POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Formal verification of a V2X Security
Credential Management System

Supervisors Candidate
Prof. Riccardo Sisto Francesco Rametta
Prof. Fulvio Valenza
Dott. Simone Bussa

Academic Year 2022-2023

Ai miei genitori

1 Ai miet nonng

Acknowledgements

Grazie ai miei relatori, i Prof. Riccardo Sisto e Fulvio Valenza, che mi hanno permesso di
approfondire il mondo della verifica formale e quello delle V2X con questo lavoro di tesi.

Un grazie speciale va al Dottorando Simone Bussa che e stato sempre presente e
disponibile supportandomi durante questo percorso e gli auguro il meglio per la sua car-
riera accademica.

Grazie

Contents

List of Figures

1 Introduction

1.1 Structure of the document

General Overview

2.1 V2X - Vehicle to everything 0.
2.2 Formal Verification
2.2.1 Symbolic Modelling
2.3 Tamarin-Prover
2.4 Features e
2.4.1 TInput File- Theory,
Security Credential Management System
3.1 SCMS Design
3.2 SCMS Structure
3.3 Certificate Provisioning Model and Certificate Types
3.3.1 Certificate Types
3.4 Butterfly Key Expansion oo
3.5 SCMS - Protocol Steps
3.5.1 Bootstrapping
3.5.2 Certificate Provisioning
3.5.3 Misbehavior reporting Lo
3.5.4 Revocation
Objective of the thesis
SCMS - Design Model in Tamarin
5.1 Preliminary steps and Assumptions
5.2 Tamarin theory setupo
5.2.1 Support rules
5.3 Bootstrapping
5.4 Certificate Provisioning L
5.5 Revocation

10

11
11
13
15
16
17
17

23
24
25
29
30
31
33
33
34
37
38

41

6 Results
6.1 Sanity checks . . .

6.1.1 Executability
6.1.2 Authentication
6.1.3 Bootstrapping successo
6.1.4 Partial deconstruction
6.2 SeCrecy o o i e

6.3 Privacy Properties
6.3.1 Anonymity
6.3.2 Unlinkability

7 Conclusion

Bibliography

63
63
63
65
67
68
69
70
70
72

77

79

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Possible scheme PKI. 12
Formal verification procedure steps. 14
SCMS architecture. Lo 26
SCMS Legend. 27
Butterfly key expansion steps. 33
Enrollment process. 35
Certificate provisioning process. L. 36
Pseudonym certificate revocation process. 39
Simplified model. 44
Certificate provisioning scheme. 51
Revocation scheme. oo 57
Authentication sanity check success. L. 66
Authentication - attacker with enrollment certificate - 1. 66
Authentication - attacker with enrollment certificate - 2. 67
Authentication - RA to PCA. 68
Authentication - RA to PCA message craft - 1. 69
Authentication - RA to PCA message craft - 2. 70
Lemma secrecy.o 71
Observational equivalence: rule-equivalence. 76

Chapter 1

Introduction

Vehicles are currently being developed and sold with increasing levels of connectivity and
automation. Communication technologies connect the vehicles with various on-road ele-
ments, such as pedestrians, infrastructures, roads, cloud computing platforms etc. V2X
communication technology is expected to improve traffic efficiency by reducing traffic inci-
dents and road pollution. Some examples of how this technology could be very promising
and useful are: traffic jam/incident reporting, collision warning and avoidance, coopera-
tive automated driving, infotainment services. All of this, results in a heightened risk of
cyber-security attacks. In literature many different types of attack have been extensively
and deeply analyzed and discussed. Here the focus is on the privacy. The main issue is
related to the mechanism used to provide authenication and integrity of the exchanged
messages. This is typically obtained using digital signatures and a digital certificate that
certifies the public key of the vehicle. But this exposes the vehicle to a lack of anonymity
and unlinkability. An attacker who intercepts all messages signed using the same certifi-
cate could link these data and trace the vehicle position. The most promising solution to
solve this problem is the use of pseudonymous certificates. By using pseudonyms, each
node can safely exchange messages preserving authentication and integrity and at the
same time they can provide a certain level of conditional linkability, that can be used by
authorities in case of disputes to resolve the initial identity of the vehicle or to profile
services offered to the nodes.

Among all pseudonym related vehicular communication protocols, the state-of-the-
art is represented by Security Credential Management System, developed by the Crash
Avoidance Metrics Partners LLC.

The thesis focuses on the formal analysis of the protocol by means of the TAMARIN
prover. Formal verification strives to provide a rigid and thorough method of analyzing
the correctness of a security protocol, allowing even minor flaws to be discovered. Since
the aims of using this communication protocol will be, to be widespread on V2X commu-
nications, even the slightest vulnerability will result in tremendous harm to all users who
use it. This is why it is important to formally verify these protocols, so to be sure they
meet the security properties they claim. Lemmas were implemented that describe all the

9

Introduction

security properties that must be fulfilled by the protocol.

1.1 Structure of the document

This thesis work has been divided into the following parts to explain in the most complete
way all the various phases:

Chapter 2: it gives a general overview and the context of this thesis. In particular
outlines general information about V2X and an introduction about what is Formal
Verification and the tool used to analyze this protocol, which is Tamarin-prover.

Chapter 3: it provides a deep analysis of the protocol to be formally verified and
all details related to why it was chosen in comparison to other protocols.

Chapter 4: it describes the objective of this work thesis

Chapter 5: provides a thorough analysis of the design choices and the model ob-
tained to be able to analyze it with the Tamarin-prover.

Chapter 6: it presents the results obtained by this formal verification.

Chapter T7: it presents the conclusion and possible future work that could be added
and improve the current thesis.

10

Chapter 2

General Overview

2.1 V2X - Vehicle to everything

Vehicle to everything is a new generation of communication technology that connects
vehicles to everything else. "V" represents the vehicles and "X" represents everything else
that interacts with it (other vehicles, people, road infrastructure and the network).

In V2V connections, vehicles communicate with each other by sending and receiving
data such as speed, relative position, and brakes. They can also capture photos, audio, and
video of the surrounding environment. In this way, it is possible to predict the behavior of
other vehicles and improve road safety, as well as semi-automatic and automatic driving
in some cases.

V2I refers to all communications between vehicles and road infrastructure, such as
traffic lights and traffic cameras while V2P refers to communications between vehicles and
vulnerable groups, such as pedestrians and cyclists, through devices such as smartphones
and wearable devices.

These vehicles and infrastructure typically exchange broadcast messages with their
neighbors, and they are not encrypted. Since they are sensitive data that can compromise
user safety and privacy, mechanisms are needed to protect them, especially authentication
to ensure that the message comes from a valid vehicle and integrity to ensure that the
message is not modified by an attacker once it is sent.

These infrastructures gather information from the surrounding area and send real-time
information that include dangerous intersections (blind spots), accidents, construction
sites, and emergency vehicles passing through. Therefore, this information, alerts the
user to potentially dangerous situations and optimizations that the driver can take.

In this way, they can become nodes in V2X communications and send and receive
information and alerts, for example communicating with a traffic light, if a pedestrian or
cyclist takes longer than the green signal to cross the road it can warn adjacent vehicles.

As we mentioned earlier, every message exchanged must be protected to ensure in-
tegrity and authentication. Almost all standard network protocols use digital signa-
tures and asymmetric certificates to achieve this. The problem with doing it is that

11

General Overview

the anonymity of vehicles is not guaranteed because every certificate contains the vehi-
cle’s ID and thus its identity, allowing malicious users to intercept all messages sent by
the same vehicle associated with the same certificate and therefore, in the worst case,
compromise the vehicle’s location.

In this thesis, we focus on privacy properties. To solve this problem, the use of
pseudonymous certificates has been introduced. It is a certificate that allows the node to
authenticate itself anonymously, by using a pseudonym, which is derived from the real ID.
Various schemes have been proposed in the literature to manage them in a distributed
manner. They are issued by entities in a hierarchy, a Public Key Infrastructure (PKI),
and have a limited lifespan, meaning they must be changed regularly.

If this did not happen and the vehicles had a single pseudonym certificate, they would
be traceable by means of their pseudonym. The traceability problem would shift from
traceability of the real identity of the vehicle to traceability of the pseudonym. If the
attacker were able to discover the real identity of the vehicle with the unique pseudonym
(e.g. the vehicle and the attacker are alone in a empty street), the linkability property
would be compromised.

i,
IIIII Vehicle ID
/VQX Root CCI\ ?@ ’é\

s h | r
V2X message . ;
IIIII IIIII , T ' -
PCA RA £

oo
7

Figure 2.1. Possible scheme PKI.

As we said, there are different types of schemes (asymmetric encryption, identity-based
cryptography, group signature schemes, symmetric cryptography schemes), but the one
we will analyze uses asymmetric encryption (e.g. 2.1), which in the literature has been
shown that this type of scheme is more advantageous than the others.

This system architecture is a top contender to assist the creation of a national Public
Key Infrastructure for V2X security and is currently moving from research to proof-of-
concept. For reliable communications among participating vehicles and infrastructure
equipment, which is required for safety and mobility applications based on V2X com-
munications, it issues digital certificates to them. A mechanism is needed to create and

12

2.2 — Formal Verification

distribute these pseudonymous certificates to the various vehicles. The various pseudony-
mous certificates follow a cycle consisting of four phases.

1. Bootstrapping

2. Certificate provisioning
3. Misbehavior reporting
4. Revocation

Boostrapping is the phase in which the vehicle registers with the Certification Author-
ity (CA), where the vehicle presents itself to a CA to obtain an enrollment certificate
containing the vehicle’s ID. This certificate is not used in communications, but rather to
request pseudonymous certificates from the CA, which provides the device with all the
required information to communicate with the SCMS protocol and other devices.

Certificate provisioning is the most complex part, where the pseudonymous certificates
that the vehicle must use, are delivered. The vehicle contacts the CA with the enrollment
certificate obtained in the boostrapping phase (which is used for authentication) and
receives a series of pseudonymous certificates in response. These certificates will be used
to communicate with other nodes in the protocol.

At some point, a node may be detected as malicious. This leads us to the Misbehavior
Reporting phase, which is a detection tool that analyzes messages sent by other nodes to
determine which ones are correct. An algorithm for misbehavior detection is executed on
the device (i.e., locally on the node) to identify nodes with anomalous behavior.

Revocation is the phase in which a malicious node is reported to the competent author-
ity and a revocation is requested. At this point, the authorities can use the pseudonym
to identify the real identity of the vehicle and revoke it.

2.2 Formal Verification

The main problem when developing new communication protocols is that even if re-
searchers try to explore all possible combinations to avoid security failures, they can arise
unexpectedly and attackers are very creative in exploiting all possibilities. Therefore, it
is crucial to detect possible weaknesses and vulnerabilities at the initial stages of design
to secure the system. And to do this comes to the rescue Formal Verification. It uses
a variety of mathematical and logical techniques to assess the accuracy of designs. By
employing such techniques, it is able to check several aspects of the system from the
very beginning and offer security guarantees, including the functional correctness of im-
plementations, programming defects, side-channel analysis and the fulfillment of security
properties.

Fig. 2.2 shows the formal verification process for the protocol. The process generally
consists of four fundamental steps, the first of which is carefully reading the protocol’s
specification. The following stage involves manually creating a model from a specified
specification. The defined model is then translated into the input language of the model

13

General Overview

Standard/Specification

Formal
Verification X Model

C

Figure 2.2. Formal verification procedure steps.

checker. The final step entails reviewing the outcomes of formal verification and, if neces-
sary, formulating recommendations for standard amendments in light of those outcomes.

Confidentiality and Authenticity of communicating parties (Authentication) are two
crucial security qualities that should be handled when it comes to communication proto-
cols. Both of these properties are typically discussed in formal verification methods under
the assumption that the adversary has complete control over the network (Dolev-Yao
Model). The Dolev-Yao model is a formal model used for the verification of security pro-
tocols. The model was proposed by Danny Dolev and Andrew Yao in 1983 and has since
been widely used in the formal verification of security protocols. On a public network, an
attacker has complete control over the messages sent and received and has the ability to
replay, edit, delete, and forward communications (even if they are part of multiple ses-
sions). Additionally, if communications are delivered unencrypted, the attacker can read
them; however, if messages are sent encrypted, it can only read them if it has access to
the decryption key. Additionally, it may execute cryptographic operations and generate
new messages using the information it currently has.

In this model the security properties must hold true for any state that a protocol
may enter during execution based on predetermined transition rules. Additionally, it
is presumptively true that messages can only be decrypted by an adversary who has
access to the key according to cryptographic primitives. When a term (such as a session
key) cannot become part of an adversary’s knowledge in any of the protocol’s reachable
states, secrecy has been achieved as a security property of the communication protocol.

14

2.2 — Formal Verification

The following attributes can be used to describe the authentication security property of
assurance of communication parties identities: aliveness, weak agreement, non-injective
agreement, and (injective) agreement.

Formal verification can be divided into two types:

1. Model checkers
2. Theorem provers

Model checking involves checking the system or program against a formal model to
determine whether it meets its requirements. It is often used for large, complex systems.
Model checkers automatically and thoroughly check a system’s model in its state space
in relation to a specified specification. It involves automatically checking all possible
states of a formal model of the system to ensure that the specification is satisfied. The
design and specification characteristics are generally provided as algebraic constraints or
theorems by the theorem provers, who frequently need human experience to direct a proof
of correctness. Although model checkers are typically easier to use, more focused on a
particular problem domain, and designed to verify properties in this field, the range of
problems that they can handle is necessarily constrained. Some examples of tools are
ProVerif, Tamarin and Scyther. Tamarin additionally provide the possibility of manual
guidance and therefore act as theorem prover.

Theorem proving is used for smaller systems or critical components of larger systems.
Theorem proving is a technique used to prove that a system or program satisfies a given
specification using mathematical logic. Theorem proving involves formalizing the speci-
fication and the system or program in a logical language and then using deduction rules
to prove that the system or program satisfies the specification. The inputs of a theorem
prover are the Theory of the formal system, the Property and Human assistance. It will
tell if the Property is a theorem or not. If the answer is yes it will also give a proof because
it can provide a positive response only if it is able to find a proof. In case it was unable to
find a proof it can say nothing because maybe the proof exists but it was unable to find
it.

2.2.1 Symbolic Modelling

The symbolic model and the computational model are the two basic types of models used in
formal security protocol verification. The computational model is closer to how protocols
are really executed, but the proofs are more challenging to automate. The symbolic model
is a more abstract model, making it simpler to construct automatic verification tools.
This distinction mostly results from the fact that cryptographic primitives are viewed as
perfect blackboxes in the symbolic model and are represented by function symbols in an
algebra of terms that may or may not include equations. The adversary can only compute
using these primitives because messages are terms on them. In contrast, a message is a
bit string in the computational model, and the protocol is formalized as a probabilistic
polynomial-time Turing machine. The protocol’s security is then explained in terms of
a game in which an adversary modelled by an arbitrary probabilistic polynomial-time
Turing machine interacts with the protocol. If there is a negligible chance that any

15

General Overview

adversary will win the game, the protocol under analysis is secure. The symbolic model
abstracts away numerous features in comparison to the computational model. On the one
hand, this suggests that the computational model may detect protocol defects that the
symbolic model could overlook. Most importantly, assessments using symbolic models
omit the possibility of attacks on the protocol that take use of flaws in the particular
cryptosystems employed in the protocol. On the other hand, even if the symbolic model
is much simpler than the computational one, many practically important attacks on a
protocol, such as man-in-the-middle (MITM) assaults, can still be detected using this
type of model.

2.3 Tamarin-Prover

Tamarin-prover is an automated verification tool that was developed for the symbolic
modeling and analysis of security protocols. It is based on multiset rewriting rules and
property specification in a guarded fragmento of first-order logic allowing quantification
over messages and timepoints. It is an open-source software tool that was developed by
David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse and Benedikt Schmidt
at the ETH Zurich.

It can manage equational theories like Diffie-Hellman, bilinear pairings, and user-
specified subterm-convergent theories as well as complex security models for key exchange
protocols. In Tamarin, there are two ways to build a proof: fully automated mode and
interactive mode. The first one uses heuristics along with deduction and equational reason-
ing to direct the proof search. The tool might not be able to end the verification process,
though, because the majority of the setting’s attributes are undecidable. In the event of
termination, the tool returns either a counterexample or a demonstration of correctness.

Tamarin-prover is a tool that can analyze security protocols and automatically de-
tect potential security flaws. It uses a symbolic model-checking approach to analyze the
security properties of a protocol. The symbolic model-checking approach involves repre-
senting the protocol as a set of equations, which are then solved using automated reasoning
techniques. The approach is designed to detect potential security flaws by analyzing the
properties of the equations that represent the protocol.

For example, it can handle complex cryptographic operations, such as hash functions
and digital signatures. It can also model multiple sessions of a protocol and analyze the
security properties of the protocol across all sessions.

One of the main advantages of Tamarin-prover is that it can be supplied with detailed
models of the protocol being analyzed. This means that the model accurately capture
all the details of the protocol, including any non-trivial interactions between participants.
On the other hand failure to do so could result in false positives or false negatives in the
analysis.

