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Summary

This thesis presents an unsupervised anomaly detection method for multivariate time
series in an Oracle database, a relational database management system widely used in
various domains. Anomaly detection is a machine learning task that aims to identify pat-
terns in data that deviate from the expected behavior, and has applications in database
performance monitoring, fraud detection, and intrusion detection. However, most ex-
isting methods require labeled data or manual selection of training data, which are not
feasible in a truly unsupervised scenario. The proposed method is based on adversarially
trained autoencoders, which are neural networks that learn to compress and reconstruct
the input data, and can detect anomalies by measuring the reconstruction error. The
proposed application consists of two phases: a training phase, where the autoencoders
are trained on normal data selected automatically from the database metrics; and an
inference phase, where the model is exposed to new data and anomalies are identified
using dynamic thresholds. The method is tested on data collected from different Oracle
database instances and considering a variable number of database statistics. The results
show that the proposed method can effectively detect multivariate anomalies and can be
applied in a production environment thanks to its ability to detect anomalies in near
real-time. The main contributions of this thesis are: (1) a novel unsupervised anomaly
detection framework for multivariate time series in an Oracle database; (2) a general and
scalable architecture for implementing the method; (3) a comprehensive evaluation of the
method on real-world data.
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Chapter 1

Introduction

We live in a world where almost everything depends on technology to work and this results
in huge amounts of data being produced every day. Managing the data generated every
day is an incredible challenge and it is evident the need for a stable and well-managed
infrastructure. Of course, this is not an easy task, for both the complexity and criticality
of these systems.

It is precisely within this context that the machine learning research field of anomaly
detection can be appreciated. Anomaly detection consists in identifying patterns in data
that significantly differ from the expected behavior, and this has a wide range of practical
applications, from identifying early signs of disease in medical data to fault detection in
manufacturing.

Back to the problem of managing a complex IT infrastructure, Anomaly Detection can
become a useful tool for helping database administrators do their work in a small context,
and it becomes a necessity in larger companies.

1.1 Company

The research work presented in this thesis is done at Mediamente Consulting s.r.l.,
a consulting company operating in the I'T sector, specialized on the topic of advanced
business analytics. It was founded in 2013 as a innovative startup at the i3P incubator of
Politecnico di Torino from which it exited in 2016, and now it was acquired by Var Group
(SeSa S.p.A. group) as part of its Data Science business unit.

The company is composed of five business unit: Corporate Performance Management,

Advanced Analytics, Business Intelligence, Data Integration and Management and Tech-
nological Infrastructure.
One of the main business cores of the company is the aforementioned Technological In-
frastructure unit, which deals with a range of activities, from consulting activities on
various Oracle technologies including engineered systems, to performance analysis and
assessment of the architecture, to the management and updating of the technological in-
frastructure both “on premise”’and in cloud. This thesis work was done in conjunction
with the Technological Infrastructure business unit.

11



Introduction

At the moment of writing the company is strongly specialized in the installation and
maintenance of Oracle products, from the well known Oracle Database to the Weblogic
Application Server or the Oracle Application Express (APEX).

1.2 Case Study

As explained in the previous section, after the installation of Oracle products, the main
activity done by the infrastructure business unit, is monitoring the clients databases.
This is done using an enterprise monitoring software, the AMS (Application Management
System), based on the configuration of manually selected thresholds. When the database
parameters monitored (e.g. CPU usage, aviable memory, etc...) cross the threshold an
alert is send to the AMS and the operators, so that they can rapidly respond to the
problem.
This approach, while simple, has many downsides:

« Not all the alert received are synonyms of anomalies. For example, an host
CPU that will cross the threshold for a couple seconds for then return to normal
values will be erroneously signaled from the system as an anomaly.

o Identifying the threshold is a difficult task, that requires years of experience
and a profound knowledge of the client system and usage.

¢ When the desired metric to monitor are hundreds for each database instance
of every client, it is almost impossible for a company like Mediamente Consulting to
set thresholds for each metric (notice that every instance needs different threshold
for the same metric), with the almost complete certainty of being submerged by
useless alerts, drastically slowing down the operators’ work.

« Considering each metric separately has the disadvantage of preventing being able
to observe the behavior of several metrics simultaneously in order to identify an
anomaly.

It is precisely in this context that is evident how the use of machine learning techniques
can improve the company’s monitoring system. This is precisely the reason that justifies
the thesis work presented in the following pages.

1.3 Project Structure and Workflow

The timeline in Figure 1.1 represent the workflow adopted for this thesis.

The first phase was the study of the software and tool used by the company in order
to understand not only how the Oracle’s ecosystems works but also how the company
manages their jobs. This last part was especially important to develop a solution that
fitted well the company needs.

In parallel, a study of the problem of anomaly detection and the state-of-the-art tech-
niques to address it was conducted.

12



1.3 — Project Structure and Workflow

The next phase was the data retrieval and exploration one, where the data of interest
was collected from the database. One the data was retrieved, a thorough analysis of the
data at hand, in conjunction with the company experts, was conducted. Their help is
fundamental, since their experience is the most important judgment parameter to select
the metric of interest, even more than statistical one.

I then moved to a cyclical phase in which I implemented and tested the different
algorithms, to choose which implement.

Finally I developed and documented an application, paying attention in making it
versatile (new algorithms can be implemented by other employees and also is compatible
with different data from the one used in this work) and future-proof since new modules
can easily be added increasing the app functionalities.

RESULTS
ANALYSIS &
TUNING

STUDY OF THE
ORACLE
DATABASE

DATA
RETRIEVAL &
EXPLORATION

MODEL SELECTION &
DEVELOPMENT

STUDY ON THE
STATE OF THE

ART APPLICATION

DEVELOPMENT

Figure 1.1: Adopted workflow

Project Structure
The subsequent chapters are divided as follows:

e In chapter 2 an introduction of the anomaly detection problem, a description of the
Oracle Database and the view considered is given.

o chapter 3 contains a brief description of the theoretical background needed to un-
derstand the proposed solution.
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Introduction

chapter 4 describes in detail the main algorithms used in this project.
In chapter 5 is described and argued the proposed solution.
The results obtained during different test are described and compared in chapter 6.

Finally, chapter 7 deals with the conclusions and indicates the possible future devel-
opments of the project.

14



Chapter 2

Background

2.1 Anomaly Detection

Anomaly detection is the task of finding patterns in data with anomalous behavior com-
pared to the majority of instances. The first thing to do is define what are anoma-
lies; Hawkins defines an outlier as: “an observation which deviates so significantly from
other observations as to arouse suspicion that it was generated by a different mecha-
nism”Hawkins [1980] while Maddala defines it as: “a data point that differs significantly
from other observations”Maddala [2001].

There are different fields of application for anomaly detection:

e Medical diagnosis

o Fraud detection

o Intrusion detection

e Manufacturing defects detection

o Network analysis

For all this applications, different techniques can be found in literature, starting from
more statistical approaches, moving on to linear models and clustering, and ending up
with newer techniques like neural networks and autoencoders.

2.1.1 Type of Anomalies

A more precise distinction can be drown, in fact we can identify 3 different types of
outliers:

« Point outlier: when a single point has a value that is anomalous compared the
entirety of the data.

o Contextual outlier: is an instance that has abnormal values with respect to its
context and not globally. Finding this type of outliers represent a more challenging
task compared to point anomalies.

