
POLITECNICO DI TORINO

Master degree course in Data Science and Engineering

Master Degree Thesis

Unsupervised and
Self-Supervised

Machine-Learning for Epilepsy
Detection on EEG Data

Supervisors
Prof. Daniele Jahier Pagliari1
Prof. Luca Benini2,3

Dr. Andrea Cossettini2
Dr. Alessio Burello1,3

PhD. student Thorir Mar Ingolfsson2

Dr. Simone Benatti3

Candidate
Luca Benfenati

1. Politecnico di Torino, 2. ETH Zurich, 3. Università di Bologna

Academic year 2022-2023



This work is subject to the Creative Commons Licence



Abstract

Epilepsy is a neurological disorder characterized by abnormal electrical ac-
tivity of the brain that causes recurrent seizures. Electroencephalography
(EEG) data can help in the detection of such seizures. However, labelled
EEG datasets are scarce because the labelling process of this type of data
is a time-consuming and expertise-requiring activity. On the other hand,
vast amounts of unlabelled data are available. The objective of this work is
to understand if and how it is possible to exploit unannotated datasets for
seizure detection on EEG data. Since supervised methods are limited by the
amount of labelled data available, the thesis focuses on unsupervised and
self-supervised methods.

Firstly, two different fully-unsupervised methods proposed by the litera-
ture are considered. These methods exploit non-seizure data to learn their
distribution and then recognize seizures based on how much they differ from
the training distribution. However, since the results obtained with these two
methods were not promising, the focus shifted to self-supervised methods.
In this context, BENDR, inspired by Large Language Model BERT and self-
supervised speech recognition approach wav2vec 2.0, was proposed. BENDR
is pre-trained on a huge unlabelled EEG dataset (TUEG) and fine-tuned for
different Brain-Computer Interface (BCI) tasks and datasets. Starting from
the pre-trained weights made available by the authors of BENDR, the thesis
adapts this self-supervised approach to a different downstream task (seizure
detection) and a different dataset (CHB-MIT). The idea is to exploit the
knowledge learned on a huge amount of unlabelled data to understand and
capture the underlying structure of data. Once this first unsupervised task
has been carried out, the model is then fine-tuned on a more specific task and
a smaller labelled dataset. An extensive search of the optimal fine-tuning
strategy is carried out, considering various aspects. The impact of model
size when fine-tuning is evaluated, as well as the impact of pre-processing
and post-processing techniques, the impact of further pre-training on the
downstream dataset itself, and the impact of reducing the available training
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data.
The key takeaways that have been found and validated during the develop-

ment of the thesis are: (i) a model of smaller size may prevent overfitting on a
smaller dataset than the one on which it was pre-trained; (ii) regularization
techniques (especially heavy dropout, early stopping mechanism, learning
rate scheduler, and new losses) reduce overfitting and improve the general-
ization on different patients; (iii) finally, pre-processing and post-processing
techniques have the biggest impact on performance improvement.

At the end of this extensive search, performance comparable with the
current supervised state of the art was obtained (even slightly better un-
der certain conditions): specifically, 99.9% specificity, 66.6% sensitivity, and
0.698 FP/h. This work further validated the effectiveness of a huge large
language-inspired model as BENDR and of the self-supervision approach in
EEG-based tasks. The thesis successfully showed the potential of the trans-
fer learning scheme applied to EEG in the seizure detection task, leveraging
the huge amounts of unlabelled EEG data available.
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Chapter 1

Introduction

Epilepsy is one of the most common chronic diseases of the nervous sys-
tem that affects almost 1% of the worldwide population, i.e., around 70
million people [1]. It is a brain disease defined primarily by frequent and
unpredictable disruptions in normal brain activity, causing what is known as
epileptic seizures. These recurrent seizures are brief episodes of involuntary
movement that may involve a part of the body (partial) or the entire body
(generalized). Seizure episodes are a result of excessive electrical discharges
in a group of brain cells. Different parts of the brain can be the site of such
discharges.

There are several treatment approaches that can be used depending on
the individual and the type of epilepsy. However, about 30–40% of epilepsy
patients exhibit treatment resistance to drug therapy and suffer from complex
epilepsy symptoms, called drug-refractory epilepsy (DRE [2]). In this case,
electroencephalogram (EEG) becomes an important tool for the diagnosis of
epilepsy. EEG is a recording of brain activity: the brain’s neurons contain
ionic current, which creates voltage fluctuations that EEG can measure. This
electrical activity is spontaneous and recorded over a period of time from
many electrodes to form an EEG signal. Electroencephalography was first
introduced by Hans Berger [3] to measure the electrical activity of different
regions in the human brain, which can be particularly useful in the diagnosis
of different types of brain disorders. Such a tool helps neurologists study the
fluctuations in the brain that occur during epileptic seizures. The analysis of
these fluctuations can aid in accurately distinguishing between healthy and
unhealthy functionalities of the brain.

Over the last three decades [4], the use of EEG recordings in the study of
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Introduction

epileptic seizures has risen sensibly in tasks such as seizure detection, pre-
diction, and classification using EEG signals. The use of machine learning
and deep learning architectures for analyzing these EEG recordings has re-
cently shown several advantages and improvements, starting from diagnosis
support, and minimizing the need for trained specialists. In this context,
automatic epilepsy detection on EEG with machine learning (ML) and deep
learning (DL) models is a challenging task, both due to the limited amount of
labelled data often available for the training of a classifier, and for the high ac-
curacy standards required for a monitoring device to detect all seizure events
without raising highly stressful false alarms. However, the recent availability
of large EEG datasets has paved the way for the use of deep learning models
for EEG decoding and classification. The main problem with these datasets
is the lack of labelling, which is a time and effort-consuming process that
requires the supervision of an experienced clinician. To address this prob-
lem, unsupervised and self-supervised learning techniques leverage unlabelled
datasets to learn complex structures in the data via new supervised-learning
tasks: for example, by occluding portions of the data and expecting the
model to predict what has been hidden, or by providing two samples from
the same patient and training the model to associate them strongly. In ad-
dition, in recent years, most of the researchers that worked on the epilepsy
detection task have focused on developing their own model, with specific
and well-suited characteristics based on the type of data and task that they
wanted to solve. A small number of them tried to exploit the benefits of a
"general" model that can be adapted for different types of tasks. Once again,
in this context, self-supervised learning techniques propose an alternative to
classical shallower machine learning models, which are built and thought,
through a time and effort-consuming process, for a singular specific task.

Self-supervised learning has seen some recent success in natural language
processing (NLP) with Language Models (LMs): one of the key aspects of this
success is the Transformer architecture, introduced in the ground-breaking
paper "Attention is All You Need" [5] by Google in 2017. This new archi-
tecture allows the model to handle large amounts of data more efficiently
and capture complex patterns in the data thanks to its self-attention mech-
anism, which is able to attend to different parts of the input sequence while
computing the output. With this new approach, the model can capture long-
range dependencies between words and handle long sequences of text more
efficiently than previous RNN-based or CNN-based NLP models. The recent
pace of progress has increased dramatically and led to self-supervised deep
representations that appear to approach and possibly even surpass that of
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fully-supervised representations. This has raised hopes that self-supervised
methods could indeed replace the widespread annotation-intensive paradigm
of supervised deep learning going forward. These models are understood to
work by making a very general model of language and appear to be even
immediately capable of performing tasks they were not explicitly trained to
accomplish. The main idea is to first define an unsupervised task on a huge
unlabelled dataset in order to learn the representations of data as broadly as
possible, which captures the underlying structure and pattern of that spe-
cific type of data. Once the model has completed this "pre-learning" phase,
the general representations can be used to fine-tune on downstream tasks,
which are usually related tasks for which a relatively small amount of labelled
data is available. In comparison with shallower neural networks, which have
proven to be more effective classifiers than their deeper counterparts in sev-
eral EEG applications (as in [6], [7], [8]), the range of learnable features is
relatively limited. The performance of shallower models more quickly satu-
rates to lower performance levels as compared to a deeper network alternative
([9]), suggesting that more complex features could be developed using deeper
neural networks when using training data that was more consistent. Over-
coming the limitations of shallower networks in favour of deeper DNNs that
could surpass feature engineering approaches likely requires addressing the
large variability between different contexts.

The objective of the following work is to test unsupervised and self-supervised
approaches for seizure detection with EEG data, exploring the techniques and
the advantages of the use of huge unlabelled EEG datasets, which, as already
discussed, have become recently more and more available. In this context, for
unsupervised approaches, the thesis will focus mostly on Anomaly detection
methods, while for the self-supervised ones, the focus will be on architec-
tures inspired by the Large Language Model seen in the NLP field. A more
thorough approach is considered for the self-supervised part: specifically, a
very promising model inspired by the recent NLP developments is studied in
detail, analyzing the benefits of exploiting both Convolutional Neural Net-
work (CNN) and Transformers architecture. In this context, several tests are
carried out on a famously renowned EEG dataset collected at the Children’s
Hospital Boston, known as CHB-MIT, for the seizure detection task, consid-
ering a multitude of combinations of architectures, pre-training alternatives,
pre-processing and post-processing techniques, amount of data available for
the fine-tuning task, and others. The end goal is to discover the potential of
self-supervised learning in the EEG field and see if there are the conditions
for success as there have been with Transfer Learning (TL) in Computer
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Vision. The main focus is to understand if it is possible to develop and use
a huge general model that is able to leverage knowledge learned from one
context (in an unsupervised way) such that it may be useful in a different
one (in a supervised way).

The contributions of this thesis are:

• an extensive overview of several state-of-the-art approaches for the seizure
detection task on EEG data that either do not employ labelled data (un-
supervised) or exploit unlabelled data (self-supervised). In this first part,
the focus is on the replication and validation of the most promising and
interesting approaches to the CHB-MIT dataset;

• the adaptation of a large language-inspired model which has been pro-
posed by the literature to work with EEG data, to the seizure detection
task on the CHB-MIT dataset. In this part, once the data from CHB-
MIT has been properly prepared and processed, the model is modified
to cope with a different task and a different dataset with respect to the
ones on which it was originally developed.

• the optimization of the fine-tuning step of the model. In this context,
several fine-tuning dimensions are considered: the thesis searches for the
optimal model size, the optimal pre-processing and post-processing tech-
niques, the optimal training strategy and the data used during training.

The thesis is organized as follows: Chapter 2 explains the background
and necessary theory underlying to understand the project fully. What is an
epileptic seizure, how is EEG data gathered, the problem being solved, and
why is it challenging. Chapter 3 explores state-of-the-art methods, consid-
ering supervised, unsupervised, and self-supervised methods. It also gives a
brief overview of the Large Languages models and Self-supervised approaches
in the NLP field that inspired the main contribution of this work. Chapter 4
discusses the different architectures and methods tested, dividing it into two
sections: one for the unsupervised approach and one for the self-supervised
one. Chapter 5 presents all the experiments and the results obtained dur-
ing the work: once again, the chapter is divided into two sections. Finally,
chapter 6 addresses some final thoughts and considerations on the results
and, most importantly, on the overall project, as well as some comments on
possible future works.

18



Chapter 2

Background

This chapter addresses all the theoretical aspects and background that are
necessary to fully understand the scenario in which the project has been
developed. The chapter is divided into two different sections. The first
section (2.1) gives the details for defining an epileptic seizure, how data is
gathered in this field, and what types of different tasks are usually carried out
with EEG. The second section (2.3) gives an overview of the background that
is required to know to fully understand the model that is going to be used in
the Material and Methods chapter (4). After a brief explanation of the self-
supervised learning paradigm, the Transformer architecture is introduced,
which is the building block of all the architectures considered in the following
work; then, based on this, a famously renowned Masked Large Language
Model is presented; and finally, an adaptation of this Language model to the
speech recognition scenario.

2.1 Epilepsy

2.1.1 Epileptic Seizure
Neurons are cells within the brain that are capable of generating, propagat-
ing, and processing electric signals. They connect to other neurons to form
functional networks: thus, the brain can be viewed as a collection of inter-
acting neural networks. The inputs to a neural network can be excitatory if
they promote activity among neurons or inhibitory if they suppress it [10].

Epileptic seizures are transient periods involving hyperactivity and hyper
synchronization of a large number of neurons within one or more neural
networks. These transient states may arise because of a perturbation that
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Background

creates an imbalance favouring the excitation of a neural network over its
inhibition. The imbalance may arise because of the following:

• defects within a neuron (e.g., ion channel dysfunction);

• defects in connections between neurons (e.g., deficient inhibitory neuro-
transmitter synthesis);

• defects in neural network organization (e.g., the formation of aberrant
excitatory connections between neurons).

Defects within neurons, neuronal connections, or neural network organiza-
tion may result from a genetic disorder or from trauma to the central nervous
system during life. Epileptic seizures are broadly classified according to their
cerebral site of origin and spread. Focal seizures arise from a localized region
of the brain’s cortex and have clinical manifestations that reflect that region
of the brain. As an example, a focal seizure originating in the temporal lobe,
the part of the brain that processes emotions and short-term memory, may
result in feelings such as euphoria, fear, and deja vu or hallucinations of taste
or smell. Focal seizures may spread to involve other regions of the brain or
the entire brain. Generalized seizures begin with abnormal electrical activity
that appears to encompass the entire cerebral cortex. The manifestations of
such widespread abnormal electrical activity often include the loss of con-
sciousness. Motor manifestations of these seizures may include whole-body
rigidity and jerking (tonic-clonic seizure) or whole-body loss of muscle tone
(atonic seizure). A seizure that begins focally and then generalizes is referred
to as a secondarily generalized seizure.

2.1.2 Scalp Electroencephalogram
Electrical activity generated by collections of neurons in the brain can be
monitored using electroencephalogram (EEG) signals, a multi-channel record-
ing of this activity: different channels measures the activity within different
brain regions. The recording can be done using non-invasive electrodes ar-
rayed on the scalp of patients, referred to as scalp EEG, or by implanting
electrodes inside brain tissues during surgery, referred to as intracranial EEG
signals (iEEG) [11]. The main difference between these two types of data
is that the scalp EEG offers poor spatial resolution but high spatial cover-
age, while the intracranial EEG offers high spatial resolution but less spatial
coverage.
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2.1 – Epilepsy

The property of scalp and intracranial EEG that most complicates the
seizure detection task is its variability across individuals with epilepsy, both
in the seizure and non-seizure states. Typically, following the onset of a
seizure, a set of EEG channels develops rhythmic activity that reflects un-
derlying neuronal hypersynchrony. Both the location of the involved EEG
channels as well as the spectral content of the rhythmic activity varies across
individuals. Furthermore, the EEG signature of one patient’s seizure may
closely resemble the signature of abnormal, non-seizure EEG gathered from
the same patient or different patient [12]. Within the scalp, EEG the seizure
detection task is further complicated by the physical properties of the signal.
The scalp EEG is most sensitive to the activity of neurons on the brain sur-
face; consequently, the activity of neurons within deep brain structures has
almost no influence on the scalp EEG.

