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Abstract

The software development in the automotive industry follows very tight guide-
lines, focused mainly on the safety of passengers and pedestrians. One of the most
used developing lifecycles is the V-model, a very rigorous and therefore very slow
and expensive process. It is very effective for series production, but inconvenient
for prototyping development.

The aim of this thesis work is to build a new development workflow specifically
for low-series production, show-cars, and prototypes.

The first part of my work consisted in modelling some test components in Vector
PREEvision and exporting the resulting ARXML files.

Then a Python script and a C++ library have been developed; the aim of the
script is to parse the ARXML files and export all the needed information, while
the C++ library provides the programmer with ease of access to the CAN network
and to the messages and signals described in said files.

Finally, a demo program has been written and run on a development board,
making use of the library to control a series production headlamp, by mimicking
its control ECU.

In conclusion, it has been shown that it is feasible to develop and deploy an
ECU in C++ with limited effort, hopefully paving the way to easier, cheaper and
faster car prototyping.
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Chapter 1

Introduction

The history of electronics in the vehicles go hand in hand with the development
of technology itself. The first electronic engine control module is now almost 50
years old [1]. Nowadays, the number of Electronic Control Units (ECUs) found in
a vehicle can be as high as 150.

As the systems became more and more complex, many coding standards and
guidelines were developed, such as MISRA, that covers C [2] and C++ [3].

While an automotive architecture is usually developed using the V-model, the
scope of this work is to find an alternative model to specifically use in prototyp-
ing and low-series production. Before that, however, some concepts need to be
introduced.

1.1 The V-model
One of the most used development models in the automotive industry is the V-

model. Also called the V-cycle, it is a very robust model, consisting of two distinct
phases; the left side represents the project definition phase, while the right side
corresponds to the verification phase. Every industry subdivides the two sides in
slightly different ways.

The automotive industry usually divides the left side in three parts: design,
development and integration. Each of these steps starts from a formal document,
and ends in another one, allowing different parties to carry out each step with
minimal overlap.

The right side, instead, deals with the verification of the corresponding step on
the left side. At each step, the result is validated against the specification, going
back to the corresponding phase if needed.

During the design phase, the software and network architecture is defined. All
the software components and their interactions are defined, and the number of
ECUs and their network topology is chosen; finally, how the software components
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Introduction

Figure 1.1: The V-model as explained by Vector in terms of its own software.

are distributed on the ECUs is decided.
The development phase consists in the design and implementation of all the

ECU software. This is usually done, like the other steps, following the AUTOSAR
guidelines, which will be explained later.

Finally, the integration phase consists in putting together all software pieces and
deploying them to the physical ECUs.

One thing to keep in mind about the V-model is that the verification is not only
done on the right side, but throughout the development life-cycle.

When dealing with series production vehicles, these steps are often outsourced
to different entities. The robustness of the model itself guarantees that the final
result corresponds to the requirements.

1.2 AUTOSAR
AUTOSAR (AUTomotive Open System ARchitecture) is a global partnership of

leading companies in the automotive and software industry to develop and establish
the standardized software framework and open E/E system architecture for intelli-
gent mobility [4].

AUTOSAR aims to standardize the software modules and the application in-
terfaces, making easier to reuse components, even across different manufacturers.
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Many AUTOSAR standards, however, arise from already established OEM prac-
tices, therefore they allow multiple variants, in order to accommodate what man-
ufactures were already doing, thus limiting interoperability. One such example is
the E2E Protocol, which will be explained in section 1.2.2 on the following page.

One thing to note is that AUTOSAR only provides the specification of each
software module, while the implementation is left to the manufacturer, although
open source implementations of some components do exist [5–8].

1.2.1 The ARXML file format
AUTOSAR also defines a format to exchange architecture artefacts between

compatible software, called ARXML [9]. An ARXML file is nothing more than an
XML file with a specific syntax.

The root element is always called AUTOSAR and includes zero or more packages.
Packages are containers for elements of the same type and can be nested. Every

package and element has a nested SHORT-NAME tag that carries its name.
Nodes can contain references to other nodes, but unlike conventional XML, the

hierarchy is not explored by tag name, but by the SHORT-NAME inner text. The
root reference is / and deeper nodes are referenced adding a / and the correspond-
ing SHORT-NAME to its parent reference.

1 <?xml version ="1.0" encoding =" UTF-8 " standalone =" no"?>
2 <AUTOSAR xmlns ="http :// autosar .org/ schema /r4 .0" xmlns :xsi="http :// www.w3.org /2001/ XMLSchema-instance " xsi:

ñ→ schemaLocation ="http :// autosar .org/ schema /r4 .0 AUTOSAR_00046 .xsd">
3 <ADMIN-DATA >
4 <LANGUAGE >EN </ LANGUAGE >
5 <USED-LANGUAGES >
6 <L-10 L="EN" xml: space =" default "/>
7 </ USED-LANGUAGES >
8 </ ADMIN-DATA >
9 <AR-PACKAGES >

