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Summary

Molecular sorting is the main biological mechanism, which allows eucaryotic cells
to organize chemical factors in specific membrane regions, in order to maintain
their functions. A recent phenomenological theory has proposed that this process
could occur by combining two physical phenomena: molecular self-aggregation
and vesicle nucleation. To further investigate molecular sorting, these previous
works introduced a minimal lattice-gas model and described the lipid membrane
as a two-dimensional flat surface [1, 2]. Here, we develop the model, considering
various aspects of molecular sorting on different surfaces, which describe the lipid
membrane, in order to analyze the possible effects due to curvature. Based on
previous studies [3], our goal is to show that nucleation and domain extraction occur
more in regions with high curvature. For this purpose, we study the phenomenon
of molecular sorting on three fixed surfaces: a flat surface, with zero curvature, a
spherical surface, with constant curvature and an ellipsoidal surface, with variable
curvature. Furthermore, we also investigate various properties of nucleation and
statistical correlation between domains.
The membrane is simulated with a Gillespie algorithm, used to reproduce phenom-
ena of insertion, diffusion, domain aggregation and extraction.
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Chapter 1

Introduction

Molecular sorting is the main mechanism that regulates the organization of matter
in eukaryotic cells. It allows cells to counteract the homogenizing effect of diffusion
through sorting and distillation of specific proteins in submicrometric lipid vesicles,
which are then detached from the membrane and transported towards appropriate
destinations by active mechanisms [4, 5].
Molecular sorting occurs on the plasma membrane, on inner vesicular bodies (en-
dosomes) and in the membrane network of the Golgi apparatus.
Recently a phenomenological theory [1, 2] has proposed that the process could take
place by combining two physical phenomena (a) molecular self-aggregation, which
induces phase separation, and (b) vesicle nucleation, originating from domain-
induced membrane bending.
Studies, concerning the phase nucleation in curved space, have shown that both
nucleation and domain growth are strongly affected by the curvature. In particular,
critical nuclei form faster on regions with positive Gaussian curvature [3]. Experi-
mentally, it has been demonstrated that protein transport from the endoplasmic
reticulum (ER) to the Golgi apparatus occurs in specialized regions, localized on
high-curvature ER domains [6].
It has also been observed that the nucleation probability of sorting domains is
not spatially homogeneous, but domains cluster into "hotspots" or "nucleation
organizers" [7].
Following these previous works, we investigate molecular sorting on surfaces, simu-
lating the lipid membrane, with different curvatures (zero, constant and variable),
in order to analyze the dependence on curvature, especially for the processes of
nucleation and detachment of domains. Furthermore, we compute the pair correla-
tion between nucleation sites on these surfaces to understand if this is an effect
due to curvature.
In order to explore computationally the phenomenological theory of molecular
sorting on the membrane, we impose that particles behave according to the Markov
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Introduction

process, already used in [1, 2].
The membrane is discretized through square or hexagonal lattices and to simulate
its dynamics a Gillespie-like algorithm with updatable rates is used.
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Chapter 2

Self-Organized Molecular
Sorting

2.1 Phenomenological Theory
In the proposed model [1, 2], molecules arrive on the membrane, diffuse and aggre-
gate in localized enriched domains, which grow by means of molecule absorption.
When the domains reach a characteristic size RE, they are removed from the
membrane with the formation of lipid vesicles.
The domains coexist in a non-equilibrium statistically stationary state with the
"gas" of molecules, which diffuse freely, continuously repleted.
This process resembles diffusion-limited aggregation (DLA), with the difference
that the presence of the cut-off length RE prevents the formation of large fractal
clusters, which would occur in DLA for long times, and maintains the domains
approximately round.
Here, domains of size R larger than a critical size RC grow irreversibly due to the
absorption of single diffusing molecules. Diffusion is the dominant contribution
of dynamics as long as the average density n̄ of gas molecules is kept low. The
absorption of molecules causes the region near the cluster to be depleted. Therefore,
the density near the boundary of the domain n0 is different from the bulk density
n̄.
When the typical inter-domain distance L is larger than RE, the difference between
bulk density and density near the boundary is approximately ∆n ∼ n̄ − n0 > 0 and
finite, due to the continuous molecule insertion, contrary to classical nucleation
theory, where ∆n tends to 0.
The quasi-static density profile of molecules, which diffuse freely near a domain
of size R, is determined by solving the Laplace equation with Dirichlet boundary
conditions.

