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Summary

Automotive control systems face security as one of their biggest challenges in
the next few years. The race towards Vehicle-to-Everything (V2X) technology,
while improving vehicle capabilities and enabling driverless cars, poses a significant
security risk. As cars become increasingly interconnected, it is easier for malicious
users to attack them by exploiting their enhanced vehicle communication capabilities.
Moreover, these attacks can occur at various levels, ranging from the network to
the physical layer.

In particular, one of the potential targets of a cyberattack consists of critical
information to decrypt confidential data; such an attack could allow a malicious
user to access information that should be kept secret, potentially enabling the
attacker to gain control of the vehicle itself. For this purpose, key management
systems such as Hardware Security Modules (HSM) address this issue by defining
a secure area where these secrets are safe. However, most HSMs are deployed on
specific boards with highly specific hardware requirements and features, making any
software developed for such systems not portable; moreover, given the specificity of
the target system, such software is neither available to reuse.

The present work describes a novel open-source HSM Firmware compatible with
AUTOSAR specifications for Secure Hardware Extensions. By examining these
requirements and the prerequisites to achieve an acceptable degree of security when
using an HSM, this work explores in detail the design and development of firmware
to deploy on a specific category of boards that can support HSM by hardware
design.

Besides, the Thesis encompasses the issue of the intrinsic dependency of such
a kind of firmware from the underlying hardware while considering portability as
a crucial project requirement. Without this additional effort, trying to make the
HSM firmware open-source would prove useless because it would suffer from low
applicability. Particular attention has been focused on the interaction between the
HSM, its underlying hardware and the external domain with which it communicates
by implementing a suitable driver that acts as the sole interlocutor with access to
this module by both software and hardware.

For validation, functional tests are first conducted in emulation and then by
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porting the project on a target board, thus proving the portability of the firmware.
Starting from the results of this Thesis, it would be possible for future developers
to enhance the driver’s capabilities and increase the set of supported boards by
porting the current project to them, too.
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Introduction

If a single word were chosen to describe the industry’s ongoing trend during the last
50 years, that would be Digitalization. From the 1960s, when Computer Science
transformed from an academic topic to practical knowledge that could enable
disruptive technologies, nearly every industrial sector has moved its steps towards
the digital domain.

Enhanced efficiency, cost reduction and improved productivity are some of
the advantages provided by this technology; the possibility to automate tasks
and streamline processes while also reducing costs made the industry capable of
concentrating its resources towards more profitable activities. In the meanwhile,
employees could avoid spending their working hours on redundant or dangerous
tasks and focus on how their organization.

Especially from the 2000s, the rise of the Internet of Things (IoT) has brought
the concept of connectivity to sectors that were traditionally distant from the topic,
enabling features like inter-product communication, data retrieval and analysis and
remote control that were impossible up to a decade before. Eventually, all these
characteristics have an ultimately desirable effect: improve the user experience.

The automotive sector does not represent an exception to this pattern. Since the
development of the first Electronic Control Units in the 1970s, the automotive indus-
try has continuously embraced digitalization. Recent advancements in technologies
such as Autonomous Driving and Vehicle-to-Vehicle (V2V) communication, which
allows vehicles to exchange information and collaborate on the road, further affirm
that this trend will continue to accelerate in the coming years. The integration of
V2V communication enables enhanced safety, improved traffic management, and
more efficient transportation systems. Market analyses project a significant growth
in the market size of autonomous vehicles, with expectations of tripling between
2021 and 2030 [1].

This data demonstrates how the development of the automotive industry is
strictly intertwined with these features, to the point where their absence leads to
the inevitable obsolescence of the product regardless of all its other qualities.

Despite the positive effects of these new technologies, they also imply new
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challenges and risks that must be handled. This is especially true for a safety-
critical industrial segment such as the automotive domain, where the most naive
error can lead to catastrophic consequences. Given the strong effect that V2V
technologies have on the evolution of the automotive sector, it is interesting to
explore which are the main drivers of this evolution and what are the challenges
the industry is currently facing, with a particular focus on Security, which is the
main topic of the current Thesis.

After reconstructing how the automotive sector has moved towards the digital
domain by considering the Vehicle-to-Everything (V2X) communication system,
this Thesis aims to highlight the security criticality that this technology implies.
A special focus is given to key management systems, i.e. modules whose purpose
is to protect secrets to be used to maintain a reliable level of confidentiality and
integrity during the ongoing critical communication inside the ECU, thus providing
a solid secure foundation to the system on which they are implemented.

The current Thesis briefly explores the main solutions that have been imple-
mented over time to fulfil the strong security requirements imposed by these
modules, such as Trusted Platform Modules, Trusted Execution Environments and
Hardware Security Modules. AUTOSAR, one of the reference partnerships in the
automotive sector, has paid close attention to today’s vehicle security issues and
has defined several standards specifically for this industry [2][3][4][5], ultimately
creating a software framework for vehicle security.

Starting from this framework, it is possible to define security-critical components
such as key management systems that are both compliant to AUTOSAR standards
and provide an inherently high level of security. For this reason, this Thesis
focuses on the design and development of Hardware Security Module that follows
specifications provided by AUTOSAR and is structured as follows:

The topics of this Thesis are structured as follows:

Chapter 1 provides an overview of the automotive sector and its path towards
V2X, together with the challenges that this technology implies in terms of
Security and how to solve them, up to describing why Secure Key Management
Systems are needed.

Chapter 2 explores the open points of the previous chapter and describes how a
secure key management system could be implemented by reporting the current
state of the art; in the end, a special focus on how AUTOSAR addresses the
issue is reported.

Chapter 3 describes the current work consisting in the HSM Firmware project,
whose purpose is to design and develop a portable and configurable HSM to
deploy on a certain category of ECUs; in particular, this chapter delves into
the details of the preliminary requirement analysis for the project
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Chapter 4 is the core chapter of the work; it describes and illustrates the design
of the HSM Firmware project, its principles and mechanics.

Chapter 5 covers how the project has been developed and tested, eventually
reporting the final results and suggestions for future improvements of the
firmware.
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Chapter 1
Background

Nowadays, automobiles are one of the products that represent the current times:
cities, towns and even the countryside are brimming with cars; every family possesses
at least one of them and there is a wide variety of choices in terms of size and
formats, which proves there is no target that can be considered out of reach for the
automotive industry.

The dominance of the automobile as the principal mean of private transport is
now taken for granted, but this has not always been the case. In fact, during its early
development stages, automobiles needed to compete and overcome horse-trained
carriages; eventually, this required designing vehicles providing better performances
at an affordable cost.

For this reason, early manufacturers focused their attention on improving the
performance of their vehicles while making production sustainable and scalable,
eventually leading to the rise of this industry segment.

At that time, safety was not a concern, at least until accident rates became
alarming. For instance, in the US, there were about 18 deaths per million Vehicle
Miles Travelled (VMT) in 1925, much higher than the about 4 deaths per million
VMT experienced 70 years later [6].

Together with the absence of safety regulations for the newborn automobile,
other reasons behind this high fatality rate were linked to the absence of safety
considerations in the design and development stage and the inexperience of the
drivers [6]. This led government agencies to regulate vehicle circulation and manage
licenses while enterprises, for their part, addressed the issue by designing safety
subsystems like seat belts and concentrating on the mechanical stability of the
vehicle, also thanks to the experience gained in the previous years.

The rise of electronics in the 1960s, when they became affordable for mass
production, represented another step forward for car design and development in
terms of safety; in fact, the possibility to embed automated control systems inside
the first Electronic Control Units (ECUs) paved the way to new potential features
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and improvements. Anti-Blocking Systems (ABS), Adaptive Cruise Control (ACC)
and Electronic Stability Control (ESC) are some of the main achievements in
the automotive field that connect electronic control systems to the underlying
mechanics. From the first experimental models decades ago, these subsystems have
progressively become standard components of modern vehicles, such that they are
currently embedded in any model and are strongly regulated.

In general, these improvements have a twofold purpose: first, they enhance
driver safety; in fact, fatality rates in car accidents have drastically decreased over
time [6]; as a consequence, the reputation and stable presence in the market for the
manufacturer is guaranteed. Safety is not only a high priority for the driver but also
for the manufacturer. A single failure, even the most naive, may result in driver
injury, with devastating consequences. Secondly, the end user can benefit from
better control of the vehicle, which eventually leads to a better User Experience.
Parking Assistance Systems are a clear example: the driver can leverage them so
that they do not need a passenger in those contexts where parking is not trivial.
Instead, they can rely on a trusted supervisor to park safely. It is important to
notice that the driver must be confident of the vehicle and its assistance systems
on these occasions, and this trust is easy to fall with the slightest of errors.

This is especially true when the driver should trust their car to the point that it
runs without human input, with the only exception of the target destination to
reach: Autonomous Driving is the culminant point of this evolution, where vehicles
transform from passive locomotion systems into reactive and intelligent products
that can interact with the surrounding environment in complete autonomy.

To enable this step, everything meaningful for the driver, from pedestrians to
traffic lights, from approaching vehicles to traffic conditions, must live in the same
ecosystem.