10 <AR-PACKAGE UUID="0 a9b246c9e373afb9330a953844b3b6e ">
11 <SHORT-NAME >Communication </ SHORT-NAME >
12 <AR-PACKAGES >
13 <AR-PACKAGE UUID="644 b31cca3f63b8aa8f86bf533b94a9a ">
14 <SHORT-NAME >Frames </ SHORT-NAME >
15 <ELEMENTS >
16 <CAN-FRAME UUID=" Oa8fde40b186da0c63295fd48XOa8fde40b186da0c63295fd4300 ">
17 <SHORT-NAME >Test_CANFrame </ SHORT-NAME >
18 <FRAME-LENGTH >4</ FRAME-LENGTH >
19 <PDU-TO-FRAME-MAPPINGS >
20 <PDU-TO-FRAME-MAPPING UUID=" Oa8fde40b186da0c63295fd48xOa8fde40b186da0c63295fd4200 ">
21 <SHORT-NAME >new_PDUFrameAssignment </ SHORT-NAME >
22 <PACKING-BYTE-ORDER >MOST-SIGNIFICANT-BYTE-LAST </ PACKING-BYTE-ORDER >
23 <PDU-REF DEST=" I-SIGNAL-I-PDU ">/ Communication /PDUs/ Test_PDU </ PDU-REF >
24 <START-POSITION >0</ START-POSITION >
25 </ PDU-TO-FRAME-MAPPING >
26 </ PDU-TO-FRAME-MAPPINGS >
27 </ CAN-FRAME >
28 </ ELEMENTS >
29 </ AR-PACKAGE >
30 <AR-PACKAGE UUID="8 ea7d5f648373dcb81a5df496ef28b08 ">
31 <SHORT-NAME >PDUs </ SHORT-NAME >
32 <ELEMENTS >
33 <I-SIGNAL-I-PDU UUID=" Oa8fde40b186da0c63295fd47XOa8fde40b186da0c63295fd4400 ">
34 <SHORT-NAME >Test_PDU </ SHORT-NAME >
35 <LENGTH >4</ LENGTH >

Listing 1.1: An extract from a test ARXML file.
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For example, on line 23 of listing 1.1 on the previous page, we can find a reference
to the element starting on line 33, while the reference for the element on line 16
would be /Communication/Frames/Test_CANFrame.

The names of the packages are not standardized, although some of them are
common between tools. This means that everything that can be modelled can be
serialized, but not every tool can deal with all the information contained in an
ARXML file.

1.2.2 The E2E Protocol
One of the many standards defined by AUTOSAR is the E2E Protocol Specifi-

cation [10]. It is a an additional communication layer which sits between the upper
and lower communication layers (see fig. 1.2), whose goal is to add end-to-end pro-
tection (hence the name) to critical messages, so that common network problems,
such as message corruption, repetition or loss can be detected.

Figure 1.2: Overview of E2E communication protection between a sender and a
receiver.

There are, at the time of writing, 14 different profiles described by the stan-
dard. Every profile has different use cases with respect to the level of protection
that’s needed, and to the underlining communication network, but each of them
implements a counter, to detect repeated, missing, or out-of-order messages, and a
Cyclic Redundancy Check (CRC) to detect corrupted messages, regardless of any
protection already built in the lower communication layers.
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1.3 The CAN bus
The Controller Area Network (also called CAN bus) is one of the most used

vehicle communication networks. The development started in 1983, and it has since
been standardized by the International Organization for Standardization (ISO) [11–
14]. Modern vehicles usually include at least two or three CAN networks, but the
number can be much higher [15].

The strengths of CAN include the robustness, the ability to get relatively high
data rates, and the low wire count. Even if other other automotive communication
networks, such as FlexRay and Ethernet, are being employed nowadays, CAN still
remains ubiquitous in the industry. The disadvantages include the small payload
(up to 8 bytes) and the lower speeds when compared with newer alternatives.

CAN uses a differential twisted pair of wires, called CAN high (CANH) and
CAN low (CANL), making it very tolerant to common mode noise, and facilitating
the detection of bus problems. It is terminated with a 120 Ω resistor at each end,
and features a dominant state (actively driven by devices) and a recessive state
(pulled by resistors).

The recessive state represents a logical 1, while the dominant one a logical 0.
There’s no bus arbitration: while transmitting, a device is also listening, and aborts
the transmission in the event that the bit being received is different from the one
being transmitted. Since all the devices are synchronized and sample each bit
concurrently, this means that in case of collision on one bit, the device transmitting
a dominant bit can continue transmitting, while the others have to stop; this is
exploited to establish a message priority, with messages with lower IDs taking
precedence in case of collision.

The standard does not set a specific bitrate for CAN, allowing speeds from
125 kbps up to 1 Mbps, with lower speeds being less susceptible to interferences
and thus allowing longer network distances.

1.3.1 CAN frame format

(a)

(b)

Figure 1.3: CAN base (a) and extended (b) frame formats.
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CAN does not identify the sender (nor the receiver), but every message has an
ID (that, as discussed before, doubles as its priority). The ID can be 11 bits long (in
the CAN base frame format) or 29 bits long (in the CAN extended frame format),
and the two formats can coexist on the same bus.

Figure 1.3 on the previous page shows the two formats, while table 1.1 explains
the meaning of every field.

Table 1.1: Explanation of the fields of CAN base and extended frame formats.

Start of frame
(SOF)

1 Dominant (0) bit, used to signal the start of a
frame transmission

11-bit Identifier 11 The unique identifier of the message in case of
base frames, or the first part of the 29-bit ID in
case of extended frames

Remote
transmission
request (RTR)a

1 Dominant (0) for data frames and recessive (1)
for remote request frames; its position is different
between base and extended frames

Substitute
remote request
(SRR)

1 In extended frames, its located where the RTR
bit would be, and is always recessive (1)

Identifier
extension bit
(IDE)

1 Dominant (0) for base frames and recessive (1)
for extended frames

18-bit Identifier 18 In extended frames, the second part of the 29-bit
ID

Reserved bit 1
(r1)

1 Reserved bit, only present in extended frames,
must be transmitted as dominant (0)

Reserved bit 0
(r0)

1 Reserved bit, must be transmitted as dominant
(0)

Data length
code (DLC)

4 Size of data in bytes (only values 0-8 are valid)

Data 0–64 Payload of the message, from 0 to 8 bytes
according to the DLC

Field name Length
(bits)

Description

Continued on next page
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Table 1.1: Explanation of the fields of CAN base and extended frame formats.
(Continued)

CRC 16 15 bits are the CRC-15-CAN calculated over the
bits from SOF up to and including data (15 bits),
while the last bit is the CRC delimiter, always
recessive (1)

ACK 2 The first bit is the ACK slot, transmitted
recessive (1) and asserted dominant (0) by the
receiver, while the second bit is the ACK
delimiter, always recessive (1)

End of frame
(EOF)

7 Used to signal the end of the frame, always
recessive (1)

Inter-frame
spacing (IFS)

3 At least 3 recessive (1) bits, used to separate
consecutive messages

Field name Length
(bits)

Description

a A remote request frame is a special frame with 0 length data, and is used to ask other nodes to
send the data frame with the corresponding ID.