15
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e Collective outlier: a set of data point is considered a collective outlier if the set
significantly deviates from the norm, but the points of the set are not anomalous in
either the context of the set or the global one. For example the individual observa-
tions may not be anomalies, but their co-occurrence make them so.
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pN—

201
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Temperature [°C]

Y
v

et
1981-01-01 1982-01-01 1983-01-01 1984-01-01
Date

Figure 2.1: Point anomaly

2.1.2 The Unsupervised Setting

One of the first things to consider when engineering a solution to a machine learning
problem is to understand the available data and the presence of labels, in order to choose
a supervised or an unsupervised approach. Anomaly detection is usually an unsupervised
task since it deals with a huge quantity of data, that grows over time, and the anomalies
usually are rare events, thus making it unreasonable to label the data, especially in a
context where the only way to identify anomalies is thanks to domain expert and this
makes the labeling of data an expensive and time-consuming activity.

Excluding a priori the possibility of having labeled data, I opted for an unsupervised
approach. The idea behind unsupervised learning is to discover hidden patterns in data,
hence creating a model able to detect if a new given set of values contains anomalies or
not. This comes with various challenges, such as:

e Higher inaccuracy

« Difficulties in validating the results, usually needing the intervention of domain ex-
perts

o Computational complexity due to the huge amount of data to analyze

o It is difficult to understand the basis for which some values are considered anomalies
or not

2.2 Oracle Database

Oracle Database is a relational database management system (RDBMS) produced by
Oracle Corporation.

16



2.2 — Oracle Database
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Figure 2.2: Different type of anomalies Chandola et al. [2009]

An Oracle server is composed by at least two entities:

o Database, that is is an organized collection of structured data, more specifically
the psychical file where the data is stored.

o Instance, that is to say the combination of the memory areas and background
processes that make up the running installation of the system (a database could
exist even without an instance, but it would be unusable since there would be no
way to access to the data stored in it).
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In order to access to the file in a database, the instance must be associated to the
physical database. An instance can access only one database at a time, but multiple
instances can access simultaneously to the same database.

A representation of the Oracle Database architecture is provided in Figure 2.3

Database Server

Database Instance
Client

Connect (memory and processes)
Application [ m---- m--- Connects ---{»  Server
|, Process

(client process) |« processes SQL

Accesses

|

Database
Data System
Files Files

Figure 2.3: Oracle Database Architecture oracletutorial.com [2023]

Database

The data in the Oracle Database is stored following a physical and logical schema:

The physical schema (Figure 2.4a) represent how the data is actually stored in the
database: the most important files stored are the data files, containing the real data
of the client and the data of the logical structures of the database (i.e. tables, indexes,
etc...). Other than the data files, there are also control files containing metadata de-
scribing the physical structure of the database and online redo log files recording all the
changes done to the database.

The logical storage structure are instead used for fine-grained control of disk space usage.
The simpler logical unit is the data block, corresponding to a number of bytes on the disk;
logically contiguous data blocks form what is called an extent. A set of extents allocated
to store objects like tables for example, are called segments. Multiple segments are stored
into logical containers called tablespaces.

Instance

An instance is the interface that lets client applications connect to the database. It
consist of three main parts: the system global area (SGA), program global area (PGA)
and background processes (Figure 2.5). When the instance is started, the SGA memory
is allocated and shared between all processes, while a PGA is allocated to each process
when is created and released when it ends.

18



2.3 - V$SYSMETRIC
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Figure 2.4: Oracle Database storage structures
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Figure 2.5: Oracle Instance oracletutorial.com [2023]

2.3 VS8SYSMETRIC

The Oracle Database automatically collects all the information about the performance
metrics of the database, sampling them at 15 or 60 seconds intervals. The workload metrics
are historicized in the system’s views VSSYSMETRIC, V$SYSMETRIC HISTORY and
VISYSMETRIC SUMMARY. The view V$SYSMETRIC HISTORY contains the data
of the last hour, while the V8SYSMETRIC contains only the data of the last sample. In
order to collect the data for a long period of time, the strategy adopted was to write a
simple script to store the data of the VSSYSMETRIC each minute into a new table.

It is important to mention that Oracle offers other solution to collect performance data,
the most common one is the Automatic Workload Repository (AWR), a tool that collects,
processes, and maintains performance statistics for the database offering performance
reports and views to consult. The choice made to use the V$SYSMETRIC view is due
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to the fact that this table is available in all installation of the Oracle Database, while the
AWR requires an Enterprise subscription and the further purchase of the Diagnostic Pack
and not every client can afford it. With the idea of creating a tool that the company could
use for every client this was a forced but necessary choice.

This view contains values about 155 different metrics, that can be logically divided
into 8 groups:

Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 Group 8

CPU I/0 CACHE SQL | DEBUG | RAC | USERS | ENQUEUE

Table 2.1: V8SYSMETRIC metric groups

During the research conducted, an extensive amount of time was dedicated to the
selection of the metrics to use. It was decided in conjunction with the company that an
empirical approach, based on testing and, above all, on the experience of the company
engineers was preferable instead of a purely statistical one.

A final set of 19 metrics was selected (Table 2.2), since these are the one that multiple
sector expert considered critical to monitor.

While not all experts suggested the same metrics, it was clear from the start that the
most important one was the Database Time Per Sec or DB time. This metric is
the amount of elapsed time in microseconds that the database spends performing user-
level calls, excluding the time spent on background processes. What it means is that the
DB time corresponds to the total time spent by user processes either actively working or
actively waiting in a database call. It is defined as:

DB time = CPU time+ 1/O time + non-idle Wait time (2.1)

Since the DB time represents the general level of stress of the database, it is the first
metric that a database administrator looks when searching for problems, this metric was
essential in validating the results of the proposed solution. Of course analyzing only the
DB time is not enough, since it is only the “symptom”and not the actual cause of the
problem.

20




2.3 - V$SYSMETRIC

Group 1
CcPU

Group 2
I/0

Group 3
CACHE

CPU Usage Per Sec

DB Block Changes Per Sec

Consistent Read Gets Per
Sec

Host CPU Usage Per Sec

I/0 Megabytes per Second

DBWR  Checkpoints Per

Sec

Physical Reads Per Sec

Logical Reads Per Sec

Physical Writes Per Sec

Redo Generated Per Sec

Group 4
SQL

Group 5
DEBUG

Group 6
RAC

Average Active Sessions

Database Time Per Sec

FExecutions Per Sec

Hard Parse Count Per Sec

Group 7
USERS

Group 8
ENQUEUE

Logons Per Sec

Enqueue Waits Per Sec

User Calls Per Sec

User Commits Per Sec

User Rollbacks Per Sec

Table 2.2: Selected metrics from the V$SYSMETRIC view
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Chapter 3

Related Works

3.1 Time Series

The work presented in this thesis revolves around the analysis of time series data, since
the database’s metrics change over time, hence the need of the following definitions.

A time series can be defined as a set of data points of the same entity collected at
regular intervals; we can identify two different types of time series:

3.1.1 Univariate Time Series

Using the definition provided by Blazquez-Garcia et al. [2020], a univariate time series
X = {xt}ter is an ordered set of real value observation, where each observation is recorded
at a specific time ¢t € T C Z* and x; is a realization of a certain random variable X;

Database Time Per Sec
20000
17500
15000
12500
10000

7500

5000

2500

0 2000 4000 6000 8000 10000

Figure 3.1: Example of univariate time series analyzed in this thesis.