The International 10–20 system is the standard to describe and apply the
location of scalp electrodes in the context of recording sEEG signals. The
numbers “10” and “20” refer to the distances between adjacent electrodes,
which are either 10% or 20% of the total distance (front-back or right-left)
of the skull. The total distance is based on the anatomical locations on
the scalp: nasion and inion (front-back direction) and the two preauricular
points (right-left direction) as seen in Figure 2.1. Using these anatomical
landmarks, the placement of the electrodes can be determined along with
these directions with the pre-specified proportions: 10% is used from the
anatomical landmarks and the first electrode in that direction, and 20% is
used between the other electrodes. Each electrode placement site has a letter
to identify the lobe or area of the brain it is reading from pre-frontal (Fp),
frontal (F), temporal (T), parietal (P), occipital (O), and central (C). Note
that there is no ’central lobe’; due to their placement and depending on
the individual, the ’C’ electrodes can exhibit/represent EEG activity more
typical of frontal, temporal, and some parietal-occipital activity. In addition,
a ’z’ (zero) denotes electrodes placed on the centre line, on the midline sagittal
plane of the skull (FpZ, Fz, Cz, Oz). The ’z’ electrodes are often utilized as
’grounds’ or ’references’. Finally, even-numbered electrodes (2, 4, 6, 8) refer
to electrode placement on the right side of the head, whereas odd numbers
(1, 3, 5, 7) refer to those on the left.

An EEG signal or channel is formed by considering the difference between
potentials measured at two electrodes. Channel FP1 - F7, for example, con-
siders the difference between the potentials measured at the electrode FP1
and at the electrode F7. Each EEG channel summarizes activity localized
within a region of the brain: channel FP1 - F7, for example, shows the
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behaviour of neural activity originating within the frontal lobe of the left
hemisphere. The onset of a focal seizure involves a change in activity on the
few scalp EEG channels that lie above or near the site of the brain, giving
rise to a seizure; on the other hand, the onset of a generalized seizure involves
activity on all scalp EEG channels.

Figure 2.1. Electrode arrangement according to the international
10/20 system [13]

2.1.3 Seizure detection
As already discussed in the Introduction, it is possible to distinguish between
three different tasks in the study of epileptic seizures. These three tasks can
be distinguished and categorized depending on their final objective, specifi-
cally:

• in Seizure detection, a model identifies the presence or lack of seizures
or abnormal activities after analyzing EEG signals;

• in Seizure prediction, a model can predict the likelihood of the occur-
rences of imminent epileptic seizures early on, by identifying the patient’s
pre-ictal state;

• in Seizure classification, a model can categorize different types of seizures
or seizure phases. In other scenarios, the classification term is used for
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classifying different seizure phases, known in the literature as EEG/phase
classification.

Figure 2.2 shows an overview of the detection, prediction, and classification
tasks. Seizure detection can be performed when it is required to review EEG
recordings and evaluate seizure occurrences as a posthoc analysis: in Figure
2.2a, it is possible to see when the ideal case of seizure detected verifies, as
soon as the seizure onset happens. On the other hand, seizure prediction is
usually deployed to take into account safety precautions: the objective of this
task is, indeed, to spot upcoming seizures with some forewarning and alert
the patient or the health care professionals: in Figure 2.2b, it is possible
to see a seizure being identified before the seizure onset. Finally, seizure
classification wants to identify and classify the type of seizure (Figure 2.2c):
a seizure can be tonic (i.e. stiffness of the muscles), atonic (i.e. relaxing of
muscles), myoclonic (i.e. short jerking) and clonic (i.e. periods of shaking).
This may be a crucial tool for neurologists to take the appropriate medical
decision.

Figure 2.2. Different recognition tasks for diagnosis of epilepsy: (a) seizure
detection, (b) seizure prediction, (c) seizure type classification [4]
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2.2 Machine Learning and Deep Learning
Machine learning is a subfield of artificial intelligence, which is broadly de-
fined as the capability of a machine to imitate intelligent human behaviour.
More precisely, machine learning describes the capacity of systems to learn
from problem-specific training data to automate the process of analytical
model building and solve associated tasks [14]. It is common to talk about
Deep Learning, rather than simple or shallow machine learning, when there is
a layered structure of algorithms that forms an artificial neural network, com-
posed of multiple layers of processing used to extract progressively higher-
level features from data. For many applications, deep learning models out-
perform shallow machine learning models and traditional data analysis ap-
proaches.

There is an important distinction between learning paradigms according
to the amount of supervision they require. Machine and Deep Learning
methods can be divided into three different categories:

• Supervised learning algorithms require a training set of example inputs
and their corresponding desired outputs, which the algorithm uses to
learn a model of the mapping from inputs to outputs. Once the model
is learned, the algorithm can generate outputs for new inputs.

• Unsupervised learning algorithms do not require a training set, but in-
stead, learn a model of the input data by detecting patterns in it. Un-
supervised learning algorithms can be used to discover structure in data
or to cluster data into groups.

• Self-supervised learning algorithms require only a training set of input
data; the desired outputs are not provided. Instead, the algorithm learns
a model of the input data and the desired outputs by detecting patterns
in the data.

The focus of the thesis will be only on Unsupervised and Self-Supervised
learning methods. Because of its complexity, the self-supervised learning
paradigm and the common architectures used need to be further addressed.
For this reason, a more specific and detailed Section (2.3) is presented.

2.3 Self-supervised learning
Self-supervised learning has emerged as a dominant paradigm in the field
of Natural Language Processing (NLP) because of its ability to learn from
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huge amounts of unlabelled data. In traditional supervised learning, human-
labelled data is required to train a machine learning model, and labelling large
amounts of data is expensive and time-consuming. The main advantage of
self-supervised learning is that this type of paradigm does not require labelled
data, or better can exploit the huge amount of unlabelled data available.
Self-supervised learning consists of two distinct tasks:

• a pre-text task (or pre-training): it is usually a task without a specific
objective if not the one of learning the underlying structure of the data
available. This is typically carried out in an unsupervised way, to ex-
ploit the massive amount of unlabelled data. The idea is to transform
the unsupervised problem into a supervised problem by auto-generating
the labels from originally unlabelled data, to make the model learn in-
termediate representations of data.

• a downstream task (or fine-tuning): after the pre-training, the model
is then fine-tuned exploiting the intermediate representations learned
during the first task (more general) in a more specific field. Usually, the
dataset on which the model is fine-tuned is smaller than the one on which
it has been trained, and the task is more specific. The downstream task
can be either carried out in an unsupervised way or in a supervised way

Self-supervised learning has seen huge success in recent years because it is
the paradigm used to train Large Language models (LLM) in NLP. A large
language model is a type of machine learning model that can perform a
variety of natural language processing tasks with great performance. The
success of these models trained with self-supervision is mainly due to the use
of the Transformer, which can handle large quantities of data.

2.3.1 The Transformer
The transformer (Figure 2.3), introduced in 2017 by [5], is a neural network
that learns context and thus meaning by tracking relationships in sequential
data, thanks to a new mechanism called self-attention that allows the un-
derstanding of the overall context of the input data. The main advantage is
that data can be fed all at once, differently from what happens for Recur-
rent Neural Networks (RNNs), that at the time were the state of the art of
NLP applications. It is important to understand how each component of its
architecture works.
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Figure 2.3. The transformer architecture [5]

The data needs to be encoded to identify the positions of the inputs: for
this reason, the data is fed to the input embedding combined with posi-
tional encoding before the Encoder. There are many types of positional
encoding, the most used use is a sine and cosine method which is a linear
operation given by:

PE(pos, 2i) = sin
3 pos

n2i/dmodel

4
; PE(pos, 2i + 1) = cos

3 pos

n2i/dmodel

4
(2.1)

where pos is the position in the input sequence, dmodel is the output dimension
of the embedding, n is a scalar and i is the dimension.

The Encoder (left part of Figure 2.3) has two main components, a Multi-
head attention and a feed-forward layer. The encoder has N stacks of iden-
tical layers where:

• Multi-Head Attention: the positional encoded data goes through a multi-
head Attention mechanism. This involves representing the data in three
different vectors (value, key and query) which will go through attention
scoring and will output one final vector;
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• Add & Normalize: output data from self-attention is added to the input
followed by a layer normalization;

• Feed-forward: normalized output goes through a simple feed-forward
layer.

The output data from the encoder is once again fed through an output em-
bedding combined with the positional encoding block. The Decoder (right
part of Figure 2.3) has an additional step with respect to the encoder, the
masked multi-head attention, which is used to train the model to predict the
hidden parts of the data and estimate what is missing. The query and key
vector are taken from the output of the Encoder but the value vector comes
from the masked multi-head attention.

The linear layer takes the output from the decode and passes it to the final
classification layer that uses the softmax activation function. The softmax
outputs the predicted next-token probabilities as:

σ(z)i = eziqK
j=1 ezj

, i = 1, ..., K, z = [z1, ..., zK ] ∈ R (2.2)

where K is the total number of tokens and z is the output vector from the
linear layer. As already said, the self-attention mechanism is the key to
the success of this architecture. This mechanism is carried out in multiple
so-called heads of both the encoders and the decoders: within these heads,
multiple operations and steps are carried out. A graphical summary of these
operations is shown in Figure 2.4. Practically, an input matrix X is created
from the input embeddings and translated into three different matrices: a
Query matrix Q, a Key matrix K and a Value matrix V , with correspond-
ing weight matrix W Q ∈ Rdmodel×dv , W K ∈ Rdmodel×dk and W V ∈ Rdmodel×dv ,
where dv = dk = dmodel/h. These matrices are created by a matrix multipli-
cation operation:

Q = XW Q K = XW K V = XW V (2.3)

where X ∈ RN×dmodel and the vectors xi, qi, ki and vi composed the matrices
Q, K, V ∈ RN×dmodel/h.

A =


x1
x2
...

xN

 , Q =


q1
q2
...

qN

 ,
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K =


k1
k2
...

kN

 , V =


v1
v2
...

vN


Then, considering a vector xi that is being transformed to vectors qi, ki

and vi, a score sj is computed for all the elements in vector ki. The score is
computed by matrix multiplication, i.e. the dot product of the query Q and
the key K:

qik̇j = sj, j ∈ J = N (2.4)

In order to have stabler gradients, the score sj is scaled with respect to the
dimension of the key vector dk, as in:

sj,scaled = sj√
dk

(2.5)

Then, the score is normalized using soft-max:

scorei = softmax(s1,scaled, s2,scaled, ..., sj,scaled) (2.6)

Once this has been computed for all inputs, the value vectors are multiplied
with the respective soft-max score, thus:

zi = scorei × vi (2.7)

The previous computations can also be simply represented with the matrix
formulation:

Z = Attention(Q, K, V ) = softmax

A
QKT

√
dk

B
V (2.8)

Each one of the head h of the encoder or decoder produces one of these
attention matrices Z. These matrices are then concatenated and multiplied
by a weight matrix W O ∈ Rhḋv×dmodel:

MultiHead(Q, K, V ) = Concat(Z1, ..., Zh)W O

where Zi = Attention
1
QW Q

i , KW K
i , V W V

i

2 (2.9)

Since the transformer uses a MultiHead self-attention mechanism, there are
h weight matrices W Q

i ∈ Rdmodel×dk and W V
i ∈ Rdmodel×dv where i ∈ 1, ..., h,

which result in h Zi matrices that will be concated at the end. Notice that
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Figure 2.4. Scaled Dot-Product Attention (left). Multi-Head Attention
consists of several attention layers running in parallel (right). [5]

there could also be some additional steps if there is, for example masking: in
this case, it would be done between the scaling and the soft-max operations.

To summarize, in the self-attention mechanism, the input sequence is
transformed into a sequence of key, query, and value vectors (K, Q, V), which
are used to compute a weighted sum of the input sequence. The weights of
the sum are determined by a softmax function applied to the dot product of
the query vector and the key vector (attention score). The attention score is
computed for each element in the input sequence, which is used to compute
a weighted sum of the value vectors. The resulting output vector represents
the attended representation of the input sequence, where each element of the
output vector is a weighted sum of the input elements. One advantage of the
self-attention mechanism is that it allows the model to selectively attend to
different parts of the input sequence based on their relevance to the current
processing step, rather than relying on fixed-length window-based approaches

2.3.2 BERT

BERT (Bidirectional Encoder Representations from Transformers) was in-
troduced in [15] by Google to address the limitations of the NLP context.
The key innovation of BERT lies in its bidirectional nature, due to its
Transformer-based architecture. Unlike previous models that processed text
in a strictly left-to-right or right-to-left manner, BERT takes into account
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both the left and right context of each word. BERT was designed to fine-
tune downstream tasks on pre-trained deep bidirectional representations from
unlabelled text. Utilizing massive datasets, the model learns the deep bidi-
rectional representations to learn attributes of the data, which allows for less
training when it comes to a supervised downstream task, hence smaller sets
of labelled data are required.

The pre-training process of BERT considers as input a large amount of
unlabelled data that are tokenized into smaller units. During pre-training,
two unsupervised tasks are performed simultaneously:

1. Masked Language Modeling (MLM): part of the input token is randomly
selected and masked. These masked tokens are then predicted based on
the context provided by the surrounding tokens. The objective is for
BERT to learn to understand and reconstruct the masked words.

2. Next Sentence Prediction (NSP): predicting whether two sentences ap-
pear consecutively in the original text or are randomly paired. This
helps BERT learn the relationships between sentences and capture the
context beyond individual sentences.

After the model is pre-trained, various supervised tasks can be fine-tuned.
The pre-training and fine-tuning processes are summarized in Figure 2.5: it
is immediate to notice how the objective change during these two phases.
While during pre-training the model learns what is missing from the masked
input based on the context of the input itself, during fine-tuning the objective
can differ a lot based on the specific downstream task the model is trying to
solve: from answering a question to translating in another language, and so
on.

2.3.3 The wav2vec 2.0 framework
Wav2Vec 2.0 is a deep learning model for self-supervised speech representa-
tion learning developed by Facebook AI Research (FAIR) [16]. This model
and its approach are of crucial importance for the thesis. In Section 4, the
model that will be used as starting point of the self-supervised part of the
thesis is, citing the authors, an adaptation of wav2vec 2.0 to EEG, in terms of
both the architecture and the training approach. Wav2vec 2.0 has been devel-
oped to leverage large amounts of unlabelled speech data to learn meaningful
representations that capture the underlying structure of spoken language.
By pre-training on unlabelled data, the model can learn to understand the
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Figure 2.5. BERT architecture for the pre-training process (on the left) and
for the fine-tuning process (on the right) [15].

characteristics of speech signals and encode them into rich representations.
Wav2vec 2.0 uses a similar framework as BERT, but with an additional step
at the bottom of the architecture: a CNN-based feature extractor is added
before the Transfomer-based module.

The architecture of wav2vec 2.0 consists of three different modules:

1. a multi-layer convolutional neural network (feature encoder), that
takes as input raw audio X, and converts it into a sequence of latent
representations that capture the underlying structure of the. These rep-
resentations can be seen as the new features z1, ..., zT for T time steps.

Encoder: f : X → Z (2.10)

This first network is made of seven sequential blocks with 1D Temporal
Convolution, Layer normalization and GELU activation function. The
CNN processes the input data with a sliding window that moves across
the input data. This allows the CNN to capture local patterns in the
data and learn relevant features.

2. A quantization module that converts continuous representations of
the encoder Z into finite quantized representations Q.