3



Self-Organized Molecular Sorting

2.1.1 Flat Surface
For a flat surface, 

D∇2n(r) = 0
n(R) = n0

n(L) = n̄

(2.1)

where D is the diffusion coefficient of the gas bulk, r is the distance from the
domain center, R is the domain size and L represents the size of the area, which
can be influenced by the domain. We obtain

n(r) = n0 + ∆n
ln (r/R)
ln (L/R) (2.2)

The inward flux of molecules into the domain, through which the latter grows, is
defined as

ΦR = 2πRD∂rn(r)
---
r=R

= 2πD
∆n

ln (L/R) (2.3)

From eq. (2.3) we can obtain the dynamic equation for domain growth

Ṙ = A0D∆n

R ln (L/R) (2.4)

with A0 the area occupied by a single molecule in the domain.
Assuming that domains are equally distributed on the membrane and that N(t, R)dR
is the number of domains per unit area of dimension between R and R + dR, the
number density N(t, R) satisfies the Smoluchowski equation

∂N

∂t
+ ∂

∂R
(ṘN) = −γ(R)N, (2.5)

where γ(R) is the mesoscopic extraction rate, assumed to be negligible for R < RE

and constant γ(R) = γ0 for R > RE.
A stationary solution of (2.5) is

Nst(R) = JR ln (L/R)
D∆n

exp
C
−
Ú R

0
dr

r ln (L/r)γ(r)
A0D∆n

D
, (2.6)

where the normalization factor J can be determined, imposing that in the stationary
regime the incoming flux of molecules per unit area ϕ equals the average flux of
molecules absorbed in the domain

ϕ =
Ú ∞

RC

ΦRNst(R)dR (2.7)
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In the regime R > RE, assuming γ0 is large enough to suppress the number density
Nst(R), we obtain J ∼ ϕ/R2

E. In the regime R < RE, where γ(R) is negligible,
Nst(R) has a universal logarithmic behavior. Assuming that the incoming flux is
equally divided among all domains, the average number of domains per unit area is

Nd =
Ú

dRNst(R) ∼ ϕ

D∆n
. (2.8)

The efficiency of the sorting process can be evaluated, considering the average
residence time T̄ of a molecule on the membrane. This is the sum of the average
time T̄f , which the molecule takes to reach the domain by diffusion and be absorbed,
and the average time T̄d spent within the domain.
T̄f is inversely proportional to the average number of domains per unit area Nd

and to the diffusion coefficient D

T̄f ∼ 1
DNd

∼ ∆n

ϕ
, (2.9)

while T̄d can be estimated as

T̄d ∼ R2
E

A0ΦR

∼ R2
E

DA0∆n
. (2.10)

The rate of formation of new domains can be evaluated as
dN

dt
= CDn̄2, (2.11)

where C is a dimensionless constant, taking into account the efficiency of the
absorption of a single molecule. In the stationary state, this rate is given by Nd/T̄d,
then

n̄ ∼
A

Nd

CDT̄d

B1/2

∼
A

ϕA0

CDR2
E

B1/2

(2.12)

Assuming that domains absorb very quickly, causing a very low density in the
depleted region near them (n̄ >> n0 and ∆n ∼ n̄), we obtain

T̄f ∼ C−1/2 A
1/2
0

(Dϕ)1/2RE

T̄d ∼ C1/2 R3
E

(Dϕ)1/2A
3/2
0

(2.13)

