;
23

24 ‘uvm_object_uti ls_begin ( tdk_i3c_uni_control ler_sequence_item )
25 ‘uvm_field_enum ( i3c_direct ion_t , d i r e c t i o n ,UVM_ALL_ON)
26 ‘uvm_field_enum ( i 3 c _ i n i t i a l i z a t i o n _ t , i n i t i a l i z a t i o n ,

UVM_ALL_ON)
27 ‘uvm_field_enum ( i3c_address_acknowledge_t ,

address_acknowledge ,UVM_ALL_ON)
28 ‘uvm_field_enum ( i3c_acknowledge_t , acknowledge ,

UVM_ALL_ON)
29 ‘uvm_field_enum ( i3c_address_t , i s_address ,UVM_ALL_ON)
30 ‘uvm_field_enum ( i3c_rw_t , is_rw ,UVM_ALL_ON)
31 ‘uvm_field_enum ( i3c_stop_t , is_stop ,UVM_ALL_ON)
32 ‘uvm_field_enum ( i3c_T_bit_t , is_T_bit ,UVM_ALL_ON)
33 ‘uvm_field_enum ( i3c_parity_bit_t , i s_par i ty_bit ,

UVM_ALL_ON)
34 ‘uvm_field_enum ( i3c_par_bit_address_t , is_par_bit_addr

,UVM_ALL_ON)
35 ‘uvm_field_enum ( i3c_data_t , is_data ,UVM_ALL_ON)
36 ‘uvm_field_enum ( i3c_transmit_ack_t , is_transmit_ack ,

UVM_ALL_ON)
37 ‘uvm_fie ld_int ( i3c_addr , UVM_ALL_ON)
38 ‘uvm_fie ld_int ( data , UVM_ALL_ON)
39 ‘uvm_fie ld_int ( N_bit , UVM_ALL_ON)
40 ‘uvm_object_utils_end
41

42 // macros f i e l d s

38



UVM Environment

43 f unc t i on new ( s t r i n g name = " tdk_i3c_uni_control ler_sequence_item " )
;

44 super . new(name) ;
45 endfunct ion
46

47 f unc t i on void post_randomize ( ) ;
48 ‘uvm_info ( get_type_name ( ) , $ s fo rmat f ( " \n%s " , t h i s . s p r i n t ( ) ) ,

UVM_NONE)
49 endfunct ion
50 endc l a s s
51

52 ‘ e n d i f //_TDK_I3C_UNI_CONTROLLER_SEQUENCE_ITEM_SV

4.2.3 Sequencer Operations
In order to verify the main read and write operations of the Target device, several
sequence classes are used, which put together form the complete protocol frame. In
this way, there are several sequences that perform different tasks to verify different
aspects of the design. Going to consider a generic write operation frame there are:

• Start

• Static Address Target/Broadcast Address with RW and ACK

• Write Data bytes

• Stop or Repeated Start

A sequence class is associated to each frame. So, there is:

• tdk_i3c_uni_controller_start_sequence.sv,

• tdk_i3c_uni_controller_address_sequence.sv,

• tdk_i3c_uni_controller_repeated_start_sequence.sv,

• tdk_i3c_uni_controller_write_sequence.sv,

• tdk_i3c_uni_controller_stop_sequence.sv

Every sequence class are an extension of
tdk_i3c_uni_controller_sequence_item where in the body the operations and
constraints are defined and they are the stimulus for DUT. Combining these
existing sequences, it is possible to create new ones, in order to perform Start
sequence followed by Static address sequence followed by Restart sequence and go
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on until the stop sequence. In this way it is possible to create frames for each mode
of the protocol, for example I2C mode, SDR mode or Dynamic Address mode.

This structure turns out to be very flexible and makes it easy to verify the
behavior of the Target.

The same sequences are used for the read operation, but
tdk_i3c_uni_controller_write_sequence.sv is substituted with
tdk_i3c_uni_controller_read_sequence.sv.

4.2.4 Packet sequence
Packet Sequence is the container of the output transaction and it is an extension
of the uvm_sequence_item base class. The signals captured from the DUT are
shown in the following piece of code.

Listing 4.2: Packet sequence code
1 ‘ i f n d e f _TDK_I3C_UNI_CONTROLLER_PACKET_SV
2 ‘ d e f i n e _TDK_I3C_UNI_CONTROLLER_PACKET_SV
3

4

5

6 c l a s s tdk_i3c_uni_packet extends uvm_object ;
7

8 rand b i t [ 7 : 0 ] i3c_address ;
9 rand b i t [ 7 : 0 ] i3c_data ;

10

11 ‘uvm_object_uti ls_begin ( tdk_i3c_uni_packet )
12 ‘uvm_fie ld_int ( i3c_address , UVM_ALL_ON)
13 ‘uvm_fie ld_int ( i3c_data , UVM_ALL_ON)
14 ‘uvm_object_utils_end
15

16 f unc t i on new( s t r i n g name=" tdk_i3c_uni_packet " ) ;
17 super . new(name) ;
18 endfunct ion : new
19

20

21 endc l a s s
22

23 ‘ e n d i f //_TDK_I3C_UNI_CONTROLLER_PACKET_SV

4.3 Environment
The environment is a container class, in general, it can contains one or more agents
and other components such as the scoreboard. The environment is defined in
tdk_i3c_uni_sve.sv and it contains the implementation of:
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• Agent

• Scoreboard

The environment operations are concentrated only during the build and connect
phases. After the declaration of the UVC’s during the build phase, the creator
function is called to create each of them. During the connect phase, the analysis
port of Driver and Scoreboard are connected. This is an important step as analysis
ports are the way transactions move throughout the UVM environment. A scheme
of the connection is shown in Figure 4.8.

Figure 4.8: Types of Driver connection with Scoreboard and Sequence

It is important to note that the dots on the Scoreboard represent the implemen-
tation of the analysis ports while the diamond represents the analysis port.