Quantization module: f : Z → Q (2.11)

3. A transformer encoder similar to the one already used in BERT, with
the difference that it employs a relative positional embedding instead of
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the fixed positional embedding seen in Figure 2.3. The relative posi-
tional embeddings are learned during training using convolutional layers
followed by a GELU activation function. They are then added to the
input features Q and a layer normalization is applied before they are
processed by the transformer layers. The output of the transformer is
the context representations C.

Transformer: f : Q → C (2.12)

The architecture described is shown in Figure 2.6. The model is trained using
contrastive learning where the loss of the task is defined by the quantized
representation and the final output of the transformer. Specifically, a certain
proportion of time steps in the latent feature encoder space Z are masked,
and the model learns to identify the correct quantized latent representations
in a set of so-called ’distractors’ at each masked time step. The contrastive
loss is defined as:

Lm = -log exp(cossim(ct, qt)/k)q
q̃∈Qt

exp(cossim(ct, q̃)/k) (2.13)

where cossim is the cosine similarity, qt are the quantized latent speech repre-
sentations, q̃ ∈ Qt are the candidate representations of dimension K +1, and
Qt is the set that contains the correct representations qt and K distractors.

Wav2vec 2.0 uses self-supervision to learn from unlabelled training data
and to enable speech recognition systems for many more languages, dialects,
and domains. With one hour of labelled training data, wav2vec 2.0 outper-
forms the previous state of the art on the 100-hour subset of the LibriSpeech
benchmark, using almost 100 times less labelled data. Both the architecture
and the training paradigm have seen great success in the Natural Language
Processing field, dominating the state of the art and defining the starting
point for every new study.

In conclusion, in order to understand what is the relevance of this Back-
ground chapter and the contact with the thesis, it is possible to state that:
the transformer is the key to the success of architectures such as BERT, that
inspired self-supervised speech recognition approach wav2vec 2.0, which have
been adapted to the EEG world by BENDR ([17]), which is the starting point
of the self-supervised part of the thesis.
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Figure 2.6. The wav2vec 2.0 architecture [16]
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Chapter 3

Related Work

In this chapter, the current state-of-the-art of the seizure prediction task
with Machine Learning and Deep Learning models is explored. The chapter
is divided into sections based on the type of learning and the use of labels
in the training phase: supervised, unsupervised and self-supervised learn-
ing. Briefly, supervised learning algorithms require a training set of example
inputs and their corresponding desired outputs, which the algorithm uses
to learn a model of the mapping from inputs to outputs. After the model
is learned, the algorithm can generate outputs for new inputs. Unsuper-
vised learning algorithms do not require a training set, but instead, learn a
model of the input data by detecting patterns in it. Unsupervised learning
algorithms can be used to discover structure in data or to cluster data into
groups. Finally, self-supervised learning algorithms require only a training
set of input data and the desired outputs are not provided. Instead, the algo-
rithm learns a model of the input data and the desired outputs by detecting
patterns in the data. More specifically, in the "pretext task" the algorithm
generates "pseudo-labels" itself and then supervised training is carried out on
these newly generate labels. Then, the model is fine-tuned with the specific
original task ("downstream task").

It has already been discussed how the use of EEG for epilepsy-related tasks
has seen a huge rise in the last three decades (Figure 3.1). Machine Learning
and Deep Learning algorithms and their capability to process large amounts
of data have been key players in this process, enabling the discovery and
extraction of usable knowledge in a field that has always required experienced
professionals.
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Figure 3.1. Number of articles on seizure detection, prediction
and classification published since the 1970s till 2021 as reported
by Web of Science [4]

3.1 Supervised learning
Several supervised learning methods of the state-of-the-art exploit the so-
called "shallow" learning. Shallow Learning represents all the machine learn-
ing algorithms the techniques that are not "deep learning". These methods
usually belong either to the broad class of traditional machine learning mod-
els (i.e. Decision Trees, Random Forests, Support Vector Machine, Logistic
Regression and so on) or to the class of neural networks with a small number
(0-2) of hidden layers. At the moment, these are the approaches that can
reach the highest performances in the seizure detection task with EEG, even
if, just recently, some unsupervised and self-supervised approaches challenged
them with the same and, in some specific cases, even better performances
across several datasets. It must be said that there are also some exceptions
in the supervised learning scenario, with also some non-shallow architectures
that have shown great performance recently.

Most of the effort with these supervised learning models has been laid
down on the research of the most appropriate features to use and the most
adequate pre-processing techniques: these two steps can give a huge advan-
tage when considering the same model. Extracted features are used to train
supervised machine learning algorithms to identify whether a given EEG seg-
ment contains a seizure or not. These algorithms employ both shallow mod-
els, including support vector machines, decision trees, and nearest neighbour
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methods, as well as deep learning models, including convolutional neural
networks (CNN). Another important aspect that has been taken into con-
sideration is the deployment of models on ultra-low-power wearable devices.
In this context, of course, inference execution time and power consumptions
are two other crucial aspects to keep in consideration when assessing the fea-
sibility of real-time continuous monitoring. An example of methods where
both of these constraints are addressed can be found in [18], where the au-
thors explore different classification approaches (Support Vector Machines,
Random Forest, Extra Trees, AdaBoost) and different pre/post-processing
techniques to maximize sensitivity while guaranteeing no false alarms. Other
works focused on defining a new interpretable and highly discriminative fea-
ture for EEG: specifically, [19] proposed approximate zero-crossing (AZC), a
feature obtained by applying a polygonal approximation to mimic how the
brain selects prominent patterns among noisy data and then using a zero-
crossing count as a measure of the dominating frequency. There a several
works that focused on different pre-processing techniques that modified the
type of data in the input of the model. In [20], the authors proposed the
use of spectral graphs to extract spatial-temporal patterns for seizure detec-
tion. In [21], they used the wavelet transform, which has been applied to
the time-frequency domain for the detection of epileptic activity. In [22], the
authors proposed an effective feature extraction algorithm named discrete
short-time Fourier transform (DSTFT), which is an adaptive generalization
of the classical short-time Fourier transform (STFT). In [23], the authors
apply the Kriging methods on EEG signals in a wearable system configura-
tion to reduce the latency in real-time epileptic seizure detection. In [24],
the same Kriging methods have been used for the application of early seizure
detection. The authors in [25] use discrete wavelet transform and statistical
features to apply preprocessed EEG signals to a neural network classifier to
detect epileptic seizures. A very interesting work [26] explores knowledge dis-
tillation for IoT wearable devices. Knowledge distillation is a procedure for
model compression, in which a small (student) model is trained to match a
large pre-trained (teacher) model. The student model requires only the ECG
signal and can be applied on low-power wearable IoT platforms to perform
epileptic seizure detection, while the huge teacher model has been trained
offline on EEG signals. Another interesting work that differs a lot from the
previous ones is [27], where authors, leveraging the promising ability of trans-
formers in capturing long-term raw data dependencies in time series, present
a compact transformer model for more adaptable seizure detection obtaining
great performances on a smaller dataset with respect to the original one.
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For what concerns deep learning-based supervised seizure identification
methods, they have lately shown state-of-the-art performances, reducing the
need for manual feature extraction, as in [28], [29]. Deep models improved
even more in combination with long-short term memory (LSTM) networks to
aid time-series modelling [30], adversarial training to generalize identification
across patients [31], autoencoder-based feature extraction [32] and attention
mechanisms [33]. Table 3.1 summarizes all the information in the literature
on supervised methods for seizure detection or prediction that has been cited
in this section. Specifically, the paper, the year, the dataset, some metrics
performances and a short comment on the method used are presented.

Year Dataset Performance Method
Spec Sens FP/h Acc

[18] 2021 CHB-MIT 99.1 85.3 3.6 SVM, RF, Extra Trees, AdaBoost
[19] 2022 CHB-MIT 82.3 Approximate Zero Crossing Features
[20] 2018 CHB-MIT (only 18 patients) 98 Temporal Synchronization of EEG Signals
[21] 2018 private 99.5 92.1 Wavelet-based directed transfer function
[22] 2014 Bonn 93.8 99.2 Rational Discrete Short-Time Fourier
[23] 2018 open-source dataset 100 94.74 Simple, Ordinary, Universal Kriging
[24] 2020 CHB-MIT (5 patients) 87.6 93.47 Ordinary Kriging Method in IoT
[25] 2019 open-source dataset 98.5 DWT and DNN classifier
[26] 2022 EPILEPSIAE 94.8 85.7 Knowledge Distillation
[27] 2022 CHB-MIT (7 patients) 100 86.6 Transformer in real-time on MCUs
[28] 2018 Bonn 90 88.7 Deep CNN
[29] 2020 Bonn 98.5 One-dimensional DNN
[30] 2021 CHB-MIT 99.9 99.9 0.03 Long short-term memory network
[31] 2020 TUH EEG 0.805 DNN with attention mechanism
[32] 2018 Bonn, Freiburg, Kaggle 98.85 Recurrent autoencoder
[33] 2020 CHB-MIT, Bonn, TUSZ 96.05 92.41 Channel-embedding squeeze-and-excitation

Table 3.1. State-of-the-art performances of the supervised methods taken
into consideration in the preliminary study of this thesis. Notice that when
more datasets are present in the Dataset column, the performance of the first
dataset in order of appearance is shown in the Performance column.

3.2 Unsupervised learning
Despite the success of supervised learning methods, the problem is that they
require expert labels indicating EEG segments that contain seizures, which
are difficult to obtain due to the stochastic nature of EEG. For this reason,
in recent years, some unsupervised seizure detection methods have been ex-
plored and proposed in the literature. Most of the success of these methods
is due to the application of the anomaly detection approach. Anomaly de-
tection is the task of identifying test data that do not fit the normal data
distribution learned during training. The concept of anomaly detection is
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applied in various domains such as video analysis and remote sensing: the
strength of this approach is that can overcome the imbalance problem. Thus,
each one of these methods does not use any data containing seizures during
training: in this way, the model can deeply understand the nature of "nor-
mal" data, where normal is the most occurring scenario in which there are
no seizure events. Recently, [34] implemented an unsupervised deep learning
method for seizure identification on EEG, however with some manual feature
extraction required before training. Specifically, they preprocess EEG to ex-
tract spectrogram images and train a GAN on the spectrograms that do not
contain seizures. For each spectrogram at testing time, they have to search
for the latent GAN input that leads to the smallest loss value and use the
corresponding generated spectrogram for seizure identification. As the GAN
is trained with non-seizure activity, test spectrograms that significantly differ
from the spectrograms generated by GAN are successfully identified to con-
tain seizures. Based on this approach, [35] applied a fully-unsupervised VAE
on raw EEG, without the need for any pre-processing and feature extraction.
The seizure identification metric is based on reconstruction errors made by
the VAE, which is trained on non-seizure activity and does not require so-
phisticated min-max optimization such as GAN training. Another anomaly
detection approach is proposed in [36], where an autoencoder involving a
transformer encoder is trained via an unsupervised loss function, incorporat-
ing a novel geometric masking strategy uniquely designed for multivariate
time-series data, such as EEG. Seizures are then identified by reconstruc-
tion errors at inference time. Inspired by [37], [38] proposed a two stages
framework, where the first stage aims to train a CNN-classifier as a feature
extractor and the second stage can adopt any existing generative or dis-
criminative method to establish an anomaly detector based on the feature
representations from the well-trained feature extractor. [39] proposes a hy-
brid system integrating an unsupervised module that serves to quickly locate
the determinate subjects (or the "easy" one) and the indeterminate subjects,
with a more robust seizure detection module for the indeterminate subjects
using an EasyEnsemble algorithm, a class-imbalance learning method, that
can potentially decrease the generalization error of the seizure-free segments.
Table 3.2 summarizes all the information in the literature about unsuper-
vised methods for seizure detection or prediction that has been mentioned
in this section. Once again, as for the supervised case, the paper, the year,
the dataset, some metrics performances and a short comment on the method
used are presented.
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Related Work

Year Dataset Performance Method
Spec Sens FP/h Acc

[34] 2020 private 96.3 0.14 Generative adversarial network
[35] 2022 CHB-MIT, UPenn, TUH 68.8 Variational autoencoder
[36] 2023 CHB-MIT, UPenn, TUH 87.1 Multi-variate time-series transformers
[38] 2022 CHB-MIT, UPenn, private 0.16 90.1 CNN + anomaly detection
[39] 2022 CHB-MIT 92.57 95.55 92.62 Isolation Forest and EasyEnsemble

Table 3.2. State-of-the-art performances of the unsupervised methods taken
into consideration in the preliminary study of this thesis. Notice that when
more datasets are present in the Dataset column, the performance of the first
dataset in order of appearance is shown in the Performance column.

3.3 Self-supervised learning
Even if deep learning is the dominant approach for developing seizure predic-
tion methods, the success of its applications relies heavily on the availability
of annotated datasets. Medical datasets carefully annotated by experts are
hard to create at scale. Unlike labelled datasets, unlabelled datasets can also
be leveraged to build self-supervised models that learn complex structures
in the data via new supervised-learning tasks. It has already been said as
in the first phase of training, the models are trained on a preparation task,
referred to as a ‘pretext task’, but because the data used for such pretext
tasks are unlabelled, the trained model (often referred as the "featurizer")
cannot yet solve the task which is supposed to address. In the second phase
of training, the featurizer is trained on a dataset of explicit labels. This
enables the model to incorporate its knowledge of the data to perform the
relevant medical task.

The recent success of this type of learning in Computer Vision and, mainly,
in Natural Language Processing has drawn a lot of attention also in the
Medical AI field. Even if the use of self-supervised learning in seizure pre-
diction methods is a relatively new research area, different approaches have
been tested. [40] investigated self-supervised learning to learn representations
of EEG signals., exploring two tasks based on temporal context prediction
as well as contrastive predictive coding. Linear classifiers trained on SSL-
learned features (or "embeddings") consistently outperformed purely super-
vised deep neural networks in low-labelled data regimes while reaching com-
petitive performance when all labels were available. Similarly, [41] approach
concerns extracting features from a single channel at a time as opposed to
considering all channels simultaneously. In [42] a series of scaling transfor-
mations are performed on the original EEG data to generate self-labelled
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scaled EEG data, where different labels correspond to different scaling trans-
formations. Then using the self-labelled normal EEG dataset, a multi-class
classifier can be trained to accurately predict the scaling transformations on
new normal EEG data, but not accurately on abnormal (epileptic) EEGs.