Note: Fields in grey are only present in the extended frame format.

1.3.2 CAN FD
The CAN standard specifies a maximum bitrate of 1 Mbps, but CAN FD (Flex-

ible Data-Rate) has also been specified, allowing speeds up to 5 Mbps.

Figure 1.4: Comparison of a classical CAN frame and three CAN FD frames of
different sizes and at different data bit rates.

CAN and CAN FD can coexist on the same bus, as long as they use a different
set of IDs. Classical CAN devices can tolerate CAN FD transmissions because
the same bitrate as classical CAN is used for the arbitration phase, switching to a
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faster rate only when transmitting the data and the CRC. On the contrary, CAN
FD devices must be capable of receiving classical CAN frames.

The FD mode is signalled by sending the r0 bit as recessive (logical 1). New
bits are added to support all the features of CAN FD, but the principles are mostly
the same. The maximum payload has also been increased to 64 bytes, versus the
mere 8 of classical CAN. CAN FD messages can still use both the standard and
extended addressing.

1.3.3 SocketCAN
SocketCAN is an implementation of the CAN protocols in Linux [16]. It is the

de-facto standard when dealing with CAN in Linux, since it superseded all previous
implementations, that were often specific to some CAN hardware. SocketCAN
abstracts the hardware, providing a socket interface, much like TCP/IP sockets.
Of course, the two types of sockets are not identical, since CAN has some quirks
and peculiarities that TCP/IP hasn’t, and vice versa, but their usage is as similar
as possible, making use of the same system calls, such as bind, read, write and
so on. SocketCAN consists of many components, such as the socket in itself, the
configuration layer, the user space applications, and the virtual CAN driver.

The socket layer is the core of the implementation. It abstracts the hardware
and provides the application with APIs to send and receive messages, filter them,
get the arrival timestamp, and so on.

The configuration layer, instead, deals with the physical configuration of the
CAN hardware, allowing to set the speed, CAN FD support, echo of sent mes-
sages, and so on. The configuration layer can be accessed with both user space
applications, such as ip, and specific APIs by the application.

SocketCAN also provides user space applications such as cansend, that allows
the user to send a CAN frame from the command line, candump, that prints to
console all the frames received on a CAN interface, and many more. These tools
are very useful during development and testing to make sure everything is working
correctly.

Finally, SocketCAN also provides a virtual CAN driver, called vcan, that allows
the user to emulate in software one or more CAN interfaces, in order to simulate
and test CAN communications without the need of real hardware. This feature has
been used a lot during development, in conjunction with the user space applications,
to test everything locally, before deploying the software on real hardware.
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Chapter 2

System Design

The system design phase, in automotive development, is a very heterogeneous
process. The E/E (Electric/Electronic) architecture requires the design of every-
thing related to the electric world, from the wiring harnesses to the high-level
functionalities of the single ECUs. With that in mind, it’s easy to understand why
the architecture design is a process that involves many figures with different skill
sets, and why the vehicle is usually divided into domains, each one being a set of
related components of the car.

The design of an automotive network architecture was already been explored
in another thesis work, by Luca Valentini [17], but in order to proceed further,
I needed to understand the design process myself, focusing on the software and
network design.

2.1 Vector PREEvision
PREEvision is the premier tool for model-based development of distributed, em-

bedded systems in the automotive industry and related fields. This engineering en-
vironment supports the entire technical development process in a single integrated
application [18].

PREEvision in an all-in-one solution for E/E architecture modelling. It has
full support for the AUTOSAR methodology, and can import and export data
via ARXML and many more file formats, allowing migration from other software
and/or integration into an existing workflow.

Figure 2.1 on the next page shows the various features of the PREEvision soft-
ware, as advertised by Vector, but only three of the components were explored for
this work: the software and hardware architectures, and the communication layer.
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Figure 2.1: Features of the Vector PREEvision software.

2.2 System and software design
Figure 2.2 shows the process for the system and software design phase of the

V-model. Of course not all steps are mandatory: in my work I started from scratch
and not from an ARXML import, and only focused on CAN networks.

Figure 2.2: System and software design process in PREEvision.

2.2.1 Software design
In this phase, software components and their interactions are modelled, inde-

pendently from the physical model. Software artefacts can be grouped into compo-
sitions, and have input and output ports, each one of them usually corresponding

10



System Design

to a signal. Everything is done graphically, by placing artefacts on a canvas and
drawing lines to connect them.

Figures 2.3 to 2.6 on pages 11–14 show a simple software model for the exterior
lights of a vehicle.

Figure 2.3: Lights Connections composition PREEvision model.

Figure 2.3 shows the general composition for the lights domain. The Brakes SW
Type and Gearbox SW Type were not entirely modelled, while Lights SW Type is
shown in detail in fig. 2.4 on the following page, alongside its components Front
Lights SW Type in fig. 2.5 on page 13 and Rear Lights SW Type in fig. 2.6 on
page 14.

The symbol represents a sensor and/or actuator, while is a SW component.
There’s no real difference between a sensor and an actuator, and in fact an artefact
can be both. A sensor usually only has sender ports ( ), while an actuator only
has receiver ports ( ).

Another important step in this phase is the data types creation. Every con-
nection has to have a data element assigned to it, and each data element needs a
data type. Application data types are used to differentiate different types of value
at the logical level; for example, one can define both Brake_Pedal_Position_DT
and Accelerator_Pedal_Position_DT, and map them to an integer implementation
data type, but they will represent different types of data at the logical level.