1.1 Towards Vehicle-to-Everything

The idea of a common ecosystem where automobiles can interact with other smart
systems and assist each other by sharing information is not new and is known
as Vehicle-to-Everything (V2X). This umbrella term is a composition of several
different interactions:

Vehicle-to-Device (V2D) Here, devices are intended as applications or systems
that can be used inside the car, e.g. Apple’s CarPlay; in this category, we can
include features that enhance the User Experience, e.g. supporting Bluetooth
communication to connect a smartphone to the vehicle.

Vehicle-to-Grid (V2G) The possibility of exchanging information with the elec-
trical grid to reduce its stress by transforming the vehicle into a power provider
when it is not in use for transportation [7].
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Vehicle-to-Network (V2N) By enabling access to cellular networks, vehicles
become capable of interacting with any other actor in the same ecosystem;
the following three definitions are subcategories of V2N:

Vehicle-to-Infrastructure (V2I) The interconnection of elements of the
road infrastructure, e.g. traffic lights, with its users. This link unlocks a
smart usage of the road network such as Dynamic Traffic Control Systems,
which modify the semaphore timing depending on traffic conditions at
the intersection, thus improving vehicle circulation and reducing fuel
consumption.

Vehicle-to-Pedestrian (V2P) Pedestrians may be equipped with devices
that can help the car recognize them at intersections and prevent acci-
dents, while pedestrians may actively use their devices to monitor traffic
conditions and optimize their route.

Vehicle-to-Vehicle (V2V) Last but not least, vehicles can exchange infor-
mation and share their position to keep a safe distance and detect potential
collisions; this interaction does not need a surrounding infrastructure as it
only requires that the vehicles can communicate by themselves and may
be useful in regions where road infrastructures are poor.

Another used term is Cooperative Intelligent Transport Systems (C-ITS), even
though it refers to the principle of making all the actors of the road network, e.g.
pedestrians, road infrastructures and vehicles, communicate with each other [8],
while V2X focuses on the communication capability of the car with the environment.
The goal is to define an ecosystem where all participants can contribute by improving
the driving experience of the others, both in terms of safety and in terms of
performance.

For instance, a suggestive feature that V2X wants to achieve is smart traffic
management: if the road infrastructure were able to monitor the local traffic
conditions by extracting this information from the vehicles involved, it could
suggest which roads are less crowded and encourage the driver to take them;
another option would be to adjust the timing of traffic lights so as to reduce queues
on busy roads.

Features like this need a complex and coordinated network among all vehicles
as shown in fig. 1.1; building and maintaining this network is one of the main goals
of V2X.

V2X is an ongoing process, even though it is possible to find the first traces
of work on communication projects between vehicles to increase safety, reduce
accidents and help the driver to the 1970s with projects such as US’s Electronic
Route Guidance System (ERGS) and Japan’s CACS [9].

ERGS represented the first attempt at a Vehicle-to-Infrastructure (V2I) commu-
nication system, a step towards an ante litteram intelligent transportation system.
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Figure 1.1: A visual representation of V2X (Source: everythingrf.com)

This peculiar technology relied on a destination-oriented system where the user
could receive routing information to reach a desired destination by selecting it
inside the car; this request would be forwarded through a network embedded in
the road infrastructure up to the target point, where a local node could process
the request and return instructions to reach the destination [10]. It is noted that
this technology, ahead of its time, required a solid infrastructure to support it, as
by definition of a V2I system.

It is with the definition of wireless networks and, in particular, of IEEE 802.11
that V2X starts to form: in particular, the IEEE 802.11p amendment, approved in
2010, allowed to include Wireless Access in Vehicular Environments (WAVE) to
Wi-fi connections [11]. During that period, wireless connections became increasingly
affordable and widespread: it was time for the road infrastructure to benefit from
such development and evolve. Wireless communication technologies like Dedicated
Short-Range Communications (DSRC) represent the starting point of modern V2X.

DSRC is a wireless communication technology designed for short-range and high-
speed communication between vehicles and infrastructure, used in Intelligent Trans-
port Systems (ITS) to enable Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication [12].

DSRC enables direct communication between vehicles and Roadside Units (RSU)
such as traffic lights, toll booths, parking management and surveillance systems,
weather monitoring stations and so on [12]. In this way, vehicles can exchange
safety-related information in real-time, including real-time vehicle speed, position,
acceleration, and braking data.
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This technology provides several key features. First and foremost, it enhances
road safety by enabling cooperative collision avoidance systems. Vehicles can
communicate their positions and intentions, allowing for early warning and collision
mitigation. Besides, it enables cooperative traffic management by providing real-
time information, so that drivers can optimize their routes and reduce travel
time.

However, DSRC has challenges to face. First, since DSRC does not rely on
preexisting networks, it requires a massive installation of compatible RSUs in the
road infrastructure to work properly, which implies investments, costs and time. For
this reason, other technologies that can leverage the current telecommunications
infrastructure have emerged in the following years.

Cellular V2X (C-V2X), developed within the 3rd Generation Partnership Project
(3GPP) [13] in three releases around 2016, aims to use cellular networks rather
than Wi-fi. Besides, this communication system plans to extensively support 5G,
thus enabling Vehicle-to-Network, which DSRC does not support. Finally, C-V2X
expects to be used for direct communication so that it can work regardless of the
quality of the surrounding infrastructure, which can prove useful when the latter is
not available, such as during natural disasters.

This communication system defines two interfaces: PC5 for direct interaction
between vehicles, useful when low-latency communication and fast coordination
is the priority, and UU to connect drivers to the cellular network via their User
Equipment (UE) so that they can use base stations to interact with farther nodes
of the network [14].

These two technologies are the main pioneers in the development of the vehicle-
environment interaction, although it is not clear which of the two is preferable at
present: although there exist studies that emphasize the better coverage, latency,
reliability and scalability capabilities of C-V2X [13], assuming that DSRC is not
suitable for the development of this technology, others refute the same findings and
attribute greater maturity to DSRC [15] [16]. Both C-V2X and DSRC have been
assigned to the same frequencies around 5.9 GHz, designated for the Intelligent
Transport System (ITS) [17]; this further fuels the debate as to which of the two
systems should be better supported [13].

Regardless of the direction that V2X will follow from a technological point of
view, smart vehicles and infrastructures are the current trend and are gaining
interest and a growing slice of the market [1]. However, there are noticeable
challenges to overcome to make this technology stand the test of time. The rise of
AT and Edge Computing, for instance, requires stronger computational capabilities
on the vehicle that should not always rely on underlying Cloud infrastructures.
Other features, such as Crowd Sensing, i.e. the capability to exploit a large number
of users for retrieving more complete data, need to preserve the users’ privacy and
be effective at the same time [9].
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Besides, any solution to these challenges must satisfy the same unavoidable
requirements. Safety is a core priority: providing no harm to the driver is the
primary measure of the success of the technology; in case a life-threatening scenario
ever occurs due to a vehicle failure, drivers will trust the car and the manufacturer
much less, with great costs and reputational damage.

This becomes increasingly true in a future where intelligent vehicles are the
common case: for the car to be profitable, the human user must rely on the fact
that it is intelligent enough to be trusted.

However, safety is not the only concern; in fact, other two kinds of services
of interest in the race towards V2X can be identified: non-safety services and
infotainment [9]. While the latter services provide features such as Internet Access
and video streaming, aiming to improve user comfort, non-safety services try to
optimize traffic management and maximize the efficiency of the road network [9].

Another difference lies in their performance requirements; even though non-
safety services are not the most critical, they still require sufficiently low latency to
achieve optimal results. For instance, traffic management systems should always
provide the latest updates about traffic congestion. Instead, infotainment does not
need to be reliable: the user can tolerate short intervals of low-quality service or
even unavailability.

Going back to safety, there is another non-functional requirement that is highly
correlated and equally important: Security. A system that applies any existing
safety measure cannot be claimed as a safe system: if an ill-intentioned user can
penetrate the system and affect its behaviour in a relevant way, it can become
dangerous and thus unreliable.

1.2 Needing Security

Ever since the inception of Vehicle-to-Everything (V2X), security has emerged as
one of the foremost challenges in the automotive domain. While granting vehicles
access to a global network unlocks numerous innovative features, it also subjects
them to external vulnerabilities. With the growing proliferation of smart cars on
the roads, this exposure is amplified, providing attackers with a ripe opportunity
to capitalize on the increasingly profitable automotive industry. The combination
of low-security protection and the abundance of valuable data available makes the
automotive domain a lucrative target for malicious actors.

1.2.1 The pillars of Security

Security is a multifaceted problem: various properties make a system secure,
implying several directions along which an attacker could move. Besides, attackers
do not need to know every possible weak point of a system to attack it successfully;
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one vulnerability, if not handled correctly, is more than enough. These reasons
highlight that Security is an intrinsically difficult problem to solve; thus, it is
needed to define a taxonomy of the features that a secure system must support
and define attack models.

Despite the complexity of the topic, over time the fundamental properties
that a secure system must possess have been defined, such as the CIA Triad
(Confidentiality, Integrity, Availability) [18] which is referred to as the basic set of
Security properties to grant to recognize whether a system is secure.

