
POLITECNICO DI TORINO

Department of Computer Engineering, Cinema
and Mechatronics

MSC in Data Science and Engineering

Master Thesis

DreamShot: Teaching Cinema
Shots to Latent Diffusion

Models
Exploring the diffusion model architecture and finetuning for

cinematic shots generation

Supervisor:
prof. Tania Cerquitelli
Correlatore:
Dr. Bartolomeo Vacchetti

Candidate:
Tommaso Massaglia

Luglio 2023

Alla mia famiglia,
che mi ha reso quello che sono,

e ai miei amici,
che non mi hanno mai lasciato mentre lo diventavo.

ii

The best solution to a problem is usually the easiest one!
GLaDOS

iii

Acknowledgements

A special thanks to Professor Cerquitelli and Dr. Vacchetti for being incred-
ibly supportive and encouraging in my endeavours. A huge thank you also
goes to all the 55 people who partake in the survey giving even more value to
this work, I’m sorry I couldn’t thank you one by one. A mention as well to the
community that formed around this wonderful subject for producing some
wonderful material and tutorials which helped me understand the subject
better.

iv

Abstract

This thesis work presents a comprehensive overview of recent advancements
in image synthesis models, exploring the recent developments of Diffusion
Models [1] and their finetuning. The primary contribution consists in a novel
approach that utilizes recently released techniques to tackle a relatively un-
explored area in the literature: generating cinema-like shots to assist in the
storyboarding process. Starting from the intuition that shot types can be
learned as an artistic style, a fine-tuned version of Stable Diffusion [2] is
leveraged to tailor the generation process specifically for this purpose. By
utilizing a limited number of movie frames labelled with shot types and ac-
companied by brief descriptions, I use Dreambooth [3] along with Low Rank
Adaptation [4] to teach a pre-trained model three specific shot types: close
shot, medium shot, and long shot. Moreover, this approach is designed to
run efficiently on low-power devices. The result is qualitatively more pleas-
ing images that more closely align with the provided prompts and shot types.
This improvement is then validated through a survey conducted on human
subjects, in addition to an evaluation carried out using a setup similar to the
one proposed in [3], demonstrating an increase in both CLIP-T and DINO
scores, with the latter exhibiting a significant improvement compared to the
baseline. A detailed and easily reproducible method for creating a dataset for
finetuning purposes is presented along with the main matter, allowing, for
example, to teach a specific filmmaker style. Finally, the impact of different
generation parameters on the generative process is explored and compar-
isons between the traditional and this method of storyboarding are shown.
In this thesis work, I show a method that produces improved output qual-
ity, increased adherence to shot types, and enhanced expressiveness in the
generation of cinema-like shots, making it a valuable tool for the filmmaking
industry and creative individuals.

v

Contents

1 Introduction 1
1.1 A brief history of Image Synthesis models 2
1.2 Thesis Structure . 6

2 Technical Background 7
2.1 Attention and Transformers 7

2.1.1 Attention . 7
2.1.2 Transformers . 8

2.2 Vision Transformers . 11
2.3 CLIP . 14
2.4 Low Rank Adaptation (LoRa) 17
2.5 Diffusion Models . 20
2.6 Latent Diffusion . 24
2.7 Stable Diffusion . 28
2.8 Dreambooth . 29
2.9 Shot Types . 32

3 Related Works 33
3.1 Generative Adversarial Networks 33
3.2 Variational Autoencoders . 34
3.3 Generative Adversarial Text to Image Synthesis 37
3.4 Nvidia StyleGAN . 39
3.5 Vector Quantised Variational AutoEncoder (VQ-VAE) 41
3.6 VQ-GAN . 44
3.7 DALL-E . 46
3.8 GLIDE . 49
3.9 DALL-E 2 . 51
3.10 Textual Inversion . 53

vi

3.11 Imagen . 54
3.12 ControlNet . 56
3.13 Storyboarding . 60

4 Contribution 62
4.1 Objective, Intuition and Architecture

choice . 62
4.2 Method . 64

4.2.1 Data Preparation . 64
4.2.2 Model Training . 68
4.2.3 Generation . 70

5 Results 72
5.1 Training Setup . 72
5.2 Dataset . 73
5.3 Parameters Effect . 74

5.3.1 Sampler . 74
5.3.2 Steps . 75
5.3.3 Seed . 76
5.3.4 Classifier Free Guidance Scale 77
5.3.5 Alpha . 78

5.4 Metrics . 79
5.4.1 CLIP-T score shortcomings 80

5.5 Qualitative Survey . 81
5.6 Storyboarding . 83

6 Conclusions 86

7 Future Developments 88

References 89

vii

Chapter 1

Introduction

In recent months, the transformer [5] based ChatGPT [6] became a world-
wide phenomenon for its ability to answer pretty much any question that a
user would throw its way, once again bringing Artificial Intelligence the fore-
front of news outlets and other mainstream media. Although born from the
same resurgence that transformer-based models brought to the world of deep
learning, what didn’t raise as much noise was the release and diffusion of
the most recent Diffusion Model [1] based text-to-image synthesis models, of
which the three main actors, all released throughout the summer of 2022, are
DALL-E 2 [7], Imagen [8], and the open source Stable Diffusion [2]. These
three models are capable of using a textual input provided by the user to
generate images that are semantically close to the text, and visually close
to real images, often making it hard to distinguish between what’s real and
what’s AI-generated.

Having the ability to generate realistic images and to guide the generation
process has many applications within it, applications which still haven’t been
explored much yet; by using the available techniques it would be possible for
example to generate automatically an ad campaign for a new product, to
edit photos by only telling what edit we wanted, or even depict ourselves
in many different styles and places. Of the many fields that widely use and
creates reference pictures to improve the workflow, cinema is one of the more
egregious. By having the ability to generate realistic pictures, generating
reference pictures that show expressively an idea of the desired shot becomes
suddenly a task open to anyone, without requiring the need of an extensive
library of reference shots or the ability to draw the desired picture. These
reference shots and sketches are often used in storyboarding, a widely spread

1

1 – Introduction

technique in filmmaking that helps in visualizing the story and in guiding
the shootings better, resulting in more efficient work. When making reference
shots, one of the most important aspects of it is the desired shot type, as it
often is recognized as the element that most influence the viewer’s focus and
emotions [9].

In this thesis work, I propose an approach that makes use of an existing
Diffusion Model (Stable Diffusion) and specific finetunings to generate film-
like pictures with a determined shot type. Throughout the work we show the
application of state-of-the-art techniques and discuss different aspects of the
generation process, creating in the process a compendium that contains most
of the information necessary to understanding fully the image synthesis field,
from its inception to today.

1.1 A brief history of Image Synthesis models
The field of image synthesis through the use of a generative model effec-
tively started with the advent of Variational Autoencoders (VAE) 3.2 and
Generative Adversarial Networks (GAN) 3.1 in 2013/2014.

Variational Autoencoders are a class of probabilistic generative models
that learn in an unsupervised manner. The model learns to effectively com-
press an input into a lower dimensional latent space (bottleneck) and then
reconstruct the original input. The resulting model can then be used in two
modes: by feeding a noisy image, it’s possible as an example to reconstruct
the original one, by giving it random noise instead, it’s possible to generate
novel images of the training domain.

The Generative Adversarial Network approach instead consisted in using
two networks, a generator and a discriminator, to try and learn the underly-
ing distribution (of pixels in this case) of the training domain. The generator’s
role was to, given a random noisy input, adapt the input to fit the target do-
main. The discriminator role was that of a binary classifier, a well-researched
subject, whose goal was to determine whether the generated image was real
or fake. Once training was complete, the generator could be used alone to
synthesise images from the training domain.

For the next five years, most of the image generation landscape focused on
GANs as the de-facto best method for image generations, with contributions
such as 3.3, which explored for the first time text-conditioned image genera-
tion, StyleGAN 3.4, which revolutionized the GAN architecture and for the

2

1 – Introduction

Figure 1.1: The timeline visualized.

3

1 – Introduction

first time achieved truly realistic image synthesis1, and in the field of VAEs,
VQ-VAE 3.11, which introduced an approach that allowed for even greater
compression of the input into a latent space by using a discrete representa-
tion.

In 2017, the publication of the paper Attention is All You Need [5] revolu-
tionized the field of Natural Language Processing forever. The Transformer
2.1.2 architecture enabled models to develop a deep understanding of the
underlying structure of a language by determining which word each other
word has to attend2 to most. Not only NLP though, transformers saw very
successful applications even in the field of computer vision for their ability
to mimic the CNN architecture 2.2. By exploiting the transformer’s ability
to learn the relationships between elements, the GAN architecture, and the
codebook representation of VQ-VAEs 3.5, the paper Taming Transformers
for High-Resolution Image Synthesis 3.6 introduces transformers to the image
generation field, allowing for high resolution and photorealistic generations,
along with versions that accept different forms of conditioning, such as pose,
depth maps, and image completion.

In June 2021, Diffusion models beat GANs on image synthesis [10] shows
the potential that diffusion models 2.5, a class of probabilistic generative
models that learn to reverse the so-called diffusion process, have in the image
generation task, introducing a third actor in the image synthesis landscape
that would later show major developments. Following in the footsteps of
VQ-VAE, released in July 2021 together with the CLIP 2.3, an architecture
which allows encoding images and text in a similar latent representation,
DALL-E 3.13 was released. By composing text and image embeddings into
the same data stream, DALL-E is trained to complete sentences with the
missing image using an autoregressive generation typical of the transformers
decoder architecture, all by using the predicted image embeddings as the
base from which a VAE reconstructs the image.

Following the release of CLIP, an updated version of VQ-GAN that uses
CLIP embeddings [11] as conditioning was also released to the public in
late 2021, marking one of the last releases of a GAN-based image synthesis

1thispersondoesnotexist.com for example uses a StyleGAN based network to synthesize
faces that, in fact, do not exist.

2To attend means to give more weight to in this scenario, the words with the highest
attention are the ones that are considered to be more related to the one being considered.

4

https://thispersondoesnotexist.com/

1 – Introduction

model. 2022 was an extremely lucrative year for the image synthesis field.
In March, GLIDE 3.8 was published, marking the release of the first text-
to-image guided diffusion model. Starting from the architecture of [10], a
text-encoding-based perturbance is added to move the generative process
towards the desired output, using a classifier free guidance [12] to further
move the generated samples away from random generations. Just a month
after, developing entirely on GLIDE, DALL-E 2 3.9 was released. CLIP-
based embeddings are used along the other image embeddings to guide the
diffusion process, and a specialized diffusion upsampler is trained to allow for
generations in higher resolutions. June saw the release of Imagen 3.11 which
uses a large language model pre-trained on only text to produce prompt
encodings that are more related to the prompt itself.

Arguably though, what really set an important milestone in the image
synthesis landscape was the release in August of the open source large
diffusion model Stable Diffusion 2.7. The model is a Latent Diffusion Model
based on the architecture described in 2.6. The diffusion process is carried in
a low dimensional latent space through the use of an encoder and a decoder,
while conditioning is added through cross-attention layers using CLIP text
embeddings. The open-source nature of the model lead to the formation of
a thriving community around it, leading to the implementation of existing
techniques and the development of new ones, as well as the "study" of prompt
engineering and the effect that hyperparameters have on the generation.

Of such developments, two were the major ones, Textual Inversion 3.17
and Dreambooth 2.8. Both techniques allow adding subjects to an existing
diffusion model using a few training images (≈ 3 − 5) without incurring in
catastrophic forgetting or excessive class specialization and requiring much
less time and resources than a full-fledged finetuning. The former trains tex-
tual encodings such that they influence generation towards the trained sub-
ject, while the latter, which achieved better results overall, uses unused tokens
to bind a new class-specific subject.

Recently, in January 2023, ControlNet 3.12 was released as a way to add
different forms of conditioning to Stable Diffusion without requiring an entire
re-train. Said forms of conditioning can come from depth maps, pose schemes,
scribbles, and normal maps as an example and allow for an extensive degree
of control on the generation process.

5

1 – Introduction

1.2 Thesis Structure
This thesis work is subdivided into the following chapters:

Chapter 2 provides the necessary tools to understand the proposed ap-
proach at a technical level, showing all the different methods that converge
into the final result.

Chapter 3 shows approaches and techniques that are relevant to the field
of study and could be used as alternatives.

Chapter 4 gives a technical overview of the proposed approach highlighting
our contributions.

Chapter 5 describes the training setup and shows outputs and relevant
metrics to support our claims.

Chapter 6 resumes our findings and highlights the goal we reached.
Finally, chapter 7 explores possible developments on the same topic and

how they could influence our work.

6

Chapter 2

Technical Background

2.1 Attention and Transformers

2.1.1 Attention

Attention is a type of learning with the goal of finding whether a certain part
of the input is more important than another in order to compute the correct
output. In the context of language processing, attention solves the common
problem of degrading quality as the sentence becomes longer for RNNs.

A basic implementation of attention can be found in the RNN encoder-
decoder language translator described in [13], where the mechanism is used
to improve the importance that the decoder gives to certain parts of the
input sentence.

Given a set of annotations1 (h1, h2, . . . , hn) generated by the encoder, their
weighted sum is used to generate the context vector ci for the output word
yi (2.1).

ci =
TxØ
j=1

αijhj (2.1)

The weight αij of each annotation hj is computed by calculating the soft-
max:

1An annotation for a given word xj is computed by concatenating the forward hidden
state

−→
h j and the backward hidden state

←−
h j , i.e. hj = [

−→
h ⊤

j ;
←−
h ⊤

j]⊤ of ⊤ words.

7

2 – Technical Background

Figure 2.1: A visualization of an RNN with an attention mechanism; the
model uses the source sentence (x1, x2, . . . , xn).

to generate the word yt, the attention mechanism is represented by the
weights σ.

αij = exp(eij)
ΣTx
k=1 exp(eik)

(2.2)

where

eij = a(si−1, hj) (2.3)

is defined as the alignment model, whose role is to output a numeric eval-
uation of how well the output at position i matches around position j (si is
defined as the hidden state at position i), most commonly the dot product.
αij in the case of sentence translation represents the probability that the
target word yi corresponds to a translation of a source word xj. αij reflects
how much weight, or importance, the annotation hj with respect to every
other state has, and in generating y. This is what it’s called attention, the
decoder decides which parts of the sentence to attend to.

2.1.2 Transformers
The paper Attention is all you need [5] works on the intuition that atten-
tion by itself is a powerful enough learning mechanism that requires no other
network to learn, even on tasks unrelated to language. The following explana-
tion takes largely inspiration from [14]. Suppose that we have a set of generic

8

2 – Technical Background

input vectors xi and a set of corresponding output vectors yi of size and an
embedding size dmodel. Every input vector xi is used in three different ways2:

• It is used unchanged as part of the weighted sum to compute each output
vector once the weights have been established, usually called the value
V

• It is compared to every other vector to establish the weights for its own
output yi to compute its key K

• It is compared to every other vector to establish the weights for the
output of the j − th vector yj to compute its query Q

Three k × k weight matrices Wq, Wk, and Wv are added and the cor-
responding linear transformation is computed; these weights will store the
computed relationships between each vector and the others:

qi = WQxi = Q

ki = WKxi = K

vi = W V xi = V

The attention for each input vector will then be:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.4)

The dot product QKT is used to compute the alignment score for each
vector with respect to the others; the scaling factor

√
dk (dk is the size of

the key) scales the dot product back to prevent the softmax function from
growing too large. If for example, we want to learn the relationships between
words in sentences we can set the input and the output of the attention to
the same set of vectors; this type of attention is referred to as self-attention.
Furthermore, it’s possible to combine several attention mechanisms (that
are able to capture different relationships to one another) with their own
weights WQ

i , W k
i , and W V

i (or attention heads) and then by concatenating
their output:

2The names derive from the data structure of a key-value store; every key matches the
query to a certain extent and the best is chosen to get the value.

9

2 – Technical Background

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO (2.5)
where headi = Attention(QWQ

i , KWK
i , V W V

i) (2.6)

To keep the speed of the model, rather than using h matrices of size k× k

we reduce the size of Wi by a factor equal to the number of h matrices we
want. The matrix WO seen in (2.5) is used to "merge back" the split matrices
into a single weight one for the subsequent layernorm and feed forward steps.

The transformer represented (fig 2.2) makes use of self-attention to pro-
cess sequential input data all at once; the attention mechanism allows the
transformer to access all previous states and weigh them accordingly to a
learned measure of relevance, providing information for far away tokens.

Figure 2.2: The model architecture of a transformer as shown in [5]. Each
block can be stacked any N times.