A limitation of Tamarin-prover is that it is computationally expensive. The symbolic
model-checking approach used by Tamarin-prover involves solving a large set of equations,
which can be computationally expensive for large protocols. This can limit the size of
protocols that can be effectively analyzed by Tamarin-prover.

16

2.4 — Features

In the following, will be presented the main components the Tool requires to asses the
security properties.

2.4 Features

As previously said, Tamarin include verification and falsification of security properties in
relation to the protocol’s model. In the following will be presented a high-level description
of Tamarin’s features. More precisely the focus here is solely related to the aspects relevant
for our model. See the manual for a thorough explanation of Tamarin.

2.4.1 Input File - Theory

The tool expects a .spthy file as input that contains some elements relevant to model and
verify the protocol in exam. As we said, here are listed only the elements used in this
particular model, following a detailed description of each one:

Functions

Tamarin supports both additional user-defined function symbols in addition to a fixed set
of built-in function symbols. Only pairing and projection function symbols are available in
every Tamarin file. £st and snd are two function symbols that model the projections of
respectively the first and second parameter, while the binary function symbol pair models
the pair of two messages. The following equations adequately describe the properties of
projection:

X
y

The function defined for this particular protocol will be further discussed in more detail
in Chapter 5.

fst(pair(x,y))
snd (pair(x,y))

Equations

Equational theories are used to represent the properties of functions, such as how sym-
metric decryption always works as the opposite of symmetric encryption when both utilize
the same key. The syntax to include equations in the context is as follows:

equations: lhsl = rhsl, ..., lhsn = rhsn

No public constants are allowed, and any variables on the right hand side must also
appear on the left hand side. Both the left and right hand sides can contain variables.
A particular class of user-defined equations, notably convergent equational theories with
the finite variant property, are supported by Tamarin’s symbolic proof search (Comon-
Lundh and Delaune 2005). Because Tamarin does not verify that the submitted equations
fall under this class, entering equations outside of it may result in non-termination or
inaccurate results without any warning.

17

General Overview

Built-in message theories

Tamarin supports a fixed set of Built-ins that refers to the most common functions useful
to model recurrent security features e.g. encryption, hashing, etc.

theory exampleName
begin

builtins: signing, symmetric-encryption, asymmetric-
encryption, diffie-hellman, hashing
end

In the following will be given a short description of some of the built-ins message theories.
To learn more refers to the manual.

symmetric-encryption: This theory models a symmetric encryption scheme defining
the function sybols secn/2 and sdec/2 which belongs to the equation sdec(senc(m,k),k) =
m. Specifically, secn is used to encrypt the message m with the key k, while sdec decrypts
the message with the same key k.

asymmetric-encryption: this theory models asymmetric encryption of messages with a
public key encryption scheme. To do so function symbols are defined, binary for aenc/2,
adec/2 and unary for pk/1. This symbols are related by the equation adec(aenc(m,
pk(sk)), sk) = m. In this case, aenc encrypt the message m with the public key pk(
sk), adec decrypt the message with the related secret key sk and pk return the public
key associated to the secret key.

signing: this theory models a signature scheme. It defines an equation verify(sign(m,sk),m,pk(sk))
= true for binary function sign, ternary function verify, unary function pk and the constant
function true. The function sign, sign the message m with the secret key sk and verify
check the signature correctness by comparing the signature with the message supplied and
the corresponding public key and this must be equal to true.

xor: this theory models the exclusive-or operation. It adds the function symbols XOR/2
and zero/0. XOR satisfies the cancellation equations and is associative and commutative.

X @&y =y &b X
(x®y) @z=x& (y & z)

X P zero = x
X b x = zero
Restrictions

The strength of restrictions allows for the creation of models that would not otherwise
be conceivable. A restriction is essentially a property that must be true for each and
every trace. Tamarin simply assumes the property without proving it. The following is a
description of two of the most practical and widely applicable constraints. According to
the restriction Equality, x and y must be equal whenever an action fact Eq(x,y) appears in
the trace. Similar to this, the inequality limitation states that the two arguments must not
be equal anytime the action fact Neq(x,y) appears in the trace. These sample limitations

18

2.4 — Features

can be found in Chapter 6 of the Tamarin manual. Keep in mind that @i can be read as
"at time point i" and that #represents a temporal variable. Also Qi is short for @ #i.

restriction Equality
" All x y #i. Eq(x,y) @ #i ==> x = y "

restriction Inequality
" All x #i. Neq(x,x) @ #i ==> F "

The restriction syntax consists of the term restriction followed by the restriction’s name,
and a colon. The constraint is expressed as a guarded first-order logical formula enclosed
in double quotes, "... "

Multiset rewriting rules

They are rules that model the core of the theory provided and to specify the parallel
execution of the protocol and the adversary. Multiset rewriting is a formalism that is
commonly used to mimic concurrent systems since it easily supports distinct transitions.
All communications are described as terms in a multiset rewriting system, which specifies
a transition system. The status of the system is made up of a variety of facts. A fact
represents an element in the system, e.g., a public key belonging to an agent while a
sequence of action facts generated by an execution is called a trace. Multiset rewriting
rules define how the system transitions to a new state. In Tamarin, a rewrite rule has a
name and three parts, each of which is a list of facts: the left-hand side of the rule, the
transition label, or what we refer to as a "action fact," and the right-hand side of the rule.

[LHS] —[actionFacts] — [RHS]

A rule consumes the left-hand side facts, whereas the right-hand side facts are produced
by the rule. Some facts (linear facts) vanish when ingested, whereas others (persistent
facts) do not and can be consumed an infinite number of times. Like built-ins functions,
there exist some built-in rule. More specifically: [Fr(~x)] fact which is used to generate
a fresh value (random) and In(m) and Out(m) which are used to represent the network
controlled by the Dolev yao attacker. The In(m) fact model the reception of messages
while the Out (m) model the sending of messages over the untrust network. There exist
also the possibility to model a trusted (private) network, which will be further explained
later.

Raw Sources and Partial Deconstructions

Precomputation produces what are known as the "raw sources," which simply means that
the sources for each fact have already been calculated. However, there are situations when
Tamarin is unable to determine the source of a fact. This can result in so-called partial
deconstruction due to Tamarin’s untyped system and other factors. Let’s think about
a straightforward example to illustrate the idea. The first rule below simply constructs
a fact Simple_Fact(~a) holding the fresh value ~a. The second rule then uses this
information, sending the term in it over the untrusted network. Be aware that the term

19

General Overview

mex in the consumed fact is a fresh value, but the second rule is completely unaware of
this. Assume Tamarin cannot resolve (i.e., determine the origin of) the fact Simple_Fact
(mex). The conveyed word mex in this situation might represent any number of things,
such as private keys, user secrets, session identifiers, and more. Tamarin is unable to rule
out the likelihood that the network attacker has just acquired all the necessary knowledge
in this situation. Typically, the lemmas are not terminated as a result of this.

rule Create Fresh Value
[Fr (~a)]
--[1->
[Simple_Fact (~a)]

rule Send_Value
[Simple_Fact (mex)]
--L 1->
[Out (mex)]

There are two ways to tackle the problem in the aforementioned scenario. The first
one should only be utilized if you are certain that doing so won’t change the model. By
simply adding a tilde ~ to the term mex in the second rule, as shown below, you may
inform the prover that it represents a new value. This might change your model since, if
the term mex wasn’t fresh in some traces, you simply eliminated those traces. This can
lead to missing attacks.

rule Send Value
[Simple_Fact (~mex) 1]
--L 1->
[Out (~mex)]

Another option is to create a sources lemma. A sources lemma has the same appearance
as a regular lemma but has the [sources] annotation. A sources lemma, as contrast to
a standard lemma, is evaluated using the unrefined sources. The objective is to produce
a genuine and verifiable sources lemma that provides Tamarin with sufficient knowledge
to fully deconstruct all unresolved facts, the so called partial deconstructions. In this
example, we want to make it clear to Tamarin that if the second rule is invoked with the
term n, the first rule must have been called previously with the same term. We mark
the rules in the lemma with action facts so that they can be referenced. We mark the
second rule with Problem(mex) because it is the one that partially deconstructs the
sent term. We annotate the first rule with Source (~a) because it is the term’s source.
The lemma should state that whenever a Source (n) precedes a Problem(n), either the
attacker already knew the term n, or a Source(n) preceded it. Tamarin learns in the
first scenario that the term is a fresh value and cannot be arbitrary. In the second case,
the attacker already knows the term and learn nothing when it is sent out. KU() stands
for knowledge of the attacker. The full example is provided below. Keep in mind that the
second approach is fully secure. You cannot unintentionally exclude traces since Tamarin
would discover a counterexample to the sources lemma in such a situation.

20

2.4 — Features

rule Create Fresh Value
[Fr (~a) 1]
--[Source (~a) 1->
[Simple_Fact (~a)]

rule Send_Value
[Simple_Fact (mex) 1]
--[Problem (mex)]1->
[Out (mex)]

lemma typing [sources]
" All n #i.
(Problem (n) @i
((Ex #j. Source (n) @j) | (Ex #j. KU(n) @j & j < i)
)) "

Let bindings

They are used to make the definition of theory more readable and modular. Let bindings
enable the definition of local macros within the boundaries of their related rules. They
are especially helpful if a term appears more than once in a rule or if we need to access
the components of a term.

rule MyRuleName:
let fool = h(bar)

foo2 = <’bars’, fool>
var5 = pk(~x)

in

L ... 1 --L ... 1> 10 ...1

In the context of a rule, these let-binding expressions can be used to specify local term
macros. Each macro, which defines a substitution, should appear on a separate line: the
right-hand side of the = sign may be any arbitrary term, and the left-hand side of the sign
must be a variable. After replacing all variables that appear in the let by their right-hand
sides, the rule will be interpreted. The aforementioned example shows how macros can
make use of the left-hand sides of previously defined macros.

Lemmas

They describe the properties that we want the model satisfies. Lemmas are extremely
similar to restrictions, with the important distinction being that, unlike restrictions, lem-
mas must either be proven or disproven. Exists-trace lemmas and all-traces lemmas are
the two basic categories of lemmas. Existential lemmas include those with exists-trace. If

21

General Overview

and only if there is at least one trace that satisfies the specified property, it is true. On
the other hand, all-traces lemmas are true if and only if the property is true for all traces.
Lemmas are expressed as logical formulas. Below are some examples that were modified
from the Tamarin manual. Keep in mind that the all-traces annotation is typically left
out. The first lemma technically states that there is a trail between an agent A sending a
message and an agent B receiving it, who may or may not be the same agent A. Accord-
ing to the second lemma, B must have actually transmitted that message first whenever
someone asserts to have gotten an authentic message m from B.

lemma executable
exists-trace
" Ex A Bm #i #j. Send (A,m)@i & Recv (B,m) @j "

lemma message_authentication
all-traces
" A1l B m #i. Authentic (B,m) @i
=> (Ex #j. Send (B,m) @j & j<i) "

Oracle

It is frequently more convenient to write a "oracle" than to manually pick each proof goal
in interactive mode. An oracle is a piece of code that executes apart from the Tamarin-
prover. It takes a numbered list of proof goals as input, and produces an ordered list of
numbers indicating which proof goals should be resolved first.

An oracle can directly change the original sequence of facts in any way you choose. An
oracle can be executed by Tamarin using tamarin-prover interactive file_theory
.spty ——heuristic=0 --oraclename=oraclefile.py . Tamarin does not always
terminate, nevertheless, because of the nature of the particular problem.

22

Chapter 3

Security Credential
Management System

The primary design objective is to offer security and privacy to the greatest extent that is
acceptable and practical. Vehicles are issued pseudonym certificates, and the development
and provisioning of such certificates are distributed among several entities in order to
achieve a decent amount of privacy in this environment. One of the biggest issues is to
enable effective revocation of misbehaving or defective vehicles while protecting privacy
from insider assaults given the high number of pseudonym certificates per vehicle.

In the field of Vehicle-to-vehicle (V2V) communications, has been proved that com-
munications between nearby vehicles in the form of continuous broadcast of Basic Safety
Messages (BSMs) has the potential to reduce unimpaired vehicle crashes by 80% through
active safety applications. BSMs are digitally signed and contain the sender’s time, posi-
tion, speed, path history, and other pertinent data. The receiver assesses each message,
confirms the signature, and then determines whether or not the driver needs to see a
warning. The success of safety applications based on BSMs is directly impacted by their
correctness and reliability, which are of utmost importance. Each BSM is digitally signed
by the sending cars to thwart attackers from introducing bogus messages, and the receiving
vehicles confirm the signature before acting on it. Building confidence among participants
and ensuring the system operates properly both require a Public-Key Infrastructure (PKI)
that facilitates and manages digital certificates. The PKI with special characteristics is
implemented via the Security Credential Management System (SCMS) suggested in this
work. This SCMS differs from a conventional PKI in a number of ways. The size (i.e.,
the number of devices it supports) and the harmony of security, privacy, and efficiency
are the two factors that matter most. It will be able to produce 300 billion certificates
for 300 million automobiles annually when operating at full capacity. The SCMS design
also provides efficient methods for requesting certificates and handling revocation and
moreover it is essential for the SCMS to also be able to cover V2I applications as well as
service announcement and provisioning like Internet access. In this paper are introduced
novel concepts:

o distributed provisioning of certificates for privacy protection against insider attacks

23

Security Credential Management System

o butterfly keys for communication-efficient request of an arbitrarily large number of
certificates by a device

« linkage values for efficient revocation of seemingly unrelated pseudonym certificates
of a device

« elector ballots for management of root certificate authority and electors

3.1 SCMS Design

For V2V safety applications, a risk analysis was conducted; however, it was not published.
According to the risk assessment, both insiders and outsiders who assault SCMS’s security
could pose a threat to users’ privacy. Thus, it was determined that the SCMS must prevent
or lessen the following forms of attacks:

o Attacks on end-users’ privacy from SCMS insiders
o Attacks on end-users’ privacy from outside the SCMS
o Authenticated bogus messages leading to false warnings

The first two points on the list are addressed via a process called "Privacy by Design.
"Misbehavior detection" addresses the third point. We make the assumption that the
cryptographic systems in use today are sufficiently secure for the SCMS design. This
presumption would be false if sufficiently powerful quantum computers were introduced,
as they would be able to defeat the Elliptic Curve Digital Signature Algorithm (ECDSA)
for all feasible curve sizes. Nevertheless, this design is flexible and modular, so even if this
were to occur, it would still permit an upgrade to post-quantum cryptography methods.

Talking about "Privacy by Design" security system’s main objective is to safeguard end
users’ privacy, particularly that of individuals driving private vehicles. Since the majority
of privately owned vehicles have a single registered owner, the system is created to make it
challenging to follow that vehicle based on its data transfers. This is because the capacity
to track the vehicle may be used to associate vehicle operation with the registered owner.
There are two ways to do this: 1) Future apps that send unicast or multicast messages (as
opposed to broadcast messages) should utilize encryption and other techniques to prevent
the communication’s parties’ identities from being revealed. 2) Applications that involve
sending broadcast messages from end-user vehicles use the privacy-preserving features of
the SCMS to make it challenging for eavesdroppers in two physically distinct locations
to determine whether BSMs transmitted at the two locations originated from the same
vehicle. Inside attackers and outside attackers are the two categories of attackers that
are considered. BSMs are accessible to outside attackers, but they are unable to obtain
any other data, including certificates that have not yet been broadcast. BSMs and other
data, such as data produced during the certificate issuance process, are accessible to an
inside attacker. We suggest that end-entity devices be issued with a large number of
certificates and that they frequently alter the certificates accompanied by BSMs in order
to maintain privacy against external attackers. The SCMS operations are split among

24

3.2 — SCMS Structure

its components, and those components are required to have organizational separation
between them in order to provide defense from inside attackers. The SCMS is made to
require cooperation from at least two of its parts in order to gather useful data for device
tracking. We define "unlinkability" as the idea that it becomes more difficult to identify
that two broadcasts from the same device actually originated from that device if they
are more distant in time and space. The requirement states that if a vehicle’s broadcast
messages contain data that is specific to the vehicle and may be connected to a location,
the data should change often to make it very difficult for an eavesdropper to track that
vehicle.

Instead, talking about "Misbehavior Detection & Revocation', this is addressed by
periodically distributing Certificate Revocation Lists (CRLs). The CRL is used by devices
to recognize and reject messages from revoked devices. In order to reject any further
requests for certificates from revoked devices, the SCMS also keeps internal blacklists of
those devices. Fach device receives a number of certificates for V2V safety applications,
so standard CRLs would not be suitable in our case because they would grow too large.
This is make efficient by introducing a novel concept of linkage values.

3.2 SCMS Structure

In the following are explained all the components of the SCMS protocol. Figure 3.1 shows
them and their connections. V2V and V2I functionality is provided separately by compo-
nents labelled V /I, whereas general V2X functionality is provided by components marked
"X". The three pairs of RSEs and OBEs are used to highlith different use cases. The first
pair displays the connections necessary for bootstrapping, the second pair demonstrates
the connections necessary for certificate provisioning and misbehavior reporting, and the
third pair demonstrates the connections necessary for retrieving the CRL from the CRL
Store.