In addition to these fundamental properties, however, it is necessary for a system
to support others. For example, as much as a system is capable of encrypting
any communication that takes place within it and thus has a very good level of
confidentiality, the lack of an authentication system would allow anyone to interact
with the system, which would be risky. For this reason, both the definitions of the
CTA Triad properties and other properties that are now indispensable in a secure
system, including cars [14], are given below.

Authentication The capability of a system to recognize and identify who is
requesting a given resource or communicating over a network. It can be split
into two parts [14]: User Authentication, ensuring that the user that needs
a resource is legitimate, and Message Authentication, identifying who has
sent a certain message in the network. Non-Repudiation is strongly related
to Message Authentication and consists of the capability to recognize who
has performed a given action unambiguously; this feature is handy to solve
disputes where an author of misbehaviour must be identified.

Authorization The capability of a system to recognize whether a user is allowed
to use a given resource; this feature is required to define privilege levels and
filter resource access; it requires Authentication as a prerequisite.

Availability The capability of a system to be up and running whenever required;
depends on the type of system involved. This feature is crucial for vehicles
from the moment the engine is turned on; in general, this is a fundamental
feature for any real-time system where missing any deadline could lead to
failure.

Confidentiality The capability of a system to preserve the secrecy of sensitive
data such as private keys to prevent access from non-authorized users and
information leakage; usually, it is achieved by adopting cryptography [14] both
to hide precious content sent over an insecure channel or to protect data from
physical access.

Privacy Related to Confidentiality, but with a focus on the personal identity of the
users and the secrecy of their sensitive data. Anonymization or information
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hiding are two of the possible strategies to cover the user identity while allowing
them to access the network [14]. In principle, this feature can conflict with
Authentication, which requires a user to be easily recognisable; so, the system
should be able to identify who is performing some actions while hiding their
identity away from prying eyes.

Integrity Given that a user can recognize who sent them a message thanks to
Authentication, it is not ensured that what has been received corresponds to
what has been sent. Attacks such as Man-in-the-middle (MITM) aim to place
attackers between two or more users, to sniff data coming from the user, alter
it and send it to the expected receiver. It is noted that such an attack would
also violate Non-Repudiation as the original sender would be blamed in case
something happens. Typically, message signatures are used to detect whether
the content has been corrupted.

Creating networks of vehicles that can communicate and exchange information
implies exposing them to an unsecured network as this increases their attack surface.
Since this side-effect is unavoidable, countermeasures must be taken to achieve a
reasonable level of Security, which is particularly high for automobiles because they
are safety-critical systems.

Despite all precautions, vehicles are still vulnerable: an experiment conducted
in 2016 by two experienced hackers bypassed the safeguards of a Jeep Cherokee by
using a laptop directly plugged into the Jeep’s CAN network via a port under its
dashboard [19]. By carefully crafting CAN frames over the bus, the two hackers
could control several subsystems while the driver could not counteract. Causing
unintended acceleration, slamming on the brakes and taking control of the steering
wheel as the two researchers managed to do is extremely dangerous and can prove
fatal.

The perpetrators of this attack already did something similar the previous
year [20]; the scale of the news was such that Chrysler was forced to recall 1.4 mil-
lion vehicles to apply the necessary Security patches, at considerable cost and
embarrassment to the company.

Moreover, once a vulnerability has been discovered and the strategy to penetrate
the system is publicly available, an increasing set of attackers can exploit it in turn
and profit from it. This proves how the entire automotive industry is compelled to
deal with Cyber Security since there is no room for errors when the driver’s safety
is at stake.

There are various strategies adopted at the level of state, international and
industry organizations to address these critical issues. For instance, public databases
like the Common Vulnerabilities and Exposures (CVE) system provide reference
methods for publicly known information-Security vulnerabilities and exposures,
even though CVE is not specifically defined for this industry sector [21]. Sharing
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this kind of information improves manufacturers’ awareness of possible defects in
their products so that they can apply appropriate countermeasures.
There are also organizations whose purpose is to provide information on safety-

related defects and also on vehicle recalls or investigations, such as the National
Highway Traffic Safety Administration (NHTSA) in the US [22].

1.2.2 Security measures on C-V2X and DSRC

V2X-enabling technologies like C-V2X and DSRC have defined Security measures,
too [14]. In particular, DSRC adopts cryptographic standards for establishing
trust and preserving confidentiality between communicating parties. In this way,
attacks based on eavesdropping can be prevented. Cryptography can also support
authentication if the two parties involved possess a shared secret, in the case of
symmetric cryptography, or if there is a certificate management system that can
unambiguously map certificates to users, in the case of asymmetric cryptography.

Specifically for DSRC, there is a certificate system where senders are restricted
to specific geographical regions, so that the number of nodes that can communicate
with a given node is limited, thus improving Security. In fact, it is unlikely that a
node would send a message to a remote receiver; by limiting the certificate range,
it is easier to filter out malicious nodes.

Interestingly, DSRC defines safety-related messages in plain as encryption and
decryption are length operations, whose latency could violate the real-time required
latency for these messages [14]. Instead, messages containing sensitive data are
ciphered.

To prevent information leakage that could violate users’ privacy, DSRC imple-
ments anonymization to preserve the identity of a certain node; only the Certificate
Authority (CA) is authorized to retrieve sensitive data from a user and is strictly
monitored and strengthened to be more resistant to attacks [14]; penetrating a CA
successfully would annihilate any anonymization technique.

Since the lower layers of C-V2X are based on LTE, the former leverages the same
Security measures as the latter, whereas the upper layers use the same measures as
defined for DSRC [14]. In particular, there is no specific recommendation about
how to handle sensitive data in C-V2X. However, authentication and authorization
are handled using V2X Control Functions, i.e. control systems that are responsible
for connecting both the sidelink interface (PC5) and the interface with the cellular
network (UU) by verifying authentication and authorization [14].

Interestingly, the protocol also defines one-to-many encrypted communication,
where the key is shared among all the participants and is derived from a Group
Security Key. Regarding privacy, C-V2X does not strictly demand specific Secu-
rity measures, which are left to the regional operators. 5G-V2X, the version of
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C-V2X supporting 5G, implements further Security functionalities, such as crypto-
graphic keys on multiple layers e.g. session keys, unicast link keys and long-term
credentials [14].

1.2.3 Security standards and their implications

Although V2X-enabling technologies such as C-V2X and DSRC apply strategies to
improve their Security, this is not enough. This is because the network is not the
only means available to conduct an attack: in fact, the one conducted in 2015 and
reported in [19] acted on the physical layer as it involved a CAN Bus.

It follows from this that to achieve an acceptable level of reliability, it is necessary
to think about the entire system and how to secure it at a structural level; this
concept is known as "Security by design'. The automotive industry is aware of this
need and has therefore invested in the development of Security standards that are
adoptable by manufacturers and cover all phases of vehicle development [23].

In 2016, the Society of Automotive Engineers (SAE) proposed a preliminary
guideline to establish high-level principles for improving Security in vehicles:
SAE J3061 [24]. This guideline does not delve into details but rather focuses
on general Cyber Security principles and how to port them to vehicles, which have
unique challenges to address.

In particular, the guideline aims to define a new Security framework that should
act as a baseline for any future vehicle development. It focuses on various areas of
the manufacturing process, from production to development, from techniques to
human actors involved in the procedures.

At the time, there already existed safety standards such as ISO 26262 [25],
recommending techniques that will be used by other standards, such as Failure
Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to be performed
during the Risk Management and Analysis phase of the vehicle development. These
are two techniques used to determine the possible sources of failure, the likelihood
that they may occur and the potential results from a system perspective so as to
estimate their criticality; such techniques can be used during Safety Risk analysis
to link vulnerabilities to failures and estimate their criticality, too. However, they
could also be used during Security Risk Analysis by following a similar approach.

However, such standards did not cover vehicle security. So, the guideline tried
to adapt such existing techniques and embed them into a new Security framework.

In fact, SAE J3061 strongly recommends performing an initial assessment of
potential threats and an estimation of risks for any systems that may be considered
Cyber Security relevant or safety-critical [23].

The guideline also encourages the application of consolidated secure technology;
common encryption algorithms, certificate and digital signature techniques, known
methodologies and security concepts not only are faster to implement and maintain
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than custom solutions, but they also have the merit of being validated for a long
time and therefore are reliable.

Finally, employees are an integral part of the process of improving product
security: no matter how seemingly inviolable a vehicle may be, it can still be
accessed if someone leaves the keys attached to the door. Data breaches and
malicious insiders can cause serious damage without having to interact with the
product. For this reason, SAE J3061 also insists on awareness and training of
workers and stakeholders [24].

Moreover, it recommends defining specialized personnel for continuous moni-
toring and threat intelligence to detect and respond to Cyber Security incidents
effectively, together with the establishment of incident response plans and proce-
dures to address and mitigate the impact of Cyber Security incidents. It is noted
that these actions must be carried out at the company level and are not strictly
technical.

This partition of the guidebook highlights what the three pillars of enterprise-
wide Security are: people, process and technology, as succinctly shown in Fig. 1.2.