First, the input is parsed into a token and converted into a vector; a
positional embedding is then added. The encoder extracts and embeds infor-
mation on which part of the input is relevant to each other through attention;

10

2 – Technical Background

after a feed-forward layer the output is fed to the next encoder block and the
operation is repeated. The decoder generates an output sequence by attend-
ing to the information provided by the encodings and the decodings up to
and including that position by using a masked attention layer to preserve the
autoregressive property3 and a cross attention layer in which K and V come
from the encoder output, and Q from the previous layer of the decoder block.
More in general, a transformer block applies in sequence a self-attention layer,
a layer normalization, a feedforward layer and a final layer normalization, all
surrounded with residual connections.

Transformers are extremely adept at finding patterns between elements;
the decoder and encoder blocks can be used alone or together depending on
the use case.

2.2 Vision Transformers
The concept of using a self-attention mechanism to replace convolutional
neural networks in the context of computer vision is introduced in [15] and
further analyzed in [16]. Similar to a convolution, given a pixel xij ∈ Rdin

a local region of pixels in positions ab ∈ Nk(i, j) is extracted with spatial
extent k centred around xij called memory block. Single-headed attention for
computing the pixel output yij ∈ Rdout is computed as follows (fig. 2.3):

A local region of pixels with size k centred around xij positioned at ab ∈
Nk(i, j) is defined for each pixel xij ∈ Rdin, and is referred to as the memory
block. To compute the pixel output yij ∈ Rdout using single-headed attention,
the following procedure is employed (see fig. 2.3):

yij =
Ø

a,b∈Nk(i,j)
softmaxab(qij ⊤kab)vab (2.7)

Where the queries q, the keys k, and the values v (as seen in 2.1.2) are
linear transformations of the pixel in position ij and the neighbourhood
pixels. Each of q, k, and v has its own set of learned transforms WQ, WK , Wv ∈
Rdout×din .

While self-attention is used to aggregate nearby spatial information in a

3An output should not be predicted based on future outputs

11

2 – Technical Background

Figure 2.3: An example of a local attention layer over the spatial extent of
k = 3. Picture from medium.

similar fashion to what a traditional convolution would do4, the aggregation
of faraway data is obtained through a convex combination of value vectors
with mixing weights parameterized by content interactions (figure 2.3). By
using multiple attention heads, thus increasing the depth, it’s then possible
to learn different representations of the same input. The distance between
pixels and their relative position is modelled by adding a term q⊤

ijra−i,b−j
inside the softmax function in (2.7).

The culmination of this development is found in the paper An image is
worth 16x16 words [17]. The paper introduces a fully attention-based image
classification network named Vision Transformer (ViT), capable of attain-
ing excellent results when compared to the state of the art with substantially
faster training. The idea is to, rather than "mimicking" the approach of a
convolutional neural network (as in [16] and [15]), the input image is subdi-
vided into patches and then looked at as a whole. The standard transformer
receives as input a 1D sequence of token embeddings.

Figure 2.5 provides an overview of the model. To effectively handle 2D
images, the image x ∈ RH×W×C is converted into a sequence of flattened 2D
patches denoted as xp ∈ RH×(P 2·C where:

• (H, W) is the resolution of the original image

• C is the number of channels

4Output of position ij in a regular convolution: yij =
q

a,b∈Nk(i,j) Wi−a,j−bxab

12

https://sh-tsang.medium.com/review-stand-alone-self-attention-in-vision-models-55e4dbeb064c

2 – Technical Background

Figure 2.4: An attention probability heat map relative to a pixel positioned
on the horse head, 6 layers and 9 heads. Picture from medium.

• (P, P) is the resolution of each patch

• N = HW/P 2 is the resulting number of patches, used for the input
length of the transformer.

The embedding at position 0 is always a learnable embedding (z0
0 = xclass)

whose state at the output of the transformer encoder (z0
L) serves as the im-

age representation y. The position applied to each embedding is a simple 1D
position as no significant performance gains were noticed by using more ad-
vanced ones. Given a patch embedding projection E the transformer encoder
takes as input the embeddings vector (2.9), then it alternates layers of multi-
headed self-attention (MSA) (2.10) and an MLP ((2.11)) blocks. Layernorm
(LN) is applied before every block (differently from what we described in the
original formulation 2.1.2, [18][19]).

z0 = [xclass; x1
pE; x2

pE; . . . ; xNp E] + Epos, E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D

(2.8)
z′
ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1, . . . , L (2.9)

zℓ = MLP (LN(z′
ℓ)) + z′

ℓ, ℓ = 1, . . . , L (2.10)
y = LN(z0

L) (2.11)
(2.12)

13

https://sh-tsang.medium.com/review-stand-alone-self-attention-in-vision-models-55e4dbeb064c

2 – Technical Background

Figure 2.5: The image is split into patches, each patch is linearly embedded
along with its position and fed to a standard transformer. An extra learnable
token is added as input to perform classification.

The resulting model presents two main differences from a traditional CNN
model: first, the model has much less image-specific inductive bias, secondly,
the input of the transformer can be formed from other inputs such as feature
maps rather than patches, allowing for a hybrid architecture. In figure 2.12
we can see the RGB embeddings filters obtained by the model; the filters are
very similar to the ones produced in regular CNNs.

2.3 CLIP
CLIP [20], short for Contrastive Language Image Pretraining, is a technique
developed to approach the zero-shot classification task by learning the con-
tents of an image directly from a raw text description of it rather than from
labels (such as the classes found in the ImageNet dataset).

Utilizing natural language for learning presents several notable advantages
in contrast to alternative training methodologies. Its scalability surpasses
that of conventional crowd-sourced labelling for image classification, as it
eliminates the necessity for labels to conform strictly to the standard for-
mat, and the classification process differs from the typical 1-to-N best label
voting system. Techniques applicable to natural language can easily leverage

14

2 – Technical Background

Figure 2.6: left: Representative examples of attention from the output token
to the input space. right: Filters of the initial linear embedding of RGB
values, from the original paper [16].

the abundant text available on the internet. The embedded representation
obtained through CLIP shows a strong connection to language, facilitating
zero-shot transfer capabilities.

Figure 2.7: Summary of the CLIP approach as shown in the original paper.

Efficient training plays a pivotal role in effectively scaling the utilization of
natural language supervision. In contrast to alternative methodologies that
aim to predict the specific word representing the content of an image, its
label, the approach introduced in [20] consists in trying to associate images
to a whole description of them, without requiring an exact match. Rather

15

2 – Technical Background

than a predictive objective, a contrastive objective is used5. CLIP is trained
to predict the actual pairings across a batch of N × N (text, image) pairs.
The output is a multi-modal space that closely links images to their asso-
ciated description. The training objective consists in maximising the cosine
similarity between the associated pairs of image and text embeddings while
minimising the similarity to all the other pairings.

Two different architectures are proposed for the image encoder:

1. A ResNet-50 [21] as a base due to its proven performance and adap-
tation, augmented with improvements from recent years, and with its
global average pooling layer replaced with a "transformer-style" multi-
head QKV attention layer.

2. A Visual Transformer (ViT) that closely follows the implementation de-
scribed in 2.2.

The text encoder is a Transformer (sec 2.1.2). The input text sequence is
surrounded with [SOS] and [EOS] tokens, as it is usually done in LLMs; the
activations for the [EOS] token at the highest level of the transformer are used
as the feature representation for the text. These activations undergo layer
normalization and linear projection to the multi-modal embedding space.

1 # image_encoder - ResNet or Vision Transformer
2 # text_encoder - CBOW or Text Transformer
3 # I[n, h, w, c] - minibatch of aligned images
4 # T[n, l] - minibatch of aligned texts
5 # W_i[d_i , d_e] - learned proj of image to embed
6 # W_t[d_t , d_e] - learned proj of text to embed
7 # t - learned temperature parameter
8
9 # extract feature representations of each modality

10 I_f = image_encoder(I) #[n, d_i]
11 T_f = text_encoder(T) #[n, d_t]
12
13 # joint multimodal embedding [n, d_e]
14 I_e = l2_normalize(np.dot(I_f , W_i), axis =1)
15 T_e = l2_normalize(np.dot(T_f , W_t), axis =1)

5Contrastive learning learns the general features of a dataset without labels by teaching
the model which data points are similar or different. (definition from medium)

16

https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607

2 – Technical Background

16
17 # scaled pairwise cosine similarities [n, n]
18 logits = np.dot(I_e , T_e.T) * np.exp(t)
19
20 # symmetric loss function
21 labels = np.arange(n)
22 loss_i = cross_entropy_loss(logits , labels , axis =0)
23 loss_t = cross_entropy_loss(logits , labels , axis =1)
24 loss = (loss_i + loss_t)/2

Listing 2.1: Numpy-like pseudocode for the core of an implementation of
CLIP as seen in the original paper.

As natural language is used as the captioning and the prediction objective,
prompt engineering becomes a meaningful task when training or inferenc-
ing using CLIP. Other than the issue of different labels being used for the
same object among different datasets, the lack of context around a word
raises the issue of polysemy6. To merge existing datasets to the captioned
photos found on the internet, replacing the label to "A photo of a [label]" im-
proved accuracy significantly. Specifying the category of the object, as in "A
photo of [label], a type of pet" when training on a pet dataset, also improved
on the final performance.

The main takeaways of the paper are the following: first, CLIP demon-
strates high efficiency by training on noisy and diverse data, enabling zero-
shot usage. It showcases flexibility and generality by directly learning various
visual concepts from natural language, surpassing the capabilities of existing
ImageNet models. However, CLIP faces challenges in tasks requiring abstract
or systematic understanding, such as object counting, and in complex tasks
like predicting the proximity of the nearest car in a photo. Lastly, CLIP’s
generalization abilities to images beyond its pre-training dataset are still lim-
ited.

2.4 Low Rank Adaptation (LoRa)
An important approach in natural language processing involves pretraining
large-scale models (transformers sec. 2.1.2) on general domain data and then

6the coexistence of many possible meanings for a word or phrase.

17

2 – Technical Background

fine-tuning them for specific tasks or domains. Other than the cost involved
with training such large-scale models, which lies in the hundreds of GPU
hours, this is to also reduce the carbon footprint that fine-tuning these models
would involve. However, as models continue to grow in size, fully retraining
all the parameters through fine-tuning becomes increasingly impractical. The
approach proposed in Low Rank Adaptation of Large Language Models[4]
named Low Rank Adaptation was developed with the goal of reducing the
number of parameters that need to be trained to finetune a transformer
efficiently and with comparable performances.

The usual approach to developing downstream applications of existing
large language models is to adapt, usually through fine-tuning, existing pre-
trained models. As the size of the models increases and the number of param-
eters goes up the hundreds of billions, fine-tuning an existing model passes
from an inconvenience to an extremely hard challenge, as the resources and
time to perform this become more and more prohibitive. Other techniques
introduced in the literature so far involved limiting the number of parameters
to train or using an external network to adapt the input towards the desired
goal, usually referred to as Hypernetworks. [22]. Despite reaching the desired
goal, these techniques always led to a trade-off between efficiency and quality,
almost never reaching the fine-tuning baselines.

The intuition is that "the change in weights during model adaptation
also has a low intrinsic rank. LoRa allows training some dense layers in a
neural network indirectly by optimizing rank decomposition matrices of the
dense layers’ change during adaptation instead while keeping the pre-trained
weights frozen as shown in figure 2.8. Even a very low rank suffices for large
models such as GPT-3 175B [23], making LoRa both storage and compute
efficient" ([4] page 2).

The key advantages possessed by LoRa are:

• Rather than outputting a full mode, LoRa outputs a small, lightweight
file that can be easily shared, stored, and switched to, empowering open-
source development as well.

• LoRA makes training more efficient and lowers the hardware barrier to
entry by up to 3 times when using adaptive optimizers since we do not
need to calculate the gradients or maintain the optimizer states for most
parameters. Only the injected low-rank matrices are trained.

• By using LoRa the number of parameters is reduced up to threefold,

18

2 – Technical Background

Figure 2.8: The reparametrization used in LoRa. Only A and B are trained.
Taken from [4].

effectively lowering the hardware barrier to entry. In a scenario where
machine learning is becoming more and more diffused, introducing tech-
niques that lower training time and energy consumption become an im-
portant matter as well.

• As the weights are simply added to a pretrained model with a simple
operation, the model operates as if it was fully finetuned, introducing no
ulterior latency to the process.

The proposed solution consists of the following. Given a pre-trained LLM
PΦ(y|x) parametrized by Φ and a target language task represented by learn-
ing a mapping of context-target pairs Z = (xi, yi)i=1,...,N , with xi and yi being
a sequence of tokens7, a regular fine-tuning would consist in updating a set
of initialized weights Φ0 to Φ0 + ∆Φ by maximising some sort of training
objective:

max
Φ

Ø
(x,y)∈Z

|y|Ø
t=1

log(PΦ(yt|x, y<t)) (2.13)

The drawback is that for each task we want to finetune a pretrained model
for, a new different set of parameters ∆Φ wish size = Φ0 is learned. The
consequence of this is that the storage and deployment of a large set of

7For example if we are trying to convert the natural language to SQL then xi would
be NL and yi the corresponding SQL.

19

2 – Technical Background

finetunings can easily become a daunting task, requiring more and more
storage space as the number of target tasks increases. Rather than learning
and storing the entire set of parameters, the intuition is that the difference
between the original and the output model is enough to efficiently store and
deploy for a specific task. The proposed solution is then to further encode
the change ∆Φ by a much smaller set of parameters |Θ| ≪ |Φ0| on which the
learning is done:

max
Θ

Ø
(x,y)∈Z

|y|Ø
t=1

log(PΦ0+∆Φ(Θ)(yt|x, y<t)) (2.14)

The low "intrinsic dimension" [24] that LLM possess allows them to effi-
ciently learn a specific task despite a projection to a smaller subspace. The
approach behind LoRa is based on the hypothesis that LLM also have a low
"intrinsic rank" during adaptation. For a pretrained weight matrix W0 ∈ Rd×k

8, the update is constrained by representing it with a low rank decomposi-
tion W0 + ∆W = W0 + BA, where B ∈ Rd×r, and A ∈ Rr×k, and the rank
r ≪ min(d, k). During training, w0 is frozen and does not receive gradient
updates, while A and B contain trainable parameters. Given h = W0x, the
modified forward pass yields:

h = W0x + ∆Wx = W0x + BAx (2.15)

as seen in figure 2.8. In the case of transformers, this transformation is ap-
plied to the four weight matrices in the self-attention module (Wq, Wk, Wv, WO),
but in principle, LoRa could be applied to any subset of weight matrices in
a neural network.

The output ∆W is a standalone "model" that can be applied on top of
any existing set of weights.

2.5 Diffusion Models
The paper titled Denoising Diffusion Probabilistic Models (DDPM) [1] intro-
duces a new class of specialized probabilistic image synthesis models named
diffusion model. "A diffusion probabilistic model is a parametrized Markov

8The same naming conventions are the same as in 2.1.2.

20

2 – Technical Background

chain trained using variational inference to produce samples that match the
data after a finite time" ([1] pag. 2). The following explanation is roughly
based on the one provided in [25].

Figure 2.9: A visual representation of the diffusion process parametrized as
a Markov chain. Noise is added to the sample (photo) x each time step from
T to 0, and a posterior q is learned to reverse this process.

A diffusion process given a real sample x0 ∼ q(x) consists in adding a
certain amount of Gaussian noise to a sample over T steps until it is just
random noise, and can be represented as a Markov Chain9, usually referred
to as forward diffusion. The step sizes are controlled by a variance schedule
{βt ∈ (0,1)}T

t=1.

q(xt|xt−1) = N (xt;
ñ

1− βt xt−1, βtI) q(x1:T|x0) =
TÙ
t=1

q(xt|xt−1) (2.16)

As the step count t becomes larger and more and more noise is added, the
initial sample gradually becomes more and more similar to random noise,
eventually becoming equivalent to an isotropic Gaussian distribution at T −→
∞, xT.

Given this process, by sampling from q(xt−1|xt) it would be possible to,
in theory, recreate the original sample from a Gaussian Noise input xT ∼
N (0, I). Since it’s impossible to easily estimate q(xt−1|xt) without computing
the entire solution space beforehand, we instead learn the reverse process
pθ(x0:T), which learns the Gaussian transitions from the considered step T

up to the original sample p(xT) = N (xT ; 0, I) parametrized as a Markov
Chain.

9Markov Chain: a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event.
(Oxford Dictionary)

21

2 – Technical Background

pθ(x0:T) = p(xT)
TÙ
t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t))

(2.17)
Diffusion models are a specific kind of latent variable model in which the

approximate posterior q(x1:T |x0) (the forward diffusion) is fixed to a Markov
chain that gradually adds Gaussian noise to the data according to a variance
schedule β1, . . . , βT :

q(x1:T |x0) :=
TÙ
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
ñ

1− βtxt−1, βtI). (2.18)

The variance Σθ(xt, t) = σ2
t I is set to untrained time-dependent constant.