A data type can also have a computation method, a way to convert from the
internal representation of the value to the physical one, or vice versa. They can be
textual (just a description of each possible value, or range of values) or numerical
(a mathematical function to apply to each value, or range of values). Figure 2.7
on page 15 shows an example of conversion method, with a piecewise numerical
conversion and a textual conversions for two of the possible ranges of values.
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Figure 2.7: Example of a conversion method.

2.2.2 Hardware design, mapping and routing
The next step after the software design is the modelling of all the ECUs, and the

networks that connect them, defining their types and number. This phase is similar
to the previous one, but concerns the physical components, instead of the logical
ones. In the end, software components will be mapped to physical components.
This is almost never a 1:1 map, since in practice the same HW component can
fulfil the role of multiple SW components. The separation between SW and HW
components means it’s easier to move functionalities between ECUs without having
to model everything from scratch.

Figure 2.8 on the following page shows the hardware model for the exterior lights
domain modelled before, and how each SW component has been mapped onto an
ECU.

Once everything has been modelled, it’s possible to run the signal router, that
automatically creates a signal for each data element, and calculates the path every
signal has to traverse to reach its final destination.

At this point, it’s possible to group signals into PDUs and assign a PDU to a
frame. In fig. 2.9 on page 17, the exterior lights signals (7 bits in total) have been
mapped to a 3-bytes PDU and inserted into a CAN frame. In this step it’s also
possible to define E2E-protected PDUs and assign them to a frame in place of the
normal PDU.
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Figure 2.9: Lights signals in their CAN frame.

2.2.3 ARXML export
Once everything has been modelled, it’s possible to export the result to one or

more ARXML files, so that the software development phase of the V-model can be
carried out.

In PREEvision this process requires only a few clicks, but it’s important to note
that very few checks are carried out on the output; in many cases, in PREEvision
it’s possible to insert contradictory information, omit needed parameters, provide
incoherent or out-of-standard values, and so on, without the software complaining,
so it’s up to the user to verify the formal correctness of the model.

2.3 Software development and integration
These two phases of the V-model are often outsourced to third parties; the former

consists in developing the software of all the ECUs modelled in the previous phase,
while the latter includes the configuration of the physical hardware and deployment
of the developed software.

2.3.1 Problems of the traditional approach
While this process is well established for series production, it can be tricky to

apply to prototypes and low-series productions for a number of reasons:

• Is very expensive

• Takes time to get the final result
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• Is not very flexible when a small change is needed

The conventional development phase is very expensive for various reasons: first
of all, the traditional approach requires very expensive software, and people trained
to use it, while following strict coding practices. This is fine for series production,
since the cost is spread out over the millions of units that are going to be produced,
but it can be uneconomical when developing for prototyping.

Then there’s the problem of timing: offloading the work to contractors and
subcontractors means that more time is required to complete the development
process. Again, this is fine in production, where development cycles are longer, but
not ideal for prototypes, where times are often tight.

Finally, one big problem is in the nature of prototyping itself: rarely the first
prototype is the final design, since designers often experiment with various concepts
and ideas before converging on the final product. This is in contrast with the tradi-
tional development approach, since a small change would mean a new development
phase, with all the costs and timing problems discussed before.

The integration phase, on the other hand, is strictly tied to the development
one, and usually a third party provides the physical hardware with the software
already deployed and ready to go. Again, this means that there’s no way to make
some changes without starting the development phase all over again.

All things considered, it’s clear that the car prototyping industry would benefit
a lot from a new approach to the software development and integration phases, as
I’ll discuss in chapter 3 on the following page.
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V-model alternative

Given the aforementioned problems of the traditional V-model approach when
applied to prototyping, the need to find an alternative arises. Moving the devel-
opment in-house could solve the timing and flexibility problems, but can result in
higher costs, given the need to acquire the needed software and human resources.

The solution seems to be a new workflow, specifically tailored for prototyping,
but still compatible with the V-model system design phase. The first phase of the
V-model is left in place, so that one can reuse the model in case the prototype will
evolve in a series production vehicle.

In order to speed up the development process, and make it easier too, some pro-
cesses can be automated, in particular the generation of the application interfaces.
The details will be explained in the rest of this chapter, but the process is more or
less composed of the following steps:

• Export of the ARXML files after the design phase

• Processing of the ARXMLs and generation of a description of networks, ECUs,
messages, signals, and their interactions

• Development of the ECU software in C++

• Deployment of the software on a development board

In order to enable this process, two main components are needed:

• A way to process the ARXML files, extract all the needed info, and put them
in a form that’s easy to integrate with C++ code

• A C++ library to provide interfaces to both the communication and the ap-
plication layers

In the following sections, both components will be explained in detail, and some
snippets of code will be presented.
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3.1 Python ARXML parser
In order to process the ARXML file, I decided to go the fast route and develop

a Python script. Other approaches have been considered, but Python has been
chosen as a trade-off between speed and ease of development. The script however,
has been kept very simple, with only one external dependency: lxml [19]. Other
Python modules, specifically made to process ARXML, already exist, but have
been found to be incomplete and/or not well documented. Writing my own parser,
moreover, allowed me to better understand the ARXML format and its peculiarities.

Listing 3.1 shows the first few lines of the Python parser. The traverse_arxml
function is the core of the ARXML traversal. As stated before, an ARXML file is
not traversed like a normal XML, so this function handles it. In order to improve
the speed of the parsing, it also employs a caching mechanism, so that previously
visited parts of the tree can be easily retrieved. The open_arxml function, instead,
opens an ARXML file and sets all the needed variables. The rest of the code deals
with traversal of the tree and extraction of all values and will not be listed here.