4

Cyber
Security

Figure 1.2: The three pillars of enterprise-wide Security (Source: clounomy.com)

After SAE J3061, ISO and SAE collaborated on the development of a new Cyber
Security standard for the engineering of road vehicles [23], which resulted in the
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publication of ISO 21434 in 2021 [26]. This standard had similar objectives in
comparison with SAE J3061; in fact, the purpose of the standard to be created was
to define a structured framework to ensure Cyber Security engineering of in-vehicle
systems, thus reducing the likelihood of a successful attack and, consequently, of
losses. It also aimed to provide clear means to react to Cyber Security threats
across global industry [23].

Although SAE J3061 and ISO 21434 are very similar in terms of objectives,
ISO 21434 has a holistic approach that seeks to cover every project phase; moreover,
unlike its predecessor, it seeks to provide applicable tools and methodologies rather
than providing general guidelines that are more focused on specific security threats.
Moreover, ISO 21434 is designed to be integrated with other automotive industry
standards, such as ISO 26262, which deals with Functional Safety and ISO 9001
handling Quality Management.

It is noted that since both standards derive from pre-existing Safety and Security
frameworks, which were not defined especially for the automotive industry, they
still need adjustments to address the unique challenges of the sector. For instance,
vehicles can suffer from Man-at-the-End attacks [27], where a malicious user
attempts to sabotage the same system it is connected to, as happened in [19] when
the researchers were physically attached to the vehicle and were able to hack it
remotely.

An analysis conducted in [27] highlights how ISO 21434 considers network-level
attacks as more likely than at the physical level. However, it is more challenging to
inject malicious code and messages with ECUs that do not support Firmware-on-
the-Air (FOTA) updates, for instance. Instead, being able to gain physical access
to a vehicle is easier compared to other types of systems, thus the likelihood of a
physical-level attack is higher.

Several insights can be drawn from these two standards. In general, there is a
strong necessity to improve the Cyber Security focus during the entire development
process rather than limit it during code development and testing. Risk Management
Analysis tools must be used for detecting Security Risks, too; in particular, they
should be linked with Safety risks to evaluate how critical they are. Special attention
must also be paid to human resources, a real and integral part of the development
process, who must be properly trained.

Last but not least, both standards insist on the concept of "Security by design",
a proactive approach to system and software development that emphasizes security
considerations during the entire product lifecycle, including design. In fact, assum-
ing that Security must be embedded in the entire development process, design is a
critical phase where the system can either strengthen its resistance to attacks or
completely lose it. For this reason and with a view to defining a secure system by
design, it is essential to define secure architectures with trusted components and
subsystems.
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1.2.4 Secure Architectures

Nowadays, any system that needs to fulfil basic Security requirements leverages
consolidated techniques, with proven effectiveness and lower implementation cost
with respect to custom solutions. Moreover, these solutions are independent of the
application domain, making them suitable for any product, vehicles included.

In the following, some of the key Security techniques used in V2X communica-
tion are reported, together with an explanation of which side of the CIA Triad
(Confidentiality, Integrity, Availability) they cover:

Cryptography Assuming V2X communication takes place over an unsecured
channel, sharing plain text messages is not an option, especially if it is needed
to deal with sensitive data. Encrypting the information to be sent using a secret
makes communication confidential without blocking it. If the secret is shared
and known a priori, before the connection is established and active, we refer
to Symmetric Cryptography. On the other hand, Asymmetric Cryptography
allows for encrypted communication without possessing any secrets. It is based
on public-private key pairs such that only the owner of a certain key pair can
interpret messages intended for them. Often, asymmetric encryption is used
to generate the keys to be used for symmetric encryption.

Digital Signatures and Certification Systems Even though messages are cor-
rectly encrypted, attacks such as Man-in-the-Middle can still harm by cor-
rupting message data, thus violating Data Integrity. To detect whether this
happens, a sender can use a Digital Signature to validate the content of a
message. These signatures consist of hashes computed using cryptographic
hash functions using the target message and a key; they are used by recom-
puting the hash for that message at the receiver node and checking if they
correspond, given that the receiver knows the key and the algorithm to use.
Typically, the key to be used is a public key of the sender node. Certificates
are a special type of keys, part of a common Public Key Infrastructure (PKI)
defined by Certificate Authorities (CA) so that it is possible to link a key to a
specific user, which can be identified and trusted.

Authentication/Authorization procedures In a network where nodes do not
possess the same privileges and must be identifiable, it is necessary to refuse
requests coming from unknown or unauthorized nodes. Challenge-based au-
thentication procedures allow to recognize whether a requesting user is actually
who claims to be by checking their certification, thus enabling Authentication
and Non-Repudiation. Once the requesting user has been identified, it is
possible to decide whether their demand is valid, which enables Authorization.
Finally, filtering out requests from all unauthorized or unidentified users allows
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to refuse malicious users, thus preventing Denial of Service (DoS) attacks and
improving the overall Availability of the system.

Random Number Generation Whenever unpredictable data needs to be gen-
erated, Random Number Generators can help by providing values whose
distribution in the output domain is uniform, so that any value is as likely
as the others. They can be classified in either Pseudo Random Number Gen-
erators in case randomness is injected using deterministic algorithms, thus
providing a number that is random only apparently, and True Random Num-
ber Generators in the case where the number is random because the physical
process generating it is random itself, e.g. thermal noise.

Except for the last feature, the others have a common requirement: it must not
be possible to deduce keys without cracking what uses them, such as cryptographic
algorithms or certification systems. If keys were easy to infer with a low effort from
the attacker side, all the systems relying on them would easily fail. It is noted
that the strength of the keys, hence their unpredictability, is taken for granted by
these systems. Typically, high-quality Random Number Generators are used to
guarantee that keys cannot be found with low effort. Moreover, it must be difficult
for a malicious user to retrieve a key from where it is stored. Ideally, keys should
be used without ever being visible to guarantee maximum anonymity:.

So, key generation and handling have a major impact on the effectiveness of the
entire Security infrastructure of the vehicle. For this reason, there exist specific
modules whose purpose is to create keys, store and distribute them carefully. In
fact, not only keys must be unpredictable and almost random, but they also need to
keep their secrecy. Secure Key Management systems are the submodules deployed
in current vehicle ECUs to achieve this goal.

In the following chapter, the principles of Secure Key Management systems are
reported, together with various implementations known in the literature. Starting
from ch. 3, an implementation based on AUTOSAR’s specifications for Secure
Hardware Extensions [4] is provided; this project is the main focus of the present
Thesis.
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Chapter 2

State of the Art and
Technical Background

Considering the complex nature of vehicles and the ever-expanding network of
actors within the global road network, it becomes apparent that vehicles cannot
be deemed completely secure systems. With the growing number of individuals
involved, the risk of malicious users seeking to exploit vulnerabilities also grows.

These nefarious actors employ various techniques, ranging from manipulating
network communications by injecting harmful messages to physically tampering
with crucial components [27]. As can be noted, the attack surface of vehicles is
extensive, encompassing numerous entry points that can be targeted; the complexity
of the entire system leaves it inherently vulnerable to potential breaches. As a
consequence, any component of the system cannot be trusted by nature, if it does
not implement high-quality security features by design.

Unfortunately, there exists sensitive information related to the user, the system or
the vehicle as a whole, that must be protected and entrusted to specific components.
For this reason, defining a Secure Zone where this data can be reliably stored with
a very low risk of being stolen is not only a Security feature but an inescapable
requirement.

This goal implies two sub-objectives to be achieved, as reported in the following:

o Preventing critical stored data from being stolen; expected attacks do not
only consist of accessing this information via software since there exist also
side-channel attacks, which can be countered only by using hardened hardware
or by encrypting stored data.

» Using this critical data to ensure a sufficient level of security within the system.
Trivially, preventing any access to such data at all would guarantee that this
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information is never leaked; however, this approach would make this data
unavailable to the entities that need it.

Finding the perfect trade-off between the two is not trivial and there exist
various solutions to address this issue. Indeed, different strategies exist to define
secure zones within embedded systems such as vehicular ECU; these solutions are
explored in the current chapter.

2.1 Trusted Execution Environments

Trusted Execution Environments (TEE) are secure computing environments de-
signed to protect sensitive applications and data from unauthorized access and
malicious activities. Typically, they establish a trusted zone within the main
processor, leveraging a combination of hardware and software security mechanisms,
with a particular focus on the latter.

Essentially, TEEs provide secure enclaves that separate the trusted domain of
the system, making it possible to store and use critical data even in untrusted
systems [28]. These secure enclaves host isolated memory and resources that cannot
be freely accessed; instead, specific implementation-defined protocols must be
followed by any task that is interested to use them.

All these security procedures are monitored in real time by the underlying
Operating System, which is also responsible for the separation between the trusted
zone and the external domain and is, ultimately, the core component that enables
the TEE.

To interact with the trusted domain, the Operating System provides an API
for interacting with trusted applications, enabling secure communication and data
exchange, while hiding the internal details. In this way, the Operating System
enforces access control policies, authenticates users and applications, and protects
against various threats, including malware, code injection, and unauthorized access.

It is worth noting that the Operating System must be trusted or must be paired
with a trusted TEE kernel that shall manage the secure execution environment while
facilitating secure interactions with the main operating system and applications.