The training objective consists in maximising the variational bound on neg-
ative log-likelihood (known as Evidence Lower Bound or ELBO):

E[− log pθ(x0)] ≤ Eq[− log pθ(x0:T)
q(x1:T|x0)

] = Eq[− log p(xT−
Ø
t≥1

pθ(xt−1|xt)
q(xt|xt−1)

] =: L

(2.19)
The forward process variances βt can be either learned through reparametriza-

tion (3.6) or held constant. By using different Gaussian conditionals in pθ(xt−1|x),
different, one can express biases that are already known about the domain.
The sampling xt can be performed at any arbitrary timestep t. Using the
notation αt := 1 − βt and α̂t := rt

s=1 αs (with 1 − αt = noise added at step
t):

q(xt|x0) = N (xt;
ñ

α̂txo, (1− α̂t)I) (2.20)

Rather than optimizing every parameter in (2.19), at each step a random
term is chosen for optimisation, making training more efficient as a conse-
quence. By rewriting L (2.19) through variance reduction and implementing
KL divergence it’s then possible to further improve the process.

Eq[DKL(q(xT |x0) || p(xT))ü ûú ý
LT

+
Ø
t>1

DKL(q(xt−1|xt, x0) || pθ(xt−1|xt))ü ûú ý
Lt−1

− log pθ(x0|x1)ü ûú ý
L0

]

(2.21)

22

2 – Technical Background

The full loss can be expressed as LV LB = LT + LT−1 + · · ·+ L0; every KL
term compares two Gaussian distributions (the posterior and the correspond-
ing prior) in closed form10. LT is constant and can be ignored during training
(q has no learnable parameters and xT is Gaussian noise). L0 is modeled us-
ing a separate discrete decoder derived from N (x0; µθ(x1,1), Σθ(x1,1)). The
reverse process mean function approximator µθ is trained to predict only µ̃t
or ϵ ∼ N (0, I) (the noise that was added rather than the Gaussian mean) by
reparametrization (3.6).

By ignoring a weighting term and using a more simple training objective,
the authors of the paper found that the diffusion model produced better
outputs:

Lsimple
t = Et∼[1,T],x0,ϵt[||ϵt − ϵθ(

ñ
âtx0 +

ñ
1− âtϵ, t)||2] (2.22)

with the final simple objective being:

Lsimple = Lsimple
t + C (2.23)

With C constant and not dependent on θ.

Figure 2.10: The training and sampling algorithms for DDPM.

In practice, the reverse process is represented using a U-Net backbone
with group normalization (figure 2.11). The U-Net makes use of a Trans-
former based architecture to share parameters across time through positional
embeddings. Self-attention at the 16× 16 feature map resolution is used.

Like other generative frameworks, diffusion models can be made to sample
conditionally given a variable of interest such as a class label or a sentence
description. One simple way to do this is to feed the conditioning variable

10In mathematics, a closed-form expression is a mathematical expression that uses a
finite number of standard operations. (from Wikipedia)

23

2 – Technical Background

Figure 2.11: Visualization of the denoising U-Net of the diffuser. Picture from
learn-opencv.

y as an additional input during ϵθ(xt, t, y), but it has been shown that the
use of an external classifier specifically geared towards pushing the diffusion
process towards the gradient of the desired label worked best 3.8. Another
possibility that diffusion models offer is the so-called inpainting; the specially
trained diffusion model is able to reconstruct missing parts of an image by
knowing the surrounding pixels.

Diffusion models show promising results in the context of generalizing
the output pictures domain and in understanding the different parts of the
training images, but compared to GANs they are slower as the computation
of a Markov chain with an unknown number of steps can be daunting when
compared to the single forwards pass that GANs require.

2.6 Latent Diffusion
The paper High-Resolution Image Synthesis with Latent Diffusion Models
[26] introduces a new class of diffusion models (DMs) called latent diffusion
models that tries to solve the common issue of costly optimization and slow
inference that previous iterations presented. Training the most powerful dif-
fusion models can take hundred of GPU days and the required evaluations
on the final product up to 5 GPU days. To enhance the accessibility of these
models, and address the computational complexity associated with train-
ing and sampling, new methodologies need to be introduced. The proposed
approach involves shifting the diffusion process from the pixel space to the

24

https://learnopencv.com/denoising-diffusion-probabilistic-models/

2 – Technical Background

latent space. As a result, the training process is divided into two steps:

1. First, we train an autoencoder 3.2 that is capable of compressing an im-
age to a more efficient space with lower dimensions. This learned latent
space does not require excessive compression as the subsequent diffu-
sion models are directly trained on it. This autoencoder requires a single
training and can be reused for multiple DMs training to explore com-
pletely different tasks.

2. Then, image generation is carried in the latent space through a transformer-
connected U-net backbone that can be conditioned through arbitrary
token-based mechanisms.

The computational efficiency of the obtained DMs is enhanced by transi-
tioning away from the high dimensional space, enabled by sampling in a lower
dimensional space. Furthermore, the use of U-nets as the foundation for DMs
leverages their inherent inductive bias, effectively mitigating the detrimental
impact of aggressive quality-reducing compression levels. For the perceptual
compression model, an autoencoder is used and trained using a combination
of perceptual loss and a patch-based adversarial objective. Local realism,
blurriness, and a more precise reconstruction are enabled by the use of this
two-step process.

Figure 2.12: Structure of the model as shown in the original paper.

Given an image x ∈ RH×W×3 in RGB space, the encoder E encodes x

into a latent representation z = E(x), and the decoder D reconstructs the
image from the latent, giving x̃ = D(z) = D(E(x)), where z ∈ Rh×w×c.

25

2 – Technical Background

The encoder downsamples the image by a factor f = H/h = W/w, and
different downsampling factors f = 2m, with m ∈ N are investigated. To
avoid arbitrarily high-variance latent spaces, two different regularizations are
used, KL-reg which imposes a slight KL-penalty towards a N on the learned
latent, similar to a VAE 3.2, and VQ-reg, which uses a vector quantization
layer within the decoder, similarly to a VQGAN [27].

The autoencoder works in the following way:

1. An image x ∈ RH×W×3 in RGB space is the input.

2. An encoder E compresses the input image x into the latent space learned
previously, creating the representation z = E(x). During compression,
the image is downscaled by a factor f = H/h = W/w. Different down-
scaling factors f have been explored in the original paper.

3. At the same time, a decoder D is trained to reconstruct the original
image so that x̃ = D(z) = D(E(x))

4. Two different forms of regularization, KL-reg which imposes a Kull-
back–Leibler loss towards N and a VQ-reg which uses a vector quanti-
zation layer, is used to contain the variance of learned latent space. The
quantization applied is very mild when compared to other applications
(such as DALL-E 3.7), rather than a 1D output a 2D one is produced,
which keeps much more information on the inherent structure of z.

Thanks to the latent representation enabled by E and D, likelihood-based
modelling is a more suitable task as higher complexity details are abstracted
away and the learning can focus on the important semantic bits of the
data. Rather than using an autoregressive, attention-based approach, image-
specific inductive biases can be taken advantage of. The diffusion process,
rather than relying on a highly compressed autoregressive transformer, can
be performed in a regular U-Net built primarily from 2D convolutions, with
an objective that focuses on the task at hand:

LLDM := EE(x),ϵ≈N (0,1),t[||ϵ− ϵθ(zt, t)||22]. (2.24)

During training, the process is made more efficient by fixing the forward
diffusion process. Rather than compressing the image using the encoder and
then performing diffusion on the compressed image, the image is compressed

26

2 – Technical Background

Figure 2.13: Examples of text-to-image conditioned generations shown in
[26].

and made noisy in a single pass. Decoding the obtained latents to the pixel
space similarly only requires a single pass.

Diffusion models are capable of modelling conditional distributions in the
form p(z|y). This can be implemented with a conditional denoising autoen-
coder ϵθ(zt, t, y), and allows inputs y such as text, semantic maps, or other
image-to-image translation tasks. The underlying UNet is augmented with
the cross-attention mechanism 2.1.1, which is effective for learning attention-
based models of various input modalities. To preprocess y from various
modalities, a domain-specific encoder τθ is introduced that projects y to
an intermediate representation τθ(y) ∈ RM×dτ , which is then mapped to
the intermediate layers of the UNet via cross-attention layer implementing
Attention(Q, K, V) = softmax(QK

T
√
d

) · V , with
By using a conditional, denoising autoencoder ϵθ(zt, t, y), different types

of distributions p(z|y) can be used to condition the generative process. By
using this mechanism, tasks such as image-to-image translation (similar to
StyleGAN), Inpainting, and text-to-image generation become available. The
mechanism by which the conditioning from y is applied to the diffusion pro-
cess is through the use of a domain-specific encoder τθ whose role is to provide
a representation of the conditioning y that is mappable to the cross-attention
layers of the Unet Attention(Q, K, V) = softmax(QK

T
√
d

) · V . Query, Key, and
Values are computed from the encoded y as:

Q = W
(i)
Q · φi(zt), K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y).

27

2 – Technical Background

During the training of the domain-specific encoder, the weights W (i) are
updated. φi(zt) ∈ RN×di

ϵ is an intermediate representation of the denoising
UNet. The conditional LDM is learned via:

LLDM := EE(x),y,ϵ≈N (0,1),t[||ϵ− ϵθ(zt, t, τθ(y)||22], (2.25)

where both τθ and ϵθ are jointly optimized via the loss. To condition
through a textual input specifically, the CLIP 2.3 was used. High-resolution
images are obtained by using a super-resolution diffuser.

2.7 Stable Diffusion
Based on the Latent Diffusion model architecture 2.6, Stable Diffusion is the
first large diffusion model to be released as open-source to the public [2].
One of the main contributing factors that allowed for this model training
was the large availability of text-image pairs data that the recently released
LAION-5B [28] dataset offered. LAION-5B is an image dataset consisting of
5.85 billion CLIP-filtered 2.3 image-text pairs with a largely noisy nature that
was collected with the specific purpose of having an extremely large dataset of
such data available to the general research landscape. Starting from Common
Crawl11, the data was filtered using an existing CLIP model by removing text-
image pairs whose cosine similarity score fell under a certain threshold (0.28),
this step alone removed over 44 billion images of the original 50. Furthermore,
different subsets of LION-5B exist, depending on the perceived quality of the
image (aesthetic), the resolution, or the language of the caption.

The public release of Stable Diffusion V1 was trained in four rounds, each
of which used a different subset:

1. 237.000 steps at 256× 256 on LAION-2B-en

2. 194.000 steps at 512× 512 on LAION-high-resolution

3. 515.000 steps at 512× 512 on LAION-improved-aesthetics

4. 390.000 steps at 256 × 256 on LAION-improved-aesthetics with 10%
dropping of the text conditioning to favour classifier-free guidance.

11An open source repository of web crawl data https://commoncrawl.org/.

28

https://commoncrawl.org/

2 – Technical Background

This version uses a custom-trained frozen CLIP ViT-L/14 model as a text
encoder. The denoising U-Net is composed of three main parts: an encoder,
a middle block, and a skip-connected decoder. The encoder and the decoder
have 12 blocks, and the middle block is a single one, for a total of 25 blocks;
8 of those blocks are down or upsampling convolutional layers, 17 blocks are
main blocks that each contain four resnet layers and two Vision Transformers
with cross and self-attention mechanisms. The texts are encoded by CLIP
and diffusion time steps are encoded through positional encoding.

A V2 version was later released [29] which replaces the encoder with a new
one (OpenCLIP), improves the quality of the training subset, and enables the
generation of images by default (with no upsampling) up to 768×768 pixels.

2.8 Dreambooth
Dreambooth12 is an approach introduced in [3] to allow for a high degree
of customisation of existing text-image diffusion models that requires just a
few images to work, trying to "solve" the same issue that was dealt with in
Textual Inversion 3.10 with a different method.

Figure 2.14: By only using a small set of training images, Dreambooth is can
generate the subject in a variety of places/poses with a high visual fidelity.
Picture from [3]

Large text-to-image models are able by design to generate a multitude of
different subjects despite them being assigned to the same class but, as a
by-product of the diffusion process, lack the ability to both reproduce the
same subject in a different context and to mimic an existing subject into the

12From dream photo-booth.

29

2 – Technical Background

generated image. The idea behind Dreambooth is to, given a few input images
(≈ 3 − 5), bind the subject to a unique identifier such that when it is used
in the prompt along with the class it belongs to (e.g. "A [V] dog"), the prior
knowledge of the class is used along the new information to reconstruct the
subject.

Figure 2.15: Representation of the finetuning process. In parallel, a recon-
struction loss and a class-specific prior preservation loss work to teach a
subject and prevent the model from forgetting the class prior [3].

The first step is to design unique identifier-subject pairs that can be im-
planted into the existing model dictionary. When finetuning a subject into
an existing model, the caption assigned to each input picture is simply «"a
[identifier] [class noun]", where [identifier] is a unique identifier linked to the
subject, and [class noun] is a coarse class descriptor of the subject» (from [3]
pag. 4). The class descriptor is used to leverage the knowledge present in the
pre-trained model when learning the new subject, as it makes learning faster
and more precise. The unique identifier that is bound to the novel subject is
chosen so that it respects two characteristics:

• It has to be an unusual/rare token.

• It has to be tokenized "all together" (tokenizers usually decompose words
into smaller tokens, and random letters could incur in the same).

30

2 – Technical Background

The chosen approach was to, starting from the known dictionary of tokens,
find unused three-letter tokens and invert them from the embedding to the
textual space. An unusual token might be for example "SKS", making the
descriptor for a new object of class "dog" that we want to add "A photo
of a SKS dog". Finally, as the best result were found1 to come from fine-
tuning all the layers of the model, two problems arose: language drift13 and
reduced output diversity14. To mitigate the two aforementioned issues, "a new
autogenous class-specific prior preservation loss is introduced to encourage
diversity and counter language drift" (from [3] pag. 1). During training, the
model is supervised "with its own generated samples" in order to retain the
prior knowledge of the class, and to use it along with the knowledge of the
subject instance to generate new samples. The loss given an initial noise
map ϵ ≈ N (0, I), a text encoder Γ, noise scheduling and sample parameters
αt, σt, wt, and a prompt P becomes:

Ex,c,ϵ,ϵ′,t[wt||x̂θ(αtx+σtϵ, c)−x||22+λwt′||x̂θ(αt′xpr+σt′ϵ
′, cpr)−xpr||22], (2.26)

where the second term is the prior-preservation term that supervises the
model with its own generated images, and λ controls the intensity of said
loss. The benefits of using this loss are better output diversity and less risk
of overfitting.

As the requirements for applying this technique, although considerably
smaller than a full-fledged finetune/retrain, can get expensive, an approach
that became quickly popular among the userbase was to apply LoRa 2.4 to
Dreambooth to both make the process faster and produce an output that’s
more easily shareable between users [30]. Rather than having the full model
as output, a difference ∆W model is produced that weights several times
less than the original one; furthermore, not all the parameters of the original
model are trained as suggested in the original Dreambooth paper, but only
the Q, K, V, O matrices of the cross-attention 2.1.2 layer.

13Typical of Large Language Models, as a consequence of fine-tuning the model can
progressively lose the acquired language knowledge.

14When finetuning a text-to-image diffusion model on a subject there is the risk that
the model reduces its variability when generating subjects of the finetuned class.

31

2 – Technical Background

2.9 Shot Types
By definition in the Cambridge Dictionary, a movie shot is a a photograph,
or a short piece in a movie in which there is a single action or a short series
of actions. Movie shots can be classified by different means, the two most
common forms of defining a shot are by field size and by camera placement.
Our work is mostly focused on generating three specific kinds of field sizes:

• Close shot: in a close shot, or close-up the subject is close to the camera
but far enough to show the shoulder line.

• Medium shot: a medium shot shows the subject from the waist up.

• Long shot: a long shot is usually an establishing shot that shows the
environment around the subject along with the subject.

Figure 2.16: Representation of the three shot-types we deal with in this work.

32

Chapter 3

Related Works

3.1 Generative Adversarial Networks
Generative Adversarial networks are a kind of generative model released to
the public in 2015. The Adversarial framework introduced in [31] describes
the approach as follows: two networks are trained simultaneously, one is the
generator network G whose goal is to generate samples that could have been
drawn from the training distribution by learning in an unsupervised manner
the latent variables of a distribution, the other is the discriminator network
D whose goal is to predict a binary class label of real or fake (akin to a
normal classification model) depending on whether the generated sample is
considered to be from the target distribution or not.

Figure 3.1: Visual representation of the Generative Adversarial Framework,
from [32].

The goal of D is to minimize the probability of erroneously classifying a

33

3 – Related Works

sample generated by G, as such the framework becomes the same as a min-
max two-player game with objective function (3.1); a unique solution to this
game exists where G is able to recover the training data distribution and D

assigns value 1/2 everywhere, all trained with a single backpropagation pass
each iteration.

