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Abstract

This research, conducted in collaboration with the Neonatal Unit of AO Ordine
Mauriziano Hospital in Turin and LINKS Foundation, presents non-contact RGB
camera techniques for measuring heart rate and respiration rate in newborns as
a promising alternative for monitoring vital signs without causing discomfort or
increasing the risk of infection. Additionally, these techniques enhance objectivity
and convenience in the pain assessment of newborns. While focusing on the Neonatal
Intensive Care Unit (NICU) context, the technology has potential applications in
remote physiological monitoring beyond clinical settings. A private dataset was
elaborated to evaluate vital sign estimation techniques in newborns in the NICU
based on different traditional algorithms for remote photoplethysmography. These
algorithms were selected based on their essential characteristics for the context,
such as robustness to motion and lighting conditions. Ground truth values for
heart rate were obtained using character recognition from pulse oximeter values
displayed in the videos, while ground truth values for respiration rate were manually
obtained by clinical staff for a subset of the dataset. The Virtual Heart Rate python
package framework, customized for this research, facilitated the implementation
of traditional algorithms and offered efficient computations through Graphics
Processing Unit parallelism, enabling real-time processing. Experiments were
conducted to determine optimal algorithm parameters. Vital signal estimations
were then calculated and compared to the ground truth values using defined error
metrics. The results of heart rate estimation were categorized based on different
motion levels (motionless, sporadic motion, and motion), and the best-performing
algorithms for each category were identified. Projection Plane Orthogonal to the
Skin-tone and Independent Component Analysis performed consistently well across
different motion categories, indicating their suitability for heart rate estimation in
the given context. Notably, the motionless category achieved a Mean Absolute Error
of 5.7, which is within the clinically acceptable range, demonstrating the feasibility
of this approach for remote heart rate monitoring during rest or sleep. Future
research may explore hybrid methodologies to improve performance in categories
involving movement. Regarding respiration rate estimation, Chrominance-based
method and Principal Component Analysis demonstrated the best performance.
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Despite the small sample size of ground truth values of respiration rate to obtain
statistically significant results, this part of the work demonstrates the approach’s
feasibility and opens the doors for future experiments. In conclusion, this study
presents a framework for the automatic non-contact camera-based measurement of
heart rate and respiration rate, comparing for the first time the performance of
different traditional algorithms in the NICU environment. The study acknowledges
certain limitations, including homogeneity of skin color for the subjects in the
used dataset and challenges related to accurately identifying the Region of Interest
to extract the vital signals. These limitations provide opportunities for future
exploration and improvements in this field.
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Chapter 1

Introduction

1.1 Thesis purpose
This thesis research is set in the context of automatic pain and vital parameters
assessment in newborns. The objective is to develop automatic non-contact camera-
based techniques for continuously measuring vital signs in newborns to improve
pain assessment objectiveness and convenience.

1.2 Vital signs measurement for a more objective
newborn pain assessment

1.2.1 Newborns’ pain and importance of an objective pain
assessment

It is a proven fact that newborns experience pain since neonatal age and the memory
of this pain is not only preserved but can even produce other alterations in the
newborn, for example, behavioral, hormonal, and cognitive [1], [2], [3]. For this rea-
son, it is fundamental to measure and treat newborns’ pain properly. Additionally,
the Italian Law 38/2010 guarantees pain therapy in medical procedures in hospitals
[4], but as newborns cannot verbally communicate the pain experienced, some
scales to evaluate pain (called "algometric pain scales") have been developed and
validated [5]. Examples of traditional pain scales are the Neonatal Facial Coding
System (NFCS), which relies only on facial expressions; the Premature Infant Pain
Profile (PIPP), which also considers contextual and physiological parameters; and
the Douleur Aiguë du Nouveau-né (DAN), which evaluates facial expressions, limb
movements, and vocal expressions. Recent studies provide evidence to support that
noxious stimulation of neonates [6], [7] and toddlers [8] can be differentiated from
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non-noxious stimulation as the first one produces a significant Heart Rate (HR)
increase and behavioral changes such as limb withdrawal and changes in facial
expressions. Consequently, in clinical practice, the use of pain-validated scales is
strongly recommended.

However, traditional pain assessment methods using these pain scales are highly
subjective and time-consuming as they depend on the knowledge and sensitivity of
the healthcare staff. [9] showed that discrepancies in pain evaluation can arise even
when evaluating objective values like Oxygen saturation (SpO2) using the PIPP
scale since clinicians read the value from the pulse oximeter in different moments.
Therefore, automation is needed to produce a more objective pain assessment with
a reproducible score.

1.2.2 Newborn pain assessment using traditional methods
for vital signs monitoring

When using some validated pain scales, such as the PIPP scale shown in Figure 1.1
from [10], the measurement of vital signs as the HR and SpO2 are fundamental.

Figure 1.1: PIPP scale. Source: [10]
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Commonly, these physiological signals are estimated using either an Electrocar-
diography (ECG) or Photoplethysmography (PPG). The first technique consists
in recording the electrical signal of the HR by attaching electrodes, which are
patches with an adhesive layer, to the chest and limbs of the patient and have
wires that connect to a monitor. ECG is used as the standard cardiovascular
measurement as mentioned in [11]. The second technique, PPG was first described
in the 1930s as an optical technique to identify vital signs [12]. PPG is considered
a simple optical measurement that uses light to measure the volumetric variations
of blood circulation at the skin’s surface. This method is commonly preferred over
ECG as it uses a single sensor at a measurement site for PPG signal instead of
various electrodes [13] and it provides an equally reliable measurement [11]. A
pulse oximeter is an example of an instrument that uses PPG technology.

Therefore, traditional methods for HR monitoring make use of medical equipment
that requires constant contact with the newborn’s skin and thus can cause dis-
comfort, induce chances of allergy, injury, or epidermal stripping to newborns skin
which can cause pain and trauma, and increase the risk of spreading infection in
hospitals [2], [3], [14], [15], [16], [17], [18], [19]. Moreover, the humid environment
of neonatal incubators and the neonates’ thin and underdeveloped skin can cause
the adhesive patches or sensors to fail and require frequent changing [20].

Regarding Respiration Rate (RR), the gold standard for measuring this value
consists of manually counting breaths while auscultating the patient or palpating
for chest rise. This measuring technique is accurate, yet time-consuming and im-
practical for continuous vital signs monitoring. Other devices, such as Respiratory
Inductance Plethysmography (RIP), use a chest belt and require interpretation
from a specialist [20].

1.2.3 Contactless methods to determine vital signs
Alternative non-contact solutions such as Radar-based systems, Laser Doppler
Vibrometers, and Thermal imaging have been explored. On one hand, they have
been proven to have penetration capabilities, work unaffected by the color of the
subject’s skin, and work under different ambient light levels. On the other hand,
they are sensitive to motion changes, they require expensive extra specialized
hardware, radiation exposure could be unsafe, reflection-based systems require to
direct the laser/radar to the target in the subject to monitor, the thermal camera
requires calibration and demand high resolution [3], [18], [21], [22], [23].

Whilst, the usage of a Red-Green-Blue (RGB) camera to determine the value of
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vital signs has proven to be a non-invasive, low-cost, easy-to-use and versatile
non-contact alternative to measure vital parameters, ubiquitous and capable of
high performance facilitating the intervention of the healthcare staff [15], [17],
[19], [20], [24], [22], [25], [23]. Consequently, it was the chosen hardware for the
development of this project.

1.2.4 Using a RGB camera to determine vital signs

When using a RGB camera to determine these vital signs they can either be ob-
tained by movement detection, a technique called Ballistocardiography (BCG), or
by light reflection, using another technique called Remote Photoplethysmography
(rPPG).

BCG relies on the mechanical motion of the heart and lungs. For HR estimation,
the heart’s mechanical motion contributes to a microscopic displacement of the
head or facial skin [26] at the cardiac frequency. While for RR, changes in lungs
volume generate periodic chest movements [27] at the breathing frequency.

Whilst, rPPG is based on the same principle as PPG, with the difference that this
signal is obtained remotely by means of a camera. rPPG estimates vital signals by
capturing microscopic color variations of the skin [26]. The basic principle behind
this is that blood absorbs more light, specifically the hemoglobin molecule, than
surrounding tissues, so changes in blood volume affect transmitted and reflected
light [28]. Therefore, in the case of HR measurement, the beating of the heart
causes pressure variations in the arteries (even in small vessels), translated in
varying amounts of hemoglobin, which consequently produce synchronous varying
light absorption [2], [14], [18], [24]. Similarly, for RR measurement, breathing
causes changes in pressure at the area of the torso which affects the pressure in the
large blood vessels (veins) [18]. This phenomenon produces skin color changes that
are invisible to the eye but can be detected using a camera [2].

More in detail, the dichromatic reflection model shown in Figure 1.2 from [29]
explains light reflected from the skin surface as a combination of two components,
the specular reflection, which does not contain any pulse signal information, and
the diffuse reflection which manifests the pulse signal (blood volume changes) as
explained by [30]. In this way, rPPG captures the reflected light from the illumi-
nated skin resulting in a waveform that contains the HR and RR information.
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Figure 1.2: Dichromatic reflection model. Source: [29]

1.2.5 Variables affecting vital signs estimation when using
a RGB camera

When estimating vital signs using an RGB camera, several variables need to be
considered as they can affect the quality of the measurements obtained.

Firstly, the distance between the subject and the camera has been found to impact
the accuracy, with distances less than 1m yielding satisfactory results according to
[27]. Increasing the distance from the subject to the camera has been shown to
increase errors in vital signal estimations.

Secondly, illumination levels also play a role in the performance of RGB cameras for
vital sign estimation. Decreasing illumination has been associated with increased
error [26], actually it is recommended to avoid light intensities below 20 lux [27].
Additionally, the type of light source is important, as ambient light has been
reported to produce more reliable measurements compared to artificial light, which
can introduce noise due to AC current flickering. [2] notes that algorithms for HR
estimation exhibit greater robustness during overcast days when diffuse light is
present, resulting in less pronounced shadows. Furthermore, [31] mentions that
direct light sources produce sharp shadows on the subject’s face which can decrease
performance.

Thirdly, there is a correlation between skin color and the performance of PPG vital
sign measurement. Higher concentrations of melanin, the substance responsible for
skin pigmentation, have been associated with lower PPG performance [26], [27].
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Facial hair represents a fourth variable that can degrade performance [27], [30],
[32].

Fifthly, subject movements significantly impact vital sign measurements. The Re-
gion of Interest (ROI), which is the area of the skin of the newborn from which the
vital signal estimations are made, has to be tracked through time to be able to have
continuous monitoring of the vital signal. However, movement of the individual
can cause the tracking algorithms to fail resulting in a ROI loss or drift. This
means that the tracking algorithm produces a failure to extract the required signals
from the intended region or might start extracting signals from unintended areas,
leading to inaccurate measurements. Consequently, movements of the newborn
result in varying camera-infant viewing angles which influence performance [17] or
can result in ROI-camera blockage. Additionally, infant motion and the presence
of healthcare staff passing by can result in pronounced shadows, which decrease
the Signal to Noise Ratio (SNR), which measures the desired signal relative to the
background noise, of the rPPG signal [2], [23], [26]. In other words, this means
that it increases background error.

Lastly, video compression of RGB camera-collected videos can greatly influence
video-based vital sign extraction [31]. Consequently, specific algorithms have been
developed in the literature to extract the rPPG signal in the presence of video
compression artifacts.

1.2.6 Importance of newborns’ automatic, non-contact vital
signs measurement using a camera

Although there is existing research in this field, most of the findings are based on
studies conducted with adult subjects under specific lighting and motion conditions,
which are not directly applicable to the Neonatal Intensive Care Unit (NICU)
context. Studies performed in adults differ from those in newborns for many rea-
sons, one being that they have different physiological characteristics. For instance,
normal resting HR and RR ranges for awake and healthy newborns aged 0-1 year
are significantly higher, ranging from 90 to 181 bpm for HR and 25 to 68 cpm for
RR [33], ranges which are almost double as high as adults. Additionally, newborns
exhibit more frequent episodes of rapid movement that cannot be controlled [22].
Although these movements are often gentle and subtle, newborns may occasionally
experience spasms that generate artifacts or false measurements [17]. Furthermore,
since newborns do not consciously look toward the camera, tracking problems may
arise in the presence of high-degree angles relative to the camera [17]. Moreover,
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newborn monitoring is much more challenging than adults because neonates have
obscure facial features [3].