Typically, the Operating System is not sufficient to implement a Trusted Ex-
ecution Environment on its own, since additional security shall be provided by
the underlying hardware to support the trusted software so that it can fulfil its
objectives in terms of security. For this reason, most of today’s commodity CPUs
implement forms of TEEs [28]. As an example, ARM processors implement a
so-called ARM TrustZone that defines two separate domains, the Normal World
and the Secure Worlde [29]. A secure Operating System shall handle the communi-
cation between these two domains while with hardware designed specifically for
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security, such as functional blocks to provide security services, e.g., encryption, or
an additional processor that only handles operations within the Trusted World.

Notably, using separate processors for the two domains is a recurrent solution
and is also used for Hardware Security Modules.

2.2 Trusted Platform Modules

Trusted Platform Modules (TPM) are specifically designed to instil trust in com-
puting platforms, encompassing a broad range of security features and function-
alities [30]. As established by the Trusted Computing Group, TPMs adhere to a
standardized interface and service framework, ensuring compatibility and interop-
erability across diverse systems.

These security platforms encompass a comprehensive set of subsystems that
offer essential high-level features, fulfilling the requirements of various security-
critical industrial domains, including but not limited to the automotive sector.
By integrating TPMs into computing architectures, organizations can fortify the
security posture of their platforms, establishing a foundation of trust and enabling
robust protection against a wide array of threats and vulnerabilities.

While Trusted Execution Environments (TEEs) offer a more expansive range of
functions and capabilities compared to Hardware Security Modules (HSMs) and
Trusted Platform Modules (TPMs) [28], there are core security services that all
three technologies commonly provide. These include fundamental features such as
secure key storage, which ensures the confidentiality and integrity of cryptographic
keys, and memory protection, which safeguards sensitive data residing in memory
against unauthorized access or tampering. In the context of TPMs, in addition to
these critical security functions, the TPM specifications define a comprehensive
set of security-related functionalities that must be supported in order to achieve
compliance with TPM standards.

These operations encompass key functionalities like MAC generation, RSA-
based asymmetric encryption, cryptographic hash functions such as SHA-1, and
random number generation [30]. Without these operations, the system cannot
guarantee the execution of critical tasks within a trusted environment. While TPM
specifications outline the minimum requirements for these operations, they also
allow for the inclusion of additional components and functionalities. For example,
the specifications permit the use of established algorithms like AES for symmetric
cryptography, enabling broader support for encryption and decryption. This flexi-
bility accommodates evolving security needs and empowers TPM implementations
to meet a wide range of cryptographic requirements, reinforcing the overall security
and trustworthiness of computing platforms.

In most desktop computers, Trusted Platform Modules (TPMs) establish their
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secure enclave by leveraging separate hardware components distinct from the main
processor and peripherals [28]. This approach ensures the establishment of a trusted
domain within the system architecture. To achieve this objective, TPMs often
rely on Hardware Security Modules (HSMs) [28], which are discussed in detail
in the subsequent section, to facilitate the creation of this secure zone at the
hardware level. Nevertheless, it is important to note that firmware-based TPM
implementations also exist, presenting an alternative approach to realizing the
functionalities and security guarantees of TPM technology [31].

2.3 Hardware Security Modules

Hardware Security Modules (HSM) provide an alternative solution to TPMs and
TEEs, in the embedded system domain to implement a reliable security layer
between critical information and functions and the surrounding untrusted domain.

HSMs rely extensively on specialized hardware to support a wide range of
security features, including key handling and encryption, making them highly
hardware-dependent compared to other approaches. This dedicated hardware is
physically isolated from the surrounding environment and provides a very limited
hardware interface to narrow the attack surface of the component [28].

Due to the absence of a defined standard and their dependency on the specific
application, HSMs can be implemented using custom hardware tailored for specific
purposes or by utilizing COTS boards that incorporate security features, such as
a crypto-processor. In the latter case, it is up to the firmware to select which
operations to support and to implement all additional desired characteristics, if
required.

It is worth noting that, even though it is possible to enrich the capabilities of a
Hardware Security Module by supporting them in firmware, the dependency on the
underlying hardware tends to make these security components much less flexible
than TPMs and TEEs. Moreover, the lack of universally established standards to
define them further reduces the portability of a Hardware Security Module, which
is usually adapted to the context in which it is expected to use it. However, there
exist standards such as AUTOSAR’s specifications for SHE [4] that address the
problem by defining the main characteristics of a suitable HSM for vehicular ECUs.

Hardware Security Modules are primarily utilized for securely storing critical
data, including secret keys, which should always remain within the secure zone and
exclusively accessed by the HSM. These keys play a vital role in guaranteeing the
confidentiality and integrity of protected data by serving as encryption/decryption
keys or validating MACs, making it crucial to avoid any exposure of these keys.

Moreover, these modules have the capability to perform additional security
operations, provided that the underlying hardware supports them. Examples of
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such operations are Pseudo Number Generation or Asymmetric Cryptography [32],
which can be used both to validate the confidentiality and integrity of protected
data and for user authentication. Some HSMs may also support Secure Boot [4][32],
which aims to verify that the current Operating System image has not been
tampered with by computing the digest of the current image and comparing it with
its expected value.
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Chapter 3

Project Presentation and
Requirement Analysis

From the State of the Art analysis reported in the previous chapter, it can be
deduced that a dedicated module for security is a fundamental component of
modern vehicle ECUs. Not only protecting secrets and running the cryptographic
primitives with a certain level of performance is required; also controlling how and
when to access them is a security-enabling feature that prevents several attacks
involving stealing or deducing secrets. This, in turn, simplifies the security measures
to be applied in the rest of the system, as it can rely on a trusted secure zone that
is also robust.

The previous chapter has discussed several alternatives to implementing a secure
module, especially focusing on secure storage capability. As can be seen, these
solutions explore different strategies: some rely on special hardware hardened
to resist cyberattacks, for example, by exposing very few interfaces with highly
restricted communication or by preventing physical access to the device. Others
aim to improve security by acting at the firmware level, defining Secure Zones that
must remain invisible to all unsafe tasks. Some solutions require an underlying
operating system, while others can work on bare metal.

The current chapter presents a novel approach to defining Secure Key Manage-
ment Systems by illustrating the HSM Firmware Project, which aims to combine
the inherent high security of Hardware Security Modules with the portability of
Firmware; such property allows abstracting the underlying hardware as much as
possible, with limited customization required for the target board.

Before designing and implementing the HSM Firmware, it is necessary to identify
the context in which such a system shall be used, to determine which is the most
suitable strategy to follow.
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3.1 Non-functional Requirements

Since no system can be considered entirely secure, including automotive ECUs, the
first step is to establish secure storage to safeguard sensitive or critical data. Any
new Secure Key Management System must include the definition of a Secure Zone,
regardless of the approach taken.

Among the solutions explored in ch. 2, Hardware Security Modules have been
considered as the starting point of the project. They can act as a reliable measure
to implement the Secure Zone of the ECU, as they implement specific security
measures on the whole stack, from the software level to the hardware level. Defining
specific cores, memory and peripherals to handle vehicle Security makes it a difficult
component to violate. This does not imply that the system is invulnerable; security
in Hardware is never sufficient on its own. It also needs suitable secure software
that leverages all hardware security features properly.

Moreover, the design of the Secure Zone shall abide by established standards
within the automotive industry specifically tailored for this type of module. By
leveraging the expertise and best practices documented in these consolidated
standards, it becomes feasible to develop high-level components with a solid
foundation. In this way, the Secure Zone can be built upon a well-tested framework
that aligns with industry requirements and expectations. Using standard protocols,
algorithms and software strategies that are widely recommended in the cybersecurity
field makes the system further reliable and robust, while reducing the development
effort and potential security risks. For instance, AUTOSAR and NIST strongly
recommend using widespread encryption algorithms such as AES-128 [4][33], which
are typically supported by current Hardware Security Modules.

This project aims to follow the directives provided by such authoritative organi-
zations, in an effort to develop Secure Firmware based on an established background.
In particular, the current work is based on AUTOSAR’s specifications for Secure
Hardware Extensions, defined in [4], whose purpose is to define an on-chip exten-
sion for microcontrollers; the underlying intention is to embed cryptographic key
management in hardware rather than in software to protect them [4].

According to AUTOSAR, a SHE is implemented by defining a specific hardware
domain that is separate from the rest of the system; communication with the other
cores and subsystems must be severely restricted by allowing only one core to
communicate directly with the HSM, as depicted in Fig. 3.1. This is one of the
few strong requirements regarding the hardware domain; so, to obtain a Secure
Firmware satisfying AUTOSAR’s expectations, it is not demanded to design custom
hardware. Moreover, there already exist commercially available boards providing
isolated hardware areas to support Root-of-Trust components, e.g. by defining
cryptographic processors that can only handle security-related operations within
the secure zone.
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Figure 3.1: HSM physical isolation (Source: [4])

Therefore, this project should not exclusively target a specific board, as this
would limit its applicability. Instead, the focus should be on supporting a certain
category of boards and systems that are compatible with AUTOSAR’s hardware
specification for HSMs. This approach would ensure flexibility and adaptability to
different architectures.