4.3.1 Agent
The UVM framework requires an Agent that is an active component capable
driving and capturing the transaction. Typically, an Agent contains a Driver and a
Sequencer. The Agent is described in tdk_i3c_uni_controller_agent.sv.

tdk_i3c_uni_controller_agent It is responsible for the creation of the re-
quired UVC’s during the build phase and for the connection of the sequencer export
port with the driver port during the connect phase.

4.4 Driver
The driver class derives from uvm_driver base class and it is responsible to send
the input vectors received from the sequencer to the DUT. The signals required
are: SCL and SDA.

During the build phase, the Driver to Scoreboard port is created. The driver
operations are executed during the run_phase task. In particular, if the request
signal is high, then the driver gets a new transaction object from the sequencer using
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get_next_item() method and associate the signals restrained in the transaction
to the DUT signals. Once the signal has been driven to the DUT the transaction
is sent to the scoreboard through the Driver to Scoreboard port using the write()
method.

In general, the Driver’s run phase is divided into several case loops based on
desired sequences that are sent. Each case invokes tasks that have always been
implemented in the driver and will be executed using the features or constraints of
the selected sequence.

In this way, it is possible to choose how to compose the protocol frame.

4.4.1 Tasks of Driver
In the tasks, the main signals are driven: SCL and SDA so as to comply with the
specifications of the I3C protocol.

The tasks implemented are reported below:

• start_condition();

• bit_construction_write();

• bit_construction_read();

• transmit_address();

• i3c_direction();

• get_slave_ack();

• ack_without_handoff();

• nack_without_handoff();

• write_data();

• read_data();

• transmit_ack();

• repeated_start_condition();

• stop_condition().

42



UVM Environment

start_condition() To implement the Start condition in I3C, the SDA and SCL
signals need to be driven following the specified timing requirements. The Start
condition involves a high-to-low transition on the SDA line while the SCL line
remains constant high. To achieve this in the testbench, the SDA and SCL signals
are driven accordingly with the times specified in the I3C protocol manual MIPI
v1.1.1 and reported also in Table 4.1.

bit_construction_write() To reconstruct the writing of a bit in I3C, where
the bit changes on each falling edge of the SCL signal, it is necessary to drive the
SDA and SCL signals accordingly with the specification time reported on the table
Table 4.1.

bit_construction_read() This task drives SDA and SCL signals in order to
reconstruct the reading of a bit from the Target. The latter must occur at each fall
edge of SCL. In order to avoid conflicts on the bus SDA between Controller and
Target, when occurs a Read operation the Controller should let Target drive the
bus by going to leave SDA in high impedance.

transmit_address() This task handles the transmission of the address consisting
of 7 bits. Within a for loop the task is called the task bit_construction_write().
Furthermore, within this task is also implemented the calculation of the parity bit
(XOR negated between the address bit and 0) that must follow the 7 address bits
in the Dynamic Address mode sequence.

i3c_direction() This task simply writes on SDA bus the direction of the Frame
sent. In the case it writes a 0 bit, it means that a writing will occur, otherwise a
reading will occur. Also in this case is evoked the bit_construction_write task.

get_slave_ack() This task simply, at the falling edge of SCL, reads the value of
the Acknowledge on SDA bus. When ACK is 0 means that the Target has received
the address, otherwise not. In this task is the Target to drive the SDA bus and so
the Controller leaves the bus in high impedance.

ack_wihtout_handoff() and nack_wihtout_handoff() These two tasks
are used in the case of the read or write operation when neither the controller nor
the target sends the ACK bit. These are used mainly in the Dynamic Address
mode, and ACK is represented with the bit 0, while NACK with the bit 1.
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write_data() This task exploits the bit_construction_write task in a for loop
to write the 8 bits of data. Also in this task there is the calculation of parity bit,
named also Transition bit that is the XOR between every bit of data with 1. The
Transition bit is used when the sequence sent implements the frame in SDR mode.

read_data() This task exploits the bit_construction_write task in a for loop, in
order to read the 8 bits of data sent by Target. In addition, within this task there
is a case loop about the Transition bit in the case the sequence sent implements
the frame in SDR mode.

transmit_ack() This task is used in the case of a Read operation, when the
Controller should communicate to the Target if it has read the data (bit 0) or if it
has not read the data correctly (bit 1).

repeated_start_condition() In this task, the Controller drives the SCL and
SDA bus in order to create the Repeated Start Condition, may be used to end one
message and begin another within a single bus transaction. The Controller can
generate a Repeated START (Sr) condition, setting the SDA line to one during
the LOW phase of the SCL line.
The Repeated start condition is used in the following situations:

• To continue transmission with the same Target device in the opposite direction.
After a Repeated START condition, the Controller sends the same Target
device address followed by another direction bit.

• To start transmission to or from another Target device. After the repeated
START condition, the Controller sends another Target address.

stop_condition() In this task, the Controller drives the SCL and SDA lines
to generate the STOP (P) condition. The Controller changes the SDA line from
zero to one while the SCL line is high.

4.5 Scoreboard
The Scoreboard is the most complex component in the UVM environment. It is an
extension of the uvm_scoreboard base class. It verifies that everything is worked as
expected by looking at input and output transaction. It has seen that transaction
objects have been moved throughout the UVM framework using analysis port.
Most of them are directed to the scoreboard where their implementation is defined.
Analysis port works like a callback, each time that UVC’s write a transaction to
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the analysis port, the correspondent callback task is executed. It is a non-blocking
mechanism that avoids time-delay in the verification environment.
The scoreboard is responsible for decoding the Write and Read operation’s values
from VIP and from Register file in order to compare them and provide a PASS or
FAIL signal.
The operation of Read or Write is triggered by the use of uvm_event in the
Sequences where is implemented the operation, while the Scoreboard waits for the
events. In the run phase there is a fork which executes two processes in parallel.
The first one is referred to the Write operation where the scoreboard waits for the
write event from the Register file and the VIP, while the second one is referred to
the Read operation, where the scoreboard waits for the read event always from the
Register file and the VIP.
Following both processes, through the use of an if loop, there is a check on the VIP
and Register File data to verify if they match. Once the packets are synchronized
and compared, two uvm_info are executed. The first one is used to print out on the
console the actual content of the packet of the DUT. The second one is executed
after the comparison of data to show on the console the result of the comparison.