25

9c

LI Policy

SCMS Manager

V/I .
Technical

[x]

[x]

[x]

Elector A Elector B Elector C
7l T —
olicy I
Generator Roof CA [
/IN X
All SCMS Intermediate CA
Components
.
e,
. e, ™, ‘
. < N
VI S — %
ECA S e
N7l 2 V/I
‘ LA, LA, MA
o v/l
Certification DCM
Services

CRL from

CRL Store

RSE

OBE

Figure 3.1.

SCMS architecture.

v/l
CRL
Broadcast

v

CRL
Store

CRL

To DCM

woysAg JuotIoSeuR]\ [RIIUOP.I) AILINI0G

3.2 — SCMS Structure

Connections Legend: Components Legend:
—— SCMS Communications Component with separate

V2l and V2V functionality
--------- Credentials Chain of Trust

Component with
------ - Out-of-Band communications V2X functionality

—@— Communications through LOP D Intrinsically central component

Figure 3.2. SCMS Legend.

In the SCMS, there are four different kinds of connections:
e Solid lines represent regular, secure communications, including certificate bundles

o Dashed lines represent the credential chain of trust. The ECA certificate is used to
verify enrollment certificates, the PCA certificate to verify pseudonym, application,
and identity certificates, and the CRL Generator certificate, which is a component
of the MA certificate, to verify certificate revocation lists. This line does not imply
that information is transferred between the components it connects.

o Dash-Dotted lines represent Out-of-Band communications, e.g., the line between the
RSE and the DCM

o The Location Obscurer Proxy (LOP) is used for connections designated with the
LOP symbol. The Location Obscurer Proxy is an anonymizer proxy that removes
all requests’ geographic information.

All online components connect with one another through a secure and dependable
communication channel using protocols like the Transport Layer Security (TLS). If data
is transmitted through an SCMS component that is not intended to read that data, it
is encrypted and authenticated at the application layer. Here a brief description of the
components presents in figure 3.1:

o SCMS Manager: Ensures that the SCMS operates effectively and fairly, establishes
organizational and technological regulations, and establishes standards for evaluating
misconduct and revocation petitions to make sure they are legitimate and consistent
with processes.

o Certification Services: Describes the certification procedure and offers details on the
categories of devices that are approved to accept digital certificates.

o CRL Store: Simple pass-through component that stores and delivers CRLs.

o CRL Broadcast: A pass-through component that broadcasts the most recent CRL
via RSEs or satellite radio systems.

27

Security Credential Management System

Device: An end-entity (EE) device that sends or receives messages

Device Configuration Manager (DCM): Provides all necessary configuration options
and certificates during bootstrapping, and certifies to the ECA that a device is
qualified to receive enrollment certificates.

Electors: represent the center of trust of the SCMS. They certify ballots that sup-
port or disapprove an RCA or another elector. To build trust between RCAs and
voters, the SCMS Manager distributes those ballots to all SCMS components, in-
cluding devices. Each elector possesses a self-signed certificate, and the initial group
of electors will be implicitly trusted by all system entities. Therefore, after they
have implemented the basic set, all entities must safeguard electors against illegal
modification.

Enrollment CA (ECA): A device can use an enrollment certificate as a passport to
authenticate against the RA when obtaining certificates, for example. Enrollment
certificates may be issued by various ECAs for various manufacturers, locations, or
device categories.

Intermediate CA (ICA): In order to protect the root CA from traffic and attacks, the
intermediate CA (ICA) acts as a secondary certificate authority. The Intermediate
CA certificate is issued by the Root CA.

Linkage Authority (LA): creates pre-linkage values, which are then combined with
linkage values to create certificates that can be revoked effectively. The SCMS has
two LAs, designated as LAl and LA2. The splitting makes it impossible for a LA
operator to link certificates associated with a specific device.

Location Obscurer Proxy (LOP): by modifying the source addresses, hides the loca-
tion of the requesting device and prevents network addresses from being associated
with specific locations.

Misbehavior Authority (MA): Processes misbehavior reports to find probable misbe-
havior or device malfunctions, and if necessary, revokes or adds the reported devices
to the CRL. Additionally, it starts the process of putting the matching enrollment
certificates to the RA’s internal blacklist and connecting a certificate identifier to
them. The MA consists of two subcomponents: CRL Generator (CRLG), which
generates, digitally signs, and makes the CRL available to the public; and Global
Misbehavior Detection, which identifies which devices are misbehaving.

Policy Generator (PG): The Global Policy File (GPF), which contains information on
global configuration, and the Global Certificate Chain File (GCCF), which contains
all trust chains for the SCMS, are both maintained and updated by the Policy
Generator (PG), which also signs updates.

Short-term pseudonym, identification, and application certificates are issued to de-
vices by the pseudonym CA (PCA). Individual PCAs can, for instance, be restricted
to a specific geographic area, manufacturer, or device type.

28

3.3 — Certificate Provisioning Model and Certificate Types

o Pseudonym CA (PCA): provides devices with temporary pseudonym, identification,
and application certifications. Individual PCAs can, for instance, be restricted to a
specific geographic area, manufacturer, or device type.

o Registration Authority (RA): evaluates and verifies device requests. It then generates
unique requests for certificates to the PCA based on those. The RA puts in place
safeguards to make sure that devices with certificates that have been revoked are
not given new ones and that they are not given more than one set of certificates at
a time. Additionally, the RA relays policy decisions made by the SCMS Manager as
well as authenticated information regarding changes to devices’ SCMS configuration,
such as a component altering its network address or certificate. Additionally, the RA
shuffles the requests/reports while sending pseudonym certificate signing requests to
the PCA or passing information to the MA to prevent the PCA from interpreting
the sequence of requests as a clue as to which certificates may be in the same batch.

» Root Certificate Authority (RCA): In the SCMS, an RCA is the root certificate
authority at the top of a certificate chain, serving as a trust anchor in the sense of a
conventional PKI. It issues certificates for SCMS subsystems like PG and MA as well
as ICAs. An RCA has a self-signed certificate, and trust in an RCA is established by
a ballot with a majority vote of the electors. RCA certificates must be kept in a trust
store, which is a secure location for storing digital certificates. Any certificate can
be verified by an entity by checking every certificate in the chain leading from the
one being used to the trusted RCA. The cornerstone of any PKI is a notion known
as chain-validation of certificates. The system may be compromised if the RCA and
its private key are not secure. An RCA is normally off-line when not in use because
of how important it is.

3.3 Certificate Provisioning Model and Certificate Types

The focus in this section is to explain the provisioning of pseudonym certificates to OBEs
because the provisioning of other types of certificates represent subsets of this case. A
provisioning model for pseudonym certificates has been created that strikes a balance
between multiple conflicting requirements:

e Privacy vs. Size vs. Connectivity: For privacy concerns, certificates should only be
used for brief periods of time. Due to the devices’ limited memory capacity and high
price in a moving context, they cannot keep a lot of certificates. On the other hand,
the majority of cars are unable to regularly connect to the SCMS and download fresh
certificates as needed.

o CRL Size and Retrospective Unlinkability: Devices that behave improperly or mal-
function should be able to have their certificates revoked by the SCMS, but doing
so would make the CRL quite big. It has been created a way to efficiently revoke a
large number of certificates without disclosing the certificates that the device used
before to misbehaving.

29

Security Credential Management System

o Certificate Waste vs. Sybil Attack: For privacy considerations, certificates must be
frequently changed. One choice is to issue numerous certificates, each of which is
valid for a brief window of time following the other. There would be a lot of unused
certificates as a result of this. Another choice is to issue certificates that are all valid
at once and for longer periods of time. This would make it possible to compromise
one device and pretend to be numerous devices (the so-called Sybil attack).

To address all this requirements the best trade-off is given adopting the CAR 2 CAR
Communication Consortium (C2C-CC) model where multiple certificates are valid at once,
the certificate validity period is days rather than minutes, and the certificate usage pattern
can vary from device to device. For instance, a device might use one certificate for 5
minutes after startup, switch to another, use that for a longer time period before changing
certificates again, or even use that certificate until the end of the trip. In particular here
are proposed the following parameter values:

o Certificate validity time period: 1 week
o Number of certificates valid simultaneously (batch size): minimum 20

o Overall covered time-span: 1 — 3 years

Due to a substantially higher certificate use than the Safety Pilot model, this model
offers a respectable level of anonymity against tracking while maintaining modest storage
requirements. The certificates of a device that doesn’t use all of its available certificates in
a particular week (for example, a device that only uses 13 of the available 20 certificates)
cannot be linked. Additionally, if a device reuses a certificate, it can only be linked
after one week. Moreover, the methodology enables a simple procedure for topping-off
pseudonym certificates. Devices don’t have to specifically ask for new certificates; instead,
the SCMS will continuously issue new certificates throughout the device’s lifetime, up until
the point at which the device stops accepting certificates for a significant amount of time.
The certificates will be made available by the RA in one-week batches (for example, as a
zip file), which devices will download over a TCP/IP connection. The batches will be put
into files and given names based on device information and time. The device will have
complete control over what and how much they download, when they download it, and
how often. The RA will advise users when to expect new certificate batches (for example,
once per month).

3.3.1 Certificate Types

Various application types may have various requirements for certificate management
within the overall Connected Vehicle system. Therefore, establishing how many vari-
ous certificate management process flows need to be supported should be a part of a
complete SCMS specification. Five end-entity certificate types were found to satisfy all
use cases:

o OBE enrollment certificates: enrollment certificates are given out as part of the
bootstrap process and are used subsequently to request message signing and/or en-
cryption certificates.

30

3.4 — Butterfly Key Expansion

e RSE enrollment certificates: For RSEs, these documents serve as a substitute for
OBE enrollment certificates.

o OBE pseudonym certificates: Pseudonym certificates offer pseudonymity, unlinkabil-
ity, and quick and effective certificate revocation. In order to defend the RA against
an insider attack, security mechanisms including shuffling, linkage values, butterfly
key expansion, and certificate encryption via PCA to the OBE are used. OBEs
utilize this kind of certificate to certify broadcasts of basic safety messages (BSMs).
Additionally, when unlinkability is necessary for permission, this kind of certificate
is employed. To improve a receiver’s capacity to verify each BSM they get while
using BSM broadcast, pseudonym certificates may be added to each signed BSM, or
they may be attached to a select number signed BSMs only.

o OBE identification certificates: are employed for situations where a device has to
identify itself. Pseudonymity and unlinkability are not features offered by this type
of certificate. The SCMS applies privacy-preserving methods to the OBE during
the production of OBE pseudonym certificates, such as shuffling and PCA encryp-
tion. When creating OBE identifying certificates, these procedures are not always
employed. However, to enable continuous certificate generation, butterfly key ex-
pansion is utilized. Identification certificates are used for authorization purposes.

o RSE application certificates: RSEs use these certificates to sign service announce-
ment and broadcast messages as well as, to give an OBE access to an encryption key
so that they can communicate encrypted data. It should be noted that this is the
only type of EE certificate that contains an encryption key.

3.4 Butterfly Key Expansion

This section explain the novel cryptographic construction introduced to manage certificate
issuing. Here we emphasise once again the fact that this mechanism has been designed and
deeply analyzed in [1] . In a typical process a device would typically create a private/public
key pair before requesting certificates from a PKI. The device generates a certificate
signing request (CSR) that contains the public key and sends it over a secure channel to
the PKI. The certificate will subsequently be signed by the PKI's CA and given to the
requester. Such a strategy has drawbacks for OBE pseudonym certificates since thousands
of public keys would need to be produced in the device and submitted to the SCMS. This
drawback is solved by the butterfly keys, that enables an OBE to request any number of
certificates, each with a unique signing key and encryption key. This is accomplished by
sending a single request that only has two expansion functions, one encryption public key
seed, and one public key seed for signing. To prevent the RA from connecting the content
of certificates with a specific OBE, the PCA encrypts them to the OBE. Without butterfly
keys, each certificate would require the OBE to transmit a separate signing key and
encryption key. In addition to reducing the amount of work required by the requester to
generate the keys, butterfly keys enable requests to be made even when connectivity is not
good. Below is a description of the butterfly expansion for signing keys for elliptic curve

31

Security Credential Management System

cryptography, but it may be readily modified for any discrete-logarithm-type hardness
assumption. Except for a little difference in how the inputs to AES are produced, the
butterfly expansion for the encryption key is the same as that for the signing key. In the
following, we use lowercase letters to represent integers and uppercase letters to represent
curve points.

The elliptic curve discrete logarithm problem states that It is difficult to determine the
value of a given P and A = aP but not a. The following is how butterfly keys make use
of this. There is a predetermined base point of some order [named G. The integer a and
the point A = aG make up the caterpillar keypair. A value and an expansion function,
fr(t) , which is a pseudo-random permutation in the integers mod [, are supplied to RA
by the certificate requester. Keep in mind that the RA just iterates the counter ¢. Here
is defined the expansion function for signing keys fi(¢), used to generate points on the
NIST curve NISTp256:

fe(t) = fi"(1) modl, where (3.1)

1. fint(,) is the big-endian integer representation of

DM,z + 1) || DMy(z + 2) || DMy(z + 3), (3.2)

2. DMy(m) is the AES encryption of m using key k in the Davies-Meyer mode. To
generate the final output, here the output of the function is XORed with the input,
i.e. DMy(m) = AESi(m)®m,

3. x+ 1,2+ 2,2 + 3 are obtained by incrementing = by 1 each time,
4. 128-bit input = for AES is derived from time period ¢ = (i,7) as : (032i|[]]0%?).

With the exception of x, which is obtained as: (132|]i]j]||03?), the expansion function

for encryption keys is also defined as above. j is a counter within i and represents the
number of certificates per i (for example, 20 certificates each week). i is a global value
(for example, representing a week). The SCMS Manager sets both values.
RA can now generate up to 2'28 cocoon public keys as B, = A + fi(1) * G, where the
corresponding private keys will be b, = a + f(¢). The public keys are now known to the
RA but the private keys are only known to the OBE. The certificate requests provided to
the PCA by the RA contain the cocoon public keys. The problem that arise is that by
using these expanded public keys unaltered by the PCA, the RA could recognize those
public keys in the certificates and track the OBE because knows which public keys come
from a single request.

To prevent this, the PCA generates a random ¢, for each cocoon public key B, in order
to obtain C, = ¢,G. The butterfly public key which is included in the certificate is B, + C,.

The PCA gives the RA the certificate and the value ¢ for the private key reconstruction
to be returned to the OBE. The certificate and the reconstruction value ¢, are encrypted
to the OBE to prevent the RA from determining which certificate matches a certain public
key in a request. The OBE will modify its private keys, b, with b, = b,+c, . Each certificate
must be encrypted with a distinct key in order to prevent the PCA from knowing which

32

3.5 — SCMS - Protocol Steps

certificates belong to which OBE and thos keys are also generatd by using the butterfly
key approach. The OBE gives a caterpillar encryption public key H = hG |, then the RA
expands it to cocoon public encryption keys J, = H + f.(¢)G, and finally the PCA uses
these keys to encrypt the response.Figure 3.3 depicts the butterfly key expansion concept
for signing keys.

Device SCMS
(N\ 4
e ™ e
Private seed, expasion Public seed, expasion Hide from RA:
function f (1) function fi.(1) Add random offset
Private Key by ~—4——— > B; » Bi+c xG
<
o
Private Key b, 4———— > B,) > By +c G
B
£
Private Key by ~4¢——— B3 ‘% > By +c3xG
Q
O
«— F——— E
e
[T
=}
I
v
Private Key b, ~4+——— > B, > B, +c,xG
Patch private keys: b, :== b, + ¢,
T RA PCA

Inform OBE on random confribution ¢, to ¢,. This data is sent through the RA, but encrypted to the device

Figure 3.3. Butterfly key expansion steps.

3.5 SCMS - Protocol Steps

This section presents the four phases of the protocol, specifically:
1. Bootstrapping
2. Certificate Provisioning
3. Misbehavior reporting

4. Revocation

3.5.1 Bootstrapping

In the SCMS, the life cycle of a device begins with bootstrapping. It provides the de-
vice with all the data needed for communication with the SCMS and other devices. It

33

Security Credential Management System

is necessary that the device bootstraps with accurate data and that the CAs only is-
sue certificates to certified devices. A device, the DCM, the ECA, and the certification
services component are all parts of the bootstrapping process. It is assumed that the
DCM will communicate with the device being booted using an out-of-band channel in a
secure environment and that it has established communication channels with other SCMS
components, such as the ECA or the policy generator.

The two steps of bootstrapping are initialization and enrollment. The process of ini-
tialization is how the device acquires the certificates it requires in order to be able to
trust received messages, while the enrollment is the process by which the device get the
enrollment certificate it needs to sign messages sent to the SCMS. In the initialzation
process information recevied are the the certificates of all electors, all root CAs and of
intermediate CAs, PCAs, and moreover the certificates of mishehavior authority, policy
generato and CRL generator. In the enrollment process the device acquires the data nec-
essary to communicate with the SCMS and take part in the V2X communications system.
This includes the enrollment certificate, the ECA certificate, the RA certificate, and any
additional data required to connect to the RA. In addition the certification services pro-
vide the DCM with information about device models which are eligible for enrollment.
The enrollment process is shown in figure 3.4.