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

The goal of the generator is to learn a distribution pg over data x. To do
so, a prior pz(z) is initialized as the starting distribution with random values,
and a differentiable mapping function G with parameters θg is defined such
that G(z; θg), given input z, generates samples from the target distribution.
A second function D(x; θd) is defined, with the role of outputting the prob-
ability that an input sample x comes from the true distribution rather than
pg. D is trained to maximize the probability of assigning the correct label;
simultaneously G is trained to minimize log(1−D(G(z))).

Once the training is considered to be complete, the network G can be
isolated and used by itself in forward pass mode.

3.2 Variational Autoencoders
Generally speaking, an autoencoder [33] is a type of neural network that can
learn to reconstruct input data in an unsupervised manner by compressing
the information into a more efficient and compact representation. It achieves
this by trying to reproduce the original input as closely as possible while
reducing the amount of data needed to represent it. It consists of three main
elements:

1. An encoder network: translates the original input from a high dimen-
sional space into the latent low dimensional code; the input is larger
than the output.

2. A latent feature representation: usually a tensor of real numbers.

3. A decoder network: recovers data from the code with increasingly large
output layers.

34

3 – Related Works

Figure 3.2: The autoencoder architecture, from [34].

The model contains an encoder function g(·) parametrized by ϕ and a
decoder function f(·) parametrized by θ. The latent feature representation
learned for input x in the bottleneck layer is z = gϕ(x) and the reconstructed
input is x′ = fθ(gϕ(x)).

Training an autoencoder means finding a tuple of parameters (ϕ, θ) such
that the original input is as similar as possible as the decoded output x ≈
fθ(gϕ(x)):

argmin
fθ,gϕ

[∆(xi, fθ(gϕ(x)))] (3.2)

where ∆ indicates a measure of how the input and the output of the
autoencoder differ, also called reconstruction loss, which can be measured
such as sigmoid or MSE.

There exist many different types of autoencoders, such as denoisers, sparse,
and contractive, but the ones we are most interested in are Variational Au-
toencoders (VAEs) [35]. The basic concept of VAEs is to map the input data
not to a single fixed vector but rather to a probability distribution that rep-
resents the possible variations in the input data. The following explanation
is largely taken from [34].

Suppose that the distribution we want to map the input to is pθ parametrized
by θ; the relationship between the input x and the latent encoding vector z

can be defined using three components: a prior pθ(z), a likelihood pθ(x|z),
and a posterior pθ(z|x). Assuming the value for parameter θ∗ is known for
the distribution we are trying to learn, then in order to generate a realistic
data point x such that it would seem to come from the original distribution

35

3 – Related Works

we generate a sample z(i) using the prior pθ∗(z), and then generate a value
x(i) from a conditional distribution Pθ∗(z|z = z(i)).

The goal of a VAE is to try and optimize the value θ∗ such that the
probability of generating a realistic sample is maximized:

θ∗ = argmax
θ

nØ
i=1

log pθ(x(i)) encoding vector−−−−−−−−−→ pθ(x(i)) =
Ú

pθ(x(i)|z)pθ(z)dz

(3.3)
Using this method to define the optimal θ would require checking every

possible value of z and thus be unfeasible; as such the idea is to use an
approximation function qϕ(z|x) ≈ pθ(z|x) parametrized by ϕ that is able to
output what is likely a latent representation.

Figure 3.3: The graphical model of VAEs, from [34].

To estimate the posterior qϕ(z|x) the new objective function makes use
of the KL Divergence [36] to quantify the distance between the estimated
and real posterior; the KL divergence makes it so the learned distribution
is not too far from the generating one. The loss function then becomes the
following:

max
ϕ,θ

Eqϕ(z|x)[log pθ(x|z)] −→ LV AE(θ, ϕ) = − log pθ(x|z) + DKL(qϕ(z|x)||pθ(z))
(3.4)

Minimizing LV AE(θ, ϕ) is equivalent to maximising the lower bound of
the probability of generating real data samples; this loss function is known
as variational lower bound.

−LV AE = log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) ≤ log pθ(x) (3.5)

36

3 – Related Works

Finally, since the backward propagation would include a sampling step
that is by nature stochastic and would therefore make back propagation un-
feasible, the reparametrization trick is used to express the random variable z

as a deterministic variable z = Tϕ(x, ϵ) where ϵ is an auxiliary independent
random variable and the transformation function Tϕ parametrized by ϕ con-
verts ϵ to z. A common choice for qϕ(z|x) is a multivariate Gaussian with a
diagonal covariance structure:

z ∼ qϕ(z|x(i)) = N (z; µ(i), σ2(i)I) rep. trick−−−−−→ z = µ + σ ⊙ ϵ where ϵ ∼ N (0, I)
(3.6)

This way the stochastic nature of z is conserved in the random variable
ϵ that is fixed and therefore requires no backpropagation, while µ and σ

become the trainable parameters.

Figure 3.4: A variational autoencoder with a multivariate Gaussian assump-
tion, from [34].

Other than data compression, VAEs are capable of generating data that
is similar to the input data as they learn as a byproduct an intrinsic repre-
sentation of the input/output domain from which they can sample.

3.3 Generative Adversarial Text to Image Syn-
thesis

Having been used to varying success to synthesize images of specific cate-
gories, the first attempt at developing an architecture that uses text to guide

37

3 – Related Works

the generation process described in (3.1) [37]. The framework described di-
vides the challenge into two sub-problems: "first, learn a text feature repre-
sentation that captures important visual details; and second, use said features
to synthesize a compelling image that a human might mistake for real" ([37]
pp. 1-2). The plausible output of said generation though is multimodal by
nature (there are many possible configurations of pixels that satisfy a given
text input), as such the generative adversarial approach is a very natural
fit for the challenge, by conditioning both discriminator and generator on
side information (text) it’s possible to naturally model the problem as the
discriminator acts as a "smart" adaptive loss function.

Figure 3.5: A visualization of the framework described in the paper, the text
encoding φ(t) both to generate the sample and to discern whether the sample
is real or fake, from the original paper.

The generator G works by sampling from a noise prior z ∈ RZ ∼ N (0,1),
a text encoding obtained using the encoder φ is then used to compress a
query t that is then added to the noise vector z. Using this information an
image x̂ is synthesized; this corresponds to a feedforward inference step for
G. The discriminator uses the text-image pair to predict:

• If the image sample comes from a real distribution (similar to a regular
GAN).

• If the pair is correct.

Using this prediction approach, the two outputs of the discriminator are
used together to provide additional information to the generator, refining the
process more at each step.

The main issue with using Generative Adversarial Networks to tackle the
image synthesis task is the generalization that these networks allow, even
when giving a textual prompt as input. Despite the images showing hints
of understanding of the concept at hand, as the authors said, "upon close

38

3 – Related Works

inspection, it is clear that the generated scenes are not usually coherent"
([37] pag. 8).

Figure 3.6: Examples provided by the original paper of results obtained when
training with a wider dataset such as MS-COCO

Despite its rudimentary results, this can be considered the first instance of
text-guided image generation and an attempt at generalizing the "knowledge"
of the model.

3.4 Nvidia StyleGAN
In December 2018 Nvidia released their own approach to using GANs to
synthesize images in A Style-Based Generator Architecture for Generative
Adversarial Networks [38]. The novel approach proposed by Nvidia consists
of a new generator architecture that allows greater control during the image
synthesis process; the focus is put on understanding the various aspects of
the image synthesis process, with a focus on the underlying image features
and latent space understanding.

Compared to other approaches that make use of GANs, the one proposed
in the paper starts from a constant input that is learned during training
(rather than a random noise sample), and operates by adjusting the style of
the image in each layer, with each convolution controlling either a high-level
attribute (pose, identity, . . .) or a stochastic variation (hair, facial imperfec-
tions, . . .), which are separated during training. As a by-product of this, by
moving in the learned latent representation of these attributes, it’s possible
to interpolate between styles (such as changing hair colour or style, changing
skin colour, . . .).

Figure 3.7 shows how the newly proposed style-based generator compares

39

3 – Related Works

Figure 3.7: What a traditional generator process looks like on the left, and the
newly proposed style-based generator on the right as shown in the original
paper.

to a regular generator: in the traditional architecture, the input is fed once at
the beginning only, comparatively, the approach proposed uses an intermedi-
ate latent space W representation of the input that is fed at different layers
through adaptive instance normalization (AdaIN). The w that is used as in-
put is specialized through learned affine transformations (A in the graph) at
each step to a style that controls. The means by which the network is able
to add stochastic variance is through learned per-channel scaling factors (B
in the graph) that take Gaussian noise as input.

The main improvement when compared to previous generative networks is
the ability through a larger number of training parameters and a framework
that separates the generation in different steps to learn the intricacies and
details of the subject, we can see from the output examples in figure 3.8 that
the network was able to learn details such as glasses, facial hair, different
kind of sheets and bedroom layouts, . . . , and to reproduce them when asked
to generate with the given class label.

The results obtained by StyleGan show the true potential of AI-generated
images in generating pictures that are almost indistinguishable from real
ones, but still lacking the generalization and control that later models will
show.

40

3 – Related Works

Figure 3.8: Uncurated sets of images generated when training with different
datasets, in order faces, bedrooms and cars. From [38].

3.5 Vector Quantised Variational AutoEncoder
(VQ-VAE)

Tasks that involve limited training data, adapting to different domains, or
utilizing reinforcement learning techniques heavily depend on acquired rep-
resentations from unprocessed information. The paper Neural Discrete Rep-
resentation Learning [39] aims to develop a model that preserves the crucial
characteristics of the information in its latent space while optimizing for max-
imum likelihood. Discrete representations are well-suited for various learning
domains, such as language, as it is inherently comprised of distinct units,
and images, which can often be easily described using language (through
prompts). Moreover, discrete representations usually make predictive learn-
ing a simpler task, as the reduction of the learning space allows for more
advanced techniques at a similar computation cost.

VQ-VAE uses a similar architecture to a conventional VAE 3.2. Instead of
assuming Gaussian distributions with diagonal covariance for the priors and
posteriors, VQ-VAEs use discrete latent variables. In this case, the prior and
posterior distributions are categorical, and the obtained samples from these
distributions serve as indices for embedding tables. The network works by
building a codebook representation of the data: taking into example natural
language, given a finite number of words each word would be assigned to a
specific code in a sort of hashing table fashion. The resulting embeddings are

41

3 – Related Works

then utilized as inputs for the decoder network.
Conceptually, VQ-VAE are similar in approach to a regular VAE 3.2.

Rather than having priors and posteriors be assumed as normally distributed
with diagonal covariance (that allows for the reparametrisation trick (3.6)),
VQ-VAEs use discrete latent variables where the prior and posterior dis-
tributions are categorical, and the samples drawn from these distribution
indexes an embedding tables. These embeddings are then used as input into
the decoder network.

Figure 3.9: left: The VQ-VAE network. right: The output of the encoder z(x)
is mapped to the nearest point e2. From [34].

We define a latent embedding space e ∈ RK×D, with K representing the
size of the discrete latent space and D representing the dimensionality of
each embedding vector ei. The model takes an input x, and passes it through
an encoder to obtain ze(x). The discrete latent variables z are determined
via nearest neighbour lookup using the shared embedding space (3.7). The
decoder utilizes the corresponding embedding vector ek as input (3.8).

The posterior categorial distribution q(z|x) probabilities are defined as
one-hot as follows:

q(z = k|x) =
1 for k = argminj||ze(x)− ej||2,

0 otherwise
(3.7)

The representation ze(x) first is represented in the bottleneck (3.7), then
it is mapped to its nearest neighbour representation in the learned codebook
(3.8)

zq(x) = ek, where k = argminj||ze(x)− ej||2 (3.8)

42

3 – Related Works

The complete set of parameters for the model is the union of the pa-
rameters of the encoder, decoder, and the embedding space e. Since argmin
prevents the flow of the gradient, backpropagation would be impossible. The
gradient is approximated by copying gradients from the decoder input zq(x)
to the encoder output ze(x) (figure [39] right). The overall loss function is
composed of three terms: a reconstruction loss which optimizes the decoder
and encoder, a codebook loss which uses a dictionary learning algorithm l2
error to move the embedding vectors ei towards the encoder output, and a
commitment loss that makes sure that the encoder commits to an embedding
without fluctuating. The loss is then the following:

L = log p(x|zq(x))ü ûú ý
reconstruction loss

+ ||sg[ze(x)]− e||22ü ûú ý
codebook loss

+ β||ze(x)− sg[e]||22ü ûú ý
commitment loss

(3.9)

Here, sg represents the stopgradient operator, which acts as an identity
operator during forward computation and has partial derivatives equal to
0. This operator effectively restricts its operand to remain constant. The
prior distribution p(z) over the discrete latents is categorical and can be
made autoregressive by incorporating dependencies to other zs within the
feature map such as with a Transformer 2.1.2. By fitting an autoregressive
distribution over z, p(z), it’s possible to generate x via ancestral sampling.

Figure 3.10: Left: ImageNet 128x128x3 images, right: reconstructions from a
VQ-VAE with a 32x32x1 latent space, with K=512. From the original paper.

Figure 3.10 shows the particular effectiveness of VQ-VAE in the compres-
sion and reconstruction of images. Images contain a lot of redundant infor-
mation and despite a reduction of 128×128×3×8

32×32×9 ≈ 42.6 in the embedded space,
the reconstruction retains most of the information in the image. Another ad-
vantage of the VQ-VAE is that it successfully manages to avoid the "posterior

43

3 – Related Works

collapse"1 issue that has been often observed in the VAE framework.
A second version of VQ-VAE named VQ-VAE2 was proposed in [40] which

greatly improves the generation capabilities of the model by using a better
prior model (through an attention-based CNN) and a hierarchical VQ-VAE
that captures different level information at different resolutions of the image,
with each layer being used along with the class label as input for the next
layer.

3.6 VQ-GAN
Transformers are increasingly being adopted in a variety of tasks other than
natural language processing. In the field of computer vision, compared to
existing architectures such as CNNs, transformers introduce little to no in-
ductive bias. This is generally seen as a benefit of using a transformer, but
at the same time, compared to convolutions, it increases the computational
cost of finding relationships quadratically, as the model takes into consid-
eration each possible pairwise interaction. The paper Taming Transformers
for High-Resolution Image Synthesis [27] proposes to augment the existing
transformer architecture (that is capable of learning similarly to convolu-
tions as in 2.2) with local connectivity through convolutions. Convolutions
are more adept at finding low-level image structures, while transformers learn
the global composition. "Allowing transformers to concentrate on their unique
strength—modelling long-range relations—enables them to generate high-
resolution images" ([27] pag. 2).

To leverage the powerful transformer architecture for image synthesis, the
elements of an image have to be expressed as a sequence. Rather than com-
posing the sequence based on individual pixels, a codebook of learned rep-
resentations, similar to the methodology proposed in 3.5, is used. For any
given image x ∈ RH×W there exists a representation formed from a spatial
collection of codebook entries zq ∈ Rh×w×nz where nz is the dimensionality
of the codes. To efficiently learn said codes, the inductive biases of CNNs
are directly incorporated. First, a convolutional model comprised of an en-
coder E and a decoder G is trained. The purpose of this training is for the
model to acquire the ability to represent an image using a discrete codebook

1VAE models that have a powerful decoder often ignore the latents when reconstructing.

44

3 – Related Works

Figure 3.11: The proposed approach, as illustrated in the original paper. A
convolutional VQGAN is used to learn a codebook of visual components. This
codebook is then modelled using an autoregressive transformer architecture.
To maintain semantic meaning while achieving significant compression, a
patch-based discriminator is employed.

Z = zk
K
k=1 ⊂ Rnz , as depicted in figure 3.11. The encoding of an image x

x̂ = G(zq) is obtained by taking the closest codebook entry zk after encoding:

zq = q(z̃) := (arg min
zk∈Z

||ẑij − zk||) ∈ Rh×w×nz . (3.10)

The reconstruction x̂ ≈ x is then given by:

x̂ = G(zq) = G(q(E(x))). (3.11)

As seen in the case of VQ-VAE, backpropagation through such a layer
would be unfeasible, so a straight-through gradient estimation is used.

To learn a richer code book than a simple quantization, VQ-GAN is in-
troduced. The L2 loss employed for the recreational loss Lrec is replaced with
a perceptual loss. Additionally, an adversarial training procedure is incorpo-
rated, utilizing a patch-based2 discriminator D that distinguishes between
real and reconstructed images.

LGAN({E, G,Z}, D) = [log D(x) + log(1−D(x̂))] (3.12)

2The loss is computed in a patch-based fashion. Pixels that are more than a patch
diameter of distance are considered independent.

