
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Automation of Edge Datacenter
Infrastructure

Supervisors

Prof. Fulvio RISSO

Dott. Raffaele Giuseppe TRANI

Candidate

Teodoro CORBO

July 2023

Summary

Cloud-native technologies, marked by their inherent flexibility, scalability, and
cost-effectiveness, have revolutionized the IT infrastructure landscape of large-scale
organizations, especially major telecommunications companies (telcos). Among
these technologies, Kubernetes (K8s) has emerged as a leading platform for man-
aging containerized workloads and services. This shift to cloud-native solutions
becomes crucial for telcos seeking to efficiently manage growing data traffic and
provide a wide array of services.

One of the critical obstacles in this digital transformation journey involves the
complexity associated with managing bare metal infrastructure, particularly in
the context of multi-cluster environments at the network edge. This challenge
underscores the importance of the work presented in this thesis.

Edge networks, situated closer to end-users and crucial for minimizing latency
and quick data processing, often include multiple bare metal nodes interconnected
by network switches. The configuration of these switches, however, demands
meticulous manual work, such as setting up network interfaces, VLANs, routing
protocols, and security settings. This process is not only labor-intensive but also
highly susceptible to human error, thereby leading to inefficiencies and potential
system vulnerabilities.

Addressing these concerns, this thesis presents a novel architecture that lever-
ages the principles of Sylva, an initiative by Linux Foundation Europe, and the
extensibility of Kubernetes. The architecture seeks to automate the tradi-
tionally manual process of network configuration in edge sites with bare
metal nodes, reducing human intervention, increasing accuracy, and significantly
enhancing operational efficiency.

The proposed architecture pivots around two core elements: the Network Oper-
ator and the Actuator Operators. The Network Operator utilizes Custom Resource
Definitions (CRDs) to outline the intended network topology and configuration,
while the Actuator Operators serve as the communicative conduit between the
Network Operator and the physical network devices.

The architecture’s implementation utilizes Kubebuilder, an open-source Software
Development Kit (SDK).

ii

A significant component of this implementation is the development of an Ac-
tuator Operator compatible with Cisco Network Services Orchestrator (NSO), a
model-driven software used to automate the provisioning and configuration of
network devices. This operator communicates with NSO using RESTCONF APIs,
facilitating real-time execution of configuration modifications and maintaining the
alignment between the desired and current states of network configurations.

In summary, this thesis addresses a significant challenge in the telecommunica-
tions networking domain, providing a cloud-native and Kubernetes-based automated
solution for managing and configuring network resources at the edge sites. By
resolving the complexities of bare metal nodes’ setup, it contributes a meaningful
stride towards the digital transformation of network infrastructure management.

iii

Ringraziamenti

Ringrazio i miei genitori, Chiara, la mia famiglia, senza di voi tutto questo non
sarebbe stato possibile, mi avete sostenuto sempre, in ogni momento, credendo in
me fino alla fine.

Un ringraziamento speciale va alle nonne Lucia e Giovanna, ai nonni Michele
e Teodoro che ho sempre nel cuore, a tutti gli zii e i cugini per l’affetto immenso
che mi avete sempre dimostrato.

Ringrazio Lisa, tu che ci sei sempre stata, nel bene e nel male spronandomi
a fare sempre meglio, ad impegnarmi, ad andare avanti anche quando magari avrei
voluto mollare tutto.

Ringrazio gli amici veri, Antonio, Francesco, Pier, Andrea, l’ormai francese Giulio,
gli amici della "5/6 fila", i "Terroni a Torino", gli "amici di giù", il "gruppo Taranto",
avete reso il tutto più bello, senza di voi il Poli avrebbe preso il sopravvento.

Ringrazio Claudia, sei entrata nella mia vita in un periodo difficilissimo pren-
dendomi per mano ed insegnandomi il bello che si nasconde anche dietro i piccoli
gesti.

Esprimo la mia gratitudine al prof. Risso per la passione che ha saputo trasmettermi
in questi anni e la disponibilità dimostrata.

Un grazie di cuore va a Tim e ai futuri colleghi Carlo, Federico, Alessandro,
Roberto e Raffaele che mi hanno accolto in azienda e guidato con grande profes-
sionalità durante lo svolgimento del lavoro di tesi.

Desidero infine ringraziare tutte le persone che non ho nominato direttamente, ma
che hanno contribuito a questo percorso. Ogni passo compiuto, ogni conoscenza
acquisita, ogni esperienza vissuta, sia positiva che negativa, ha lasciato un’impronta
indelebile rendendo tutto ciò possibile.

iv

Table of Contents

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Goal of the thesis . 1
1.2 Structure of the work . 1

2 Kubernetes 3
2.1 Kubernetes History . 3
2.2 Applications Deployment Evolution 4
2.3 Architecture . 5

2.3.1 Control Plane . 6
2.3.2 Nodes . 7

2.4 Kubernetes Objects . 7
2.5 Networking in Kubernetes . 11
2.6 Security and Roles Access . 12

2.6.1 Role-Based Access Control 13
2.7 Extending Kubernetes: Operators and Custom Resources 13

2.7.1 Custom Resources . 13
2.7.2 Controllers . 14
2.7.3 Operators . 14
2.7.4 Kubebuilder . 15

3 Cisco Network Services Orchestrator 16
3.1 Introduction . 17
3.2 Features . 17
3.3 Architecture . 19
3.4 Workflow . 19
3.5 Communication with Network Devices 20

3.5.1 NETCONF . 21

vi

3.5.2 CLI . 21
3.6 Interaction with NSO using RESTConf 21
3.7 Service Invocation through RESTConf 21
3.8 Conclusion . 22

4 Project Sylva 23
4.1 Introduction to Sylva . 23
4.2 Main Objectives and Benefits . 23
4.3 Technical Aspects of Project Sylva 24
4.4 Hybrid Deployment and Bare Metal Automation 27

5 Network Edge Automation for Bare Metal Infrastructure 29
5.1 Challenges . 30

5.1.1 The Need for Automation at the Edge 30
5.2 Multi-distributed Cloud Ecosystem 31

5.2.1 Management Cluster . 31
5.3 Architecture Proposal . 32

5.3.1 Network Operator . 33
5.3.2 Actuator Operators . 34

6 Implementation of the Proposed Architecture 36
6.1 Building Blocks: Operators and CRDs 36

6.1.1 Kubernetes Operators . 36
6.1.2 Custom Resource Definitions (CRDs) 38

6.2 Implementing them with Kubebuilder 42
6.2.1 Creating the CRDs and controller 43
6.2.2 Defining the CRD Spec and Status 43
6.2.3 Implementing the Controllers 44

6.3 Actuator Operator for NSO . 45
6.3.1 Resource Management . 45
6.3.2 Communication with NSO 46
6.3.3 RESTCONF API Calls . 47
6.3.4 Role-Bases Access Control integration 49

6.4 Implementation Workflow . 51
6.4.1 Creating a New VlanService 51
6.4.2 Modifying a VlanService . 52
6.4.3 Deleting a VlanService . 53

7 Simulation and Result 54
7.1 Benchmark Hardware Specifications 54
7.2 Benchmark Results . 55
7.3 Conclusion . 56

vii

8 Future Perspectives 58
8.1 Scenario Overview . 58
8.2 ClusterAPI . 58

8.2.1 Key Components . 58
8.2.2 Deploying a cluster . 59

8.3 Metal3 . 60
8.3.1 Major Components of Metal3 61
8.3.2 Provisioning Process . 62
8.3.3 Retrieving Information about the Physical Host 63
8.3.4 Conclusion . 64

8.4 Integration of ClusterAPI and Metal3 65
8.4.1 IP Address Management (IPAM) 65

8.5 Conclusion . 67
8.5.1 Next Steps . 67
8.5.2 Final Remarks . 68

9 Conclusion 69

Bibliography 71

viii

List of Figures

2.1 Evolution of applications deployments 4
2.2 Kubernetes architecture . 6

4.1 Sylva’s collaborators . 23
4.2 Five pillars of Sylva . 24
4.3 Distrubuted Cloud . 25

5.1 Multi-distributed cloud ecosystem 31
5.2 General architecture . 32
5.3 Proposed architecture . 33

6.1 CRDs implementation . 38
6.2 NSO interactions . 46
6.3 Workflow . 51

7.1 NSO API calls response time . 56

8.1 BareMetalHost operator . 61
8.2 metal3 inspection workflow . 64
8.3 IPAM workflow . 65
8.4 Smart Network Operator . 67

ix

Acronyms

telco
telecommunications company

k8s
kubernetes

NSO
Network Services Orchestrator

CRD
Custom Resource Definition

RBAC
Role-based access control

VM
Virtual machine

CNF
Cloud-native Network Function

CaaS
Container-as-a-Service

Maas
Metal-as-a-Service

VLAN
Virtual Local Area Network

xi

HPC
High-Performance computing

xii

Chapter 1

Introduction

Cloud computing has become increasingly crucial in recent years for its capacity to
provide scalable and readily available services, fostering innovation and offering
flexibility. This holds true for telecommunications companies as cloud-native tech-
nologies allow for the rapid deployment of new services, ultimately leading to a
competitive edge in the industry. In this context, a crucial aspect for telecommuni-
cation companies (telcos) is the automation of the entire network infrastructure,
where starting from a simple configuration, the entire cluster infrastructure is built.
Managing and configuring nodes composed of virtual machines is relatively easy
with current technologies. However, when it comes to physical nodes (bare metal
servers), there is a significant gap in how to configure the network for these devices.

1.1 Goal of the thesis
The goal was to design an architecture and develop an implementation to automate
the configuration of devices at the cluster’s edge. Specifically, in a Kubernetes (k8s)
cluster scenario with bare metal nodes connected to one or multiple switches. The
goal is to develop a controller and Custom Resource Definition (CRDs) system that
seamlessly integrates within the cluster, possesses knowledge of the network topology,
and establishes communication with switches for accurate network configuration.

1.2 Structure of the work
The thesis will unfold with the following structure:

• Chapter 2 provides an overview of Kubernetes, the technology that enables
the orchestration and deployment of cloud-native applications.

1

Introduction

• Chapter 3 provides an overview of Cisco Network Services Orchestrator,
a tool that allows for the management, connectivity, and configuration of
switches.

• Chapter 4 introduces the project Sylva, main objective and why it’s so
important for telcos.

• Chapter 5 introduces the challenges and describes the proposed solution.

• Chapter 6 provides an overview of the programming language used, the
implementation of Custom Resource Definition (CRDs) and controllers, and
the management of security permissions and roles (RBAC).

• Chapter 7 provides a description of the testing environment used, the achieved
results, and the performance obtained.

• Chapter 8 discusses the future objectives of this thesis, including the potential
integration with popular modern tools like Metal3 and ClusterAPI for optimal
management of the entire network topology.

• Chapter 9 presents the conclusions drawn from the accomplishments made
throughout the thesis.

2

Chapter 2

Kubernetes

In this chapter, we delve into the fascinating world of Kubernetes, tracing its
historical progression and continued evolution over time. Known commonly by its
abbreviated form, K8s, Kubernetes represents an expansive framework with layers
of complexity and a broad set of capabilities. While a comprehensive examination
would require a more extended exploration, we concentrate here on its pivotal
concepts and components, particularly focusing on its extensibility.

We underscore the versatility of Kubernetes by exploring Custom Resource
Definitions (CRDs) and Operators, elements at the heart of Kubernetes’ extensi-
bility. These powerful tools allow Kubernetes to evolve beyond its out-of-the-box
functionality, catering to diverse and specialized application requirements.

Further, we spotlight Kubebuilder, a tool essential for building these custom
resources, providing an accessible framework for leveraging the extensibility features
of Kubernetes.

2.1 Kubernetes History
Kubernetes, also known as K8s, is an open-source platform designed to automate
deploying, scaling, and managing containerized applications [1]. The system was
born at Google, based on the company’s experience running services at large scale,
and it borrows concepts from the Google Borg system .

Google open-sourced the Kubernetes project in 2014. Since then, it has become
one of the largest and most active projects on GitHub [2]. Kubernetes is now
maintained by the Cloud Native Computing Foundation (CNCF), which was
founded in 2015.

The rapid adoption of Kubernetes can be attributed to the growing need for
cloud-native technologies, which offer greater flexibility and scalability compared
to traditional IT infrastructure. In particular, telecommunication companies

3

Kubernetes

are increasingly adopting cloud-native approaches to manage their large-scale,
distributed networks [3].

2.2 Applications Deployment Evolution

Figure 2.1: Evolution of applications deployments

The evolution of application deployment strategies is a story of relentless innova-
tion and adaptation, reflecting the persistent shifts in technological capabilities and
business requirements. It tracks the transition from static, monolithic deployments
on physical servers to adaptable, decoupled applications running on container
orchestration platforms like Kubernetes.

The earliest era of software application deployment was dominated by physical
servers. In this so-called "bare-metal" approach, each application was intimately
tied to the physical server it operated on. The server’s hardware resources, such
as its CPU, memory, and storage, were dedicated to a single application. This
straightforward approach was plagued with significant drawbacks concerning re-
source utilization, scalability, and isolation between different applications operating
on the same machine [4].

Suppose two applications were deployed on the same server; they would compete
for the same pool of resources, often leading to performance bottlenecks. Scalability
was another substantial challenge; augmenting more servers was a costly proposition
and required considerable time and effort. The lack of isolation was another issue;
an error in one application could compromise other applications running on the
same server.

4

Kubernetes

Virtualization technology emerged as a solution to these challenges. It
enabled the concurrent running of multiple virtual machines (VMs) on a single
physical server, with each VM operating as an independent system complete with
its own operating system and dedicated resources. This breakthrough ushered in a
new era of scalability and efficiency as creating a new VM to scale an application
became a simple task. Additionally, isolation between VMs improved the stability
and security of the overall system. However, VMs weren’t without their limitations.
They introduced significant overhead in terms of resource usage and management
complexity due to running multiple full-fledged operating systems and managing
these disparate systems.