3.1.2 Multivariate Time Series

Using the same notation, a multivariate time series X = {x;}er is defined as an or-
dered set of k-dimensional vectors, each sampled at a time t € T C Z™", consisting of k

23
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observations xy = (T4, Ty, .., Tty )-

For each dimension j € {1,2,...,k}, z; is a realization of a time-dependent random
variable Xj; in ¢ = (Xy,, X4, ..., Xy, ). The complexity in analyzing a multivariate case
resides not only in the multi-dimensionality of the data, but mostly on the fact that each
variable could not only depend on its past values but also on the other time-dependent
variables.

Physical Reads Per Sec

200000
150000
100000

50000

0

Executions Per Sec
300000

250000
200000
150000
100000
50000
0

Database Time Per Sec
20000

15000
10000

5000

0 2000 4000 6000 8000 10000

Time

Figure 3.2: Multiple database’s metrics make up a multivariate time series

3.1.3 Time Series Decomposition

Time series decomposition means to decompose into different components a time series.
The most common approach is the decomposition based rates of change, which consists
in dividing the time series into three components:

o T,: The trend, that represent the long-term behavior of the data, that is if the mean
1 is not constant but changes over time.

e Sy,: The seasonality, that reflect the seasonal patterns of the time series. These
pattern emerge when the data is influenced by seasonal factors like the day of the
week or time of the year.

e R,: The reminder, which is the most relevant component in anomaly detection, it
consists in residuals of the time series, after the other components are computed.
This part collects everything that is left over from the 'regular' pattern, like the
outliers that we want to identify, possibly improving the performance of the imple-
mented models.
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3.2 — Autoencoders
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Figure 3.3: Multiple database’s metrics make up a multivariate time series

3.2 Autoencoders

Autoencoders are a feed-forward neural network, trained to reproduce its input at the
output layer. They learn in an unsupervised manner the most relevant aspect of the
observable data extracting its most important features and creating a compressed repre-
sentation of the input data. The structure of this network is made by two components:

e The encoder E, which learns an encoding function and transforms the input data,
reducing its dimension

e The decoder D, that thanks to the decoded function tries to reconstruct the original
data from the encoded one

As formally defined in Baldi [2011], the input X is transformed by the encoder E :
R™ — RP into a set of latent variables Z, and the objective of the decoder D : RP — R"
is to transform Z back into the input space as the reconstruction R minimizing the
reconstruction error (3.1), defined as the difference between the original input and the

reconstructed output. Using the fo-norm as a regularization method to avoid overfitting
to the identity function we have:
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Lap = ||X - AE(X)||2 (3.1)
where
AE(X)=D(Z)
Z = E(X)

Usually £ and D are neural network, If both of them are linear operations, we have a
linear autoencoder. If the non-linear operations are also removed the autoencoder obtains
the same latent representation as in the Principal Component Analysis (PCA) Plaut [2018]
thus making the autoencoders a generalization of this technique.

Input Output
\ ~ s //
v . s g //

\ // \\ // \ //

/ \

\/ \ < >/ \\/

A /

/ \ \
7\ 7\ /N / \
/N / - \ / \
/ \ /7 ~A / \
/
/ Ve < ~ ~ \
/, < ~ \\
\ y “ J
Y Y
Encoder Decoder

Figure 3.4: Example of autoencoder Dertat [2017]

There are several other types of autoencoders, as summarized in Bank et al. [2021]:

e Regularized autoencoders o Contractive autoencoders

e Sparse autoencoders

« Denoising autoencoders » Variational autoencoders
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3.3 — Generative Adversarial Networks

with several applications, like classification, clustering, anomaly detection, recom-
mendation systems and more.

In the context of anomaly detection, an autoencoder can be used to learn a represen-
tation of the normal data, and when data containing anomalies is passed to the trained
model, the reconstruction error will be greater then normal, hence identifying an anomaly.
All this under the assumption that only normal data is used for training. This is
a problem in a truly unsupervised scenario where is too expensive or even impossible to
manually select the data for training; the inability to adhere to this assumption will be
the basis for the model selection of the solution proposed in this thesis (USAD).

3.3 Generative Adversarial Networks

Generative adversarial networks (GANs) Goodfellow et al. [2014] are a machine learning
technique used in both semi-supervised and unsupervised scenarios. They consists on a
pair of networks, trained in an adversarial fashion, in competition between each other. An
analogy often used to describe this kind of networks is the one where one network is an art
forger and the other an art expert: the forger tries to trick the art expert creating realistic
images, while the art expert tries to distinguish the counterfeits from the originals.

They are constituted by two separate sub-modules, a generator G and a discriminator
D. it is important to emphasize that the generator has no access to the input data, and
the only may for it to learn is trough the interaction with the discriminator.

log (1~ D(G(2)))

I:I —— log(D(x)) + log I: 1 - D (I[;:]]}

- G(z) )
Latent Space Generated Samples Discriminator I
) D(6(2))and D(x)
Discriminator
IEL‘ Decision
X
Real Samples

Figure 3.5: Typical generative adversarial network (GAN) architecture Vint et al. [2021].

Formally, the decoder D is trained to maximize the probability of assigning correctly
the label for both training samples and the ones generated by G. Simultaneously G is
trained to minimize log(1 — D(G(z))) where in general G(x) represent the probability of
x coming from the real data rather then from the fake one.
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This makes it possible to define this task as a minmax optimization problem with a
value function V(G, D):

minmax V(D, &) = Eqrpyyy, ) [108 D(@)] + By (o [log(1 = D(G(2)))]  (3.2)

where pgatq is the probability distribution of the original data, and p, is the one of the
data produced by the generator. It is easy to see that the generator G is optimal when
the discriminator D is maximally confused, hence when pguia(x) = p.(x), which is the
same as having the discriminator predicting 0.5 for all samples from x. Notice that this
equilibrium is very difficult to reach, since the increase of the generator cost function can
cause the decrease of the discriminator cost function and vice versa, making the GANs
unstable.

Another issue with GANs is the mode collapse problem; it consists of the inability of
the network to diversify, since the generator only objective is to trick the discriminator,
not representing the the multi-modality of the real data Che et al. [2017].

(x)

Samples
of real data

Figure 3.6: Probability distribution of the real data and the generated one, in the optimal
case they will coincide Creswell et al. [2018].

GANSs are a brilliant idea with a lot of applications, such as:

Classification and Regression o Super-resolution

o Image Synthesis

Object Detection

e Image-to-Image Translation

Image Implanting

o Text-to-Image Translation o Image Blending
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Chapter 4

Methods

This chapter is dedicated to the description of the two main techniques adopted in the
solution proposed in this thesis. The practical implementation of these algorithms will be
described in detail in the next chapter, in the sections below, a theoretical description of
the algorithms is presented.

4.1 USAD

The UnSupervised Anomaly Detection for multivariate time series (USAD) Audibert et al.
[2020] is a state-of-the-art method based on adversely trained autoencoders, used to detect
anomalies in an unsupervised way, with a focus on the time and resources needed for
training.