45

3 – Related Works

The optimal compression model Q∗ = {E∗, G∗,Z∗} is then found using
objective:

Q∗ = arg min
E,G,Z

max
D

Ex∼p(x)[LV Q(E, G,Z + λLGAN({E, G,Z}, D)] (3.13)

Where λ is an adaptive weight given by:

λ = ∇GL
[Lrec]

∇GL
[LGAN] + δ

(3.14)

here, LREC represents the perceptual reconstruction loss, while ∇GL[·]
denotes the gradient of its input with respect to the last layer L of the
decoder. To maintain numerical stability, a value of δ = 10−6 is employed.
For comprehensive context aggregation, a single attention layer is utilized on
the lowest resolution.

With the encoder and decoder available, images can be represented in
terms of their codebook-indices encodings. By mapping indices of a sequence
back to the corresponding codebook entry, it’s possible to readily recover the
image that originated that index. As such, once an ordering of the indices in
the sequence s is established, image generation can be approached as an au-
toregressive prediction of the next index. Figure 3.12 shows the sliding atten-
tion window that is used to generate high-resolution images autoregressively.
Despite the use of convolutions, the available context remains adequate for
image modelling, as long as the dataset statistics exhibit spatial invariance.

Figure 3.12: Sliding attention window.

3.7 DALL-E
Traditionally, the development of text-to-image generation has primarily fo-
cused on refining modelling assumptions for fixed datasets. These assump-
tions often involve complex architectures, auxiliary losses, or additional infor-
mation such as object part labels or segmentation masks, which are supplied

46

3 – Related Works

during training 3.3. DALL·E [41], a GPT-3[23] based model with 12 billion
parameters, was specifically trained to generate images from text descrip-
tions, utilizing a dataset comprising text-image pairs. The proposed approach
involves training a transformer to autoregressively model both the text and
image tokens as a unified stream of data. Directly using pixels would de-
mand an excessive amount of memory for high-resolution images, with the
modelling capacity primarily dedicated to capturing fine-grained details with
high frequency, discarding the greater picture.

Figure 3.13: Examples of DALL-E generation given a textual prompt pro-
vided in the original paper.

A two-stage training procedure similar to the one described in [40] 3.5
is proposed to address the issue: first, a discrete variational autoencoder
(dVAE) is trained to compress 256 × 256 RGB images into a 32 × 32 grid
of image tokens, each element of which can assume 8192 possible values.
This compression reduces the transformer’s context size by a factor of 192
while maintaining satisfactory image quality. Then, the 1024 image tokens
are combined with up to 256 BPE-encoded3 text tokens. An autoregressive
transformer 2.1.2 is then trained to model the joint distribution of the text
and image tokens.

The procedure can be seen as maximizing the Evidence Lower Bound
(ELBO) (2.19) on the joint likelihood of the model distribution over im-
ages x, captions y, and tokens z representing the encoded RGB image. This
distribution is modelled as pθ,ψ(x, y, z) = pθ(x|y, z)pψ(y, z), resulting in the
following lower bound:

3Byte Pair Encoding: a simple and robust form of data compression introduced in [42]

47

3 – Related Works

ln pθ,ψ(x, y) ≥ E
z∈qϕ(z|x)

(ln pθ(x|y, z)− βDKL(qϕ(y, z|x), pψ(y, z))). (3.15)

The distribution qϕ represents the probability distribution of the image
tokens, with size 32 × 32, which are generated by the dVAE encoder, given
the input image x2. pθ represents the distribution over the generated im-
ages by the decoder of the dVAE model, given the image tokens. Lastly, the
transformer model captures the joint distribution pψ over the text and image
tokens. During training, the encoder produces a 1024-token-long encoding
of the image, the decoder transformer receives as input the concatenation
between the words encoding and the image encoding separated by a <SOI>
(start of image) specialized token, and autoregressively tries to reconstruct
the image encodings starting from the <SOI> token. As the input sentence is
always 256 tokens long, the empty space is filled with a specialized token.

Once a joint prior pψ is learned, the decoder can be used autonomously
by just tokenizing an input sentence and adding the <SOI> token.

Figure 3.14: Effects of increasing the number N of generated images on MS-
COCO captions, from the original paper.

One final step uses CLIP 2.3 to further improve the output by performing
a "best of N" approach. DALL-E is used to generate N images and then CLIP
is fed both the image and the caption to compute how likely the generated
images are associated with the given sentence. In figure 3.14 we can see the
positive effect that this additional pass has on the output image.

48

3 – Related Works

3.8 GLIDE
The paper GLIDE: Towards Photorealistic Image Generation and Editing
with Text-Guided Diffusion Models [43] explores the utilization of diffusion
models 2.5 for text-conditional image synthesis. The aim is to leverage the ca-
pabilities that guided diffusion models offer in handling unrestricted prompts
and apply them to the task of text-conditional image synthesis. Initially, a
diffusion model with 3.5 billion parameters is trained, incorporating a text
encoder for conditioning on natural language descriptions. Next, CLIP guid-
ance and classifier free guidance [12] are compared to find which of the two
yields better results. Along with the zero-shot model, an inpainting specific
model is trained which allows to perform generation in a specific area delim-
ited by the user.

Figure 3.15: Iteratively creating a complex scene using GLIDE by inpainting
each component of the scene, as shown in [43].

Starting from the base diffusion model described in [1] (2.5), some im-
provements are applied to the base diffusion model. The variance schedule
Σθ is added to the learnable parameters rather than fixed, as proposed in
[44], effectively enabling high-quality image generation in fewer steps. To en-
hance the quality of generated samples, guided diffusion [10] is employed.
This approach consists in utilizing a class conditional diffusion model with
a mean µθ(xt|y) and variance Σθ(xt|y) that is perturbed by the gradient of
the log probability log pϕ(y|xt) predicted by a classifier for the target class y.
The resulting perturbed mean µ̂(xt|y) is:

µ̂(xt|y) = µθ(xt|y) + s · Σθ(xt|y)∇xt log pϕ(y|xt) (3.16)
The coefficient s ≥ 1 is called the guidance scale; increasing the value of s

improves sample quality by moving the generation away from random ones

49

3 – Related Works

but at the cost of diversity.
Two kinds of guided diffusion are proposed:

• Classifier-free guidance: by utilizing this technique the need for a
separate classifier for guidance is eliminated. Instead of using a specific
label y in a class-conditional diffusion model ϵθ(xt|y), a null label ∅ is
introduced with a fixed probability during training. During sampling,
the model’s output is extrapolated in the direction of ϵθ(xt|y) and away
from ϵθ(xt|∅):

ϵ̂θ(xt|y) = ϵ̂θ(xt|∅) + s · (ϵθ(xt|y)− ϵθ(xt|y))

To enable classifier-free guidance using generic text prompts, the text
captions are occasionally replaced with an empty sequence (∅) during the
training process. The main advantage of this approach is that it allows
a single model to utilize its knowledge effectively, while also simplifying
the guidance mechanism. This is often seen as a hack, and it is speculated
that a better understanding of the transformer architecture would lead
to CFG being unnecessary.

• CLIP 2.3 guidance: performed in a similar fashion to DALL-E best
of N images (figure 3.14). CLIP is used to evaluate the similarity be-
tween an image and a provided caption. This is achieved by computing
the pairwise cosine similarity between an image and caption encoding.
The resulting score is high if the image and caption are similar and low
otherwise. The mean of the reverse process is then perturbed by incor-
porating the gradient of the dot product between the image and caption
encodings with respect to the image:

µ̂(xt|c) = µθ(xt|c) + s · Σθ(xt|c)∇xt(f(xt) · g(c))

A specially trained noise-aware CLIP is used to obtain the correct gra-
dient, even though regular models have been shown to work fine.

The model described is based on the Autoregressive Diffusion Model (ADM)
architecture described in [10], with the inclusion of additional text condition-
ing information. For each noised image xt and its corresponding text caption
c, the model predicts p(xt−1|xt, c). To incorporate text conditioning, the text
is encoded into a sequence K and then passed through a transformer model.
The output of the transformer replaces the embedding in the ADM model.

50

3 – Related Works

Furthermore, the output is separately projected to match the dimensionality
of each attention layer in the ADM model. The key and value components
of the transformer output are concatenated with the attention input at each
layer of the ADM model, making use of cross-attention.

The final test showed that classifier-free guidance produced the most re-
alistic samples when compared to CLIP guidance, as it is hypothesized that
the model learned to produce adversarial examples to maximise the CLIP
gradient.

3.9 DALL-E 2
Contrastive models like CLIP 2.3 have been shown to learn robust repre-
sentations of images that capture both semantics and style. The approach
proposed in Hierarchical Text-Conditional Image Generation with CLIP La-
tents [7] is to leverage these representations for image generation with a
two-stage model.

Contrastive models like CLIP [20] have shown over multiple implemen-
tations (such as [11]) their ability to learn robust representations of images
that are capable of capturing both semantics and style. Starting from this
intuition, CLIP latents could be an effective way to replace the transformer-
learned encodings in Diffusion Models. The paper Hierarchical Text-Conditional
Image Generation with CLIP Latents [7] explores this possibility by propos-
ing a two-stage model that makes use of CLIP representations to enhance
the diffusion process.

Consider a dataset of pairs (x, y) of images x and corresponding captions
y, let zi and zt be their embeddings respectively. There are two components
involved in the process. A prior denoted as P (zi|y) generates CLIP image
embeddings zi conditioned on the given captions y. Then, a decoder P (x|zi, y)
generates images x by utilizing CLIP image embeddings zi and optionally
using text captions y as conditioning factors. By using the two components
together, we obtain a generative model P (x|y). The text input is converted
to the shared image-text latent space that CLIP learned and the decoder
inverts these encodings back to the pixel space in a process that is named
unCLIP:

P (x|y) = P (x, zi|y) = P (x|zi, y)P (zi|y)

51

3 – Related Works

Figure 3.16: The two-stage process described in the paper. Above the line,
we can see the CLIP [20] learning process as in the original implementation.
Below, is the generation process. Given a textual input, the corresponding
CLIP encodings are computed and used to condition the generative process.
From [7]

The decoder is based on a diffusion model 2.5 that is conditioned on CLIP
image embeddings. Specifically, the architecture is a variation of the one
proposed in GLIDE 3.8. The CLIP embeddings are used for a dual purpose:
first, as additional information in the existing timestep embeddings, and
second, as a context that is concatenated to the text encoder. Classifier-
free guidance is obtained by removing the conditioning provided from the
text and from the CLIP embeddings some of the times during training. For
the generation of high-resolution images, a diffusion upsampler is employed,
progressively increasing the dimensions from 64× 64 to 256× 256 and then
to 1024 × 1024. To enhance robustness, a slight corruption, in the form of
Gaussian noise addition, is introduced before each step.

Two kinds of priors are tested. The Autoregressive (AR) prior involves
converting the CLIP image embedding zi into a sequence of discrete codes and
predicting them autoregressively, conditioned on the caption y. The Diffusion
prior directly models the continuous vector zi using a Gaussian diffusion
model, also conditioned on the caption y.

CLIP embeddings are computed as a deterministic function of the caption,
making them a viable conditioning tool (variance in the output would lead
to inconsistent generations given the same generation parameters and text)
for the prior. Same as in previous experiences, Classifier Free Guidance is

52

3 – Related Works

used to improve prompt adherence and image quality.
Other than 0 shot generation, DALLE-2 allows for other operations such as

variations, which apply a different amount of noises between reconstruction
steps to change the generated output, interpolations, which traverse through
interpolation between CLIP embeddings, and text diffs, which allow for image
manipulation by computing a text diff vector zd = norm(zt−zt0) between the
two captions and interpolating through that while changing from a caption
to the other.

3.10 Textual Inversion
The development of large text-to-image models such as Imagen 3.11, DALL-E
2 3.9, and the latent diffusion 2.6 based Stable Diffusion 2.7, made available
to the public the ability to generate images from a textual input, allowing for
an already great degree of customizability. Text alone though is not enough
to generate an existing subject, a possibility which would enable the same
subject to be depicted in different places and contexts. Same as for Large
Language Models, Diffusion Model’s size makes them unfit for finetuning
tasks due to time and cost, often leading to other issues such as catastrophic
forgetting4. The paper An Image is Worth One Word: Personalizing Text-
to-Image Generation using Textual Inversion [46] introduces a technique to
introduce new concepts in existing large diffusion models through inversion
named Textual Inversion.

The general idea is to find a novel pseudo-word, denoted as S∗, which is
still related to natural language embeddings while corresponding to a specific
subject. This pseudo-word can then be utilized in textual queries for the
generative model. The objective is to identify word embeddings for S∗ that,
when used in a textual prompt, will condition the generation towards the
trained subject.

To accomplish this, given a text embedding space on which the inversion
is carried, and a learned embedding v∗ to which we want to bind our subject,
during the training phase we update the value for v∗ such that it injects the
subject we want to teach into the existing vocabulary. Rather than updating

4The tendency of an artificial neural network to abruptly and drastically forget previ-
ously learned information upon learning new information, def. from [45].

53

3 – Related Works

Figure 3.17: By using pseudo-words found in the embedding space that de-
picts the subject, we can place it in new scenes. From [46].

the knowledge of the pretrained model, we leverage the existing knowledge
to hack the new subject into it. The desired encoding is found through direct
optimization of the standard LDM objective (2.25). To condition the genera-
tion process, randomly sampled context texts derived from CLIP are utilized.
The complete objective, given the text conditioner denoted as τθ ≡ cθ, is as
follows:

v∗ = arg min
v

Ez∼E(x),y,ϵ∼N (0,1),t[||ϵ− ϵθ(zt, t, cθ(y))||22]. (3.17)

The same training scheme of the original Latent Diffusion Model [26] im-
plementation is used (take an input text-image pair, add noise, try to recon-
struct from text only, compute loss) for training.

The learned concepts can be used in a multitude of scenarios such as im-
age variations, text-guided synthesis, concept composition (multiple learned
concepts can be used in the same generation), and even style transfer.

3.11 Imagen
Latest to come out, Imagen [8] builds on the existing literature on diffusion
models and extends it by proposing to use a large language model pretrained
on only text (such as T5 [47] and GPT [23]) as a text encoder to condition
the diffusion process.

The main building blocks of Image are the following (fig. 3.19): "a large

54

3 – Related Works

Figure 3.18: Outline of the text-embedding and inversion process. A string
containing the placeholder is tokenised. The tokens are converted to embed-
dings v. Finally, the embedding vectors are transformed into a single con-
ditioning code cθ(y) which guides the generation. The embedding vector v∗
associated with S∗ is optimised. Taken from the original paper.

Figure 3.19: Visualization of Imagen. From the original paper.

55

3 – Related Works

frozen T5-XXL encoder to encode the input text into embeddings, a condi-
tional diffusion model to map the text embedding into a 64× 64 image, and
finally a text-conditional super-resolution diffusion models to upsample the
image" (from [8] pp. 1-2).

The main difference from models such as GLIDE 3.8 and DALL-E 2 3.9
is in the use of a large frozen model: the intuition behind the choice is that
image-text trained encoders inherently possess the ability to capture visually
and semantically significant representations that can be later leveraged for
text-to-image generation. However, large language models (LLMs) can serve
as a viable alternative for encoding text in the context of the same task.
LLMs are exposed to a much more varied corpus of text, learn better and
more meaningful language relationships, and are generally larger and with
more parameters.

The diffusion model adopted in the paper is a standard conditional diffu-
sion model that makes use of classifier-free guidance (CFG). On this topic,
a solution to aberrations produced when using high guidance values is pro-
posed along with the new architecture. Using a high guidance can make the
x-prediction at timestep t x̂t0 exceed the bound [−1,1]. Sampling iteratively
from predictions that fall outside the bound causes the sampling process to
diverge and produce unnatural images. Two solutions are analyzed to tackle
this problem: Static Thresholding, in which the x-prediction is clipped to the
fixed range of [−1, 1], and Dynamic Thresholding, in which at each sampling
step, the threshold value s is set to a specific percentile absolute value in x̂t0.
If s is greater than 1, x̂t0 is then thresholded to the range of [−s, s] and di-
vided by s. This approach ensures that saturated pixels are pushed inwards,
effectively preventing oversaturation.

The last step, consisting in a super-resolution augmentation to improve
image quality, is performed using a cascaded diffusion model in which the
noise added at the previous step is passed onto the next one as condition-
ing. The resulting model is thus aware of how much denoising is necessary,
resulting in high-fidelity images and artefact removal.

3.12 ControlNet
With the development of large text-to-image models, generating a high-
quality, coherent image requires only a short prompt written by a user. Often
though, the generated image does not represent the idea that the user had

56

3 – Related Works

behind the prompt. As we are dealing with extremely large models though,
trained on upwards of 5 billion data 2.7, both finding a comparable dataset
to specialize the generation task and training the model itself becomes a
daunting task to tackle. ControlNet [48] is proposed as an architecture that
through specifically trained models manages to learn new conditioning pat-
terns for existing diffusion models. Rather than finetuning the existing model
directly, ControlNet clones an existing model into a "trainable copy" while
retaining the original model as frozen weights. By updating the gradient on
the cloned copy only, more aggressive task-specific learning can be performed
without losing the generation capabilities of the original model.