4.5.1 uvm_event
In the described project, the uvm_event is used for synchronization between
processes in different components. The uvm_event_pool is a pool that stores
uvm_event objects when the processes triggering and waiting for events are running
in different components and need to share the event handle.

The uvm_event_base class provides several methods, two of which are used in
this thesis:

1. ev.trigger(): This method is used to trigger the event. In the context of
this thesis, the event is triggered by the first component (equivalent to the
Sequence class) and is passed a packet as a parameter. The packet contains
the address of the Register File and the data byte sent by the serial interface.

2. ev.wait_ptrigger() :This method is used to wait for the event to be triggered.
In this thesis, the second component (the Scoreboard) uses this method to
wait for the event triggered by the first component. The value of the packet is
then analyzed by the Scoreboard.

The ev.trigger(Packet) method is used in the respective sequences such as

• tdk_i3c_uni_I2C_write_sequence.sv

• tdk_i3c_uni_SDR_write_sequence.sv
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• tdk_i3c_uni_I2C_read_sequence.sv

• tdk_i3c_uni_SDR_read_sequence.sv

This method is used to detect write or read events. The ev.wait_ptrigger(Packet)
method is used in the Scoreboard to synchronize with the triggered events. Addi-
tionally, ev.trigger() is also used to detect write or read events in the Register
file, which is always waited for in the Scoreboard.

By using events and the provided methods, the different components in the
project can synchronize and communicate with each other effectively.

4.6 Register File
The register file is developed in parallel with the implementation of the UVM
environment. The Register File in question is designed in System Verilog language
and it is integrated within the entire verification environment as an interface to
the DUT as reported in Figure 4.9.
In the UVM environment, in particular, it is decided to implement the Register
File not as a module but directly as an interface. This made it possible to simplify
the connections of the Register File with the Scoreboard and the Top of the UVM
environment (tdk_i3c_uni_hvl_top) by using virtual interface directly.

Figure 4.9: Register File connections with the DUT and Scoreboard

It is implemented according to the specifications of a generic Register File that
has both write and read access. It consists of 256 addressable locations where each
location is addressed by the signal i3c_addr that is the direct address received
from the serial interface pad_sdai line (DUT).
The clock of the Register File is managed by the SCL line, the same of the I3C
protocol, while the reset of the Register File is the same of the whole system rst_b
that is driven in the top file code of the UVM environment (tdk_i3c_uni_hvl_top).
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This architecture is designed to verify the absence of anomalies during writing
and reading by design. For this reason, the Register File communicates with
the Scoreboard, which compares the current values with the expected values, via
uvm_event. Specifically, each time the serial interface sends a data, a location in
the Register File pointed by the address i3c_addr is filled, which coincides with
the first data byte sent by the serial interface SDA, and subsequent accesses to the
locations are pointed by the increment of i3c_addr by one.
There are control signals that indicate whether a read or write access occurs, which
in this architecture are: i3c_wr_strb and i3c_rd_strb. When a write occurs the
i3c_wr_strb signal is raised, then the transcription of the byte sent to the location
pointed to by i3c_addr takes place and afterwards the trigger of the write event in
the Register File takes place. When a read occurs, on the other hand, the signal
i3c_rd_strb rises, then the current value of the data in the location pointed to by
i3c_addr is returned as an output, and the trigger of the read event in the Register
File takes place afterwards.
Both the write event and the read event after they are triggered in the Register file,
these are waited for, with the use of ev.ptrigger_wait(), by the Scoreboard in
order for the data comparison to take place.

4.7 Timing Specification
Table 4.1, which provides reference timing requirements for Legacy I2C Mode,
outlines the timing characteristics that must be adhered to in order to maintain
compatibility with I2C devices. These timing requirements ensure reliable com-
munication and interoperability between I2C and I3C devices when operating in
Legacy Mode.

In Legacy Mode, the timing diagram showcases the timing relationships between
various signals during an I2C communication transaction. The timing parameters
specified in Table 4.1 define the specific timing requirements for different signals
involved in the I2C communication.

The timing diagram typically includes the following signals:

• SCL: This signal represents the clock line of the I2C bus. It indicates the
timing of data transfer.

• SDA: This signal represents the data line of the I2C bus. It carries the actual
data being transmitted or received.

• START: This signal indicates the start of a communication transaction.

• STOP: This signal indicates the end of a communication transaction.
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• ACK: This signal is used for acknowledgement of data transmission.

The timing parameters in Table 4.1 specify the minimum and maximum duration
for various events, such as the setup and hold times for data, the rise and fall
times of the clock and data signals, and the setup and hold times for the start
and stop conditions. These parameters ensure proper timing synchronization
between the communicating devices in order to adhere to the I3C protocol.The
timing parameters specified in Table 4.1 and in Figure 4.10 serve as a reference for
managing the SDA and SCL signals in the driver tasks.

Figure 4.10: I3C Legacy Mode Timing

[3] [4] [5]
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Table 4.1: I3C Timing Requirements When Communicating With I2C Legacy
Devices

Parameter Symbol Min Max Units
SCL Clock Frequency fSCL 0 1.0 MHz
SCL Clock Low Period tLOW 500 - ns
SCL Clock High Period
(for Mixed Bus) tHIGH 260 - ns

SCL Clock Rise Time trCL - 120 ns
SCL Clock Fall Time tfCL - 120 ns
Setup Time for a (Repeated) START tSU_ST A 260 - ns
Hold Time for a (Repeated) START tHD_ST A 260 - ns
Data Setup Time tSU_DAT 50 - ns
Data Hold Time tHD_DAT - - ns
SDA Signal Rise Time trDA - 120 ns
SDA Signal Fall Time tfDA - 120 ns
Setup Time for STOP tSU_ST O 260 - ns
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Chapter 5