The idea is to use an encoder-decoder architecture in an adversarial training frame-
work, combining the advantages of both techniques (described in the previous chapter),
while compensating their limitation, especially the problem in training stability typical of
generative adversarial networks.

The method consists in an autoencoder architecture within a two phase adversar-
ial framework: this is done with the objective of overcoming, thanks to the adversarial
framework, the limitation of autoencoders (Autoencoders) consisting in the need of us-
ing normal data to train, while gaining stability from the usage of autoencoders instead
of GANSs, that suffers the problem of non-convergence and mode collapse (Generative
Adversarial Networks).

4.1.1 Architecture

The USAD architecture is composed of three components: one encoder F and two decoders
Dy and Ds, forming two autoencoders, AF; and AFEs, with the same structure, i.e. a
simple neural network.

AE{(W) = Dy (E(W))
ABy(W) = Do E(W))
29
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where W is a window of length K containing the values for each of the m variables of
the multivariate timeseries (m = 1 is the univariate case).

________________________________________________ .
AE» Decoder 2 N _
== AE(AEW))

3 !
1 I
| .‘ h :
TTT ST TSI ST T T Phase 1 , I
| ‘AE(VV] |
! — 1 : !
1

1

—
I_|_§ Phase 1
Encoder i . == AE (W)

(b) USAD detection flow

Figure 4.1: USAD architecture Audibert et al. [2020]

4.1.2 Two-phases training
The architecture is trained in two different steps:

1. Autoencoder training: in this phase the two autoencoders AF; and AF5 learn
to reconstruct the windows W from the "normal" data. Each encoder E compresses
the information contained in W to the latent space Z, then the decoders D will
reconstruct each compressed representation into the original space. This is described
in the following equations representing the training losses (4.2):

Lag, = ||W — AE(W)l2
Lag, = W — AEy(W)l2
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(4.2)



4.1 - USAD

2. Adversarial training: during this second phase, in an adversarial fashion, AF;
will try to trick AFEs, while AF; objective is to learn to understand whether or not
the data is coming from the original data W or is the fake one from AFE.

The data coming from AF; is compressed another time by E to the latent space Z,
to then be reconstructed by Ds.

The learning objective is therefore formulated as a minmax problem, where AF;
tries to minimize the difference between W and AFEs’s output, while the goal of AF,
is to minimize such difference.

min max|[W — AE(AE (W)l (4.3)

where the following equations describe the training objective of each autoencoder:

Lap, = +|W — AEy(AE(W))]|2

Lap, = — W — ABy(AE (W) (4.4)

Summarizing, in the USAD architecture, the autoencoders have a double function:

. AE]_I
phase 1 — minimize the reconstruction error

phase 2 — minimize the difference between W and reconstructed output

. AE2:
phase 1 — minimize the reconstruction error

phase 2 — maximize the reconstruction error of the reconstructed data by AF;

Combining equations (4.2, 4.4) and expressing them also in function of the training
epochs n we obtain:

Lagy = LIW = AB(W) o+ (1= 2 ) W = AB(AE (W)l
(4.5)
Lar, = LW = AB(W)lla = (1= ) IW = AB(AE,(W).

The important difference with generative adversarial networks is in the fact that AFq
doesn’t act as a true discriminator, because based on which input it receives the
objective function that intervenes is different: the loss from equation 4.2 is used when
the input is the original data, equation 4.4 instead intervenes when the input is the
reconstruction.

The training algorithm is described in Algorithm 1
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Algorithm 1 USAD training

Input: W = {W1,...,Wr}, N epochs
Output: Trained AE;, AF,
n<+1
E, Dy, Dy < init weights
while n < N do
fort =1to 71 do
Zt < E(Wt)
WY « Di(Z;)
W2 « Do(Z;)
W'« Dy(E(WY))
Lap,  p[IWe =Wl la + (1= 2) [We = Wl
Lap, & 5IWe =Wl — (1= 3) [IWe = W2
E, Dy, Dy < update weights
end for
n+<n+1
end while
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4.1.3 Inference

At inference, the anomaly score of the model, that is a score describing the probability of
a new window W to be an anomaly, is defined as:

AW) = a|W — AE, (W) |2 + BI|W — AEy(AE (W))||2 (4.6)

The hyperparameters o and 5 must respect the condition o+ = 1 and their function
is to parameterize the trade-off between true positives and false positives. Increasing o will
decrease the number of false positives (low sensitivity scenario), while increasing § will
have the opposite effect, raising the number of false positives (high sensitivity scenario). Is
important to notice that this parameters can be changed on-the-fly at runtime, giving the
operators the possibility to tune the sensitivity of the algorithm based on their workload.

The inference algorithm is described in Algorithm 2:

Algorithm 2 USAD inference

Input: W = {Wl, s WT*}, a, (3, threshold A
Output: Labels y = yq, ..., yr*
for t =1 to T do
Zt — E(Wt)
W« Di(E(W))
thu — D2(E(thl))
A= a|W =W o+ BIW — W'y
E, Dy, Dy < update weights
if A> ) then
yr <1
else
yr <0
end if
end for
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4.2 KNN

The k-nearest neighbors algorithm (k-NN) is a simple method mainly used for classifica-
tion and regression tasks.

For classification the algorithm works computing, for each data point to classify in a
multidimensional feature space, the distance with the k-th neighbors, and then assigning
to the new data point the label of the majority of the nearest points.

~ -
N -

Figure 4.2: “Example of k-NN classification. The test sample (green dot) should be
classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned
to the red triangles because there are 2 triangles and only 1 square inside the inner circle.
If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles
inside the outer circle)”Wikipedia [2023].

The first step is to define how to compute the distance between two points in order
to form decision boundaries. There are different ways to do it, the most common one are
the following:

e Euclidean distance: arguably the most common one, the euclidean distance mea-
sures a straight line between two points.

(4.7)
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« Manhattan distance: this distance is measured in terms of sum of absolute dif-
ferences of the Cartesian coordinates between two points.

d(z,y) = (f: |lz; — yﬂ) (4.8)

i=1

o Minkowski distance: a generalization of the aforementioned distance, the Eu-
clidean and the Manhattan one, where the parameter p allows for the definition of
other distances. For example, with p = 1 it corresponds to the Manhattan dis-
tance, with p = 2 to the Euclidean distance and for p — inf it corresponds to the
Chebyshev distance.

d(z,y) = (i |lzi — yz|> : (4.9)

Another important topic to discuss is the computational complexity of this method
and the techniques to improve it.

The less efficient is the brute force one, where you have to compute all the distances to
every data point, sort them and then take the k nearest. This has no computation during
training O(1), but at inference the complexity is O(n X d x k) where n is the number of
data points and d is the dimension of the data space.

To improve performance reducing the search space of distances to compute, some
techniques based on trees were introduced, with the most popular being the k-d tree
(Bentley [1975]) and ball tree (Omohundro [1989]) methods. This two techniques allows
to split the search space using trees and computational geometry in order to allow for a
faster search of the nearest points. In these cases, during training we have to compute the
aforementioned trees, with a complexity of O(dxnlogn) and a prediction time complexity
of O(k x logn)

4.2.1 KNN outlier detection

Even if it is not the most used application, the k-NN algorithm can be easily adapted in
an unsupervised scenario, with the objective of detecting anomalies (Angiulli and Pizzuti
[2002]). In fact, the distance to the k-th neighbor can be seen as a local density estimate,
that is a common outlier score used in anomaly detection. For a data point, the larger
the distance to the neighbors, the lower the local density, hence it is more likely that the
point is an anomaly.