Figure 3.20: Stable Diffusion controlled using a canny edge map. First, from
the input image, a canny edge map is generated. The images generated on
the right make use of the map only, using it as additional input to guide the
generation process.

The way in which ControlNet adds conditioning is by interacting with the

57

3 – Related Works

frozen model through the input layers of its network blocks5, effectively in-
fluencing the whole neural network. Taking image x ∈ Rh×w×c with {h, w, c}
being height, width, and channels as an example, a neural block with param-
eters Θ that manipulates the image to obtain another output y is defined as
F(·, Θ):

y = F(x; Θ) (3.18)

For each network block with parameters Θ, ControlNet creates a copy Θc

while keeping the original parameters frozen. The connection between the
original and the cloned copy is then obtained through a novel layer called zero
convolution, i.e., "a 1×1 convolution layer with weights and biases initialized
with zeros" (from [48] pag. 4). Given the zero convolution operation Z()·; ·
and two network blocks {Θz1; Θz1} that are used to build a basic network on
top of which to apply ControlNet to:

yc = F(x; Θ) + Z(F(x + Z(c; Θz1); Θc); Θz2), (3.19)

where yc becomes the output of the neural network block. The difference
is shown in figure 3.21.

Figure 3.21: The approach to apply a ControlNet to an arbitrary neural
network block. The x, y are deep features in a neural network. "+" refers to
feature addition. "c" is an extra condition that we want to be added to the
network. From [48].

5A series of neural layers that are put together frequently to form a unit, such as
"resnet" block, "transformer" block, . . .

58

3 – Related Works

When applied with no weights, the ControlNet acts as if it wasn’t present,
allowing the original network to work regularly. As the training progresses,
the weights of the convolution are updated towards their optimised state.

Following is the application of a ControlNet to the denoising U-Net of
Stable Diffusion (figure 2.12, described in 2.7). First, the input to the Con-
trolNet has to be converted to a 64 × 64 feature space using an encoder
network E(·) that is trained along the full model to match the convolution
size. The resulting image-space conditions given input ci are cf = E(ci). The
ControlNet is then connected to each block starting from the middle one in
a way that requires no gradient computation in the original network.

Figure 3.22: ControlNet in Stable Diffusion. The grey blocks are the structure
of Stable Diffusion, the blue blocks are ControlNet. From [48].

Training is then performed. Given an image z0, a noisy image zt, timestep
t, text prompts ct, an original sample ϵ, and a task specific condition cf , the

59

3 – Related Works

overall learning objective L is given by:

L = Ez0,t,ct,cf ,ϵ∼N (0,1)[||ϵ− ϵθ(zt, t, ct, cf)||22] (3.20)

During training 50% of the prompts ct are dropped to encourage Control-
Net to learn from the provided conditioning (when no prompt is present the
encoder tends to learn more semantics from the input control map as a re-
placement). Along with the paper, several controlnets that allow for output
control were released, such as Canny Edge (which uses canny edge maps that
can be easily obtained from canny edge detection algorithms), Human Pose
(using human pose skeletons as described in [49]), Depth (which uses depth
maps, widely used in the 3D rendering field), and many more.

3.13 Storyboarding
In recent years a growing number of studies have started to focus on the
automation of video editing tasks. While these works, such as [50] and [51],
achieve impressive performance in the generation of a video, either given as
input a textual prompt [51], or a combination of textual prompt and image
[50], they focus on the generation of motion and do not take into account the
shot type used.

By having the ability to generate more scenographic shots, one of the many
applications that become available is text-to-image storyboard creation. Ex-
isting storyboarding tools either extend digital painting applications (e.g.
[52]), allow the user to place predetermined objects in a scene to compose
the desired frame (e.g. [53]), provide a simple interface to create a reference
of the desired scene (e.g. [54]).

For more deep learning-related approaches, StoryGAN [55] generates a se-
quence of images that describe a story written in a multi-sequence paragraph.
To do this, the proposed framework uses a sequential Generative Adversar-
ial Network [31] that consists of a Story Encoder, an RNN-based Context
Encoder, an image generator conditioned on the story context, and an im-
age/story discriminator that ensures consistency. Diffusion Models allow for
high-quality generation on multiple domains without needing specific train-
ing, and a better understanding of the conditional text input than GANs.
The conditioning based on previous frames could be a possible approach for
increased temporal consistency even in LDMs.

60

3 – Related Works

Dynamic Storyboarding [56] approaches the storyboarding task directly
by automatically composing scenes out of user inputs by simulating in a
virtual environment the scene and discriminating the best proposal out of the
available ones. This approach generates rich and complex dynamic (video)
storyboards, but it lacks the customizability and intuitiveness that Diffusion
Models offer through textual conditioning. Furthermore, by using ControlNet
3.12 trained networks it’s possible to add conditioning through more inputs
such as scribbles, which at the cost of a slightly higher effort can lead to
much better generations.

61

Chapter 4

Contribution

4.1 Objective, Intuition and Architecture
choice

Recently released models show an increasingly better ability to generate re-
alistic samples, and the ability to guide the generation process towards a
desired textual input, usually referred to as prompt, opens the doors to many
tasks that were previously considered unfeasible. Generating captivating im-
ages and "AI art" are just one of the many possibilities that text-to-image
diffusion models enable; the ability to insert novel and specific subjects or
styles without needing a full-fledged (and therefore expensive) finetune that
is enabled by Dreambooth and Textual Inversion 3.10 truly makes image
generation a full artistic medium, allowing any end user with a reasonably
(≈ 8GB VRAM) powerful setup to customize generation with his own sub-
ject. We decided to apply this technique to the cinematographic field, with the
goal of teaching to a pre-trained copy of Stable Diffusion (specifically stable-
diffusion-1-5 [2]) how to generate specific shot types: close shot, medium shot,
and long shot, as the scale of a shot is one of the most determining factors in
influencing the viewer perception of a subject [9]. Of the many applications
that this ability offers, the final product is then tested on the storyboarding
field: the ability to generate cinema-like shots that follow a given prompt
and shot type suit well the storyboarding task, allowing the user to quickly
generate a multitude of draft shots to choose from without having to rely on
hand-drawing them.

The intuition that I followed to perform this training is that a specific

62

4 – Contribution

shot type can be considered akin to a style, which LDMs were shown to be
capable of learning. The reasoning behind the intuition is the following: given
that an LDM is able to learn the drawing style of an artist, imagine that this
artist always painted their subjects as close shot portraits: when learning
their style, the learned concepts would include this idea that the subject is
always close to the camera.

Performing a full-fledged finetuning though would be unfeasible due to
resources and time limitations, and tests to confirm that the approach is fea-
sible would take longer than desirable. For that reason, I chose to test our
intuition using either Dreambooth or Textual Inversion. To further close in
into one of the two, other than the comparative results showing the better
performance of Dreambooth in its own paper [3], I looked at the statistics of
the top 100 models from Civitai1 (tab. 4.1) using the publicly available API,
and saw that over 90% of them are Dreambooth based models, solidifying our
choice for a finetuning technique. Another further optimization that emerged
after the release of Dreambooth was the implementation of Low Rank Adap-
tation 2.4 on top of it [30], which enables a faster and more efficient training
as well as a significantly lower (≥ ×0.1) model output size for minimal losses.

type number downloads
DreamBooth Checkpoint 70 5.575.099
Lora DreamBooth 26 1.670.288
Textual Inversion 4 348.187

Table 4.1: Total number and their respective downloads of the top 100 models
hosted on Civitai. "DreamBooth checkpoint" include also checkpoints merged
with a Lora Dreambooth.

Performing this finetuning is highly reliant on the training data used. As
such, building a high-quality dataset is a necessity to generate high-quality
samples and is one of the focuses of this work. My contributions are the
following:

• A methodical outlining of the process necessary to finetune a style in an
existing Latent Diffusion Model using state-of-the-art techniques, and a

1Civitai is one of the most popular checkpoint sharing-hosting sites that emerged after
the release of Stable Diffusion

63

https://civitai.com/
https://civitai.com/

4 – Contribution

specific application towards shot types.

• A methodical approach in building a dataset for the finetuning task
using external state-of-the-art tools, and its application towards building
a 127.000 large cinema shots dataset from which to pool the training
images.

• The application of the two aforementioned approaches to generate three
shot-types specific checkpoints (close shot, medium shot, and long shot)
and their application in the storyboarding task.

4.2 Method

Figure 4.1: A visual representation of the full pipeline. The output weights,
noted as ∆W , are used along their counterpart pre-trained model W ′ to
generate samples.

4.2.1 Data Preparation
Similarly to other deep-learning models, the data that is chosen for the train-
ing is one of the most determining factors of a good result [57]. Looking at

64

4 – Contribution

the available datasets of movie shots, not many are readily available or of
a high enough quality. CINESCALE for example has a very large amount
of data, but the labels are often wrong (and thus require a double check
by hand), the movies have lower resolution and quality than desirable, and
the dataset is generated by using every available frame, rather than the best
looking ones. For this reason, I decided to build a dataset ourselves start-
ing from all the available photos from [FILMGRAB]2, which contains high
quality, hand-picked movie frames. First, I built a scraper 4.2.1 to automati-
cally download all the available movie galleries from the site. Looking at the
html code of the page, each movie shots gallery has a consistent div of class
bwg_download_gallery that has a tag a that contains a link to download the
entire gallery as a zip file. By iterating over all the available movie galleries,
all shots were downloaded.

1
2 from urllib.request import urlopen
3 from bs4 import BeautifulSoup
4 import requests
5 from tqdm import tqdm
6 import pandas
7
8 # This is a previously scraped list of the available

movies in the format
9 # url , movie_name

10 filmgrab_movielist =
pandas.read_csv("filmgrab_movielist.csv").dropna ()

11 failedlist = []
12
13 # Iterates over all the movies using tqdm to keep track

of the progress
14 for index , row in tqdm(filmgrab_movielist.iterrows (),

total=filmgrab_movielist.shape[0], desc=f’Downloading␣
Movie␣shots ’):

15 url = row["url"]
16
17 # Two except statemets , one external for general

errors , which keep track of the failed

2Open source for research purposes.

65

https://cinescale.github.io/
https://film-grab.com/

4 – Contribution

18 # movies. One internal in case the page is not
loaded correcly. Only 12 movies failed.

19 try:
20 filename = url.split("/")[-2]
21 try:
22 page = urlopen(url)
23 except:
24 print(f"Error␣opening␣the␣URL␣{url}")
25
26 # The html parser BeautifulSoup is used.
27 soup = BeautifulSoup(page , ’html.parser ’)
28
29 # There is a consistent element in the pages

that allows to download a .zip file
30 # of the movie shots gallery. We look for that

and use requests to download the zip
31 content = soup.find(’div’,

class_="bwg_download_gallery").a["href"]
32 open(f"filmgrab_zips /{ filename }.zip",

"wb").write(requests.get(content).content)
33 except:
34 failedlist.append(url)
35 continue
36
37 print(failedlist)

The collected shots totalled 127.000 from 2166 movies, with 12 failures in
the scraping phase which I ignored as the collected frames were more than
enough. Content-aware cropping [58] was applied to reduce the images to
the maximum training resolution of 768 × 768 pixels without applying size
reduction that would distort the images. The same process could be tested
using the Seam Carving [59] algorithm, which wasn’t considered during the
first preprocessing. From the original images, all the pictures with less than 3
colour channels were pruned, as well as the ones coming from movies released
before 2013 to guarantee a certain degree of image quality and resolution. Out
of the remaining 41750 shots from 729 movies, only 600 (200 per shot type)
were then to be selected. As the number of required pictures is relatively
small, shot-type labelling was performed by hand, as there is no classifier
with 100% accuracy, and the images would have to be checked anyway. Ran-
domization was achieved by sampling single shots from all the available ones

66

4 – Contribution

and by assigning a label, thus adding it to the training set, if and only if
the quality and crop were deemed to be appropriate. As the training set is
small (compared to the size of the LAION-5B [28] dataset that was used for
the original training), the finetuning is very sensitive to bad samples. A good
movie variety was kept to not teach unwanted subjects.

Figure 4.2: Some examples of the training data pairs used.

The final step was adding textual captions. To aid in the captioning pro-
cess, the Vision-Language model blip2-flan-t5-xl [60] was used to generate
a first CLIP 2.3 style caption which was subsequently checked by hand; as
the learning process consists in comparing samples generated with a cap-
tion to the original image that caption was assigned to, by describing the
contents of the training image thoroughly the model "picks up" the missing
element, which in our case would be the shot type. The Final training data
is composed of 3 subsets of 200 image-caption pairs. The same procedure can

67

4 – Contribution

be repeated for any starting dataset of any size, as the number of required
pictures is no more than 200, in order to teach a different style or a subject.

4.2.2 Model Training
Following an analysis of the state of the art [3], a consideration of the available
resources, and an analysis of user’s preference 4.1, I decided to use Dream-
booth 2.8 as our finetuning approach of choice. The idea behind DreamBooth
is to, given a few input images (≈ 3− 5), bind the subject to a unique iden-
tifier such that when it is used in the prompt, along with the class it belongs
to (e.g. "A [V] dog"), the prior knowledge of the class is used along the
new information to reconstruct the subject. A "new autogenous class-specific
prior preservation loss is introduced on top of the regular training objective
to encourage diversity and counter language drift" (from [3] pag. 1). During
training, the model is supervised with its own generated samples in order to
retain the prior knowledge of the class and to use it along with the knowledge
of the subject instance to generate new samples.

By itself, DreamBooth already manages to significantly decrease the cost
of adding a subject to an existing model. But, as a further optimization, I
used Low Rank Adaptation 2.4 applied to the DreamBooth process (following
the implementation found in [30]). LoRa allows efficient finetuning even in
low-power devices while keeping a high-quality end result: instead of training
the entire model, LoRa works by finetuning the residual: i.e. train ∆W rather
than W ′.

W ′ = W + ∆W (4.1)

Through matrix decomposition it’s then possible to further decrease the
number of parameters to finetune, hence reducing the size of the output
model by an even larger degree.

∆W = ABT (4.2)

The attention layers parameters (Q, K, V, and O seen in figure 2.12) of
the attention layers in the denoising U-Net of Stable Diffusion are enough to
tune to obtain the desired output.

Given an existing diffusion model W , a LoRa of it is applied on top in the
form of W ′ = W + α∆W : when α is 0 the model is the same as the original
one; when α is 1 the model is the same as the fully finetuned one. By applying
this form of optimization to DreamBooth it’s possible to achieve two major

68

4 – Contribution

goals: faster and less complex training, and a lightweight and more versatile
output.

Once the training phase is finished, an output file is produced which con-
tains the weights learned during training. The model is then used alongside
the original one that was used as base during the finetuning process (in
this case stable-diffusion-1-5) to synthesize images, but any other checkpoint
based on the same model could be used.

Figure 4.3: prompt: a high-quality picture of a woman holding a cup of coffee
in front of a brick building <lora:lora_cs:1>

The original Dreambooth paper binds a concept, such as a person or a
style, to a unique unusual class identifier. One of the benefits of training using
Low Rank Adaptation is that it’s possible to specify how much our trained
weights influence the generation process through the parameter α. As such,
I decided to skip the unique identifier binding phase and just finetune the
model towards our desired goal. The consequence of this is that when used,
the generation is always in the trained style, which would be a detriment if
the output file was expensively large as switching between and keeping several
≈ 6GB files can become daunting, but as the output is lightweight and easy
to switch between one another, we can let the model generate only in one
style, or in one shot type in this case, and just switch between finetunings
when necessary, removing them altogether when not.

The way a ∆W set of weights is specified to be added to a base model W

69

4 – Contribution

in the generator script I used is directly in the prompt. By using the control
sequence <lora:loraname:alpha> one can specify which weights to add and
with what α.

The caption in figure (4.3) is the prompt that was used to generate the
picture. The token <lora:lora_cs:1> instructs the generator script to use the
LoRa lora_cs with α = 1.

4.2.3 Generation
Once the model is successfully trained, the generative process can begin.
Generation is performed by providing the model with a series of parameters
along with a textual prompt describing the scene. Two kinds of prompt can be
provided: a regular prompt and a ’negative prompt’. The generative process
works by guiding the generation towards the text, or rather the text encod-
ings, specified in the prompt field as done during training; at the same time,
the generation is moved away from the encodings obtained from the negative
prompt field similarly to how classifier free guidance works [12]. Usually, a
negative prompt is not required, and was mostly not used in our experiments,
but in more advanced generation processes it can be key in generating artis-
tic samples. Prompt engineering3 takes a big role in the generative process,
with certain prompts such as "high quality" and "masterpiece" guiding the
generated image towards more aesthetically pleasing results. This is a direct
consequence of the training: as LAION-5B [28] is based on images scraped
from the web, their description can often include qualitative words (imagine
a wallpaper site where the description of the wallpaper is given by its tags,
high-resolution would be an indicator of a high-quality wallpaper). By using
these tokens the generation is influenced towards these training images, usu-
ally improving the end result. The most meaningful generation parameters
are:

• Sampler: at each step of the diffusion process a certain amount of noise
is predicted and subtracted from the image. The sampler takes care of
both computing the predicted noise and scheduling the noise level at
each sampling step so that an equally noisy image can be sampled at

3Prompt Engineering is to craft specific textual prompts that when used as input in
large language models or text-to-image diffusion models improve the output by narrowing
the output field or ’hacking’ the generative process.