Test and Results

In this chapter, the tests are analyzed and the results of the verification procedure
are shown and described. In the section 5.1, the packets sent to the design are
described by proposing reference timings representing what we would expect as a
result of the simulations on the Cadence tool and reference frames representing
the highest-level sequence encompassing the other sequences used to create the
I3C protocol frame. It is worth noting that in the frame images, each part of the
frame is associated with a colour that indicates how the communication between
Controller and Target takes place and it is shown in Figure 5.1

Figure 5.1: Frame images Legend

5.1 Tests
The UVM environment just described is generated from a higher-level class level,
referred to as test, that extends directly from the uvm_test class of the UVM
Standard Library. Other classes can be defined that overcome the base class; each
of them is associated with a specific test and allows the use of the components
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defined specifically for those tests. In this way, it is possible to call up:

• randomisation class used

• the specific scoreboard class implemented to control the feature to be tested

• the sequence responsible for sending writes and reads through the interface
and, more in general, of the evolution of test operations.

These tests cover different test cases and a particular test case can be selected
and execute by providing the UVM_TESTNAME command line argument as
reported in Figure 5.2. This method allows more flexibility to choose different tests
without modifying the testbench top every time it is necessary to run a different test.

Figure 5.2: File Code used to run the tests

5.1.1 UVM Base Test
It is a custom test called base_test that inherits from uvm_test and it is declared
and registered with the factory.
Testbench environment component called tdk_i3c_uni_sve and its configuration
object is created during the build_phase. It is then placed into the configuration
database using uvm_config_db so that other testbench components within this
environment can access the object and configure sub components accordingly.
A test sequence object is built and started on the environment virtual sequencer
using its start method.

The Base Test can help in the setup of all basic environment parameters and
configurations. Instead, in this project the other tests, useful to verify the Read
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and Write operations in the different modes of the I3C protocol, are simply an
extension of the uvm_test where different sequences are executed according to the
test case under consideration.

The test cases considered are listed below:
• I2C Private Write with Static Target Address

• I2C Private Read with Static Target Address

• I2C Private Write with Broadcast Address

• I2C Private Read with Broadcast Address

• I3C Private Write

• I3C Private Read

• Dynamic Address assignment: I3C ENTDAA Procedure
The tests in question are the core of the thesis activity. In the follow sections

there is a detailed description of the test classes implemented for testing the I3C
Target Device, while the file codes in System Verilog of working tests are reported
in appendix A.

5.1.2 I2C Private Write with Static Target Address Test
This test is executed by the tdk_i3c_uni_I2C_write_test.sv. The code is reported
in appendix A.

The test in question runs the sequence tdk_i3c_uni_controller_I2C_write_sequence
where is implemented the frame reported in Figure 5.4.

The operations executed by the sequence are:

• start condition;

• Static Target Address with 7 bit (7’h68);

• ’0’ to indicate the write operation (RW bit);

• ACK from the Target following the recognition of the register address;

• writing data bytes into the Target (4 bytes);

• ACK to indicate the successful reading by the Target for every data byte;

• stop condition.

The timing of reference is represented in Figure 5.3 and the frame of reference
is reported in Figure 5.4.
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5.1.3 I2C Private Read with Static Target Address
The I2C Read operation with Static Target Address is executed by the
tdk_i3c_uni_I2C_read_test.sv. This test calls the sequence
tdk_i3c_uni_I2C_controller_read_sequence.sv. The sequence file invokes other
sequences that all together execute the following operations:

• Start Condition;

• Static Target Address with 7 bits (7’h68);

• ’1’ to indicate the Read Operation (RW bit);

• ACK from the Target following the recognition of the register address;

• writing one data byte to indicate the address of Register File;

• reading data bytes from the Target;

• ACK to indicate the successful reading by the Controller for every data byte;

• Stop Condition.

The timing of reference is reported in Figure 5.5 and the frame of reference is
shown in Figure 5.6.

5.1.4 I2C Private Write with Broadcast Address
The test is executed by the
tdk_i3c_uni_I2C_write_bd_test.sv. This Test runs the sequence implemented in
tdk_i3c_uni_I2C_controller_write_bd_sequence.sv.

The sequence includes other sequences that all together execute the following
operations:

• Start condition;

• Broadcast Address with 7 bit (7’h7E);

• ’0’ to indicate the write operation (RW bit);

• ACK from the Targets following the recognition of the register address;

• Restart condition;

• Static Target Address with 7 bits (7’h68);

• ’0’ to indicate the write operation (RW bit);
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• ACK from the Target following the recognition of the register address;

• writing data bytes into the Target (4 bytes);

• ACK of the Target following the correct reception of data for every data;

• Stop condition.

The timing of reference is reported in Figure 5.7 and the frame of reference is
reported in Figure 5.8.

5.1.5 I2C Private Read with Broadcast Address
The I2C Read operation with Broadcast Address is executed by the
tdk_i3c_uni_I2C_Broadcast_read_test.sv. This test invokes the sequence that is
implemented in
tdk_i3c_uni_I2C_controller_Broadcast_read_sequence.sv.

The sequence file code implements different sequences that together execute the
following operations:

• Start condition;

• Broadcast address with 7 bits (7’h7E);

• ’0’ to indicate the write operation (RW);

• ACK from the Targets following the recognition of the register address;

• Restart condition;

• Static Target Address with 7 bits (7’h68);

• ’1’to indicate the Read Operation;

• ACK from the Target to indicate the successful reading of address;

• writing one data byte to provide the address of the Register File;

• reading of data bytes from Controller;

• ACK for every data byte to indicate the successful reading by the Controller;

• Stop condition.