A complete and recently published overview of the applications of self-
supervised learning to Biomedical signals is carried out in [43]. Some of those
are specifically related to the EEG field, but not strictly to seizure detection,
as in [44], [45] and [46] for example. One of the most interesting studies in
the self-supervising approach for EEG data is [17]: the authors studied how
to adapt techniques and architectures used for language modelling that ap-
pear capable of ingesting awesome amounts of data toward the development
of encephalography modelling with DNNs in the same vein. Specifically,
they adapted an approach effectively used for automatic speech recognition,
which similarly to language models uses a self-supervised training objective
to learn compressed representations of raw data signals, combining encoders
and transformers [5]. This study is the starting point of the following thesis
and is deeply addressed and explained in 4.2. Generally, although recent re-
search has shown promising results using self-supervised learning techniques
on EEG data, it is still not clear which is the most promising direction (in
terms of architecture, pretext tasks and adaptation on downstream tasks)
to follow to fully exploit its potential. Table 3.3 summarizes the aforemen-
tioned methods. Notice that, differently from supervised and unsupervised
approach, there is no Methods column, but rather the Downstream tasks
one, where the task addressed are presented (more information about Self-
supervision in Section 2.3). For this reason, the Performance column, in this
case, does not refer to the seizure detection task, but only to downstream
tasks (more specifically, the first mentioned).
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Related Work

Authors Year Dataset Performance
(AUC) Downstream task

[40] 2021 Physionet, TUH Sleep monitoring and pathology screening
[41] 2020 SEED, TUH, SleepEDF Emotion recognition, Normal/Abnormal EEG, Sleep monitoring
[42] 2020 UPenn 0.941 Anomaly detection
[44] 2021 SleepEDF Sleep monitoring
[45] 2022 TUSZ 0.875 Seizure detection and classification
[17] 2021 MMI, BCIC, ERN, P300, SSC Brain Computer Interface

Table 3.3. State-of-the-art of the self-supervised methods taken into con-
sideration in the preliminary study of this thesis. Notice that when more
datasets are present in the Dataset column, the performance of the first
dataset in order of appearance is shown in the Performance column. No-
tice also that only results that regard the seizure detection task are shown in
the Performance column (or anomaly detection, since a seizure can be con-
sidered an anomaly). The other works for which it is not shown any results
are not related to seizure detection and thus, in order to avoid confusion,
nothing is shown in the Performance column.
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Chapter 4

Matherial and Methods

The following chapter presents all the contributions of the thesis. It is orga-
nized into two different sections: one for the unsupervised learning methods
and one for the self-supervised. The first part (4.1) focuses on testing and
validating two unsupervised methods proposed by the literature. No fur-
ther contribution is made other than the validation of these two methods on
the dataset chosen for the thesis. The results of these two first unsupervised
methods are shown in Appendix A. On the other hand, the second part (4.2),
starting from a model proposed by the literature, explores self-supervised
learning and how the model can be adapted for the seizure detection task.
In this section, the problem is tackled by considering different points of view.
First of all, it is important to understand if the pretext task produces some
valuable knowledge. Once that question is answered, the objective is then
to find the best-suited model for the task considering 4 different dimensions:
size, architecture, data and post-processing.

4.1 Unsupervised approaches for seizure de-
tection

The focus of this first section is to explore and validate different unsupervised
approaches proposed in the literature that address the problem of seizure de-
tection as an anomaly detection problem. First, an approach based on Vari-
ational Autoencoders (VAEs) is proposed, then one based on Transformers
that learn to reconstruct downsampled masked signals, and lastly one that
combines a Large Convolutional Neural Network with a general anomaly de-
tection method. The idea is to start with fully-unsupervised methods and
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then shift towards self-supervision which is thoroughly addressed in the next
section 4.2. As already discussed in 2, this type of learning addresses the
problem of seizure detection as an Anomaly Detection problem. A general
scheme of this approach is drawn out in Figure 4.1.

Figure 4.1. The general approach of unsupervised learning for the seizure
detection task on EEG data

4.1.1 Variational Autoencoder
In this section, the model and approach proposed in [35] are explored and
tested. The aim is to design an unsupervised method that does not rely on
ground-truth expert labels during learning and can identify the existence of
seizures in a given EEG recording. To this end, a variational autoencoder
(VAE) [47] neural network architecture is employed. In order to fully under-
stand how it works, it is crucial to introduce the concept of Autoencoders.
An Autoencoder is a type of neural network that can learn to reconstruct
images, text, and other data from compressed versions of themselves. An
autoencoder aims to learn a lower-dimensional representation (encoding) for
higher-dimensional data, typically for dimensionality reduction, by training
the network to capture the most important parts of the input data. The
autoencoder architecture consists of 3 parts:

1. an Encoder: a module that compresses the input data into an encoded
representation that is typically several orders of magnitude smaller than
the input data;

2. a Bottleneck (latent space): a module that contains the compressed
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knowledge representations, which ensures that only the main structured
part of the information can go through and be reconstructed;

3. a Decoder: a module that helps the network decompress the knowledge
representations and reconstructs data back from its encoded form.

The training of such type of architecture has usually the goal of finding
the encoder-decoder couple that minimises the reconstruction error. The
limitation of this type of architecture is that Autoencoder is solely trained
to encode and decode with a loss as low as possible, no matter how the
latent space is organised. They learn to generate compact representations
and reconstruct their inputs well, but the latent space they convert their
inputs to and where their encoded vectors lie, may not be continuous, or
allow easy interpolation. The consequence is that a trained Autoencoder
with very low reconstruction loss can lack the ability to generalize well and
It is straightforward to understand that during training, the network may
take advantage of any overfitting possibilities to achieve the reconstruction
task as faster as possible.

A Variational Autoencoder tries to address the overfitting risk of regular
Autoencoders: indeed, it can be defined as an Autoencoder whose training
is regularised to avoid overfitting and ensure that the latent space has good
properties that enable the generative process. Just like a standard Autoen-
coder, a Variational Autoencoder is an architecture composed of both an
encoder and a decoder that is trained to minimise the reconstruction error
between the encoded-decoded data and the initial data. To introduce some
regularisation of the latent space, instead of encoding an input as a single
point, the input is encoded as a distribution over the latent space. The
training process is defined as follows:

• an input is encoded as a distribution over the latent space;

• a point from the latent space is sampled from the distribution that char-
acterizes the latent space;

• the sampled point is then decoded and the reconstruction error is com-
puted.

As for the Autoencoder, the reconstruction error is backpropagated through
the network for the gradient descent-based training. Generally, the loss
function is then composed of a reconstruction term, to make the encoding-
decoding scheme efficient, and a regularisation term, to make the latent space
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regular and avoid overfitting. A simple architecture of a Variational Autoen-
coder is shown in Figure 4.2. Differently from the traditional loss function

Figure 4.2. The encoder-decoder scheme of a Variational Autoencoder.
x is the input data, µx and σx are respectively the mean and the standard
deviation of the Gaussian distribution N(µx, σx) to which z, the latent
representation, belongs. x̂ is the reconstructed data, which is a function
d of the decoder [48]

.

of Variational Autoencoders, [35] defines a Sparcitiy-enforcing loss function,
that replaces the second term that usually performs maximum-likelihood es-
timation of the generative model parameters (decoder), with the l1-norm of
the reconstruction error. The architecture is then trained on EEG record-
ings that do not contain seizures, using the sparsity-enforcing loss function
to suppress EEG artefacts. In this way, the learned latent features can cap-
ture the non-seizure activity rather than a seizure. At inference time, each
reconstruction from the trained VAE is compared with the corresponding in-
put recording. As training captures non-seizure activity, recordings with no
seizures are expected to be reconstructed with low error. Meanwhile, a larger
reconstruction error with respect to the input recording indicates evidence
of a seizure.

The encoder architecture is built with Convolutional layers (with 4x4 fil-
ters), followed by batch-normalization and fully-connected (FC) layers to
extract latent features. The decoder contains Convolutional transpose and
FC layers in order to upsample the latent representations and reconstruct
the original signal. The architecture is shown in Figure 4.3.
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Figure 4.3. Variational Autoencoder architecture for non-seizure
EEG data reconstruction [35]

4.1.2 Combining CNN with Anomaly Detection Meth-
ods

The objective of this section is to validate the approach proposed in [38],
which makes use of available normal EEGs and expert knowledge about
abnormal EEGs to train a more effective feature extractor (first stage) for
the subsequent development of anomaly detector (second stage). As already
discussed in the introduction, the problem of seizure detection is addressed
by considering only normal (or without seizures) EEG data during training.
However, the interesting contribution of this work is that it proposes a new
strategy to train a feature extractor that can extract features of both normal
and abnormal EEG data. Specifically, considering that abnormal EEGs are
characterized by increased wave amplitude or temporally slowed or abrupt
wave signals, two special transformations are designed to generate simulated
abnormal EEG data. These two transformations work on both the amplitude
and the frequency of the EEG signal. Specifically:

• one temporally increases or decreases the amplitude of normal EEG;

• one temporally increases or decreases the frequency of normal EEG.
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Using these simple transformations and based on multiple normal EEG data,
two classes of self-labelled abnormal data will be generated, with one class
representing anomaly in amplitude, and the other representing anomaly in
frequency. These two newly generated types of signals are then added to the
original normal EEG class to form a 3-class dataset for the training.

For what concerns the feature extractor, a specific CNN classifier based
on ResNet34 backbone is designed. Since adjacent EEG channel data do not
indicate spatial proximity between two brain regions, one-dimensional (1D)
convolutional kernels to learn to extract features from each channel. Differ-
ently from previous studies [49], kernels of longer size (1x7) are considered
to take into account that lower-frequency features may last for a a longer
period and therefore would not be captured by shorted kernels over multiple
convolutional layers. Additionally, a shortcut branch of one convolutional
layer is added from the output of the first convolutional layer to the second
last layer: in this way, a short anomaly is not completely omitted after the
down-sampling effect of several layers, and some potential correlation across
all the channels may be captured. The architecture just described of the
CNN feature extractor is shown in Figure 4.4

Figure 4.4. Two-branch architecture of the feature extractor. The blue dot-
ted line highlights the part of the network that is used to extract representa-
tions of data on which the anomaly detection method is then trained

For what concerns the second stage of the architecture, a generative ap-
proach is applied based on feature representations of normal EEG segments
produced by the CNN feature extractor discussed in the previous paragraph.
As a generative approach, the multivariate Gaussian distribution G(µ, Σ) is
used to describe the distribution of normal EEG available during training.
The mean µ and the covariance matrix Σ are directly estimated from the
feature vectors of all normal EEGs in the training set, with each vector be-
ing the output of the feature extractor given a normal EEG input. With the
Gaussian model G(µ, Σ), the degree of abnormality for any new EEG data
z can be estimated based on the Mahalanobis distance between the mean µ
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and the feature representation f(z) of the new data z, as in:

A(z) =
ñ

(f(z) − µ)⊤Σ−1(f(z) − µ) (4.1)

where A(z) is the abnormality score: a large value of A(z) means that z is
more likely to be an abnormal segment, and vice versa.

4.2 Self-supervised approaches for seizure de-
tection

The focus of this second section presents all the tested approaches for self-
supervision learning for seizure detection on EEG data. The idea is to exploit
knowledge learned from a huge amount of unlabelled data to improve the
performance on a smaller and labelled dataset. To fully understand what
has been implemented, 2.3 presents all the notions to understand before
reading the following Section. 4.2.1 presents the architecture exploited for
the self-supervision task carried out in the thesis. And finally 4.3 shows
the extensive research on the implementation of the model presented in the
previous sections.

4.2.1 BENDR
Following the success of the architectures and Self-supervised approaches
presented in 2.3 in NLP, the objective of this work is to explore the potential
of these methods in a different data domain. The idea of this work is to
exploit the huge availability of unlabelled EEG data to pre-trained large
language-inspired models in an unsupervised way and fine-tune it on the
seizure detection task on a smaller and labelled dataset. BENDR [17] has
been proposed with the intent of effectively using those techniques on EEG
data to learn compressed representations of the raw data signals. The goal
is to address and overcome the challenges of DL on raw EEG data, focusing
on the lack of generality and the struggle to learn lower-level features that
are transferable to unseen and different tasks. To this end, BENDR employs
the same approach seen with masked language models (as BERT), but uses
individual samples of raw EEG data rather than text tokens. The same
unsupervised learning approach to extract useful representations from high-
dimensional data (Contrastive Predictive Coding), seen in wav2vec 2.0, is
used to encode raw EEG segments as a sequence of learned vectors called
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BErt-inspired Neural Data Representations. After the unsupervised pre-
training on a huge amount of EEG data, the model can then be fine-tuned
on a downstream (related) task.

The BENDR architecture for the pre-training task is similar to the
wav2vec 2.0 one (Figure 2.6), :

1. A feature encoder that processes 20 channels of raw EEG recording X
and converts them into a sequence of latent representations to capture
the underlying properties of data b1, ..., bT for T timesteps. For the initial
configuration of BENDR, six convolutional blocks are considered, each
containing:

• a 1D temporal convolution with 512 filters, each block with receptive
fields of 2, except for the first one, which has 3, and strides match
the length of the receptive field for each block;

• a Dropout layer that randomly zeros out entire channels. Each chan-
nel will be zeroed out independently on every forward call with prob-
ability p using samples from a Bernoulli distribution, this will reveal
to be a crucial contribution to reducing overfitting;

• a GroupNorm that divides the channels into groups and computes
the mean and the variance for normalization within each group;

• a GELU activation function

The result of the downsampling of these six blocks is the latent space
representations, called BENDR, B. Notice that the effective sampling
frequency of BENDR is 96 times smaller (≈ 2.67Hz) than the original
sampling frequency (256Hz).

2. following the approach of MLM, for each sample 10 contiguous sequences
are masked with probability pmask = 0.065, such that, for each sample,
the likelihood of being the beginning of a contiguous section is pmask,
and overlap is allowed over.

3. A Transfomer encoder with 8 layers and 8 heads, model dimension
of 1’536 and internal feed-forward dimension of 3’076 takes as input the
masked output B. Some modifications are made to the wav2vec 2.0
transformer encoder:

• relative positional embedding is learned during training deploying
an additive grouped convolutional layer with the receptive field of

50



4.2 – Self-supervised approaches for seizure detection

25 and 16 groups followed by a GELU activation. In this way, the
model should be sequence-length independent, so the downstream
task does not have to be the same length as in the pre-training phase.
The learned embeddings are then added to the input features B and
a layer normalization is applied

• internal batch normalization layers are removed
• T-fixup [50] is used to initialize the internal layers to avoid the van-

ishing gradient effect and the exploding gradients effect.
• LayerDrop and Dropout layers are added during pre-training to re-

duce overfitting.

To use the transformer for classification a fixed token is added to the
beginning of B before passing it to the transformer, thus being able to
recognize the start of the sequence. The transformer outputs the final
vectors C.

As for wav2vec 2.0, the training objective is to produce outputs C that are
as similar as possible to the unmasked input B at position t. For this reason,
the same contrastive loss function is shown in Equation 2.13:

Lt = -log exp(cossim(ct, bt))/kq
bi∈BD

exp(cossim(ct, bi))/k
(4.2)

where ct is the output of the transformer and bt is the un-masked BENDR at
position t. BD is the set of 20 uniformly selected distractors. The sensitivity
of the cosine similarity function is set to k = 0.1. The BENDR architecture
just described is shown in Figure 4.5.

When fine-tuning the model for the seizure detection downstream task
the architecture of BENDR is modified. Specifically:

• the masking step is removed: thus, the output of the convolutional fea-
ture encoder B (i.e. BENDR) is passed directly to the Transformer;

• a Classification layer that takes as input the first output token of the
transformer is added. The classification layer is composed of a Linear
layer followed by a Softmax activation to find the class with the highest
probability of occurring.