1 #!/ usr/bin/env python3
2 import sys
3 import math
4 import json
5 from argparse import ArgumentParser , FileType
6 from lxml import etree as ET
7
8 root = None
9 ns = None

10 cached_root = None
11
12 def open_armxl (file):
13 global root
14 global ns
15 global cached_root
16 root = ET. parse (file). getroot ()
17 ns = root. nsmap # The default namespace , used by etree
18 cached_root = {
19 ’ref ’: root ,
20 ’children ’: {}
21 }
22
23 def traverse_arxml (root , path_str ): # This function finds a node given the reference string
24 path = path_str . split (’/’)
25 if path [0] == ’’:
26 del path [0] # Remove leading ’/’
27 cached_node = cached_root
28 for e in path:
29 next_cached = cached_node [’children ’]. get(e)
30 if next_cached is not None:
31 cached_node = next_cached
32 else:
33 cached_node [’children ’][e] = {
34 ’ref ’: cached_node [’ref ’]. find(" .//*/ SHORT-NAME [.= ’" + e + " ’]/..", ns),
35 ’children ’: {}
36 }
37 cached_node = cached_node [’children ’][e]
38 if cached_node [’ref ’] is None:
39 return None
40 return cached_node [’ref ’]

Listing 3.1: The first lines of the Python ARXML parser.

Of course not every aspect of the ARXML export is covered by the script,
with only the necessary information being parsed and extracted. In particular, the
following features are extracted:
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• Topology of the network, i.e. ECUs and their connections

• Frames and mapping of their senders and receivers

• Signals and their internal to physical conversion methods

• End-to-end protection configurations and protected frames

First of all, a topology of the networks is created, by mapping all the ECUs and
their connections, finding out which frames are sent on each port and what’s their
direction (outbound or inbound). Since the C++ library, as of today, can only
handle CAN communications, only the CAN networks are extracted.

For each frame, the parser extracts the ID and length, knows if the extended
addressing is to be used, if it’s a CAN-FD frame, and what E2E protection (if any)
it needs. If the frame represents a periodic message, also the timing and tolerance
are extracted.

Then, the signals in each frame are processed; the parser extracts the position
in the message, the length, endianness and initial value, and checks if the value is
signed or unsigned.

The textual and numerical internal to physical conversion methods for the signal
are then extracted, alongside the label and/or coefficients for each of the ranges.

Finally, the end to end protection configurations are extracted and associated
with the corresponding frames.

The parser takes as input one or more ARXML files, and by default processes
everything, but it can be configured to process only some ECUs, or exclude some
specific ECUs. The way it works is that if some information is only relevant to
an ECU that hasn’t been selected, it is omitted from the output; this allows, for
example, to have an output that’s not generic for an entire network, but tailored
to the single ECU.

The end result consists of two files, whose names are specified on the command
line; one contains the map all all ECUs, while the other all the messages, signals and
associated info. The format of these files is a C string containing the JSON dump
of all the extracted info, and they can be directly linked with the C++ library.

JSON has been chosen because it is the de facto standard for data exchange
between applications, guaranteeing portability and making it easier to eventually
switch to a different programming language in the future.

The parser has been tested with the previously modelled components, but also
with some series production ARXML files, to make sure that it would be suitable
for real-world usage.

3.2 C++ library
In order to make the software development easier, a C++ library has been

developed, aiming to abstract the CAN communication layer, and provide ease of
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access to the messages and signals defined in the design phase. It has been designed
to have as few dependencies as possible (in fact even the boost libraries have been
avoided), and it makes use of Linux’s SocketCAN to handle the communication and
the nlohmann/json library [20] to translate the JSON exported from the previous
step to C++ objects. In fact, the only hard requirement for the library is a Linux
environment with SocketCAN and a working C++17 compiler.

The main features of the library are:

• Simplify the sending and receiving of messages by abstracting the details of
the CAN layer

• Automatically send periodic messages, getting the correct timing directly from
the ARXML

• Be notified when the value of a signal changes via a callback function

• E2E protect sent messages and check received ones for errors

The library is composed of two main classes: CanLib, that handles the commu-
nication side, and CanMap, that handles the messages side.

3.2.1 CanMap
The CanMap class has the duty to handle the maps of the messages and the

ECUs. It is not directly used by the application, but provides its functionalities to
CanLib (see section 3.2.2 on page 25).

First of all, CanMap defines the methods (not shown here) needed by the
nlohmann/json library to convert the JSON representation of the data to C++
internal structures.

As for the data it holds, CanMap keeps three maps:

• The ECU map, a static map with the list of inbound and outbound messages
for each ECU

• The signal map, a static map with all the info for each signal, such as its length
and position in a message

• The values map, a dynamic map for all the non-static values, such as the
current value of the signals, the E2E protection counters, and so on

The static data can be accessed at any time, but the dynamic map is protected
from concurrent access.

The getSignalCallback(), setSignalCallback() and removeSignalCallback() func-
tions allow the user to be notified via a callback function when the value of a signal
changes.

Listing 3.2 on the next page shows the header file for the CanMap class.