It is important to note that lighting conditions in the NICU may vary across
hospitals [17]. Therefore, specific studies tailored to the unique context of the
NICU are necessary to address these challenges effectively.

This thesis aims to fill this gap by developing non-contact techniques for automatic
vital parameters continuous calculation, specifically to measure HR and RR, with
a real-time application using only a camera in the NICU context. These techniques
will be fundamental to developing a more objective and convenient system for
automatic pain assessment in newborns. In other words, the idea is to achieve
long-term monitoring of the mentioned vital signals by acquiring them continuously,
which are important parameters for NICU management as mentioned by [34], in
an unobtrusive and comfortable manner.

The project has been developed in LINKS Foundation, a research center actively
involved in different technological projects on the frontier of knowledge as it is
mentioned on their website [35]. Also, this project has the collaboration of the
Neonatal Unit of AO Ordine Mauriziano Hospital in Turin, as this kind of system
would provide multiple benefits in clinical practice. This method not only lowers
risks for newborns due to the absence of contact with the instrumentation but also
provides continuous monitoring of multiple parameters, facilitating the work of
healthcare operators, who otherwise would have to observe one pain indicator at a
time. Moreover, the system will provide more objectivity in pain assessment, as it
will not depend on the observer’s knowledge and sensitivity.

1.2.7 Other potential applications of this research

In addition to its use in the NICU environment, this technology could also be
applied for the remote monitoring of physiological parameters in other contexts,
even non-clinical ones. For example, one non-clinical research field that is emerging
is the detection of the so-called “deep fakes”, i.e., synthetic images or videos where
a person is replaced with someone else’s likeness; in this case, the study of the skin
color changes caused by cardiovascular pulses used to calculate the heart rate may
help discriminate real videos from deep fakes [36].
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1.3 Thesis outline
The following Chapter describes literature techniques used to obtain vital signs
and the context in which they were tested, including a Section that shows the
state of the art. In Chapter 3, this project’s applied methodology and testing
context is described. Later in Chapter 4, the experimental results are shown with
error metrics. Finally, in Chapter 5, the aforementioned results are discussed, and
improvements for future research are proposed.
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Chapter 2

Literature Review

2.1 Image processing and signal processing
techniques for HR and RR estimation

To obtain vital signal estimations using rPPG (refer to Subsection 1.2.4 for an
explanation of this technology) some steps have been commonly followed in lit-
erature. First, a ROI is selected from the subject, this is a region of visible skin
from which the rPPG signal is extracted [16], [26]. This region is specific to the
vital signal that is estimated because historically some regions have demonstrated
to provide a higher quality estimation [37] and therefore, they have been pre-
ferred (this will be further discussed in Subsection 2.1.1). Then, the mean color
of pixels in the ROI, called raw signal, is tracked over a time window to extract
the rPPG signal (tracking and detection of the subject is discussed in Subsection
2.1.2). Later, processing algorithms are applied to this window of data to eliminate
noise, mainly coming from motion and lighting variations, consequently getting
an rPPG signal that contains representative vital signal information (these algo-
rithms are described in Subsection 2.1.3). Finally, another algorithm is used to
get the vital signal estimation from the resulting window of data (commonly used
functions are described in Subsection 2.1.4). The process is repeated for multiple
windows, so-called moving windows, to output vital signal estimations continuously.

Note that HR is usually estimated in literature using rPPG technology, however
the RR is either estimated using rPPG or BCG. The same structure previously
described is followed when estimating this vital signal using BCG technology, but
different ROI selections (no longer limited to visible skin) and algorithms are used.
These will be described in the same Subsections as for rPPG, specifying the base
technology used in each case.
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2.1.1 ROI selection
In [28] rPPG signals were measured from different locations of visible skin in the
body (including the wrist, legs, etc.), and the signal obtained from the face was
found to be stronger. This can also be an advantage because the face is usually
uncovered, unlike other anatomical locations used to obtain this signal. Actually,
in the study of [9], newborns were tightly wrapped in a blanket to ease the pain,
which left the face uncovered by the blanket but the rest of the body, including the
arms, were completely covered.

In 2021 ROI regions of the face were analyzed in [38] to determine the effect of skin
thickness on the accuracy of the obtained rPPG signal for HR estimation. It was
concluded that some regions perform better due to their anatomical characteristics,
specifically the yellow regions of Figure 2.1 have the highest reliability and accuracy
among the studied regions, while blue regions are shown as the worst performance.

Figure 2.1: Anatomical influence of face’s ROI
selection: regions highlighted in yellow exhibit
higher performance, whereas the regions high-
lighted in blue show lower performance. Source:
[38]

The same year, [39] mentioned that non-rigid motions, such as blinking and breath-
ing, which introduce noise in rPPG estimations are likely to occur on the areas
around the mouth and eyes, and therefore these areas should be avoided for the
extraction of the pulse signal. In compliance with the previously mentioned study
[39] states that the forehead and cheeks are areas which contain most of the Blood
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volume pulse (BVP) information. Note that BVP is the same as PPG, a measure of
the HR based on the volume of blood that passes through the tissues in a confined
area with each heartbeat. Commonly, HR has been extracted from these regions
because they have more capillaries and are unaffected by facial expressions as
mentioned by [27], while RR has been measured from the nasal area or torso region.

Moreover, [14] constructed an accurate map of the spatial distribution of HR and
RR rPPG information that reaffirms that HR information can be found in the face
except for the areas around the eyes and nostrils. It also states that RR information
can be found in the face, specifically in the forehead and regions close to the nose.
Consequently, HR can be extracted from larger ROIs, while RR is more prominent
in smaller ROIs.

Furthermore, [31] studied the influence of part of the ROI being undetected when
head rotation of 30° - 45° is present. The symmetry substitution method was used
to replace the undetected ROI with the values of a detected one. It was concluded
that there was no significant difference in HR measurement between the left and
right cheek, and therefore HR accuracy did not decrease compared with the full
ROI condition.

In [15] it was demonstrated that it is possible to obtain accurate measurements of
the RR from light reflection variation at the level of the collar bones and above
the sternum, region called pit of the neck. However, this study was performed in
adult subjects in the absence of breathing unrelated movements and in a quiet
environment.

In 2022 the Virtual Heart Rate python package (pyVHR) framework (which is
further described in Subsection 2.1.3) was used by [40] to assess the effective-
ness of popular rPPG processing algorithms in HR estimation using four ROIs:
forehead, left cheek, right cheek and the combination of all three. The results
suggest preferring large ROIs for challenging scenarios. It was also concluded
that the performance of rPPG methods depends on different characteristics of the
context of use, such as movement, lighting conditions, and the error metrics applied.

A similar investigation was carried out by [41] the same year. HR was estimated
using the forehead and cheeks as ROI, while RR was estimated from the motion of
the subject’s pit of the neck. Popular rPPG processing methods combined with
filters were used to obtain HR. While to obtain RR, Optical Flow (OF) was used
to calculate displacement between consecutive images followed by integration of
this quantity. OF is a technique that estimates the movement of surfaces between
two frames. [32] suggests that it can produce accurate results when tracking small
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displacements. There are many algorithms for its determination including partial
derivatives, phase correlation, and discrete optimization methods. In [41] also,
different distances and lightning conditions were evaluated, concluding that for
HR estimation a multi-ROI approach has a better performance than a single ROI
approach. However, in this study, subjects were motionless and always faced the
camera.

2.1.2 ROI detection and tracking algorithms
In 2017 an automated pain evaluation framework for newborns based on facial
expressions assessment was developed by [9]. The investigation used the Kanade-
Lucas-Tomasi (KLT) algorithm for face detection and tracking, which according to
[42] is “an algorithm that is used to track face based on trained features”. How-
ever, its use was discouraged for newborn applications since they do rapid head
movements that cause the algorithm to fail.

Another widely used face location detection algorithm as in [31], [38], [41] is the
Viola-Jones (VJ) algorithm. According to [42], it “is used to detect the face based
on the haar features” that are black and white patterns in pixels defining figures.
However, again, the usage of this algorithm is not suitable in motion conditions
because VJ classifiers were mostly trained using frontal face images, therefore if the
face of the subject is not frontal to the camera VJ algorithm will most likely fail [43].

As mentioned in the systematic review done by [27], in 2022 over 900 articles
approximately related to the monitoring of vital signs with camera use. Recently
Neural Network (NN) based ROI detection methods gained increased attention
mainly because they yield higher accuracy compared to traditional approaches.
Although, as mentioned in [31], some of these algorithms are slow and therefore
unsuitable for real-time analysis, such as Multi-Task Convolutional Neural Network
(MTCNN) and Deep Alignment Network (DANN).

In other investigations, such as in [40], Google Mediapipe was used for ROI detec-
tion and tracking. This is a cross-platform, customizable, accelerated, free, and
open source Machine Learning (ML) solution that estimates 468 3-D facial points
(called landmarks) in real-time using a single camera input or video recording [44],
[45].

In 2018 [32] estimated HR under different lightning conditions and motion. It
used Bounded Kelman Filters (BKF), which is “a motion estimation model that is
employed to track the regions of interest from frame to frame”. It identifies blur
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due to motion in the video recording frames, which can cause discontinued pixel
intensity measurements, and denoises it enabling feature points to be identified
with higher accuracy than OF. It also addresses illumination changes by using
the Hue Saturation Value (HSV), an alternative color space to RGB. This is due
to the fact that color in HSV is not sensitive to light changes, successfully cap-
turing the denoised rPPG signal. In this way, ROIs of the forehead and cheeks
are used, and better performance is achieved compared to traditional methodologies.

2.1.3 rPPG post-processing methods
In 2008 HR and RR were estimated by [28] from the rPPG information from the
Green (G) channel as it is said to contain the strongest signal, using the forehead
of video recordings as ROI. The latter is explained in the same paper with the fact
that the green light absorption capacity of oxyhemoglobin is higher than red light
absorption and “penetrates sufficiently deeper into the skin as compared to blue
light to probe the vasculature”. However, it is suggested that the Red (R) and Blue
(B) channels contain complementary rPPG information, and in some cases, the
RR signal is more pronounced in them. This method then became the basic com-
parison method for subsequent ones that were developed and will be described next.

Blind Source Separation (BSS) techniques consist in “recovering a set of signals of
which only instantaneous linear mixtures are observed” [46]. In 2010 [47] introduced
the first automated and motion-tolerant non-contact HR estimation using Indepen-
dent Component Analysis (ICA), a BSS technique. ICA is defined by [48] as “a
statistical method used to discover hidden factors [...] from a set of measurements
or observed data such that the sources are maximally independent”. Thus, ICA
assumes that the observed signals are linear mixtures of independent sources and
that the source signal of interest is the cardiovascular pulse wave. Although the
linearity assumption may not be correct, it provides a reasonable approximation of
the HR signal when a 30 s window is used. However, the motion artifacts evaluated
in this paper were slow and small.

In 2011 Principal Component Analysis (PCA), another BSS technique, was used by
[49] to estimate HR in a contactless way. Similarly to ICA, PCA separates source
components from the observed signals using linear transforms. These transforms
are bidirectional, so no information is lost, and they represent the data with a new
coordinate system. According to [50], the separation leads to a number “n” of new
source components, where the first one corresponds to the cardiovascular pulse wave
information and the last one corresponds to noise in low noise conditions. However,
in high noise conditions, the source component separation is more complex because
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artifacts can have higher energy levels than the cardiovascular pulse wave. In
[49], PCA was found to have comparable accuracy to ICA on non-moving sub-
jects using the forehead as ROI, though requiring a lower computational complexity.

BSS techniques find the source component corresponding to the pulse signal, assum-
ing it is the signal that presents the strongest periodicity [51], an assumption that
is not necessarily true in particular for scenarios of repetitive movements such as
exercising. While Joint Blind Source Separation (JBSS) in [52] solves this problem
by extracting “the underlying sources within each dataset and meanwhile keeping
a consistent ordering of the extracted sources across multiple datasets”. In other
words, unlike conventional BSS methods, JBSS-based methods have the advantage
that can automate the extraction of the BVP adapted for different scenarios, but
this method may lead to performance degradation [39].