In light of these constraints, the technology industry developed a more lightweight
and manageable alternative to VMs, leading to the birth of containerization.
Containers encapsulate an application along with its dependencies into a standalone
unit that can operate anywhere, offering a highly portable, environment-agnostic
solution for software deployment [5]. Docker emerged as the industry standard
for containerization, providing tools and standards that significantly simplified the
process of building, shipping, and running containerized applications.

Despite the advantages of containers, managing a large number of them across
different servers presented new challenges, particularly around scheduling, network-
ing, and scalability. Kubernetes was introduced to address these issues, providing
a robust platform for orchestrating containers. K8s automates the deployment,
scaling, and management of containerized applications, offering built-in solutions
for service discovery, secret management, and storage orchestration [1].

It manages and coordinates containers across multiple physical or virtual ma-
chines, ensuring resource optimization and high availability. With its extensible
architecture and vibrant community, K8s has become an indispensable part of
modern cloud-native application deployment strategies.

This journey from bare-metal to Kubernetes encapsulates the ongoing evolution
of software deployment, embodying the industry’s pursuit of efficiency, portability,
and scalability. Looking ahead, the advent of serverless computing and edge
computing promise to spur further innovation in this space, setting the stage for
the next chapter in the narrative of application deployment evolution.

2.3 Architecture

Kubernetes is constructed around a modular and highly extensible architecture.
One can conceptualize its structure as divided into two core components: the
control plane, which is the brain of the cluster that dictates its state, and the nodes,
the workers where the actual applications are run [6].

5

Kubernetes

Figure 2.2: Kubernetes architecture

2.3.1 Control Plane
The control plane operates as the central management entity of a Kubernetes
cluster. Its main role involves maintaining the desired state of the cluster, including
which applications are running, which nodes those applications inhabit, and other
operational particulars. To accomplish this, the control plane utilizes several key
components:

• Kubernetes API Server: As the gateway to the Kubernetes control plane,
the API Server exposes the Kubernetes API and represents the primary
interface for cluster interaction. It serves as a communication hub that
external entities (like end-users or external services) and the cluster’s internal
components use to perform various operations .

• etcd: This is a reliable, distributed key-value store that Kubernetes employs
to manage the complete data landscape of the cluster. It stores all the data
related to the cluster’s state, configuration, and metadata. The integrity,
reliability, and availability of etcd are vital to the functioning of a Kubernetes
cluster .

• Scheduler: The scheduler is a critical component that takes charge of schedul-
ing pods (the smallest deployable units of computing in Kubernetes) onto
nodes. It continuously monitors for unscheduled pods and, once detected,
assesses the cluster’s state to decide the best node for the pod to run on.
This decision-making takes into account numerous factors, including resource
availability, policy constraints, data locality, and user specifications

6

Kubernetes

• Controller Manager: The Controller Manager runs various controllers,
which are essentially background processes tasked with maintaining the clus-
ter’s desired state. A noteworthy example is the Replication Controller, which
ensures that the number of running replicas of a service matches the number
defined in the specification. Controllers constantly reconcile the observed state
of the cluster with the desired state

2.3.2 Nodes
Nodes are the workhorses of a Kubernetes cluster. They are the machines where
the actual applications are run, each acting as a member of the cluster. Each node
is a self-contained runtime environment equipped with the necessary services to
support the containers running on it. The essential components of a node include:

• Kubelet: This is an agent that resides on each node in the Kubernetes
cluster. The Kubelet is responsible for maintaining the state of the node and
ensuring that all containers within the node’s pods are running as expected.
It communicates with the control plane to receive commands and report back
the status of its operations

• Kube-proxy: Kube-proxy serves as a network proxy and load balancer for a
node, facilitating network communication to the Pods from network sessions
inside or outside of the cluster. It is responsible for managing network routing,
IP addressing, and enforcing the network rules on the node .

• Container Runtime: This is the underlying software that is in charge of
running containers. Container Runtime abstracts the application from the
machine’s specific hardware characteristics, providing a consistent environ-
ment for the application to run, regardless of the underlying infrastructure.
Examples include Docker, containerd and others.

Taken together, these components form the basic building blocks of a Kubernetes
cluster, each playing a distinct role in delivering a robust, extensible, and highly
available platform for managing containerized applications at scale.

2.4 Kubernetes Objects
Kubernetes uses a set of objects to represent the state of a cluster, define configura-
tions, and set policies. These objects are essentially records of intent–once created,
the Kubernetes system works to ensure that the object exists and matches the
provided specifications. A typical Kubernetes resource object has the following key
elements:

7

Kubernetes

• APIVersion: the versioned schema of this representation of an object.

• Kind: a string value representing the REST resource this object represents.

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.

• ResourceSpec: defined by the user, it describes the desired state of the object.

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The operations allowed on these resources are the typical CRUD (Create, Read,
Update, Delete) actions. Kubernetes system continually checks and ensures that
the current state matches the desired state as defined in the specification.

Pods

Pods are the smallest and simplest objects in Kubernetes. A Pod encapsulates an
application container (or, in some cases, multiple containers), storage resources, a
unique network IP, and options that dictate how the container(s) should run.

Labels and Selectors

Labels are key-value pairs attached to a Kubernetes object and are used to organize
and identify a subset of objects. Selectors allow grouping and selecting sets of
objects with the same label.

Services

In Kubernetes, a Service is an abstract representation of a network service that
exposes an application running on a set of Pods. It provides a stable endpoint
for accessing the application within the cluster or externally, depending on its
ServiceType.

There are different ServiceTypes available in Kubernetes:

• ClusterIP: This is the default ServiceType and is accessible only from within
the cluster. It assigns a virtual IP address (ClusterIP) to the Service, allowing
other components within the cluster to communicate with it.

• NodePort: A NodePort Service exposes the Service on a static port of each
Node’s IP address. This allows external access to the Service by contacting
<NodeIP>:<NodePort>. It is commonly used for development and testing
purposes.

8

Kubernetes

• LoadBalancer: A LoadBalancer Service exposes the Service externally using
a cloud provider’s load balancer. This ServiceType automatically provisions a
load balancer that distributes incoming traffic to the Service across multiple
Pods, ensuring high availability and scalability.

• ExternalName: An ExternalName Service maps the Service to an external
service by specifying its DNS name. This allows local applications to access
the external service seamlessly, without exposing the details of the underlying
implementation.

By using Services in Kubernetes, you can decouple the application from its
underlying infrastructure and provide a consistent and reliable endpoint for accessing
your services. Services play a crucial role in enabling communication between
different components within the cluster and enabling external access to your
applications.

Volumes

A Volume in Kubernetes is essentially a directory, possibly with some data in it,
which is accessible to the containers in a Pod. Kubernetes Volumes enables data to
survive container restarts and shares the data between containers within the Pod.

Namespaces

Namespaces are virtual partitions of a Kubernetes cluster providing scope for
names, useful in environments with many users spread across multiple teams or
projects. Kubernetes creates four namespaces by default:

• kube-system: This namespace houses objects created by the Kubernetes system,
predominantly those associated with the control-plane agents.

• default: This namespace contains objects and resources created by users and
is utilized as the default namespace for operations if no other namespace is
explicitly specified.

• kube-public: As the name suggests, this namespace is accessible to all users,
including those who are not authenticated. It serves special purposes such as
exposing certain cluster-wide information to the public.

• kube-node-lease: This namespace is responsible for maintaining objects that
hold heartbeat data from nodes, contributing to the efficient functioning of
Node lifecycle events and performance.

9

Kubernetes

ReplicaSet and Deployment

ReplicaSets control a set of pods, allowing for scaling the number of pods currently
in execution. Deployments, on the other hand, manage the creation, update, and
deletion of pods, automatically creating a ReplicaSet, which then creates the desired
number of pods.

Example: Deployment in Kubernetes

Let’s take a look at an example of a Deployment in Kubernetes. The following
YAML code defines a Deployment for an Nginx web server:

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : web
7 spec :
8 s e l e c t o r :
9 matchLabels :

10 app : web
11 r e p l i c a s : 5
12 s t r a t e gy :
13 type : Rol l ingUpdate
14 template :
15 metadata :
16 l a b e l s :
17 app : web
18 spec :
19 c on t a i n e r s :
20 − name : nginx
21 image : nginx
22 por t s :
23 − conta ine rPort : 80

DaemonSet

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are
added to or removed from the cluster, Pods are added to or deleted from them
accordingly.

10

Kubernetes

EndpointSlice

An EndpointSlice is an abstraction that contains references to a set of network
endpoints of a service. It provides a more scalable and extensible alternative to the
original and deprecated Endpoint resource.

2.5 Networking in Kubernetes
Kubernetes networking plays a critical role in the overall functioning of a Kubernetes
cluster. It enables communication between different components, ensuring that the
system operates efficiently and coherently.

Pod Networking

Each Pod in a Kubernetes cluster is assigned its own IP address. This allows Pods
to communicate with each other, across nodes in the cluster, without needing to
implement NAT (Network Address Translation). This design aligns with Kubernetes’
philosophy of treating Pods as the primary building blocks of applications.

Service Networking

While Pod networking ensures communication between Pods, Service networking
allows for communication with external clients or between different components of
an application within the cluster. Services, by design, are stable and do not change
their IP addresses, unlike Pods that could be frequently created or destroyed. Thus,
Services provide a reliable way to access applications.

Ingress and Egress Traffic

Ingress refers to the incoming traffic directed towards the Pods in the cluster, while
Egress represents the outgoing traffic from the Pods to other services within the
cluster or to external resources. Kubernetes provides several resources, like the
Ingress Controller and Network Policies, to manage and control these traffic flows.

Ingress Controller

An Ingress Controller is a Kubernetes resource that manages incoming traffic
based on the rules defined in Ingress Resources. It is typically responsible for load
balancing traffic, SSL termination, and name-based virtual hosting.

11

Kubernetes

Network Policies

Network Policies provide a way to control the traffic to and from Pods based on
specified rules. By default, Kubernetes allows all incoming and outgoing traffic
to Pods. Network Policies can be used to restrict this and allow only the desired
traffic.

Container Network Interface (CNI)

Kubernetes uses the Container Network Interface (CNI) for Pod networking. The
CNI is a set of specifications that define how network interfaces should be configured
within containers and how they should interact with each other. Several CNI plugins,
such as Calico, Weave, and Flannel, provide different methods of implementing
network connectivity and different sets of features.

Network Architecture Models

There are different network models that Kubernetes can use. These models are
defined by the CNI plugins used:

• Flat Network Model: In this model, all Pods can communicate with each
other without NAT across nodes. Every Pod gets a unique IP within the
cluster network, and there is no need to map container ports to host ports.
This model simplifies communication and reduces latency.

• Overlay Network Model: In an overlay network, a virtual network is
created on top of the existing network. This virtual network has its own
IP addresses and subnet, isolated from the underlying network. The overlay
network encapsulates the network packets into network packets that the
underlying network can transmit.

Overall, networking in Kubernetes is a complex but critical aspect of the platform.
The networking features ensure efficient communication and manageability within
the cluster, supporting the scale and dynamism of containerized applications in
Kubernetes. It plays a crucial role in maintaining the performance, security, and
resilience of applications running on Kubernetes.

2.6 Security and Roles Access
As a distributed system, Kubernetes needs to address a variety of security concerns.
The complexity arises from different aspects of security, including but not limited
to container security, network security, API security, and the security of the

12

Kubernetes

applications running on top of Kubernetes. Among these, an aspect that requires
special attention is access control, for which Kubernetes primarily uses Role-Based
Access Control (RBAC) .

2.6.1 Role-Based Access Control

RBAC is one of the critical aspects of Kubernetes security. It is an approach to
restrict system access to authorized users. In Kubernetes, RBAC allows fine-grained
control of what operations a user can perform on a given resource, such as pods,
services, and volumes.

Roles in Kubernetes define the permissions to perform operations, such as
read, write, and execute, on a set of resources. RoleBindings, then, link those
roles to specific users or groups. Kubernetes also provides ClusterRoles and
ClusterRoleBindings for defining roles and role bindings that apply to the entire
cluster.

These RBAC mechanisms are vital for defining and enforcing access control
in Kubernetes, ensuring that users have the necessary permissions they need to
perform their tasks, while preventing unauthorized access to sensitive parts of the
system.

2.7 Extending Kubernetes: Operators and Cus-
tom Resources

The capability to extend the Kubernetes API lies at the core of the Kubernetes de-
sign, facilitating robust customization and integration. Central to this extensibility
are Kubernetes Operators and Custom Resources .

2.7.1 Custom Resources

At its core, the Kubernetes API is an endpoint that accepts and handles JSON
objects. A Custom Resource is an extension of the Kubernetes API that allows
you to create your own API objects. Custom Resources work like any other native
Kubernetes object, like pods, deployments, or services.

The Custom Resource Definition (CRD) is used to define Custom Resources.
A CRD provides a schema for the Custom Resource, enabling the API server to
handle its lifecycle. This allows developers to leverage the Kubernetes platform’s
scalability, robustness, and other aspects for their custom applications .

13

Kubernetes

2.7.2 Controllers

A controller in Kubernetes is a control loop that observes the shared state of
the cluster through the apiserver and makes changes attempting to move the
current state towards the desired state. They are the brains behind Kubernetes,
continuously monitoring the state of the cluster and making adjustments to bring
the system to the desired state .

Controllers work based on the principles of reconciliation and level-driven design.
The reconciliation principle ensures that, regardless of the current state of
the system, the controller will try to make changes to bring the system to the
desired state. The level-driven design, on the other hand, allows controllers to be
idempotent, ensuring that each execution, given the same inputs, yields the same
results.