With the goal of flexibility and compatibility in mind, this project aims to design
the Firmware for an HSM that can be deployed on an MCU board with minimal
effort to adapt the Firmware to a specific platform. The only specific hardware
required for this project is that the chosen core for the HSM must belong to the
ARMvT7-M family, as most HSMs are based on this family of microcontrollers.
Additionally, if the target processor or SoC incorporates hardware accelerators for
computationally intensive operations like encryption/decryption, utilizing these
accelerators can enhance performance and leverage their capabilities. In summary,
portability is an additional feature that should be supported. It is important to
note that HSMs are not inherently designed to be portable, as their design heavily
relies on the target hardware.

AUTOSAR defines the specifications for secure modules in the Secure Hardware
Extensions document, which integrates the specifications for a Security Software
Stack that should be supported by vehicles’” ECUs. As illustrated in Figure 3.2,
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Figure 3.2: AUTOSAR Security Software Stack (Source: [2])

this stack encompasses all the software deployed on the ECU and establishes well-
defined interfaces between each layer. In this architecture, application-level software,
responsible for running user tasks, is not allowed to directly access security-critical
peripherals. Instead, it must interact with a Crypto Service Manager [5]. The
application-level software submits requests to the Crypto Service Manager, which
analyzes and forwards them to the appropriate lower layers based on their validity.
These requests may involve tasks such as message encryption/decryption and the
loading and storing of private keys. Since application-level tasks are not equipped
to handle these activities, they must rely on services provided by dedicated security
modules.

In this context, AUTOSAR defines a spot for Secure Hardware Extensions in the
Security Stack, where they work at the lowest hardware abstraction level. Above
it, the Crypto Driver acts as an orchestrator that receives requests coming from
the upper layers and dispatches them to Crypto Driver Objects, software modules
that assist the Crypto Driver; their only purpose consists of submitting what the
Crypto Driver is forwarding them to the underlying Security modules. According
to this architecture, each Crypto Driver Object deals only with one specific security
module, and the link between Crypto Driver Objects and Security modules is
defined at design-time [2].

Consequently, it is known a priori who can interact with the HSM; considering
that each Crypto Driver Object is a running task that manages its request queue, it
can be assumed that the HSM interacts with one and only one task that is known
from the beginning. It is noted that Crypto Driver Objects are not user tasks, but
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system tasks that can be deemed trusted. This design choice allows us to manage
access to the device strictly, filtering any request that does not come from the only
certified task.

In short, a whitelisting policy can be applied. Although AUTOSAR does not
mention using such a strategy, it would be possible to implement it without violating
the specifications while increasing the security of the HSM.

The communication between the HSM and the Crypto Driver Object is facilitated
through a dedicated driver. In line with the comprehensive specifications for Secure
Hardware Extensions, AUTOSAR also provides an API document in [4] that
outlines the recommended methods for utilizing these modules. By adhering
to this standardized API, the project maintains a high level of consistency and
compatibility with AUTOSAR’s framework.

Given that the Security Stack is designed to incorporate SHE-compliant modules
and serves as a fundamental reference for software security within AUTOSAR,
integrating the current project into this framework would enhance its reliability
and software portability. This integration ensures compatibility with software
systems that adhere to the same architecture, further bolstering the project’s
overall robustness and expanding its potential reach.

3.2 Functional Requirements

Having clarified the intended context for the utilization of the HSM Firmware
project, the next essential step is to articulate the specific functional capabilities
that it shall encompass. By defining these functional requirements, it is possible to
move to the design phase while ensuring that the HSM Firmware aligns with the
intended objectives.

3.2.1 Key management

After establishing the role of the HSM in providing the Secure Zone of the ECU, the
next step is to determine the specific data that needs to be stored and protected.
Within the system, various tasks, including both system and user tasks, may have a
requirement to share sensitive data. It is crucial that this data remains inaccessible
to other tasks, ensuring confidentiality and integrity. To achieve this, encryption is
commonly employed to conceal the content of critical messages, allowing only the
intended sender and receiver tasks to comprehend it. However, encryption relies
on the use of keys, which must be kept confidential; otherwise, the effectiveness
of encryption is compromised. Thus, it is imperative for the HSM to securely
store these secret keys, ensuring their confidentiality and safeguarding the overall
security of the system.
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In addition, the HSM must anticipate that the contents of the secret keys may
change over time: in fact, it is a well-established practice to change encryption keys
to reduce the effectiveness of attacks aimed to steal them. Thus, the peripheral
should support protocols to load, remove and update keys. It is also fundamental
to define how these keys shall be accessed and used. As AUTOSAR reports in [4],
secrets must not leave the HSM unless in encrypted form: thus, it is necessary to
provide the Security features of the HSM without exposing the keys.

3.2.2 Key usage and Encryption/Decryption

Once the contents of the Secure Zone have been defined, it is important to discuss
the services that the HSM should provide with the keys, specifically how they will
be used. As mentioned earlier, one of the primary purposes of secret keys is to
encrypt or decrypt messages containing sensitive information that must remain
confidential.

It is worth noting that all encryption algorithms developed thus far can be
categorized into two main types: symmetric and asymmetric [34]. In symmetric
encryption, only one key is shared between the communicating parties, whereas
asymmetric encryption utilizes two separate keys per user. An advantage of asym-
metric cryptography is that it eliminates the need for the sender and receiver to
possess a shared secret or find a way to exchange it. This property of asymmet-
ric cryptography is particularly useful in mitigating Man-in-the-Middle (MITM)
attacks, which occur when an attacker intercepts and alters the communication
between two parties attempting to share the secret key.

Given the HSM’s capability to store a specific number of private keys and
AUTOSAR'’s requirement for these keys to remaining within the HSM domain, it
becomes possible for multiple tasks to make use of the same key stored in the HSM.
This eliminates the need for tasks to exchange information in plain text, as the
secret key is securely stored in the highly protected area of the ECU, safeguarding it
from theft by malicious users, and assuming proper management by the HSM. It is
important to note, however, that the Security Stack must ensure that the involved
tasks are authorized to use these keys. SHE itself does not possess task-specific
information, so the responsibility of verifying this condition lies with higher-level
modules like the Crypto Service Manager.

Provided that the upper layers establish stringent access controls to the HSM and
ensuring that only authorized tasks are granted usage rights, secure communication
can be achieved through the utilization of symmetric encryption and the keys
securely stored within the HSM. In fact, AUTOSAR mandates the use of SHE
for symmetric cryptographic communication [4]. While asymmetric cryptography
remains a viable approach for ensuring confidentiality and integrity, it is not
a prerequisite in this scenario. Tasks are not equipped with certifications for
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identification purposes, and digital signatures are not specified by AUTOSAR’s SHE
requirements. As per AUTOSAR guidelines, the Advanced Encryption Standard
(AES) algorithm, which has been established by NIST as the de facto standard
for symmetric encryption algorithms since 2001 [35], is specifically stipulated for
SHE-compliant modules [4]. Specifically, the mandated requirement pertains to
the variant of the block cypher that employs 128-bit blocks, known as AES-128.

The Advanced Encryption Standard offers multiple modes of operation to handle
messages longer than a single block [36]. Among these modes, the Electronic Code
Book (ECB) and the Cipher Block Chaining (CBC) modes are commonly used for
message encryption, regardless of the input length. While ECB mode is suitable
for processing individual blocks, it becomes less secure when applied to longer
messages. This is because ECB mode treats each block independently, disregarding
the overall structure of the message. In other terms, equal blocks in plain text
would provide the same ciphered block. This violates Shannon’s diffusion principle,
which seeks to eliminate statistical correlations among the input bits [37]; even
worse, message confidentiality could be broken without the necessity of stealing the
encryption key, by leveraging attacks that target the output statistical correlation.

Hence, it becomes imperative to establish an alternative mode of operation to
handle longer messages, and Cipher Block Chaining (CBC) mode is well-suited for
this purpose. In CBC mode, when encrypting or decrypting a block, the algorithm
takes into account the content of the input message that has been processed thus
far. This is achieved by performing an XOR operation between the previous output
block and the current input block before applying the encryption function [36]. By
utilizing this approach, CBC mode ensures the interdependence and integrity of
the encrypted blocks within the message.

While it is feasible to implement all other modes of operation, they are not
deemed essential in the current context. For example, Counter Mode (CTR) is
particularly suitable for scenarios where block encryption can be parallelized. It
operates by relying on a nonce and a counter, with the output block solely dependent
on the corresponding input block and the specific counter value chosen prior to the
encryption process.

Instead, CFB mode is typically employed when AES needs to be utilized as
a stream cipher, allowing the encryption of data bit by bit. On the other hand,
OFB mode is primarily used to minimize error propagation. As these specific
requirements are not present in the current project, the implementation of CFB
and OFB modes is deemed unnecessary.

AES-128 offers more than just message encryption/decryption capabilities; it
can be applied in various other scenarios. The algorithm’s inherent strength and
its resistance to decryption attempts make it suitable in other cases in which it is
needed to use functions that provide confusion and diffusion within an input text,
thus ensuring integrity. Even in these cases, the objective is to create a function
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that is practically impossible to reverse.