Now the average residence time T̄ = T̄f + T̄d has a minimum, with respect to C, at
C ∼ A2

0/R4
E. In the minimum

T̄f ∼ T̄d ∼ RE

(DA0)1/2ϕ1/2 (2.14)
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Self-Organized Molecular Sorting

n̄ ∼ ∆n ∼ ϕ1/2RE

(DA0)1/2 (2.15)

These two scaling relations identify the optimal regime, in which molecular sorting
is most efficient.
The molecule density inside the domains is expressed as the product of the number
of domains per unit area and the number of molecules in a domain

ρd ∼ Nd
R2

E

A0
∼ C1/2 ϕ1/2R3

E

D1/2A
3/2
0

(2.16)

Repeating the calculation for the minimum for the total average density ρ̄ = ρd + n̄,
we find that this also has a minimum at C ∼ A2

0/R4
E and in such minimum ρ̄

assumes the same value of (2.15).

2.1.2 Curved Surface
For a (d − 1)-dimensional surface, embedded in a d-dimensional space, any point
is specified by a d-dimensional vector R⃗(x⃗), function of the (d − 1) coordinates
x⃗ = (x1, . . . , xd−1).
We can introduce the Monge gauge in order to describe the surface with a single
function, the height over a reference plane. In the case of a two-dimensional
surface the vector R⃗ can be written as R⃗(x, y) = (x, y, h(x, y)), where (x, y) are
the coordinates of the point projected onto the reference plane and h(x, y) is the
height of the point on the surface.
For the sake of simplicity we consider a spherical surface, with radius of the sphere
ρ, and we replace the (x, y) coordinates with r, the distance, projected onto the
reference plane, of the point from the center of the domain (Fig. 2.1). In this way
R⃗ = (r, h(r))

Figure 2.1: Surface described in the Monge gauge. In blue the domain.

In this framework the Laplace equation becomes
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D

r
√

1+(h′(r))2
∂
∂r

3
r√

1+(h′(r))2
∂n(r)

∂r

4
= 0

n(R) = n0

n(L) = n̄

(2.17)

To determine the density profile, we set
rñ

1 + (h′(r)2

∂

∂r
n(r) = α = cost (2.18)

and we integrate Ú r

R
dr′ ∂n(r′)

∂r′ = α
Ú r

R
dr′

ñ
1 + (h′(r′))2

r′ (2.19)

Introducing the radius of the sphere, representing the curvature, with the change
of variables h(r) =

√
ρ2 − r2 and solving the integral, we obtain the density profile

n(r) = n0 + ∆n
tanh−1

1ñ
ρ2−r2

ρ2

2 ---R
r

tanh−1
1ñ

ρ2−r2

ρ2

2 ---R
L

(2.20)

and the inward flux
ΦR = 2πD

∆n

tanh−1
1ñ

ρ2−r2

ρ2

2 ---R
L

(2.21)

2.2 Lattice-gas Model
To further explore self-organized molecular sorting, we introduce a lattice-gas model,
where each lattice site can host at most one molecule. The system behaves as a
Markov process, which is described by the following moves:

• Insertion: molecules arrive on the surface from an infinite reservoir and are
inserted on empty sites with rate kI;

• Diffusion: molecules can make a diffusive jump to any empty neighbor with
rate kD·nE

gnH
, with kD diffusion rate, g aggregation coefficient that accounts for

the tendency of molecules to stick together when they meet, nE the number of
empty neighbors and nH the number of occupied neighbors of the site initially
occupied by the jumping molecule;

• Extraction: molecules belonging to the same cluster are extracted by si-
multaneous removal, if the size of the cluster exceeds the characteristic size
RE.
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Self-Organized Molecular Sorting

(a) (b)

(c)

Figure 2.2: Three possible moves of the Markov process: (a) insertion, (b)
diffusion, (c) extraction.