Examples of built-in controllers that ship with Kubernetes include the replica-
tion controller, endpoints controller, namespace controller, and the serviceaccount
controller. However, Kubernetes also allows users to create custom controllers,
similar to custom resources, extending the system’s behavior to suit specific needs.

2.7.3 Operators

Operators build upon the foundational concept of Custom Resources. They are
essentially custom controllers for Custom Resources, providing domain-specific
knowledge of how an application should run and behave in different situations.

An Operator is composed of the following:

• A Custom Resource Definition: This defines the desired state of the application.
Users can modify this desired state at any time, and the Operator will react
to changes accordingly.

• A Custom Controller : This component watches the state of the application
and makes adjustments to the application to bring it to the desired state. The
Controller uses the Kubernetes API to create, update, and delete resources.

• A set of application-specific permissions: These permissions, defined via
(RBAC), allow the Operator to carry out actions on behalf of the user .

Through the combination of these components, Operators offer a powerful and
flexible way to manage complex applications in a Kubernetes-native way. They
simplify application deployment, scaling, and management, allowing developers to
focus more on the application logic and less on the operational details.

14

Kubernetes

2.7.4 Kubebuilder
Kubebuilder, a significant open-source project maintained by the Kubernetes
community, serves as a fast and effective framework for constructing and developing
k8s APIs. It employs a wealth of libraries and tools from the Kubernetes ecosystem,
thereby simplifying the creation process of custom resources and their corresponding
controllers. This eases the management and control of applications [7].

Guided by the principle of declarative application management, Kubebuilder
utilizes the power of APIs to manage application configurations, deployments,
and runtime, mirroring Kubernetes’ philosophy of declarative configuration and
automation.

Adopting the principle of domain-driven design, it houses the logic associ-
ated with a particular API into an individual package. This approach enhances
maintainability as each package encases both the API definition and the related
controller.

Kubebuilder has several command-line interfaces (CLI) to create custom resource
definitions (CRDs), controllers, and their related items. The following are some
key commands:

• Initialize a new project: kubebuilder init –domain example.com –license
apache2 –owner "The Kubernetes authors"

• Create APIs and controllers: kubebuilder create api –group batch
–version v1 –kind CronJob

• Generate CRD manifests: make manifests

• Generate and install CRDs into the Kubernetes cluster: make install

In the context of this thesis, Kubebuilder commands have been utilized to define
and create CRDs, generate CRD manifests, and implement the controllers.

15

Chapter 3

Cisco Network Services
Orchestrator

Cisco Network Services Orchestrator (NSO), developed by Tail-f Systems, is a
multi-vendor network orchestration platform designed to provide comprehensive
lifecycle service automation to transform and digitize networks. It is extensively
used in service provider networks and larger enterprises to automate services across
traditional and virtualized networks [8].

• NSO overview

16

Cisco Network Services Orchestrator

3.1 Introduction
As networks grow in complexity and scale, the need for automation becomes increas-
ingly critical. The requirement for faster service delivery, error-free configurations,
and efficient resource utilization has led to the emergence of orchestration platforms
like Cisco NSO.

NSO aims to deliver high-quality services faster and more easily through network
automation. It uses network-wide, transaction-based processes to deliver services,
ensuring error-free configurations and service consistency. By providing a single,
network-wide interface for all network devices, irrespective of the vendor, it
simplifies the entire process of network configuration and service delivery.

3.2 Features
Cisco NSO offers a wide range of features that enable efficient network orchestration
and automation. Some key features include:

Network Abstraction and Modeling

NSO leverages YANG data modeling language to define the structure and semantics
of network data. YANG provides a standardized way to describe data models and
their relationships, making it easier to define and understand the configuration and
operational data exchanged between NSO and network devices. This abstraction
allows administrators to define services and network configurations in a vendor-
agnostic manner, focusing on intent and desired behavior rather than device-specific
configurations.

Multi-Vendor Device Support

NSO supports a wide variety of network devices from different vendors. It utilizes
standard protocols like NETCONF and RESTConf to communicate with network
devices and configure them. NSO’s multi-vendor support enables organizations
to manage and orchestrate heterogeneous networks with ease, eliminating vendor
lock-in and streamlining network operations.

Service Orchestration

One of the key features of Cisco NSO is its ability to orchestrate services across
multiple network devices. It enables the creation and management of complex
service chains that span multiple network elements, such as routers, switches,
firewalls, and load balancers. NSO provides a high-level abstraction of the network

17

Cisco Network Services Orchestrator

service using YANG data models, allowing administrators to define services in
a vendor-agnostic manner. NSO then translates this high-level intent into device-
specific configurations and orchestrates the necessary changes across the network
devices to provision and activate the service.

Built-in Fault Management

NSO includes built-in fault management capabilities that enable proactive mon-
itoring of network devices and services. It can detect faults and deviations
from desired configurations, triggering appropriate remedial actions. NSO’s fault
management capabilities help ensure the availability and reliability of network
services by detecting and addressing issues in a timely manner.

• NSO Key Features

18

Cisco Network Services Orchestrator

3.3 Architecture
Cisco NSO follows a distributed client-server architecture. The main compo-
nents of the NSO architecture are: [9]

NSO Server

The NSO server is the core component responsible for managing and orchestrating
network services. It stores the network configurations, data models, and service
definitions. The NSO server communicates with network devices using protocols
like NETCONF and RESTConf, and it processes service requests and configuration
changes.

NSO Clients

NSO clients are the interfaces through which administrators interact with the NSO
server. They provide a user-friendly interface, such as a CLI or a web-based GUI,
to manage and configure network services. NSO clients allow administrators to
define service specifications, perform service provisioning, and monitor the status
and health of the network.

Datastore

The NSO datastore is a centralized repository that stores the network configurations,
data models, and service definitions. It provides a consistent view of the network
state and allows for easy retrieval and modification of network data. The datastore
ensures that all components within the NSO architecture have access to the latest
and synchronized network information.

Transaction Manager

The transaction manager handles the transactional operations in NSO. It ensures
that all changes made to the network configurations are consistent and atomic.
The transaction manager keeps track of configuration changes, allows for rollbacks
in case of failures, and maintains a history of configuration revisions.

3.4 Workflow
A typical workflow in Cisco NSO involves several steps to deliver network services
and manage network configurations. The workflow can be summarized as follows:

19

Cisco Network Services Orchestrator

Service Definition

The administrator defines the network service using YANG data models. The
YANG data models describe the desired behavior, configuration parameters, and
relationships between different network elements. The service definition focuses on
intent and abstracts away the device-specific configurations.

Service Provisioning

Once the service is defined, the administrator provisions the service using the NSO
client interface. The NSO client translates the high-level service definition into
device-specific configurations using the appropriate YANG models. NSO then
pushes the configurations to the respective network devices using NETCONF or
RESTConf protocols.

Configuration Deployment

NSO deploys the configurations to the network devices in a transactional manner.
It ensures that all configurations are error-free, consistent, and in line with the
desired service behavior. NSO communicates with network devices, validates
the configurations, and handles any conflicts or errors that may arise during the
deployment process.

Service Activation

Once the configurations are successfully deployed, NSO activates the service on
the network devices. It coordinates the activation process across multiple devices,
ensuring the service is provisioned and activated consistently across the network.

Service Monitoring and Management

NSO continuously monitors the network devices and services to ensure their proper
functioning. It collects operational data, performs health checks, and alerts admin-
istrators in case of any faults or deviations from the desired state. NSO provides a
comprehensive set of management tools to monitor, troubleshoot, and analyze the
network performance.

3.5 Communication with Network Devices
Cisco NSO can communicate with network devices using various protocols, such as
NETCONF and CLI. These communication mechanisms allow NSO to configure
and manage the network devices in a vendor-agnostic manner.

20

Cisco Network Services Orchestrator

3.5.1 NETCONF
NETCONF (Network Configuration Protocol) is a standardized network manage-
ment protocol developed by the IETF. It provides mechanisms to install, manipu-
late, and delete the configuration of network devices. NSO utilizes NETCONF to
communicate with network devices and exchange configuration information.

NETCONF operates over SSH (Secure Shell) and uses XML-based messages for
data exchange. NSO communicates with network devices using the NETCONF
protocol, allowing it to retrieve device configurations, push configuration changes,
and retrieve operational data.

3.5.2 CLI
In addition to NETCONF, NSO also supports the Command Line Interface (CLI)
for communication with network devices. CLI is a text-based interface used to
configure and manage network devices. NSO provides built-in adaptors for various
network device vendors, allowing it to convert high-level data models into device-
specific CLI commands.

Using the CLI mechanism, NSO can interact with network devices that do not
support NETCONF natively. This ensures compatibility with a wide range of
network devices in the ecosystem.

3.6 Interaction with NSO using RESTConf
Cisco NSO also supports RESTConf, a RESTful API based on the principles
of Representational State Transfer (REST). RESTConf provides a lightweight,
HTTP-based interface for configuring network devices and accessing operational
data.

RESTConf uses the YANG data modeling language for data representation
and supports the basic CRUD (Create, Read, Update, Delete) operations through
HTTP verbs. This allows applications to programmatically interact with NSO
using standard HTTP methods.

By supporting RESTConf, NSO provides a modern, web-friendly interface that
enables developers to integrate their applications with NSO and perform operations
such as service provisioning, configuration management, and data retrieval.

3.7 Service Invocation through RESTConf
To invoke services in NSO using RESTConf, clients send HTTP requests to the
NSO server with the appropriate RESTful API endpoints and payload. The payload
typically contains the necessary data and parameters for the service invocation.

21

Cisco Network Services Orchestrator

For example, to create a new network service, a client would send an HTTP
POST request to the corresponding RESTConf endpoint, providing the service
configuration data in the request body. NSO receives the request, validates the
data, and performs the necessary operations to create and activate the service
across the network devices.

Similarly, clients can use RESTConf to retrieve service information, update
configurations, delete services, and perform other operations supported by NSO.

3.8 Conclusion
Cisco Network Services Orchestrator (NSO) is a powerful network orchestration
platform that enables comprehensive lifecycle service automation. It simplifies
the process of network configuration and service delivery by providing a single,
vendor-agnostic interface. NSO’s features, architecture, and workflow empower
organizations to automate services, manage complex network infrastructures, and
ensure efficient resource utilization. With its multi-vendor support and built-in fault
management capabilities, NSO plays a crucial role in transforming and digitizing
networks for modern-day requirements.

22

Chapter 4

Project Sylva

Project Sylva, launched by Linux Foundation Europe in November 2022, represents a
monumental step towards accelerating the cloud adoption of network infrastructures
within the European Union’s privacy, security, and energy efficiency requirements
[10].

4.1 Introduction to Sylva
European carriers (Telefonica, Telecom Italia, Orange, Vodafone, Deutsche Telekom)
and two vendors (Ericsson and Nokia) collaborate to form the Sylva project. The
partners aim to confront the myriad challenges prevalent in the deployment of telco
and edge use cases both within the EU and on a global scale.

Figure 4.1: Sylva’s collaborators

Sylva was conceived in response to the increasing fragmentation in the telco
Cloud ecosystem that had been impeding operational model transformation. By
introducing a homogeneous telco cloud framework, Sylva aspires to foster
interoperability, flexibility, and ease of operation across the industry .

4.2 Main Objectives and Benefits
At the heart of Sylva is the commitment to constructing a cloud-native infrastructure
stack. This solution is designed to support various telco applications (including 5G,
OpenRAN, CDN, and others) and edge use cases. By facilitating the development of

23

Project Sylva

such digital services, Sylva paves the way for new business opportunities, benefiting
telco operators, vendors, and application developers alike

4.3 Technical Aspects of Project Sylva

Project Sylva seeks to address multiple significant technical hurdles, encompassing
aspects such as network performance, the concept of distributed cloud (which
involves multi-cluster Kubernetes and bare metal automation), energy efficiency,
and security (including hardening and compliance). By prioritizing ’openness,’
Sylva promotes a transparent, inclusive approach to technological advancements
[11].

Figure 4.2: Five pillars of Sylva

Network Performance

Sylva implements performance requirements in line with the expectations of 5G
Core and Open RAN Cloud Native Network Functions (CNF). These requirements
include features like SRIOV or Near-Real time OS.

24

Project Sylva

Distributed Cloud

Sylva proposes an architecture that can manage cloud infrastructures ranging
from central locations to far-edge sites. This architecture allows organizations to
deploy and manage applications across multiple geographic locations, bringing
the benefits of cloud computing closer to end-users and enabling low-latency and
high-performance services.

The distributed cloud architecture encompasses a combination of centralized
cloud resources and distributed edge computing nodes. This distributed infrastruc-
ture enables organizations to leverage the scalability, flexibility, and cost-efficiency
of cloud computing while catering to the specific requirements of edge computing
scenarios, such as reduced latency, data sovereignty, and local data processing.

Figure 4.3: Distrubuted Cloud

Declarative Approach

The declarative approach is instrumental in managing a vast number of physical
nodes and Kubernetes clusters. This method involves describing the desired infras-
tructure in a declarative way and using the Kubernetes reconciliation framework
and controllers to manage the lifecycle of the infrastructure components based on
the difference between the current and the declared state. It marks a new phase in
the automation journey of the network management, from the build (day 0), run
(day 1), and operate (day 2) stages, with deployment process, fault management,

25

Project Sylva

and upgrade being natively automated.

Kubernetes Clusters Life Cycle Management

Sylva seeks to define an effective method for managing multiple k8s clusters. The
need for managing a high volume of clusters arises from the following reasons:

• In a distributed cloud, an edge site (for example, a radio site) can face
connectivity issues. In such scenarios, a multi-Kubernetes approach is more
robust than a stretched Kubernetes cluster.

• Due to the lack of hard multitenancy in Kubernetes, some critical CNFs
require a dedicated Kubernetes cluster for high security isolation, and possibly
on isolated hardware.