22



V-model alternative

1 /* *************************************************************** */ /**
2 * \file canmap .hpp
3 * \ brief Helper class to import message map from JSON
4 *
5 * \ author Giovanni Musto
6 * \date 2023/02/21
7 * \ copyright ItalDesign
8 ******************************************************************** */
9

10 # ifndef SOCKETCAN_CANMAP_HPP
11 # define SOCKETCAN_CANMAP_HPP
12
13 # include <cstdint >
14 # include <string >
15 # include <shared_mutex >
16 # include <unordered_map >
17 # include <sys/time.h> // timeval
18 # include " canstruct .hpp"
19
20 /** \ brief Obtain default tolerance (5%) from timing . */
21 # define GET_DEFAULT_TOLERANCE ( timing ) (5 * ( timing ) / 100)
22
23 /** \ copybrief canmap .hpp */
24 class CanMap
25 {
26 public :
27 CanMap ();
28 CanMap ( const CanMap &) = delete ;
29 CanMap & operator =( const CanMap ) = delete ;
30
31 bool isMsgActive ( const std :: string &msg) const ;
32 bool getPeriodicReceive ( const std :: string &msg) const ;
33 bool setPeriodicReceive ( const std :: string &msg , bool periodicReceive );
34 struct timeval getTimestamp ( const std :: string &msg) const ;
35 bool setTimestamp ( const std :: string &msg , struct timeval timestamp );
36 void set_int_signal_value ( const std :: string &msg , const std :: string &signal , uint64_t value );
37 uint64_t get_int_signal_value ( const std :: string &msg , const std :: string & signal ) const ;
38 void set_signal_value ( const std :: string &msg , const std :: string &signal , float value );
39 float get_signal_value ( const std :: string &msg , const std :: string & signal ) const ;
40 e2e_err_t updateCounter ( const std :: string &msg , unsigned int & counter );
41 e2e_err_t resetCounter ( const std :: string &msg);
42 can_callback_t getSignalCallback ( const std :: string &msg , const std :: string & signal ) const ;
43 can_callback_t setSignalCallback ( const std :: string &msg , const std :: string &signal , can_callback_t

ñ→ callback );
44 can_callback_t removeSignalCallback ( const std :: string &msg , const std :: string & signal );
45
46 static const std :: unordered_map <std :: string , can_mex_t > & getMessage_map ();
47 static const std :: unordered_map <std :: string , ecu_map_t > & getEcu_map ();
48
49 private :
50 class MessageMap {
51 public :
52 std :: unordered_map <std :: string , can_mex_t > message_map ;
53 MessageMap ();
54 MessageMap ( const MessageMap &) = delete ;
55 MessageMap & operator =( const MessageMap ) = delete ;
56 };
57
58 class EcuMap {
59 public :
60 std :: unordered_map <std :: string , ecu_map_t > ecu_map ;
61 EcuMap ();
62 EcuMap ( const EcuMap &) = delete ;
63 EcuMap & operator =( const EcuMap ) = delete ;
64 };
65
66 std :: unordered_map <std :: string , sig_vals_t > values_map ;
67 mutable std :: shared_mutex valuesMapMutex ;
68
69 };
70
71 # endif // SOCKETCAN_CANMAP_HPP

Listing 3.2: Header file for the CanMap C++ class.
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3.2.2 CanLib
The CanLib class is the core of the library, and handles almost all the remaining

functions. Listing 3.3 on the following page shows the header file for the CanLib
class.

First of all, it abstracts the communication layer, by providing the initSocket()
and closeSocket() functions to handle the opening and closing of the socket, and the
sendMsg() and getMsg() functions to simplify the sending and receiving of CAN
messages.

The handleCanMessage() function is called after receiving a message, and checks
if it has been received within the tolerance range (in case the message is periodic)
and, for each signal contained therein, updates the last stored value, calculates the
physical value via the conversion method, and calls any callback function previously
registered with setSignalCallback().

While sendMsg() allows the user to send an arbitrarily constructed message,
sendSingleShotMsg() sends a known message given its name. The library keeps
track of the ‘current value’ of each signal, allowing the user to change it via the set-
StoredInternalValue() function. When a known message is sent, it is automatically
constructed from the stored values of its signals. This allows the user to instruct
the library to send periodic messages, via the startPeriodicSend() function, and
asynchronously update the values that need to be sent.

The protectMessage() function adds the counter and the calculated CRC to the
message, when called with test=false, or checks if they match when called with
test=true. At the moment, only the specific E2E profile used by Audi for their
modern platforms has been implemented.

Then there are some static functions to get info about the messages, like isMes-
sageExtended(), isMessageCANFD() and isMessagePeriodic(). getMessageId() and
getMessageName() respectively return the CAN ID from the message name and
vice versa, while getSignalNames() returns the list of signal names in a message.

The ECU map is accessed via the getOutboundMessages() and getInboundMes-
sages() functions, that respectively return the messages an ECU sends and receives.

Other functions, such as toPhysicalValue() and getValueLabel(), handle the con-
version methods.

The periodic send of messages is implemented in the ThreadHandler class. When
startPeriodicSend() is called on a message, it checks if there’s already a thread
sending messages with the same periodicity, and if so, adds the message to the list;
otherwise, it creates a new thread. The threads iterate over the list of messages
to be sent, sending one after the other, constructing them from the stored signal
values. The tolerances on the periodicities are kept very tight by using C++’s
timing mechanisms.
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1 /* *************************************************************** */ /**
2 * \file canlib .hpp
3 * \ brief Utility library to handle CAN communication
4 *
5 * \ author Giovanni Musto
6 * \date 2023/02/21
7 * \ copyright ItalDesign
8 ******************************************************************** */
9

10 # ifndef SOCKETCAN_CANLIB_HPP
11 # define SOCKETCAN_CANLIB_HPP
12
13 # include <cstdint >
14 # include <string >
15 # include <vector >
16 # include <atomic >
17 # include <thread >
18 # include <unordered_map >
19 # include <unordered_set >
20 # include <mutex >
21 # include <sys/time.h> // timeval
22 # include <linux /can.h> // canid_t
23 # include " canstruct .hpp"
24 # include " canmap .hpp"
25
26 # ifndef CANFD_FDF
27 # define CANFD_FDF 0x04
28 # endif
29
30 typedef struct canfd_frame canFrame ;
31
32 /** \ copybrief canlib .hpp */
33 class CanLib
34 {
35 public :
36 CanLib ();
37 CanLib ( const CanLib &) = delete ;
38 CanLib & operator =( const CanLib &) = delete ;
39 ~ CanLib ();
40
41 bool initSocket ( const char *interface , bool canfd , int & errCode );
42 void closeSocket ();
43 bool sendMsg (bool extended , canFrame &msg , bool rtr , int & errCode );
44 bool getMsg (bool &extended , canFrame &msg , bool &rtr , bool &error , int &errorCode , struct timeval *