Consequently, in 2013 [51] proposed a motion robust Chrominance-based method
(CHROM) based on the dichromatic reflection model (see Figure 1.2). This method
extracts the pulse signal from a temporally normalized RGB channel plane projec-
tion, obtained from the linear combination of chrominance signals that is orthogonal
to the specular variation direction. It works regardless of the illumination color,
and it assumes skin-tone standardization. The proposed method was compared
with ICA and PCA using recordings obtained in controlled environments with
daylight-fluorescent light and significant motion using the optimal sliding win-
dow for each method; this is 32 picture periods equivalent to 1.6 s in CHROM
and 512 picture periods equivalent to 25 s in BSS-based methods. The CHROM
algorithm demonstrated its robustness and better performance with shorter latency.

In 2014 [14] presented a novel method using Auto-Regressive (AR) modelling and
pole cancellation. The latter is an algorithm for the removal of aliasing caused
by strong fluorescent lights. The AR model is a linear predictive modeling tech-
nique that predicts the signal based on previous signal samples [53] taking into
consideration white noise or residual error with zero mean. Using this method,
the values of the HR, RR, and SpO2 were obtained from an rPPG signal from an
adult patient’s face with minimal motion and using a background reference ROI.
However, AR modeling looks for regular frequencies in a signal that is assumed to
be stationary, which is not the case in NICU. While this model has the advantage
that it is unaffected by quantization errors at typical frame rates, unlike Fast
Fourier Transform (FFT)-based methods (FFT is further explained in Subsection
2.1.4). This paper also references the Heart Rate Variability (HRV) method as it
is commonly used to obtain RR from HR. As mentioned by [54], the reason for
this is that “a person’s heart rate tends to increase when he/she breathes in, and
fall when he/she exhales”. Nonetheless, as it is stated by [14], this method is not
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likely to have high performance with typical hospital patients.

The same year, a method called Blood Volume Pulse Signature (PBV) was presented
by [55] as a method that improves motion robustness. The algorithm determines a
unit vector, referred to as the blood volume pulse “signature”, that describes the
pulse signal independently of skin pigmentation. This method showed results with
an accuracy comparable to CHROM. Also, the combination of this new method
and CHROM was evaluated together with ICA and PCA. Some of the hybrid meth-
ods demonstrate to improve the performance of HR estimation in motion situations.

In 2015 [43] proposed an adaptive color difference operation between the G-R
channels because the noise caused by motion and lighting variations are similar
in these channels, to reduce motion artifacts in remote HR estimation based on
the optical properties of the skin. It showed improved signal quality compared to
single-channel approaches nevertheless, it was not robust to all types of movements.

As mentioned by [56] PBV uses a predefined pulse signature and CHROM as-
sumes skin-tone standardization. In consequence, when light variations occur,
producing a change in the relative contribution of the blood volume pulse in the
RGB channels, the RGB based pulse estimation will also change. Therefore, these
fixed assumptions may induce errors. For this reason, in 2016 [56] proposed the
Spatial Subspace Rotation (2SR) post-processing algorithm, which is skin tone
independent and does not require pulse-related priors. The principal behind this
algorithm is to estimate the temporal rotation of a spatial subspace of skin pixels.
2SR requires a “well-defined skin mask measuring the single cluster distribution of
skin pixels”. The algorithm was compared with ICA, CHROM, and PBV under a
variety of subject motions and illumination conditions and showed to improve HR
measurement results.

In 2017 [29] introduced the Projection Plane Orthogonal to the Skin-tone (POS)
method for pulse signal extraction based on the dichromatic reflection model. This
method extracts the pulse signal from a projection plane orthogonal to the skin
tone. Later in the paper POS is compared with other commonly used state of
the art rPPG techniques including G, G-R, PCA, ICA, CHROM, PBV, 2SR. It is
concluded that model-based methods, which are CHROM, PBV, and POS perform
significantly better in fitness contexts. Also, CHROM performs better than PBV
overall, particularly when the subject is nearly stationary. While 2SR is the best
performing in non-fitness scenarios and in the same context, ICA performs better
than PCA. Comparatively, [39] states that POS is more robust to illumination
variations than CHROM, while this last one is more robust to motion artifacts.
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According to [57] Ensemble Empirical Mode Decomposition (EEMD) is a “method
to process nonlinear and non-stationary signals. It is a completely adaptive and
data-driven algorithmic approach. It decomposes the signal into amplitude and fre-
quency modulated [...] oscillations called Intrinsic Mode Functions (IMFs) without
any a priori assumption and defined a basis”. While the Multivariate Empirical
Mode Decomposition (MEMD) is an extension of this algorithm to analyze multi-
channel data. Thus, MEMD is an algorithm for multivariate non-stationary signals
analysis. Also the year 2017, [58] used Partial Least Squares (PLS) and MEMD
from facial and background ROI to obtain the HR under varying illumination con-
ditions. PLS is “a data analysis technique for testing theoretical relations among a
system of variables” [59]. In this method, PLS is used to determine the projection
that maximizes the covariance between the ROIs, extracting the illumination varia-
tion. Then, MEMD decomposes the information of multiple signal channels from
the ROIs into IMFs without considering the dependent information among these
channels. The technique assumes that both the facial ROI and background ROI
have similar illumination variation sources. The PLS-MEMD was compared with
ICA and EEMD, which does the same as MEMD but considering only one channel
at a time, on subjects sitting stationary in front of the camera. PLS-MEMD showed
better results overall.

In 2018 [60] presented a model robust to nuisance factors called Local Group
Invariance (LGI). The algorithm searches for invariant features as a result of local
transformations, incorporating uncertainty in the feature distribution. This method
was compared with ICA, 2SR, and POS using a self-created database and showed
improvements in movement situations, specifically in the category of talking, rota-
tion, and gym.

In 2019 [21] measured the RR on subjects facing the camera with casual walking
motion. They applied ICA and then used Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) scheme to decompose the ICA
output into its IMFs. CEEMDAN is an improved version of EEMD, which has
an addition of adaptive white Gaussian noise. Then an ML algorithm is used to
identify the IMF that best represents the RR. A Root Mean Square Error (RMSE)
of 2.30 bpm was obtained (RMSE meaning is explained in Section 3.4), yet the
algorithm was not used on real-time applications.

In 2020 the Virtual Heart Rate Python package named pyVHR was created by [37].
This is an open framework which implements the following rPPG methods: ICA,
PCA, G, CHROM, POS, LGI, PBV. They also investigated which window size
to use to yield the highest PCC, which was 10 s for all methodologies. Then, the
framework was tested with publicly available databases concluding that CHROM
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is overall the best methodology with a Mean Absolute Error (MAE) of 2.31 bpm
on average (the MAE meaning is explained in Section 3.4).

Also this year, [30] proposed the LAB-EEMD method to obtain illumination vari-
ation resistant HR measurements. This algorithm converts RGB color space to
LAB color space to separate the luminance signal, and it is followed by EEMD to
obtain the pulse signal IMFs. Also, smoothness prior approach and pixel averaging
are used to eliminate noise. The technique was tested in scenarios of changing
illumination (including slow head rotation) and showed results similar to CHROM.

In 2021 [39] proposed a method combining Projection-Plane-Switching (2PS) and
Singular Spectrum Analysis (SSA). This method uses 2PS based on head motion
assessment. Specifically, it determines the distance changes by the head between
adjacent frames and, for a given threshold, switches between the projection axes of
CHROM and POS. Also, it uses SSA, which is “a non parametric procedure based
on subspace algorithms for signal extraction. The main task [...] is to extract the
underlying signals of a time series like the trend, cycle, seasonal and irregular com-
ponents” [61]. In this case, SSA is used on the B channel of the face ROI for noise
removal. The proposed methodology was evaluated using non-rigid motions such as
blinking and strong illumination variations. Results showed 2PS-SSA method had
the best performance among the compared methods, including 2PS, CHROM and G.

The same year, [24] proposed an algorithm for HR estimation in which the face
gets divided into 25 × 25 pixel sub-blocks, logarithmic operations are applied to
separate noise from the reflected component of the PPG information. Then EEMD
is used to obtain IMFs, and the signal quality of each ROI sub-block is computed to
use only high-quality signals for the HR estimation. The study used a 30 s window
and obtained a RMSE of 5.62 in stable light conditions and 8.30 in unstable light
conditions. Yet, note that subjects were asked to avoid rigid head movement.

In 2022 [25] adapted pyVHR framework into an easy-to-use pipeline. The software
exploits NVIDIA Graphics Processing Unit (GPU) to accelerate code execution
into real-time inference speed by using parallelism therefore, it has the potential to
be used in real-time video processing. Currently it supports input video recordings,
not real-time video streaming.

Note that all of the previously mentioned studies have results biased towards age
because there are no infants in the tested databases. This issue was also referenced
by [62], where public databases were analyzed, and an age bias was confirmed. It
was therefore suggested to be cautious with age-undifferentiated products derived
from these databases. Moreover, a skin color bias was also confirmed in public
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databases by [63]. Consequently, products derived from their use could lead to
unrecognized health conditions of the under-represented skin pigmentation pop-
ulation. Due to this circumstance, the Food and Drug Administration (FDA) in
[64] recommends interpreting trends more meaningfully than one specific pulse
oximeter measurement.

2.1.4 Algorithms for vital signal estimation
Power Spectral Density (PSD) is the measure of the input signal power over a
range of frequencies. It is a commonly used method to track and distinguish signals
of interest from the data [15], [25], [37], [41], [65]. From the PSD, the dominant
frequency peak in a given frequency interval is evaluated to obtain the HR and RR
estimations [65].

As stated in [66], the PSD of a signal is the FFT of the auto correlation of the
signal. The FFT is a high processing speed implementation of the Discrete Fourier
Transform (DFT), which converts discrete signals from the time domain to the
frequency domain [67]. Real-time frequency domain computation of signals sampled
at a rate of 16 MHz is currently feasible [68]. Multiple algorithms have been used
to estimate PSD. A popular algorithm is the Welch PSD method, nevertheless,
this algorithm requires high computational complexity [69]. In [65], an algorithm
for PSD estimation with good performance was proposed, yet the algorithm’s
complexity has prevented real-time applications.

Consequently, [66] proposed a modified version of the Welch PSD method, which
computes PSD using the Welch algorithm at a lower computational cost but at the
expense of an approximately 8% lower performance.

However, the DFT can become an inadequate technique for signal analysis when the
signal has transient and non-periodic components [70]. Hence, Short-Time Fourier
Transform (STFT) can be used for time-frequency analysis of non-stationary signals,
providing an insight of the time-evolution of each signal component. If a signal is
altered in a specific time instant, the entire frequency spectrum can be affected.
So, to detect these temporary positions in data, a small window has to be used in
the STFT. However, as mentioned by [71], the STFT fails when used for signals
with slowly varying components and rapidly changing transient events.

Moreover, as mentioned in [72], using PSD and STFT combined can yield a higher
accuracy rate than both techniques separately.
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2.2 State of the art
In this Section, an overview of literature investigations regarding techniques de-
signed and tested to get contactless estimations of vital signals of newborns are
described.

In 2013 [2] estimated HR using a camera by analyzing the G channel with ambient
light for the first time at the NICU. The study proved the feasibility of HR estima-
tion using a camera on the NICU environment. However, the motion artifacts and
poor illumination conditions were mentioned as improvement sources.

In 2014 [34] obtained continuous estimates of HR, RR and SpO2 for infants nursed
in incubators with minimal motion and ambient light, excluding periods of interven-
tion of the clinical staff. They manually selected two ROIs (from the face and the
background) and used ICA and pole cancellation in AR models to extract the vital
signals without interference from aliased frequencies. This study used band-pass
filters of bandwidth 1.3-5 Hz for HR and 0.33-1.67 Hz for RR.

In 2015 [73] used OF, ICA and PCA signal extraction algorithms for RR estimation
of neonatal video data. Video frames were manually cropped to show only the chest
and abdomen ROI. Then Eulerian Video Magnification (EVM), OF, and STFT
were used to obtain the RR estimation. EVM is a technique used to amplify small
variations to make them detectable. As mentioned by [73] “the algorithm tracks
and amplifies changes in pixel intensity values over time. A constant illumination
of the scene is therefore necessary”. Further, PCA and ICA were used to improve
signal quality, where PCA showed a better performance.