2.3 Optimal Sorting
The stationary behavior of the model depends only on two parameters, the ratio
kI/kD and the aggregation coefficient g. In all numerical simulations the ratio
kI/kD = 10−6, to have a realistic flux entering the membrane. The choice on g is
made in order to ensure an optimal sorting regime, corresponding to a minimum of
the total stationary density of molecules ρ̄.
Figure 2.3 shows that in the case of a hexagonal lattice, for intermediate values of
g, the stationary density takes small values and the minimum is in g = 10. Instead
for a square lattice, the minimum is obtained for g = 50.

The efficiency of the sorting process can be estimated by measuring the stationary
average molecule density ρ̄ on the membrane, since this is proportional to the
average residence time T̄ of molecules and therefore to the sorting rate T̄ −1. To
demonstrate this, let the average residence time T̄ of a molecule on the membrane

8



Self-Organized Molecular Sorting

Figure 2.3: Stationary total molecule density ρ as a function of the aggregation
coefficient g for different values of the valence z.

be a stochastic variable with probability density p(t). The average density ρ̄ of
molecules at time t is given by the sum of the ϕdt molecules inserted on average
into the system in the previous infinitesimal time intervals dt, where ϕ is the flux
of incoming molecules. Adding the condition that the residence time has not yet
elapsed, we have

ρ̄ =
Ú ∞

0
Prob(T > t)ϕdt = ϕ

Ú ∞

0

3Ú ∞

t
p(τ)dτ

4
dt = ϕ

Ú ∞

0
τp(τ)dτ = ϕT̄ (2.22)

So, the average residence time T̄ of a molecule on the membrane is T̄ = ρ̄/ϕ [1].
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Chapter 3

Curvature

The curvature is a geometric concept describing how much an object deviates from
being flat. It is defined on each point of the surface and it can be of two types:
extrinsic and intrinsic. The extrinsic curvature of an object is measured in relation
to a flat space in which the object is immersed. The intrinsic one depends only on
the points of the object itself. In our case, where the reference surface is a convex
one, we use the Gaussian curvature, which is an intrinsic curvature, defined as the
product of the two main curvatures.
Suppose we are given a surface, embedded in the 3-dimensional space and we take
a non-singular point (x0, y0, z0) on it. Now we choose an orthonormal frame, where
z is normal to the surface while x and y are tangent to it. Then locally near the
point (x0, y0, z0) the surface is given in the form z = f(x, y), z0 = f(x0, y0) and

∂f

∂x

-----
x0,y0

= ∂f

∂y

-----
x0,y0

= 0 (3.1)

Now we construct the Hessian matrix

H =
 ∂2f

∂x2
∂2f

∂x∂y
∂2f

∂y∂x
∂2f
∂y2

 (3.2)

and we have that the principal curvatures of the surface are the eigenvalues of H
at the point where the surface is given in the form z = f(x, y) and ∇f = 0.
Since the Gaussian curvature is the product of the two principal curvatures, we
find that it is the determinant of H. [8]

10



Curvature

3.1 Calculation of Surface Curvature in Implicit
Form

In our work we evaluate the Gaussian curvature, using the implicit formula of the
surface. Given the surface as the locus of points where a function in three variables
is canceled F (x, y, z) = 0, we define

∇F =
A

∂F

∂x
,
∂F

∂y
,
∂F

∂z

B
= (Fx, Fy, Fz) (3.3)

H(F ) =

Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fyz Fzz

 = ∇(∇F ) (3.4)

H∗(F ) =

FyyFzz − FyzFzy FyzFzx − FyxFzz FyxFzy − FyyFzx

FxzFzy − FxyFzz FxxFzz − FxzFzx FxyFzx − FxxFzy

FxyFyz − FxzFyy FyxFxz − FxxFyz FxxFyy − FxyFyx

 (3.5)