3.5.2 Certificate Provisioning

The OBE pseudonym certificate provisioning procedure must safeguard end-user privacy
while requiring the least amount of computing work possible for devices with limited
resources. Since the provisioning of certificates for other certificate types is a simple
subset of this one, we will concentrate only on pseudonym certificate provisioning in the
sections that follow. This procedure is intended to safeguard privacy from both internal
and external attackers.

The SCMS design makes sure that no single component has access to or generates the
whole set of information needed to track a vehicle. The PCA encrypts the pseudonym
certificates before sending them to the device, so even if the RA knows the enrollment
certificate of a device that requests them and sends them to it, it is unable to read the
content of those certificates. Each pseudonym certificate is independently created by
the PCA, but it is unaware of the recipient of those certificates or which certificates the
RA sends to the same device. The PCA embeds the masked hash-chain values that the
LAs produce as "linkage values" into each certificate. The MA reveals their identities by
publishing a secret linkage seed pair on the CRL, which effectively connects and revokes
all upcoming pseudonym certificates of a device, . However, only one LA is not able to
trace devices via linking certificates or to revoke a device; for the revocation procedure,
both LAs, the PCA, and the RA must work together.

This process ensure the following privacy mechanisms in the SCMS:

e Obscuring Physical Location — To keep an end-entity device hidden from the
RA and the MA, the LOP hides its precise position.

« Hiding Certificates from RA — Nobody will be able to connect the public key
seeds in requests to the resultant certificates thanks to the butterfly key expansion

34

3.5 — SCMS - Protocol Steps

3. Forward request 4. Issue enrollment certificate

1
- :
! |
: 2. Check device | v/ !
v | e 1 type certification !
Certification |4 ECA :
Services : |
- :
| ; ;
I 1. Send regest ; . 5.Reply :
: Public key ! ! Enroliment certificate 1
| Device type | i ECA adn RA cerlificates :
| ! ! |
: v/ [
| Device :
[}
! :
[}
| Secure :
: Environment

Figure 3.4. Enrollment process.

procedure. The RA cannot associate certificates with a device if the certificates are
encrypted to the device.

« Hiding Receiver and Certificate Linkage from PCA — The RA separates
incoming requests into requests for distinct certificates after expanding them using
Butterfly keys. The requests are then sent to the PCA after being shuffled. This
prevents the PCA from discovering whether any two certificate requests are from the
same device.

By having a brief overview of the process, here follows a detailed explanation of the
certificate provisioning process which is illustrated in figure 3.5 :

35

9¢

Store: pre-linkage seeds
and pre-linkage values.

| Shuffle

Step 4. Create at PCA:

Linkage value v(i,j)

DB

>

Signed pseudonym cerfificate

Store: pre-linkage values, iinkage
PCA value, (i,j). cerfificate, and hash
of RA-10-PCA request.

Step 3. Request Singular Cettificates:

Butterfly key pair B,,J,

Pre-linkage values plv; (i, /), piva (i.j)
Timing information i

Hash of RA-to-PCA certificate request

Step 5. Provide Singular Certificates:

x-th singular cerfificate, x € {1,...,q}
Private key reconstruction valuve ¢,
Encrypted fo the device and signed by PCA

piva (+.0)

Collate »| DB

Store: device’s enroliment

. /'

RA certificate and hash of il RA-to-

Step 2. Handle Request at RA:

Validate
Butterfly key expansion
Collect for shuffling

PCA certificate requests.

Step é. Bundle af the RA:

Collate certificates for a device
Make bundle available to device (download)

LOP

Step 1. Create Request:

Include two caterpillar keys: 4,7, f,.(-). f,(*)
sign and encypt to RA

Device

Figure 3.5. Certificate provisioning process.

woysAg JuotIoSeuR]\ [RIIUOP.I) AILINI0G

3.5 — SCMS - Protocol Steps

Step 1: In order to build a request, the device generates butterfly key seeds, signs
it with its enrollment certificate, attaches it to the request, and encrypts it before
sending it to the RA. The device then uses LOP to communicate the request to the
RA. The LOP serves as a request pass-through device. The request appears to the
RA as coming from the LOP because it masks the device’s identifiers (such the IP
address) by substituting its own with them.

Step 2: The RA decrypts the request, authenticates the devices by validating the
enrollment certificate, and checks to make sure the devices are not revoked. It also
confirms that this is the device’s only request. If every check is successful, the RA
acknowledges the device and expands the butterfly key. If not, the request is rejected
by the RA. Along with the pre-linkage value sets that it has gotten from the LAs,
the RA gathers a number of these requests from various devices. When there are
enough of these requests, the RA rearranges the individual expanded requests.

Step 3: Each request for a specific pseudonym certificate from the RA to the PCA
includes a to-besigned certificate, a response encryption public key, one encrypted
pre-linkage value from each of the LAs (plvy(i,j), plua(i,j)) , and the hash of the
RA to PCA pseudonym certificate request.

Step 4: The linkage value lv(i, j) = plvi (i, j) @ plua(i, j) is calculated by the PCA
after decrypting the pre-linkage values. The to-be-signed certificate is then given the
linkage value, and it is implicitly signed to create a pseudonym certificate. Then, a
value for private key reconstruction is produced. The response encryption public key
is then used to encrypt the pseudonym certificate and the private key reconstruction
value.

Step 5: The PCA signs the encrypted packet that was produced in step 4 and sends
it to the RA. This prevents a man-in-the-middle attack in which a RA employee
changes the valid response encryption key with another key for which an insider at
the RA is aware of the private key, enabling the RA to access the contents of the
pseudonym certificate, including the linkage value.

Step 6: The RA gathers the encrypted packages for a week and bundles them into
so-called batches for a certain device. The device can download the batches from

the RA.

3.5.3 Misbehavior reporting

The process of identifying misbehaving devices and determining whether suspicious ac-
tivities are actually caused by misbehavior is known as misbehavior investigation. It is
noted that this part is reported only for completeness since it was not possible to model
it in Tamarin-prover.

It is a process that is started by the Misbehavior Detection algorithm running in the

MA dependent on inputs from one LA and the PCA. With this division, checks and
balances are added to the system. To ensure the highest level of privacy protection,
it is recommended a process that restricts the number of requests PCA and LA accept

37

Security Credential Management System

as well as the quantity of data returned to MA. Last but not least, is is advised that
the SCMS Manager frequently examines these log files and that PCA and LA maintain
records of each request. It is shown a thorough, step-by-step explanation of this method
in the paragraphs that follow. It should be noted that Steps 1 and 2—which address
Global Misbehavior Detection and Misbehavior Reporting, respectively—are included for
completeness.

Step 1. The MA receives misbehavior reports, including a reported pseudonym
certificate with linkage value (v = plvy @ plvs.

Step 2: To decide which reported pseudonym certificates may be of interest, or for
which pseudonym certificates it needs to retrieve linkage information, the MA runs
global misbehavior detection algorithms.

Step 3: The MA asks the PCA to translate the encrypted pre-linkage values (plvy ,
plvy) from the PCA’s database to the linkage values (1v) of the identified pseudonym
certificates. The PCA sends MA the pre-linkage values encrypted.

Step 4: The MA asks LA; or LAy to determine whether a group of encrypted plvy
(or plvy, respectively) point to the same device. The LA won’t react unless there
are more encrypted plv pointing at the same device than a predetermined threshold
(for example, five).

3.5.4 Revocation

38

6¢

Step 1:
Receive misbehavior

reports

l

Step 3, Request MA — PCA:

Step 2:

Run MBD algorithms

PCA
Linkage value Iv (i, j)
Step 3b, Response, PCA — MA:
Hash of RA-to-PCA request h
RA hostname
-
Step 4a, Request, MA — RA: .
Hash Step 4b, Action:
Stop 4c. Rosporse. RA — MA Add enroliment certificate
- - .
MA | Identifiers Ici, , ICi, { 1o blacklist RA

|

Step é:
Add Is,(i),ls,(i) fo CRL
CRL states la_id,. la_id,

Step 5a, Response, LA, — MA:

LA, LA; hostname

Step 5a, Request, MA - LA :
Linkage Chain Identifiers Ici;, Ici,

A, . s, (i) DB

Revocation Information Is, (i), la_id,, Is5(i), la_id,

Is;(@) | oB

LA,

Figure 3.6. Pseudonym certificate revocation process.

Ici; | Iciy

sdayg [000301d - SINOS — G°€

Security Credential Management System

If the MA detect during the Misbehavior Investigation that the device was actu-
ally misbehaving, it revokes and blacklists the device. The Revocation and Blacklisting
method, which identifies the linkage seeds and the enrollment certificate corresponding to
a pseudonym certificate, is then thoroughly explained. This procedure is shown in figure
3.6, with the first two steps provided by the Misbehavior Investigation.

o Step 3: The MA asks the PCA to map the hash value of the RA-to-PCA pseudonym
certificate request to the linkage value lv of the identified pseudonym certificate. This

value as well as the hostname of the relevant RA are returned to the MA by the
PCA.

o Step 4: The RA-to-PCA pseudonym certificate request’s hash value is sent to the
RA by the MA. The RA can add the hash value to its blacklist after mapping it
to the associated enrollment certificate. The enrollment certificate is kept secret
from the MA by the RA. The MA receives the following data from the RA, which it
utilizes to gather the data required for revocation:

— The LAs’ hostnames used to create the pseudonym certificates linkage value,

— A collection of LClIs for every LA. The linkage chain and the underlying linkage
seed can both be looked up by the LA via an LCI. If a device possesses certifi-
cates from many separate linkage chains, which we consider an exception, the
RA only returns one linkage chain identifiers.

« Step 5: The MA asks the LA; (or LAy) to map the linkage seed 1sq(i) (or 1s1(i))
to the currently valid time period. Both LAs give the MA their linkage seed back.
Additionally, every LA gives the MA its linkage authority ID (la_id;). It should be
noted that only the forward linkage seeds (i.e., Is1(j) for j >=1i) can be derived given
a linkage seed Is1(i) and the matching la_id;, maintaining the backward secrecy of
the revoked device.

o Step 6: The CRL is updated by MA with the linkage seeds ls;(i) and lso(i), as
well as the associated pair of LA IDs la_idy, la_ids. The current time period ¢ is
identified globally by the CRL. The CRL may combine entries with the same LA
ID pair to maximize efficiency and reduce over-the-air data usage. The CRL is then
published and signed by the MA’s CRLG.

40

Chapter 4

Objective of the thesis

The Security Credential Management System (SCMS) is a protocol developed by Crash
Avoidance Metrics Partners LLC (CAMP) to provide secure communication and creden-
tial management for connected vehicles. As vehicles become increasingly connected and
autonomous, ensuring the security and privacy of communication between vehicles and
infrastructure becomes crucial. SCMS aims to address these concerns by providing a ro-
bust and trustworthy framework for managing security credentials and facilitating secure
communication in vehicular networks. The main focus of this thesis work is on formal
verification of the protocol described above. Obviously, in order to do this, a preliminary
phase of in-depth study of the protocol was necessary in order to decide what to model
and what to simplify so as to maintain the highest degree of reliability.

Formal verification of a protocol serves to ensure that the protocol is correct, secure
and respects certain specified properties. Also, allows the behaviour of the protocol to
be analysed rigorously, identifying potential vulnerabilities, design errors and potential
security breaches. The formal verification will be carried out with Tamarin-Prover, an
automated tool for the formal analysis of security protocols. It employs the symbolic
model approach, which allows the exploration of all possible protocol executions. The
formal verification process using Tamarin-Prover involves modeling the SCMS protocol as
a set of rules and specifying the desired security properties to be analyzed. One of the
strengths of Tamarin-Prover lies in its ability to model and reason about an adversary’s
capabilities using the Dolev-Yao model.

The main objective that want to be stressed, beyond everything that has been intro-
duced, is the verification of the privacy-related security properties stated. What differen-
tiates this protocol from others in the literature is that it aims to guarantee unlinkability
and anonymity. With formal verification, we want to check whether this is indeed the
case.

The phases in which the work can be split are:

e Modelling

e Rule Design in tamarin

41

Objective of the thesis

o Sanity checks

o Security Properties

Modelling: Study the protocol and all its various steps. Decide which components
to omit or transform so as to make them compatible with Tamarin-Prover rules.

Rule Desing in Tamarin-Prover: once the models with the various assump-
tions and simplifications were obtained, the design phase begun in which the various steps
were translated into Tamarin rules.

Sanity checks: sanity checks are written to verify that the translation into Tamarin
rules is correct and the protocol succeeds in exchanging messages correctly and in reaching
the end of all the various steps.

Security Properties: the most important part are the verification of security
properties, which is the main purpose of formal verification, i.e., that the protocol guar-
antees them and prevents possible attacks due to modeling errors are not possible. Specif-
ically, authenticity, anonymity and unlinkability will be analyzed.

42

Chapter 5

SCMS - Design Model in
Tamarin

In the following chapter will be presented how the protocol has been modeled to be adapted
and analyzed by Tarmarin-prover. Specifically, the various choices and assumptions made,
will be explained in order to ensure the highest possible fidelity to the original protocol.

As deeply described in Chapter 3, the protocol is composed by four main phases:

Bootstrapping — initial phase where the node obtain the information to communicate
inside the protocol.

Certificate provisioning — in this phase the node, after already been initialized in the
previous phase, obtain an enrollment certificate and later a pseudonym certificate.

Misbehavior reporting — this part will not be modeled since in the original protocol
it consists of running software that monitors the messages exchangeg and alerts in
case of misbehavior.

Revocation — after the node has been detected as misbehaving all the SCMS actor
will cooperate to revoke the certificate issued to the reported node.

5.1 Preliminary steps and Assumptions

Starting from the model in Fig. 3.1 some assumptions were necessary to best model the
protocol and be able to test it in Tamarin. In particular:

Electors: electors are used to endorse or revoke a Root Certificate Authority (RCA)
by signing ballots. It is assumed that the RCA is trusted.

o Intermediate CA: the main purpose is to shield the Root CA from elevated traffic

and attacks, so it has been decided to merge it inside the Root CA and have a single
entity.

43

SCMS - Design Model in Tamarin

o Enrollment CA and DCM: ECA provide the enrollment certificate for the device to
authenticate itself with the RA while the DCM communicate only with the ECA
by means of protected channel. In tamarin this is translated by using protected
channels and this phase, in a real scenario, involve the device phisically going to
the CA to obtain the certificate. To avoid this complexity that is irrelevant to the
verification, it has been decided to delegate these function to the Root CA.

o Location Obscurer Proxy: prevents the device from being traceable through source
addresses on the network

The model obtained is the one if Fig. 5.1

v/l V/l
RooftCA MA
v/
PCA
Wl
LA,
v/
RA
v |
LA,

Figure 5.1. Simplified model.

5.2 Tamarin theory setup

Before explaining the four phases of the protocol, here will be introduced the features
necessary for proper modeling of the protocol, detailed in Section 2.4.

44

5.2 — Tamarin theory setup

Builtins

1 builtins: signing, asymmetric-encryption, hashing

Functions

User-defined functions have been declared to model the Butterfly Key Expansion (section
3.4)

1 functions: epk/1l, esign/2, everify/3, eplus/3, etrue/O0,
eenc/3, edec/3, XO0R/2

o epk: in the BKE the vehicle requesting the pseudonym certificate, submit some
parameters, in our case represented by lowercase characters. These values are needed
to craft the vehicle’s private key. On the other hand the entity receiving the request
will multiply these values with a value G, representing a point in a curve, to obtain
the public key term associated to the terms. The function epk serves to obtain the
terms that make up the public key of the vehicle.

o esign: is the function devoted to perform the signing of messages from the device
with the pseudonym certificate obtained.

« everify: is the twin function to the traditional verify, used in this case to verify
the authenticity of the signature when a message is signed with the pseudonym
certificate.

» eplus: this function is used to "sum" the terms that make up the public and private
key of the pseudonym certificate.

o etrue: is the twin term but in the case of verifying operations related to the butterfly
key expansion.

o edec: it decrypt the messages encrypted with the pseudonym certificate’s public
key

o XOR: it is a simple XOR function replacing the built-in one. This is done to avoid
adding complexity at the beginning by uploading theories not useful in our case.
Equations
Used to model properties of the functions defined

1 functions: epk/1l, esign/2, everify/3, eplus/3, etrue/O0,
eenc/3, edec/3, X0OR/2

equations: everify(esign(m, eplus(a, fpk, c)), m, eplus(epk(a), epk(fpk), epk(c))) = true,
edec(eenc(m, epk(a), epk(b)), a, b) = m

45

1

4

7

10

11

12

SCMS - Design Model in Tamarin

Restriction

OnlyOnceRestriction force the rule that is evoking it to be executed once. By adding
OnlyOnce() as an action fact for the rule, and adding this restriction will make the rule
to execute only once. The result is restrict the set of traces of that particular rule to only
one and it is particularly useful when dealing with the entities creation because in our
scenario we must have a single entity of that particular type.