In 2016 [18] proposed an algorithm that finds the linear combination of the color
channels with the best SNR to represent the pulse rate and then filtered this
signal in the corresponding bandwidth of the RR to obtain its measurement. The
algorithm was evaluated using visible light on NICU subjects, yet results show that
the existing algorithm CHROM had a better performance.

In 2018 [17] estimated HR and RR using a methodology of low Central Processing
Unit (CPU) consumption which was declared to work with varying illumination
conditions and motion. It is based on rPPG analysis on the infant’s diaphragm,
where a 40 × 40 pixels ROI was manually selected from this region, and the least
squares method was applied to the average pixel intensity of each channel over a
moving window to find the linear function that best fits the signal. A HR estimation
value was obtained every 1 s, and an estimation of RR was obtained every 3 s.
It was concluded that the R-channel has to be analyzed in varying illumination
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conditions since this channel maintains a high level of pulse signal information
independently of light changes.

The same year, [74] proposed a video processing algorithm to obtain RR estimations
based on the analysis of local variations and breathing motion magnification. The
pixel-wise processing was performed over a single-channel grayscale video leading
to preliminary results for steady newborn subjects.

In 2019 [16] analyzed the G channel using two cameras, this time incorporating
an improved version of EVM to magnify the signal of the videos to determine
HR and RR. For this, ROIs were manually detected on preterm infants. The
proposed solution demonstrated to detect apnoea episodes while the reference ECG
couldn’t. Results were compared with the measurements obtained without the
magnification algorithm applied, and it was found that when the infant was moving
the magnification increased noise and led to inaccurate results.

The same year, [22] developed a multi-task deep learning algorithm to segment
skin areas automatically and to estimate vital signs, specifically HR and RR, of
infants in the NICU when no medical procedures where performed. The HR and
RR estimations were obtained using multiple algorithms over a window of 8 s and
10 s respectively and then a data fusion technique was applied to combine these
estimations. That AR best model used for HR estimation has rules to discard
noisy periods, and so “it incorporates a trade-off of high accuracy in exchange
for a smaller portion of computed values over time” [22]. However, this study
demonstrated that real-time execution is possible with a vital signal estimation
value output every second.

In 2020 [20] estimated RR of fully clothed or swaddled infants with a technique
called Micromotion and Stationarity Detection (MSD) using various lighting condi-
tions and camera orientations. The MSD is an algorithm that assumes that the
standard deviation of the change in pixel intensity over a series of frames with no
motion, but noisy, remains relatively small therefore a large change in this standard
deviation means a micro-movement associated with RR. In this way, an RR es-
timation was computed every 5 s. Yet, the algorithm described is not motion robust.

The same year, [3] estimated HR using skin segmentation of the face by transform-
ing RGB color domain to HSV color domain, in which the skin color falls into a
particular range. Then EVM was used to detect and magnify changes. An HR
estimation was obtained every 1/9 s in real-time. Results got an average MAE of
7.4 and RMSE of 15.2. However, the neonates did not move during the execution
of this study.
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In 2021 [19] implemented a motion robust algorithm over the G channel consisting
in ROI division, EVM and majority voting in order to choose the HR with the
highest probability among ROI patches. The proposed algorithm considered head
rotation and non-rigid motions, such as blinking and emotion expressing, obtaining
a MAE of 4.3 bpm. However, this algorithm uses HSV color space to filter skin
cells in each frame, for which it assumes that no objects of similar color are on the
background otherwise, these would introduce noise.

The same year, [75] created a publicly available dataset of full-term infants freely
available upon request to develop a deep learning method, as there was no public
dataset available for this purpose. Also, they proposed a multi-task deep learning
method called NBHRnet to estimate the HR from which they obtained a MAE of
3.97 bpm.
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Chapter 3

Materials and methods

3.1 Experimental setup

As shown in Figure 3.1 (obtained from [17] and adapted for the specific setting),
newborns in the self-made dataset used in this study (a) were inside an incubator
(b) in a supine position. A camera was placed and fixed on the top of the incubator
(d) at a distance smaller than 1 m to obtain a video recording of the infant, ensuring
that the baby’s head and chest were always within the captured recording.

Figure 3.1: Newborn incubator experimental setup.
Source: Adapted from [17]
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These characteristics are important because, as mentioned in Subsection 1.2.5, for
the purpose of vital signal estimation using a camera this distance from the subject
to the camera has shown to have higher performance compared to greater distances.
Also, the face of the baby is used for ROI selection therefore, its presence in the
video recording is fundamental for vital signal estimation.

A pulse oximeter with the reference measurement of HR (the ground truth) was
connected to the newborn’s chest by adhesive patches, and its monitor was posi-
tioned next to the infant, as shown in (c). Note that the HR ground truth value is
the second number shown on the screen top-down. In this way, the ground truth
values were displayed in the video recordings. Additionally, the only source of
illumination was artificial light.

An actual frame from a video recording is shown in Figure 3.2 to illustrate the
video recording perspective previously described. Note that images exposed in this
Chapter corresponding to database video recording frames were blurred during
post-processing to preserve the privacy of the newborns.

Figure 3.2: Example of a video recording frame.

During video recordings, newborns could freely move, and healthcare personnel
could perform procedures normally.

All videos were recorded using a 24-bit RGB camera with 3 channels of 8 bits per
channel at 30 fps with a pixel resolution of 480 × 852 and saved in uncompressed
MP4 format. Automatic camera parameters were disabled as their changes may
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affect the intensity of the color channels differently over time [14].

3.2 Dataset
The dataset used for this thesis work comprises 23 video recordings obtained
from the Neonatal Unit of Mauriziano Hospital in Turin under a study protocol
approved by the Local Ethics Committee. Informed consent was obtained from
participants’ parents prior to the start of video recordings. Video recordings have
different durations corresponding to male and female pre-term newborns with less
than 40 weeks. Also, according to the color bar in [76] showed in Figure 3.3, the
Fitzpatrick skin color classification of all newborns in the videos corresponds to
type I. The color bar was used by comparing it with the inside part of the upper
arm of the newborn, yet it is important to note that skin sensitivity to sunburn
should be taken into consideration to make a more objective skin color classification.

Figure 3.3: Fitzpatrick grading color bar tool used by
matching these colors with the newborn’s skin tone at the
inside part of the upper arm. Source: [76]

During the video database analysis, it was found that some videos were duplicated
in the dataset therefore, the shorter duplicated videos were excluded from the inves-
tigation to avoid redundancy. Also, some videos were excluded due to the absence
of ground truth values to compare with the HR or RR estimations (explained in
Section 3.3). Finally, video recordings with a shorter duration than the window
size selected for the analysis (explained in Section 4.1.2) were also excluded. Thus,
videos from which HR estimations were effectively calculated correspond to a total
time of 1 hour and 28 minutes, while for RR estimations, a subset of this dataset
was used (further explained in Sections 3.3 and 3.5).
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These videos were classified into 3 categories of motion: “motionless”, “sporadic
motion” and “motion”. The “motionless” category describes completely still new-
borns, “sporadic motion” corresponds to sleeping newborns occasionally making
involuntary movements, and finally “motion” refers to newborns who do not stop
consciously moving. Furthermore, it is to be considered that some video recordings
had an undergoing medical procedure of blood draw. The respective characteristics
of effectively analyzed video recordings are specified in Table 3.1.

Video number Sex Description Duration
Movement Medical procedure performed Minutes Seconds

2 Female Motionless no 1 30
3 Male Sporadic motion no 7 54
5 Male Motion yes 17 42
6 Male Motionless no 2 19
7 Male Sporadic motion yes 10 5
9 Male Sporadic motion no 6 17
11 Male Motion yes 8 03
14 Male Motion yes 13 43
17 Male Sporadic motion no 3 14
21 Male Motion no 2 18
22 Male Sporadic motion yes 15 28

Table 3.1: Processed dataset specifications, where the sex of the newborn, move-
ment, and medical procedure characteristics are detailed. Also, the duration of
each video from which vital signals were effectively estimated is specified.

3.3 Ground Truth
Ground truth values of the HR were obtained from a pulse oximeter used during the
recordings, with its corresponding values displayed on the videos. Unfortunately,
directly downloading the HR trends was not possible because this software is
proprietary software, as opposed to freely distributed software. Therefore, an algo-
rithm was developed to extract the ground truth from the videos using character
recognition. This algorithm obtains a value for each video frame corresponding
to the pulse oximeter value read in that frame and stored as a CSV file for each
recording.

To ensure the accuracy of the extracted values, pre-processing and post-processing
is required. Concerning the pre-processing algorithm, each frame is first masked to
isolate the region where the number is displayed. Then it is resized to amplify this
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value. Furthermore, it is grey-scaled, binary thresholded, and blurred to reduce
noise. Finally, tesseract, which is a Python library for digit recognition, is used to
determine the corresponding number [77], [78].

It is important to note that the frames, in some cases, needed to be rotated to
make the values horizontally aligned to facilitate character recognition depending
on the instrument position and orientation of the recording. Also, noise-reducing
techniques were adapted to the specific light conditions of each video. For these
reasons, a strategy design pattern was adopted to code this algorithm meaning
different variants of the algorithm are used depending on the specific video charac-
teristics therefore, part of the behavior of the algorithm changes accordingly [79].

Figure 3.4: Example of a frame from which to obtain the HR ground
truth value, corresponding to the second number top-down on the
screen of the pulse oximeter.

Figure 3.5: Pre-processed value to be interpreted by tesseract digit
recognition.
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On Figure 3.4, there is an example of a frame that required a different strategy,
compared to that of Figure 3.2. The strategy included rotation and a specific
binary threshold because lightning conditions made the pulse oximeter HR value
more obscure. Figure 3.5 shows the output of the pre-processing stage, which is
interpreted correctly by tesseract as “138”.

Some frames in which there was occlusion of the instrument or where the pulse
oximeter value was not fully captured in the recording were discarded. Furthermore,
video recordings with light reflection on the instrument screen, which prevented
the character recognition algorithm from interpreting its value correctly, were also
discarded.

With respect to the post-processing techniques, only non-digit values were dis-
carded to preserve the integrity of the result. This means that, for example, a dot
or hyphen, which sometimes were recognized, were discarded but possible digits
identified in the same value remained unchanged. Then, blank values, abnormally
high values, which are values over 290 bpm as mentioned in [22], and abnormally
low values compared to the surrounding frames were checked and properly replaced.
Finally, outliers were detected as numbers that increment or decrement by more
than 11 bpm from one frame to another. The threshold was set at this number
because this is the maximum change of the pulse oximeter instrument values for
the HR from one frame to the next one captured in the recordings. Finally, the file
containing the ground truth for each video frame was saved as a CSV file.

For the RR, there was no instrumentation to measure this vital signal directly
from the newborn. Therefore, in compliance with the gold standard described in
Subsection 1.2.2, breaths were manually counted by personnel of the Neonatal
Unit of Mauriziano Hospital in Turin by observing the chest movement of the
infant for specific instants of a subset of the dataset. Note that obtaining the RR
ground truth values is possible since the newborn’s chest is uncovered; thus, its
breathing movements are visible. Therefore, the RR for a given instant was ob-
tained by counting the breaths (observing the respiration motion) during a window
that starts at that specific instant and spans for one minute from that point in time.

In this manner, the amount of RR ground truth values collected using this method-
ology included a total of 21 values. However, 4 out of these values were excluded
from the analysis because of two different reasons. One of them was that the
video was not long enough to account for a 60 s window after the ground truth
measuring instant. Therefore it was not possible to make the RR estimation using
the same amount of information for comparison (explained in Section 3.5 with
Figure 3.11). The second reason was due to the failure of the ROI detection and
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tracking algorithm, which consequently resulted in a lack of sufficient rPPG data
collection to make a reliable RR estimation (explained in Subsection 3.6.2).

3.4 Evaluation metrics
The metrics used to evaluate the results are the following: RMSE, MAE, Maximum
Mean Absolute Error (MAX) and Pearson Correlation Coefficient (PCC). In Table
3.2, the formulas for each metric are shown, where x is the estimated value, y is
the ground truth value, {1...T} are the values for each window, x and y are the
mean values of the estimation and the ground truth respectively.