The Gaussian curvature is defined, at each point where ∇F /= 0, as

G = ∇FH∗(F )∇F T

||∇F ||4
(3.6)

3.1.1 The Case of Ellipsoid

The ellipsoid is the locus of points such that F (x, y, z) = x2

a2 + y2

b2 + z2

c2 − 1 = 0.
The gradient is

∇F =
32x

a2 ,
2y

b2 ,
2z

c2

4
(3.7)

and the Hessian is

H(F ) =


2
a2 0 0
0 2

b2 0
0 0 2

c2

 , (3.8)

from which

H∗(F ) =


4

b2c2 0 0
0 4

a2c2 0
0 0 4

a2b2

 . (3.9)
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Curvature

We can therefore compute the Gaussian curvature

G =

1
2x
a2 , 2y

b2 , 2z
c2

2
4

b2c2 0 0
0 4

a2c2 0
0 0 4

a2b2




2x
a2
2y
b2
2z
c2


1

4x2

a4 + 4y2

b4 + 4z2

c4

22 (3.10)

3.1.2 The Case of the Sphere
The sphere is the locus of points such that F (x, y, z) = x2 + y2 + z2 − R2 = 0.
The gradient is

∇F = (2x,2y,2z) (3.11)

and the Hessian is

H(F ) =

2 0 0
0 2 0
0 0 2

 , (3.12)

from which we obtain

H∗(F ) =

4 0 0
0 4 0
0 0 4

 . (3.13)

Then, the Gaussian curvature is

G =

(2x, 2y, 2z)

4 0 0
0 4 0
0 0 4


 2x

2y
2z


(4x2 + 4y2 + 4z2)2 =

= 16(x2 + y2 + z2)
16(x2 + y2 + z2)2 = 1

R2

(3.14)

Curvature formulas for implicit surfaces are taken from [9].
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Chapter 4

Simulation methods

4.1 Lattice Construction
The lattice on the ellipsoidal and spherical surface, used to discretize the membrane,
is generated in Matlab, using a triangular mesh generator [10]. Then the dual
hexagonal lattice is built. Since it is not possible to cover the surface with only
hexagons, there are some defects, such as pentagons and heptagons, on which
corrections must be applied.

4.2 Model Implementation
To simulate the dynamics on the lipid membrane, we implement a Gillespie-like
algorithm, using the CavityTools library [11]. In particular, we use the Exponen-
tialQueue library to sample events in continuous time. We construct an updatable
queue of 2N + 1 events, where the first N rates are associated with diffusive events,
the second N are associated with insertion events and the last one is the extraction
rate; then at each time step a rate, deciding the type of move, is selected. Both the
queue and various quantities, calculated initially and describing the arrangement
of molecules, are updated during the dynamics.

For the complete code see https://github.com/Camilla9802/Molecular-sorting-
on-a-curved-membrane.git.
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Simulation methods

(a)

(b)

Figure 4.1: Lattice on (a) ellipsoidal and (b) spherical surfaces: pentagons (blue),
hexagons (green), heptagons (yellow)
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Chapter 5

Diffusion and Extraction
processes

5.1 Correction of Defects
Without applying modifications to correct defects, seen in Chapter 4, the processes
of insertion, diffusion, aggregation and extraction have strong inhomogeneities,
caused by the different number of neighbors for the three types of polygons. Indeed
in all mechanisms on average, the heptagons are sampled more than the hexagons
and the pentagons less. In the case of aggregation and extraction, the heptagons
occupied by a molecule, having more neighbors, are more likely to attract other
molecules, form clusters and therefore be extracted (Fig. 5.1). For the same reason
in the diffusive jump an empty heptagon is more likely to be selected as the arrival
site.
In order to balance these mechanisms we correct diffusion and aggregation coeffi-
cients, introducing effective coefficients for each site:

keff
D,i = kD · n

ni

geff
i = g

n
ni

(5.1)

for i = 1, . . . , N and where n is the average number of neighbors in the lattice (in
our case n = 6) and ni is the number of neighbors of the i-th site. In this way the
process provides the equilibrium distribution. To make it uniform we implement a
Metropolis-Hastings algorithm: in the diffusive jump, once randomly selected the
arrival site, we accept the move with probability p and reject it with probability
1 − p, where p = neighbors of the source site

neighbors of the selected site .