Equality is used when do not want to employ pattern-matching directly but still want
to assure that the decryption of an encrypted value is the original value. This indicates
that both of its inputs have the same value for each instance of the Eq operation on the
trace. A straightforward example can be one related verification of a signature, where in
the first member we put the equation relating to the signature seen above, and this must
return true, and in the second member we put the value we wish to compare, in this case
true. If both values are equal then the equality succeeds and Tamarin restrict the set of
traces to only those in which this property holds.

DeviceCanGetOnlyOneEnrollmentCertificate is declared to make sure a device
can obtain only one enrollment certificate. This restriction force the set of traces to only
those where a device can get only one enrollment certificate both to avoid unnecessary
complexity and also because once an enrolment certificate has been obtained, it cannot
have any more.

CertificateRevocation is declared only on the revocation part and the purpose is
to avoid to start the revocation for a device already revoked. Tamarin restrict the set of
traces where the rule that stated CheckCertificatelsNotRevoked, in a precedent state does
not exist a rule that invoked CertificateRevoked on the same certificate in a preceding
instant of time.

restriction OnlyOnceRestriction:
"All name #i #j. OnlyOnce(name)@#i & OnlyOnce (name) Q#j
==> #i = #j"

restriction Equality:
"All m n #i. Eq(m,n)@i ==> m = n"

restriction DeviceCAnGetOnlyOneEnrollmentCertificate:
"All id #i #j. FirRequestFromThisId(id)@#i &
FirRequestFromThisId (id)Q#j ==> #i = #j"

restriction CertificateRevocation:
"All certpk #i. CheckCertificateIsNotRevoked (certpk)@i

not (Ex #j. CertificateRevoked(certpk)@j & j<i)"

46

5.2 — Tamarin theory setup

5.2.1 Support rules

Here will be presented the rules that will support all the protocol, in the specific the
private channels and the entities definition.

Keys creation

Each entity, in order to communicate within the protocol, will need a key pair, public and
private. These are generated through this rule.

1 rule Register_pk:

2 [Fr(~ltk)]

s ——[1->

['Ltk($A, ~1tk), !'Pk($A, pk(~1tk)), Out(pk(~1ltk))]

IS

Secure Channel Rules

This particular type of channles are not under control of the Dolev-Yao adversay. The
attacker cannot read or modify messages exchanged over this channel. Furthermore, there
is authentication of the parts. ’!Sec’ is a persistent fact, meaning the attacker can reply
messages. This channels are used when the communication takes place out-of-band or
true a secure environment.

1 rule ChanOut_S:

> [Out_S(C $A, $B, x)]

s ——[ChanOut_S($A, $B, x)]1->
+ ['Sec($A, $B, x) 1]

¢ rule ChanIn_S:

7 ['Sec($A, $B, x)]

s ——[ChanIn_S($A, $B, x) 1->
o [In_SC $A, $B, x)]

Entity Init

the following rules will be used to create the various entities needed to set up the protocol
and be able to communicate with each other. The structure will be the same for each
entity. In particular, in the premise will be retrieved the long-term key, generated by
the Register pk rule, in the action fact is declared OnlyOnce, to be sure the entity
is generated only once as previously explained and in conclusion will be generated the
public and private key facts.

1 rule RootCA init:
> ['Ltk ($RootCA, ~1tkRootCA)
s]

47

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

SCMS - Design Model in Tamarin

--[OnlyOnce(’RootCA’), RootCA_Initialised($RootCA)

[

St_RootCA_1($RootCA,
'RootCA_PK($RootCA,
'RootCA_SK($RootCA,

rule PCA_init:

[
]

--[OnlyOnce(’PCA’),

[

]

ILtk ($PCA, ~1tkPCA),
'RootCA PK ($RootCA,

~1tkRootCA) ,
pk (~1tkRootCA)),
~1tkRootCA)

pkRootCA) //out of band

PCA_Initialised($PCA)]1->

St_PCA_1($PCA, ~1tkPCA, pkRootCA),
PCA_PK($PCA, pk(~1tkPCA))

rule MA_init:

[

]

--[OnlyOnce(’MA’),

[

'Ltk ($MA, ~1tkMA),
'RootCA_PK($RootCA,

St MA 1($MA, ~1tkMA,

pkRootCA)

MA Initialised($MA) 1->

pkRootCA),

IMA_PK ($MA, pk(~1tkMA))

rule RA_init:

[

]

--[OnlyOnce(’RA’),

[

'Ltk ($RA, ~1tkRA),
'RootCA_PK ($RootCA,

St RA_1($RA, ~1tkRA,

pkRootCA)

RA Initialised($RA)]1->

pkRootCA),

'RA_PK($RA, pk(~1tkRA))

rule LAl init:

[

ILtk ($LA1, ~1tkLA1),
'RootCA_PK ($RootCA,

pkRootCA)

48

1->

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

1

2

5.3 — Bootstrapping

]
--[OnlyOnce(’LA1’), LAl Initialised($LA1)]->
[
St LAl 1($LA1, ~1tkLA1, pkRootCA),
LAl PK($LA1, pk(~1tkLA1))
]
rule LA2_init:
[
Ltk ($LA2, ~1tkLA2),
'RootCA_PK($RootCA, pkRootCA)
]
--[OnlyOnce(’LA2’), LA2_Initialised($LA2)]1->
[
St_LA2 1($LA2, ~1tkLA2, pkRootCA),
'LA2 PK($LA2, pk(~1tkLA2))
]

5.3 Bootstrapping

The first rule Device init retrive the long-term key and generate a fresh id. In the
conclusion will generate the first state and communicate the request trough a secure

channel Out_S to the RA.

rule Device_init:

[Fr(~id),
Ltk ($Device, ~1ltkDevice)

]

--[Device_initialized($Device, ~id, ~1ltkDevice),

AskForEnrollmentCertificate (~id, pk(~1ltkDevice))

1->

[St Device_1($Device, ~id, ~1ltkDevice),
Out_S($Device, $RootCA, <pk(~1ltkDevice), ~id>)

]

RootCA_ bootstrap_ device represents the RA which receive the request from the De-
vice through the private channel, retrive all public keys from the entities necessary to
create the certificate, create the certificate and sign it with its private Itk and output it
in the private channel.

rule RootCA_bootstrap_device:
let certificate = <pkDevice, sign(pkDevice, ~1tkRootCA
) >

49

1

SCMS - Design Model in Tamarin

in
[In_S($Device, $RootCA, <pkDevice, ~id>),
RootCA_SK($RootCA, ~1tkRootCA),
IPCA_PK($PCA, pkPCA), //out of band
IMA_PK($MA, pkMA), //out of band
'RA_PK($RA, pkRA) //out of band
]
--[
FirRequestFromThisId (~id),
EnrollmentCertificateReleased (pkDevice, certificate)
1->
[Out_S($RootCA, $Device, <pk(~1ltkRootCA), pkPCA, pkMA,
PkRA, certificate>)

5]

Device_ bootstrap is the rule where the device retrieve the certificate sent by the RA,

verify that has been signed by it and output the new state that will be needed in the
subsequent phase.

rule Device_bootstrap:

let certificate = <pkdev, signature>
in
[In_S($RootCA, $Device, <pkRootCA, pkPCA, pkMA, pkRA,
certificate>) ,
St_Device_1($Device, ~id, ~1ltkDevice)
]
--[
Eq(pkdev, pk(~1ltkDevice)),
Eq(verify(signature, pkdev, pkRootCA), true),
GotEnrollmentCertificate (~id, pk(~1ltkDevice),
certificate)
1->
['St _Device_2($Device, ~id, ~1ltkDevice, pkRootCA, pkPCA

, PkMA, pkRA, certificate)]

5.4 Certificate Provisioning

This is the most complex scenario. The rules will map the scheme depicted in Fig. 5.2.

The rule CP__DeviceToRA __stepl represent the first step needed to receive a pseudonym
certificate. The device generate a request id and all the parameters for the butterfly key

50

1

2

3

4

5.4 — Certificate Provisioning

Device

Create request
Sign and encrypt fo RA

L RA

PCA

Decrypf request

Verify enrollment cert

Verify device not revoked

Verify sign on the request

Continue butterfly key exp

Craft request to PCA

Hash request

Send {req, hash}pkPCA to PCA

Store pre-linakge values and hash of Device

Decrypt request

Compute LV=xor(Iv1,Iv2)
Complete butterfly key exp
Create pseudocert=(BUtPK, LV)
Sign pseudocert

Send {pseudocert,sign,c}EncButPK
Store LV hash request

Decrypt message
Verify sign on message
Verify sign on pseudocert

Figure 5.2.

Certificate provisioning scheme.

expansion. Then include all these parameters in the request, sign it with its Itk and en-
crypt it with the public key of the RA. Then output the encrypted request on the public
channel and create the new state St_ Device_ 3.

rule CP_DeviceToRA_stepl:
let

A = epk(~a)
HH = epk (~hh)
request = < A, HH,

signed_request =

mex = <request,

enc_request =
in

ISt _Device_2($Device,
pkPCA, pkMA, pkRA,

Fr(~a),

Fr (~hh),

Fr(~fk),

Fr(~fe),

Fr(~reqid)

]

~fk,

sign(request,
signed_request,
aenc (mex,

~fe >
~1ltkDevice)
certificate>

--[OUT_CP DeviceToRA_stepl (mex),

AskForPseudonymCertificate (~id,

Stepl(~id, A, HH),

pkRA)
~id, ~1tkDevice, pkRootCA,
certificate),
~reqid, A, HH),

51

21

22

23

24

25

26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

SCMS - Design Model in Tamarin

0UT23 (enc_request, pkRootCA)
1->
[
Out (enc_request),
St_Device_3($Device, ~id, ~1ltkDevice, pkRootCA,
pkPCA, pkMA, pkRA, certificate, ~reqid, ~a, ~hh,
~fk, ~fe)

Rule CP_LA1_preLinkageValue and CP_LA2 preLinkageValue generate the pre-

linkage values needed first by the RA, which will forward them to the PCA.

rule CP_LAl1 prelinkageValue:
let
signplvl = sign(~plvl, ~1tkLA1)
encsignplvl = aenc(<~plvl, signplvl>, pkPCA)

'Ltk ($LA1, ~1tkLA1),

'PCA_PK ($PCA, pkPCA),

Fr(~plvl)
]
--[LA1lPrelinageValueSent (encsignplvl)]->
[Out(encsignplvl)]

rule CP_LA2 prelinkageValue:
let
signplv2 = sign(~plv2, ~1tkLA2)
encsignplv2 = aenc(<~plv2, signplv2>, pkPCA)

ILtk ($LA2, ~1tkLA2),

PCA_PK($PCA, pkPCA),

Fr (~plv2)
]
--[LA2PrelinageValueSent (encsignplv2)]->
[Out(encsignplv2)]

In the rule CP__RAtoPCA_step2 3 the RA will retrieve the encrypted request sent
by the device and the two encrypted pre-linkage values sent by LA1 and LA2.The RA
verify that the certificate is valid, that the Device sending the request is not revoked and

52

5.4 — Certificate Provisioning

the signature on the request. Then will decrypt the request and will continue bke. After
having derived all the parameters, it will craft the request for the PCA, and will include
the hash for the request and encrypt all with the public key of the PCA. Eventually send
the request for the PCA, and store the pre-linkage values associated to the device and the
hash of the request. This will be needed to revoke the certificate.

1 rule CP_RAtoPCA_step2_3:

2 let

3 dec_request = adec(enc_request, ~1tkRA)
4 request = fst(dec_request)

5 signed request = fst(snd(dec_request))

20

21

22

23

24

30

31

32

33

]

Apub = fst(request)

Hpub = fst(snd(request))

fk = fst(snd(snd(request)))
fe = snd(snd(snd(request)))

certificate = snd(snd(dec_request))
pkDevice = fst(certificate)
rootSignature = snd(certificate)

Bpub = epk(fk)

Jpub = epk(fe)

new_req = < Apub, Bpub, Hpub, Jpub, encsignplvl,
encsignplv2 >

h new_req = h(new_req)

enc_h new_req = aenc(<new_req, h_new_req>, pkPCA)

In(enc_request),
In(encsignplvl),
In(encsignplv2),
'Ltk ($RA, ~1tkRA),
PCA_PK($PCA, pkPCA)

--[OUT_CP_RAtoPCA_step2_3(<new_req, h_new_req>),

IN_CP_RAtoPCA_step2_3(dec_request),

Eq(verify(rootSignature, pkDevice, pk(~1tkRA)),
true),

CheckCertificateIsNotRevoked (pkDevice),

Eq(verify(signed_request, request, pkDevice),
true) ,

RAPseudonymCertificateRequest (Apub, Bpub, Hpub,
Jpub, h_new_req),

53

34

36

37

38

SCMS - Design Model in Tamarin

i

]

Step2 (Apub, Hpub, Bpub, Jpub, h_new_req),
Step23_In(enc_request, pk(~1tkRA))
1->

Out (enc_h _new_req),

RA_DEVICE_PRELINKAGE (pkDevice, encsignplvil,
encsignplv2),

RA_DEVICE_HASH(pkDevice, h_new_req)

In the rule CP__PCA_ step4 first decrypt the request received by the RA, decrypt the
pre-linkage values and verify the signature on them. Then compute the linkage value by
xoring them and complete the butterfly key expansion. After that generate a fresh value
¢, that will be needed by the device, create the pseudonym certificate, sign it and encrypt
with the encryption butterfly key. Lastly send the encrypted message and its signature
and store the hash of the request and the linkage value.

rule CP_PCA_step4:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

let
dec_h new_req = adec(enc_h new_req, ~1tkPCA)
new_req = fst(dec_h _new_req)
h new_req = snd(dec_h _new_req)
Apub = fst(new_req)
Bpub = fst(snd(new_req))

Hpub = fst(snd(snd(new_req)))

Jpub = fst(snd(snd(snd(new_req))))

encsignplvl = fst(snd(snd(snd(snd(new_req)))))
encsignplv2 = snd(snd(snd(snd(snd(new_req)))))
signplvl = snd(adec(encsignplvl , ~1tkPCA))

signplv2 = snd(adec(encsignplv2 , ~1tkPCA))
lvl = fst(adec(encsignplvl , ~1tkPCA))
1lv2 = fst(adec(encsignplv2 , ~1tkPCA))

lv = XOR(1lv1l,1lv2)

Cpub = epk(~c)

PKsign = eplus(Apub, Bpub, Cpub)
pseudocert = < PKsign, 1lv >

signature = sign(pseudocert, ~1tkPCA)
outmex = < pseudocert, signature, ~c >
encoutmex = eenc (outmex, Hpub, Jpub)
signencoutmex = sign(encoutmex, ~1tkPCA)

54

5.4 — Certificate Provisioning

'Ltk ($PCA, ~1tkPCA),
ILA1_PK($LA1, pkLA1),
'LA2 _PK($LA2, pkLA2),
In(enc_h new_req),
Fr(~c)
]
--[
IN _CP_PCA _step4(dec_h new_req),
OUT_CP_PCA_step4 (outmex),
PseudonymCertificateReleased (h_new_req, PKsign, -~c,
pseudocert),
Eq(verify(signplvl, 1lvl, pkLA1l), true),
Eq(verify(signplv2, 1lv2, pkLA2), true),
Step4 (Cpub, PKsign)
1->
[
Out (< encoutmex, signencoutmex >),
PCA_LV_HASH(1lv, h_new_req),
PCA_LV_PLVS(1lv, encsignplvl, encsignplv2)
]

In the last rule the device receive the message and its signature from the PCA. Decrypt
the message, retrieve tha pseudonym certificate and the reconstruction value ¢ and update
its private key. At the same time verify that the signature is correct and this concludes
the certificate provisioning.

rule CP_Device_receive_stepb:

let
outmex = edec(encoutmex, ~hh, ~fe)
pseudocert = fst(outmex)
signaturePCA = fst(snd(outmex))
¢ = snd(snd(outmex))

SK = eplus(~a, ~fk, c)
PKpseudo = fst(pseudocert)

St_Device_3($Device, ~id, ~1ltkDevice, pkRootCA,
pkPCA, pkMA, pkRA, certificate, ~reqid, ~a, ~hh,
~fk, ~fe),

In(< encoutmex, signencoutmex >),

'PCA_PK($PCA, pkPCA)

]

--[IN_CP_Device_receive_step5(outmex),

95

21

22

23

25

SCMS - Design Model in Tamarin

Eq(verify(signencoutmex, encoutmex, pkPCA), true),
Eq(verify(signaturePCA, pseudocert, pkPCA), true)

GotPseudonymCertificate (~id, ~reqid, PKpseudo, c),

Step5(~reqid, ~id, pseudocert),
Recv(encoutmex, signencoutmex)

1->
[

'St _Device_4($Device, ~id, ~1ltkDevice, pkRootCA,
pkPCA, pkMA, pkRA, certificate, SK, pseudocert,
signaturePCA)

]

5.5 Revocation

The revocation part of pseudonymous certificates will be explained in the following. Before
proceeding, it is needed to make a few remarks. In the original protocol this part comes
right after misbehavior detection, i.e., a node that begins to behave maliciously is detected.
This is done through a detection algorithm that is run on OBEs. Since in Tamarin this
part could not be modeled, it was shaped assuming that a detection message of a malicious
node was received and then the revocation procedure starts.