Security

Given the rise in cyber-attacks against Telco (as evidenced by the GSMA cyber
threat report 2021), state and EU regulations have tightened their expectations.
In response, the Sylva project continuously integrates security requirements

Energy Efficiency

Sylva’s design is mindful of energy consumption control, considering the large
volume of nodes it aims to manage. The project is set to integrate mechanisms
to measure consumption with advanced analysis per microservice, with the goal
of identifying optimized or inefficient CNF under real conditions. Additionally,
Sylva plans to integrate optimization mechanisms based on Kubernetes scaling
capabilities.

Open Source and Standardized API

Adhering to the principles of openness and collaboration, Sylva commits to the
use of open-source and standardized APIs, contributing to the larger ecosystem of
network development.

Modular Design

Sylva’s architecture is intentionally modular. It integrates numerous open-source
components, which can be replaced with alternative projects as necessary in the
future. This flexibility allows Sylva to remain on the cutting edge of technology,
continuously integrating innovative components as they become available.

26

Project Sylva

4.4 Hybrid Deployment and Bare Metal Automa-
tion

Sylva’s hybrid deployment strategy, embedded within the framework of the dis-
tributed cloud, accommodates a wide spectrum of use cases, ranging from leveraging
existing cloud infrastructure, such as VMWare or OpenStack, to implementing
Container-as-a-Service (CaaS) on Bare Metal. This versatility in deployment
architecture renders Sylva highly adaptable, catering to the specific needs and
constraints of different scenarios.

The deployment model selection is crucial and is typically contingent on
several factors, including the nature of the workload, the desired level of isolation,
security concerns, cost-effectiveness, performance requirements, and the presence
(or absence) of an existing cloud infrastructure.

Virtualized Environments

In scenarios where a robust cloud infrastructure is already in place, Sylva can
readily integrate with prevalent virtualized environments such as VMware
or OpenStack. This integration offers several benefits. For one, it leverages the
abstraction and isolation capabilities inherent in virtualization, which can be
beneficial for multi-tenant environments or applications with stringent security
requirements. Additionally, the elasticity of such environments can be a boon for
workloads with significant variability, enabling dynamic resource scaling to match
the application’s demand.

Bare Metal Environments

On the other hand, for use cases that demand maximum performance, such as high-
performance computing (HPC) or big data applications, Sylva supports Container-
as-a-Service (CaaS) on Bare Metal deployments. A bare metal environment
eschews the overhead of virtualization, instead running applications directly on
the server hardware. This approach can yield substantial performance gains,
particularly for I/O intensive or latency-sensitive applications. Moreover, with the
advent of containerization and orchestration platforms like Kubernetes, many of
the benefits of virtualization, such as resource isolation and management, can be
achieved in a bare metal context.

Moreover, Sylva utilizes automation to streamline the deployment and manage-
ment of applications across these diverse environments. Automation in the context
of bare metal refers to the process of automatically provisioning and configuring
physical servers, eliminating the manual intervention traditionally associated with
these tasks. The automation tooling then works to bring the actual state of the

27

Project Sylva

infrastructure in line with this desired state, creating a highly repeatable and
reliable deployment process.

In summary, Sylva’s hybrid deployment strategy for distributed cloud environ-
ments embraces the flexibility and benefits of different models. Its integration
capabilities with existing cloud infrastructures, the performance advantages offered
by bare metal deployments, and the efficiency of automation together contribute
to a versatile, efficient, and powerful platform.

28

Chapter 5

Network Edge Automation
for Bare Metal
Infrastructure

In the realm of distributed multi-cluster environments, managing virtualized
devices has become a routine task. This model combines the benefits of both
virtualized and physical infrastructure, allowing organizations to leverage the
scalability and flexibility of virtual machines (VMs) while also incorporating the
performance advantages and direct hardware access provided by bare metal nodes.
In such environments, the configuration of VMs can be relatively straightforward,
as they can be easily provisioned, migrated, and managed across different clusters.
However, when it comes to bare metal nodes, which are physical servers tightly
coupled to their hardware, the complexity increases.

Unlike virtual machines, physical servers lack the same level of flexibility and
portability. They are inherently tied to their specific hardware components, in-
cluding network interfaces, storage devices, and other physical resources. This
divergence necessitates special attention to factors such as server location, connec-
tivity, and hardware configuration when dealing with bare metal infrastructure.

When managing a distributed multi-cluster environment, the focus often lies
on efficiently configuring and orchestrating virtualized devices within the clusters.
Virtual machines can be created, cloned, and scaled easily, benefiting from the
abstraction layer provided by the hypervisor. The management plane can effectively
handle these tasks, abstracting away the underlying hardware details.

However, the challenge arises when attempting to automate the configuration
and management of bare metal devices that are part of the network edge. These
devices, such as network switches, routers, and load balancers, play a critical role
in connecting the cluster to the external network and providing network services.

29

Network Edge Automation for Bare Metal Infrastructure

Unlike virtual machines, these devices are not as easily provisioned or manipulated.
They require manual configuration and physical access, making them a bottleneck
in the automation process.

To address this challenge, an architecture is needed that can automate the
configuration and management of bare metal devices at the network edge. This
architecture should seamlessly integrate with Kubernetes clusters, leveraging the
existing automation and orchestration capabilities while extending them to the
physical network infrastructure. By automating the provisioning, configuration,
and monitoring of bare metal devices, organizations can achieve consistent and
efficient network management across the entire hybrid environment.

In the following sections, we will explore an architecture specifically designed to
tackle the manual configuration challenges of network edge devices connected to
bare metal nodes within Kubernetes clusters. We will delve into the key components
and mechanisms that enable network edge automation, highlighting the benefits
and use cases of this approach.

5.1 Challenges
In the world of distributed cloud computing, orchestration of virtual machines and
containers is a common task, thanks to the abstraction layer that these technologies
provide. The task becomes more complex when we have to deal with physical
resources, i.e., the bare metal servers, in an edge computing environment. Unlike
virtual machines and containers, these servers are inseparable from their hardware,
which introduces challenges related to server location, connectivity, and hardware
configuration.

5.1.1 The Need for Automation at the Edge
One particular area that has been problematic is the configuration of network
switches connecting to the bare metal nodes in an edge network. These switches
require detailed setup for aspects like network interfaces, VLANs, routing protocols,
and security settings. The configuration process is complex, labor-intensive, and
prone to human error. It often involves repetitive tasks, requiring a high level of
expertise in network administration and a detailed understanding of the network
architecture.

The Role of Edge Networks

Edge networks play a crucial role in distributed cloud computing, primarily in
reducing latency and ensuring quick data processing. They are located closer to

30

Network Edge Automation for Bare Metal Infrastructure

the end-users and often consist of multiple bare metal nodes. Each of these nodes
is connected to a network switch, requiring individual configurations.

5.2 Multi-distributed Cloud Ecosystem

Figure 5.1: Multi-distributed cloud ecosystem

Given the complexity and diversity of resources in an edge computing envi-
ronment, managing such systems effectively poses a significant challenge. These
environments often contain multiple clusters, which could be distributed across
different geographic locations and various infrastructures. These clusters could be
cloud-based or run on bare metal environments, and each comes with its unique
configuration and management requirements.

5.2.1 Management Cluster
To handle such complexity, we often employ a management cluster that acts as
a control center. It coordinates and oversees the operations of all the workload
clusters, including those in the edge sites. Each of these workload clusters, regardless
of its underlying infrastructure, is under the control of the overarching management
cluster.

In the context of the edge network scenario, a single edge site composed of bare
metal nodes and network switches becomes a single workload cluster within the
larger ecosystem. Therefore, we need a system within the management cluster
that allows for remote and autonomous management and configuration of the edge
devices. This leads us to the concept of Kubernetes operators, a solution that
integrates seamlessly with the existing workflows within the management cluster.

31

Network Edge Automation for Bare Metal Infrastructure

5.3 Architecture Proposal

Figure 5.2: General architecture

In order to tackle the complexities inherent to managing the network configura-
tion of bare metal infrastructure at the edge, a solution has been designed that
leverages the capabilities of Kubernetes’ Custom Resource Definitions (CRDs) and
Kubernetes Operators.

CRDs provide a mechanism for defining custom resources, enabling the integra-
tion of arbitrary configurations and states into Kubernetes’ declarative management
approach. On the other hand, Kubernetes Operators, which are custom software
extensions to Kubernetes, encapsulate operational knowledge about specific applica-
tions or infrastructure components, and can automate complex tasks related to the
management of their associated resources. Together, these two mechanisms form
the cornerstone of the proposed architecture, allowing a comprehensive and flexible
solution for network configuration management in line with Sylva’s principles.

The architecture encompasses two pivotal components: the Network Operator
and the Actuator Operators.

The Network Operator, housed within the management cluster, is charged with
comprehending the complex fabric of the network topology. It observes, maintains,
and communicates the network’s desired state to the broader Kubernetes ecosystem,
inclusive of the necessary configurations for the network switches attached to bare
metal nodes. This operator is envisaged as a constant in the ecosystem, serving as
a consistent source of truth for the current network topology.

32

Network Edge Automation for Bare Metal Infrastructure

Conversely, the Actuator Operators are designed to be flexible and interchange-
able, catering to the need for varying operational capabilities across different devices.
Each Actuator Operator is responsible for actualizing the configurations on the
physical devices. It does this by interpreting the desired state relayed by the
Network Operator and converting it into specific actions on the network devices.

An example of such an Actuator Operator is one capable of interfacing with
Cisco’s Network Services Orchestrator (NSO). This particular operator would
interpret the desired network state from the Network Operator, transcribe it into
a format recognized by NSO, and then communicate this information to NSO,
prompting the necessary changes on the relevant devices.

This amalgamation of a standardized, constant Network Operator along with a
diverse set of interchangeable Actuator Operators constitutes a robust, scalable,
and adaptable solution for network configuration automation in hybrid deployment
scenarios.

Figure 5.3: Proposed architecture

5.3.1 Network Operator
The Network Operator serves as the foundational pillar of the proposed architecture,
assuming the responsibility of defining and maintaining the network topology’s
desired state. To achieve this, it leverages an array of specifically tailored CRDs,
each focusing on an essential aspect of the network configuration:

33

Network Edge Automation for Bare Metal Infrastructure

• Fabric: The fabric, in the context of network topology, encapsulates the
collective entities associated with a specific site. Fabric CRD captures these
elements, identifying the actuator in control, and detailing the devices under
its management, including the types and numbers of switches and servers.

• Device: Distinguishing the devices in the fabric is crucial for effective config-
uration management. The Device CRD, which is subdivided into Switch and
Server CRDs, facilitates this identification. Each of these sub-CRDs delineates
individual devices, describing their available interfaces and their unique MAC
addresses.

• Link: This CRD captures the physical point-to-point connections between
the devices. It outlines the device-port pairs, providing a map of how different
devices are interconnected.

• VlanService: As the name suggests, this CRD outlines the intended VLAN
configurations, which include the VLAN identifier, IP subnet, and the device-
port where the VLAN should be set up. A status field is embedded in this
CRD, providing real-time information about the VLAN configuration’s current
state.

These CRDs collectively provide the Network Operator with a detailed and
dynamic understanding of the network. This knowledge is invaluable as it allows the
Network Operator to consistently maintain the desired network state and promptly
respond to any changes or disruptions.

5.3.2 Actuator Operators
While the Network Operator handles the design of the network topology, the
Actuator Operators step in to translate this design into actionable configurations
on the physical devices.

The proposed architecture envisions the development of various Actuator Oper-
ators, each customized to communicate with different network orchestrators, like
Cisco NSO, thus establishing a flexible interface to the physical network devices. To
achieve this, a specialized set of CRDs and corresponding controllers are developed
for each Actuator Operator.

In the case of an NSO-focused operator, for instance, the system encompasses a
custom resource for capturing the current configuration state of the network devices.
In tandem with this, a controller supervises the interactions with NSO, oversee-
ing tasks like configuration management, status monitoring, and synchronization
between the desired and actual states.

The integration of multiple Actuator Operators augments the adaptability of
the system, facilitating the support of various orchestrators and thereby catering to

34

Network Edge Automation for Bare Metal Infrastructure

a broader range of networking environments. This arrangement nurtures an open,
scalable system, reducing reliance on a single orchestrator and hence diminishing
the risk of a single point of failure.

Actuator Vlan Status

In order to ensure smooth communication between the Network and Actuator
domains, a shared resource ‘ActuatorVlanStatus‘ has been introduced. This resource
allows Actuator Operators to communicate the configuration status back to the
Network Operator, indicating whether the intended changes have been correctly
implemented, or if there were any issues. This ensures that the Network Operator
can maintain an accurate view of the network’s state, even when configuration
tasks are delegated to the Actuator Operators.

35

Chapter 6

Implementation of the
Proposed Architecture

This chapter delves into the practical implementation of the previously described
architectural blueprint. We will discuss the programming languages used, the
approach adopted for constructing Kubernetes Operators and CRDs, and how we
have leveraged the toolset provided by Kubernetes to bring our design into fruition.

6.1 Building Blocks: Operators and CRDs

At the heart of our design are Kubernetes Operators and Custom Resource Defini-
tions (CRDs). These two elements form the foundation upon which we have built
our architecture.

6.1.1 Kubernetes Operators

Kubernetes Operators are software extensions to the Kubernetes API that enable
automated creation, configuration, and management of complex applications. They
build upon the fundamental Kubernetes concept of a controller, adding domain-
specific knowledge to create a custom control loop that can manage a specific
application or service. Operators effectively encode operational knowledge into
software, automating tasks that traditionally required manual intervention by a
human operator.

In our system, we have utilized this powerful concept to create two operators:
the Network Operator and the Actuator Operator.