70

4 – Contribution

that step. There are many available with different benefits: those based
on traditional ODE (Ordinary Differential Equation) solvers, such as
Euler and Heun [61], DPM++ [62] enhanced with the suggestions from
[63], DDIM [64], Furthermore, there exist a class of samplers named
ancestral which add a low amount of noise after each iteration to further
stimulate the generative process but might fail in converging consistently.

• Steps: changes how much noise is subtracted from the image at each
step, the larger the number of steps the slower the generation process is,
but finer details might be developed this way. Different samplers require
different amounts of steps to perform at similar levels.

• CFG Scale: short for Classifier Free Guidance scale, classifier free guid-
ance is a technique that moves the generated samples away from random
unlabeled ones, essentially making the generated image adhere more to
the provided prompt.

• Seed: determines the initial noise map, different seeds will result in
different images.

Finally, the value α that determines how much the ∆W model weights
are applied takes an important role in the generative process. As there is no
deterministically perfect way to train a Lora DreamBooth model, sometimes
lowering how much influence the finetune has can improve results.

71

Chapter 5

Results

This chapter contains an analysis of the results obtained. The testing setup
closely follows the one proposed in the original Dreambooth paper [3], looking
at the CLIP-T and DINO metrics, as well as using a human evaluation survey.
Evaluating the performance of a latent diffusion model numerically can be
awkward as the metrics that can be used to measure image similarity and
adherence don’t take into consideration qualitative aspects, which is why I’ll
show visual examples and human-based metrics.

5.1 Training Setup

The final training was performed using the process described in 4.2; the
machine used for training was a regular home desktop with an 8GB RTX
3070, 16GB RAM and a 6-core Ryzen 5 processor, although available VRAM
acted as the major bottleneck. Training took 7 hours for each model for a
total of 21 hours with batch size 2. Due to VRAM limitations in the training
machine, the images were used at a lower resolution of 512 × 512, which
is still an accepted training resolution for Stable Diffusion and should only
cause the output to be of lower quality. The full training parameters are
reported in table 5.1, the learning rate and text encoder learning rate are the
ones proposed in the original LoRa implementation [4][30] (the text encoder
learning rate is half of the u-net learning rate), the rest are the result of
empirical experimentation and other users experiences. As far as I know,
there are no optimal parameters for training, and the matter is still in active
development.

72

5 – Results

resolution 512× 512
unet learning rate 1e− 4
text encoder learning rate 5e− 5
network alpha/dim 172
optimizer AdamW8Bit
learning rate scheduler cosine with 10% warmup
epochs 15
steps per image 15
images 200
total steps per epoch 3000
total steps 45000

Table 5.1: The training parameters used. The script used for training can be
found in [30].

5.2 Dataset

To compute the metrics, a testing dataset was generated following the same
process described in 4.2.1. Out of the same subset of 41750 filtered and
resized shots, 1800 shots were sampled with an even distribution between the
three shot types. For each sample, a caption was generated using BLIP-2 [60]
with no supervision. The image-caption pairs were then randomly sampled
to generate two pictures with the same starting seed, one using the baseline
model and one using ours, 1500 times for a total of 500 pairs of generated
shots per shot type. For parameters, DPM++ SDE Karras was chosen as it is
both one of the most used1 and the one with which I managed to generate
the most visually pleasing outcomes. The steps were set at 16, slightly above
the suggested value for the sampler of 15, and the cfg_scale was lowered to
6 from the default 7 to improve image quality over prompt adherence.

1Looking once again at the API collected data from Civitai [65], which also hosts users
generations, DPM++ SDE Karras is used in 23.4% of the generations, overcomed only by
Euler a and DPM++ 2M Karras, both of which performed qualitatively worse.

73

5 – Results

sampler DPM++ SDE Karras
steps 16
seed random
cfg_scale 6
prompt a high-quality [shot_type] picture of [caption]
size 512× 512

Table 5.2: The pararameters used for generation during testing

5.3 Parameters Effect

In this section, I’ll discuss the effect that the generation parameters have
showing contextual examples. Unless differently specified, the setup is the
same as described above, with one of the parameters being changed for each
set of images in the x-axis and the three trainings in the y-axis. The prompt
is the same for every picture: "A high-quality picture of a man with a beard
drinking coffee at the table <lora:loraname:1>". Each set of generations took
no longer than 3 minutes.

5.3.1 Sampler

Figure 5.1: Comparison between different samplers. The generation is quite
similar for every sampler

74

5 – Results

Changing the sampler boils down more to a matter of personal preference
rather than one of noticeable difference, as it only changes how fast con-
vergence is reached influencing the amount of noise being removed at each
step. From a personal experience, DPM++ SDE Karras performed usually better
when compared to the other ones (and it is also one of the most recent), and
UniPC [66] (which was specially developed for fast convergence) performed
best at low step counts (≈ 8), but the overall output at a step count that
guarantees convergence is quite similar. A comparison is shown in figure 5.1

5.3.2 Steps

Figure 5.2: The output of a generation with an increasing number of steps.
After 24 steps any difference between generations is hardly noticeable.

Increasing the number of generation steps usually improves the quality of
the generated images, but only up to a limit. Even for the most demanding
samplers such as DPM++ the suggested amount of steps is around 15 to 20.
After 24 steps, the differences between pictures is hardly noticeable, and are
mostly due to the slight amount of noise that is added between steps. Figure
5.2 shows a comparison between different step sizes while keeping the other
generation parameters equal.

75

5 – Results

5.3.3 Seed

Figure 5.3: The output of a generation with a varying seed. As expected,
changing the seed can radically change the generation output. Navigating
the "seed space" is often a technique adopted when generating pictures to
pick the best one to work on.

Changing the seed means changing the initial noise map the reverse diffusion
process is carried on. As a result of a changing seed, even if every other pa-
rameter remains the same, the image can wildly change between styles, poses
and elements displayed. In a simple example like the one of figure 5.3 we can
see 5 different backgrounds and slightly different subjects (although as previ-
ously said the similarity between subjects is a byproduct of the finetuning).
One procedure that is usually adopted during the process of generating AI
art consists in generating many pictures with different seeds at a low step
count (≈ 10) and then selecting the best one to refine by slightly altering the
prompt, the other generation parameters, and through inpainting2.

2Inpainting means to select an area to generate into using the surroundings as condi-
tioning, as described in 3.8.

76

5 – Results

5.3.4 Classifier Free Guidance Scale

Figure 5.4: Comparison between different CFG scale values. The higher the
CFG the more aberrations we see, the lower the value, the blurrier and further
from the prompt the generation.

By changing the value of the Classifier Free Guidance Scale (CFG) we are
changing how much the picture is moved away from random generations. It
was introduced in [12] and used for the first time in a diffusion model in
GLIDE [43] where it is represented by the term s in (5.1).

µ̂(xt|y) = µθ(xt|y) + s · Σθ(xt|y)∇xt log pϕ(y|xt) (5.1)

In the generated pictures 5.4, at low CFG values the image is blurrier
and might miss some elements (the top left picture has no cup to drink
coffee from), but at too high scale the image starts to show aberrations and
excessive contrast. Usually, a value around 6/7 shows the best of both worlds,
leaving the model enough room to generate correctly while guiding it towards
the prompt. A higher CFG is often more desirable for more complex prompts
where we require the model to follow the input more closely.

77

5 – Results

5.3.5 Alpha

Figure 5.5: A comparison between the three produced finetunings at different
levels of α (y-axis). As α increases, the generated picture takes more and
more aspects of the desired shot type. By changing the finetuning used, we
can see a different picture, more related to the corresponding shot type, being
generated.

78

5 – Results

5.4 Metrics
To get a quantitative result two metrics were adopted following the footsteps
of the original DreamBooth [3] implementation testing approach. The first
one is CLIP-T [20], the average pairwise cosine similarity (5.2) between the
CLIP embeddings of the generated image and the prompt that generated it.
The second metric, DINO [67], measures the average pairwise cosine similar-
ity between the ViTS/16 DINO3 embeddings of generated and real images,
essentially measuring how similar the generated image is to its real counter-
part. To compute these metrics, the Huggingface library transformers was
used to fetch and compute the embeddings.

Pairwise Cosine Similarity: cos(θ) = A ·B
||A||||B||

=
qn
i=1 AiBiñqn

i=1 A2
i

ñqn
i=1 B2

i

(5.2)
The results shown in 5.3 show a slight (although significant for the consid-

ered metrics) increase for both CLIP-T and DINO scores over the baseline
model. The lower increase seen in CLIP-T compared to DINO is justified as
the model doesn’t learn to represent more concepts/subjects (as CLIP looks
at the tokens present in the picture rather than their composition I don’t
expect an improvement in this field) with the finetuning, but instead learns
to represent them closer to the training image from a scale perspective. The
section 5.4.1 expands on the shortcomings of the CLIP-T metric. From a
qualitative analysis, we see that the finetuned model is more often able to
generate pictures that are semantically close to the prompt used to gener-
ate them, sometimes even generating items present in the prompt that the
baseline model ignored (e.g. one person when two were specified, a car not
being present, etc. . .), overall showing a greater scene composition capability
compared to the baseline. Of course, as there is no free lunch [68], although
not tested on other tasks we expect the finetuned model to perform worse
on other generative tasks as it loses some of its generalization capabilities; in
the generated samples, for example, we can see that it often generates faces
that are similar between each other.

As a secondary and ablation study, 600 more pairs of pictures were gener-
ated using the same setup as before but removing any information relative to

3A pretrained vision transformer used for classification tasks.

79

https://huggingface.co/

5 – Results

CLIP-T DINO
baseline 0.3221 0.4163
ours 0.3269 0.4989

Table 5.3: Results for the CLIP-T and DINO metrics on the 1500 pairs test.

the shot type from the text conditioning. Looking at the resulting scores 5.4
We see a slight decrease in both CLIP-T and DINO scores, suggesting that
the generation is not influenced much by specifying the desired shot type in
the prompt.

CLIP-T DINO
baseline 0.3214 0.4014
ours 0.3234 0.4803

Table 5.4: Results for the CLIP-T and DINO metrics on the ablation test.

5.4.1 CLIP-T score shortcomings

Figure 5.6 shows three examples where there is a significant difference be-
tween the CLIP-T scores of the baseline and finetuned generated pictures
(> 0.05). Taking as an example the third pair, the baseline picture got a
CLIP-T score of 0.36, while the finetuned one got 0.27, which considering
the nature of the score (that computes the similarity between the text and
image embeddings) wouldn’t be the expected result, as the baseline picture
does not include the motorcycle specified in the prompt. The trend is reversed
for the DINO metric which, for the pairs shown below, is always greater for
the finetuned generation.

80

5 – Results

Figure 5.6: Samples where CLIP-T shows a discrepancy between the expected
result and actual result. The associated prompt is shown at the bottom of
the picture and the relative scores in the tables on the right.

5.5 Qualitative Survey

Using the same setup, I conducted a survey on human subjects. Each subject
was shown a total of 36 pairs of pictures A and B generated with the same
setting and the same prompt, one from the baseline model and one from

81

5 – Results

the finetuned one. Whether a picture was labelled A or B was randomized.
A very light form of supervision was applied to the generated samples to
ensure the images were safe for everyone. Each pair of pictures was shown
along with its associated shot type and generator prompt. For each pair of
pictures, three questions were asked:

1. Which picture do you like most?

2. Which picture is closer to the associated shot type?

3. Which picture is closer to the associated prompt?

The possible answers for each question were A, B, or neither/same in
case the two images were considered equal in a specific aspect. A total of
55 subjects with no required domain knowledge and a high degree of reli-
ability answered the survey and the results are reported in 5.5. The data
collected shows no anomalies such as subjects answering all As. We can see
that even from human evaluations, my approach generates pictures that are
more pleasing, closer to the associated shot type and to the prompt in close
to or more than half of the cases.

Question baseline ours neither/same
Which picture

do you like most? 26.41 57.53 16.06

Which picture is closer
to the associated shot type? 20.35 56.82 22.83

Which picture is closer
to the associated prompt? 19.95 49.6 30.45

Table 5.5: Results collected from a survey conducted on 55 subjects.
The score are expressed as a percentage of the total number of answers.

Except for picture likeability, we can see that the baseline model obtained
the lowest score of the three, suggesting that in most of the "worst cases",
the generation is of equal quality to the non-finetuned one. Comparing the
survey to the CLIP-T and DINO metrics, the results are in line with each
other. The higher likeability and shot-type closeness are directly related to
DINO and they are noticeably higher than prompt closeness and CLIP-T
when compared to the baseline.

82

5 – Results

Figure 5.7: Results shown in table 5.5 subdivided by shot type.

Looking at the scores subdivided by shot type in 5.7 we can see the largest
difference in scale adherence compared to the baseline for the long shot fine-
tuning. Although shot type adherence doesn’t register such a large difference
for the close shot finetuning, we can see a huge difference in picture likeability
and prompt adherence, supporting the claim of improved image quality (in
terms of generating a cinema-like shot) when using our approach.

5.6 Storyboarding

As a practical application of my method, we decided to test my approach
for the storyboarding task. Figure 5.8 shows on the top a reference image
(provided to entrants of the BBC’s ’my place my space’ competition) and
on the bottom the equivalent picture generated using my finetunings and
the prompt that was used to generate it. By generating cinematic shots,
and empowering the generation with the ability to specify a shot type, the
result is a storyboard with realistic and expressive images that easily convey
the desired shot. Furthermore, the entire process of generating the shots
took around 20 minutes, faster than it would take to generate sketches of
comparable expressiveness. The shots shown were picked by generating 30/40
shots with a random seed and then by picking the best one. A simple caption
encapsulating the shot was enough to generate similar images to the one in
the reference.

In figure 5.9 I instead used a more detailed storyboard and enhanced it
using ControlNet canny edge conditioning 3.12. A preprocessor detects the
edges from the original image and uses them, along with the prompt, to
condition the generation. The ability to influence the output to this degree
allows multiple creation modalities, depending on the effort and the quality
of the product that is needed.

83

5 – Results

Figure 5.8

84

5 – Results

Figure 5.9

85

Chapter 6

Conclusions

First of all, this thesis work is presented as a compendium of the recent de-
velopments of image synthesis models, going in-depth into all the techniques
that contributed to the development of the modern Diffusion Models. As
my main contribution, I present an approach that uses novel techniques, re-
leased to the public during the last year, to approach a task which has not
been approached much by the literature, generating cinema-like shots to aid
in the storyboarding process. The proposed approach uses a finetuned ver-
sion of Stable Diffusion to cater for the generation process towards this goal:
by using a limited amount of shot-type labelled movie frames along with a
brief description of the contents of it, I managed to teach specific shot types
through the use of Dreambooth, making the learning process even more opti-
mised by using Low Rank Adaptation, allowing the whole approach to run in
a reasonable time even on a low power device compared to the industry stan-
dard. Our training results in qualitatively more pleasing output images, that
more often adhere to the given prompt and shot type, as shown by a survey
conducted on human subjects. For non-qualitative metrics, we test our ap-
proach using a similar setup to the one proposed in [3] and manage to obtain
an increase in both the CLIP-T and DINO scores, with the latter showing
a noticeable increase compared to the baseline. As a means of obtaining the
required training images, I showed a detailed and easily reproducible way
to create a dataset of images to use for training, which offers the possibility
to easily swap the base dataset to teach a specific desired style. Finally, I
showed the effects that the different generation parameters have in the gen-
erative process, and a comparison between a traditional sketch storyboard
and one generated using my approach (which has much more expressiveness

86

6 – Conclusions

and can be used by anyone), as well as a ControlNet enhanced storyboard
(which manages to add expressiveness to an existing detailed storyboard in
little time but requires a little extra knowledge).