Moreover it was necessary to split the two parts, certificate provisioning and revocation,
for reasons due to the performance inadequacy of the machines in our possession because
the protocol is very onerous.

Moreover, the initial part that includes setup, private channels, and entity initializa-
tions will not be re-explained as the same as the part of the certificate provisioning found
in section 5.2.

The same modelling approach, already adopted for certificate provisioning will be
followed, so the various steps will be described following the diagram in Figure 5.3.

56

L9

Device

Create revocation request
Encrypt to MA

Decrypt request

Verify pseudocert is issued

Verify device not revoked

Verify device has valid cerfificate
(ROOTCA)

PCA

Craft message to PCA for revocation

Sign and encrypt for PCA

Figure 5.3.

Decrypt request

Verify request from MA

Verify Iv stored equal IvRevoke
Craft message hash to RA
Sign and encrypt fo RA

Decrypt request

Verify hash is equal hash stored
Obtain cerfificate to be revoked
Revoke certificate

Revocation scheme.

UOIIBI0ADY — GG

SCMS - Design Model in Tamarin

The rule INIT _REVOCATION has the task of preparing the initial state of the re-
vocation part, as if we were starting over from the end of certificate provisioning. That
means, the device has successfully obtained its pseudonymous certificate and is ready to
be able to communicate within the protocol. It generate fresh parameters for the butter-
fly key expansion, the pre-linkage and linkage values, craft the certificate and output the
state of where the device is ready. Lastly, save the hash of the request that will be needed
for the revocation.

1 rule INIT_REVOCATION:

2 let

3 Apub = epk(~a)

4 Hpub = epk(~hh)

5 Bpub = epk(~fk)

6 Jpub = epk(~fe)

7 Cpub = epk(~c)

5 signplvl = sign(~plvl, ~1tkLA1)

9 encsignplvl = aenc(<~plvl, signplvl>, pkPCA)

10 signplv2 = sign(~plv2, ~1tkLA2)

11 encsignplv2 = aenc(<~plv2, signplv2>, pkPCA)

12 h new_req = h(<Apub, Bpub, Hpub, Jpub, encsignplvl
, encsignplv2>)

13 lv = XOR(~plvl, ~plv2)

14 PKsign = eplus (Apub, Bpub, Cpub)

15 pseudocert = <PKsign, 1lv>

16 signaturePCA = sign(pseudocert, ~1tkPCA)

17 SK = eplus(~a, ~fk, ~c)

18 pkDevice = pk(~1ltkDevice)

19 certificate = <pkDevice, sign(pkDevice, ~1tkRootCA
) >

20 in

21 [

22 Fr(~a),

23 Fr (~hh),

24 Fr (~fk) P

25 Fr(~fe),

26 Fr(~c),

a7 Fr(~plvl),

28 Fr(~plv2),

20 Fr(~1tkDevice),

30 Ltk ($PCA, ~1tkPCA),

31 ILtk ($LA1, ~1tkLA1),

32 ILtk ($LA2, ~1tkLA2),

33 !PCA_PK ($PCA N kaCA) 5

58

34

35

36

37

38

39

40

41

42

43

5.5 — Revocation

IRootCA_SK($RootCA, ~1tkRootCA)
]
--[
INIT _DONE(’REVOCATION)
1->
[
ISt _Device_1(~1ltkDevice, pkDevice, certificate,
pseudocert, signaturePCA, SK),
PCA_LV_HASH(1lv, h_new_req),
RA_DEVICE _HASH(pkDevice, h_new_req)
]

Device Send_message simulate a vehicle sending a message inside the protocol. Gen-
erate a random mex and include in the out message the pseudonym certificate. Then,
output everything in the public channel.

rule Device_Send_message:

let
signmex = esign(pseudocert, SK)
outmex = <mex, signmex, pseudocert>
in

['St _Device_1(~1ltkDevice, pkDevice, certificate,
pseudocert, signaturePCA, SK),

Fr (mex)
]
--[Step1 (),
0UT _Device_Send_message (outmex)
1->
[Out (outmex)
]

Device_ask_revocation simulates the receipt of a malicious message and then once
detected creates a request for MA. The steps include receiving the message, create the
request including the misbehaving pseudonym certificate, sign the request with its own
Itk and encrypt the whole message with the MA’s public key.

rule Device_ask_revocation:
let
mex = fst(outmex)
signmex = fst(snd(outmex))
pseudocertToRevoke = snd(snd(outmex))
PKsign = fst(pseudocertToRevoke)
signPseudocertToRevoke = sign(pseudocertToRevoke, -~
ltkDevice)

59

10

11

12

13

14

15

16

SCMS - Design Model in Tamarin

mexToMA = <pseudocertToRevoke,
signPseudocertToRevoke, pseudocert, signaturePCA,
certificate>
encmexToMA = aenc(mexToMA, pkMA)
in
[
'St _Device_1(~1ltkDevice, pkDevice, certificate,
pseudocert, signaturePCA, SK),
In(outmex),
MA_PK($MA, pkMA),
PCA_PK($PCA, pkPCA)

]
!
Step2 (),
Eq(verify(signaturePCA, pseudocert, pkPCA), true),
Eq(everify(signmex, pseudocertToRevoke, PKsign),
true)
1->

[Out (encmexToMA)]

In this rule the MA decrypt the request, verify the signature on the pseudonym certifi-
cate that sended the revocation request, verify the signature on the pseudocert to revoke
and that the certificate has not been already revoked. Then craft the request to be sended
to the PCA by signing with its own Itk and encrypting the message with the public key
of the PCA.

rule MA _request_to_PCA_mapLV:
let

mexToMA = adec(encmexFromMA, ~1tkMA)
pseudocertToRevoke = fst(mexToMA)
signPseudocertToRevoke = fst(snd(mexToMA))
pseudocert = fst(snd(snd(mexToMA)))
signaturePCA = fst(snd(snd(snd(mexToMA))))
certificate = snd(snd(snd(snd(mexToMA))))
pkDevice = fst(certificate)
signCertificate = snd(certificate)

messageToPCA = <pseudocertToRevoke>
signMessageToPCA = sign(messageToPCA, ~1tkMA)
outmexToPCA = <messageToPCA, signMessageToPCA>
encOutmexToPCA = aenc(outmexToPCA, pkPCA)

in

60

5.5 — Revocation

]

]-
[

In(encmexFromMA) ,

'Ltk ($MA, ~1tkMA),
IPCA_PK($PCA, pkPCA),
RootCA_PK ($RootCA, pkRootCA)

[

Step3 (),

Eq(verify(signaturePCA, pseudocert, pkPCA), true),

Eq(verify(signCertificate, pkDevice, pkRootCA),
true),

Eq(verify(signPseudocertToRevoke,
pseudocertToRevoke, pkDevice), true),

CheckCertificateIsNotRevoked (pkDevice)

>

Out (encOutmexToPCA)]

The PCA decrypt the request and check the signature. Then retrieve the linkage value
associated with the pseudonym certificate to be revoked and the hash of the request when
it has been issued. After that create the message intended for the RA including the hash

of the

rule

reqeust and sign and encrypt it.

PCA _receive_request:

// pseudocert <PK, lvreceived>

le

in

[

]

t

outmexToPCA = adec(encOutmexToPCA, ~1tkPCA)
messageToPCA = fst(outmexToPCA)
signMessageToPCA = snd(outmexToPCA)
pseudocertToRevoke = messageToPCA
lvToRevoke = snd(pseudocertToRevoke)
signHashReqToRA = sign(h_new_req, ~1tkPCA)
outMexToRA = <h_new_req, signHashReqToRA>
encSignHashReqToRA = aenc(outMexToRA, pkRA)

In(encOutmexToPCA),

Ltk ($PCA, ~1tkPCA),
IMA_PK ($MA, pkMA),
'RA_PK($RA, pkRA),
PCA_LV_HASH(lv, h_new_req)

[

Step4 (),
61

SCMS - Design Model in Tamarin

Eq(verify(signMessageToPCA, messageToPCA, pkMA),

true),
Eq(lvToRevoke, 1v)
1->
[
Out (encSignHashReqToRA)
]

In the last step the RA has everything needed to proceed with the revocation. Decrypt
the request from the PCA, verify the hash received with the one stored during the issuing
phase. When everyting matches proceed to revoke the certificate and store it.

rule RA:
let
outMexToRA = adec(encSignHashReqToRA, ~1tkRA)
h new_req = fst(outMexToRA)
signHashReqToRA = snd(outMexToRA)

10

11

12

13

14

15

16

17

18

19

20

21

In(encSignHashReqToRA),

'Ltk ($RA, ~1tkRA),

'PCA_PK($PCA, pkPCA),
RA_DEVICE_HASH(pkDevice, houtreq)

[

Step5 (),

Eq(verify(signHashReqToRA, h_new_req, pkPCA),

)
Eq(houtreq, h_new_req),
Recv (pkDevice),
CertificateRevoked (pkDevice)

1->

L]

62

true

Chapter 6

Results

This chapter will show the results obtained from the analysis of the modelled protocol
using the Tamarin-Prover tool. To do this, the lemmas have been written down, which in
the tool correspond to the security properties we want the protocol to satisfy. As a first
step, the sanity checks will be highlighted, which are necessary for the correct modelling
and termination of the protocol under consideration.

6.1 Sanity checks

The necessity of suspecting the system or specification of having an error, even in the
event that model checking is successful, has come to light more recently. Such suspects
are mostly justified by the possibility of modeling or specification flaws. A simple test to
determine quickly if a claim or the outcome of a computation can conceivably be accurate
is known as a "sanity check". Sanity checks are intended to find such problems through
additional automatic reasoning. The process of determining whether the content created is
logical is straightforward. A sanity check’s goal is to exclude some categories of obviously
incorrect results, not to capture every possible mistake

6.1.1 Executability

The executability sanity check, is a preliminary check aimed at verifying whether a pro-
tocol, once executed, can successfully reach its intended termination point.

The main objective of the executability sanity check is to ascertain that the protocol
is designed in such a way that it is executable without incurring blocking conditions or
wrong paths and that it is able to terminate correctly after fulfilling its objectives.

Sanity checks: Certificate Provisioning

Lemma sanity_check_Success is characterised by ’exists-trace’ which means that it
is true if and only if there is at least one trace satisfying the property. Where by trace
we mean a sequence of action facts. The trace of a protocol, records action facts from the

63

10

11

12

14

Results

rules that are applied during their execution. So, basically it says if exists at least a trace
where Recv has been reached then the execution reach the end of the protocol run.

On the other hand lemma exec generate anche action fact called Step* for each rule in
the protocol. This serves to 'force’ the execution of the protocol by following the various
steps in order, starting with the enrolment request and ending with the delivery of the
pseudonym certificate.

lemma sanity_check_Success:
exists-trace
"Ex #1 encoutmex signencoutmex.
Recv(encoutmex, signencoutmex) @i
lemma exec:
exists-trace
"Ex id A HH B C J hash PKsign reqid pseudocert #il #i2 #
i4 #ib
Stepl(id, A, HH)@il &
Step2(A, HH, B, J, hash)@i2 &
Step4 (C, PKsign)@id &
Step5(reqid, id, pseudocert)@ib &
il < i2 & i2 < i4 & i4 < ib

Sanity checks: Revocation

Here the considerations regarding the two lemmas are equivalent to the previous case of
Certificate Provisioning.

lemma sanity_check_Success:
exists-trace
"Ex #1i pkDevice
Recv (pkDevice) @i

lemma sanityCheckTerm:
exists-trace
"Ex #il #1i2 #i3 #i4 #i5
Stepl () @il &
Step2()Qi2 &
Step3() Qi3 &
Step4 () Qi4d &
Stepb()@i5 &
il < 12 & 12 < i3 & i3 < i4 & i4 < 1ib

64

1

6.1 — Sanity checks

6.1.2 Authentication

In our context, the authentication sanity check is an essential preliminary check to ensure
that the entities involved in the communication process are able to authenticate each
other securely and reliably. The authentication of messages exchanged between entities is
crucial to prevent spoofing, replay and forgery attacks that could compromise the integrity
and security of the communication. For each stage of the protocol, the authentication of
the exchanged messages was verified, so specifically when the device sends the request to
the RA, the forwarding of the request from the RA to the PCA, and finally the sending
of the pseudonymous certificate to the requesting device.

The lemma states that if the Authentic_DevRA event occurs, then the Send_DevRA
event necessarily occurred first. And similarly if the Authentic_PCADev event occurs,
then there was necessarily the Send PCADev event first. This is true in the case where
no attacker has obtained an enrolment certitificate and the result is shown in fig. 6.1

lemma message_authentication:
n
(A1l pkDev mex #j. Authentic_DevRA(pkDev, mex) Q@j ==>
Ex #i. Send_DevRA (pkDev, mex) Qi &i<j)

& (A1l PCA out #c. Authentic_ PCADev (PCA, out) @c ==>
Ex #d. Send PCADev (PCA, out) @d &d<c)

If the attacker, however, has obtained an enrolment certificate, he can request the
pseudonym certificate from the RA. Fig. 6.2 show that the adversary can craft the request
and send it to the RA in fig. 6.3.

rule Adversary_enrollment_certificate:
let cert = <pkAttacker, sign(pkAttacker, ~1tkRootCA)>
in
[In(< attackerid, pkAttacker >),
'RootCA SK($RootCA, ~1tkRootCA)

]
-
FirRequestFromThisId (attackerid),
EnrollmentCertificateReleasedForAttacker (pkAttacker,
cert)
1->
L
Out (cert)
]

65

Results

\enma message authentication:
all-traces
*U¥ pkDev nex #j
(Authentic DevRA{ pkoev, mex) @ #j) =

<#HI A
(¥ PeA out #c
(Authentic_PCADev(PCA, out) @ #c) =

<#nt

induc tion
case empty trace
by contradiction
t

case non_enpty_trace
sinplify
solve((3 pkoev mex #].
(Authentic DevRA(pkDev, mex) @ #1)
"
¥ #i. (Send_DevRA(pkbev, mex) @ #i) =
St < 40 |
(3 PCA o
uumsnm “beaveri pea, out) @ #c)

solvel [\asr(:]ﬂ |
@
(Send_eviaC pkix.1)
pkix.1), x, sign(x, x.1),
PK(X.1), sign(pkix.1), ~LtkRa)>
)@ #)

(~(last(#1))) & (41 < #j)))
case case 1
selve(ILEk(SRA, ~LtkRA) »a])
case Register pl
solve(IPCA PK($PCA, pkPCA) me #])
casa FCA_init
solva(IPk($Dev, pkDev | b: #])
case Register pk
solvel IKU(aencl<x, sign(x, x.1),

pkix.1),
sign(pk(x.1), ~1tkRa)>,
pk(-1tkRA))
)@ dvk)
case CP DeviceToRA stepl
by contradiction /+ fron formulas *

next

(3 #1. (Send_DevRAl pkDev, mex) @ #1) A (#1

(3 #9, (Send_PCADev(PCA, out) @ #d) A (#d

T (Send_PCADev(PCA, out) @ #d) = ~(#d

Proof scripts Visualization display
@ #i2)) » T o
(Goténrollmentcertificatel id, pk, cert) @ Applicable Proof Methods: Goals sorted according to the 'smart’ heuristic (loop breakers delayed)

#130) 8

(4 < #i2)) 1. induction

(#i2 < #i3)"
by sorry a. autoprove (. for all solutions)

b

. autoprove (8. for all solutions) with proof-depth bound 5
s. autoprove (5. for all solutions) for all lemmas

Constraint system
last: none
formulas:
({3 pkDev mex #].
(Authentic_DevRA(pkDev. mex) @ #])
A
v #i. (send DevRA(pkDev, mex) @ #i) = ~(#i < #il) v
(3Pcao
lAulhenuc PCADevI PCA, out) @ #c)
Y e (send_PCADev(PCA, out) @ #d) = ~(#d < #c)))
equations:
subst:
conj
lemmas:
¥ id #1 4
(FirRequestFromThisid(id) @ #i) A
(FirRequestFromThisid{ id) @ #])
=#
¥mn#i (EQ(m n)@#)=m=n

W name #1 #],
(OnlyOnce(name) @ #i) A {OnlyOnce(name) @ #j) = #i = 4]

allowed cases: refined
solved formulas
unsolved goals:
solved goals:

2 sub-case(s)

Case empty_trace

Case non_empty_trace

o

Figure 6.1.

IKU(x) @ #vk10 IKU(attackerid.1) @ #vk13

IKU(attackerid) @ #vk12

Authentication sanity check success.