The timing of reference is reported in Figure 5.9 and the frame of reference is
reported in Figure 5.10.
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5.1.6 I3C Private Write
The Write operation in SDR mode is executed by the
tdk_i3c_uni_SDR_write_test.sv. This test invokes the sequence implemented in
the file code
tdk_i3c_uni_SDR_controller_write_sequence.sv. The sequence file code put
together other sub-sequences that execute the following operations:

• Start condition;

• Broadcast Address with 7 bits (7’h7e);

• ’0’ to indicate the write operation (RW);

• ACK from the Targets following the recognition of the register address;

• Restart condition;

• Static Target Address with 7 bits (7’h68);

• ’0’ to indicate the write operation (RW);

• ACK from the Target following the recognition of the register address;

• writing data bytes into the Target;

• Transition Bit following each data byte (T-bit);

• Stop condition.

The timing of reference is reported in Figure 5.11 and the frame of reference is
shown in Figure 5.12.

5.1.7 I3C Private Read
The Read operation in SDR mode is implemented in the tdk_i3c_uni_SDR_read_test.sv.
This test invokes the read sequence tdk_i3c_uni_SDR_controller_read_sequence.sv
that put together other sequences.

The sequence file code executes the following operations:

• Start condition;

• Broadcast Address with 7 bits (7’h7e);

• ’0’ to indicate the write operation (RW);

• ACK from the Targets following the recognition of the register address;
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• Restart condition;

• Static Target Address with 7 bits (7’h68);

• ’1’ to indicate the read operation (RW);

• ACK from the Target following the recognition of the register address;

• writing data bytes into the Target to indicate the address of Register File;

• reading data bytes;

• Transition Bit following each data byte (T-bit) that represents the parity bit;

• Stop condition.

The timing of reference is reported in Figure 5.13 and the frame of reference is
shown in Figure 5.14.

5.1.8 Dynamic Address assignment: I3C ENTDAA Proce-
dure

The test
tdk_i3c_uni_SDR_dynamic_address_test.sv invokes the sequence
tdk_i3c_uni_SDR_controller_dynamic_address_sequence.sv that implements
through other sub-sequences the Dynamic Address assignment using the CCC
command ENTDAA that is represented by the value 8’h07.

The sequence file code executes the following operations:

• Start condition;

• Broadcast Address with 7 bits (7’h7E);

• ’0’ to indicate the write operation (RW);

• ACK from the Targets following the recognition of the register address;

• I3C Modal Broadcast CCC: ENTDAA (8’h07);

• Transition bit that represents the parity bit of the Address;

• Restart condition;

• I3C Broadcast Address with 7 bits (7’h7E);

• ’1’ to indicate the Read operation in order to read the following 64 bits;

56



Test and Results

• ACK from the Targets following the recognition of the register address;

• Read Data 8 bytes: 48-bit Unique ID, BCR, DCR;

• Assign 7-bit Dynamic Address to the Target;

• Parity bit that is the XOR of ’1’ with the bits of the Dynamic Address;

• ACK without Handoff;

• Repeated Start;

• I3C Broadcast Address with 7 bits (7’h7E);

• ’1’ to indicate the Read Operation;

• NACK without Handoff;

• Stop condition.

The reference frame is reported in Figure 5.16 and the reference timing is shown
in Figure 5.15 .

5.2 Results and analysis
In this section, the results of the tests conducted in the previous section are
presented. It is unfortunate to note that due to internal company problems
related to internal deadlines, the tests involving reading could not be fully tested.
However, the test environment is properly created for reading operations as well.
The simulations that focused on writing operations, especially the compatibility
with the I2C protocol, generated correct results. These tests are successfully
executed, and the expected results are obtained. This indicates that the verification
environment developed for the I3C Target Device is capable of validating the write
functionality and ensuring compatibility with the I2C protocol. In addition to the
complete results related to the write operation, partial results were also analyzed
to verify a specific aspect of the I3C protocol. Despite the limitations and the
inability to fully test the read operation, these partial results focus on a specific
aspect of the protocol to gain some insights.

The partial results obtained indicate that the verification environment is capable
of handling the selected aspect of the I3C protocol correctly. Although it provides
only a limited scope of validation, it demonstrates its potential to accurately verify
the I3CS IP Target design, provided that the necessary testing of the read operation
is carried out successfully in the future.
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5.2.1 Simulation Results
The proposed architecture I3CS IP is simulated and verified for accuracy and
functionality using Cadence. Naturally, testing procedure is based on the System
Verilog code.
In the investigation of the results, the focus was primarily on evaluating the
correctness of the behavior of the main driven signals, namely SDA and SCL, to
ensure they comply with the protocol specifications. These signals play a crucial
role in the communication between the I3C Target device and the Controller.

Furthermore, the correctness of the data reported by the VIP was also examined.
The VIP is responsible for capturing and reporting the data exchanged between
the I3C Target device and the Controller. The reported data was compared with
the expected data sent by the Register File, which represents the reference model
of the expected behavior.

To facilitate this comparison, a Scoreboard component is used. The Scoreboard
checks whether the reported data matches the expected data, ensuring that the
communication between the Target device and the Controller is working correctly.
Any discrepancies or mismatches detected by the Scoreboard indicate potential
errors or inconsistencies in the implementation.

The wave-forms provided in the following paragraphs offer a visual representation
of the main signals involved in the write operation.

The start, stop, and repeated start conditions, crucial for initiating and termi-
nating the communication, are highlighted in blue. These conditions indicate the
beginning and end of a transaction and are essential for synchronization between
the Controller and the Target.

The interface signals, SDA and SCL, which carry the data and synchronize the
communication, are depicted in yellow. These signals indicate the state of the
communication line at each clock cycle, enabling data transfer between the devices.

The pad_sda_oe signal, shown in a darker shade of yellow, represents the
output enable signal. It controls the driving capability of the SDA line, allowing the
Target to indicate its acknowledgment or intention to communicate. By observing
the changes in the output enable signal, it is possible to determine when the Target
is responding or initiating a communication.

The interface signals with the Register File, such as i3c_wr_data, i3c_rd_data,
i3c_wr_strb, and i3c_rd_strb, are highlighted in orange. These signals facilitate
the transfer of data between the I3C Target device and the Register File, providing
a means for data storage or retrieval.