15



Diffusion and Extraction processes

(a) (b)

Figure 5.1: (a) Number of times a molecule is extracted from the site. Regions
with more extractions are concentrated around the heptagons, showing how the
model without corrections depends on the topology of the lattice. (b) Histogram
of the average number of extractions according to the type of polygon.

We can observe that with the corrections introduced previously both the diffusion
and the extraction are balanced with respect to the number of neighbors (Fig. 5.2).
In addition, the diffusion process is homogeneous throughout the lattice 5.3(a).

(a) (b)

Figure 5.2: (a) Histogram of the average residence time as a function of the
type of polygon in the diffusive process. (b) Histogram of the average number of
extractions according to the type of polygon.

In the extraction mechanism, however, despite the corrections, we continue to see

16



Diffusion and Extraction processes

regions where extraction events occur more frequently (Fig. 5.3(b)). Now we need

(a) (b)

Figure 5.3: (a) Residence time of the molecules on the sites in the diffusive
process. (b) Number of extractions per site.

to understand if the formation of these regions is due to the curvature of the surface
or to some correlation between clusters, which we have not yet considered.

5.2 Study of Different Surfaces
In order to understand if the phenomenon described above is an effect of curvature,
we perform the same simulations on the spherical surface, which has constant
curvature, and on the flat square lattice, which has zero curvature. We expect
that, if so, in both cases the formation of these regions, favored in the extraction of
clusters, should not be observed. In addition, in the case of the flat surface, using
a regular square lattice, we also remove the possible residual effects due to defects,
so we expect to observe an even more homogeneous phenomenon. Contrary to the
expected results, we observe how the hotspots are also present on these structures
(Fig. 5.4).

5.3 Averages over Multiple Simulations
Assuming that the formation of these hotspots may be due to a memory internal to
the process, we perform a statistical average over several simulations with different
initial conditions. By averaging multiple simulations on the flat lattice, we obtain
a sufficiently homogeneous extraction process. From Figure 5.5(a) we see how the
difference in the number of extractions per site on the flat lattice has decreased
compared to what is observed in Figure 5.4(b). On the curved surface, however,
although this difference has decreased compared to Figure 5.3(b), it continues to
be not negligible. In particular, we observe the formation of two "strips" of sites

17
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(a) (b)

Figure 5.4: Number of extractions per site (a) on the spherical surface and (b)
on the flat surface.

most sampled in areas with intermediate curvature 5.5(b). This fact is further
highlighted, by computing averages, no longer total, but on "slices" of the surface.
We divide the ellipsoidal surface into spherical crowns along the x-axis and measure
the statistical average for each crown (Fig. 5.6).

(a) (b)

Figure 5.5: Average number of times a molecule is extracted from the site: (a) on
a flat lattice over 20 simulations; (b) on a curved surface over 10 simulations.

We assume, therefore, that a trapping phenomenon occurs in these areas. The idea
is as follows: in these intermediate regions, since there is less physical space, freely
diffusing molecules, described as hard spheres that cannot overlap, are more likely
to encounter other molecules and stick together, forming clusters. New particles,
arriving in these areas, are attracted, through the aggregation force g, towards
these clusters and remain trapped. With this mechanism, these domains reach the
extraction size faster and this would explain the increased extraction activity on
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Diffusion and Extraction processes

Figure 5.6: Average number of extraction on each spherical crown

these stripes.
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Chapter 6

Nucleation and Domain
Growth

The phenomenon of nucleation is the mechanism through which the phase transition
can occur. Once the core is formed, starting the phase change, it grows until the
phase transition has taken place completely.