Fri ~ItkRa)
#ur - Register_pk[]

ILtk(SRA, ~[tkRA) | 1Pk(SRA, pk(~ItkRA)) | Out(pk(~ItkRA))

: 1K $RA, ~ItkRA]
#ur3 - RootCA initfOnlyOnce('RootCA'), \
RoGtCA Initialised($RA)]

In{ <attackerid 1, x>)

5t ROOICA_LISRA ~HKRA] | 'ROOECA_PKI SRA. pKI~IRAI) | IR0GICA SKI SRA. ~IEKRA) . L]
: In{ <attackerid, pk{~ItkRA)>) | IRoOtCA_SK{ $RA, ~[tkRA)
IR0GHCA_SK{ $RA, ~ItkRA | d .]

#ur7 - Adversary_enroliment_certificate|FirRequestfromThisid(attackerid 1),
. EnrollfentCertificateReleasedForattacker x, <x. Signix, ~ItkRAI> 1]

#vrs Mvcrsarv_enmumcnt certificate[FirReque stFromT hisid(amckcnd). '
EnrollmentCertificateReleasedForAttacker(pk(~ItkRA). . #rl:

Qutl =x, sign{x, ~ItkRA)=>)

<P ItARA). 1GNP FKRAL, ~ RA)>
n

Figure 6.2.

out{ <pki~ItkRaA), signipk(~ItkRA), ~ItkRA)> |

#vk: c_aenclIKU(aenci=<x. signix. ~ItkRA). pki~ItkRA). signipk(~tkRA), ~ItkRAI=-.
ki~ ItkRA]) 1KU(encsignplvl | @

Authentication - attacker with enrollment certificate - 1.

Regarding the messages exchanged between the RA and PCA since no signature is
present in this step, the authentication property does not hold, as shown in fig. 6.4.

The adversy can craft the message 6.5 and send it to the PCA 6.3, invalidating the
authentication property.

lemma message_authentication_RAtoPCA

66

o

6.1 — Sanity checks

Fri ~lItk)
#vrd - Register_pk[]
1Ltk(§Dev. Itk) [1PK($Dev. pki~Itk))

Out(pki~ltk))

In{ aenc(<x, sign(x, ~ItkRA),
pki~ItkRA), sign(pk(~ItkRA), ~ItkRA)>,
pk(~[tkRA))

Inencsignphvl) | In(encsignphv2)

1Ltk SRA. ~ItkRA)

PCA_PK($PCA.
: k(- ItkPCAl ;"‘“Dev'pk‘”'tk’

#] - CP_RAtOPCA step2_3[OUT CP RAtOPCA step2 3(<
<fatlx]

fstlsnd(x)).
fst(snd(x)).

encsignplv2>,
hi<fst(x).

encsignplvl. encsignplv2>)
>

)

IN_CP_RAGPCA step2_3(<x. sign(x. ~ItkRA). pk(~ItkRA). signlpki~tRA). ~ItkRA)>).
Eq trite. true J-

CheckCertificatelsNotRevoked (pk(~[tkRA)).

Eql true. true).
& fstlsnd(x)).

fstix).
epk(snd(snd(snd ().
<fstix) fstisndix)).

encsignplvl. encsignplv2)

).
Step2(fst{x). fstisndix}). epkifst(snd(snd(x))). epkisnd(snd(snd(x)]]).
hl<fstlx)). fstisndix)). .

encsignphv2>)
Step23_In{ aenc(<x. sign(x. ~ItkRA), pki~ItkRAL. sign(pk(~ItkRA), ~ItkRA)>,
ph{~ Itk
ph{~ItkRA)

Huthentic DevRA(pk(~ItkRAl.
=pk{~ItkRA). x. sign{x, ~ItkRA), pki{~ItkRA), sign{pki~ItkRA), ~ItkRA)>

Send_RAPCA(SRA.

<$RA.
hi<fst(x). fst{snd(x]).

encsignpiv2>)
>

]

out{zenc(<
<fstlx),

.enk(fst(sndﬁ]r]\dtx)))), fstisnd ().

>
hi=fsti:

Ix}, epkifst{snd(snd(x))), fstisndix}),
). encsignplv2

>)

>,
pki~[tkPCA))

]

PRA_DEVICE_PRELINKAGE(pk(~[tkRA),
encsignplvl,

RA_DEVICE HASH(pki~ItkRa),
h{=fst(x).
epkifstisndisnd(x))),
fstisnd(x)),
epk(snd(snd(snd).
encsignplvl,
encsignplv2>)

Figure 6.3.

(A1l RA req #a.
Send_RAPCA (

6.1.3 Bootstrappin

Authentic RAPCA (RA,

RA, req) @b &b<a)

g success

Authentication - attacker with enrollment certificate - 2.

req) Ga ==> Ex #b

This sanity check relates to the first phase of the SCMS protocol, i.e. the bootstrap phase
of the device. Like the previous lemmas, it is characterised by the ’exists-trace’ clause
and states that the property holds if a request is made to obtain the enrollment certifi-
cate (AskForEnrollmentCertificate), that the RootCA issues it (EnrollmentCertificateRe-
leased), and finally that the device correctly receives the (GotEnrollmentCertificate) and
all these steps have occurred in order.

lemma sanity_check_Bootstrapping:

exists-trace

"Ex #1i #12 #i3 id pk cert.
AskForEnrollmentCertificate (id, pk) @i &

EnrollmentCertificateReleased (pk,

GotEnrollmentCertificate (id,

i < i2 &
i2 < i3

67

cert) ©i2 &

pk, cert) Qi3 &

Results

Running Tamam 1.6.1 index Download |Actions » Options »]

Proof scripts Visualization display

(Authentic_PCaDev(PCA. out) @ #c) - . ;
#d. (send_PCADev(PCA, out) @ #d) » (#d Constraint System is Solved
< s

by sorry
Constraint system

all-
*¥ RA req #a.
(Authentic RAPCA(RA, req
(3 #b. (Send RAPCA RA, re
#a))-
simplify
solvel ILTK(SPCA, ~LtKPCA | bo #a)
case Register_pk
solvel [LALFR($LAL, pkix)) i #a)
case LAl init
solvel [LA2 PK(SLAZ, pKix)) »: #2)
init

_ini [Fil ~ItRA)
IRA_PK($RA, pkRA) »= #a) [id . Register_pi(] |
—t [P RA, <itkAA) | P SRR pl—IoRR)) | Outt pii-)) |

R
solve(IKU(aencie

aen 2.4,
~LtkLAL)>, pk(-~Ltkpca)),
aenc(<z.5, sign(z.5, e

~LthLAZ)>, PK(-LTKPCA))=, VLt $RA, IiRA) | IAoBICA PKI $RoniCA, pki~RoctCH |

2.6>, 7 A ngOnlvOncel RA).
pk(=1tkPEA)} Pl Inellsed SRAT]

SCRALL SRA ~IRA pK(~ITKROO1CAY) | 1RA_PRLSRA pKI~ITERA))

case (P RAtPCA step2 3
solvel [KU{ aenclex, sign(x, x.1), pk(x.1],
signipk(x.1), ~LtkRd.1)>,
pk(~LtkRa. 1))
)e k.l)
case ¢ aenc
solvel KU signipk(x.1), ~1tkRA.1)) @

G
= e
3, o) | P S0 pe) | o

[e]
I Fre Regme o] |
[tk sin, —itinz) | ipecsiaz, phi-liaz)) | outlpki-ltkea2)) |

#vk.11)
case Adversary enrollment certificate

solve(IKU(aencl<z.4, sign(z.4,
SUtkLAL)>, pk(-LtkPCA)) e 14 kS
} ek) 2, HAZ) | 1RooiCAPK| SRactch pHI-T0Raoich) | T]
case CP_LAL preLinkagealue #75 LA2 IntLOnlyOnce(L") AL ROy Oneet AL
et T e, ey A2 Inialiseal 5142 11 LA Inisalisedi $LAL)]
~UtkLA2)>, pk(~LtkPCA)) SR _1(SLA2. <HHLAZ pui-kRootOA) | | 1LAZ PRI SLAZ phI~ITRLAZ)) SLUALI0 SLAL ~ALAL piiTkRootEAT) | TLAT PRLSLAT i AT)

) @ #vk.s)
case CP L1 preLinkagevalue
solve(splitEas(l))

case split case 1
solve(IKU(sigalx, x.1)) @
#uk.16)

case
Adversary_enrollment certificate
solve(!KUL pki-1tkRootCA)) @
#k.9)
case Register pk
SOLVED // trace found

Figure 6.4. Authentication - RA to PCA.

6.1.4 Partial deconstruction

Tamarin pre-calculate a list of potential sources for each fact and examines all rules and

premises. It could happen that Tamarin is unable to solve where a fact come from, for some

rules. In this case it says that is left a partial deconstruciton. Such partial deconstructions

make automated proof creation more difficult and frequently result in non-termination.
These lemma are introduced to solve partial deconstructions.

Partial deconstruction certificate provisioning

1 lemma CP_stepl_2_3 [sources]:
2 " (A1l m #i.
s IN_CP_RAtoPCA_step2_3(m)e@i

4

~ VI

6 (Ex #j. KU(m)@j & j<i)
7 | (Ex #j. OUT_CP_DeviceToRA_stepl(m)@j)

68

6.2 — Secrecy

~ 5 x y ~ -
Il aencl<x,
ol K005, | 1y enelcpit inaenct<-plvi .
ki~ i1,
sianipkt-sical. Sl e e T e | T P sDe pk~ 1)
P~ Ph(~kpcal) B
) pk(~\tkucmo\)))

) R S S L G O 3 <
) e

aen(((v—p\vl sign(~phvl. el pk(I£kPCA:
sencle-pivld sin(-ph1 ~ILA2)> okl e,
h<fsti).). Fstlsndl(d).
aenc(<L Signi~pIv1. ~IHCAT)S. pi~ HKPCA)
aencl<~plv1 T, sign(~phl.1. ~ItLAZ)>. pki~| e
>

)
IN_CP_RAtOPCA step2 3(<x. sign(x. ~[tkRootCA). pk(~ItkRootCA).
sian(pk(~ItkRootCA). ~ItkRootCAl>

)

Eql true. true).

CheckCertificatelsNotRevoked(pki~ItkRootCA)).
Eq(true. true).

fst(snd(x)).

epk(snd(snd(snd(xw

aen(((v—p\vl sign(~phl. D pk(IkPCA:
cencle~plvl L, signi~ph1.1, ~ItkLA2)>. pki~! i)

)
Ste| pz: fst(x} fst{snd(x]). e pk(fst(s nd(s nd(x}}}} epkisnd(sndls nd(x}m

aen(((v—p\vl sign(~phl. AT pk(ItkPCA]).
cencle~plvl L, signi~ph1.1, ~ItkLA2)>. pki~[tkPCAI>)

Step23 | [l conl, i) pk! ItkRootCA).
L e R el
PR~ lkRootCAN).

pil-tiRootCA)

Authentic DevHAE pk! ItkRootCA).
Zpki~ItkRoDtCA), x. sign (x. ~ItkRootCA). pk{~ItkRootCA),
s\gn(pk(R RooiCh), SRattATS

Send_RAPCA($RootCA.
<SRool
hi<fst().
aenc(<~plvl. signi~plvl. iy pk(ItkPCA)
aencl<~plv1 T, sign(~phl.1. ~ItLAZ)>. pki~| e
>

n
Outl aencl<
<at{. enk(fttand(snd (). t(snd(l. —_—) RADEVICE HASH! phi~MtkdootCa).
epkisnd(snd(snd(x)))] RA_DEVICE_PRELINKAGE(pk(~ItkRootCA).
aenc(<~plvl. Sign(~pIVL. ~tkLAL). aencls - Shreendlendbail.
pk(~ItkPCA)L. ~plv
aenc(<—phv 1. sign(~plvl 1, ~tkLA)>-. signi=piv1. S
Ph(~ItkPCA]] ~ItkLAL] §\gn(~plvl
> =
Ri<Fstlx), epkifstisndsndx))). phi~ItkPCA)). R
—] fat(snd(x]). epk(snd(snd(snd (1), aenel< Zitetikpea)
aenc(<—piv1. sign(~plvL, ~ItkLAL)>. “pivil e
ph(~ ItkPCA)). Signi-=piv1 1. on et
aencl<—plv1 1. sign(~piv11, ~ItkLA2)>. ~ItkLA2) 'z
phi~ tkPCA}) > N
> , phi~ItkPCA) Zitetikpea)
>
phi~tkPCA)) ! =
)

#k cﬂsrte[‘KU(asr\c(<

aenct-: pIVL. sign(~plvl ~Itku\1]> nk(ItkPCA)
aenc(<~plvL 1. sign(~plv1 1. ~ItkLA2)>. pk(~ \tkPm]b
hi=fstix) fst(snd(x))

aenc(<~phvl, Sign(~pIv1, ~{tkLAL)>. pki~ItkPCA))
aencl<~phvl 1. sign(~pivl.1. ~ItkLAZ)>. pk(~ItkPCA))=)

PC-tkPCA))

Figure 6.5. Authentication - RA to PCA message craft -

6.2 Secrecy

Secrecy is the property of information being protected from disclosure to unauthorized
parties. In this particular case, states that the attacker can not obtain the long-term key
of the vehicle. In particular, for all Itk at instant i such that Itk is secret does not exists
a time j where the adversary knows it or it has been compromised and so Revealed. This
property is always verified since the vehicle’id is used only during enrollment phase and
exchanged in a secure environment. 6.7

lemma secrecy:
"All 1tk #i
Secret (1tk) @i ==>
(not (Ex #j. K(1tk)@Qj))

69

Results

#vk coer\:e['Ku(aerv:(<

aEnE(< pivl, sign(~plvl, m:uu]:— ukt ItkPCA)
aenc(<~plvl.1. sign(~plvl1l, m:]> ki~ ItkPCA]]>
hi<fstlx).
aenc(<~plvl, sign(~plvl, ~Itku\1]> pk([tkpca)),

aencl<~plv1.1, sign(~plv1.1, ~ltkLa2)>, pki~ftkPCal=)

Dk(Itkpcan)

i

In(aenc(<
e, (sndl
ﬂeHC(< pivl. S\DH(D‘Vl \tkLAl}> Dk(~ItkPCA)).
aenc(<~plvl.1. sign(~plv: ~tkLA2) =, pki~ItkPCA))>. o
ILAL_PK(SLAL. 1LA2_PK(§| hi(<fstlx). epk(fst(snd(snd(x)))) fstisndix)). 'RA_PK($RA,
JE{ SPOA ~IHPOA Ph(~ItLAT) B2 epkisndisnd(sndix)). Fri~c) | pkiitkRA)
) aenc(<~plvl, sign(~plvl. ~ItkLAL)=>, pki~ItkPCA)) 1]

).
aenc(<~plv11. sign(~pivl.1. ~ItkLA2)>. pki~ItkPCA))=]
P~ tkpcAl)

)

#a - CP_PCA_stepd[IN curucn stepd(<
),

(snd(x
aen<(<~p\v1 signi~plvl, ~tkLA1)>, pki~ItkPCA]),
aenc(<~plv1 1, sign(~phl 1, ~\tkLA2)) phi~ItkPCA))>,
hi<fst(x), W), fst{snd(x]l,
aencl<~plv1, sign(~phl, \tkLAl}) pk{~ItkPCA)),
aencl<~plv1 1, sign(~plv1.1, ~ItkLA2)>, pk{~ItkPCA))>)
>

Ik,

OUT_CP PCA stepd(<
<eplus(fstix), epkifstisnd(snd(x)))), epki~c]), XOR(~plv1, ~plv1.1)>,
i\gn((ep\ui(f‘st(x) ‘epkifst{snd(snd{x)))), epki~c)), XOR{~plv1, ~plvl.1)>, ~ItkPCA), ~c

h{<fst{x), ft{sn:

epklsndlend(snd()), aencl<~pivl sign(-pivl, m(um) pk{~IEkPCA)),
senciespivl 1 sign(-plvld ~KLAD)=, pk{~ItkPCAD)>)

eptonitota) apkisttmdond. epkae) o

Zephusttstlx, epkifstisndisndix)l]. epkimc]) XOR(~ph1, ~ph1 1)

I

Eql true, true).