87

Chapter 7

Future Developments

The field of image synthesis is still one that holds much potential for applica-
tions and developments, with new techniques being released and developed
as we speak. While writing this work for example, a paper proposing a use
for ControlNet to convert videos from one style to the other (such as realis-
tic to anime) [69] released, showing a plausible solution for one of the most
difficult tasks in image synthesis: subject and temporal consistency between
frames. Regarding this work, there are several possible future developments.
First, finetuning using a more powerful GPU is due: as the collected images
are all in the highest possible resolution of 768 × 768, using a higher reso-
lution would lead to an immediate improvement in image quality without
further work necessary. The training parameters so far are mostly derived
from empirical experience: the chosen parameters for training were decided
through empirical experimentation and other user’s experience, as there is no
standard in the matter; a full grid search to optimize them would take a lot
of time and resources, as such developments in the literature might lead to
an improvement in the training results. Although it was deemed unnecessary
as Dreambooth was shown to achieve state-of-the-art results, a comparison
between our approach, full finetuning, and textual inversion might bring to
light interesting results. Finally, an architecture to automatically build a sto-
ryboard out of a movie script might be developed using event-extraction:
[70] proposes an approach to use an LLM to extract the relevant events out
of an existing movie script which could be key in enabling this. Due to its
recency, no code or model was made available yet, but by combining it with
our approach, a more complete tool would be possible.

88

Bibliography

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Prob-
abilistic Models. 2020. arXiv: 2006.11239 [cs.LG] (cit. on pp. v, 1, 20,
21, 49).

[2] Runaway ML Stability AI. Stable Diffusion release blog post. https://
stability.ai/blog/stable-diffusion-public-release. (accessed
23-May-2023). 2022 (cit. on pp. v, 1, 28, 62).

[3] Nataniel Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffu-
sion Models for Subject-Driven Generation. 2023. arXiv: 2208.12242
[cs.CV] (cit. on pp. v, 29–31, 63, 68, 72, 79, 86).

[4] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language
Models. 2021. arXiv: 2106.09685 [cs.CL] (cit. on pp. v, 18, 19, 72).

[5] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.
03762 [cs.CL] (cit. on pp. 1, 4, 8, 10).

[6] ChatGPT. https://openai.com/blog/chatgpt (cit. on p. 1).
[7] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation

with CLIP Latents. 2022. arXiv: 2204.06125 [cs.CV] (cit. on pp. 1,
51, 52).

[8] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models
with Deep Language Understanding. 2022. arXiv: 2205.11487 [cs.CV]
(cit. on pp. 1, 54, 56).

[9] Brendan Rooney and Katalin E. Balint. “Watching More Closely: Shot
Scale Affects Film Viewers Theory of Mind Tendency But Not Ability”.
In: Frontiers in Psychology 8 (2018). issn: 1664-1078. doi: 10.3389/
fpsyg.2017.02349 (cit. on pp. 2, 62).

89

https://arxiv.org/abs/2006.11239
https://stability.ai/blog/stable-diffusion-public-release
https://stability.ai/blog/stable-diffusion-public-release
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2205.11487
https://doi.org/10.3389/fpsyg.2017.02349
https://doi.org/10.3389/fpsyg.2017.02349

BIBLIOGRAPHY

[10] Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on
Image Synthesis. 2021. arXiv: 2105.05233 [cs.LG] (cit. on pp. 4, 5,
49, 50).

[11] Katherine Crowson et al. VQGAN-CLIP: Open Domain Image Gener-
ation and Editing with Natural Language Guidance. 2022. arXiv: 2204.
08583 [cs.CV] (cit. on pp. 4, 51).

[12] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance.
2022. arXiv: 2207.12598 [cs.LG] (cit. on pp. 5, 49, 70, 77).

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Ma-
chine Translation by Jointly Learning to Align and Translate. 2016.
arXiv: 1409.0473 [cs.CL] (cit. on p. 7).

[14] Peter Bloem. “Transformers From Scratch”. In: (2019). url: https:
//peterbloem.nl/blog/transformers/ (cit. on p. 8).

[15] Prajit Ramachandran et al. Stand-Alone Self-Attention in Vision Mod-
els. 2019. arXiv: 1906.05909 [cs.CV] (cit. on pp. 11, 12).

[16] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the
Relationship between Self-Attention and Convolutional Layers. 2020.
arXiv: 1911.03584 [cs.LG] (cit. on pp. 11, 12, 15).

[17] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV]
(cit. on p. 12).

[18] Qiang Wang et al. “Learning Deep Transformer Models for Machine
Translation”. In: Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association for Computational
Linguistics, 2019, pp. 1810–1822. doi: 10.18653/v1/P19-1176. url:
https://aclanthology.org/P19-1176 (cit. on p. 13).

[19] Alexei Baevski and Michael Auli. Adaptive Input Representations for
Neural Language Modeling. 2019. arXiv: 1809.10853 [cs.CL] (cit. on
p. 13).

[20] Alec Radford et al. Learning Transferable Visual Models From Natural
Language Supervision. 2021. arXiv: 2103.00020 [cs.CV] (cit. on pp. 14,
15, 51, 52, 79).

[21] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV] (cit. on p. 16).

90

https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2204.08583
https://arxiv.org/abs/2204.08583
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/1409.0473
https://peterbloem.nl/blog/transformers/
https://peterbloem.nl/blog/transformers/
https://arxiv.org/abs/1906.05909
https://arxiv.org/abs/1911.03584
https://arxiv.org/abs/2010.11929
https://doi.org/10.18653/v1/P19-1176
https://aclanthology.org/P19-1176
https://arxiv.org/abs/1809.10853
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1512.03385

BIBLIOGRAPHY

[22] David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. 2016. arXiv:
1609.09106 [cs.LG] (cit. on p. 18).

[23] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020.
arXiv: 2005.14165 [cs.CL] (cit. on pp. 18, 47, 54).

[24] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic Di-
mensionality Explains the Effectiveness of Language Model Fine-Tuning.
2020. arXiv: 2012.13255 [cs.LG] (cit. on p. 20).

[25] Lilian Weng. “What are diffusion models?” In: lilianweng.github.io (2021).
url: https://lilianweng.github.io/posts/2021-07-11-diffusion-
models/ (cit. on p. 21).

[26] Robin Rombach et al. High-Resolution Image Synthesis with Latent Dif-
fusion Models. 2022. arXiv: 2112.10752 [cs.CV] (cit. on pp. 24, 27,
54).

[27] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transform-
ers for High-Resolution Image Synthesis. 2021. arXiv: 2012 . 09841
[cs.CV] (cit. on pp. 26, 44).

[28] Christoph Schuhmann et al. LAION-5B: An open large-scale dataset for
training next generation image-text models. 2022. arXiv: 2210.08402
[cs.CV] (cit. on pp. 28, 67, 70).

[29] Runaway ML Stability AI. Stable Diffusion V2 release blog post. https:
//stability.ai/blog/stable-diffusion-v2-release. (accessed
23-May-2023). 2022 (cit. on p. 29).

[30] Simo Ryu aka cloneofsimo. lora. https://github.com/cloneofsimo/
lora. 2023 (cit. on pp. 31, 63, 68, 72, 73).

[31] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML] (cit. on pp. 33, 60).

[32] Thalles Santos Silva. “A Short Introduction to Generative Adversar-
ial Networks”. In: https://sthalles.github.io (2017). url: https : / /
sthalles.github.io/intro-to-gans/ (cit. on p. 33).

[33] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2021.
arXiv: 2003.05991 [cs.LG] (cit. on p. 34).

[34] Lilian Weng. “From Autoencoder to Beta-VAE”. In: lilianweng.github.io
(2018). url: https://lilianweng.github.io/posts/2018-08-12-
vae/ (cit. on pp. 35–37, 42).

91

https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2012.13255
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2210.08402
https://stability.ai/blog/stable-diffusion-v2-release
https://stability.ai/blog/stable-diffusion-v2-release
https://github.com/cloneofsimo/lora
https://github.com/cloneofsimo/lora
https://arxiv.org/abs/1406.2661
https://sthalles.github.io/intro-to-gans/
https://sthalles.github.io/intro-to-gans/
https://arxiv.org/abs/2003.05991
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/

BIBLIOGRAPHY

[35] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
2022. arXiv: 1312.6114 [stat.ML] (cit. on p. 35).

[36] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In:
The Annals of Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.
1214/aoms/1177729694. url: https://doi.org/10.1214/aoms/
1177729694 (cit. on p. 36).

[37] Scott Reed et al. Generative Adversarial Text to Image Synthesis. 2016.
arXiv: 1605.05396 [cs.NE] (cit. on pp. 38, 39).

[38] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator
Architecture for Generative Adversarial Networks. 2019. arXiv: 1812.
04948 [cs.NE] (cit. on pp. 39, 41).

[39] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural
Discrete Representation Learning. 2018. arXiv: 1711.00937 [cs.LG]
(cit. on pp. 41, 43).

[40] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Di-
verse High-Fidelity Images with VQ-VAE-2. 2019. arXiv: 1906.00446
[cs.LG] (cit. on pp. 44, 47).

[41] Aditya Ramesh et al. Zero-Shot Text-to-Image Generation. 2021. arXiv:
2102.12092 [cs.CV] (cit. on p. 47).

[42] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine
Translation of Rare Words with Subword Units. 2016. arXiv: 1508 .
07909 [cs.CL] (cit. on p. 47).

[43] Alex Nichol et al. GLIDE: Towards Photorealistic Image Generation
and Editing with Text-Guided Diffusion Models. 2022. arXiv: 2112.
10741 [cs.CV] (cit. on pp. 49, 77).

[44] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Prob-
abilistic Models. 2021. arXiv: 2102.09672 [cs.LG] (cit. on p. 49).

[45] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem”. In: ed. by
Gordon H. Bower. Vol. 24. Psychology of Learning and Motivation.
Academic Press, 1989, pp. 109–165. doi: https://doi.org/10.1016/
S0079-7421(08)60536-8. url: https://www.sciencedirect.com/
science/article/pii/S0079742108605368 (cit. on p. 53).

92

https://arxiv.org/abs/1312.6114
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/1605.05396
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2102.09672
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368

BIBLIOGRAPHY

[46] Rinon Gal et al. An Image is Worth One Word: Personalizing Text-to-
Image Generation using Textual Inversion. 2022. arXiv: 2208.01618
[cs.CV] (cit. on pp. 53, 54).

[47] Colin Raffel et al. Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer. 2020. arXiv: 1910.10683 [cs.LG]
(cit. on p. 54).

[48] Lvmin Zhang and Maneesh Agrawala. Adding Conditional Control to
Text-to-Image Diffusion Models. 2023. arXiv: 2302.05543 [cs.CV] (cit.
on pp. 57–59).

[49] Zhe Cao et al. Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields. 2017. arXiv: 1611.08050 [cs.CV] (cit. on p. 60).

[50] Eyal Molad et al. “Dreamix: Video diffusion models are general video
editors”. In: arXiv preprint arXiv:2302.01329 (2023) (cit. on p. 60).

[51] Uriel Singer et al. “Make-A-Video: Text-to-Video Generation without
Text-Video Data”. In: ArXiv abs/2209.14792 (2022) (cit. on p. 60).

[52] Storyboarder. https://wonderunit.com/storyboarder/ (cit. on p. 60).
[53] Storyboardthat. https://www.storyboardthat.com/ (cit. on p. 60).
[54] Studiobinder. https://www.studiobinder.com/storyboard-creator/

(cit. on p. 60).
[55] Yitong Li et al. StoryGAN: A Sequential Conditional GAN for Story

Visualization. 2019. arXiv: 1812.02784 [cs.CV] (cit. on p. 60).
[56] Anyi Rao et al. “Dynamic Storyboard Generation in an Engine-based

Virtual Environment for Video Production”. In: ArXiv abs/2301.12688
(2023) (cit. on p. 61).

[57] Lukas Budach et al. The Effects of Data Quality on Machine Learning
Performance. 2022. arXiv: 2207.14529 [cs.DB] (cit. on p. 64).

[58] jwagner. GitHub - jwagner/smartcrop.js: Content aware image crop-
ping — github.com. https://github.com/jwagner/smartcrop.js.
[Accessed 14-Jun-2023] (cit. on p. 66).

[59] Shai Avidan and Ariel Shamir. “Seam Carving for Content-Aware Image
Resizing”. In: SIGGRAPH 26 (2007). doi: 10.1145/1276377.1276390
(cit. on p. 66).

93

https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/2208.01618
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/1611.08050
https://wonderunit.com/storyboarder/
https://www.storyboardthat.com/
https://www.studiobinder.com/storyboard-creator/
https://arxiv.org/abs/1812.02784
https://arxiv.org/abs/2207.14529
https://github.com/jwagner/smartcrop.js
https://doi.org/10.1145/1276377.1276390

BIBLIOGRAPHY

[60] Junnan Li et al. BLIP-2: Bootstrapping Language-Image Pre-training
with Frozen Image Encoders and Large Language Models. 2023. arXiv:
2301.12597 [cs.CV] (cit. on pp. 67, 73).

[61] In: Numerical Methods for Ordinary Differential Equations. John Wiley
and Sons, Ltd, 2016. Chap. 3, pp. 143–331. isbn: 9781119121534. doi:
https://doi.org/10.1002/9781119121534.ch3. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/9781119121534.
ch3. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119121534.ch3 (cit. on p. 71).

[62] Cheng Lu et al. DPM-Solver++: Fast Solver for Guided Sampling of
Diffusion Probabilistic Models. 2023. arXiv: 2211.01095 [cs.LG] (cit.
on p. 71).

[63] Tero Karras et al. Elucidating the Design Space of Diffusion-Based Gen-
erative Models. 2022. arXiv: 2206.00364 [cs.CV] (cit. on p. 71).

[64] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion
Implicit Models. 2022. arXiv: 2010.02502 [cs.LG] (cit. on p. 71).

[65] Insights from analyzing 226k civitai.com prompts. https://rentry.
org/toptokens (cit. on p. 73).

[66] Wenliang Zhao et al. UniPC: A Unified Predictor-Corrector Frame-
work for Fast Sampling of Diffusion Models. 2023. arXiv: 2302.04867
[cs.LG] (cit. on p. 75).

[67] Mathilde Caron et al. Emerging Properties in Self-Supervised Vision
Transformers. 2021. arXiv: 2104.14294 [cs.CV] (cit. on p. 79).

[68] D.H. Wolpert and W.G. Macready. “No free lunch theorems for op-
timization”. In: IEEE Transactions on Evolutionary Computation 1.1
(1997), pp. 67–82. doi: 10.1109/4235.585893 (cit. on p. 79).

[69] Ernie Chu, Shuo-Yen Lin, and Jun-Cheng Chen. Video ControlNet: To-
wards Temporally Consistent Synthetic-to-Real Video Translation Using
Conditional Image Diffusion Models. 2023. arXiv: 2305.19193 [cs.CV]
(cit. on p. 88).

[70] Qian Yi et al. “Movie Scene Event Extraction with Graph Attention
Network Based on Argument Correlation Information”. In: Sensors 23.4
(2023). issn: 1424-8220. doi: 10.3390/s23042285. url: https://www.
mdpi.com/1424-8220/23/4/2285 (cit. on p. 88).

94

https://arxiv.org/abs/2301.12597
https://doi.org/https://doi.org/10.1002/9781119121534.ch3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119121534.ch3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119121534.ch3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119121534.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119121534.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119121534.ch3
https://arxiv.org/abs/2211.01095
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2010.02502
https://rentry.org/toptokens
https://rentry.org/toptokens
https://arxiv.org/abs/2302.04867
https://arxiv.org/abs/2302.04867
https://arxiv.org/abs/2104.14294
https://doi.org/10.1109/4235.585893
https://arxiv.org/abs/2305.19193
https://doi.org/10.3390/s23042285
https://www.mdpi.com/1424-8220/23/4/2285
https://www.mdpi.com/1424-8220/23/4/2285

BIBLIOGRAPHY

[71] Junnan Li et al. BLIP: Bootstrapping Language-Image Pre-training for
Unified Vision-Language Understanding and Generation. 2022. arXiv:
2201.12086 [cs.CV].

95

https://arxiv.org/abs/2201.12086

	Introduction
	A brief history of Image Synthesis models
	Thesis Structure

	Technical Background
	Attention and Transformers
	Attention
	Transformers

	Vision Transformers
	CLIP
	Low Rank Adaptation (LoRa)
	Diffusion Models
	Latent Diffusion
	Stable Diffusion
	Dreambooth
	Shot Types

	Related Works
	Generative Adversarial Networks
	Variational Autoencoders
	Generative Adversarial Text to Image Synthesis
	Nvidia StyleGAN
	Vector Quantised Variational AutoEncoder (VQ-VAE)
	VQ-GAN
	DALL-E
	GLIDE
	DALL-E 2
	Textual Inversion
	Imagen
	ControlNet
	Storyboarding

	Contribution
	Objective, Intuition and Architecture choice
	Method
	Data Preparation
	Model Training
	Generation

	Results
	Training Setup
	Dataset
	Parameters Effect
	Sampler
	Steps
	Seed
	Classifier Free Guidance Scale
	Alpha

	Metrics
	CLIP-T score shortcomings

	Qualitative Survey
	Storyboarding

	Conclusions
	Future Developments
	References