The problem is thus formulated:

“Given an input data set with N points, parameters n and k, a point p is a D¥(p) outlier
if there are no more than n — 1 other points p’ such that D¥(p') > D*(p)”Ramaswamy
et al. [2000].

In this definition, D*(p) denotes the distance of a point p from its k-th nearest neighbor.
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Chapter 5

Proposed Solution

The objective of this thesis is to realize an application with a double function:

e a companion app for the operators used to analyze historical data, finding anomalies
in the data and obtain images and other information to write reports

 a tool for near-real-time database performance monitoring, with the idea of integrat-
ing in the company workflow, to notify the operator when an anomaly is detected

In the following chapter a thorough description of the application is provided, and the
result of three different experiments are presented (section 6.2, section 6.3 and section 6.4).

5.1 General Architecture

The architecture of the proposed solution is the one shown in Figure 5.1 and 5.2.

As described in section 4.1 the at the core of the application there is the USAD model.
The model training pipeline is the most complex process of the application and is composed
of the following steps:

1. Training data selection: The USAD architecture uses the adversarial training
framework to compensate the intrinsic problem of autoencoders consisting in the
need for only “normal”data during training in order to learn the normal data dis-
tribution and identifying anomalies when new data is passed. While is proven by
the authors of the model the improved tolerance to noise of the model, in a complex
scenario like the one analyzed, to obtain acceptable performance more consistently,
a first screening of the data to remove the easily identifiable anomalies is needed.
This can be done in two ways:

(a) Manual data selection: this is straight forward; if the operator after an
analysis is able to identify the critical time-spans to analyze can discard them
and use the other data to train the model. Another possible solution is to use
the customer reports to identify the anomalies, since it can be argued that an
anomaly is effectively a problem only when the customer notices it.
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(b) Automatic data selection: in order to facilitate the work of the operator but
especially to create an application deployable in the client databases with the
least amount of maintenance needed an automatic approach is required. As will
be explained in section 5.3 this is done analyzing the DB time (section 2.3) and
applying the k-NN method (section 4.2) to find anomalies. The Pythresh library
implementation of the Yeo-Jonson transformation thresholder (subsection 5.4.1)
to automatically selecting the threshold to discern an anomaly from a regular
value.

2. Pre-processing: The pre-processing techniques used are the z-score normalization
and the min-max scaling. The first is used to ensure that data has zero mean
and unit standard variation, while the second is used to scale the values in the
interval [0,1].

3. Windows creation: In order to keep information about the “temporal evolution”of
the data, USAD groups the value points into windows of size K, to then predict if
the window is an anomaly or not. The windows are created collecting K vector of
size m metrics; then the widows slides by one position, creating a window with only
one value different from the previous one.

4. Model training: after the pre-processing and the creation of the windows the
USAD model is trained regularly, with the two phases process, as previously de-
scribed (subsection 4.1.2).

: G‘N (dbi‘IMresho(lst)elecuon Remove data with anomalies f

—>» Windows creation ——» MODTG;?S)‘N‘NG Trained model

Automatic data
selection
False
Training data Metric selection @ Tru

Figure 5.1: Training flow of the proposed solution

As for the inference of the proposed solution, the steps are the one represented in
Figure 5.2:

1. Data aggregation: Since the USAD model is trained on data aggregated into
window, the same step is needed for the inference. After the first w (window size)
elements are collected, a prediction on the window is done, then when a new data
point is collected the windows is slid by one and a new prediction is done.
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2.

Model inference: During this step the model computes an anomaly score for the
windows passed as its input.

Threshold selection: Once the anomaly score is computed is necessary to fix a
threshold in order to identify an anomalies from normal data points. Instead of
opting for a manual selection of the threshold, approach not recommended since this
value needs to be selected manually for each deployed model (one for each monitored
database instance), an automatic approach is proposed, using the Inter-Quartile
Region thresholder provided by the PyThresh library.

MODEL INFERENCE Threshold selection
(USAD) (IQR)

Figure 5.2: Inference flow of the proposed solution

Input Window

5.2 Software Used

The entirety of this thesis, except for the data retrieval done in bash and SQL, is done
using Python. This is justified by the fact that thanks to its simplicity and availability
of machine learning libraries, Python has became the de facto standard for developing a
machine learning application like the one proposed.

The main libraries used in the development of the code are:

Numpy, Pandas.
PyTorch: used for defining the machine learning model.

PyOD: is an open-source library containing the implementation of over 40 anomaly
detection algorithm (?); in this work is used for the k-NN algorithm (actually is a
wrapper of the scikit-learn one).

PyThres: a library containing more than 30 threshold algorithms (Perini et al.
[2022]), used to set thresholds automatically, without the need to set a contami-
nation level.

Plotly: for plotting, mainly because it makes possible to export graphs into an html
file, including also the javascript code tho make them interactive.

5.3 Automatic data selection

As explained in section 4.1, the USAD model uses an adversarial training framework
to compensate the intrinsic problem of autoencoders model in the context of anomaly
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detection: that is the need to train only on “normal”data, to then learn to distinguish it
from anomalous data points. This allows the USAD model to be more robust to noise
in the training data, but will be proven in section 6.3 that choosing the training data
with the less noise possible is beneficial in detecting anomalies consistently and with more
precision.

Is also important to notice that the objective of the company is to deploy the applica-

tion on multiple databases of a lot different clients, hence the need of a scalable solution.
That is why the an automatic data selection module is provided.
The idea is to use the most important metric used for identifying problems in the database,
the DB time, explained in detail in section 2.3. The k-NN clustering algorithm is used
to compute the anomaly score of the data, but the problem in developing a solution that
is independent from the data at hand (different machines will have different DB time,
with different behavior) is the choosing of the threshold above which the anomaly score
of a point will classify it as anomalous. This is usually done by selecting a percentage
of expected outliers in the data, and the threshold will be set to a value that will make
it so that the anomalies identified will be the percentage previously specified. This is of
course a far from optimal solution, since is based on a esteem of the percentage of outliers
in the data, and also it doesn’t take into account the intrinsic problem at hand, that is
the different behavior of the databases, in this case is unreasonable to expect different
databases to have the same percentage of anomalies.

This problem can be solved using the Pythresh library, that implements different meth-
ods to select the threshold without the need for hyper-parameters, allowing the data se-
lection module to be independent from the monitored machine.

More precisely the algorithm used in the automatic data selection module is the Yeo-
Jonson thresholder, that will be described in subsection 5.4.1.
The automatic data selection module works as follows:

1. The k-NN algorithm is used to compute the anomaly score.
2. The Yeo-Jonson thresholder is used to compute the threshold.

3. The day or the week of data where the anomalies are found is discarded from the
training set. Ideally it would be better to discard the entire week where anomalies
are detected, but the choice depends on the quantity of the data available.

As for the threshold selection of the USAD model, this is done with the Inter-Quartile
Region technique. The problem with this method is that the threshold is computed based
on the distribution of the prediction score, hence the threshold will be a function of
those scores; that is why a dynamic threshold selection method is proposed allowing for
a continuous tuning of the threshold (subsection 5.4.3).