Eql true, true),

Stepd(epk(~c], eplus(kt(x) epkifst{snd(snd(x))}}, epki~c),
Ruthentic RARCA

hlettti. fst{snd(x]),
aenci<~plvl, sign(~plvl, ~ItkLA1)>, pk{~ItkPCA),
aenci<~plvl 1, signf~plvl.1, ~ItkLA2)>, pki~ItPCAl)>)
>

I

Send_PCADevi $PCA,
<$PCA, <eplus(fstix), epkifst{snd(snd (x)))), epki~c)), XOR(~plv1, ~plv1.1)>.
5\gn(<ep\u§(f§l(x} epkifst{snd(snd(x]}}), epki~c)), XOR(~plv1, ~plv1.1)>, ~ItkPCA), ~c

n
Outl <
cencl<
<eplustfst(x). epk(fstisnd(snd(x)). epkl~c)). PCA LV HASH(XOR(~phd.
XGR(mp\vlv~p\vl,l)>, h:'-plvl)
sig <ts
e plustist(x]. epkifstisnd(sndtal), epkich. epk(fstisnd(sndx)))). pE P‘-“s‘ "Q"‘ R
xlcs?("p)wl TP kiendndlsndiam, senti= pi
i epkisnd(snd(snd(x
e signl~| Dlvl}
fattondtx). epkisndisndisndix)))). Sign(~phvi. .
signleenci< ~ItkLAL] Ettkrca))
<eplus(fstix) epkifstisnd(snd (). epkl~c)). , et
XOR(~plvl. ~plv1 1)>. Pk~ itkPCAY. Santopvid
sign(< aencl<~phvll oA
Splustfsta. epkfsitsndisnd(x)). epk(~). sianiopivii. .
XOR(~plv1. ~ph11)>. ~ItkLA2; B
_‘ JPCA), - pki~ItkPcA))
pK(~tkPCA)
Fotlorl(x). episnd(snd(snd (D11, >)
~ItkPCA))
)

Figure 6.6. Authentication - RA to PCA message craft - 2

| (Ex X #j. Reveal(X)@j & Honest (X)@i)"

6.3 Privacy Properties

Here we come to the crucial part of security properties, those related to privacy. As
mentioned earlier, the main purpose is to verify that these properties are satisfied by the
protocol. A first part will therefore be devoted to the formal modelling of the privacy
properties anonymity and unlinkability and then will be shown the strategy used to try
to get the verification completed. Finally the results will be presented.

6.3.1 Anonymity

The definition for anonymity is highly dependent on the context of the application, and a
variety of definitions are proposed in the literature. In [2] it states Anonymity is the state

70

6.3 — Privacy Properties

Running Taviam 181

Proof scripts
(IN_CP_RATOPCA_sten2_3(m | @ #L) -
(LT85 (KU(n) 6 21) 0 (4 < #1)) v
(3£, OUT_CP_DeviceTora_stepl(n) @ #]1)"
by sorry

Lenma sanity_check Success
exists-trace
"3 91 encoutmex signencoutmex.
Recw(encoutnex, signencoutmex | @ i

ertificateneleasedi ph, cert)

e #i2)) a
(GotEnrollnentCertificatel id, pk, cert) &
#30) 4
(#1 < #12)) &
(912 < #i3)"
by sarry
Lonma secrecy:
all-traces
¥tk #i.

(Secrat(1tk) 6 #i) =
=03 #5. KO Utk) @ #1) %
(3% #5. (Reveal{ X) @ #j] A (Honest{ X) @
#HIN"
sinplify
solvel In S| $Rootch, sDewice,
<pk(x), pPCA, phih, pki,
pki-ltkoevicel,
sign{pki-LtkDevicel, xI=
1ot)
case Chanln S
solvel st Dewice 10 $Device, ~id, ~ltkvevice) »a #i

case Device init

solvel IKU[~LtkDavice) @ #vk }
case Reveal 1tk
by contradiction

qed

qed

Visualization display

Applicable Praof Methods: Goals sorted according to the 'smar
1. simplify
2. induction
a. autaprove (A for all selutions)
b. autaprove (B. for all solutions) with proof-depth bound 5
5. autoprove (5. for all solutions} for all lemmas
Constraint system
last: none
formulas:

aid i

(SecreL id(id) @ #i)

a
(3] (KUid) @ #)) &
(¥ X #]. (Reveall X } @ #]) A (Honestl X) @ #i) = 1)

equations:
subst
conj

lemmas:
W Id #l #).
(FirRequestFrom Thisidl id } @ #1) &
{FirRequestFromThisld id | @ #])
#i= %

Wmn#i(Eqlm)@ #il=m=n

W name #i #]
(OnlyOnce(name | @ #i} A (OniyGncel name | @ #j) = #i = #j

allowed cases: refined
selved formulas

unselved goals:

solved goals:

Figure 6.7. Lemma secrecy.

of being not identifiable within a set of subjects, the anonymity set. The anonymity set
is the set of all possible subjects who might cause an action. In our case, the adversary
cannot distinguish wether the message has been signed with a valid pseudonym or a fake
one. When a pseudonym certificate is requested, a vehicle can make n requests to the RA
and an adversary and other entities are unable to associate a pseudonym certificate with
the real identity of the vehicle. It will be used the observational equivalence by putting
diff (~1tkDevice, ~fakeltk)) when signing the request to the RA.

1 rule CP_DeviceToRA_stepl:

2

3

4

let
A = epk(~a)
HH = epk(~hh)

request = < A, HH,
sign(request, diff (~1ltkDevice,

signed_request =
fakeltk))
mex = <request,

signed_request,

~fk, ~fe >

enc_request = aenc(mex, pkRA)

in

[

'St _Device_2($Device,
pkPCA, pkMA, pkRA,

Fr(”a))
Fr (~hh),
Fr (~fk),

~id,
certificate),

71

t heuristic (loop breakers delayed)

certificate>

~1ltkDevice, pkRootCA,

15

16

17

18

19

20

21

22

23

24

25

26

27

—
i

Results

Fr(~fe),
Fr (~reqid),
Fr(~fakeltk)

]

--[OUT_CP_DeviceToRA_stepl (mex),
AskForPseudonymCertificate (~id, ~reqid, A, HH),
Stepl(~id, A, HH),
0UT23 (enc_request, pkRootCA)

1->

[

Out (enc_request),

St_Device_3($Device, ~id, ~1ltkDevice, pkRootCA,
pkPCA, pkMA, pkRA, certificate, ~reqid, ~a, ~hh,
~fk, ~fe)

]

6.3.2 Unlinkability

Always referring to [2], unlinkability of two or more items means that within a system,
these items are no more and no less related, concerning the a-priori knowledge, with
respect to the system of which we want to describe. This means that the probability of
those items being related stays the same before (a-priori knowledge) and after the run
within the system (a-posteriori knowledge of the attacker). In the protocol, the vehicle
has n pseudonymous certificates that need to be changed regularly. As long as the vehicle
uses the same pseudonym certificate it is always traceable. To prove this, it is sent a
message signed with the pseudonymous certificate and since anyone has the public key
associated with it, it can be proven that when it is verified with the real key, it will give
a positive result, negative otherwise.

rule Device_send_message:
let
mex = sign(~nonce, diff (SK, ~fakeltk))
in
['St Device 4($Device, ~id, ~1tkDevice, certificate,
SK, pseudocert),
Fr (~nonce) ,
Fr (~fakeltk)

]

--[Send(~nonce, mex)]->
[Out (mex) 1]

72

19

20

21

22

23

6.3 — Privacy Properties

By checking the Oberservational equivalence lemma, automatically generated by Tamarin,
the protocol thus defined unfortunately fails. In the following, all strategies presented were
tested for both properties separately, i.e. a specific .spthy file was created for each property
and executed independently.

Heuristics

A first approach was to use heuristics. A heuristic is a technique for ranking a constraint
system’s open goals, and it is defined as a list of goal rankings where each of them is
represented as a single character from the set 's,S,c,C,i,1,0,0".

Original protocol and Oracle

Here the test was made on the original protocol and by adding the oracle, described in
section 2.4.1. Below is shown a version of the code used for the oracle. Several versions
have been tested, changing both the order and the facts themselves.

#!/usr/bin/python
import re

import os
import sys

debug = True

lines = sys.stdin.readlines ()

lemma = sys.argv[1]

rank = [] # list of list of goals, main list
is ordered by priority

maxPrio = 110

for i in range (0,maxPrio):
rank.append ([])

if lemma != "AnyLemma":
print ("applying lemma")
for line in lines:
num = line.split(’:’) [0]

if re.match(’.*_PK\(.*’, line): rank[109].append(num

)
elif re.match(’.x _SK\(.*x’, line): rank[108]. append(
num)

73

24

25

26

27

28

29

30

w

1

32

33

34

1

11

Results

elif re.match(’.*FirRequestFromThisId.*’, line):
rank [107] . append (num)

elif re.match(’.*St _Device 2.%’, line): rank[80].
append (num)

elif re.match(’.*xSt_Device_3.%’, line): rank[80].
append (num)

elif re.match(’.*St_Device_4.%’, line): rank[80].
append (num)

else:

exit (0)

Ordering all goals by ranking (higher first)
for listGoals in reversed(rank):

for goal in listGoals:

sys.stderr.write(goal)
print (goal)

Persistent facts

The ! symbol indicates a persistent fact, i.e. that Tamarin can consume it an indefinite
number of times during the simulation. In this case, !St_Device_ 2 indicates that the
same vehicle (which has received an enrolment certificate) can request several pseudonym
certificates. By removing ! we restrict the same vehicle from requesting more than one
pseudonymous certificate, thus greatly simplifying the trace that Tamarin generates to

find a solution.

rule Device_bootstrap:

[In S($RootCA, $Device, <pkRootCA, pkPCA, pkMA, pkRA,
certificate>),
St _Device_1($Device, ~id, ~1ltkDevice)

]

let certificate = <pkdev, signature>

--[//check pkdev == pk(~1ltkDevice) && signature

corretta usando pkRootCA

Eq(pkdev, pk(~1ltkDevice)),

Eq(verify(signature, pkdev, pkRootCA), true),

GotEnrollmentCertificate (~id, pk(~1ltkDevice),
certificate)

1->

74

6.3 — Privacy Properties

2 ['St_Device_2($Device, ~id, ~1tkDevice, pkRootCA, pkPCA
, PkMA, pkRA, certificate)]

Persistent facts and Oracle

The previous point was performed without an oracle. Then the test was repeated using
the different oracle versions presented above.

Observational equivalence: rule-equivalence

The last test performed was on the rule-equivalence mode of the Obervational equivalence
lemma. In this way, Tamarin decomposes the lemma into sub-cases as can be seen in
the figure 6.8. Each sub-case is decomposed in turn into two further sub-cases, which are
LHS and RHS, i.e. if both are tested, it does not matter what the opponent does, he will
always see equivalent executions in all cases.

Unfortunately, none of these attempts resulted in the termination of the verification
for the two properties. In all of the above cases, the protocol execution saturated the
available ram memory, which in our case was 128GB. In general, the average execution
time required to saturate all resources was 2-3 days, whereas with the use of an oracle this
time decreased to about 1 day. Although the use of the oracle brought benefits in terms
of speed, it was still not enough to complete the audit.

75

Results

lemma Observational equivalence:
rule-equivalence

case Rule Adversary enrollment_certificate

by sorry
next
case Rule CP DeviceToRA_stepl
by sorry
next
case Rule CP Device receive stepS
by sorry
next
case Rule CP LAl preLinkageValue
by sorry
next
case Rule CP_LAZ preLinkagevalue
by sorry
next
case Rule CF_PCA_stepd
by sorry
next
case Rule CP RAtoPCA step2 3
by sorry
next
case Rule ChanIn S
by sorry
next
case Rule_ChanOut_5
by sorry
next
case Rule Destrd 0 adec
by sorry
next
case Rule Destrd O edec
by sorry
next
case Rule Destrd 0 everify
by sorry
next
case Rule Destrd 0 fst
by sorry
next
case Rule Destrd 0 snd
by sarry
next
case Rule Destrd & verify
by sorry
next
case Rule Device bootstrap
by sorry
next
case Rule Device init
by sorry

Figure 6.8.

76

case Rule Device send message
by sorry
next
case Rule Equality
by sorry
next
case Rule LAl init
by sorry
next
case Rule LAZ init
by sorry
next
case Rule MA_init
by sorry
next
case Rule PCA_init
by sorry
next
case Rule RA imit
by sorry
next
case Rule Register pk
by sorry
naxt
case Rule_RootCA_beotstrap device
by sorry
next
case Rule RootCA_init
by sorry
next

case Rule Send

by sorry

Observational equivalence: rule-equivalence.

Chapter 7
Conclusion

This chapter concludes the thesis work. This thesis explained the Security Credential Man-
agement System protocol, which represents the state of the art in V2X communications.
Its main feature and strong point is this new cryptographic mechanism, the Butterfly
Key Ezxpansion, which allows for the efficient and secure management of pseudonymous
certificates and, of course, the distribution of secrets between the various entities in such
a way that users’ privacy is unlikely to be compromised.

In this work, we were able to formally model and verify security properties such as
authentication and secrecy of exchanged messages. Unfortunately, although the privacy
properties, specifically Anonymity and Unlinkability, were modelled and formally defined,
it was not possible to verify them given the complexity of the protocol and the scarce
computational resources.

For future work, this protocol could be analysed again using a more powerful machine in
terms of computational resources and ram size. On the one hand, this would improve the
execution speed and on the other hand, it could help in getting the verification completed
without further modifications. If this were not sufficient, then different formal verification
tools could be used. One example would be to translate the model and all formalised
properties into the ProVerif tool.

7

78

Bibliography

[1] Benedikt Brecht , Dean Therriault, André Weimerskirch, William Whyte, Virendra
Kumar, Thorsten Hehn, and Roy Goudy. «A Security Credential Management Sys-
tem for V2X Communications». In: IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS VOL.19.NO.12 (December 2018) (cit. on p. 31).

[2] Andreas Pfitzmann and Marit K6hntopp. « Anonymity, unobservability, and pseudonymity
- A proposal for terminology». In: Designing Privacy Enhancing Technologies, Inter-
national Workshop on Design Issues in Anonymity and Unobservability, Berkeley,
CA,USA (July 25-26, 2000). DOI: 10.1007/3-540-44702-4_1 (cit. on pp. 70, 72).

[3] Simon Parkinson, Paul Ward, Kyle Wilson, and Jonathan Miller. «Cyber Threats
Facing Autonomous and Connected Vehicles: Future Challenges». In: IEEE TRANS-
ACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS VOL.18.NO.11
(November 2017).

[4] Jorden Whitefield, Liqun Chen, Frank Kargl, Andrew Paverd, Steve Schneider, He-
len Treharne, and Stephan Wesemeyer. «Formal Analysis of V2X Revocation Pro-
tocolsy. In: ().

[5] Katharina Hofer-Schmitz, Branka Stojanovi ¢. « Towards formal verification of IoT
protocols: A Reviewy. In: DIGITAL —Institute for Information and Communica-
tion Technologies, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 17 Steyr-

ergasse, Graz, Austria ().

[6] Jonathan Petit, Florian Schaub, Michael Feiri, and Frank Kargl. «Pseudonym Schemes
in Vehicular Networks: A Survey». In: IEEFE COMMUNICATION SURVEYS TU-
TORIALS VOL.17.NO.1 (2015).

[7] Monowar Hasan, Sibin Mohan, Takayuki Shimizu, and Hongsheng Lu. «Securing
Vehicle-to-Everything (V2X) Communication Platformsy. In: IEEE TRANSAC-
TIONS ON INTELLIGENT TRANSPORTATION SYSTEMS VOL.5.NO.4 (De-
cember 2020).

[8] Zachary MacHardy, Ashiq Khan, Kazuaki Obana, Member, IEEE, and Shigeru
Iwashina. «V2X Access Technologies: Regulation, Research, and Remaining Chal-
lenges». In: IEEE COMMUNICATIONS SURVEYS TUTORIALS VOL.20.NO.3
(2018).

79

https://doi.org/10.1007/3-540-44702-4_1

BIBLIOGRAPHY

[10]

[11]

[12]

Singam Bhargav Ram, Vanga Odelu. «Security Analysis of a Key Exchange Proto-
col under Dolev-Yao Threat Model Using Tamarin Prover». In: IEEE 12th Annual
Computing and Communication Workshop and Conference (CCWC) (2022). DOI:
10.1109/CCWC54503.2022.9720852.

Jannik Dreier Simon Meier Ralf Sasse Benedikt Schmidt David Basin Cas Cremers.
Tamarin-Prover Manual. URL: https://tamarin-prover .github.io/manual/
book/001_introduction.html.

Riccardo Sisto. Security Verification and Testing Slides. Materiale didattico. Politec-
nico di Torino. 2021-2022.

David Basin. Formal Methods for Security Knowledge Area Version 1.0.0. CyBOK,
2021.

80

https://doi.org/10.1109/CCWC54503.2022.9720852
https://tamarin-prover.github.io/manual/book/001_introduction.html
https://tamarin-prover.github.io/manual/book/001_introduction.html

	List of Figures
	Introduction
	Structure of the document

	General Overview
	V2X - Vehicle to everything
	Formal Verification
	Symbolic Modelling

	Tamarin-Prover
	Features
	Input File - Theory

	Security Credential Management System
	SCMS Design
	SCMS Structure
	Certificate Provisioning Model and Certificate Types
	Certificate Types

	Butterfly Key Expansion
	SCMS - Protocol Steps
	Bootstrapping
	Certificate Provisioning
	Misbehavior reporting
	Revocation

	Objective of the thesis
	SCMS - Design Model in Tamarin
	Preliminary steps and Assumptions
	Tamarin theory setup
	Support rules

	Bootstrapping
	Certificate Provisioning
	Revocation

	Results
	Sanity checks
	Executability
	Authentication
	Bootstrapping success
	Partial deconstruction

	Secrecy
	Privacy Properties
	Anonymity
	Unlinkability

	Conclusion
	Bibliography