ñ→ timestamp , struct timeval * timeout );
45 void enableErrMessages ();
46 void handleCanMessage (bool extended , const canFrame &msg , bool rtr , bool error , int errorCode , struct

ñ→ timeval * timestamp );
47 can_callback_t setSignalCallback ( const std :: string &msg , const std :: string &signal , can_callback_t

ñ→ callback );
48 can_callback_t removeSignalCallback ( const std :: string &msg , const std :: string & signal );
49 float getStoredPhysicalValue ( const std :: string & messageName , const std :: string & signalName ) const ;
50 e2e_err_t protectMessage ( const std :: string &msg , canFrame &frame , bool test);
51 e2e_err_t resetCounter ( const std :: string &msg);
52 bool startPeriodicSend ( const std :: string &msg);
53 bool startPeriodicSend ( const std :: string &msg , int timing );
54 bool stopPeriodicSend ( const std :: string &msg);
55 bool getPeriodicReceive ( const std :: string &msg) const ;
56 void setStoredInternalValue ( const std :: string & messageName , const std :: string & signalName , uint64_t value )

ñ→ ;
57 void sendSingleShotMsg ( const std :: string & msg);
58
59 static canid_t getMessageId ( const std :: string & messageName );
60 static std :: string getMessageName ( canid_t canId );
61 static const std :: vector <std :: string > getSignalNames ( const std :: string & messageName );
62 static bool isMessageExtended ( const std :: string & messageName );
63 static bool isMessageCANFD ( const std :: string & messageName );
64 static bool isMessagePeriodic ( const std :: string & messageName );
65 static const std :: unordered_set <std :: string > getInboundMessages ( const std :: string &ecuName , const std ::

ñ→ string & busName );
66 static const std :: unordered_set <std :: string > getOutboundMessages ( const std :: string &ecuName , const std ::

ñ→ string & busName );
67 static uint64_t getSignal ( const uint8_t * frame , uint8_t startbit , uint8_t length , bool is_big_endian , bool

ñ→ is_signed );
68 static void setSignal ( uint8_t * frame , uint64_t value , uint8_t startbit , uint8_t length , bool is_big_endian

ñ→ , bool is_signed );
69 static float toPhysicalValue ( uint64_t target , const std :: vector < compu_scale_t > &scales , bool is_signed );
70 static uint64_t fromPhysicalValue ( float physical_value , const std :: vector < compu_scale_t > & scales );
71 static const std :: string & getValueLabel ( uint64_t target , const std :: vector <label_t >& labels , bool

ñ→ is_signed );
72 static int getBitMask (int start_bit );
73 static const char* get_E2E_err_msg ( e2e_err_t err);
74
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75 private :
76 class ThreadHandler {
77 public :
78 ThreadHandler () = delete ;
79 ThreadHandler ( const ThreadHandler &) = delete ;
80 ThreadHandler & operator =( const ThreadHandler &) = delete ;
81 ThreadHandler ( CanLib * canlib , int timing );
82 ~ ThreadHandler ();
83 std :: unordered_set <std :: string >:: size_type addMessage ( const std :: string &msg);
84 std :: unordered_set <std :: string >:: size_type removeMessage ( const std :: string &msg);
85
86 private :
87 /** \ brief Reference to CanLib instance . */
88 CanLib * canlib ;
89 /** \ brief Periodicity the thread uses to send the messages . */
90 int timing ;
91 /** \ brief Boolean to stop the thread . */
92 std :: atomic <bool > cont;
93 /** \ brief Thread handler . */
94 std :: thread handler ;
95 /** \ brief Set of messages the thread has to send. */
96 std :: unordered_set <std :: string > messages ;
97 /** \ brief Mutex protecting messages . */
98 std :: mutex messagesMutex ;
99

100 void thread_handler ();
101 };
102
103 /** \ brief Flag telling if the socket has been initialized . */
104 bool m_init ;
105 /** \ brief Socket number . */
106 int m_socket ;
107 /** \ brief CanMap object . */
108 CanMap canmap ;
109 /** \ brief Flag telling if we ’re using CAN-FD */
110 bool m_canfd ;
111 /** \ brief Map storing one ThreadHandler for every periodicity we ’re sending messages with. */
112 std :: unordered_map <int , ThreadHandler > thread_map ;
113 /** \ brief Mutex protecting thread_map . */
114 std :: mutex threadsMutex ;
115
116 static bool isValueInRange ( double value , const range_t & range );
117 static double computePhysicalValue ( double value , const std :: vector <float > & num_coeffs , const std :: vector <

ñ→ float > & den_coeffs );
118 static const std :: unordered_set <std :: string > getMessagesByDirection ( const std :: string &ecuName , const std

ñ→ :: string &busName , frame_direction_t dir);
119
120 };
121
122 # endif // SOCKETCAN_CANLIB_HPP

Listing 3.3: Header file for the CanLib C++ class.

3.3 Other components
Alongside the Python script and the C++ library, for this work I also developed

two other components: a series of demo applications, in order to fully test the
library, and some CMake files, to automate and speed-up the JSON generation and
compiling.

3.3.1 Demo applications
Various test applications have been written during the development of the li-

brary, evolving with it in order to test more and more functionalities.
The first two applications were just meant to test the sending and receiving

functionalities. Then, a synchronization test has been written, in order to make
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sure that the data on both ends was coherent. This program was then expanded
to support CAN FD and the E2E protection. When the library was expanded to
support periodic messages, a periodic sender test application was written. Finally, a
real world demo application was implemented, which will be discussed in chapter 4
on page 30.