One application where AES-128 proves useful is in the computation of Message
Authentication Codes (MAC). MACs involve generating a concise message of
fixed size, independent of the length of the input and that is appended to the
output message. This message is computed using both the input text and a shared
secret key known only to the sender and receiver. The MAC generation algorithm
combines these inputs to produce a short message that is highly unpredictable
without knowing the inputs [33].

Upon receiving a message from the sender, the receiver recalculates the MAC
using the shared secret to ensure its correctness. Finally, the receiver then compares
the calculated MAC with the expected value; if there is a perfect match, then the
Authentication and Integrity of the output message are confirmed and the receiver
can trust what has been received. Fig. 3.3 illustrates how MAC generation and
validation are performed.

Input message ——» Fi) —» MAC Alice computes the MAC
Alice
MAC Generator
v
le--
Input message MAC Alice crafts and sends the
message

...........................................................

Bob receives the message Input message MAC

Bob

Bob recomputes the MAC Input message b » =] L »MAC2

MAC Generator

Bob checks whether the two MACs
correspond (MAC validation) MAC == MAC2 ?

Figure 3.3: MAC generation and validation (Here, the text is not encrypted)

Authentication is ensured through the presence of a shared secret, while the in-
tegrity of the message relies on the characteristics of the MAC generation algorithm.
The key requirement for any candidate algorithm used to generate MACs is that
it must be practically impossible to reverse. One commonly employed approach
is to utilize cryptographic hash functions, which produce HMACs when used for
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MAC computation. Additionally, symmetric encryption algorithms, such as block
cyphers in CBC mode, can be employed to generate MACs, leading to designations
like CBC-MAC or CMAC. NIST recommends the use of such algorithms for this
purpose [33]. Notably, it is important to recognize that Message Authentication
Codes do not inherently provide confidentiality, as the message payload may still
be in plain text.

For completeness, it is reported that there exist different strategies to compute
the MAC, in case the output message is encrypted. If that is the case, there are
three possible choices to compute the MAC, with different costs in terms of latency.
All these cases use two different keys for encryption and MAC generation, as it is
better to differentiate keys rather than using the same for any security operation:

Authenticate and Encrypt (A&E) In this method, the output message is
E(K, P) || MAC(K:, P)

where F(K, M) is the encryption function taking a key K and message M,
MAC(K, M) is the MAC generation algorithm that generates a MAC starting
from a secret K and a message M. Finally, || represents the concatenation
operator. In order to validate the MAC, it is required that the receiver
computes the original input message to recalculate the MAC.

Authenticate then Encrypt (AtE) Here, the output message is

Even in this case, it is necessary to perform both decryption and MAC
generation before validating the message.

Encrypt then Authenticate (EtA) The final case, where the output is
E(Ki,P) || MAC(K,, E(K,, P))

In this scenario, the receiver initially calculates the MAC from the encrypted
output. The decryption of the incoming message to reveal its concealed content
is only carried out if the computed MAC matches the expected value. By
conducting MAC validation before decryption, the process is expedited since
decryption is a computationally intensive operation.

Regarding the HSM, AES-128 has been defined only to ensure confidentiality
by securely encrypting messages thus far. However, a strategy to allow the module
to detect incoming message corruption must be implemented, especially for the
most security-critical operations such as updating or removing keys; otherwise, it
would be possible for an attacker to implement a Denial of Service (DoS) attack
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by leveraging a MITM attack that intercepts the value of the new key to update
and modifies it before submitting such value to the HSM; as a result, the task that
asked to update the key will believe that it knows the contents of the stored key
and will be mistaken. Whenever the task must know what has been stored in the
HSM in order to obtain a certain service, it will result in failure and the task will
not see its demands fulfilled.

For these reasons, AUTOSAR demands to use AES-128 as a MAC generation
algorithm [4], by following the specifications provided by NIST in [33]. The details
about how AES-128 shall be used for such a purpose are not required during the
requirement analysis phase; they will be discussed in the next pages, where the inner
workings of the HSM will be described. In particular, the Encrypt-the-Authenticate
strategy shall be used to provide fast MAC validation and reduce latency in case
of invalid input messages.

3.2.3 Memory Protection

An essential functionality that the HSM should support is Memory Protection.
Memory Protection Units (MPUs) are hardware modules that work in conjunction
with Memory Management Units (MMUs) to prevent memory management bugs
and counteract memory corruption exploits. MPUs are widely employed in modern
systems [38], including processors such as the Cortex ARM-v7 architecture [39],
which incorporate these hardware modules directly into their System-on-Chip (SoC)
designs.

MPUs achieve their objective by defining memory regions and specifying which
tasks are permitted to access them, as depicted in Fig. 3.4. This approach ensures
that each task or user has access only to a limited portion of memory, preserving
memory integrity. Additionally, MPUs play a crucial role in thwarting attacks like
stack overflows, which deliberately exceed the task’s allocated memory. MPUs can
detect such events and respond accordingly by invoking their Interrupt Service
Routines, whose behaviour is implementation-dependent.

Moreover, the use of MPUs during the development and testing phase can assist
in identifying bugs at an early stage [38]. By monitoring nominal memory accesses
and verifying their expected behaviour, MPUs can help detect and mitigate issues
before they escalate, thus minimizing false positives and validating memory usage.

Given the established effectiveness of MPUs in enhancing memory management
security and their diffusion, the current project aims to leverage this technology
to enhance the overall quality of the work. Specifically, the project focuses on
verifying that the tasks executing within the HSM do not exceed their allocated
memory, ensuring robust memory protection within the system.
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Figure 3.4: Memory Protection Unit in ARM Cortex-M cores (Source: ARM)

3.2.4 Asynchronous Communication

Lastly, it is crucial to maintain a high level of responsiveness in the system. Vehicles
not only serve as safety-critical systems but also operate as real-time systems with
strict deadlines that must be met. Even minor deviations from these deadlines can
potentially lead to harm or injury to the driver and passengers onboard.

Hence, it becomes necessary to monitor the latency of all operations within
the ECU to ensure they remain within an acceptable range. Certain operations,
such as encryption/decryption in CBC mode, can be time-consuming and occupy
valuable scheduling time that should be reserved for critical activities. Therefore,
it is crucial for the HSM to operate without compromising the responsiveness of
the system. AUTOSAR recognizes this challenge and defines specific latency limits
for encryption/decryption with AES-128 in both ECB and CBC mode [4].

Additionally, the system is required to function asynchronously [4], meaning
that when the Crypto Driver Object sends a request to the HSM, it should not
wait for the request to be completed but should be able to return immediately. It
is worth noting that the HSM operates on a dedicated core, allowing it to run in
parallel with the rest of the system. Finally, the system must also be capable of
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detecting when the HSM has completed a request so that the Crypto Driver Object
is aware that it can submit a new one to the HSM.
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Chapter 4

HSM Firmware Design

4.1 High-level architecture

After establishing both functional and non-functional requirements, the following
step of the project involves the exploration of potential solutions that can fulfil these
specified requirements. This section is a crucial step in the project’s development
journey as it aims to evaluate potential solutions that will facilitate a robust
and effective implementation. A thorough examination of the project’s structural
and behavioural aspects during this exploration lays the foundation for informed
decision-making and enhances the overall quality of the final design First of all,
it is recalled that one of the project’s distinguishing characteristics pertains to
the distinctive nature of the underlying hardware. Hardware Security Modules
(HSMs), including those compliant with the Secure Hardware Extension (SHE)
standard, impose specific hardware prerequisites that demand careful consideration.
It is worth noting that SHE-compliant modules require deployment on isolated
CPU cores with limited interfaces to other board components of the board [4].
Consequently, it is presumed that the entire project will be implemented on a board
accommodating a core designated for Root-of-Trust elements.

Nevertheless, it is essential for the module to be accessible from external sources.
From the perspective of the end user, represented by a Crypto Driver Object [2],
submitting expected requests with minimal complexity and basic knowledge of the
HSM becomes imperative. To facilitate this interaction, the presence of a driver is
essential, as it provides a software interface.

The driver’s responsibilities extend beyond merely receiving incoming requests
from the Crypto Driver Object. It also assumes the role of analyzing and verifying
the validity of these requests. Furthermore, it handles all internal communication
with the HSM, including forwarding input requests to the hardware module itself,
retrieving results, and executing any necessary post-processing steps mandated by
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the user. The Driver is also the only software module that is allowed to access the
HSM.

Importantly, the driver cannot be deployed on the target HSM; instead, it must
be available for the core where the Crypto Driver runs; as a consequence, the
project can be split into two domains, as depicted in 4.1.