• the weights of the network that are updated during this fine. Then fine-
tune the entire model, both the pre-trained and the new classification
layer, to classify the downstream targets.
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Figure 4.5. Pre-training architecture of BENDR

During fine-tuning, the model objective does not depend anymore on the
production of output that is similar to the unmasked input. The problem
is now, given an input EEG segment at time t, to recognize if the segment
is a normal one (non-seizure) or an abnormal one (seizure). For this reason,
different loss functions will be considered to achieve this goal. Cross en-
tropy loss is a very common metric used to measure how well a classification
model performs. The objective of training is to estimate the parameters of
the Maximum Likelihood Estimation paradigm, to learn the underlying data
distribution. Thus, the loss function is used to evaluate how well the model
fits the data distribution. In this context, cross-entropy can measure the er-
ror (or difference) between two probability distributions. The cross-entropy
loss can be defined as:

l = −
NØ

c=1
yclog(pc) (4.3)

where c ∈ N is the class being predicted, pc is the predicted probability of
class c and yc is the ground truth of class c. In the case of seizure detec-
tion that counts two classes (seizure vs non-seizure), the Cross-Entropy Loss
becomes:

l = −(ylog(p) + (1 − y)log(1 − p)) (4.4)

where y ∈ [0,1], meaning non-seizure or seizure. The used architecture of
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BENDR for the fine-tuning task is shown as well in Figure 4.6.

Figure 4.6. Fine-tuning architecture of BENDR

When fine-tuning, a different and smaller BENDR architecture has been
tested as well. In particular, this architecture, referred to as Linear, ignores
the pre-trained transformer entirely and uses only the pre-trained convolu-
tional stage (i.e., only use the so-called BENDR, thus the embeddings pro-
duced by the Convolutional stage). It basically creates a consistent-length
representation by dividing the BENDR into four contiguous sub-sequences,
averaging each sub-sequence and concatenating them. In this phase, the
choice of the four sub-sequences is arbitrary. Again, as for the previous ar-
chitecture, a new linear layer with softmax activation is added to classify the
downstream targets. The scheme of this Linear architecture for fine-tuning
is shown in Figure 4.7.

4.2.2 MAEEG
In MAEEG (Masked-Autoencoder for EEG Representation Learning) [51]
authors further explore representation learning using reconstruction-based
SSL on EEG data. Starting from BENDR, they propose a different pre-
training technique to learn meaningful EEG representations, obtaining better
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Figure 4.7. Fine-tuning architecture of BENDR Linear

performance on sleep stage classification. Another focus of this work is to
explore how this different architecture behaves in the seizure detection task.

The MAEEG model has a similar architecture to BENDR 4.5, but has
two additional layers to map the transformer output back to the raw EEG
dimensions. Specifically, considering the output of the transformer:

• a Linear layer is added to reconstruct the signal starting from the output
back to its original size in the temporal dimension (i.e. back to the
original number of samples)

• a Convolutional Layer to reconstruct the signal on the spatial dimension
(i.e. back to the original number of channels). This is specifically done
with a 1D convolution with kernel size 1x3 and padding 1.

During the pre-training phase, the loss is changed as well. The objective is
now to compare the reconstructed signal with the original signal in the out-
put. To achieve that the 1-cosine similarity is deployed. The reconstruction
loss is computed by comparing the reconstructed EEG (x̂) and input EEG
(x) signals, or:

l = 1 − x̂ · x

||x̂||||x||
(4.5)
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The key difference between BENDR and MAEEG is that instead of using con-
trastive learning, MAEEG learns representations by minimizing the recon-
struction loss. A scheme of the comparison between BENDR and MAEEG
pre-training architecture is shown in Figure 4.8.

Figure 4.8. The pre-training architecture of BENDR (A) and MAEEG (B) [51]

During the fine-tuning phase, the architecture used is the same as BENDR
(Figure 4.6). The two additional layers are now removed and a new Linear
layer followed by a softmax activation is added to take as input the last token
of the transformers. Once again, the loss used in this second task is the Cross-
Entropy for Binary Classification shown in Equation 4.4. In summary, there
is absolutely no difference in the fine-tuning architecture between BENDR
and MAEEG. These two methods are only compared in terms of the quality
of the learned features during the pre-training task.

4.3 An extensive research for fine-tuning
The objective of the thesis is to explore how self-supervised learning and large
language model-inspired methods work in a different world from the NLP, on
which they were initially developed. When applied to the EEG world, these
models can leverage the huge amount of unlabelled data available during the
pre-training task and then be fine-tuned on a more specific downstream task.
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To validate the use of self-supervised learning in EEG, the BENDR model,
described in 4.2.1, is implemented in a different dataset and a different task
with respect to the ones on which it was developed. Once this method has
been implemented for the seizure detection task, extensive research on the
fine-tuning process is carried out. The model has been fine-tuned considering
patient-specific training with Leave-One-Out Cross-Validation strategy
to reduce the variability of the results. A simplified scheme for patient chb01
is shown in Figure 4.9. For each patient, one file at a time is considered a
test. The remaining files are merged and split between train and validation
sets with the stratified option. This means that the distribution between
seizure and non-seizure in the train set and the validation remains the same.

Figure 4.9. Training strategy with Leave-One-Out Cross-Validation. In the
figure, it is possible to see an example for patient chb01, with file6 test set.
This is repeated for all the files of the patient and aggregated results are
computed by averaging the metrics on all the different test sets.

The objective of this section is to highlight the different dimensions ex-
plored during the fine-tuning of BENDR for seizure prediction. The following
section introduces all the different spaces that have been searched to adapt
BENDR.
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4.3.1 Scalability
First of all, the scalability aspect of the model is taken into account. Scal-
ability is the measure of a system’s ability to increase or decrease in perfor-
mance and cost in response to changes in application and system processing
demands. Specifically, in order to test this measure, the idea is to reduce and
increase the size of the model and study the correlation between model size
and performance. The BENDR model can count on two different modules,
as shown in 4.2.1:

• a Feature encoder (Convolutional stage), composed by 6 blocks of 1D
convolution followed by a Group Norm layer and a GELU activation
function;

• a Transformer encoder with 8 layers and 8 heads.

The objective of this first dimension study is to understand how the be-
haviour of the model changes when reducing the size of the feature encoder,
which means reducing the number of convolutional blocks in the model, thus
reducing the ability of the model to downsample the original signal. It is
important to notice that the feature encoder is part of the model responsible
for the creation of the latent representations that are used during the pre-
training task to learn the underlying structure of EEG data. Additionally,
also the number of heads and layers of the transformer encoder is modified.
The idea is to modify the number of parameters, either decreasing or increas-
ing it, to find the best-suited model that avoids overfitting. In Figure 4.10,
it is possible to see the different tested configurations (i.e. the combination
of the number of convolution blocks and heads/layers of the transformer).

4.3.2 Pre-training architecture
The second dimension explored to optimize the fine-tuning of the model
on a different dataset and a different task is the pre-training architecture.
Specifically, a comparison between BENDR and MAEEG, the model seen
in 4.2.2, is carried out to understand which is the model that is able to
learn the most appropriate representations of the data. In this context, the
two different pre-training architectures presented, respectively, in 4.2.1 and
4.2.2, BENDR and MAEEG are compared. However, since the pre-trained
weights learned during the unsupervised pre-training task were already made
available by [17] and thus it was not the focus of the thesis, it was not possible
to test MAEEG as an alternative pre-training architecture, even because of
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Figure 4.10. Scalability: the different architecture sizes tested

the limited resources available. Therefore, the idea is to understand if there
is a benefit in exploiting not only the pre-trained weights on TUEG but
also the CHB-MIT patients themselves. More specifically, the aim is, once
the model has been initialized with the TUEG pre-trained weights, to run
a second pre-training on all the patients of CHB-MIT except the one on
which the model is fine-tuning. The question asked in this section is the
following: is the knowledge embedded in other CHB-MIT patients’ data
transferable for fine-tuning patients? Is there some useful information that
can be transferred between patients? To answer that question, a slightly
different training strategy is carried out with respect to the one already seen
in Figure 4.9. The current training strategy is shown in Figure 4.11. Using
this strategy, it is possible to compare the two architectures in the so-called
second pre-training task, and which of the two can extract the most useful
information for the fine-tuning phase. It is important to remember that these
two architectures differ mainly in the training objective, briefly:

• BENDR during pre-training compares the output of the transformers
with the representation learned by the first convolutional stage;

• MAEEG, on the other hand, compares the reconstructed signal, which
is the results of the Linear and the convolutional layer on top of the
transformer, with the original input itself.

Of course, both of these two architectures are initialized with the pre-trained
weights on TUEG. Results are shown in Table 5.6.
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Figure 4.11. Alternative training strategy implemented to test
BENDR vs MAEEG

4.3.3 Processing techniques
Pre-Processing techniques

Several pre-processing techniques are explored to further optimize the fine-
tuning process. First of all, the effect of a Butterworth Bandpass filter is
studied. The Butterworth filter is a type of signal processing filter designed
to have a frequency response that is as flat as possible in the pass band (i.e.
no ripple).

More specifically, when working on the CHB-MIT dataset, EEG recordings
are pre-processed before being passed to the model. First of all, a mapping
of the CHB-MIT channels is carried out in order to match the number of
channels used during the pre-training phase on TUEG. Indeed, even if data
from the CHB-MIT dataset has 23 channels, only 20 were used during the
pre-training. Thus, only 20 EEG channels of CHB-MIT are considered and
renamed accordingly to TUEG naming. Then, the recordings are filtered via
a 5th order Butterworth bandpass filter with a frequency range of 0.5–50 Hz.
Additionally, some EEG segments after the end of a seizure are disregarded.
This is a common practice suggested by experts, because it may happen to
have some spikes in data after a seizure that should not be accounted as such.
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In detail, the 15 minutes that follow the seizure end are disregarded.
Then, to consider samples with the same length, sliding windows are

extracted over each recording, where each window contains T time points
with no overlapping between consecutive windows. Following approaches in
the literature ([18] and other state-of-the-art approaches), 4s EEG windows
(or segments) are considered: considering a sampling rate of 256 Hz, then
T=1024 samples are considered. This means that the input of the model is
a single EEG segment of size [C, T ], or when considering batches [B, C, T ],
where B is the batch size considered, C = 20 is the number of EEG channels
and T = 1024 are the number of samples of the window.

Different oversampling techniques are tested to compensate unbalancing
nature of EEG data. The most widely used approach to synthesizing new ex-
amples is called the Synthetic Minority Oversampling TEchnique (SMOTE),
which works by selecting examples that are close in the feature space, drawing
a line between the examples in the feature space and drawing a new sample
at a point along that line. Standard SMOTE works by utilizing a k-nearest
neighbour algorithm to create synthetic data. Specifically, a random exam-
ple from the minority class is first chosen. Then k of the nearest neighbours
for that example is found. A randomly selected neighbour is chosen and a
synthetic example is created at a randomly selected point between the two
examples in the feature space. In addition to SMOTE, Weighted random
sampling (WRS) is considered as well. WRS asks for sampling items (ele-
ments) from a set such that the probability of sampling item i is proportional
to a given weight wi, which is proportional to the number of items i in the
considered dataset with respect to the number of items j, with j /= i. Con-
sidering the seizure detection with EEG scenario, with two different classes,
seizure and non-seizure, S, NS, with i ∈ S and j ∈ NS, with WRS it is
guaranteed that the lowest represented class, the seizure one, will be sampled
enough time to compensate the unbalancing problem, thus resulting in a bal-
anced data. The main difference between these two oversampling methods is
that SMOTE generates new data based on the actual real data, while WRS
just uses the existing data.

Finally, different normalization techniques on all windows are tried to
aid the convergence of gradient-based training. Specifically, the min-max
normalization technique is tested, where given an input EEG segment x, the
input is scaled as:

xscaled = x − xmin

xmax − xmin
(4.6)

where xmax and xmin are respectively the maximum value and the minimum
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Figure 4.12. SMOTE [52]

Figure 4.13. WRS [53]

value computed on the training set. Mean-standard deviation normalization
is tested as well. Specifically, given an input EEG segment x, the input is
scaled as:

xscaled = x − µx

σx
(4.7)

where µx and σx are, respectively, the mean and the standard deviation
computed on the training set.

Post-processing techniques

Several post-processing techniques have been tested as well to improve
results. Once the model has produced the output for the specific batch of
EEG segments, the output is post-processed to refine the prediction. Specifi-
cally, a so-called smoothing technique is applied to reduce the number of false
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alarms. It may happen to have sudden spikes in isolated EEG segments, that
may be not-related to seizure events but unjustified brain activity. To avoid
a positive prediction of those isolated segments, smoothing applies a sliding
window over the output that computes the prediction based on the value
of nearby predictions. Practically, the output of a specific EEG segment is
compared with the outputs that belong to the "smoothing" window and a
criterion is applied to define the final prediction. Two different criteria were
tried:

• majority voting criteria: the most occurring predictions in the window
are considered instead of the original output;

• minimum criteria: the minimum value appearing in the window is con-
sidered, thus being more conservative.

These two criteria are both tested considering different widths of the win-
dows, from 3 to 7, windows centred in the considered EEG segments whose
output is being smoothed. To better understand, an overview of these two
methods is shown in Figure 4.14.

Figure 4.14. Smoothing criteria applied to the output of the model. Notice
how since only windows of odd width are considered, the majority voting is
implemented by computing the average of the values in the window and then
approximating to the nearest integer.

To further reduce the number of false positives, together with the smooth-
ing technique, grouping together false positives is considered as well. Specif-
ically, the idea is that consecutive positively predicted EEG segments, when
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there should be no seizure event, should not be considered distinct false
positives. The rationale is that there is probably something in those consec-
utive EEG segments that is triggering the positive prediction by the model.
The idea is then to consider consecutive false positives as one false positive
event. Once again, to better understand, an overview of this approach is
shown in Figure 4.15. These first two post-processing techniques, smoothing
and grouping consecutive false positives, have the objective of increasing the
specificity of the model, or the ability of the model to detect non-seizure
events and avoid false positives, compromising a bit the sensitivity of the
model.

Figure 4.15. Post-processing technique that group together consecutive false
positives. The first array shows the target or the ground truth of the EEG
segments considered. The second array shows the output of the model and
how the FP are counted before the post-processing is applied. The third
array is how the FP are counted after the post-processing is applied. On the
right it is possible to see how the specificity is computed

Additionally, a specific post-processing technique is applied to improve
sensitivity and compensate for the effect of the previous two techniques. The
idea is to evaluate the model based on how many seizure events are detected,
rather than single EEG segments. A seizure event usually consists of more
EEG segments: with this approach, a seizure event is correctly classified if
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at least one of its EEG segments is correctly classified as a seizure segment.
Using this technique, the sensitivity is then computed on the number of
seizures detected over all the seizures of the specific segments. Later on, the
sensitivity derived by this approach is called "event-based" sensitivity, while
the "regular" sensitivity, computed on single segments, is called "segment-
based" sensitivity. A simple scheme of this approach is shown in Figure 4.16.

Figure 4.16. Segment-based approach vs Event-based approach to
computing sensitivity.

4.3.4 Reducing available training data
Finally, the behaviour of model performances is evaluated when the data
available for fine-tuning is evaluated. The idea is to understand how much
more data the model needs to adapt the pre-trained weights learned on the
unlabelled data to the seizure detection task. This means that data in the
pre-training dataset remains the same, but data in the fine-tuning dataset
is gradually reduced. The objective is to understand if the model is able
to detect seizure when half of the labelled data of the fine-tuning dataset
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initially considered is used.