Metric Formula

RMSE
ñ

1
T

ΣT
t=1(xt − yt)2

MAE 1
T

qT
t=1 |xt − yt|

MAX maxT
t=1 |xt − yt|

PCC
qT

t=1(xt−x)(yt−y)ñqT

t=1(xt−x)2
qT

t=1(yt−y)2

Table 3.2: Evaluation metrics and formulas, where x is the estimated value, y is
the ground truth value, {1...T} are the values for each window, x and y are the
mean values of the estimation and the ground truth respectively.

The RMSE is the standard deviation of the error thus, it measures the accuracy of
the model’s prediction. In this way, if it is close to zero, it means that the results
are concentrated around the best-fit line and therefore, it is accurate.

The MAE is a similar measurement to RMSE, yet it is more robust because it is
less sensitive to outliers. The MAE is the average error expected on the prediction.
An absolute error between 3 bpm and 5 bpm is considered clinically acceptable
according to [39], however, this error range makes reference to a grown child or an
adult, both having a HR range around two times smaller compared to a newborn
(as it was explained in Subsection 1.2.6 of Chapter 1). Therefore, for this study,
an acceptable absolute error would be approximately between 6 bpm and 10 bpm,
considering the differences in the magnitude of newborn HR ranges with respect to
adults.
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The MAX error is the largest MAE. A small MAX error suggests that the model’s
error never strays far from the reference values, so the prediction is near the ground
truth.

The PCC measures the linear correlation of the ground truth with the prediction.
Normalized PCC is between -1 and 1, where 1 means perfect correlation. According
to [80], a PCC between 0.3 and 0.6 is a moderate correlation, while a PCC above
this range is considered to be a strong correlation. However, note that according
to [81], the minimum sample size required for a proper PCC is size 25. Therefore,
this error metric cannot be used for the ground truth available for the RR as it has
an effective size of 17 ground truth values.

3.5 Methodology
3.5.1 General software specifications
The software developed uses Python 3.9, and the algorithm for vital signal esti-
mation, which receives as input the dataset of video recordings, is accelerated by
Compute Unified Device Architecture (CUDA) on NVIDIA GeForce GTX 1060
6GB. Refer to Subsection 3.5.3 for a detailed description of this architecture.

3.5.2 Use of pyVHR framework
To estimate vital signals the pyVHR framework [25], [37] was adapted for the
context of use. This framework was used because it implements various popular
rPPG processing algorithms to obtain vital signs that have shown good performance
in adult studies and some of which declare to have important characteristics for
the context of use, such as motion robustness and lightning robustness, as it was
mentioned in Subsection 2.1.3. Until now, these methods have not been compared
in the NICU context as it was seen in Subsection 2.2 referencing the state of the art.

Another reason to use this framework is that it uses accelerated algorithms by
exploiting CUDA NVIDIA GPU parallelism with Python; hence it is suitable for
real-time processing, which is a transcendental characteristic for this study.

However, note that as mentioned in Chapter 2, with the current implementation of
the framework, video recordings are processed as input; the framework does not
receive as input a data stream. So, the processing pipeline receives a complete
video yet performs the analysis of it on moving windows as it would be done in
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an actual real-time implementation of the algorithm. Since the present work has
the potential for real-time application, the direction of this study points towards
real-time usage. However, some modifications would be needed at the software
level to fully support this.

Furthermore, using rPPG technology is convenient because HR and RR vital signal
estimations can be extracted using a similar processing analysis with the difference
that some parameters have to be adapted depending on the vital signal to be
measured, such as the ROI selected, the window size, the bandwidth of the filter,
between others. In this sense, using this framework is advantageous as the main
pipeline for processing the vital signal has access to these parameters, as it uses
a facade-type design pattern making it easier to interact with the main function
parameters of the framework without delving into the complexity of the functions
[79]. Therefore, it is a flexible framework, as it is possible to change parameters
from the processing pipeline.

3.5.3 Parallel computing using CUDA Python

Figure 3.6: CUDA components illustration. Source: [82]

The underlying computer architecture used is CUDA, which is a parallel computing
platform that allows developers to use the processing power of NVIDIA GPU de-
vices for general-purpose processing. Parallelism in CUDA is achieved through the
use of threads, thread blocks, and kernels. As described in [82], a thread is a single
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unit of execution within a CUDA program, a thread block is a group of threads,
while a kernel is a group of threads blocks that are executed synchronously and
communicate through shared memory. A visual representation of these aggregation
levels is shown in Figure 3.6. By breaking down computations into many threads
and organizing those threads into blocks and kernels, CUDA enables developers to
achieve massively parallel computations executed independently on the GPU.

In [83] it is mentioned that the benefits of using GPU for parallel computations,
apart from increasing computational speed, also include increased power efficiency
when using CUDA. The same study describes that accessing the GPU from Python
can be as efficient as accessing it from C or C++. They concluded that Python
could be even faster and provide higher quality code, meaning fewer bugs and
crashes. In this way, Python CUDA can lead to a highly productive development
environment.

3.5.4 Processing pipeline description and modifications

Figure 3.7 provides an outline of the pyVHR framework’s stages, obtained from
[37]. However, note that there are some inconsistencies between the illustration and
the actual implementation of the framework. In the following paragraphs, these
stages are described in detail mentioning also the actual implementation used and
the changes made to them.

Figure 3.7: pyVHR framework stages. Source: [37]
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As shown in Figure 3.7, the dataset, composed of video recordings, is loaded into
the processing pipeline to obtain the vital signal estimations from them. The
framework supports using public databases as the processing pipeline includes
a factory design pattern to open and process each video from them. This part
was modified to adapt the input dataset settings to the private video recordings
described in Section 3.2.

The next stage in the processing pipeline is ROI detection and tracking using Google
Mediapipe library, specifically the Google Mediapipe face mesh (see Section 2.1.2
for its generic description and literature applications). It works in the following way:
first, Google Mediapipe uses face detection on frames where no figure is recognized
as a face until it localizes the face. Then, it tracks this face in consecutive frames.

Google Mediapipe face mesh was used with the following configuration: minimum
detection confidence of 0.5, meaning the probability that a recognized figure in a
frame was the face of the newborn was at least 50%. Also, the minimum tracking
confidence was set at 50%, meaning that the tracking of the figure persisted as long
as there was a 50% or higher probability that the recognized figure corresponded
to the face of the newborn. In cases where this threshold was not met, automatic
facial detection was initiated in the subsequent frame. Increasing these probability
thresholds can increase the robustness of the model, but the trade-off is increased
latency. Also, static image mode can be set to true to use face detection on
every frame instead of face detection and tracking, but at the cost of a higher
computational requirement.

Subsequently, pyVHR framework offers two possibilities, either to consider all the
skin of the face as ROI or to select pre-defined groups of landmarks in the face
as ROI. The second option was chosen because, as it was described in Subsection
2.1.1, literature has shown that ROI region selection impacts the quality of the
estimations [37]. This procedure was also further customized to enable specific
landmark selection choices. Following, the regions of the eyes and the mouth are
cropped from the face of the subject to avoid the contribution of these skin pixels
in the vital signal estimation. This is in compliance with the literature discussed
in Subsection 2.1.1, which states that these regions should be avoided because
they induce non-rigid motion error. Also, a mask is used over the face to avoid
the contribution of the background as noise (further details about chosen ROI
landmarks can be found in Subsection 3.6.1).

In the RGB computation stage, a square of pixels centered on each selected land-
mark is used to obtain either the median or mean of all of the pixel color intensities
in each square for each color channel. Note that this square has a customized
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size. In this study, the mean value was used, as previous literature described in
Chapter 2 exclusively uses the raw signal, which by definition is the mean RGB
color channel value.

When calculating the raw signal in the color intensity extreme values, a thresh-
old is used for two reasons: first, to avoid the contribution of the mask in the
computation, and second, because newborns are allowed to move freely, so there
are moments when the newborns do not face frontally the camera which reduces
the visibility of the selected ROI for the vital signals estimations. Therefore, it is
necessary to adaptively select the ROI depending on the newborns’ position with
respect to the camera. In this way, only RGB pixel values between 5 and 250 are
considered in each square when taking the average, and so “a patch may disappear
due to subject’s movements, hence delivering only partial or none contribution”
[37]. In other words, only the pixels that are inside the threshold are taken into
consideration when obtaining the mean color intensity of the patches. Refer to
Figure 3.8 for an example that illustrates a specific patch that includes pixels that
surpass the threshold. In this example, only the blue area is used to calculate the
raw signal for this patch.

Figure 3.8: 45 landmarks from Figure 3.12 with patches of 20 px
side size. The partial contribution of a patch from the forehead is
shown, where the blue shaded area is considered for the raw signal
computation.

Then, the median from all square patches is selected to represent the signal in that
frame. According to [84], the median represents the central tendency of a group
better than the mean as it is less affected by outliers.
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A custom size time window is used to obtain the rPPG signal information. This
window moves in a step size which is also customizable (further details about chosen
window and step sizes can be found in Subsection 3.6.2). A vital signal value is
obtained from each window by analyzing the collected rPPG information within
it. In the pyVHR framework’s moving window approach, the vital signal value is
estimated at the center of the window. However, to simulate real-time application
behavior, it is not possible to predict future values. Estimating the vital signal
value in the middle of the moving window implies forecasting the future half of
that particular window. To address this, a modification was implemented, and now
the vital signal value is estimated at the end of the moving window. Subsequently,
the window shifts by a step size and the next estimation is computed, as illustrated
in Figure 3.9.

Due to the fact that Google Mediapipe can fail to recognize and track the ROI over
a moving window, some windows collect rPPG information for a shorter period
than the designated window size. To ensure reliable vital signal estimation, an
additional step was incorporated into the framework. It verifies that the moving
windows contain a minimum quantity of rPPG data information, discussed in
Section 3.6.2. This step is applied to each moving window of the video.

More in detail, the presence of artifacts (such as newborn movements and healthcare
staff interference) can cause Google Mediapipe ROI detection and tracking to fail.
Hence, these frames provide no rPPG data collection. Therefore, it is necessary to
ensure that to compute the vital signal value from a moving window, this window
should have at least a period of magnitude equivalent to the minimum window size
with ROI detection and tracking present from where to extract the vital signal
estimation. Otherwise, the framework does not output any estimation for that
moving window as it would be considered to be an unreliable value, and so the
comparison with the ground truth value is not made, meaning no evaluation metrics
are obtained in this case.

Note that this part was programmed in an independent Python script. Its integra-
tion required many changes of high complexity due to the design of the pyVHR
framework. However, it has the potential to be integrated into the pipeline with
a different underlying design. For this reason, this step is shown as part of the
processing pipeline in Figure 3.10, which shows the stages of the processing pipeline
used in this study.

Then, the rPPG signal in a moving window is processed with an algorithm. Gen-
erally, these algorithms, based on mathematician and scientific models, possess
additional characteristics such as motion or lighting robustness, which are able
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Figure 3.9: Moving window and step size illustration used to estimate HR values
from rPPG data and ground truth values used for comparison.

to isolate the signal that contributes to the physiological parameter to be deter-
mined from the rPPG information in the moving window, thus reducing errors
before the final vital signal estimation step. Currently, there is no consensus
about a benchmark criterion to be used. The possible algorithms included are:
ICA, PCA, G, CHROM, POS, LGI, PBV, and all of them where used in this
project. Many of these methodologies have shown promising results in adult stud-
ies, as it was outlined in Chapter 2. Table 3.3 shows a description of the rPPG
algorithms, which summarize the technologies already described in Subsection 2.1.3.
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Figure 3.10: Processing pipeline steps used.

The purpose of comparing the algorithms described is to gain a comprehensive
understanding of their performance within the specific conditions of the NICU, to de-
termine which algorithm demonstrates superior performance under these conditions.

Optionally, filtering or detrending can be added before and/or after using the
rPPG signal processing algorithms. In this way, the Butterworth filter was included
to remove noise outside the HR and RR frequency bandwidths (for further de-
tails about the chosen Butterworth filter order and bandwidth, see Subsection 3.6.4).

Finally, in the BVP spectrum stage, two algorithms are available to estimate the
vital signals based on the processed rPPG signal; these are: PSD and STFT (refer
to Subsection 2.1.4 for a description of these algorithms, and for further details
about the chosen algorithm are available in Subsection 3.6.5).

To summarize, all of the processing pipeline steps used in this research are shown
in Figure 3.10.