36

Implementation of the Proposed Architecture

The Network Operator

The Network Operator presently takes charge of managing resources that depict
the desired network topology and interconnectivity. This process leans heavily on
the GitOps approach, where the network topology information is supplied by the
network administrator.

In the GitOps approach, infrastructure management takes place through a
version control system, predominantly Git. The network administrator leverages
this system to create and meticulously describe various resources, which encapsulate
the necessary information about the connections between servers and switches.

This method provides a clear, version-controlled history of changes, enhancing
predictability and accountability. Moreover, the it enables easy rollbacks to previous
configurations if necessary, supporting error mitigation and system stability.

The operator watches these resources—Fabric, Device, Link, and VlanSer-
vice—for any changes, reacting accordingly. It orchestrates the necessary actions to
reconcile the current network state with the desired state defined by these resources.
One of its key tasks is to update the status of the VlanService resource based
on the outcome of network configuration operations, which is reported by the
corresponding Actuator Operator through the ActuatorVlanStatus resource.

In the future, as we will discuss in Chapter 8, the Network Operator will have
an enhanced intelligence. It will be able to construct the entire network topology
by interfacing with other components within the management cluster, eliminating
the need for manual description of resources by the network administrator. This
capability will further streamline the management of network services and resources,
making the operator an even more central component in our proposed architecture.

The Actuator Operator

The Actuator Operator, on the other hand, is primarily responsible for overseeing
the process of network configuration execution on a specific fabric. For each fabric,
a specific actuator is defined (for example Cisco NSO). The operator watches for
changes on VlanService resources related to its actuator and acts to reconcile the
actual network configuration with the desired one, communicating directly with
the desired network orchestrator.

When the Actuator Operator recognizes a change in a VlanService resource, it
creates an internal resource representing the desired VLAN configuration and sends
this configuration to the orchestrator that have to enacts the requested changes
on the relevant network devices. The Actuator Operator waits for the outcome of
this operation and updates the ActuatorVlanStatus resource with the result. This
status resource provides a shared state that can be watched by other components
of the system, such as the Network Operator, allowing it to update the status of
the original VlanService resource.

37

Implementation of the Proposed Architecture

This structure and behavior of the Actuator Operator illustrate how Kubernetes
Operators can offload complex operational tasks, freeing network administrators to
focus on defining the desired network services and topology. The Operator takes
care of ensuring that the actual network state matches this desired state, handling
any errors or issues that may arise in the process.

6.1.2 Custom Resource Definitions (CRDs)

Figure 6.1: CRDs implementation

In Kubernetes, a Custom Resource Definition (CRD) is a way of defining our
own object kinds, letting the Kubernetes API server handle the entire lifecycle.
These CRDs essentially extend the Kubernetes API, providing new endpoints that
the Kubernetes API server will handle.

The primary advantage of using CRDs is that they allow us to define our own,
domain-specific objects that behave much like the built-in Kubernetes objects.
This means that we can use kubectl and other Kubernetes tools to manage these
resources, and we can implement custom controllers to automate their behavior.

Network operator CRDs

In the network operator, we defined four principal CRDs:

• Fabric: This CRD is used to represent a network fabric. It includes specifica-
tions about the network devices and the actuator configured to manage these
devices. It carries information like the name of the fabric, the actuator that’s
used to manage it, and a list of devices that form the fabric.

38

Implementation of the Proposed Architecture

1 ---
2 apiVersion : apiextensions .k8s.io/v1
3 kind: CustomResourceDefinition
4 metadata :
5 annotations :
6 controller -gen. kubebuilder .io/ version : v0 .10.0
7 creationTimestamp : null
8 name: fabrics .fabric - operator .tim.k8s.teo
9 spec:

10 group: fabric - operator .tim.k8s.teo
11 names:
12 kind: Fabric
13 listKind : FabricList
14 plural : fabrics
15 singular : fabric
16 scope: Namespaced
17 versions :
18 - name: v1
19 schema :
20 openAPIV3Schema :
21 description : Fabric is the Schema for the fabrics API
22 properties :
23 apiVersion :
24 description : ’APIVersion defines the versioned

schema of this representation
25 of an object .
26 type: string
27 kind:
28 type: string
29 metadata :
30 type: object
31 spec:
32 description : FabricSpec defines the desired state

of Fabric
33 properties :
34 actuator :
35 type: string
36 devices :
37 items:
38 properties :
39 name:
40 type: string
41 type: object
42 type: array
43 id
44 type: string
45 type: object
46 status :

39

Implementation of the Proposed Architecture

47 description : FabricStatus defines the observed
state of Fabric

48 type: object
49 type: object
50 served : true
51 storage : true
52 subresources :
53 status : {}

Listing 6.1: Fabric base CRD
• Device: This CRD is used to represent a network device within a Fabric. The

Device resource allows us to specify detailed device information, such as device
interfaces and their MAC addresses. It can be a switch or a physical server also

1 apiVersion : fabric - operator .tim.k8s.teo/v1
2 kind: Device
3 metadata :
4 labels :
5 app. kubernetes .io/name: device
6 app. kubernetes .io/ instance : device - sample
7 app. kubernetes .io/part -of: fabric - operator
8 app. kubernetes .io/managed -by: kustomize
9 app. kubernetes .io/created -by: fabric - operator

10 name: clarinet4 -leaf2
11 namespace : clarinet4
12 spec:
13 id : Clarinet4 -leaf2
14 fabric :
15 - name : clarinet4
16 ports:
17 - mac : "00:1b :63:84:45: e6"
18 interface : " ethernet1 /1/16"
19 - mac: "00:1b :63:84:45: e7"
20 interface : " ethernet1 /1/10:1"
21 - mac: "b0:4f:13:7c:38: b4"
22 interface : " ethernet1 /1/5:4"
23 - mac: "b0:4f:13:7c:38: c1"
24 interface : " ethernet1 /1/9:1"
25 - mac: "b0:4f:13:7c:38: c2"
26 interface : " ethernet1 /1/9:2"

Listing 6.2: Device example resource
• Link: This CRD represents a link within the network. The resource describes the

network connectivity between devices, providing detailed information about the

40

Implementation of the Proposed Architecture

link endpoints. It contains information such as the name of the link, the devices it
connects, and the specific interfaces involved in the link.

• VlanService: This CRD is used to represent a VLAN service within the network.
It provides a declarative interface to describe the desired network configuration for
a particular VLAN service. The VlanService resource includes the VLAN ID, the
fabric on which it operates, and a list of devices and their interfaces involved in
the VLAN.

1 apiVersion : fabric - operator .tim.k8s.teo/v1
2 kind: VlanService
3 metadata :
4 labels :
5 app. kubernetes .io/name: vlanservice
6 app. kubernetes .io/ instance : vlanservice - sample
7 app. kubernetes .io/part -of: fabric - operator
8 app. kubernetes .io/managed -by: kustomize
9 app. kubernetes .io/created -by: fabric - operator

10 name: vlan100
11 namespace : clarinet4
12 spec:
13 id : vlan100
14 fabric : clarinet4
15 vlanid : "100"
16 ipsubnet : "163.162.196.33/29"
17 devices -ports:
18 - device : clarinet4 -leaf2
19 ports:
20 - "b0:4f:13:7c:38: b4"
21 - "b0:4f:13:7c:38: c1"
22 - "b0:4f:13:7c:38: c2"

Listing 6.3: VlanService example resource

Actuator Operator CRDs

The creation of Custom Resource Definitions (CRDs) for the Actuator Operator
is dictated by the unique requirements of each specific actuator. Taking NSO
(Network Service Orchestrator) as an instance, the CRD crafted mirrors the Net-
work Operator’s VlanService. It provides a description of the current network
configuration of the switch, detailing particulars such as which VLAN is associated
with which devices and interfaces.

41

Implementation of the Proposed Architecture

ActuatorVlanStatus CRD

The ActuatorVlanStatus, on the other hand, represents a shared resource that
spans across the realms of the Actuator and Network Operator. Essentially, it is a
simplistic CRD where the specifications incorporate a reference to the VlanService
of the Network Operator and to the CRD instantiated by the actuator.

Within its status field, it carries the response resulting from the actuator’s API
calls. Consequently, it provides insights about the state of the network configuration
– whether everything is appropriately configured, or if there have been errors on
any of the devices, for example.

Here an example of ActuatorVlanStatus created by the NSO Actuator Operator:
1 apiVersion : nso - operator .tim.k8s.teo/v1
2 kind: ActuatorVlanStatus
3 metadata :
4 creationTimestamp : "2023 -07 -07 T10 :20:45 Z"
5 finalizers :
6 - fabric - operator .tim.k8s.teo/ finalizer
7 generation : 1
8 name: status -100
9 namespace : clarinet4

10 ownerReferences :
11 - apiVersion : nso - operator .tim.k8s.teo/v1
12 blockOwnerDeletion : true
13 controller : true
14 kind: NSOVlanService
15 name: nso -100
16 uid: 13840 b22 -7d7c -4bc5 -969b- b725541fd70d
17 resourceVersion : "118370149"
18 uid: b23ba3b9 -3746 -4433 - b769 -07 b7e7e32106
19 spec:
20 actuator_vlanservice_id : nso -100
21 vlanservice_id : vlan100
22 status :
23 active : true
24 errors : []

Listing 6.4: ActuatorVlanStatus example CR created by NSO operator

6.2 Implementing them with Kubebuilder
The creation of Kubernetes Operators and CRDs was facilitated by Kubebuilder,
a software development kit (SDK) that simplifies the process of building the
foundational aspects of our architecture.

42

Implementation of the Proposed Architecture

Kubebuilder is an open-source tool developed by the Kubernetes SIG API Machinery
group. It provides a framework for building Kubernetes APIs and comes with tools
for building the binaries to run your application.
To start our project, we initialized a new Kubebuilder project with the command:

1 kubebui lder i n i t −−domain your . domain . com −−repo github . com/your/ repo

This command creates the basic project layout, initializes Go modules for depen-
dency management, and generates a Makefile for build tasks.
We then selected Go as our primary programming language due to its wide usage
in cloud-native applications, superior performance, strong static typing, and native
concurrency support.

6.2.1 Creating the CRDs and controller
With the project initialized, we proceeded to create our CRDs. To define a new
API kind, we used the Kubebuilder command:

1 kubebui lder c r e a t e api −−group network −−ve r s i on v1 −−kind Fabric
2 kubebui lder c r e a t e api −−group network −−ve r s i on v1 −−kind Device
3 kubebui lder c r e a t e api −−group network −−ve r s i on v1 −−kind Link

These commands scaffolded out the Go code for the APIs. They created
api/v1/fabrictypes.go,
api/v1/devicetypes.go,
api/v1/linktypes.go, and
where we could define the Spec and Status of our CRDs. If we want to create a
controller also for that CRD we can add the flag –controller=true

1 kubebui lder c r e a t e api −−group network −−ve r s i on v1 −−kind
VlanServ ice −−c o n t r o l l e r=true

This command generates a new file at controllers/vlanservicecontroller.go. This
file contains a Reconcile method, which is called whenever an instance of the
VlanService resource changes. Inside this Reconcile method is where we put our
control logic. Each controller effectively becomes a domain-specific control loop
that runs against the Kubernetes API server.

6.2.2 Defining the CRD Spec and Status
In the types.go files, we defined the Spec and Status for each of our CRDs. The
Spec describes the desired state of the resource, and the Status reflects the observed

43

Implementation of the Proposed Architecture

state. For instance, in fabrictypes.go, we have:

1 type FabricSpec s t r u c t {
2 // S p e c i f i c a t i o n o f the Fabric
3 Actuator s t r i n g j son : " ac tuator "
4 Devices [] DeviceReference j son : " d ev i c e s "
5 }
6

7 type Fabr i cStatus s t r u c t {
8 // Observed s t a t e o f the Fabr ic
9 Condit ions [] metav1 . Condit ion j son : " cond i t i ons , omitempty "

10 }

Once we finished defining our CRDs, we used the make command to generate the
CRD manifests:

1 make man i f e s t s

This command generated the YAML manifests for our CRDs in the config/crd/bases
directory.

6.2.3 Implementing the Controllers
Once the Custom Resource Definitions (CRDs) are defined, it is necessary to
implement the controllers for these resources. In Kubernetes, controllers watch
resources and act upon changes. In other words, they contain the logic needed to
reconcile the current state of the resource to its desired state.
In general, a typical reconcile loop for a controller involves the following steps:

• Observe the state of the system and the desired state.

• Compare the current state with the desired state.

• Compute the operations necessary to make the current state match the desired
state.

• Execute the necessary operations.

• In code, this might look like the following (in a very simplified form):

1 func (r ∗ Reconc i l e r) Reconc i l e (req c t r l . Request) (c t r l . Result , e r r o r)
{

44

Implementation of the Proposed Architecture

2 // Fetch the cur rent s t a t e o f the r e sou r c e
3 currentResource := &v1 . MyResource{}
4 i f e r r := r . Get (context . Background () , req . NamespacedName ,

currentResource) ; e r r != n i l {
5 l og . Error (err , " unable to f e t c h MyResource ")
6 re turn c t r l . Result {} , c l i e n t . IgnoreNotFound (e r r)
7 }// Compute the d e s i r e d s t a t e
8 des i r edResource := currentResource . DeepCopy ()
9 // modify des i r edResource to r e f l e c t d e s i r e d s t a t e

10

11 // Compare and r e c o n c i l e
12 i f ! r e f l e c t . DeepEqual (currentResource . Spec , des i r edResource . Spec) {
13 i f e r r := r . Update (context . Background () , de s i r edResource) ; e r r !=

n i l {
14 l og . Error (err , " unable to update MyResource ")
15 re turn c t r l . Result {} , e r r
16 }
17 }
18

19 re turn c t r l . Result {} , n i l
20 }

In conclusion, Kubebuilder provided us with a powerful and flexible toolkit for
building our Kubernetes Operators and CRDs, simplifying the development process
and allowing us to focus on the specific logic of our network management system.