4.3.5 Overall training procedure
In this Section, all the variables and all the alternatives tested are shown.
This small section can be very useful to have a panoramic view of all the
experiments that have been carried out during the fine-tuning optimization
proposed by the thesis. Table 4.1 shows all the different dimensions and
variables that have been tested during the optimization of the fine-tuning
process.

Dimension Variable Value

Scalability Convolutional Blocks [6, 4, 2]
Transformers Heads/Layers [16, 8, 4, 2]

Pre-training Pre-train only on TUEG [BENDR]
Second pre-training on CHB-MIT [BENDR, MAEEG]

Pre-processing
Filtering [None, Butterworth]

Oversampling [SMOTE, WRS]
Normalization [MinMax, MeanStd]

Post-processing
Smoothing Majority voting criteria: [3, 5, 7]

Minimum criteria: [3, 5, 7]
Grouping False Positive None

Seizure detection [segment-based, event-based]
Data used Available training data [100%, 50%]

Table 4.1. Dimensions explored during the fine-tuning optimization process.
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Chapter 5

Results

The following chapter presents the results obtained and it is organized in
sections. Since for the unsupervised approaches, the only results obtained
are the ones that replicate the results obtained by the authors in the original
works, respectively [35] and [38], these are not displayed in this chapter. The
replicated results are shown for completeness in the Appendix, in A. For
what concern this chapter, 5.1 describes the datasets that have been used for
both pre-training and fine-tuning. 5.2 presents the metrics considered for the
evaluation of the results. Once the metrics have been described, ?? describes
how pre-processing and post-processing techniques are applied.

5.1 Datasets
Two different datasets are taken into consideration. For the pre-training
task, Temple University Hospital EEG Corpus (TUEG) [54] is considered.
Among the different versions of this dataset, versions 1.1 and 1.2 are taken
into account, for a total of 1.5 TB of European data format (EDF). It consists
of clinical recordings using a mostly conventional recording configuration
(monopolar electrodes in a 10–20 configuration) of over 10,000 people, some
with recording sessions separated by as much as 8 months apart. The subjects
were 51% female, and ages range from under 1 year old to over 90. Some
more interesting metrics of TUEG are reported in Figure 5.1. The main
features of this dataset are its size and its unannotated nature: these two
traits make it perfect to be exploited to learn the underlying structure of
data. It is also important to understand that the TUEG dataset had little if
any inspection for data quality. However, pre-training on this dataset is not
carried out during the scope of the thesis. Authors that proposed BENDR

67



Results

[17] have made the pre-trained weights learned on TUEG in an unsupervised
fashion available to the public. Thus, these weights are the starting point
of the adaptation of BENDR on the seizure detection task and a different
dataset with respect to the ones on which it was tested in [17]. However, the
pre-training task is extensively described in 4.2.1 and shown in Figure 4.5.

Figure 5.1. Metrics describing the TUH-EEG corpus. [Top left] histogram
showing number of recording sessions (each patient can have from 1 - most
common - up to 6 recording sessions); [top right] histogram showing number
of sessions recorded per calendar year; [bottom left] histogram of patient ages;
[bottom right] histogram showing number of EEG-only channels (purple); and
total channels (green) [54].

For the fine-tuning task, CHB-MIT Scalp EEG Database [55] is consid-
ered. CHB-MIT sEEG database, collected at the Children’s Hospital Boston,
consists of EEG recordings of 24 pediatric subjects with intractable seizures.
Subjects were monitored for up to several days following withdrawal of anti-
seizure medication in order to characterize their seizures and assess their
candidacy for surgical intervention. The dataset consists of 664 EDF files,
and 185 of those contain one or more seizure events. During the experiments
carried out for the thesis, only EDF files that contain one or more seizures
are considered. All signals were sampled at 256 samples per second with
16-bit resolution. Every multi-channel EEG signal has been collected using
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the International 10-20 system (described in Figure 2.1, monitoring 23 EEG
channels over time. Some more information about the CHB-MIT is reported
in Table 5.1. Patient chb24 was not considered because it was added to the
collection later, in December 2010, and it is not included in the files with
information on each patient (indeed, no gender nor age is specified).

Subject Gender Age seizure (hh: mm: ss)
chb01 F 11 7 40:33:08
chb02 M 11 3 35:15:59
chb03 F 14 7 38:00:06
chb04 M 22 4 156:03:54
chb05 F 7 5 39:00:10
chb06 F 1.5 10 66:44:06
chb07 F 14.5 3 67:03:08
chb08 M 3.5 5 20:00:23
chb09 F 10 4 67:52:18
chb10 M 3 7 50:01:24
chb11 F 12 3 34:47:37
chb12 F 2 27 20:41:40
chb13 F 3 12 33:00:00
chb14 F 9 8 26:00:00
chb15 M 16 20 40:00:36
chb 16 F 7 10 19:00:00
chb17 F 12 3 21:00:24
chb18 F 18 6 35:38:05
chb19 F 19 3 29:55:46
chb20 F 6 8 27:36:06
chb21 F 13 4 32:49:49
chb22 F 9 3 31:00:11
chb23 F 6 7 26:33:30
chb24 - - 16 21:17:47
Total 185 979:56:07

Table 5.1. CHB-MIT Scalp EEG Database details per patients

5.2 Metrics

To evaluate and compare the results of different methods, several metrics are
taken into account. Specifically, the following section presents the Confusion
matrix, F1 score, Receiver Operator Characteristic (ROC), specificity, sensi-
tivity and False Positives per hour (FP/h). For the unsupervised approaches,
F1 score and Area Under (ROC) Curve (AUC) are considered, while for self-
supervised approaches specificity, sensitivity and FP/h are considered.
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Confusion Matrix

The Confusion Matrix is a technique for summarizing the performance of
a classification algorithm. Classification accuracy alone can be misleading
if there is an unequal number of observations in each class of the dataset.
Calculating a confusion matrix can give a better idea of what the classification
model is getting right and what types of errors it is making.

The number of correct and incorrect predictions is summarized with count
values and broken down by each class. In a two-class problem such as seizure
detection, it is important to discriminate between observations with a specific
outcome, from normal observations, such as non-seizure and seizure. In this
way, it is possible to assign the event "seizure" as “positive” and the non-event
"non-seizure" as “negative“. With this coding, the event (seizure) column
of predictions is categorized as “true” and the nom-event (non-seizure) as
“false“. More specifically:

• True Positive (TP), for correctly predicted event or seizure;

• False Positive (FP), for incorrectly predicted event or seizure;

• True Negative (TN), for correctly predicted non-event or non-seizure;

• False Negative (FN), for incorrectly predicted non-event or non-seizure.

Table 5.2 shows a simple Confusion Matrix scheme.

Predicted
P N

Actual
P

True
Positive

(TP)

False
Negative

(FN)

N
False

Positive
(FP)

True
Negative

(TN)

Table 5.2. Confusion Matrix

F1 Score

F1 Score is an appropriate metric when dealing with an unbalanced dataset,
such as CHB-MIT. F1 Score is the Harmonic Mean between precision and
recall. To define this metric, two additional metrics are needed: Precision
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and Recall. Precision is a measure of the correctly identified as positive in
all positive predicted:

Precision = TP

TP + FP
(5.1)

Recall is a measure of the correctly identified as positive in all the really
positive:

Recall = TP

TP + FN
(5.2)

F1 Score is the Harmonic Mean between precision and recall. The range
for F1 Score is [0, 1]. It tells how precise the classifier is (i.e. how many
instances it classifies correctly), as well as how robust it is (i.e. it does not
miss a significant number of instances). High precision but lower recall is
extremely accurate, but it then misses a large number of instances that are
difficult to classify. The greater the F1 Score, the better the performance of
our model. Mathematically, it can be expressed as:

F1 = 2 · Precision · Recall

Precision + Recall
= TP

TP + 1
2(FP + FN) (5.3)

F1 Score tries to find the balance between precision and recall.

Receiver Operator Characteristic

A ROC curve (receiver operating characteristic curve) is a graph showing the
performance of a classification model at all classification thresholds and it is
one of the most widely used metrics for the evaluation of binary classification
problems. The ROC of a classifier is equal to the probability that the classifier
will rank a randomly chosen positive example higher than a randomly chosen
negative example. True Positive and False Positive Rates are defined as:

• True Positive Rate, that corresponds to the proportion of positive
data points that are correctly considered as positive, with respect to all
positive data points:

TPR = TP

FN + TP
(5.4)

• False Positive Rate, that corresponds to the proportion of negative
data points that are mistakenly considered as positive, with respect to
all negative data points:

FPR = FP

TN + FP
(5.5)
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These terms both have values in the range [0, 1]. FPR and TPR both are
computed at varying threshold values such as (0.00, 0.02, 0.04, . . . ., 1.00) and
a graph is drawn. AUC is the area under the curve of plot FPR vs TPR at
different points in [0, 1]. The ROC curve is a good way to compare classifiers
when the accuracy parameters are not enough. Generally, the bigger the
AUC, the better the performance.

Specificity, Sensitivity, FP/h

The most important metrics, which are the ones considered for the self-
supervised task, are specificity, sensitivity and false positives per hour. Speci-
ficity can be defined as:

Specificity = TN

TN + FP
(5.6)

Specificity highlights the ability of the model to recognize the non-seizure
event and it is influenced by the number of false positives. The lower the
false positives, the higher the specificity, and vice versa. Sensitivity can be
defined as:

Sensitivity = TP

(TP + FN) (5.7)

Sensitivity highlights the ability of the model to recognize seizure events.
The definition of sensitivity is the same as the TPR seen in Equation 5.4.
Then, false positives per hour can be defined as:

FP/h = 3600
length

× (1 − Specificity) (5.8)

and maps the number of false alarms in an hour (i.e. 3600 s). This is one
of the most important metrics in a seizure detection problem. It is crucial
to have a consistent model that does not raise too many alarms in such a
sensible scenario.

5.3 Training details
The original loss function proposed by [17] and shown in Equation 4.4 is
modified to prioritize specificity and sensitivity. Specifically, two terms are
added to take into account their contribution to the loss and to force the
model to minimize them. The updated loss is defined as:

l = lce + α(1 − specificity) + β(1 − sensitivity) (5.9)
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where lce is the cross-entropy loss described in Equation 4.4, α ∈ [0,1] is
the weight of the specificity contribution and β ∈ [0,1] is the weight of the
sensitivity contribution. In this way, the backward propagation step learns
to update the weights to minimize the contribution of these two metrics. It
is immediate to see that the higher the specificity and the sensitivity, the
lower the loss. During training, after some hyperparameter search, α = 0.3
and β = 0.5. The minority class (seizure) in the training set is oversampled
considering the two different techniques discussed in Section 4.3.3. Then all,
the minimum, the maximum, the mean and the standard deviation of the
training set are computed and used to normalize the three sets, training,
validation and test with the chosen normalization step. Adam optimizer is
considered with learning rate lr = 1e − 4 and L2-regularization weight decay
parameter set to 0.01. A learning rate scheduler is used, which reduces the
learning rate on the plateau, with parameters mode = min, factor = 0.1 and
patience = 5. Then, a custom early stopping mechanism is applied as well
that monitors the validation loss with patience = 15 and ϵ = 0. Generally,
with few exceptions, a batch size of 256 is considered, and the upper bound
of the number of epochs to train the model is set to 120. However, with Early
stop, for most of the configurations, the model is fine-tuned for no more than
35 epochs. Finally, and most importantly, during training, every Dropout
added between the 1d-convolution and the group norm layer (as explained
in 4.2.1) drops entire channels of the network with probability p = 0.5. This
will reveal to be a crucial contribution to the reduction of overfitting.

Table 5.3 shows the hyperparameters’ search space for all the parameters
discussed above.

5.4 Results
The first results obtained and, thus, the first results shown are the ones
obtained in the first fine-tuning test carried out. These results represent
the starting benchmark, from which the extensive research for the optimal
fine-tuning strategy started. In this case, the model is the original BENDR
described in 4.2.1, with the training strategy explained in Figure 4.9 and
details explained in 5.3. These first results are shown also by patients just
to have an idea of the variability of the performance of the model within
patients. Generally, from now on, only averaged results will be shown. Table
5.4 shows the first results obtained with BENDR, exploiting the pre-trained
weights made available by [17], and fine-tuning for each patient. As expected,
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Parameter Values
segment_length [1, 4, 8, 16]
batch_size [128, 256]
learning_rate [1e-3, 1e-4, 1e-5, 5e-5]
second pre-training
epochs [10, 20, 50]

fine-tuning epochs [50, 100, 120]
α [0.3, 0.5, 0.7]
β [0.3, 0.5, 0.7]
patient EarlyStopper [10, 15]
delta EarlyStopper [0, 1e-4]
optimizer scheduler [None, OneCycleLR]

Table 5.3. Hyperparameters search space. Optimal values are in bold.

using such a huge model as BENDR without initializing the weights of the
model with the pre-trained weights available leads to huge overfitting. In-
deed, it is immediate to notice that, training only on CHB-MIT dataset,
without using the weights learned on TUEG, leads to a model that is un-
responsive to seizures, predicting only non-seizure events. The model that
does not exploit pre-trained weights (the right part of Table 5.4) tends to
have a very high specificity, and thus very low false positive per hour, but
a very low sensitivity: it never predicts a seizure, and since the test data is
highly unbalanced, specificity is very high.

5.4.1 Scalability results
Starting from these initial results, the different dimensions discussed in 4.3
are explored. First of all, it is studied how the model size influences the
performance of the model. As shown in Figure 4.10, an extensive search for
the optimal size of the model is carried out. Table 5.5 shows the results
obtained for different configurations. In addition to the original architecture,
4 different architectures have been tested, modifying the number of convolu-
tional blocks and the number of heads/layers of the transformer. Ultimately,
they differ in the number of trainable parameters. It is also important to un-
derline that this architecture change has been made only when fine-tuning,
while the pre-training architecture remains the same (i.e. the original one).
This means that, when fine-tuning, only the layers already present during
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Exploting pre-trained weights Without pre-trained weights
patient specificity sensitivity fp/h specificity sensitivity fp/h
chb01 99.904 90.539 0.867 99.984 0.000 0.144
chb02 86.142 8.333 124.724 100.000 0.000 0.000
chb03 96.935 84.389 27.584 100.000 0.000 0.000
chb04 89.921 54.484 90.715 100.000 0.000 0.000
chb05 99.908 86.427 0.827 100.000 0.000 0.000
chb06 98.759 2.597 11.173 100.000 0.000 0.000
chb07 99.945 36.508 0.498 100.000 0.000 0.000
chb08 98.569 86.145 12.880 100.000 0.000 0.000
chb09 97.505 68.566 22.459 100.000 0.000 0.000
chb10 98.728 95.698 11.446 100.000 0.000 0.000
chb11 100.000 44.078 0.000 99.888 0.000 1.008
chb12 51.462 55.558 436.844 100.000 0.000 0.000
chb13 98.248 77.601 15.771 100.000 0.000 0.000
chb14 99.713 44.675 2.580 100.000 0.000 0.000
chb15 7.143 92.857 835.714 100.000 0.000 0.000
chb16 98.904 8.333 9.861 100.000 0.000 0.000
chb17 99.432 72.989 5.111 99.848 1.515 1.367
chb18 95.337 75.902 41.963 100.000 0.000 0.000
chb19 96.265 45.614 33.611 98.303 22.719 15.271
chb20 98.537 41.868 13.164 100.000 0.000 0.000
chb21 98.091 42.321 17.179 100.000 0.000 0.000
chb22 99.925 53.439 0.679 100.000 0.000 0.000
chb23 99.189 84.250 7.299 100.000 0.000 0.000

Average 91.677 58.834 74.911 99.914 1.054 0.773

Table 5.4. First results obtained fine-tuning BENDR. On the left side, there
are results obtained exploiting the available pre-trained weights, on the right
side results without pre-trained weights.

pre-training, or their equivalent, are initialized with the pre-trained weights,
whilst the others are randomly initialized. This is one of the reasons why the
number of convolutional blocks was not increased: during the thesis, it was
found that adding blocks in the first part of the network (i.e. the one that
extracts the representations of raw EEG data) was counterproductive to the
generalization of the pre-trained weights learned on TUEG.