In parallel, the ground truth was prepared to be able to compare the reference
value with the estimated value. To accomplish this, the processing pipeline was
modified to dynamically incorporate the ground truth value for comparison and
immediately obtain performance evaluation metrics. So, ground truth was prepared
to synchronously deliver a value each time an estimation was computed.

The criterion used for HR estimations was the following: i) start the processing of
the ground truth starts at the second equivalent to the latency of the window size
chosen for the estimation of HR. This is the moment when the first HR estimation
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rPPG algorithm Description

G Spatial averaging of the G channel. [28]
ICA BSS method, which assumes that the

observed signals are linear mixtures of
independent sources. [47]

PCA BSS method, which finds source com-
ponents using linear transforms to rep-
resent the data with a new coordinate
system. [49]

CHROM Feature transform method that projects
the temporally normalized RGB chan-
nel signals on a plane orthogonal to the
specular variation direction (assuming
skin-tone standardization). [51]

PBV Blood volume pulse “signature”
unit vector independent of skin-
pigmentation. [55]

POS Feature transform method that projects
the temporally normalized RGB chan-
nel signals on a plane orthogonal to the
skin-tone. [29]

LGI Feature transform method that searches
for invariant features using local trans-
formations. [60]

Table 3.3: Description of benchmark processing rPPG algorithmns used.

is outputted. ii) Select a window of a size equivalent to the chosen step size for the
estimation of HR is selected centered on the position previously determined. iii)
Calculate the median of the ground truth values in the frames of this window, and
output the value obtained as the ground truth for comparison in this instant. iv)
Move a magnitude of step size seconds because a vital sign value will be estimated
after each step size seconds and repeat steps ii-iv until finished. Figure 3.9 shows a vi-
sualization of the ground truth values used for comparison with the HR estimations.

For RR estimations, a different approach was used. The estimated value was
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Figure 3.11: Moving window and step size illustration used to estimate RR values
from rPPG data and ground truth value used for comparison.

computed as the mean value of several RR estimations. The estimations were
made starting from the precise time instant at which the ground truth RR was
provided and continued for a duration of up to 60 s. The windows were configured
with window size and moved in intervals of step size until reaching the previously
specified end.

The ground truth was obtained by manually counting breaths by personnel of
the Neonatal Unit of Mauriziano Hospital in Turin starting from the recorded
instant (as explained in Section 3.3). This means counting the number of times
the newborn’s chest or abdomen rises over one minute. In this way, the two values
are comparable (estimated and ground truth) since the ground truth represents
an average of the respiration frequency for an interval equivalent to the minute
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that follows it. Refer to Figure 3.11 for a visual representation illustrating the
utilization of moving windows for RR estimation and the ground truth values used
for comparison with these windows.

The reference values can be compared immediately with the estimated one to obtain
performance evaluation metrics; see Figure 3.10 to understand this implementation.

3.6 Parameter selection and experiments
Before determining HR and RR for all of the dataset videos, some parameters had
to be determined. To do this, experiments were carried out, which will be described
in this Section.

Note that as a general rule, when carrying out an experiment, only the parameter
under analysis is varied while all the other parameters are fixed. Then, at the
end of the experiment, this parameter gets fixed at the value determined to yield
the best performance based on the evaluation metrics. The G processing rPPG
algorithm was used in all experiments because it is considered to be a traditional
baseline method. Further, for HR estimation, experiments were performed using
video 2 because this video is from a newborn recording whose face can be accurately
detected and tracked using the Google Mediapipe library, there is no movement (it
belongs to the “motionless” category), and there are reduced lighting variations, so
the influence of other variables over the computed vital signal is minimized. Yet,
for RR experiments also, a measurement from video 6 was considered, as this video
possesses similar characteristics to video 2 and in order to have more than one
value of ground truth for comparison.

Results obtained during the process of parameter settings are considered to be
the “ideal” case in the NICU environment. As it was mentioned, recordings 2 and
6 correspond to “motionless” newborns; consequently, there is little or no error
introduced by movements. Also, the Google Mediapipe face detection and tracking
algorithm works without failures and lightning conditions remain relatively stable.
Thus, the influence of external variables over the estimated vital signals is reduced.
It is expected that the results of the other motion categories, “sporadic motion”
and “motion”, will have worse evaluation metrics with respect to this case because
they contain more sources of noise.

Finally, when the parameters get set, all the video recordings are tested with all
the processing rPPG algorithms for comparison.
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In this way, the optimal parameter combination was determined from experimenta-
tion, which was used as guidance to determine the parameter selection that yields
higher performance. However, note that this is a high-complexity multivariate
problem, so the best possible combination of parameters was selected. It is impor-
tant to note that since changing a parameter can make all the evaluation metrics
vary, it is not possible to determine if the chosen configuration is a global optimum
(if it even exists). In any case, it corresponds to an optimal solution for the context
of the problem.

3.6.1 ROI selection experiment

For HR estimation, an experiment is done to evaluate performance changes when
different landmarks and region sizes are selected as ROI to understand how changes
in these parameters impact the accuracy of HR estimation. Different skin coverage
and landmark selections in the regions of the forehead and the cheeks are tested on
video 2, and error metrics are used for determining which ROI selection is suitable
for the context.

Regions of the forehead and the cheeks are selected because, as explained in Sub-
section 2.1.1, the face usually contains visible skin, which is required to get the
rPPG signal. These specific regions have shown the strongest reliability due to
their anatomical characteristics and higher BVP information. Figures 3.12, 3.13,
3.14, 3.15, 3.17 show the tested ROI landmark selections on a newborns face, where
the specific landmarks used are shown as red dots.

Similarly, for RR estimation, an experiment is performed using different ROI
selections with the same purpose as HR estimation. Different skin coverage and
landmark selections in the region of the forehead are tested on video 2 and error
metrics are used to determine which ROI selection is suitable for the context.

The region of the forehead is selected because, as explained in Subsection 2.1.1, the
face usually contains visible skin, which is required to get the rPPG signal, and
this specific region has shown strongest reliability for RR estimation containing
higher BVP information. Figures 3.15, 3.16, 3.17 show the tested ROI landmark
selections on a newborn’s face, where the specific landmarks used are shown as red
dots.
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Figure 3.12:
Multiple landmarks
in the forehead and
the cheeks.

Figure 3.13:
Forehead and cheeks
landmarks selected
based on the anatom-
ical regions shown in
Figure 2.1.

Figure 3.14:
Forehead and cheeks
with one representa-
tive landmark.

Figure 3.15:
Multiple landmarks
in the forehead.

Figure 3.16:
Forehead landmarks
selected based on the
anatomical regions
shown in Figure 2.1.

Figure 3.17:
Forehead with one
representative land-
mark.

3.6.2 Window size and step size experiment
For HR estimation an experiment is performed to evaluate performance changes
when the window size and the step size parameters are modified. This is important
because of the existing trade-off between latency and precision when modifying
these parameters in order to find suitable values for them in the context of use.
Thus, different combinations of window size and step size are evaluated in video 2.

According to [22], the 99% of HR values for newborns are in the interval 90 -
270 bpm, which corresponds to a frequency range of 1.5 - 4.5 Hz. However, [34]
considers a wider bandwidth starting from 1.3 Hz. Both investigations, which were

41



Materials and methods

described in the state of the art Subsection 2.2, have a maximum frequency of 4.5
Hz and correspond to ranges used in NICU environment. The widest bandwidth is
selected to ensure that the HR information is fully captured.

Equation 3.1, which relates period (T) and frequency (f), is used with the selected
bandwidth. It is determined that the signal can be completely captured in a period
of 0.77 s in the worst-case scenario.

T = 1
f

(3.1)

Nevertheless, the pyVHR framework used does not allow much flexibility as it
requires the step size to have a positive integer size greater than the window size.
So, the window size cannot take the value of 1 s. Consequently, the smallest window
investigated is of size 2 s.

In a similar way, for RR estimation, an experiment is performed using different
windows and step sizes for the same purpose as for HR estimation.

RR values for healthy infants from 0 - 1 years old at rest are in the interval 25 - 68
cpm [33], as it was previously mentioned in Subsection 1.2.6, corresponding to a
frequency bandwidth of 0.41 - 1.13 Hz. Yet, commonly used bandwidths for the
estimation of this vital signal in NICU context are: 0.1 - 3 Hz, 0.5 - 1 Hz, and 0.2
- 2 Hz [27]. Also, ground truth values in the dataset are compressed between 35
cpm and 93 cpm. So, a frequency bandwidth of 0.5 - 2 Hz is considered.

Using Equation 3.1, we obtain that the signal can be completely read in a period
of 2 s in the worst-case scenario, and so, the minimum possible tested window size
is of the same value.

3.6.3 Sampling rate
The Shannon-Nyquist theorem states that a continuous signal can be accurately
reconstructed from its samples if the sampling frequency is at least twice the highest
frequency present in the signal [85]. In the case of a video recording analysis, the
sampling frequency is restricted by the fps of the video.

As mentioned in the previous Subsection, the frequency bandwidth used for HR is
1.3 - 4.5 Hz as it was explained in the previous Subsection. Therefore, according to
the Shannon-Nyquist theorem, the minimum sampling frequency required to fully
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characterize the signal is 9 fps. In compliance with the theorem, a 30 fps sampling
frequency is used because recordings from the dataset have 30 fps, and no resource
consumption limitation is considered.

Whilst, RR estimations considered a bandwidth of 0.5 - 2 Hz, as mentioned in the
previous Subsection. According to the Shannon-Nyquist theorem, the minimum
sampling frequency requirement is 4 fps for the RR. So, a 30 fps sampling rate is
enough to discretize the breathing movements [15].

3.6.4 Butterworth filter range and order experiment
For HR estimation, a Butterworth filter of 1.3 - 4.5 Hz is used. Also, an experiment
is performed to determine which order yields better performance in the context of
use. As a reference, 3rd order and 5th order have been commonly used in literature
[14], [24], [30].

For RR estimation a Butterworth filter of 0.5 - 2 Hz is used with the same order
selected from the HR experiment previously conducted. This choice is justified by
the fact that the respiratory peak is present in the spectrum of the rPPG waveform,
similar to the cardiac peak, but with a lower amplitude [14].

Bandwidth range selections for the vital signals were explained in Subsection 3.6.2.

3.6.5 Algorithm for vital signal estimation experiment
Both STFT and Welch PSD algorithms have advantages and disadvantages that
were previously discussed in Subsection 2.1.4. So, it is not trivial to determine in
advance which algorithm to use. Consequently, for HR estimation, both algorithms
are compared using evaluation metrics, and the best performing algorithm is se-
lected.

For RR estimation, the same algorithm for vital signal estimation that was selected
from the previous HR experiment is used.
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Chapter 4

Results

4.1 Parameter selection and experiments results
In this Section, the results of the parameter selection experiments described in
Section 3.6 of Chapter 3 are shown correspondingly. First, all of the results relative
to the HR estimations are shown, followed by the results obtained for the RR
estimations.

4.1.1 ROI selection experiment results
Table 4.1 shows the different landmarks and patch sizes combinations used in this
experiment for HR estimation and the metrics obtained as a result. The landmark
column makes reference to the figure showing the landmarks used, and size is
the length in pixels of the side of the squared patches over each landmark. The
best 5 results for each metric are shown in bold, except for the PCC because this
experiment derived no results with a moderate or strong correlation. For this
reason, this metric was not considered in the performance analysis. Additionally,
note that only the significant part of the table is shown, while the rest of the table
can be found in Appendix B.

The experiment considered the following patch sizes (measured in quantity of
pixels): 25, 100, 225, 625, 900, and 1225. The impact of larger patches was not
explored because results suggested a performance degradation with the increment
of the patch size.

The best results were obtained from the landmarks corresponding to Figure 3.12,
concentrating the majority of the bold evaluation metrics. These 45 landmarks
correspond to the following numbers from Google Mediapipe face mesh: 9, 10, 36,
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Landmarks Size (px) RMSE MAE MAX PCC
3.12 5 6.73 5.40 21.68 0.170
3.12 10 8.35 6.75 18.41 -0.014
3.12 15 8.64 7.18 18.96 0.047

3.12 20 8.61 6.90 18.08 0.124
3.12 25 8.81 6.94 19.84 0.134
3.12 30 10.26 8.16 22.80 -0.087
3.12 35 11.16 8.44 36.87 -0.083
3.15 5 8.44 6.71 28.59 0.267
3.15 10 9.19 7.74 21.96 -0.202
3.15 15 9.30 7.90 20.20 -0.052
3.15 20 10.51 8.63 34.11 -0.025
3.15 25 10.51 8.63 34.11 -0.025
3.15 30 10.29 8.19 33.23 -0.063
3.15 35 10.31 8.62 24.96 -0.022

Table 4.1: ROI selection experiment metrics obtained for different landmarks
and patch sizes combinations. The landmark column makes reference to the figure
showing the landmarks used, and size is the number of pixels on the side of the
square patches over each landmark. The best 5 results for each metric are shown
in bold, except for the PCC as there is no moderate or strong correlation. The
selected configuration of parameters is highlighted in gray.