6.3 Actuator Operator for NSO
As an illustration of an Actuator Operator, we developed one that is compatible
with Cisco Network Services Orchestrator (NSO). NSO, a product of Cisco, is known
for its robust industry-standard capabilities in the management and orchestration
of network services. Its model-driven approach, flexibility, and wide-ranging
compatibility with various network devices make it an excellent candidate for our
network orchestration platform.
The two principal roles of this operator, similar to those described earlier, are
resource management and NSO communication.

6.3.1 Resource Management
The actuator operator reconciles VlanService resources, which represent the desired
configurations on devices, and manages NSOVlanService resources that depict the
current configurations on these devices.
When a VlanService resource belonging to NSO’s domain, i.e., within a fabric with
NSO specified as the "actuator," is created, modified, or deleted, the reconciling

45

Implementation of the Proposed Architecture

Figure 6.2: NSO interactions

controller intercepts the resource and undertakes necessary operations to reflect
these changes on the devices.
The controller reconciles the VlanService resource and upon acquiring it, inspects
the VLAN ID specification. It then checks whether there is already an existing
NSOVlanService resource pertaining to that VLAN.
If this resource already exists, it implies that the desired VLAN is already configured
on some devices in NSO. The controller must then compare the current configuration
with the desired one to discern the actual devices on which the VLAN needs to be
created, deleted, or differently configured (change of ports/interfaces).
Conversely, if the corresponding NSOVlanService resource does not exist, it signifies
the configuration of a new VLAN. The controller must then proceed with the
creation and configuration operations on the appropriate devices.

6.3.2 Communication with NSO

These operations are relayed to NSO, which facilitates direct communication with
the devices. To this end, various RESTCONF APIs have been implemented,
which the controller calls to execute the creation, modification, and deletion of
configurations.
Based on the response from these API calls, the controller determines whether
the operation was successful. It must then report this status within the Actua-
torVlanStatus resource. This resource acts as a communication conduit between
the Network Operator and Actuator domains and serves to report the status of
executed operations. It delineates whether the desired configuration has been
correctly implemented, or if there were any errors, providing comprehensive details
thereof.

46

Implementation of the Proposed Architecture

6.3.3 RESTCONF API Calls
getDeviceConfig

Get device configuration.
1 {
2 " method ": "GET",
3 "url ": "/ device - config ? device ={ device }",
4 " headers ": {
5 " Accept ": " application /yang -data+json"
6 }
7 }

Listing 6.5: getDeviceConfig

getVlan

Get the VLAN with the specified ID for the given device.
1 {
2 " method ": "GET",
3 "url ": "/ vlan /{ vlanId }/{ device }",
4 " headers ": {
5 " Accept ": " application /yang -data+json"
6 }
7 }

Listing 6.6: getVlan

getVlanConfiguration

Get the VLAN configuration with the specified ID for the given device.
1 {
2 " method ": "GET",
3 "url ": "/vlan - configuration /{ vlanId }/{ device }",
4 " headers ": {
5 " Accept ": " application /yang -data+json"
6 }
7 }

Listing 6.7: getVlanConfiguration

createVlan

Create a new VLAN.

47

Implementation of the Proposed Architecture

1 {
2 " method ": "POST",
3 "url ": "/ create -vlan",
4 " headers ": {
5 "Content -Type ": " application /yang -data+json"
6 },
7 "body ": {
8 " vlanId ": "{ vlanId }",
9 " device ": "{ device }"

10 }
11 }

Listing 6.8: createVlan

createVlanConfiguration

Create a new VLAN configuration.
1 {
2 " method ": "POST",
3 "url ": "/ create -vlan - configuration ",
4 " headers ": {
5 "Content -Type ": " application /yang -data+json"
6 },
7 "body ": {
8 " vlanId ": "{ vlanId }",
9 " device ": "{ device }",

10 " ipAddress ": "{ ipAddress }"
11 }
12 }

Listing 6.9: createVlanConfiguration

modifyVlanConfiguration

Modify the VLAN configuration with the specified ID for the given device.
1 {
2 " method ": "PATCH",
3 "url ": "/ modify -vlan - configuration /{ vlanId }/{ device }",
4 " headers ": {
5 "Content -Type ": " application /yang -data+json"
6 },
7 "body ": {
8 " vlanId ": "{ vlanId }",
9 " device ": "{ device }",

10 " ipAddress ": "{ ipAddress }",
11 " interfaces ": [" interface1 ", " interface2 "]

48

Implementation of the Proposed Architecture

12 }
13 }

Listing 6.10: modifyVlanConfiguration

deleteVlan

Delete the VLAN with the specified ID for the given device.
1 {
2 " method ": " DELETE ",
3 "url ": "/ delete -vlan /{ vlanId }/{ device }",
4 " headers ": {
5 " Accept ": " application /yang -data+json"
6 }
7 }

Listing 6.11: deleteVlan

deleteVlanConfiguration

Delete the VLAN configuration with the specified ID for the given device.
1 {
2 " method ": " DELETE ",
3 "url ": "/ delete -vlan - configuration /{ vlanId }/{ device }",
4 " headers ": {
5 " Accept ": " application /yang -data+json"
6 }
7 }

Listing 6.12: deleteVlanConfiguration

6.3.4 Role Base Access Control integration
Resource management in the Actuator Operator for NSO involves handling various
resources for both reading and modifying/writing purposes. To ensure secure access
control, RBAC (Role-Based Access Control) is utilized in Kubernetes to define and
manage permissions for different roles within the system.
RBAC in Kubernetes allows for the following key functionalities:

• Role: Defines a set of permissions associated with specific responsibilities or
activities.

• Role Binding: Associates roles with users or groups, assigning permissions to
specific entities.

49

Implementation of the Proposed Architecture

• Rules: Specifies the permissions and restrictions for particular actions or
operations.

In the context of the Actuator Operator, RBAC permissions can be integrated
into the controller using the ‘//+kubebuilder:rbac‘ annotation. This annotation
specifies the RBAC permissions for the resources in the controller.
To integrate RBAC permissions for resource management in the Actuator Operator’s
controller, add the following annotation before the controller definition:

1 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
nsov l an s e rv i c e s , verbs=get ; l i s t ; watch ; c r e a t e ; update ; patch ; d e l e t e

In the annotation above, ‘nsooperator.tim.k8s.teo‘ represents the API group, and
‘nsovlanservices‘ represents the resource name. The specified verbs, such as ‘get‘,
‘list‘, ‘watch‘, ‘create‘, ‘update‘, ‘patch‘, and ‘delete‘, define the allowed operations
on the resource.
By adding this annotation, Kubebuilder will automatically generate the RBAC
definitions when running the ‘make manifests‘ command. This simplifies the RBAC
management process within the Actuator Operator.
Ensure that you customize the annotation with the appropriate API group and
resource name relevant to your use case.
By integrating RBAC permissions using the ‘//+kubebuilder:rbac‘ annotation,
you can ensure secure and granular authorization management for the resources
managed by the Actuator Operator.

Listing 6.13: RBAC into NsoController
1 kubebui lder : rbac : groups=fa b r i c −operator . tim . k8s . teo , r e s o u r c e s=

v l a n s e r v i c e s , verbs=get ; l i s t ; watch ;
2

3 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
nsov l an s e rv i c e s , verbs=get ; l i s t ; watch ; c r e a t e ; update ; patch ; d e l e t e

4 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
n s o v l a n s e r v i c e s / status , verbs=get ; l i s t ; watch ; c r e a t e ; update ; patch ;
d e l e t e

5 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
n s o v l a n s e r v i c e s / f i n a l i z e r s , verbs=update

6

7 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
ac tuato rv l ans ta tus , verbs=get ; l i s t ; watch ; c r e a t e ; update ; patch ; d e l e t e

8 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
ac tua to rv l an s t a tu s / status , verbs=get ; l i s t ; watch ; c r e a t e ; update ; patch
; d e l e t e

9 kubebui lder : rbac : groups=nso−operator . tim . k8s . teo , r e s o u r c e s=
ac tua to rv l an s t a tu s / f i n a l i z e r s , verbs=update

50

Implementation of the Proposed Architecture

6.4 Implementation Workflow
In this section, we detail the workflow of the system, covering three main use-cases:
Creating a new VlanService resource, modifying an existing VlanService resource,
and deleting a VlanService resource. We’ll explore how the Actuator Operator and
Network Operator work together to apply these changes and maintain the desired
network configuration in our edge cluster.

Figure 6.3: Workflow

6.4.1 Creating a New VlanService
In this scenario, we wish to establish a new VLAN within the network. This
process starts with the application of a new VlanService custom resource (CR)
in the cluster. The Actuator Operator, specifically the one corresponding to the
Fabric (in our case, NSO), will reconcile this new CR.

Listing 6.14: Vlanservice NSO Riconciliation•
1 {
2 // VlanServ ice Reconc i l e r
3 v l a n s e r v i c e := &f a b r i c o p e r a t o r v 1 . VlanServ ice {}
4 i f e r r := r . C l i en t . Get (ctx , req . NamespacedName , v l a n s e r v i c e) ;

e r r != n i l {
5 re turn c t r l . Result {} , c l i e n t . IgnoreNotFound (e r r)
6 }
7

8 // Fabric a s s o c i a t e d to the VlanServ ice

51

Implementation of the Proposed Architecture

9 f a b r i c := &f a b r i c o p e r a t o r v 1 . Fabr ic {}
10 i f e r r := r . C l i en t . Get (ctx , c l i e n t . ObjectKey{
11 Namespace : req . Namespace ,
12 Name : v l a n s e r v i c e . Spec . Fabric ,
13 } , f a b r i c) ; e r r != n i l {
14 re turn c t r l . Result {} , c l i e n t . IgnoreNotFound (e r r)
15 }
16

17 //Checks i f the actuator o f the Fabr ic correspond to NSO
18 i f f a b r i c . Spec . Actuator != "NSO" {
19 l og . In f o ("−−−−−−−−−−Skipping r e c o n c i l i a t i o n −−−−−−−−")
20 re turn c t r l . Result {} , n i l
21 }
22 }
23 }

On encountering the new VlanService CR, the Actuator Operator analyses the
specifications and makes two API calls to NSO:

• createVlan - A POST request to /create-vlan creates a new VLAN service
in NSO for a specific device.

• createVlanConfiguration - A POST request to
/create-vlan-configuration specifies the details of the newly cre-
ated VLAN service, such as IP subnet and the MAC addresses of the
interfaces for that device.

Upon successful completion of these operations, the controller creates an ‘nso-
vlanservice‘ CR reflecting the current (now effective) device configuration. If
everything went as planned, this configuration matches the desired state defined in
the original VlanService CR. Furthermore, an ‘ActuatorVlanStatus‘ CR is created,
which reports the status of the operation, such as whether the configuration was
successful, if there were any errors, and the devices on which those errors occurred.
Once the ‘ActuatorVlanStatus‘ CR is created, the Network Operator reconciles it,
inspecting the status and updating the original VlanService CR accordingly. This
way, we can always know if the desired configuration was successfully applied.

6.4.2 Modifying a VlanService
In this scenario, we need to alter the existing configuration of a VlanService. This
could include changes such as adding or removing VLAN from a device, modifying
the interfaces on a device, changing the IP subnet, etc.
The Actuator Operator reconciling the VlanService resource checks for differences
between the current configuration (as described by the ‘nso-vlanservice‘ CR) and

52

Implementation of the Proposed Architecture

the desired configuration (as described by the ‘vlanservice‘ CR). Based on these
differences, the appropriate API calls to NSO are constructed:

• modifyVlanConfiguration - A PATCH request to /modify-vlan-configura
tion/{vlanId}/{device} alters the interfaces used by the various devices or
the ipsubnet.

• createVlan and createVlanConfiguration - These requests are made if a
VLAN needs to be added to a new device.

• deleteVlan - A DELETE request to /delete-vlan/{vlanId}/{device} re-
moves the VLAN from a specific device.

Once the operations are complete, the Actuator Operator updates the ‘Actua-
torVlanStatus‘ CR to reflect the results. The Network Operator then reconciles
this resource, updating the status of the original VlanService CR accordingly.

6.4.3 Deleting a VlanService
If we want to remove a VLAN from all devices, we delete the corresponding
VlanService CR. The appropriate Actuator Operator retrieves the information
regarding the VLAN and the devices on which it was configured and sends a
‘deleteVlan‘ API call to NSO for each of them.
If these operations are successful, the corresponding ‘nso-vlanservice‘ and ‘Actua-
torVlanStatus‘ CRs are deleted. This deletion is performed safely using Kubernetes’
"finalizers".

Finalizers in Kubernetes

Finalizers are keys with a corresponding value that Kubernetes checks before
a resource is deleted. They enable synchronous cleanup before the Kubernetes
garbage collector deletes the resource. When a deletion request is made, the
resource is marked as "terminating" and the deletion timestamp is set. However,
the resource is not deleted from the etcd database until all finalizers are removed.
In our context, finalizers are utilized to ensure the safe deletion of our custom
resources. The controller, built with Kubebuilder, adds a finalizer to the custom
resource. Upon a deletion request, it handles the deletion of the ‘nso-vlanservice‘
and ‘ActuatorVlanStatus‘ CRs and then removes the finalizer. Consequently,
Kubernetes can safely delete the original VlanService CR.

53

Chapter 7

Simulation and Result

7.1 Benchmark Hardware Specifications
This section presents a detailed overview of the hardware setup used to conduct
the benchmark tests.