5.4 Threshold selection

As explained in the previous section, is fundamental to eliminate the need of hyper-
parameters in the threshold selection step, since this allow to avoid the tuning of the
thresholds to the specific database. The PyThresh library provides various thresolder
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Figure 5.3: Automatic data selection example

selection algorithms, in the following subsections the ones used in this thesis work are

described.

5.4.1 Yeo-Jonson transformation thresholder

This algorithm uses the Yeo-Johnson transformation (Yeo and Johnson [2000]) to evaluate
a non-parametric means to threshold scores generated by the decision scores where outliers
are set to any value beyond the max value in the YJ transformed data.

The Yeo-Johnson transformation is a power transform which is a set of power functions
that apply a monotonic transformation to the dataset. For the decision scores this make
their distribution more normal-like (Raymaekers and Rousseeuw [2021]).
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(y+D*=1) /A ifA#0,y>0
log(y + 1) ifA=0,y>0

Y =1 _ (Cy+1EN—1) /2= ifA+£2,y<0 (51
—log(—y + 1) ifA=2y<0

where )\ is a power parameter that is chosen via maximum likelihood estimation, that
is A is the value that maximizes the log-likelihood function. Therefore, any values from
the original decision scores that are beyond maximum value after this transformation are
considered outliers. However, the closer a set of decision scores are to a normal distribution
originally the smaller the probability this threshold will be able to identify outliers.

5.4.2 Inter-Quartile Region thresholder

Use the inter-quartile region to evaluate a non-parametric means to threshold scores gen-
erated by the decision scores where outliers are set to any value beyond the third quartile
plus 1.5 times the inter-quartile region, as proposed in Bardet and Dimby [2017].

The inter-quartile region is given as:

IQR = |Qs — Q1 (5.2)

where 1 and )5 are the first and third quartile respectively.
The threshold for the decision scores is set as:

th = Qs + 1.5IQR (5.3)

5.4.3 Dynamic Threshold

Selecting the threshold for the anomaly score produced by the USAD model has its own
challenges, mainly due to the fact that a lot of historical data is needed to tune the
threshold. This combined with the fact that the proposed solutions need "normal" data to
learn a good representation of the distribution, poses a challenge in developing a solution
easily deployable.

To solve this problem a non-parametric dynamic thresholding method is proposed. It
is composed by the following steps:

1. Initial threshold selection: after the model is trained, the validation dataset is
used to compute an anomaly score and then a threshold, with the Inter-Quartile
Region technique

2. At-Inference tuning: once the model is deployed, the anomaly scores are collected
and stored. Then the threshold is periodically re-computed using all the previously
collected anomaly scores.
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Figure 5.4: “Boxplot (with quartiles and an interquartile range) and a probability density
function (pdf) of a normal N (0, 0?) population”Wikipedia [2023]

Given a reasonable amount of data used for training, (in the experiments done 3 weeks
of clean data with mostly no anomalies was found sufficient) this method allows to have a
solution that is deployable with approximately a month of collected data and preferably
one or two weeks for tuning.

The problem that remains to be solved by this solution is that some anomalies have to
be detected to do a correct tuning of the threshold, if not the model will be more sensitive
to outlier at the beginning. Thankfully since the « and S parameters of the USAD model
can be modified during inference, they can be used for compensating this behavior until
the threshold is correctly tuned.

5.5 Hyperparameter Selection

Even after removing the critical parameter needed to select the threshold, however, the
proposed solution still has many parameters, some related to the USAD model, others to
the application in general, that need tuning; a complete list of the parameters is provided
in Table 5.1.

Of particular importance are the following hyper-parameters:

o downsampling_rate: This parameter allows to aggregate and average the original
data. This is useful since it will noticeably speed-up the training of the model. In
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the specific use-case for the company, having a data granularity of one minute wasn’t
necessary and the data available was enough even after the downsampling, hence the
decision of aggregating the data each 5 minutes.

window__size: This is the parameter w of the USAD model (section 4.1), representing
the number of data points used to generate the windows. In this case, thanks to the
sector expert’s opinion, the choice of using a window size of 12 (creating windows
of 60 minutes) was taken, since USAD can detect behavior changes faster when the
window size is smaller because each observation has a greater impact on the anomaly
score. A larger window will detect longer anomalies, but it will have to wait for more
observations to detect an anomaly. However, if an anomaly is too short, it may be
hidden in the number of points that a too-large window has.

metrics: This parameter allows the user to specify the list of metrics to analyze. By
default the metric used are the one selected and discussed in section 2.3.

« and §: This are two parameter of the USAD model; they must respect the con-
dition a + 8 = 1 and their function is to parameterize the trade-off between true
positives and false positives. Increasing a will decrease the number of false positives
(low sensitivity scenario), while increasing  will have the opposite effect, raising the
number of false positives (high sensitivity scenario). This parameters can be changed
on-the-fly at runtime, giving the operators the possibility to tune the sensitivity of
the algorithm based on their workload.
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Parameter Category Description Default
if the analysis is conducted on multiple metric
multivariate general using the USAD model or on a single metric True
using the k-NN algorithm
i
th__algorithm the thresholding algorithm to use q
threshold ¥
o the data expected contamination rate, used if
contamination None
no thresholding algorithm is used
auto__ds use the automatic data selection module True
training _start | data selection
= used if the data is not automatically selected None
training _end
downsampling number of data point to aggregate in each sample | 5
window__size ) number of data point used to create the window 12
preprocessing
. . . . z-Score,
normalization normalization technique or techniques used
min-mazx
metrics list of metrics to analyze
batch__size sizes of batches used in training 32
epochs USAD number of training epochs 100
hidden size hidden size of the USAD model 10
« . increasing « will decrease the number of FP 0.5
inference
I5; increasing § will raise the number of FP 0.5

Table 5.1: This table contains the main hyperparameters of the application, grouped
by category. The last column contains the best values tuned for the specific dataset
considered in this thesis and tuned to meet the company needs.
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Chapter 6

Results

During the writing of this thesis extensive tests were conducted, in order to understand
the potential of different models and identify a suitable solution, for finding the best
thresholding algorithm and generally for tuning the various hyperparameters. Once the
final solution was developed, the presented following 4 experiments were considered the
most interesting and useful to test the goodness of the proposed solution.

This chapter will be organized as follows:

1. at first an introduction on the data used to train and test the model will be given

2. then two test set will be presented, one containing data with fewer anomalies but
generated in chronological order after the data using for testing, and it will be used
to simulate a real application of the model; meanwhile the second set of data point
contains statistics collected before the training data, but it will contain two big
anomalies that are considered essential to be recognized by the application in order
to be of any use.

3. finally four experiment exploring the different capabilities the proposed solution has
to offer will be presented

6.1 General setting

The data used for the development of the application belongs to a client of the company,
and was collected between the end of January and the beginning of March 2022. Data of
two database instances was collected, but the main focus is placed on the main instance for
which more data is available and especially because there is a period with no anomalies,
at least in the DB TIME; this does not mean there weren’t anomalies, but at least the
database has not slowed down.