Finally, the sdr_wr_data signal, highlighted in light blue, represents the data
being written by the Controller to the SDA line at each clock cycle. This signal
captures the actual value of the data being transmitted and it is essential for
verifying the correctness of the write operation.
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By analyzing these wave-forms and observing the behavior of the various signals,
it becomes possible to validate the proper functioning of the write operation and
ensure that the signals conform to the expected protocol specifications.

Results of I2C Private Write with Static Target Address Test The result
of the simulation I2C Private Write with Static Target Address Test provided by
Cadence is shown in Figure 5.17

While in Figure 5.18, is reported the comparison provided by the Scoreboard
between serial interface and Register File.

The simulation accurately represents the behavior of the I3C protocol during a
write operation with I2C compatibility.

The simulation shows that when the static address of the I3C Target matches
the static address of the I2C Target (7’h68), the Target switches to I2C mode. As a
result, the subsequent communication follows the specifications of the I2C protocol.
This can be observed in the waveform where, instead of the Transition bit that is
specific to the I3C protocol, the Target sends an acknowledgement at the end of
each address and each byte of data.

These results indicate that the I3C Target device successfully transitions to I2C
mode and operates according to the I2C protocol when the compatibility condition
is met. This demonstrates the expected behavior of the I3C protocol for write
operations with I2C compatibility.

The Figure 5.18 reports additional information about the console output on
Cadence and the matching of data between the Controller, the Register File, and
the simulation waveform.

It is evident that the data written by the Controller during the simulation
matches the data reported by the i3c_wr_data signal and the packet received
by the Scoreboard. This confirms the correctness of the write operation and the
accurate transmission of data within the verification environment.

Furthermore, the first byte of data, which is 2B, corresponds to the address of
the Register File. This aligns with the expected behavior, as the address is taken
from the i3c_addr signal and incremented by 1 for each subsequent byte.

The rising edge of the i3c_wr_strb signal at the end of each byte’s writing
indicates that the data has been successfully transferred to the Register File,
triggering the appropriate events in the Register File.

Overall, these observations and the matching of data between the Controller,
Register File, and simulation results reinforce the correctness and functionality of
the write operation in the verification environment.

Results of I2C Private Write with Broadcast Address Test The result
of the simulation I2C Private Write with Static Target Address Test provided by
Cadence is shown in Figure 5.19
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While in Figure 5.20, is reported the comparison provided by the Scoreboard
between serial interface and Register File.

In this test case, the same data as the previous simulation is used, but with a
different approach to addressing the Target device. Instead of directly sending the
static address of the Target, the broadcast address (7’h7E) is sent to all Target
devices on the bus first. Then, a repeated start condition is sent, followed by the
static address of the Target I2C.

The simulation results Figure 5.21 show the sequence of events in detail, starting
with the broadcast address, followed by the repeated start condition (i3c_restart),
and finally the static address of the Target I2C. This sequence is in accordance
with the I3C protocol specifications for addressing the Target device.

From this point onward, the behavior and results are expected to be the same
as explained in the previous paragraph, as the Target device switches to I2C mode
and follows the requirements of the I2C protocol. Also in this case the scoreboard
reports the match between the data written by the Controller and that detected
by the Register File.

Overall, the simulation demonstrates the correct handling of the broadcast
address, repeated start condition, and addressing of the Target I2C, leading to the
expected behavior in accordance with the I3C and I2C protocols.

Partial results In this paragraph, the results at the interface between the VIP
and the DUT are presented to demonstrate the correct functioning of the driver
tasks that are developed. However, due to the limitations mentioned earlier, it was
not possible to fully verify their validity in communication with the Target device.

Reading operations are indeed crucial, even in simple packet transmission in
SDR mode, because the SDR mode utilizes Dynamic Addressing. After sending
the ENTDAA command, the Controller is expected to read 8 bytes (Provisional
ID, BCR and DCR) from the Target device to obtain the Dynamic Address.

In the SDR mode of I3C, the transition bit is used at the end of each byte
instead of the ACK signal that is used in the I2C mode. The transition bit serves
as an indicator to the Controller that the Target device has received the byte of
data successfully.

In the results at the interface between the VIP and the DUT reported in
Figure 5.22, it is demonstrated that the transition bit works properly in the SDR
mode. While the specific details of the results are not provided, the focus remains on
validating the correct behavior of the transition bit in the SDR mode. This ensures
that the SDR mode, with its use of the transition bit, is properly implemented and
functioning in accordance with the I3C protocol specifications.
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Figure 5.4: Reference frame of I2C Write Operation with Static Target Address
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Figure 5.6: Reference frame of I2C Read Operation with Static Target Address
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Figure 5.8: Reference frame of I2C Write Operation with Broadcast Address
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Figure 5.10: Reference frame of I2C Read Operation with Broadcast Address
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Figure 5.12: Reference frame of SDR Write Operation with Broadcast Address
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Figure 5.14: Reference frame of SDR Read Operation with Broadcast Address
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Figure 5.16: Reference frame of ENTDAA Procedure
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Figure 5.18: Result of the comparison provided by the Scoreboard
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Figure 5.20: Result of the comparison provided by the Scoreboard

Figure 5.21: Detail of the simulation regarding the sequence Broadcast Address
7’h7E, Repeated Start and Static Address 7’h68
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Chapter 6

Conclusion and Future
works

The thesis work focused on implementing functional tests to verify the correct oper-
ation of the Target I3CS IP. These tests were designed to detect any discrepancies
or issues with the design of the Target. Although the tests were able to identify
some problems, due to internal company deadlines, there was not enough time to
make improvements to the design and complete the verification process.

The developed UVM environment served as a solid foundation for testing both
the read and write operations of the Target. However, due to the time constraints,
the read operation could not be thoroughly tested. The UVM environment itself
is designed to be simple yet comprehensive, providing a good starting point for
future testing.

One notable aspect of the UVM environment is the use of sub-sequences, which
adds flexibility and reusability to the implementation. This allows for easy extension
and improvement of the environment to test the complete design with all its
associated features in the future.