Kubernetes Cluster

The cluster used for the deployment of the Custom Resource Definitions (CRDs)
and the controller is composed of 4 Virtual Machines (VMs): one serving as the
control plane and the other three as worker nodes. These VMs are hosted on a
VSphere instance. The specifications of this setup are as follows:

• Kubernetes version: 1.22.8

• Ubuntu version: 20.04

• Number of CPUs per VM: 2

• Memory per VM: 8 GB

• Hard disk per VM: 50 GB

Switch

The network switch used in the setup is a Dell EMC PowerSwitch S5232F-ON.
This is a multi-layer switch equipped with 32x 100 GbE QSFP28 ports and 2x 10
GbE SFP+ ports. In this case, they are utilized as 4x 10 GbE or 4x 25 GbE ports,
employing breakout cables.

54

Simulation and Result

Servers

Three servers of the same model, all connected through the VLAN, form part of
the network setup. These are Dell PowerEdge R640 servers, each with the following
specifications:

• CPU: Intel(R) Xeon(R) Gold 6252N, operating at 2.30 GHz, with 24 cores

• Storage: 2x 1.2 TB SAS 10k

• RAM: 384 GB

• Network Interfaces: 4x 10GbE and 2x 25GbE

These configurations provide the underlying platform for executing the benchmark
tests and evaluating the performance of our Kubernetes operators.

7.2 Benchmark Results
The benchmark tests were designed to analyze the elapsed time between the
creation/modification/deletion of a VlanService CR and the moment the status
of the configuration operations is reported back on this CR. In other words, this
signifies the time taken to set the configuration on the devices and save their status.
The tests were structured to showcase the actual time taken by one operator (the
Network Operator) in comparison to the other (NSO Actuator, in this case).
Table 7.1 showcases the timing results. The "Total" column represents the overall
time taken from CR modification to status report, while the "Actuator Operator"
column indicates the time consumed by the NSO Actuator to execute its tasks.
The "Network Operator" column shows the time spent by the Network Operator.

Actuator Operator Network Operator Total
Vlan deleted 1450 ms 150 ms 1600 ms
Vlan updated 2290 ms 510 ms 2800 ms
Vlan created 4174 ms 70 ms 4244 ms

Table 7.1: Operators response time

NSO APIs response time

In the subsequent section of the benchmark tests, the response time of the various
NSO API calls was analyzed. The aim was to understand how much time the
Actuator Operator spent communicating with NSO.

55

Simulation and Result

Table 7.1 represents the average response time for various NSO RESTConf API
operations.

Figure 7.1: NSO API calls response time

These results offer valuable insights into the performance of the Network and
Actuator operators, as well as the response efficiency of NSO’s RESTConf APIs in
the given setup.

7.3 Conclusion
The benchmarking presented in this chapter provides preliminary insight into the
performance of the Network and Actuator Operators. It specifically addresses the
time taken for key operations, such as the creation, modification, and deletion of a
VlanService CR, and the time required for setting and updating configurations on
the devices.

56

Simulation and Result

As demonstrated in Table 7.1, the Network Operator’s operations take a small
fraction of the total response time, indicating its relative efficiency. Moreover, the
analysis of the NSO RESTConf API response times, summarized in Figure 7.1,
helped quantify the communication delay between the Actuator Operator and NSO,
with results showing relatively efficient interaction between the two.
However, it is crucial to understand that the findings from these benchmark tests
are intimately tied to the specific hardware used during the testing phase. The
computational capabilities and characteristics of the servers, virtual machines,
and network devices directly influence these performance outcomes. In cloud
environments, the performance of a system is often tightly coupled with the
capabilities of the nodes in use. Therefore, the observed performance characteristics
might significantly vary if the system was to be deployed on different hardware or
within a different cloud infrastructure.
This realization underscores the importance of understanding the hardware-
dependency of such benchmarks. While they offer valuable insights into the
performance of our system in the specific testing environment, they might not fully
represent the system’s performance in a different context. This implies that any
potential scale-up or migration to a different hardware or cloud environment would
necessitate a new series of benchmarks to accurately evaluate and optimize the
system’s performance in the new setting.

57

Chapter 8

Future Perspectives

In this chapter, we explore the future prospects of the thesis topic, considering the
integration of ClusterAPI (CAPI) and Metal3 components and their interaction
with the intelligent network operator. We envision the network operator becoming
more intelligent, capable of recognizing the entire network topology by leveraging
the functionalities provided by CAPI and Metal3. This integration is crucial in
the context of an edge network cluster composed of bare metal nodes, managed
within a larger ecosystem where a management cluster creates and oversees various
workloads.

8.1 Scenario Overview
The scenario involves a site consisting of an edge network cluster comprised of bare
metal nodes. This cluster serves as a workload cluster within a larger ecosystem
where the management cluster, already integrated with Metal3 and ClusterAPI
components, creates and manages various workloads.

8.2 ClusterAPI
ClusterAPI is an open-source Kubernetes project that provides declarative APIs
and tools for creating, configuring, and managing Kubernetes clusters. Its primary
goal is to simplify cluster lifecycle management and enable infrastructure providers
to offer Kubernetes as a service. [12]

8.2.1 Key Components
ClusterAPI is composed of several key components:

58

Future Perspectives

• Cluster API Provider: This component extends the Cluster API to manage
clusters on a specific infrastructure platform. It provides provider-specific
implementations to interact with underlying infrastructure resources.

• Cluster Controller: The Cluster Controller manages the lifecycle of cluster
resources. It handles operations such as creating, scaling, and deleting clusters,
ensuring that the desired state of the cluster is maintained.

• Bootstrap Provider: The Bootstrap Provider handles the initialization and
bootstrapping of nodes within the cluster. It provisions necessary resources
and configures the cluster nodes to join the desired Kubernetes cluster.

• Infrastructure Provider: The Infrastructure Provider interacts with the un-
derlying infrastructure to provision and manage resources required for the
cluster. This includes virtual machines or bare metal servers, depending on
the infrastructure being used.

8.2.2 Deploying a cluster
The typical workflow for deploying a cluster using CAPI involves the following
steps: [13]

1. Infrastructure Provisioning

The first step in deploying a cluster is provisioning the necessary infrastructure.
This typically involves creating virtual machines or bare metal servers that will
serve as the worker nodes for the cluster. ClusterAPI provides infrastructure
providers that interface with the underlying infrastructure to create and manage
these resources. The infrastructure provider takes care of provisioning the required
virtual machines or bare metal servers based on the cluster configuration.

2. Cluster Configuration

Once the infrastructure is provisioned, the next step is to configure the cluster itself.
This includes specifying parameters such as the number of control plane nodes,
worker node specifications, networking details, and any additional customizations
required for the cluster. The cluster configuration is typically defined using YAML
manifests or custom resources provided by ClusterAPI.

3. Bootstrap Process

After the cluster configuration is defined, the bootstrap process begins. The
bootstrap provider is responsible for initializing and bootstrapping the control

59

Future Perspectives

plane nodes of the cluster. It provisions the necessary resources and configures the
control plane nodes to join the desired Kubernetes cluster. This process ensures
that the control plane is properly set up and ready to manage the cluster.

4. Worker Node Joining

Once the control plane nodes are bootstrapped, the worker nodes need to join the
cluster. The worker nodes, whether virtual machines or bare metal servers, need
to be configured with the necessary Kubernetes components to function as part
of the cluster. ClusterAPI handles the process of joining the worker nodes to the
cluster, ensuring they are properly configured and able to communicate with the
control plane.

5. Cluster Validation and Health Checks

After the worker nodes join the cluster, ClusterAPI performs validation and health
checks to ensure the cluster is functioning correctly. It verifies that all nodes are
properly connected, the control plane components are running, and the worker
nodes are ready to accept workloads. If any issues are detected, ClusterAPI provides
diagnostics and recommendations to resolve the problems.
By following this workflow, administrators can easily deploy and manage Kubernetes
clusters using ClusterAPI. The declarative approach simplifies cluster lifecycle
management, ensures consistency across deployments, and allows for seamless
scaling and upgrading of clusters.

8.3 Metal3
Metal3 is an open-source project that provides management capabilities for bare
metal infrastructure in Kubernetes clusters. It enables administrators to treat
physical servers as disposable resources, allowing them to be seamlessly integrated
into Kubernetes deployments. Metal3 abstracts away the complexities of managing
bare metal hardware, simplifying the process of provisioning, configuring, and
maintaining these resources within a Kubernetes environment. [14]
Metal3 leverages the Kubernetes control plane and various components to manage
bare metal infrastructure. It operates based on the concept of Custom Resources
(CRs), which allow administrators to define and manage bare metal hosts as Kuber-
netes objects. Metal3 combines the flexibility of Kubernetes with the capabilities
required for managing physical hardware, providing a unified and scalable approach
to bare metal infrastructure management.

60

Future Perspectives

8.3.1 Major Components of Metal3
Metal3 comprises several major components that work together to manage and
operate bare metal infrastructure. These components include:

Figure 8.1: BareMetalHost operator

Bare Metal Operator

The Bare Metal Operator is a core component of Metal3 responsible for the lifecycle
management of bare metal hosts. It interacts with the underlying infrastructure
and orchestrates the provisioning, registration, and maintenance of bare metal
hosts within the Kubernetes cluster. The Bare Metal Operator ensures that the
hosts are properly discovered, provisioned with the necessary operating system and
software, and integrated as worker nodes within the cluster. It monitors the health
and status of the hosts, performs automated repairs and updates, and manages the
decommissioning of hosts when necessary.

Image and Metadata Operator

The Image and Metadata Operator is responsible for managing machine images and
metadata used for provisioning bare metal hosts. It allows administrators to define
machine images with specific operating systems and configurations. These machine
images are stored and made accessible to the provisioning process. The Image and

61

Future Perspectives

Metadata Operator also manages metadata related to the hosts, including network
configuration, storage settings, and other custom attributes. It ensures that the
necessary image and metadata are available during the provisioning process to
enable the successful configuration of the bare metal hosts.

Machine API

The Machine API is a Kubernetes API extension provided by Metal3. It in-
troduces the BareMetalHost Custom Resource Definition (CRD), which allows
administrators to define and manage bare metal hosts as Kubernetes objects. The
BareMetalHost CRD specifies the desired configuration for each host, including
hardware characteristics, network settings, storage options, and other custom at-
tributes. Administrators can create, update, and delete BareMetalHost objects
using standard Kubernetes API operations. The Machine API provides a declara-
tive approach to managing bare metal hosts, ensuring consistency and enabling
easy integration with other Kubernetes resources and tooling.

BareMetalHost Custom Resource Definition (CRD)

The BareMetalHost CRD defines the specifications and status of a bare metal host
within the Kubernetes cluster. It includes the following key fields:

• Spec: The Spec field specifies the desired configuration of the bare metal host.
It includes information such as the hardware profile, network settings, storage
configuration, and any custom attributes required for the specific workload.
Administrators define the desired configuration by setting values for these
fields.

• Status: The Status field provides information about the current state of the
bare metal host. It includes details such as the provisioning status, operational
status, hardware inventory, and any error conditions. The Bare Metal Operator
updates the Status field as it progresses through the lifecycle management
tasks, providing visibility into the host’s current state.

The BareMetalHost CRD allows administrators to define and manage the desired
configuration of bare metal hosts, while the Bare Metal Operator ensures that the
actual state of the hosts matches the desired state defined in the BareMetalHost
objects.

8.3.2 Provisioning Process
The provisioning process in Metal3 involves several steps: [15]

62

Future Perspectives

1. Machine Definition

Administrators define the desired configuration for each bare metal host by creating
a machine object using the Machine API. The machine object contains specifications
for hardware characteristics, network settings, and other custom configurations.

2. Bare Metal Host Provisioning

Metal3 provisions the bare metal host based on the specifications defined in the
machine object. This includes tasks such as network configuration, storage setup,
and applying any custom configurations specified in the machine object.

3. Verification and Integration

Once the provisioning process is complete, Metal3 verifies the status of the provi-
sioned host to ensure that the desired configuration has been applied successfully.
It checks network connectivity, storage availability, and any other defined attributes
to validate that the host is ready for use. The provisioned host is then integrated
into the Kubernetes cluster as a worker node, enabling it to participate in the
cluster’s workload distribution.

8.3.3 Retrieving Information about the Physical Host
Metal3 provides capabilities to retrieve information about the physical host. The
following specifications can typically be retrieved:

• CPU Details: Metal3 can retrieve information about the CPU, including the
number of cores, clock speed, architecture, and vendor.

• Memory Configuration: Information about the memory configuration, such as
the total memory capacity and memory speed, can be retrieved.

• Network Interfaces: Metal3 can detect and provide details about the installed
network interfaces on the physical host, including MAC addresses, link speeds,
and supported features.

• Storage Devices: Information about the storage devices present on the host,
such as hard drives or SSDs, can be retrieved, including the device model,
capacity, and connection type.

• BIOS/Firmware: Metal3 can gather details about the host’s BIOS or firmware
version, vendor, and other relevant information.

63

Future Perspectives

Figure 8.2: metal3 inspection workflow

By retrieving this information, administrators can gain insights into the physical
host’s hardware capabilities, which can be used for workload placement, resource
allocation, and performance optimization within the Kubernetes cluster.

8.3.4 Conclusion

Metal3 provides a powerful solution for managing bare metal infrastructure within
Kubernetes clusters. By abstracting away the complexities of physical hardware
management, Metal3 enables administrators to seamlessly integrate bare metal
resources into their Kubernetes deployments. The combination of Metal3’s major
components, including the Bare Metal Operator, Image and Metadata Operator,
and Machine API, facilitates efficient provisioning and management of bare metal
hosts. Additionally, Metal3’s ability to retrieve information about the physical
host’s specifications further enhances the flexibility and optimization of workload
placement within the Kubernetes cluster.

64

Future Perspectives

With Metal3, administrators can leverage bare metal infrastructure for their Kuber-
netes clusters, benefiting from the performance and flexibility offered by physical
servers.