Figure 6.1 shows the DB TIME of the two instances. As explained in section 2.3,
this metric will be used as a first parameter to analyze the results of the model, and the
approach, as suggested by the company experts, will be to consider a test successful if
the anomalies in highlighted in red in the figure are detected. This is a far from optimal
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solution to completely evaluate the model, activity for which a thorough analysis of the
company experts is mandatory, but all expert consulted agreed in using this approach as
a first screening of the results, for then proceed to a more detailed analysis.

Instance 1
T
17500 —— db_time |
15000
12500
10000
7500 M
w00 | | |
2500 +
0
Instance 2
T
14000 —— train-set |
12000 N\ — testset1 |
/ \ —— test-set 2
10000 l \
8000 [\
5600 ..|I\ TN L I L]y o e
4000 -l
2000 +
0
| |

2022-01-22 2022-02-01 2022-02-08 2022-02-15 2022-02-22 2022-03-01 2022-03-08 2022-03-15

Figure 6.1: Training and test data from 2 databases instances (for simplicity only the DB
TIMFE metric is shown since it its the most important metric in detecting anomalies but
the actual data contains information of 155 metrics)

As previously explained, the autoencoder-based model adopted, has the intrinsic lim-
itation of needing a training dataset with the less possible amount of anomalies. That
is why the four weeks of data, from 2022-02-07 to 2022-03-05 (Figure 6.2), of the main
database instance, is used in all experiments (except from the test on the automatic
training data selection) for training, since no spikes in DB TIME are present.
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Figure 6.2: Metrics used in the experiments for training the USAD model
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For what concerns the test data, two sets are used, as described in the next subsections.

o The first test set consists of the values immediately consecutive to those used during
training, in order to simulate a real scenario of immediate use of the application.
This is a particularly difficult case to evaluate, since there are no major anomalies
to detect.

o The second test set consists of data collected previously of the one used for training.
Differently from the first one, this dataset contains two main anomalies, one is a
sudden spike of less than 5 minutes in the DB TIME, that can be considered as an
anomaly, but due to its short duration can be overlooked; the second one instead is
more prolonged, for roughly four ours. This last anomaly ose considered mandatory
to detect, if not the test is failed.

6.1.1 Hyperparameters

In all the following experiments the hyperparameters used are the same of Table 5.1, in
order to focus only on the effect of the changes of data used for training and testing of
the model. Is important to notice that fine-tuning the hyperparameters can improve the
performance of the model, but the ones used allow for the best results overall.

The effect of the parameters o and  is not discussed, since their usage is meant for
tuning the sensitivity on the model at runtime, mainly to change the number of anomalies
signaled by the application, based on the number of operators and the amount of work of
the company at any given time.

6.2 Experiment 1:
Manual training data selection

In this first experiment, the data for training is manually selected, that is the data used
is the one of Figure 6.2.

6.2.1 Test data 1

As shown in Figures 6.3, 1 and 2, two anomalies are detected in this period, the first one
for 1.5 hours and the other during a period of time of 45 minutes. The first one is the DB
TIME anomaly also highlighted in Figure 6.1, and looking at all the metrics in that time
frame is imputable to the spikes in Fzecutions Per Sec and Average Active Sessions. The
second one is more interesting since it is not in proximity of a clear peak in the DB TIME,
thus the users probably didn’t notice any slowdowns in the database, but it that period
the CPU Usage Per Sec reached is maximum value and the Host CPU Usage Per Sec has
a spike in its state. In the same period the Average Active Sessions and User Calls Per
Sec reached a global maximum, indicating a possible period of stress for the database.
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6.2 — Experiment 1: Manual training data selection
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Figure 6.3: Anomaly score of the model, in red the values selected as anomalies
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Figure 6.4: Anomalies experiment 1.1

6.2.2 Test data 2

In this second case 3, 4, the first anomaly on the DB TIME is not detected correctly,
but other than the already mentioned short duration of the anomaly making very difficult
to detect. The fact that this spike occurs early on in the detection process hence the
threshold is probably not completely tuned is to exclude since as shown in the anomaly
scores of Figure 6.5, there is no peaks in the morning of the 01-24-2022. The first anomaly
detected in this period is not visible looking only at the DB TIME, but the model found
an anomaly in correspondence of a span of time of 3 hours, where the Consistent Read
Gets Per Sec, Physical Reads Per Sec, Logical Reads Per Sec, I/O Megabytes per Second,
User Commits Per Sec and DB Block Changes Per Sec all had an anomalous behavior.
The last anomaly detected is in the same period where the biggest peak of the DB TIME
is reached, probably due to the abnormal increase in the write operations ( Physical Writes
Per Sec, 1/O Megabytes per Second) and the Average Active Sessions.
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Figure 6.5: Anomaly score of the model, in red the values selected as anomalies
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Figure 6.6: Anomalies experiment 1.2
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6.3 — Experiment 2: Automatic training data selection

6.3 Experiment 2:
Automatic training data selection

In this experiment the automatic training data selection module developed is tested.

The DB TIMFE data collected for 7 weeks is passed to the univariate timeseries analysis
module to detect anomalies on all the data available; subsequently the data with no
anomalies is used for training and the remaining data is used in conjunction with the
validation set to tune the threshold of the USAD model; then the multivariate analysis is
conducted.

In Figure 6.7 the anomaly detected by the univariate module, that uses the k-NN
algorithm to compute the anomaly score and the Yeo-Jonson thresholder to identify the
anomalies, are shown. The data from the 7 to the 27 of February 2022 is selected as
optimal for training.

Database Time Per Sec

10k

Jan 23 Jan 30 Feb 6 Feb 13 Feb 20 Feb 27 Mar 6
2022

Figure 6.7: DB TIME detected by the univariate model

The mulitvariate analysis conducted by the trained (Figures 5, 6) model correctly
identify only one anomaly of 2 hours on the 03-08-2022 night. Compared to the model
trained with the data selected manually (Figures 1, 2) the first evident anomaly is correctly
identified by both models, but the model analyzed in this experiment doesn’t identify the
second presumed anomaly identified in the first experiment. As discussed in the precedent
section, this point is considered, even by the company’s experts, a difficult point to label;
with the data of the 19 metrics used by the model the experts consulted agreed on not
considering it an anomaly, since they tend to prefer a non too sensitive model, that identify
only the anomalies that require immediate actions.

Comparing the anomaly score of the two models (Figure 6.3 for the model of Experiment
1 and Figure 6.8 for this experiment) we can see that both of them have an high anomaly
score in presence of the anomaly in question, but the better tuned threshold of the second
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model allows for a more precise distinction, identifying only the correct outlier.
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Figure 6.8: Anomaly score of the multivariate model, in red the values selected as anoma-
lies
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Figure 6.9: Anomalies experiment 2.1

6.4 Experiment 3:
Test on large number of metrics

The input data used for this project is the one collected in the VSSYSMETRIC view
available in the Oracle Database environment. Of the 155 metrics collected in this table,
to simplify the task of the model, only 19 were selected as they are considered the most
representative of the database health status by the company experts. In this experiment,
a larger set of metrics is considered, in order to see the effects of increasing the number
of metrics and analyze the consequences of doing so. For this experiment, a set of 60
metrics is selected, containing statistics sampled both per second and per transaction; a
transaction is a logical, atomic unit of work that contains one or more SQL statements.
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A transaction groups SQL statements so that they are either all committed, which means
they are applied to the database, or all rolled back, which means they are undone from
the database.