Interestingly, a smaller model behaves better than the original one, while
a bigger one tends to overfit. This is immediate to notice when looking at the
relationship between specificity and sensitivity: similarly to what is shown
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in Table 5.4, the model, when its size is increased, tends to predict only non-
seizure events, thus lowering its sensitivity. This could also be a consequence
of the fact that more than half of the model’s weights are randomly initialized
(as the one in the right part of Table 5.4), thus compromising its sensitivity
once again. Another interesting thing to notice is that a model that is a
quarter of the size of the original one (the 25% model) behaves similarly: this
could mean that the most important information needed to adapt TUEG to
the CHB-MIT dataset is mainly found in the first layers of the transformer.
This will be further discussed in the Section (5.5). A representation of some
of the results obtained is shown also in Figure 5.2.

Model configuration Results
Parameters (M) Conv. blocks Transformer h-l Specificity Sensitivity FP/h

Original 157 6 8 91.677 58.834 74.911
200% 308 6 16 93.119 21.324 61.933
55% 82 6 4 95.740 60.763 38.338
50% 79 4 4 87.853 68.516 109.322
25% 41 2 2 91.954 59.581 72.417

Table 5.5. Results based on different model configurations (different number
of convolutional blocks used in the first stage, different number of heads and
layers used in the transformer

Figure 5.2. 4 different model sizes compared with each other. If look-
ing at the FP/h metric it is possible to spot a sort of optimal point with
the 55% architecture. If the model size is either increased or decreased,
the FP/h worsens.
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5.4.2 Pre-training architecture results

The second dimension that has been explored is the further pre-training of
the model also on the other patients of the CHB-MIT dataset, except on
the one on which fine-tuning is been carried out. This further pre-training
is referred to as second pre-training. To do that, we use the two different
architectures that have been presented in Chapter 4: BENDR, seen in 4.2.1,
and MAEEG 4.2.2. The training protocol to obtain these results is the one
already explained in Figure 4.11. The idea is to use the pre-trained weights
learned on TUEG to initialize both models, BENDR and MAEEG, and then
further pre-train them on the other CHB-MIT patients before fine-tuning
them on the specific patients with Leave-One-Out Cross-Validation strategy.
Results are shown in Table 5.6. With respect to the original, it is immediate
to notice that with the BENDR architecture, a second pre-training slightly
improves both the specificity and the sensitivity, thus lowering the FP/h.
The same cannot be said for the MAEEG architecture, for which all three
metrics worsen with a second pre-training. This could be in part justified by
the fact that both models are initialized with pre-trained weights that have
been obtained with the BENDR architecture, and for this reason, MAEEG
benefits less from this different initialization. As also stated by the authors
([51]), MAEEG has been proposed as an alternative architecture for the
pre-training on the huge unlabelled dataset TUEG, and not for this second
pre-training task. For this reason, it would be more interesting to compare
these two methods on the pre-training task. However, this test has not been
carried out during the thesis because of the huge computing resource and the
time required to complete the pre-training on TUEG.

Specificity Sensitivity FP/h
Original 91.677 58.834 74.911

Pre-trained
BENDR 92.711 60.326 65.599

Pre-trained
MAEEG 86.860 61.754 118.254

Table 5.6. Comparison of BENDR and MAEEG when pre-training on
all the patients of CHB-MIT except the one on which the fine-tuning is
run. The first row shows the performance of BENDR without pre-training
on other CHB-MIT patients.
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5.4.3 Processing techniques results
In this section, the results of the pre-processing and post-processing tech-
niques are reported. Since showing the results of the comparison one by one
of all the different techniques considered would be confusing, some of the
pre-processing and post-processing strategies are combined and two differ-
ent combinations are shown in this section. With these two combinations,
the idea is to show how some of the techniques influence the results. First
of all, it is necessary to define the two combinations. Combination 1, also
called "higher-sensitivity" combinations, as the name suggests, is the combi-
nation that prioritizes sensitivity over specificity, thus having a higher FP/h.
Combination 1 is characterized by the following pre-processing steps:

• no filter during data loading;

• min-max normalization;

On the other hand, Combination 2 is characterized by the following pre-
processing steps:

• Butterworth bandpass filter during data loading;

• mean-std standardization.

In these two configurations, the effect of the three post-processing techniques
is studied. Results are shown in Table 5.7. More extensive research on the
appropriate smoothing technique is also considered. Given the same model
and the same output, the two methods, Majority voting and Minimum value,
with different window lengths, are compared in Figure 5.3. As expected,
a wider window hugely lowers the sensitivity of the model, improving the
specificity. This is easy to understand: for a wider window, it is required
that several EEG segments of the same window are detected as seizure in
order to identify the considered segment as a seizure one. This behaviour is
even more evident when the minimum criterion is chosen over the majority.
The minimum criterion is probably too conservative: indeed, sensitivity is
already compromised with a window length equal to 3. On the other hand,
the majority voting criterion is less conservative and, in this case, sensitivity
decreases slowly with the increase of the window width, compared to the
minimum case. In general, as results show, smoothing the output avoids
random peaks of EEG signal that could trigger a positive prediction by the
model, resulting in a false positive. And by consequence, specificity benefits
from the reduction of false positives, but sensitivity does not. The optimal
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Post-processing Results
Smoothing Event+Grouped Specificity Sensitivity FP/h

Configuration 1
N N 95.208 59.477 43.110
Y N 96.465 88.889 31.815
Y Y 98.428 81.159 14.149

Configuration 2
N N 97.366 41.815 23.710
Y N 98.315 40.498 15.169
Y Y 99.765 65.217 2.111

Table 5.7. Comparison between different pre-processing and post-
processing techniques. The configurations differ from each other because
of the pre-processing techniques applied. In the table, it is possible to
see how the post-processing techniques change the performances. In this
case, "Smoothing" refers to the Majority voting strategy based on sliding
windows on the outputs with length 3, while "Event+Grouped" refers to
the event-based sensitivity combined with the grouping consecutive false
positive techniques, discussed in 4.3.3.

balance between specificity and sensitivity seems to be found with majority
voting with a window of length 3.

Figure 5.3. Comparison between smoothing techniques: majority
voting vs minimum value

To give the complete overview of the performance achieved, the best results
of the two different configurations shown in Table 5.7 are shown also patient
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by patient. In this way, it is possible to compare it with the initial results
shown in Table 5.4. Patient-by-patient results of configurations 1 and 2 are
shown in Table 5.8.

Configuration 1 Configuration 2
patient specificity sensitivity fp/h specificity sensitivity fp/h
chb01 99.950 100.000 0.451 100.000 100.000 0.000
chb02 99.079 0.000 8.285 99.898 0.000 0.917
chb03 99.848 100.000 1.364 100.000 100.000 0.000
chb04 96.688 100.000 29.805 99.901 50.000 0.893
chb05 100.000 100.000 0.000 100.000 100.000 0.000
chb06 99.885 0.000 1.034 99.988 0.000 0.105
chb07 99.880 100.000 1.082 99.989 100.000 0.100
chb08 99.207 100.000 7.140 99.789 100.000 1.901
chb09 99.754 100.000 2.215 99.756 100.000 2.196
chb10 99.773 100.000 2.046 99.979 100.000 0.192
chb11 100.000 100.000 0.000 99.950 100.000 0.448
chb12 96.197 33.333 34.231 96.312 33.333 33.188
chb13 99.285 100.000 6.433 99.791 100.000 1.878
chb14 100.000 66.667 0.000 100.000 16.667 0.000
chb15 78.898 100.000 189.919 99.782 100.000 1.965
chb16 99.089 0.000 8.199 99.950 0.000 0.447
chb17 99.518 100.000 4.336 99.898 100.000 0.919
chb18 99.936 100.000 0.574 100.000 100.000 0.000
chb19 100.000 66.667 0.000 100.000 66.667 0.000
chb20 99.130 100.000 7.827 100.000 0.000 0.000
chb21 97.983 100.000 18.157 100.000 0.000 0.000
chb22 99.910 100.000 0.814 99.898 33.333 0.915
chb23 99.832 100.000 1.514 99.724 100.000 2.487

Average 98.428 81.159 14.149 99.765 65.217 2.111

Table 5.8. Result of configuration 1 and 2 patient by patient

For both configurations, it is possible to notice there are some "critical"
patients, i.e. patients with an oddly high fp/h ratio (or low specificity) with
respect to others. In configuration 1, for example, patients chb04, chb12, and
chb15 are considered critical patients, while for configuration 2 only chb12
can be considered critical. The removal of these patients is discussed in
detail in section 5.5. These patients compromise the average results since
FP/h is hugely out of scale with respect to the others. Table 5.9 shows the
best results of the two configurations removing the critical patients discussed
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above.

critical specificity sensitivity fp/h
Config 1 4, 12, 15 99.603 81.667 3.574
Config 2 12 99.922 66.667 0.698

Table 5.9. Best results without considering critical patients

Lastly, a comparison with the state-of-the-art performance is shown. Specif-
ically, an XGBoost-based model trained in a supervised way is considered to
be the state of the art (Ingolfsson et al., Unpublished, 2023). The best per-
formances of the fine-tuned BENDR model are taken into account, both with
and without critical patients. Results are shown in Table 5.10. It is immedi-
ate to notice how, with the appropriate precautions, the best performances
of BENDR overcome the state-of-the-art ones. Of course, this is achieved
considering several post-processing techniques that were not deployed in the
state-of-the-art, but, still, the results are promising considering the starting
point (Table 5.4).

critical specificity sensitivity fp/h
Config 2 None 99.765 65.217 2.111
Config 2 12 99.922 66.667 0.698

State of the Art None 99.910 64.090 0.850

Table 5.10. Results comparison with the state of the art

5.4.4 Reducing training data available
The last test tried to study the fine-tuning process considering reducing the
amount of training data available. The idea is to see how the model behaves
when it is trained on only half the data originally available for fine-tuning for
each patient. Practically, looking at Figure 4.9, suppose that, for example, for
patient chb01, not 6 edf files are available, but only 3, how would the model
behave with respect to the "all data" case? To carry out a more robust test,
for each patient, the files for each patient that should not be considered have
been chosen randomly and the test is repeated two different times. A more
robust approach would maybe run the test more times. For patients with
an odd number of edf files, an approximation by excess has been considered:
for example for patient chb02, which originally has 3 edf files that contain a
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seizure, only 2 were considered. In the end, on average, slightly more than
50% of the original data are considered, but the study remains meaningful.
The best architecture found in Table 5.5 is considered as a comparison, thus
BENDR with the same number of convolutional blocks in the first stage, but
half of the heads/layers in the transformer encoder. This has been done,
both to speed up training and to combine the contribution of a reduction in
the size of the model and the reduction in data. Results are shown in Table
5.11. It can be noticed that, when reducing the data available during fine-
tuning, specificity is slightly increased (and thus FP/h decreases with it), but
sensitivity decreases. This could be similar to what happens when the model
is randomly initialized rather than with the pre-trained weights (Table 5.4).
Reducing the amount of fine-tuning data prevents the model to adapt from
the pre-trained weights learned on TUEG to a different downstream task and
a different dataset. Even if the distribution between seizure and non-seizure
is the same as the ’all data’ case, it may be that a further hyperparameters
search is needed (Table 5.3). In conclusion, it can be said that the increase in
specificity, and the consequent decrease in FP/h do not justify the decrease in
sensitivity. The model, since it has less data to be trained on, does not learn
to properly recognize the seizures, but predicts more easily a non-seizure.
This is also very similar to what happened with the 200% model (Table 5.5):
in that case, the amount of fine-tuning data was the same, what changed was
the model size, where there was a model twice the size of the original that
did not have enough time to learn to predict seizures.

Specificity Sensitivity FP/h
All data 95.740 60.763 38.338
Half data 96.651 43.319 30.144

Table 5.11. Results of BENDR when fine-tuned on less data.

5.5 Discussion
The results obtained were in part in line with what was expected. The first
results (Table 5.4) obtained were not promising for most patients and needed
a lot of work to become competitive and comparable with the state of the
art. However, from the beginning, it is clear how a huge model such as
BENDR benefits from the pre-trained weights on a large unlabeled dataset
([17]). Indeed, it is immediate to notice that, when the model’s weights are
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randomly initialized the model heavily overfits on CHB-MIT: this is evident
because the model learns how to predict only non-seizure segments, and thus
from here the higher specificity (and very low FP/h), without even trying
to predict seizure. However, on the training set, which is balanced between
seizure and non-seizure, validation loss continues to decrease. The ineffec-
tiveness observed with the randomly initialized full architecture could be the
first evidence of the validity of the use of this powerful emerging architec-
ture, which hugely benefits from pre-training, especially when deployed on a
limited-data scenario. Of course, this may be due to the large number of pa-
rameters that these types of models require, making training difficult without
sufficient data and hardware resources. Starting from these first results, the
objective is to explore the search space of possible alternatives, considering
different architectures, pre-training schedules, processing techniques and less
data.

The impact of model size on the performance is evident in both Table 5.5
and Figure 5.2. The approach benefits from a smaller model size, reducing
overfitting and increasing all the considered metrics. This may be justified
by the fact that the complex architecture used during the unsupervised pre-
training does not allow the model to properly adapt to the seizure detection
task, and thus, a small number of parameters to be trained can speed up
convergence without compromising the performances. An interesting thing
to notice is how the 50% BENDR architecture behaves: reducing the number
of convolutional blocks used in the first phase proves to be less effective than
just reducing the number of heads and layers that the model has. This can
be explained considering the complexity of EEG data and considering fewer
blocks would mean reducing the space on which the input EEG segments are
mapped. However, when reducing both the number of convolutional blocks
and the number of heads/layers hugely, as in the 25% BENDR, the model
benefits from this simplification. This could be justified by the overall balance
between the first and the second stage: indeed, for the 50% architecture, the
first stage was less refined with respect to the transformer. Lastly, considering
Figure 5.2, it is immediate to notice a sort of convex trend considering the
100%, 55% and 25% BENDR, with what may seem to be a global minimum
in terms of FP/h in the 55% one.