By studying nucleation and growth phenomena (NG) on substrates with cur-
vature, it has been observed that the curved geometry itself makes the phenomenon
non-homogeneous [3]. Considering spherical substrates, i.e. with positive Gaussian
curvature, it has been shown that for geometric reasons (compared with the plane,
for a given perimeter a circle has more area on the spherical curvature) the critical
size of the domains decreases when decreasing the radius of the sphere, meaning
that NG is favored for higher curvatures. This implies that for higher positive
curvatures the growth of the nuclei is faster.

Now we perform nucleation and cluster growth experiments on our cigar-like
surface, shown above (Fig. 4.1). We proceed by seeding an almost circular nucleus
of a predefined initial size both on the region with higher curvature (the pole), and
on the almost flat region and we study its temporal evolution.
We observe that on average the nuclei, located on the pole, reach the maximum
size faster than those placed on the flat region, but the latter reach much larger
dimensions (Fig. 6.1).
This effect may be due to two different phenomena. First, on the flat region,
molecules have more physical space to move, so they have more paths to attach
to the cluster. On the other hand, it has been shown that diffusivity is strongly
affected by the geometry of the surface [12]. Precisely, the diffusion coefficient
decreases as the curvature increases, which means that particles diffuse more slowly
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Nucleation and Domain Growth

(a) (b)

Figure 6.1: Temporal evolution of the cluster (a) on the pole and (b) on the flat
region over 10 simulations.

in high-curvature areas and take longer to reach the pole. As a result, we have
clusters on the poles that grow less, but are more stable, because particles arriving
on the pole are trapped due to low diffusivity.
Furthermore, we analyze the secondary domains that are formed during the diffusion
process. From Figure 6.2 we see that when the initial cluster is seeded on the pole,
during the dynamics on average at least another domain is formed, which nucleates
far from the first one. Otherwise, if the initial cluster is placed on the flat region,
more frequently we observe situations with the initial domain only. In this case,
the secondary clusters organize independently of the first. This seems to validate
what was said above.

To investigate the phenomenon further, we replicate the experiments on an ellip-
soidal surface, where the difference in curvature is smaller. Here, as we expected,
both cases appear more balanced, meaning that the behaviors seen before are
related to the curvature of the membrane (Fig. 6.3).

21



Nucleation and Domain Growth

(a) (b)

Figure 6.2: (a) Number of clusters and (b) positions of secondary clusters, over
50 simulations. We divided the x-axis into 5 sectors, such that each sector contains
the same number of sites, and counted the domains within each intervals. The
two highest bars represent the initial nuclei on the pole and on the flat region,
respectively.

(a) (b)

Figure 6.3: (a) Number of clusters and (b) positions of secondary clusters, over
50 simulations. We divided the x-axis into 5 sectors, such that each sector contains
the same number of sites, and counted the domains within each intervals. The
two highest bars represent the initial nuclei on the pole and on the flat region,
respectively.
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Chapter 7

Correlation Analysis

After having found that the appearance of hotspots does not depend on the curvature
of the membrane, we carry out a detailed study of the correlation between domains.
In a study of clathrin-mediated endocytosis, it was experimentally demonstrated
that clathrin-coated pits at the plasma membrane repeatedly form at predefined
sites [7]. To assay the spatial distribution of nucleation sites, the pair correlation
function, derived from Ripley’s K-function, was used. It has been shown that
for small distances the pair correlation function takes values > 1, meaning that
nucleation sites tend to cluster. Instead, for a spatially random distribution, the
function has a constant value equal to the average density of points, with which it
is then normalized (Fig. 7.1).

Figure 7.1: Pair correlation function of all nucleation events, captured by the
detection (blue) and pair correlation function of a random distribution [7].
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Correlation Analysis

7.1 Pair Correlation
Here we replicate the same quantitative analysis of spatial clustering, through
Ripley’s K-function [13].