In both cases with the two different test datasets, an increase in the detected anomalies
can be noticed due to the anomalous behavior of the new metrics considered, but the
model seems to scale well, since the anomaly detected in Experiment 1 are still found by
the algorithm, thus indicating that increasing the number of metrics doesn’t affect the
ability of the model to detect anomalies, but it simply finds other outliers because of the
newly added metrics, that have a trend the differs from the normal one on different times
compared to the metrics considered in Experiment 1.

However, it is important to underline the fact that using many metrics has two main
disadvantages:

1. the first is that both training and inference take significantly longer times than the
case with fewer metrics.

2. the second is that many metrics among those added may have anomalous behavior
but that anomalies in their values very often do not lead to slowdowns in the database
and therefore using them would only lead to an increase in reports that operators
would then have to analyze.

However, the use of a high number of metrics can be useful in the case of a non-real time
analysis, in which anomalies often not taken into consideration by the operators can be
useful in discovering the causes of any database performance problems.

6.4.1 Test data 1
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Figure 6.10: Anomaly score of the multivariate model, in red the values selected as anoma-
lies
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6.4.2 Test data 2
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Figure 6.11: Anomaly score of the multivariate model, in red the values selected as anoma-
lies

6.5 Experiment 4:
Test on data from a different database instance

In order to test the generalization capabilities of the proposed solution, for this experiment,
the trained model of Experiment 1 is tested with data from a different database instance
running on a different server in the client cluster (RAC). However is important to specify
that this test on a different database is possible only if the customer’s architecture is
well structured, i.e. that the machines are configured in the same way, both in terms of
hardware and software.

In this case we show that the model performs very well, thus proving that is possible to
train only one model, and then using it to detect anomalies on multiple database instances,
reducing the cost of training, and if the prediction frequency is not to small, it is even
possible to use only one model for the inference, reducing significantly the computational
cost of the proposed anomaly detection application.

In Figures 19 and 20 the results of this test are presented. The second and fourth
anomalies detected are in concomitance of 2 spikes in the DB TIME, Physical Reads Per
Sec and Logons Per Sec. The first and fifth anomalies detected (less that one hour) have
not a noticeable impact on the DB TIME, but are caused by the Physical Reads Per Sec
and Physical Writes Per Sec for the first one and by the Average Active Sessions for the
other one. As for the third anomaly, only lasted an hour, is not clear why the model
identified this period as anomalous, and after an in-depth analysis the conclusion that
this anomaly is wrongly signaled as such is reached.
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Figure 6.12: Anomaly score of the multivariate model in a different database instance, in
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Chapter 7
Conclusions

This thesis presented an unsupervised anomaly detection method for multivariate time
series in an Oracle database, using adversarially trained autoencoders. The main research
question was how to effectively detect anomalies in an Oracle database without requiring
labeled data or manual selection of training data.

The main findings of this study were:

o The proposed method can automatically select normal data from the database met-
rics to train the autoencoders, and use dynamic thresholds to identify anomalies in
new data.

e The proposed method can generalize to different Oracle database instances, and
provide useful insights for database performance monitoring.

o The general and scalable architecture of the application developed is a useful asset
to the company in where it was developed, offering an already production ready and
documented framework to implement other anomaly detection methods in the future
and useful tools for visualizing in an interactive way the results of the analysis.

The main contribution of this study were:

e The implementation of a state-of-the-art unsupervised anomaly detection method
for multivariate time series in an Oracle database, based on adversarially trained
autoencoders, in a production context.

o A general and scalable architecture for implementing the method, using Python and
PyTorch.

o A comprehensive evaluation of the method on real-world data, collected from differ-
ent Oracle database instances.

o A practical application of the method for database performance monitoring, provid-
ing a tool for database administrators to identify potential problems and optimize
their systems.
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The main limitations of this study were:

o The lack of ground truth labels for the anomalies, which made it difficult to validate
the results objectively and quantify the performance of the method.

e The dependence of the method on the quality and quantity of the data available from
the Oracle database, which might vary depending on the database configuration and
usage.

e The assumption that only normal data is used for training, which might not hold in
some scenarios where anomalies are frequent or unavoidable.

7.1 Future works

This study has demonstrated that adversarially trained autoencoders can be a power-
ful technique for unsupervised anomaly detection in multivariate time series in an Ora-
cle Database. By automatically selecting normal data from the database metrics, using
dynamic thresholds to identify anomalies, and generalizing to different Oracle database
instances, the proposed method can provide a valuable tool for database performance
monitoring. This study has also contributed to the existing literature on anomaly detec-
tion by applying a novel method to a real-world problem. However, there is still room
for improvement and further research in this field. Therefore, this study hopes to inspire
other students and researchers to explore new ways of detecting anomalies in complex
systems using machine learning techniques.
The main recommendations for future research are:

o To explore other techniques for selecting normal data from the database metrics,
such as clustering or outlier detection methods.

o To investigate other ways of setting dynamic thresholds for anomaly detection, es-
pecially their tuning over time.

e To extend the method to other types of databases or time series data, such as
Microsoft SQL Server.

o To incorporate feedback from domain experts or users to improve the interpretability
and usability of the method.

o Implementing a rest API to send notification to the performance monitoring panel,
used by the company, when an anomaly is detected.
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Appendix
In this appendix the detailed results of the application, especially showing the behavior

of each metric in detail, are provided.

Experiment 1:
Manual training data selection

A. Test data 1
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Experiment 1: Manual training data selection

B. Test data 2
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Figure 4: Metrics (Part 2) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 5: Metrics (Part 1) used for testing, the ports in green represents when an anomaly
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is detected. In red the value of each metric when an anomaly is detected.
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Figure 6: Metrics (Part 2) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 7: Metrics (Part 1) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 8: Metrics (Part 2) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 9: Metrics (Part 3) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 10: Metrics (Part 4) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 11: Metrics (Part 5) used for testing, the ports in green represents when an anomaly

is detected. In red the value of each metric when an anomaly is detected.
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Figure 12: Metrics (Part 6) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 13: Metrics (Part 1) used for testing, the ports in green represents when an anomaly
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is detected. In red the value of each metric when an anomaly is detected.
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Figure 14: Metrics (Part 2) used for testing, the ports in green represents when an anomaly

is detected. In red the value of each metric when an anomaly is detected.
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Figure 15: Metrics (Part 3) used for testing, the ports in green represents when an anomaly

is detected. In red the value of each metric when an anomaly is detected.
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Figure 16: Metrics (Part 4) used for testing, the ports in green represents when an anomaly
is detected. In red the value of each metric when an anomaly is detected.
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Figure 17: Metrics (Part 5) used for testing, the ports in green represents when an anomaly
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is detected. In red the value of each metric when an anomaly is detected.
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Figure 18: Metrics (Part 6) used for testing, the ports in green represents when an anomaly

is detected. In red the value of each metric when an anomaly is detected.
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Figure 19: Metrics (Part 1) used for testing, the ports in green represents when an anomaly

is detected. In red the value of each metric when an anomaly is detected.
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Figure 20: Metrics (Part 2) used for testing, the ports in green represents when an anomaly

is detected. In red the value of each metric when an anomaly is detected.
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