8.4 Integration of ClusterAPI and Metal3
The integration of ClusterAPI and Metal3 provides a powerful combination for
managing Kubernetes clusters on bare metal infrastructure. By leveraging Clus-
terAPI’s capabilities for cluster lifecycle management and Metal3’s functionalities
for bare metal provisioning, administrators can seamlessly deploy and manage
Kubernetes clusters on bare metal servers.
In the context of the intelligent network operator developed in this thesis, integrating
with ClusterAPI and Metal3 becomes crucial. The intelligent network operator aims
to autonomously discover and understand the network topology, eliminating the
need for manual configuration by administrators. By interacting with ClusterAPI’s
Metal3 provider, a key point of convergence between these components emerges—the
IP Address Management (IPAM) functionality.

8.4.1 IP Address Management (IPAM)
In the context of the integration between Metal3, ClusterAPI, and the intelligent
network operator, IP Address Management (IPAM) plays a crucial role. IPAM
is responsible for efficiently allocating and managing IP addresses within the
Kubernetes clusters deployed on bare metal infrastructure. It ensures that each
bare metal host within the cluster is assigned a unique and routable IP address.

Figure 8.3: IPAM workflow

The IPAM process involves the following steps:

65

Future Perspectives

1. IP Address Reservation

When a bare metal host is provisioned or discovered by Metal3, the IPAM component
reserves an available IP address from the designated IP address pool. This pool is
managed and configured by the IPAM system, which can be part of ClusterAPI’s
Metal3 provider.

2. IP Address Request

Once a bare metal host is assigned to a cluster and the IP address is reserved, the
host requests the reserved IP address from the IPAM component. This request
typically includes the host’s unique identifier, such as its MAC address, as well as
any necessary metadata.

3. IP Address Assignment

The IPAM component validates the host’s request and assigns the reserved IP
address to the host. It updates the host’s IP configuration to include the assigned
IP address, subnet mask, gateway, and any other relevant network configuration
parameters.

4. Network Configuration

The assigned IP address is then applied to the bare metal host’s network interface,
enabling it to communicate within the network. The host’s networking stack is
configured with the assigned IP address, ensuring proper connectivity and routing
within the cluster.

5. IP Address Release

When a bare metal host is decommissioned or no longer part of the cluster, the
IPAM component releases the assigned IP address, making it available for future
allocation. This step ensures efficient utilization of IP addresses within the cluster.
By leveraging the IPAM functionality provided by ClusterAPI’s Metal3 provider,
the intelligent network operator can interact with the IPAM system to retrieve
information about assigned IP addresses and associated hosts. This allows the
network operator to autonomously discover and map the network topology based
on the IP addressing information provided by the IPAM component.
In summary, IPAM plays a critical role in managing IP address allocation and
configuration within Kubernetes clusters deployed on bare metal infrastructure.
By integrating with the IPAM system, the intelligent network operator can gain
insights into the network topology and dynamically adapt its configuration based on
the assigned IP addresses. This integration enables more efficient and autonomous

66

Future Perspectives

network management within the cluster, enhancing overall network performance
and flexibility.

8.5 Conclusion

Figure 8.4: Smart Network Operator

In conclusion, the integration of ClusterAPI and Metal3, along with the intelligent
network operator, opens up new possibilities for automated and intelligent network
management in Kubernetes clusters deployed on bare metal infrastructure. By
leveraging ClusterAPI’s cluster lifecycle management capabilities, Metal3’s bare
metal provisioning functionalities, and the autonomous network discovery and
configuration of the intelligent network operator, administrators can achieve more
efficient and scalable network management. This integration lays the foundation
for future advancements in edge network clusters, where the network becomes
self-adaptive, self-healing, and able to optimize performance based on real-time
insights gained from the underlying infrastructure.

8.5.1 Next Steps
In the future, further research and development can focus on enhancing the intel-
ligent network operator’s capabilities by integrating with additional components
and technologies. Some potential areas of exploration include:

• Integration with network monitoring and telemetry systems to enable real-time
network analysis and performance optimization.

67

Future Perspectives

• Incorporation of machine learning algorithms to enable predictive network
management and proactive fault detection.

By continuously improving the network operator and exploring new avenues for
integration and enhancement, administrators can achieve highly efficient and
autonomous network management within Kubernetes clusters deployed on bare
metal infrastructure.

8.5.2 Final Remarks
The future of network management in Kubernetes clusters is promising, particularly
in the context of edge computing. As edge deployments continue to grow, the need
for intelligent and automated network management becomes increasingly crucial.
The integration of ClusterAPI, Metal3, and the smart network operator provides a
solid foundation for building advanced network management solutions tailored to
the unique requirements of edge environments.

68

Chapter 9

Conclusion

In the rapidly evolving landscape of cloud-native technologies, this thesis addressed
a pertinent problem area: the automation of network configuration in bare metal
infrastructures at the network’s edge. This pursuit was set against the backdrop of
rigorous standards defined by telecommunications contexts and regulatory require-
ments, with the solution designed to be compatible with the principles of the Sylva
project.
The primary challenge that this thesis tackled was the traditionally manual, labor-
intensive, and error-prone process of network switch configuration in bare metal
environments. The proposed solution was a comprehensive approach that leveraged
Kubernetes operators to automate this task, aiming to improve reliability, efficiency,
and ease of management.
The proposed architecture centered on two critical components: the Network
Operator and the Actuator Operators. The Network Operator, through a set of
specially designed Custom Resource Definitions (CRDs), managed the resources
defining network topology and connectivity. On the other hand, the Actuator
Operators acted as intermediaries, executing the network configurations on the
fabric and facilitating the interaction with the actual network devices.
The operators were implemented using Kubebuilder, an open-source Software
Development Kit (SDK), with Go as the primary programming language. An
exemplary outcome of this implementation was the creation of an Actuator Operator
compatible with Cisco Network Services Orchestrator (NSO), a widely used network
orchestrator, demonstrating the practical applicability and flexibility of the system.
Looking forward, the future directions for this work involve significant advancements
in the design and capabilities of the Network Operator. Future developments aim
to enable the Network Operator to autonomously build the network topology by
interfacing with other components present within the management cluster. Key
amongst these are ClusterApi and Metal3, which provide critical information about
the cluster’s resources and bare metal nodes, respectively.

69

Conclusion

In conclusion, this thesis successfully showcases the potential of Kubernetes op-
erators to automate network configurations in complex, bare metal environments.
This automation strategy presents a significant stride towards the realization of a
comprehensive, flexible, and highly automated network infrastructure.

70

Bibliography

[1] Kubernetes. What is Kubernetes. 2021. url: https://kubernetes.io/what-
is-kubernetes/ (visited on 06/16/2023) (cit. on pp. 3, 5).

[2] GitHub. Kubernetes. url: https://github.com/kubernetes/kubernetes
(visited on 06/16/2023) (cit. on p. 3).

[3] Telecoms.com. TIM gets on board with cloud-native 5G network. 2021. url:
https : / / telecoms . com / 508726 / tim - gets - on - board - with - cloud -
native-5g-network/ (visited on 06/16/2023) (cit. on p. 4).

[4] IBM. What is bare metal? 2021. url: https://www.ibm.com/cloud/learn/
bare-metal-servers (visited on 06/16/2023) (cit. on p. 4).

[5] Docker. What is a Container? 2021. url: https : / / www . docker . com /
resources/what-container (visited on 06/16/2023) (cit. on p. 5).

[6] Kubernetes. Kubernetes Architecture. 2022. url: https://kubernetes.io/
docs/concepts/architecture/ (visited on 06/16/2023) (cit. on p. 5).

[7] GitHub - kubernetes-sigs/kubebuilder: Kubebuilder - SDK for building Ku-
bernetes APIs using CRDs. 2022. url: https://github.com/kubernetes-
sigs/kubebuilder (visited on 06/26/2023) (cit. on p. 15).

[8] Cisco. Cisco Network Services Orchestrator (NSO). 2022. url: https://www.
cisco.com/c/en/us/products/cloud-systems-management/network-
services-orchestrator/index.html (visited on 06/16/2023) (cit. on p. 16).

[9] Cisco. Cisco Network Services Orchestrator (NSO). 2023. url: https://www.
slideshare.net/CiscoCanada/nso- network- service- orchestrator-
enabled-by-tailf-handson-lab (visited on 06/27/2023) (cit. on p. 19).

[10] Linux Foundation Europe. Project Sylva Announcement. 2022. url: https:
//www.linuxfoundation.org/press/linux-foundation-europe-anno
unces-project-sylva-to-create-open-source-telco-cloud-softwa
re-framework-to-complement-open-networking-momentum (visited on
06/16/2023) (cit. on p. 23).

[11] Linux Foundation Europe. Project Sylva Technical. 2022. url: https://
gitlab.com/sylva-projects/sylva (visited on 06/16/2023) (cit. on p. 24).

71

https://kubernetes.io/what-is-kubernetes/
https://kubernetes.io/what-is-kubernetes/
https://github.com/kubernetes/kubernetes
https://telecoms.com/508726/tim-gets-on-board-with-cloud-native-5g-network/
https://telecoms.com/508726/tim-gets-on-board-with-cloud-native-5g-network/
https://www.ibm.com/cloud/learn/bare-metal-servers
https://www.ibm.com/cloud/learn/bare-metal-servers
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/network-services-orchestrator/index.html
https://www.slideshare.net/CiscoCanada/nso-network-service-orchestrator-enabled-by-tailf-handson-lab
https://www.slideshare.net/CiscoCanada/nso-network-service-orchestrator-enabled-by-tailf-handson-lab
https://www.slideshare.net/CiscoCanada/nso-network-service-orchestrator-enabled-by-tailf-handson-lab
https://www.linuxfoundation.org/press/linux-foundation-europe-announces-project-sylva-to-create-open-source-telco-cloud-software-framework-to-complement-open-networking-momentum
https://www.linuxfoundation.org/press/linux-foundation-europe-announces-project-sylva-to-create-open-source-telco-cloud-software-framework-to-complement-open-networking-momentum
https://www.linuxfoundation.org/press/linux-foundation-europe-announces-project-sylva-to-create-open-source-telco-cloud-software-framework-to-complement-open-networking-momentum
https://www.linuxfoundation.org/press/linux-foundation-europe-announces-project-sylva-to-create-open-source-telco-cloud-software-framework-to-complement-open-networking-momentum
https://gitlab.com/sylva-projects/sylva
https://gitlab.com/sylva-projects/sylva

BIBLIOGRAPHY

[12] Kubernetes Cluster API. Design Documentation. Cluster API Design Doc-
umentation. Kubernetes Special Interest Group (SIG). 2023. url: https:
//cluster-api.sigs.k8s.io/design/ (visited on 06/22/2023) (cit. on
p. 58).

[13] Kubernetes Cluster API. GitHub Repository. Cluster API GitHub Repository.
Kubernetes Special Interest Group (SIG). 2023. url: https://github.com/
kubernetes-sigs/cluster-api (visited on 06/22/2023) (cit. on p. 59).

[14] Metal3. Introduction Page. Metal3 Community Page. Metal3 Project. 2023.
url: https : / / book . metal3 . io / introduction . html (visited on
06/22/2023) (cit. on p. 60).

[15] Metal3 Project. GitHub Repository. Metal3 GitHub Repository. Metal3
Project. 2023. url: https://github.com/metal3-io/metal3-docs (visited
on 06/22/2023) (cit. on p. 62).

72

https://cluster-api.sigs.k8s.io/design/
https://cluster-api.sigs.k8s.io/design/
https://github.com/kubernetes-sigs/cluster-api
https://github.com/kubernetes-sigs/cluster-api
https://book.metal3.io/introduction.html
https://github.com/metal3-io/metal3-docs

	List of Figures
	Acronyms
	Introduction
	Goal of the thesis
	Structure of the work

	Kubernetes
	Kubernetes History
	Applications Deployment Evolution
	Architecture
	Control Plane
	Nodes

	Kubernetes Objects
	Networking in Kubernetes
	Security and Roles Access
	Role-Based Access Control

	Extending Kubernetes: Operators and Custom Resources
	Custom Resources
	Controllers
	Operators
	Kubebuilder

	Cisco Network Services Orchestrator
	Introduction
	Features
	Architecture
	Workflow
	Communication with Network Devices
	NETCONF
	CLI

	Interaction with NSO using RESTConf
	Service Invocation through RESTConf
	Conclusion

	Project Sylva
	Introduction to Sylva
	Main Objectives and Benefits
	Technical Aspects of Project Sylva
	Hybrid Deployment and Bare Metal Automation

	Network Edge Automation for Bare Metal Infrastructure
	Challenges
	The Need for Automation at the Edge

	Multi-distributed Cloud Ecosystem
	Management Cluster

	Architecture Proposal
	Network Operator
	Actuator Operators

	Implementation of the Proposed Architecture
	Building Blocks: Operators and CRDs
	Kubernetes Operators
	Custom Resource Definitions (CRDs)

	Implementing them with Kubebuilder
	Creating the CRDs and controller
	Defining the CRD Spec and Status
	Implementing the Controllers

	Actuator Operator for NSO
	Resource Management
	Communication with NSO
	RESTCONF API Calls
	Role-Bases Access Control integration

	Implementation Workflow
	Creating a New VlanService
	Modifying a VlanService
	Deleting a VlanService

	Simulation and Result
	Benchmark Hardware Specifications
	Benchmark Results
	Conclusion

	Future Perspectives
	Scenario Overview
	ClusterAPI
	Key Components
	Deploying a cluster

	Metal3
	Major Components of Metal3
	Provisioning Process
	Retrieving Information about the Physical Host
	Conclusion

	Integration of ClusterAPI and Metal3
	IP Address Management (IPAM)

	Conclusion
	Next Steps
	Final Remarks

	Conclusion
	Bibliography