7.1.1 Empirical K-function
The empirical K-function is the cumulative average number of data points, lying
within a distance r, corrected for edge effects:

K̂(r) = |W |
n(n − 1)

nØ
i=1

nØ
j /=i,j=1

1{dij < r}eij(r) (7.1)

where n is the number of points, |W | is the area of the observation window, dij

is the distance between point i and point j and eij is an edge correction weight,
necessary to account for the missing observations for points located at the edge
of the image, which may have additional ‘invisible’ close neighbor points located
outside of the image.

7.1.2 Empirical Pair Correlation Function
The pair correlation function g(r) in two dimensions is defined as

g(r) = K ′(r)
2πr

(7.2)

where K ′(r) is the derivative of K with respect to r.
To estimate the pair correlation function we employ the kernel smoothing technique:
we replace the indicator function 1{dij < r} with a kernel term κ(dij − r)

ĝ(r) = |W |
2πrn(n − 1)

nØ
i=1

nØ
j /=i,j=1

κh(r − dij)eij(r) (7.3)

where the smoothing kernel κh, with smoothing bandwidth h > 0, is a rescaled
kernel term

κh(x) = 1
h

κ
3

x

h

4
(7.4)

For example, κ could be the standard normal density function

κ(x) = e−x2/2
√

2π
⇒ κ

3
x

h

4
= e−x2/2h2

√
2π

, (7.5)

so that κh would be the normal density function with 0 mean and standard deviation
h

κh(x) = e−x2/2h2

h
√

2π
(7.6)
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Correlation Analysis

7.1.3 Edge Correction
Regarding the edge correction weight, we introduce a correction factor

c(de, r) =


π+2 sin−1 (de/r)
2π

for r > de

1 otherwise
(7.7)

where de denotes the distance between point i and the nearest boundary [14].

7.1.4 Correlation through Simulations
We numerically replicate the procedure, shown above, to measure the pair corre-
lation function between domains of size = 20 sites occupied on a 100x100 flat lattice.

Unlike biological results, we do not find the presence of a spatial correlation
between domains, which seem to be randomly distributed on the lattice (Fig. 7.2).

Figure 7.2: Centers of 1000 domains on the flat lattice

7.2 Correlation between Extracted Clusters
Now we study the correlation between domains removed from the membrane. In
particular, we consider domains extracted consecutively and we measure pair dis-
tances, distinguishing domains formed before the previous extraction and domains
formed later. From Figure 7.3, we observe that on average domains formed before
tend to localize at greater distances, probably indicating the presence of a repulsive
interaction potential between domains. On the contrary, domains formed later are
located near the region, left empty by the extracted cluster.
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Correlation Analysis

Figure 7.3: Pair distances between clusters extracted consecutively

In our case, we observe only spatial correlations for small times, as shown in
Figure 7.3, which are probably averaged over a long time.
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Chapter 8

Conclusions

In this work we have studied molecular sorting on geometries with different curva-
tures, analyzing the effect of the latter on the process.
In the first chapters (2, 3) we have discussed the phenomenological model describing
molecular sorting and geometric concepts related to curvature. After illustrating
the methods implemented to simulate membrane dynamics (Chapter 4), we have
analyzed the diffusion and extraction processes (Chapter 5), and nucleation and
growth of domains (Chapter 6) on our reference surfaces. In the last chapter (7),
based on biological results, obtained from the study of clathrin, we have measured
the spatial correlation between domains.

Exploring various aspects of the mechanisms mentioned above, we have found
that diffusion is the governing process in the system. Indeed, we have observed
that diffusion is slower with increasing curvature, thus making the sorting process
on high-curvature regions more difficult and producing hotspots on regions with
intermediate curvature. On the other hand, this low diffusivity at the poles causes
the domains, once able to form, to remain trapped, resulting more stable.
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