3.3.2 CMake files
In order to orchestrate all the parts of the project, the code has been accompanied

by a series of CMake files. CMake makes building the project for different platforms
much easier, as I’ll discuss in section 3.4.

Each component (the Python parser, the C++ library and the demo applica-
tions) has its own CMake file. The configuration of the Python script CMake (and
thus of the entire project) requires a list of input ARXML files, and eventually a
list of ECUs to include or exclude.

The library’s CMake, on the other end, accepts a configuration flag to build a
static or dynamic library, and also has a target to build the documentation with
Doxygen, as the code has been annotated accordingly.

3.4 Deployment
Having developed a replacement for the software development phase of the V-

model, the same need arises for the integration phase. Fortunately, there are some
development boards available to fulfil this need. The one used in this work is
the S32G by NXP, shown in fig. 3.1 on the next page. It features 18 CAN, 5
LIN, 1 FlexRay and multiple Ethernet ports, runs Linux and provides a complete
development toolchain.

In order to deploy the software to the board, the first step is to compile the
library and the application for the specific target. Fortunately, the manufacturer
provides a toolchain that fully supports CMake, so the only step needed before
compiling consists in running the environment configuration script provided by the
manufacturer. In order to also run the Python parser in the same environment,
its dependencies need to be installed the first time the toolchain is used1. At this
point, configuring and running CMake will automatically build the library and
applications for the development board, according to the given configuration.

To upload the software to the board, it’s possible to use one of its Ethernet ports
and connect to it via SSH while the system is running, or copy everything to its

1The Python parser’s CMake doesn’t need to be run in the cross-compilation environment, but
doing so results in fewer steps. Therefore, it is recommanded to install lxml, the only dependency
of the Python parser, in this environment.
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Figure 3.1: Picture of an S32G development board.

microSD card. The shared library can also be added as a Yocto recipe and built
alongside the operating system.

Before running the software, the CAN ports need to be configured. The library
avoids interfering with the CAN configuration, instead using the ports transpar-
ently, leaving the configuration to the user. The ip command line tool can be used
to configure the ports. For example, running ip link set llcecan0 type can
bitrate 500000 dbitrate 2000000 fd on will configure the CAN port called
llcecan0 as FD-capable, using use a bitrate of 500 kbps in CAN mode, and a bi-
trate of 2 Mbps during the bitrate-switching phase of CAN FD. Running ip link
set up llcecan0 will then bring up the interface with the given configuration. At
this point, any software can use the llcecan0 interface.
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Chapter 4

Real world demo

In order to prove the validity of the V-model alternative, a real world application
has been developed. The front lights ECU of a production car has been simulated
and used to drive the headlamps from a 2020 Audi A3. This particular headlamp
features matrix LEDs and requires specific signals to even turn on.

Unfortunately I can’t show it here, but I had access to the CAN database for the
front lights network. It wasn’t in the ARXML format, so it needed to be converted,
but apart from that, there was no difference between it and the test ARXMLs I
used before.

Figure 4.1: Front view of a 2020 Audi A3.

29



Real world demo

Many CAN messages on this network use the E2E protection, and the headlamp
will shut itself off if a specific periodic message is not received. All these aspects
make the front lights ECU the perfect candidate to thoroughly test all the main
aspects of the library.

The front lights demo application features a menu from which it’s possible to
select the desired option. The first thing to do is to enable the periodic send of
the CAN messages, so that the headlamps can exit their error state (due to the
lack of a specific message) and turn on. Then, the key status needs to be asserted,
otherwise the lights will always stay off1. At this point, it’s possible to drive the
individual components of the headlamp: daytime running light, position light, low
beam, matrix LED high beam and turn signal.

The demo works by sending only the messages needed to fully control the head-
lamps, and not all the messages that would be normally found on the network in a
real vehicle. The largest part of the signals are sent with their default values, while
some of them require to be set to specific values in order to turn the headlamps on.
The menu options change the stored values of specific signals using the setStored-
InternalValue() library function, while the threads sending the periodic messages
handle the rest.

This real world implementation also provided some useful insights on the capa-
bilities of the development board. Even though the scope of this work was just
demonstrating that it is feasible to drive a series production component this way,
without focusing too much on performance, the CPU load of the board and the
deviation from the nominal timing of periodic messages were monitored. Those
metrics turned out to be very useful, because they allowed me to optimize and
improve the library (the last iteration uses almost one one-hundredth of the CPU
power of the first one). It’s important to note that those two paraments haven’t
been rigorously measured, since it wasn’t the primary scope of this work, but I can
report that the CPU load of the board stayed between 2% and 3%, with the timing
of the periodic signals never deviating more than 2 ms from the nominal value when
running the front lights demo. With higher loads, however, spikes in the timings
that would need further investigation started to emerge.

1There are various ways the headlamps can be enabled, but turning the ignition key is the
most obvious one.
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Conclusions and future
developments

In the previous chapters, I defined a new approach to software development and
integration, and established a development framework that proved to be applicable
to real world scenarios. The S32G development board also proved to be more than
capable of supporting one such application. With some refinements, this framework
can be used in future projects of the company, such as new show cars or prototypes.
As of today, the library is stable enough to to be used for a demo, but would need
to be thoroughly validated in order to be used in a low series production vehicle.
Given the ability to control off-the-shelf components, a vehicle could be fitted with
components from different platforms, and have all talk together thanks to a central
gateway implemented on a development board.

As for future developments, the main improvements that the C++ library would
benefit from are: the support for other communication networks, such as LIN and
Ethernet; the expansion of the E2E support to more profiles; a more automated
approach to messages reception, perhaps paired with SocketCAN’s ability to filter
messages in kernel space. An expansion toward a service-oriented architecture
would also be very interesting, perhaps using SOME/IP [21]. The Python script,
instead, needs to be verified against some more real world designs and ARXML
files generated by different tools.
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