50, 66, 67, 69, 101, 104, 105, 107, 108, 109, 116, 117, 118, 119, 123, 147, 151, 187,
205, 206, 207, 266, 280, 296, 297, 299, 330, 333, 334, 336, 337, 338, 345, 346, 347,
348, 352, 376, 411, 425, 426, 427. Refer to Appendix A for a visualization of the
numbered landmarks in the canonical face model image.

As mentioned in Subsection 2.1.1, HR can be extracted from the larger ROIs,
so squares of side size 20 px were selected because it is the biggest patch with
best RMSE, MAE and MAX values. The corresponding selected configuration of
parameters is highlighted in gray on Table 4.1.
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With respect to RR estimations, Figure 3.16 landmark selection showed RR estima-
tions closer to the ground truth values for all estimated instants. The corresponding
error metrics were RMSE of 7.99, MAE of 7.95, and MAX of 8.73. Thus, land-
mark number 9 of Google Mediapipe with a patch size of 15 px proved to be effective.

4.1.2 Window size and step size experiment results
Table 4.2 shows the selected window size and step size combinations measured in
seconds and the resulting evaluation metrics for HR estimation. The best 5 results
for each metric are shown in bold.

From the results Table it is possible to observe that a bigger step size leads to a
minimal improvement in the evaluation metrics or no improvement at all. Conse-
quently, the step size of 1 s is more convenient since it provides more frequent vital
sign updates, and so this value is chosen for the step size parameter.

Subsequently, it can be observed that the best performance error metrics for RMSE
and MAE are found around a window of size 10 - 15 s. While the best PCC is
found in larger windows of size between 30 - 60 s, where PCC has a moderate
correlation.

To better understand the effects of these metrics on the behavior of the signal, the
12 s window and the 28 s window were graphed and are showed in Figures 4.1 and
4.2 respectively. The green line represents the results obtained using the previously
specified parameters configuration and the processing rPPG algorithm G, and the
red line is the ground truth.

From these Figures, it is possible to observe that the 12 s window has values closer
to the ground truth but is not an accurate representation of its trend. Whilst
the 28 s window has underestimated HR values using the processing G method,
these estimations seem to follow the ground truth trend more closely than those
made with a 12 s window. The situation was discussed with the Neonatal Unit
of Mauriziano Hospital in Turin, which stated that it is more important for the
healthcare staff to have a representation of the vital signals’ trend than its exact
measurement. Consequently, the 28 s window was selected for the window size
parameter.

The corresponding selected configuration of parameters is highlighted in gray on
Table 4.2.
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Window size (s) Step size (s) RMSE MAE MAX PCC
2 1 18.13 14.95 48.93 -0.148
4 1 12.41 10.22 36.26 -0.096
6 1 9.63 7.85 28.35 0.037
8 1 8.82 7.16 19.08 0.118
10 1 8.61 6.90 18.08 0.124
12 1 8.54 6.54 18.35 0.097
15 1 9.12 6.97 20.35 0.053
20 1 10.14 7.75 21.23 0.196
25 1 10.89 9.18 21.11 0.196

28 1 11.61 10.37 18.59 0.567

30 1 12.07 10.85 18.59 0.544

60 1 13.86 13.53 24.84 0.455

2 2 18.04 15.27 47.29 -0.227
4 2 12.74 10.34 36.26 -0.152
6 2 9.34 7.85 19.96 -0.056
8 2 8.71 7.09 19.08 0.115
10 2 8.51 6.66 18.08 0.099
12 2 8.38 6.20 18.35 0.123
15 2 9.30 7.08 20.23 -0.021
30 2 11.85 10.68 18.59 0.564

60 2 13.84 13.64 19.34 0.505

Table 4.2: Window size and step size (both measured in seconds) experiment
results with evaluation metrics. The best 5 results for each metric are shown in
bold. The selected configuration of parameters is highlighted in gray.

With respect to RR estimation, a window size of 16 s and a step size of 2 s showed
RR estimations closer to the ground truth values for all estimated instants. The
corresponding error metrics were: RMSE of 6.92, MAE of 6.92 and MAX of 6.92.
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Figure 4.1: Visualization of HR values using a 12 s window size and 1 s step size.
The green line shows the results obtained with the G rPPG processing algorithm,
and the ground truth is shown in red.

Figure 4.2: Visualization of HR values using a 28 s window size and 1 s step size.
The green line shows the results obtained with the G rPPG processing algorithm,
and the ground truth is shown in red.
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4.1.3 Butterworth filter order experiment results
For HR estimation Table 4.3 shows the results of the Butterworth filter order
experiment. It can be observed that the best results are obtained by the 3rd and
4th-order Butterworth filter.

Order RMSE MAE MAX PCC
1 13.82 11.62 28.59 0.321
2 8.20 6.59 17.41 0.414

3 8.15 6.56 17.71 0.552
4 9.51 8.11 17.71 0.583

5 10.76 9.43 18.59 0.571
6 11.61 10.37 18.59 0.567

Table 4.3: Butterworth filter order experiment results with evaluation metrics,
where the best result for each metric is shown in bold.

As mentioned in Subsection 3.6.4, the 3rd order is commonly used in literature.
Furthermore, the results obtained using the 3rd order filter demonstrate a moderate
correlation in the PCC, which is consistent with the best PCC obtained. Conse-
quently, this filter order is established as the configuration for this parameter.

The corresponding parameter selection configuration is highlighted in gray on Table
4.3.

4.1.4 Algorithm for vital signal estimation experiment
results

Table 4.4 shows the results of the experiment for HR estimation, where the best
result for each metric are shown in bold.

Welch PSD algorithm for vital signal estimation performs better than STFT in
all of the evaluated error metrics. Consequently, this algorithm is set as a parameter.

The corresponding parameter selection configuration is highlighted in gray on Table
4.4.
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Algorithm RMSE MAE MAX PCC

Welch PSD 8.15 6.56 17.71 0.552

STFT 13.72 11.10 32.75 0.292

Table 4.4: Algorithms for vital signal estimation experiment results with evaluation
metrics, where the best result for each metric is shown in bold.

4.2 Processing rPPG algorithms comparison

4.3 Single video recording example
Values of parameters defined in Section 4.1 were fixed, and a comparison of all of
the rPPG processing algorithms for HR estimation was performed. Table 4.5 shows
the error metrics obtained from the results, where the best result for each metric is
shown in bold. Also, considering the best processing algorithms obtained from the
previously mentioned metrics displayed in the Table, Figure 4.3 visually compares
these algorithms with the ground truth throughout the duration of the video.

Algorithm RMSE MAE MAX PCC
G 8.15 6.56 17.71 0.552

ICA 4.71 3.75 13.53 0.325
LGI 5.64 4.66 17.93 -0.008
PBV 5.61 4.71 14.41 -0.056
PCA 6.03 4.75 14.41 -0.447

CHROM 6.19 5.25 14.41 -0.220
POS 5.26 4.53 10.77 0.109

Table 4.5: Evaluation metrics obtained for estimations with different processing
rPPG algorithms, where the best result for each metric is shown in bold.

Note that the grey area in the Figure corresponds to a period where an external
entity produces a shadow on the ROI. The impact of this area affects the estimation
of the vital sign from the moment it occurs up to a 28 s window. This is due to
the fact that the rPPG data collected during this period (containing the shadow
information) will be used by the following moving windows. This may explain the
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Figure 4.3: Graphic comparison of results obtained using ICA, G and POS
processing rPPG algorithms and the ground truth, where the grey area corresponds
to a period in which an external entity produces a shadow on the ROI.

abrupt drop in the estimations computed with the G processing algorithm after
the occurrence of the shadow.

In this example, G and ICA processing algorithms, which have moderate PCC,
seem to produce a more representative estimation compared to the ground truth’s
trend. As mentioned in Subsection 4.1.2 and in Subsection 2.1.3, this characteristic
is of the utmost importance.

4.4 Aggregated results
Following, the aforementioned algorithms were compared at an aggregated level
on the entire dataset. Figure 4.4 displays the aggregate results as an average of
the RMSE, MAE and MAX error metrics obtained under 3 motion categories:
“motionless”, “sporadic motion” and “motion” (refer to Table 3.1 for dataset char-
acterization). The PCC error metric was not considered in the comparison because
there were no averages corresponding to a moderate or strong correlation.
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Figure 4.4: Comparison graph for RMSE, MAE and MAX average for all dataset
HR results obtained with different rPPG processing algorithms distinguished by
motion category.

Motion Category Best-Performing Algorithms Error Metrics
RMSE MAE MAX

Motionless POS 7.4 6.1 14.5
Motionless LGI 6.8 5.7 16.8

Sporadic motion ICA 32.2 31.1 49.6
Sporadic motion PCA 31.7 30.5 51.6

Motion ICA 34.5 32.7 54.4
Motion POS 31.9 29.7 55.4

Table 4.6: Best performing algorithms for HR estimation in each movement
category and the corresponding error metrics, where the best result for each metric
is shown in bold.

Table 4.6 summarizes the best-performing algorithms for the different motion cate-
gories based on the rPPG processing algorithm that obtained the best error metrics
for each motion category. All of the motion categories have two best-performing
rPPG processing algorithms because some error metrics were smaller in one of them
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(for example, MAX), while other error metrics were lower in the others (RMSE
and MAE).

Based on the best-performing algorithms POS and ICA are the best processing
rPPG methodologies overall because they present the best results transversely
through the different motion categories. On the contrary, G and PBV tend to
prove to obtain higher error values compared to the other methodologies in all
motion categories.

It can also be noted that there are minimal differences in the evaluation metrics
obtained by comparing the category “sporadic motion” with the category “motion”.
However, there are significant differences when comparing both categories with the
“motionless” category.

With respect to the RR results, Table 4.7 shows the error metrics obtained for RR
estimations of all of the dataset instants for which there was a ground truth value
available using the different rPPG processing algorithms. The best result for each
metric is shown in bold.

Note that the results are shown in an aggregate manner and not separated by
category due to the reduced sample size of the reference values. For the same
reason, the PCC metric was not considered, as it was mentioned in Subsection 3.4.

Algorithm RMSE MAE MAX
G 19.73 14.97 48.67

ICA 19.21 13.48 53.53
PCA 17.99 13.70 51.18

CHROM 18.48 13.15 44.13

POS 20.24 14.58 46.95
PBV 18.98 14.25 51.46
LGI 19.76 14.23 50.12

Table 4.7: RR estimation error metrics results using different processing rPPG
methods for video 2 and 6, where the best result for each metric is shown in bold.

The rPPG processing methodologies of CHROM and PCA show the best error
metric results. However, there were no significant differences between the different
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methodologies used, all of them on average performed similarly.

54



Chapter 5

Discussion and conclusions

5.1 Importance of the study and future research
directions

Although there is literature investigation to determine HR and RR vital signals
using different rPPG processing algorithms (described in Chapter 2), there is no
consensus about a benchmark criterion to be used for this purpose. Also, most
of the results are obtained from adult subjects with specific lighting and motion
conditions and are not suitable for the context of a neonatal unit. Therefore, a
private dataset was used to test the traditional methods that have shown good
performance in adult studies and possess important characteristics for the context
of use, such as motion and lightning robustness. Additionally, until now, these
algorithms have not been compared in the NICU context as it was seen in Subsec-
tion 2.2 referencing the state of the art.

The pyVHR framework was adapted for the context of use because it has an in-built
implementation of these commonly used algorithms. Another reason to use this
framework is that it accelerates execution by exploiting CUDA NVIDIA GPU
parallelism. Hence it is suitable for real-time processing, which is a transcendental
characteristic of this study. The trade-off is that the NVIDIA GPU is a hardware
requirement.