While the verification process could not be fully completed within the given
timeframe, the work done lays the groundwork for further testing and verification
efforts to ensure the robustness and functionality of the Target I3CS IP.

In addition to verifying the Target I3CS IP, the thesis activity also offered
valuable learning opportunities. It involved gaining proficiency in the usage of the
UVM environment, which is a widely adopted methodology for hardware verification.
This included becoming familiar with the hardware verification language System
Verilog, which is commonly used in conjunction with UVM.

Working within the UVM environment required the implementation of new
classes for each test scenario. These classes were responsible for managing con-
figuration parameters, defining timing sequences to interact with the DUT, and
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constructing methods to capture and analyze results for eventual comparison.
Through these tasks, the thesis activity provided hands-on experience in working

with complex verification frameworks, developing test strategies, and utilizing
various UVM features to achieve effective verification of the Target IP. These skills
are valuable in the field of hardware design and verification and can be applied to
future projects and professional endeavors.
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Appendix A

Working Test Codes

A.1 tdk_i3c_uni_base_test.sv

Listing A.1: Base Test Code
1

2

3 ‘ i n c l u d e " tdk_i3c_uni_sve . sv "
4

5

6 c l a s s tdk_i3c_uni_base_test extends uvm_test ;
7 ‘uvm_component_utils ( tdk_i3c_uni_base_test )
8

9 tdk_i3c_uni_sve m_tdk_i3c_uni_sve ;
10 tdk_i3c_uni_controller_dummy_seq item ;
11

12 f unc t i on new( s t r i n g name =" tdk_i3c_uni_base_test " ,
uvm_component parent = n u l l ) ;

13

14 super . new (name , parent ) ;
15 endfunct ion
16

17

18 v i r t u a l f unc t i on void build_phase (uvm_phase phase ) ;
19 super . build_phase ( phase ) ;
20

21 m_tdk_i3c_uni_sve = tdk_i3c_uni_sve : : type_id : : c r e a t e ( "
m_tdk_i3c_uni_sve " , t h i s ) ;

22

23 endfunct ion
24

25

26 v i r t u a l task run_phase (uvm_phase phase ) ;
27 super . run_phase ( phase ) ;

82



Working Test Codes

28

29 phase . r a i s e _ o b j e c t i o n ( t h i s ) ;
30

31 item= tdk_i3c_uni_controller_dummy_seq : : type_id : : c r e a t e ( " item " ) ;
32 item . s t a r t ( m_tdk_i3c_uni_sve . m_tdk_i3c_uni_controller_agent .

m_tdk_i3c_uni_controller_sequencer ) ;
33

34 phase . drop_object ion ( t h i s ) ;
35 endtask
36

37 endc l a s s

A.2 tdk_i3c_uni_I2C_write_test.sv

Listing A.2: Legacy I2C Write test code
1 ‘ i n c l u d e " tdk_i3c_uni_sve . sv "
2

3

4 c l a s s tdk_i3c_uni_I2C_write_test extends uvm_test ;
5

6 ‘uvm_component_utils ( tdk_i3c_uni_I2C_write_test )
7

8 tdk_i3c_uni_sve m_tdk_i3c_uni_sve ;
9

10 tdk_i3c_uni_control ler_I2C_write_sequence write_seq ;
11

12 f unc t i on new( s t r i n g name =" tdk_i3c_uni_I2C_write_test " ,
uvm_component parent = n u l l ) ;

13

14 super . new (name , parent ) ;
15 endfunct ion
16

17

18 v i r t u a l f unc t i on void build_phase (uvm_phase phase ) ;
19 super . build_phase ( phase ) ;
20

21 m_tdk_i3c_uni_sve = tdk_i3c_uni_sve : : type_id : : c r e a t e ( "
m_tdk_i3c_uni_sve " , t h i s ) ;

22

23 endfunct ion
24

25

26 v i r t u a l task run_phase (uvm_phase phase ) ;
27 super . run_phase ( phase ) ;
28

29 phase . r a i s e _ o b j e c t i o n ( t h i s ) ;
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30

31

32 write_seq=tdk_i3c_uni_control ler_I2C_write_sequence : : type_id : :
c r e a t e ( " write_seq " ) ;

33 void ’ ( write_seq . randomize ( ) ) ;
34 write_seq . s t a r t ( m_tdk_i3c_uni_sve . m_tdk_i3c_uni_controller_agent .

m_tdk_i3c_uni_controller_sequencer ) ;
35

36

37 phase . drop_object ion ( t h i s ) ;
38 endtask
39

40 endc l a s s

Where the body task of the tdk_i3c_uni_controller_I2C_write_sequence
consists of other sequences as reported below

Listing A.3: Task body code of Legacy I2C Write test
1 v i r t u a l task body ( ) ;
2 ‘uvm_info ( get_type_name ( ) , $ s fo rmat f ( "ADDRESS: 0x%0h , DATA: 0x%0h"

, packet . i3c_address , packet . i3c_data ) , UVM_HIGH)
3

4

5 ‘uvm_do ( star t_seq )
6

7

8 ‘uvm_do_with ( address_seq , { address_seq . address_t == 7 ’ h68 ;
9 address_seq . rw_t == RW;

10 address_seq . address_acknowledge_t == ADDRESS_ACK;
11 address_seq . acknowledge_t == NO_ACK;
12 })
13

14

15 ‘uvm_do_with ( write_seq , {
16 write_seq . data_t == packet . i3c_address ;
17 write_seq . is_address_ack == NO_ADDRESS_ACK;
18 write_seq . acknowledge_t == NO_ACK;
19 write_seq . i s_par i ty_bi t == NO_parity_bit ;
20 })
21

22 ‘uvm_do_with ( write_seq , {
23 write_seq . data_t == packet . i3c_data ;
24 write_seq . is_address_ack == ADDRESS_ACK;
25 write_seq . acknowledge_t == NO_ACK;
26 write_seq . i s_par i ty_bi t == NO_parity_bit ;
27 })
28