Then, the potential of training on other CHB-MIT patients except for
the one on which the model is being fine-tuned was explored. Here, the pre-
trained BENDR architecture outperforms MAEEG. This was not an expected
result. MAEEG was indeed proposed by [51] as an alternative pre-training
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technique to BENDR, that improve its ability to extract meaningful infor-
mation from unlabeled data. However, the bad behaviour of MAEEG may
be justified by the fact that the pre-training of BENDR and MAEEG carried
out in this thesis is not considered on the huge unlabelled dataset TUEG,
but rather on the relatively smaller CHB-MIT. It is plausible to think that
MAEEG outperformed BENDR when both of these architectures were pre-
trained on TUEG, and then fine-tuned on the same tasks, using the same
classification architecture, since it has been proven in [51] that MAEEG has
better understanding capabilities on huge unlabeled data. It would be inter-
esting to see, in future works, how MAEEG behaves when is pre-trained on
TUEG and then adapted for the seizure detection task.

Results of the different processing techniques shown the greatest improve-
ment in performance. What has been found is that (Table 5.7) using appro-
priate pre-processing techniques is possible to obtain a model that is more
sensitivity sensible (as configuration 1), and one that is more specificity sen-
sible (as configuration 2). Once these two models are trained, they can be
hugely improved with post-processing techniques. In particular, it was found
that:

• Smoothing the output (especially with majority voting on a window of
length 3) avoids random and sudden peaks of EEG signal that could
trigger a positive prediction by the model, resulting in a false positive.
So, smoothing helps reduce false positives and thus increases specificity.

• Grouping together false positives again slightly improved specificity.
This strategy is justified by the fact that if there are consecutive false
positives it is likely due to some consecutive abnormal EEG segments
that trigger the model’s positive prediction. However, it is fair to con-
sider these as a single false positive event, rather than, for example,
3 different false positives, since the model will alert the patient or the
clinician just once when considering the seizure event.

• Considering seizure events rather than seizure segments improved the
sensitivity of the model and slightly decreased its specificity. Future
works may also consider a threshold to recognize a seizure: for example,
instead of one, a seizure is recognized if the majority of its EEG segments
are classified as a seizure. This post-processing technique is probably
the most powerful tool implemented to improve the performance of the
model.

For what concerns the so-called "critical" patients, it was not immediately
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noticed if there was a common trait that characterizes all of them. The
only noticeable aspect that these three patients (chb04, chb12, chb15) share
is either the amount of data available or the number of seizure events they
experienced. Indeed, from Table 5.1:

• patient chb04 has the longest amount of cumulative recordings (with
more than 156 hours), and also one of the lowest numbers of seizures;

• Patients chb12 and chb15 are the top-2 patients in terms of seizure events
within their recordings.

Generally speaking, it can be stated that all of these 3 patients share a non-
regular distribution of seizure events in their recordings: either having a lot
in a relatively short time or very few in a long time. An interesting metric
to look at to grasp how data from these 3 patients, in particular chb04 and
chb12, differs a lot from the others is the number of seizure events per hour.
Table 5.12 shows this metric. It is immediate to notice how chb04 is the
one with the lowest number of seizures per hour and, on the other hand,
chb12 is the patient with the highest number of seizures per hour. Patient
chb15 has a higher than-average number of seizures per hour, but it is less
evident with respect to the other two patients. This could justify some of
the bad performances, especially for chb12, which is the only critical patient
in configuration 2. Indeed, chb12 has experienced 27 different seizures in
just 20 hours of recording, thus it may explain the difficulties of the model
in recognizing the seizure (with 33% sensitivity) and the high value of false
positives (more than 33 false positives per hour). This also means that
the model is trying somehow to respond and predict seizures but with scarce
success. It should be also mentioned, however, that several works in the state
of the art disregarded some of the patients of CHB-MIT, as in [27], [56], [57].
Configuration 2, without patient chb12, can overcome the state-of-the-art
performances as seen in Table 5.10. However, it must be said that the state-
of-the-art method applied only smoothing as a post-processing technique and
did not either group together consecutive false positives or counted seizures
detected instead of segments. It is likely that, if the same techniques were
applied in the SoA, the performances of the SoA approach may be higher
than the ones obtained with BENDR.

The last results show how the model behaves, given the same architecture
and training setup, with almost half the data. It is interesting to notice how
specificity improves when fewer data are available: this is explained by the
fact that in an unbalanced dataset as CHB-MIT, reducing data has much
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Paitient Seizure Hours Ratio
chb01 7 40 0.18
chb02 3 35 0.09
chb03 7 38 0.18
chb04 4 156 0.03
chb05 5 39 0.13
chb06 10 66 0.15
chb07 3 67 0.04
chb08 5 20 0.25
chb09 4 67 0.06
chb10 7 50 0.14 Ratio metrics
chb11 3 34 0.09 Mean 0.26
chb12 27 20 1.35 Median 0.16
chb13 12 33 0.36 Min 0.03
chb14 8 26 0.31 Max 1.35
chb15 20 40 0.50
chb 16 10 19 0.53
chb17 3 21 0.14
chb18 6 35 0.17
chb19 3 29 0.10
chb20 8 27 0.30
chb21 4 32 0.13
chb22 3 31 0.10
chb23 7 26 0.27
chb24 16 21 0.76

Table 5.12. Number of seizure events per hour for each CHB-MIT patient

more effect on the seizure data because, even if the distribution between
seizure and non-seizure is observed, having fewer seizure data available pre-
vent the model from learning the seizure characteristics of EEG signals. And
thus, sensitivity decreases with respect to the original one.

Overall, it can be said that, with the appropriate measures, when all
dimensions are optimized, the model is able to obtain satisfactory results.
Consider for example results for each patient of Configuration 2 of Table 5.8,
it can be seen that for 13 patients out of 23 100% sensitivity is reached and
with an acceptable FP/h for all patients except one. Generally speaking,
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average results are more than satisfying and comparable with the state-of-
the-art, while even better when the critical patient is disregarded (as seen in
Table 5.10).
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Chapter 6

Conclusion and Future
Works

Labelled EEG datasets are scarce because of the cost in terms of time and ex-
pertise required for the labelling process. On the other hand, a huge amount
of unlabelled EEG data is currently available and it is not, largely, exploited.
The objective of the thesis was to explore approaches to exploit this huge
amount of unlabelled EEG data available for seizure detection. The first
tested fully unsupervised approaches trained on non-seizure data did not pro-
vide promising results. The focus then shifted to self-supervised approaches.
Inspired by masked language model-like training, BENDR was proposed and
pre-trained on a huge unlabelled dataset to understand the underlying struc-
ture and characteristics of EEG. Starting from this pre-trained model, the
thesis focused on its fine-tuning with a modified architecture, for a different
task and on a different, and smaller, dataset. Several aspects of the fine-
tuning process were taken into consideration: scalability, pre-processing and
post-processing techniques, further pre-training architectures and reducing
the data available. An extensive search was carried out on these different
dimensions, to find the best configuration for the seizure detection task. The
best model was able, with some precautions, to obtain results competitive
with the state of the art, demonstrating and validating the potential of these
types of learning paradigms. The key takeaways for the optimization of the
fine-tuning process are:

• a model of smaller size may prevent overfitting on a smaller dataset;
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• regularization techniques (especially heavy dropout, early stopping mech-
anism, learning rate scheduler and the modification of the loss to pri-
oritize the metrics that are being considered) reduced again overfitting
and improved the generalization on different patients;

• pre-processing and post-processing techniques had the biggest impact
on performance improvement.

Future works may consider improving the pre-training approach by adjusting
the neural network architecture and pre-training configuration such that it
becomes more data-domain EEG appropriate. Indeed, BENDR applied a
paradigm developed specifically for text and speech recognition, without any
major update on the architecture, even though the nature of this data is very
different from EEG. Additionally, future works may also consider a different
pre-training dataset, which may be more related to the seizure detection
task. BENDR was originally proposed to solve downstream tasks related to
Brain-Computer Interfaces (BCI), while during the thesis it was tested on
a seizure detection task. Furthermore, the ability of this model as a seizure
predictor rather than a detector may be explored (as seen in the A).

This work showed the potential of transfer learning scheme applied to EEG
in the seizure detection task, leveraging the immense amounts of unlabelled
data available in this field. Additionally, the work validated, even more, the
effectiveness of a huge large language-inspired model as BENDR. The use of
a general model that can be pre-trained on EEG data and then fine-tuned
and adapted to the specific EEG-related tasks may overcome the difficulties
encountered when developing a custom model for a specific task which relies
on the amount of available labelled data.
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Appendix

A.1 Project description
Epilepsy detection on EEG data is a challenging task, both due to the limited
amount of labelled data often available for the training of a classifier, and for
the high accuracy standards required for a monitoring device to detect all
seizure events without raising highly stressful false alarms. On top of that,
in practical usage conditions with wearable devices, EEG is often affected
by artefacts, which in turn are often mistaken for seizures due to their mor-
phological similarity in both amplitude and frequency, making seizure detec-
tion systems susceptible to higher false alarm rates. Consequently, artefact
detection and removal appear paramount for the successful deployment of
epilepsy detectors on wearable devices. However, labelling artefacts together
with seizures imposes an even higher burden on clinicians. Within this con-
text, this project aims to explore unsupervised machine learning approaches
to perform seizure detection with minimal or no labelling required.

A.2 Unsupervised replicated results
In this section, the replicated results of the unsupervised methods seen in
4.1 are shown. These results are not shown in the results section to avoid
confusion between actual contributions and replicated results. If for the self-
supervised approach, several contributions were made and presented in the
results section, for the unsupervised approaches results were only replicated,
since they were not that promising, these approaches were not further ex-
plored. Table A.1 shows the comparison between the performances obtained
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by the authors that proposed the approaches and the results that were ob-
tained during the thesis. Notice how, especially for the second method, the
one that combined CNN with an anomaly detection method, it was not pos-
sible to replicate results, especially in terms of F1 score. Even if both the
model and the training were set with the same configuration as the authors
suggested, replicated results significantly differ from the original ones. For
these reasons, since these results were obtained in the first part of the de-
velopment of the thesis, and since it was not possible to replicate the results
of promising methods, such as the one that combines CNN with anomaly
detection, it was decided to shift the attention on self-supervised methods.

Original Replicated
F1 score AUC F1 score AUC

VAE 0.589 0.681 0.561 0.689
CNN+AD 0.841 0.924 0.451 0.910

Table A.1. Comparison between original and replicated results of the un-
supervised approaches. VAE is the variational autoencoder method, while
CNN+AD is the one that combines CNN with the anomaly detection method.

A.3 A different architecture for the fine-tuning
process

In this section, the results obtained with the Linear BENDR architecture
(described in Figure 4.7) are reported. In Table A.2, a comparison with the
standard fine-tuning architecture (described in Figure 4.6) is presented. This
test has been carried out at the beginning of the second part of the thesis
when BENDR was being adapted to the EEG scenario. For this reason,
no considerations on model size, processing techniques and so on are being
made. On the left, there are the results obtained with the BENDR fine-
tuning architecture, on the right there are the results of the Linear fine-tuning
architecture. Notice that the results of BENDR are the same presented on
the left part of Table 5.4. Indeed, for both of these architectures, pre-trained
weights on TUEG are being used.
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BENDR fine-tuning Linear fine-tuning
Patient Specificity Sensitivity FP/h Specificity Sensitivity FP/h

chb01 99.90 90.54 0.87 70.35 95.71 266.89
chb02 86.14 8.33 124.72 83.96 10.00 144.38
chb03 96.94 84.39 27.58 66.22 90.28 303.98
chb04 89.92 54.48 90.71 74.87 87.55 226.13
chb05 99.91 86.43 0.83 60.88 92.70 352.06
chb06 98.76 2.60 11.17 96.96 99.86 27.36
chb07 99.94 36.51 0.50 69.39 97.76 275.48
chb08 98.57 86.15 12.88 78.38 87.36 194.58
chb09 97.50 68.57 22.46 60.24 70.34 357.83
chb10 98.73 95.70 11.45 94.70 94.43 47.67
chb11 100.00 44.08 0.00 96.38 67.29 32.62
chb12 51.46 55.56 436.84 89.84 64.69 91.47
chb13 98.25 77.60 15.77 93.00 71.45 62.96
chb14 99.71 44.68 2.58 62.93 81.40 333.62
chb15 7.14 92.86 835.71 62.93 97.76 333.65
chb16 98.90 8.33 9.86 68.16 64.88 286.54
chb17 99.43 72.99 5.11 71.90 75.03 252.94
chb18 95.34 75.90 41.96 83.39 99.15 149.47
chb19 96.27 45.61 33.61 68.70 90.08 281.69
chb20 98.54 41.87 13.16 73.89 63.69 235.02
chb21 98.09 42.32 17.18 77.65 70.09 201.13
chb22 99.92 53.44 0.68 93.26 81.29 60.68
chb23 99.19 84.25 7.30 71.28 62.65 258.46

Average 91.68 58.83 74.91 76.92 78.93 207.68

Table A.2. Fine-tuning results obtained with the two different architectures:
BENDR and Linear BENDR

A.4 False alarms distribution

This section studies the distribution of false alarms. More specifically, the
objective is to see how much time before the seizure onset a false alarm is
raised, in order to understand if there is the potential for this method to solve
also a seizure prediction task (difference between detection and prediction in
2.1.3). The output of the best model is considered, then all the false positives
are considered and all the actual seizure events are taken. Then for every
false positive, the distance from the nearest seizure onset is computed. The
distance in EEG segments is then translated into seconds and minutes. The
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results of this analysis are shown in Figure A.1. It is very interesting to notice

Figure A.1. False positive distribution with respect to elapsed time between
false positive and actual seizure onset, for all patients and all test files.

how much time before a seizure onset the model is raising a false alarm. The
frequency is much higher in the first 25 to 30 minutes before the seizure and
becomes even higher in the seconds just before the seizure onset. It may be
very interesting to explore the use of this model as a seizure predictor since
the graph shows promising initial results. The seizure predictor’s objective
is to alert the patient, as well as the clinicians, of an imminent seizure event
with some advance notice, to allow the subject to take some measures. Even
if the objective of this work was to explore seizure detection, from this short
analysis, it is possible to catch a glimpse of the potential of this model as a
seizure predictor.
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Acronyms

AUC Area Under (ROC) Curve

AZC Approximate Zero-Crossing

BCI Brain-Computer Interfaces

BENDR BErt-inspired Neural Data Representations

CNN Convolutional Neural Network

DL Deep Learning

EDF European Data Format

EEG Electroencephalography

FC Fully Connected

FP/H False Positives per Hour

FPR False Positive Rate

iEEG intracranial EEG

k-NN k-Nearest Neighbors

LLM Large Language Model

LM Language Models

MAEEG Masked Autoencoder for EEG

ML Machine Learning

MLE Maximum Likelihood Estimation
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MLM Masked Language Modeling

NLP Natural Language Processing

NSP Next Sentence Prediction

RNN Recurrent Neural Network

ROC Receiver Operator Characteristic

sEEG Scalp EEG

SMOTE Synthetic Minority Oversampling TEchnique

SVM Support Vector Machines

TPR True Positive Rate

VAE Variational Autoencoder

WRS Weighted Random Sampling
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