Adaptations were made to the framework to make it suitable for the NICU context.
For example, the provision of vital signs estimations was moved from the center
of a moving window to its end to resemble its real-life use. Also, a processing
step was incorporated in the pipeline used to discard the provision of a vital
signal estimation from a moving window with insufficient rPPG to make a reliable
computation. This insufficiency in the collected data is due to the fact that the
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Google Mediapipe algorithm can fail to detect and track the selected ROI (further
details were described in Section 3.5).

Results obtained for the HR estimation were classified under three different motion
categories (“motionless”, “sporadic motion”, and “motion”) to have a more accurate
understanding of the performance of the algorithms. These aggregated results are
shown in Figure 4.4, and the best-performing algorithms for each category and the
corresponding error metrics are displayed in Table 4.6. According to the results, the
algorithms POS and ICA performed consistently well across the different motion
categories, indicating their suitability for vital sign estimation in the given context.
For future research, a hybrid between the methodologies POS and ICA is to be
explored, aiming to improve performance (similarly as it has been explored by [55]
between ICA and CHROM or PBV).

On the contrary, G and PBV tend to prove to obtain higher error values compared
to the other rPPG processing algorithms in all motion categories.

The motionless category achieved an aggregated MAE within the clinically accept-
able range, which was specified in Subsection 3.4 as an error between 6 bpm and
10 bpm. Therefore, monitoring during rest or sleep is viable.

Another possible improvement for the HR estimations would be to add a step at
the end of the processing pipeline (refer to Figure 3.10) to compare the estimated
value with historical ones. As observed in the ground truth obtained by the pulse
oximeter in the dataset, the maximum change from one frame to another was 11
bpm. Therefore, under the same logic, changes from one HR estimation to the
following should avoid abrupt changes in consecutive estimated values.

Concerning RR estimation results, the best-performing algorithms, and the cor-
responding error metrics are displayed in Table 4.7. There was no significant
difference between the methodologies used, which obtained good performance on
average. Despite the small sample size of ground truth values to obtain statistically
significant results, this part of the work demonstrates the feasibility of the approach
and opens the doors for future experiments.

It is relevant to mention that the MAX error metric is given by the estimation
of the RR of one specific video, which in particular has a higher ground truth
compared to the others. It is left for future research to determine if this value is an
outlier or if the algorithm has a bias with respect to high RR values.

A possible line of research is in the field of Deep Learning. As it was seen in Chapter
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2, several studies have shown good performance results applying this technology.
However, in order to use it, a large dataset is needed, which this study did not
have.

As mentioned in Subsection 2.1.1, the performance of the different algorithms for
obtaining vital signs depends on several factors, including the error metrics used.
Therefore, it is important to use different model evaluation metrics in order to
understand its behavior, as done in this work.

Part of the error obtained by the evaluation metrics could be explained due to
the fact that cyclical movement of blood from the heart to head considerably
deteriorates when babies are lying down [19], as they were in the dataset used.
Also, as stated by [14] "small proportion of the cardiac-synchronous signal is due
to the motion of face landmarks in time with the heart beat".

5.2 Limitations and opportunities
The study acknowledges certain limitations, however, these limitations provide
opportunities for future exploration and improvements in the field.

This study is limited by the number of infant subjects in the 11 video recordings.
Furthermore, the dataset used has a sex bias because it includes only 1 video
recording with a female subject and a skin color bias, as all newborns have a
Fitzpatrick skin type I (refer to Table 3.1 for dataset specifications). For future
research, it is suggested to have a more representative sample of sex and skin color
to avoid systematic discrimination of these categories of newborns.

Also, this study is limited by the difficulty of the pulse oximeter instrument to
record the HR ground truth accurately. As mentioned in [60], "it can’t be expected
to obtain clear signals from sensors. This is a major drawback and makes the
analysis of processes difficult, enforcing several constraints for real applications".
Some of these inaccuracies are due to motion artifacts, which affect most of the
traditional instruments for vital signal measurement [22]. Furthermore, values of
the ground truth were not obtained directly by the measurement instrument, they
were obtained indirectly through character recognition of the instrument values in
the video recordings. Although pre-processing and post-processing were performed
to reduce the error in obtaining these results, the intermediate step could also be
avoided to ensure the accurate obtaining of the ground truth values.
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The RR ground truth values were manually obtained. Despite the fact that they
were obtained by clinical staff, a measurement instrument could be used instead to
increase objectivity and the number of measurements collected from the dataset
videos.

Another limitation of the results of this study is that it assumes that the chosen
ROI for vital signal calculation has visible skin to be recorded by the camera.
However, the dynamism of the NICU environment does not always make it possible
to meet this requirement. It is not uncommon that medical personnel passes
their hands or implements over the selected ROI. Consequently, interference is
generated in the estimation of vital signs. This is due to the fact that the ROI
zones are blocked from camera registration; therefore, this produces noise in the
estimated vital signals. This aspect is to be considered in future improvements of
the algorithm. In addition, this circumstance sometimes results in the failure of
the Google Mediapipe algorithm to detect and track the ROI.

Additionally, the use of a pacifier is common in the context of the NICU because it
provides advantages for the newborn, as mentioned by [86] it "helps transition from
tube to oral feeding, breastfeeding, faster weight gain and earlier discharge from the
NICU". Some of the video recordings from the dataset evidenced the use of a paci-
fier. For the purpose of vital signal estimation, the pacifier can produce the same
blockage effect previously described either by itself because it can partially cover
the ROI or because the healthcare staff blocks the ROI when putting the pacifier on
the newborn’s mouth. Moreover, this can hinder Google Mediapipe ROI detection
and tracking algorithm because this algorithm was not trained on newborns using
a pacifier, which can decrease the precision of the detected landmarks or cause its
failure. The use of an algorithm specialized in the recognition and tracking of new-
borns could be useful to increase accuracy, specifically an algorithm developed with
face recognition, even if there is the presence of a pacifier in the mouth of the infant.

It is important to consider that the Google Mediapipe face mesh algorithm used in
this study to find the ROI in the video recordings of the dataset finds a 2-D figure
in a 3-D world. This approximation may introduce detection and tracking errors.
Consequently, using two RGB cameras or a depth camera is suggested to help
improve ROI detection and tracking results by getting a more precise understanding
of the third dimension.

Moreover, note that in this study, intervals of failure of the Google Mediapipe
face mesh algorithm were taken into account in the processing pipeline used (refer
to Figure 3.10 for the details of this pipeline), meaning periods of no detection
and tracking of the newborn’s ROI. However, periods in which the algorithm
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fails to localize and track the landmarks correctly are harder to discriminate; this
phenomenon is called ROI drift. In this case, the collected rPPG data does not
represent that of the selected ROI. This issue could be due to newborn movement or
to an obstruction of the ROI. A manual analysis could’ve been made to determine
the accuracy of the detected face mesh, but it would be impractical. The idea
of this study is to generate an algorithm capable of monitoring vital signs in a
continuous and autonomous way without the need for supervision. In line with
this objective, the Google Mediapipe face mesh algorithm was selected for this
study’s use because it is one of the best facial detection and tracking algorithms in
state of the art. Yet considering the existence of ROI drifts, which were evidenced
within the dataset of this investigation, and to improve results further, an algorithm
specialized in newborns could be used or trained (as it was previously suggested).
These points and the previously mentioned statements about Google Mediapipe
highlight the criticality of having an accurate ROI detection and tracking algorithm.

As previously mentioned in Section 3.6, the parameters selected through experimen-
tation used for posterior vital signal estimations (ROI, window size and step size,
Butterworth filter order and algorithm for vital signal estimation) correspond to a
local optimum. Determining a global optimum is a high-complexity multivariate
problem with no solution guarantee. Consequently, robust experimentation for
determining a possible global optimum solution is a subject of future investigation.

The selected window size for the HR vital signal estimation creates an in-built
latency of 28 s. This means that initially, there will be no estimates until this
period has elapsed. This has to be considered when “turning on” the device because
HR estimations will not be provided immediately but after a few seconds. This can
be important in the NICU context, as mentioned by [14] “in some clinical scenarios,
for example, the detection of apnoea, the effect of this in-built delay will need to
be taken into account”. In addition, situations that can alter the HR estimation by
inducing error, such as shadows over the selected ROI, will affect the vital signal
estimation during an equivalent window size from the moment of occurrence.

5.3 Advantages and applications
An advantage over most of state of the art investigations mentioned in Subsection
2.2 is that all patients in the dataset were reported. No exclusions were made due
to movement artifacts from the newborn or the healthcare staff when performing
a blood withdrawal procedure, nor when there were changes in illumination due
to shadows produced by external entities or movements of the newborn, nor ROI
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blockage. Therefore, the obtained results closely resemble the NICU context of
the Neonatal Unit of AO Ordine Mauriziano Hospital in Turin. The only video
recordings exclusions and frame cuts on the dataset were due to: i) no availability
of ground truth values. Therefore, no error metrics could be obtained from them.
ii) Duplicated videos in the dataset, which would have introduced redundancy. iii)
Videos with a shorter duration than the selected window size to process the rPPG
signal, which were not possible to evaluate with a 28 s parameter configuration for
HR estimations (the 28 s window size was determined based on experimentation).
iv) If there was not enough rPPG data collected inside a moving window to support
a valid vital signal measurement estimation, meaning that the amount of rPPG
data in that specific window is smaller than the minimum window size mentioned
in Subsection 3.6.2. Consequently, based on signal theory, it is not possible to
obtain a vital signal estimation from it, and so the processing pipeline outputs no
vital signal estimation from this moving window (refer to Figure 3.10 for a visual
explanation).

An advantage of estimating vital signs using a RGB camera compared to traditional
methods, is that this information can also be integrated with the knowledge it
provides of the newborns’ behavior. Therefore, apart from vital signs monitoring,
the patient’s morphology can be understood. In this way, by combining both,
this technology has the potential to automatically and objectively obtain the pain
assessment of newborns, which is the aim of this study. Moreover, this technol-
ogy can potentially evaluate multiple subjects simultaneously using only one camera.

In addition, there are several other applications where this technology could be
useful, as mentioned in the Subsection 1.2.7, this technology can help discrimi-
nate “deepfakes”. It could also be used in telemedicine, infant monitoring, and as
mentioned in [30] “it has significant advantages in some unconstrained scenarios
long-term epilepsy monitoring”.

This technology could be critical for newborn monitoring. According to the World
Health Organization (WHO), “the majority of all neonatal deaths (75%) occur
during the first week of life” [87]. It is expected to continue with the course
of development of this technology with the hope that in the near future, it can
contribute to reducing this quantity significantly by signaling when professional
help is needed based on psychological vital signals.
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Face model landmark
number visualization
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Face model landmark number visualization

Figure A.1: Canonical face model image for landmark number visualization. This
image is meant to be seen in the digital version of this thesis in order to zoom in
to identify the corresponding numbers of landmarks in the face mesh. However, if
there are problems with the display of the numbers, refer to the source file directly.
Source: [88].
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ROI selection experiment
result table extension

Landmarks Size (px) RMSE MAE MAX PCC
3.13 5 9.46 7.55 26.08 -0.077
3.13 10 10.63 8.72 23.44 -0.185
3.13 15 11.57 9.92 22.47 -0.116
3.13 20 10.61 9.15 20.71 -0.027
3.13 25 10.75 9.17 21.59 0.037
3.13 30 11.53 9.92 24.32 -0.106
3.13 35 12.84 10.87 35.99 -0.199
3.14 5 16.43 13.17 61.39 0.119
3.14 10 17.33 13.78 54.72 -0.177
3.14 15 17.15 13.67 45.81 -0.151
3.14 20 18.23 13.50 63.14 0.083
3.14 25 18.23 13.50 63.14 0.083
3.14 30 20.54 15.67 54.08 0.068
3.14 35 21.22 16.32 53.84 0.055
3.17 5 36.56 23.85 120.00 0.148
3.17 10 44.20 27.82 143.97 -0.086
3.17 15 35.28 24.48 137.21 -0.045
3.17 20 33.13 21.14 143.97 0.083
3.17 25 33.13 21.14 143.97 0.083
3.17 30 26.81 18.81 86.84 0.076
3.17 35 26.65 19.31 84.84 0.143

Table B.1: Table 4.1 extension.
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