29 ‘uvm_do_with ( write_seq , {
30 write_seq . data_t == packet . i3c_data ;
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31 write_seq . is_address_ack == ADDRESS_ACK;
32 write_seq . acknowledge_t == NO_ACK;
33 write_seq . i s_par i ty_bi t == NO_parity_bit ;
34

35 })
36

37 ‘uvm_do_with ( write_seq , {
38 write_seq . data_t == packet . i3c_data ;
39 write_seq . is_address_ack == ADDRESS_ACK;
40 write_seq . acknowledge_t == NO_ACK;
41 write_seq . i s_par i ty_bi t == NO_parity_bit ;
42 })
43

44 ‘uvm_do ( stop_seq )
45

46

47

48

49 write_ev = uvm_event_pool : : get_globa l ( " write_ev " ) ;
50 write_ev . t r i g g e r ( packet ) ;
51 ‘uvm_info ( get_type_name ( ) , $ s fo rmat f ( " [SDR_WRITE_SEQ] Tr iggered

wr i t e event . Sent packet : \ n%s " , packet . s p r i n t ( ) ) , UVM_HIGH)
52

53

54

55 endtask

A.3 tdk_i3c_uni_I2C_write_bd_test.sv

Listing A.4: Legacy I2C Write test code with Broadcast Address
1 ‘ i n c l u d e " tdk_i3c_uni_sve . sv "
2

3

4 c l a s s tdk_i3c_uni_I2C_write_bd_test extends uvm_test ;
5

6 ‘uvm_component_utils ( tdk_i3c_uni_I2C_write_bd_test )
7

8 tdk_i3c_uni_sve m_tdk_i3c_uni_sve ;
9

10 tdk_i3c_uni_controller_I2C_write_bd_sequence write_seq ;
11

12 f unc t i on new( s t r i n g name =" tdk_i3c_uni_I2C_write_bd_test " ,
uvm_component parent = n u l l ) ;

13

14 super . new (name , parent ) ;
15 endfunct ion
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16

17

18 v i r t u a l f unc t i on void build_phase (uvm_phase phase ) ;
19 super . build_phase ( phase ) ;
20

21 m_tdk_i3c_uni_sve = tdk_i3c_uni_sve : : type_id : : c r e a t e ( "
m_tdk_i3c_uni_sve " , t h i s ) ;

22

23 endfunct ion
24

25

26 v i r t u a l task run_phase (uvm_phase phase ) ;
27 super . run_phase ( phase ) ;
28

29 phase . r a i s e _ o b j e c t i o n ( t h i s ) ;
30

31

32 write_seq=tdk_i3c_uni_controller_I2C_write_bd_sequence : : type_id : :
c r e a t e ( " write_seq " ) ;

33 void ’ ( write_seq . randomize ( ) ) ;
34 write_seq . s t a r t ( m_tdk_i3c_uni_sve . m_tdk_i3c_uni_controller_agent .

m_tdk_i3c_uni_controller_sequencer ) ;
35

36

37 phase . drop_object ion ( t h i s ) ;
38 endtask
39

40 endc l a s s

Where the body task of the tdk_i3c_uni_controller_I2C_write_sequence
consists of other sequences as reported below.

Listing A.5: Task body code of Legacy I2C Write test with Broadcast Address
1

2 v i r t u a l task body ( ) ;
3 ‘uvm_info ( get_type_name ( ) , $ s fo rmat f ( "ADDRESS: 0x%0h , DATA: 0x%0h"

, packet . i3c_address , packet . i3c_data ) , UVM_HIGH)
4

5

6 ‘uvm_do ( star t_seq )
7

8 ‘uvm_do_with ( address_seq , {
9 address_seq . address_t == 7 ’h7E ;

10 address_seq . rw_t == RW;
11 address_seq . address_acknowledge_t == ADDRESS_ACK;
12 address_seq . acknowledge_t == NO_ACK;
13 })
14

15
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16 ‘uvm_do ( r e s ta r t_seq )
17

18 ‘uvm_do_with ( address_seq , { address_seq . address_t == 7 ’ h68 ;
19 address_seq . rw_t == RW;
20 address_seq . address_acknowledge_t == ADDRESS_ACK;
21 address_seq . acknowledge_t == NO_ACK;
22 })
23

24

25 ‘uvm_do_with ( write_seq , {
26 write_seq . data_t == packet . i3c_address ;
27 write_seq . is_address_ack == NO_ADDRESS_ACK;
28 write_seq . acknowledge_t == NO_ACK;
29 write_seq . i s_par i ty_bi t == NO_parity_bit ;
30 })
31

32 ‘uvm_do_with ( write_seq , {
33 write_seq . data_t == packet . i3c_data ;
34 write_seq . is_address_ack == ADDRESS_ACK;
35 write_seq . acknowledge_t == NO_ACK;
36 write_seq . i s_par i ty_bi t == NO_parity_bit ;
37 })
38

39 ‘uvm_do_with ( write_seq , {
40 write_seq . data_t == packet . i3c_data ;
41 write_seq . is_address_ack == ADDRESS_ACK;
42 write_seq . acknowledge_t == NO_ACK;
43 write_seq . i s_par i ty_bi t == NO_parity_bit ;
44

45 })
46

47 ‘uvm_do_with ( write_seq , {
48 write_seq . data_t == packet . i3c_data ;
49 write_seq . is_address_ack == ADDRESS_ACK;
50 write_seq . acknowledge_t == NO_ACK;
51 write_seq . i s_par i ty_bi t == NO_parity_bit ;
52 })
53

54 ‘uvm_do ( stop_seq )
55

56

57

58

59 write_ev = uvm_event_pool : : get_globa l ( " write_ev " ) ;
60 write_ev . t r i g g e r ( packet ) ;
61 ‘uvm_info ( get_type_name ( ) , $ s fo rmat f ( " [SDR_WRITE_SEQ] Tr iggered

wr i t e event . Sent packet : \ n%s " , packet . s p r i n t ( ) ) , UVM_HIGH)
62

63
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64

65 endtask
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