External domain HSM domain
User Req
e
Driver reply |priver APl .
-— < Driver < > HSM

Figure 4.1: Conceptual representation of the Driver and the HSM on separate
domains

To ensure adherence to AUTOSAR standards, developers experienced with
AUTOSAR can simplify integration by utilizing the AUTOSAR-prescribed API for
Secure Hardware Extensions (SHE)[4] simplifies integration for developers that are
experienced with AUTOSAR standards. In fact, it is expected that the HSM will
be seamlessly integrated into the existing AUTOSAR Security software stack. As
a result, it is likely that the developer responsible for creating the Crypto Driver
will adhere to the interface specifications defined by AUTOSAR, ensuring smooth
access to the HSM In particular, the API covers all operations of interest for the
HSM, such as:

e Encryption and decryption, both in ECB and CBC mode;

o MAC generation and validation

o Retrieving the current status of the HSM
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HSM Firmware supports all the functions related to these operations and strives
to adhere to the API specifications
The API also includes functions for:

» Cancelling ongoing operations
» Secure Boot

e Random Number Generation

which are out of the scope of the project, thus they are not used. Although these
functions are currently not utilized, they lay the foundation for future integrations,
enhancing the capability of the HSM and providing an AUTOSAR-compliant
interface. Regarding the driver, its main purpose is to allow the end user to submit
requests to the HSM, which means that the driver itself should not perform any
security-critical operation on its own. Moreover, this would violate the founding
principle of the HSM, designed to perform such operations in its secure environment.
For this reason, the driver acts like a software filter that rejects any ill-formatted
request. However, it also filters out any request that does not come from the Crypto
Driver Object by means of a whitelisting policy that is aware of the memory area
where that task is located.

After validating a request, the driver forwards it to the HSM for processing.
However, the driver must know the hardware interface to communicate with the
peripheral and such interface can change from one board to another.

To simplify the communication protocol between the driver and the HSM, both
utilize a software-defined Hardware Abstraction Layer (HAL), an interface that
ignores the hardware details of the physical interface between the HSM domain
and the outside.

It is crucial to consider the potential vulnerability of the module to Man-in-the-
Middle (MITM) attacks when the external domain and the HSM communicate via
a shared channel, such as a CAN bus. In such cases, it would be possible for an
external module to intercept and listen to critical communication occurring on the
bus. To mitigate this risk, it is recommended that both the driver and the HSM
encrypt all their messages exchanged during communication [4].

Alternatively, the highest level of security in the channel can be achieved if it
is a point-to-point connection, allowing only the driver and the HSM to directly
communicate with each other. Some boards incorporate cores specifically designed
for security-critical operations and may define such a type of channel. Therefore,
for the purposes of this project, it is assumed that the communication between the
driver and the HSM is point-to-point, eliminating the need for message encryption.

The Hardware Abstraction Layer must differ between the two sides of the
channel, since the driver must access the HSM registers and memory in write-only
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or read-only mode, whereas the HSM must use them in the opposite way. Hence
two separate HALSs, one for the driver and one for the HSM are needed. It is
worth noting that, although the HAL abstracts the underlying hardware, board-
specific code must be implemented to support the communication between the
driver and the HSM. It’s important to note that while the HAL abstracts the
underlying hardware, board-specific code is necessary to facilitate communication
between the driver and the HSM. As reported later, the HAL is one of the few
software interfaces that need customization to enable porting the entire project
from one board to another. Another abstraction interface is the Operating System
Abstraction Layer (OSAL), which is defined only for the driver to handle the
asynchronous communication with the HSM. Both of them will be explored in
detail in sec. 4.2 and sec. 4.3.

Thanks to these abstraction layers, requests can eventually reach the HSM,
where they shall be treated and processed. Essentially, the HSM behaves as a
Finite State Machine that stays in an idle state until a request is detected; when
it happens, the HSM analyzes what has been received and determines request
metadata such as its type, its arguments or where to store the final output. Once
the HSM has understood what is needed to satisfy the request, it dispatches the
execution of the command to its functional units, which are a Key Manager to
store keys and a Cryptographic Unit to handle any operation reported in sec. 3.2
and that involves AES-128. After executing the command, the HSM sends the
results to the external domain through its Hardware Abstraction Layer. The driver
can then store the output in the memory of the external domain and notify the
Crypto Driver Object of the completion. In this way, the Crypto Driver Object
can submit new requests as it can assume that the HSM is not busy anymore.

Treating the HSM as an FSM is due to the fact that, except for requests coming
from the driver, there are no other operations that the HSM has to perform
autonomously, without external input. Therefore, one can consider the HSM as a
passive but responsive listener, ready to handle any request.

To visually represent the concepts discussed, Figure X.X illustrates the high-level
architecture of the project.

4.2 The Driver

Once the high-level architecture of the project has been established, it is possible
to delve into the details of the features that HSM Firmware provides; with this
further knowledge, it will be possible to understand with a higher level of detail
how requests are actually processed inside the HSM, eventually exploring the entire
request lifecycle.
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Figure 4.2: High-level architecture of the HSM Firmware project

4.2.1 The API

To describe the design choices of the project, we can start with the driver interface
as the starting point, using a top-down approach. Additionally, since requests
are generated externally by a system task, which corresponds to a Crypto Driver
Object [2], the interface serves as the initial functional block that they need to
navigate. As reported in sec. 3.1, AUTOSAR has already defined an API for
Secure Hardware Extensions [4] to implement most of the features that are deemed
necessary for this project. However, not all the API must be implemented since it
also comprises functions to support additional features, such as Secure Boot and
Random Number Generation, which are out of the project’s scope. However, it
is not necessary to implement the entire API as it includes functions to support
additional features like Secure Boot and Random Number Generation, which are
beyond the scope of this project. The API-defined functions currently supported by
the HSM can be divided into three categories:

o Encryption/Decryption and MAC Generation/Validation, which require the
Cryptographic Unit of the HSM to be processed:

— HSM_CMD_ENC_ECB(): to encrypt a message in ECB mode. This mode is
deemed unsafe as it allows to perform attacks based on the correlation
between the output blocks; for this reason, only messages whose size is
equal to one block can be encrypted in ECB mode. In fact, encrypting a

37



HSM Firmware Design

message in CBC mode is equivalent to encrypting it in ECB mode if the
length of the message corresponds to the block size.

— HSM_CMD_ENC_CBC(): to encrypt messages in CBC mode, whose size
must be a multiple of the block length, i.e. 128 bits. It is noted that if
k X Biep < Mien, < (/{5 + 1) X Blen, with k& € N, B, = 128 bits and M,,,, is
the message length, then the message cannot be encrypted as is; therefore,
they must be padded so that the final length is a multiple of the block
length. According to AUTOSAR'’s specifications, it is expected that the
HSM shall be able to detect the end of the message by finding the padding
sequence at the end of the message. However, this feature has not been
implemented; currently, it is required that the caller provides the input
message size as an additional argument.

— HSM_CMD_DEC_ECB(): this function reverses the effect of
HSM_CMD_ENC_ECB(), i.e. it implements AES-128 decryption in ECB
mode; even this function can be used only on single blocks.

— HSM_CMD_DEC_CBC(): this function implements AES decryption in CBC
mode. As well as for HSM_CMD_ENC_CBC(), messages must be padded
correctly before being processed.

— HSM_CMD_GENERATE_MAC(): MAC generation (CMAC) using AES-128
as the block cipher. Here, messages can have any input size, it is up
to the HSM to pad the message accordingly. This difference is due to
the fact that padding messages for encryption in CBC mode can follow
several padding strategies, such as PKCS#7 [40] or ISO/IEC 7816-4 [41].
This is not true for the MAC generation algorithm used in the project,
i.e. CMAC-AES [33]. As a matter of fact, the original AUTOSAR’s API
specifications include a message_length argument to report the length
of the message, which can be a non-multiple of the block length.

— HSM_CMD_VERIFY MAC(): MAC verification (CMAC) algorithm using
AES-128 as the block cipher as well. Given an input message, its length
and its pre-computed MAC, the algorithm recomputes the CMAC and
compares it with the expected one, eventually reporting to the caller
whether there is a match between the two MACs.

o Key loading and update, which require the HSM Key Manager:

— HSM_CMD_LOAD_PLAIN KEY(Q): load a key in plain text, without any spe-
cific algorithm to forward the key to the HSM in a secure way. It is a
function to be used rarely, in all the cases where it is needed to use a key
that is not stored in the HSM. For instance, it is useful for Key Derivation,
i.e. the process with which a secondary key can be computed starting
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from a primary key. This technique can be used both for encryption and
MAC generation and is especially useful to load keys inside the HSM, as
described in sec. 4.3

— HSM_CMD_LOAD _KEY(Q): load a key securely, by embedding it into an en-
crypted message whose key is the previous value of the key. In fact,
HSM-stored keys can be identified by means of a numerical ID and any
request to load /update/remove keys uses such ID to define which key is
the request related to. All AUTOSAR-defined functions that imply to
use of a certain key, e.g. MAC generation, use an ID to identify which
key to use, without providing it in plain text over the channel. About
key update, if we want to load key k;, it is required to know its previous
value. This approach guarantees authentication, as it can be supposed
that whoever asks for a key update is also the owner of such key since
they know their content. By encrypting the request, confidentiality can
be provided. Finally, integrity is guaranteed thanks to the use of a CMAC
appended to the encrypted request to detect whether it has been corrupted
along the way.

« Status and control commands to configure the driver

— HSM_CMD_GET_STATUS(): Retrieve the HSM Status Register [4], which
informs whether the HSM is currently busy. Other information provided
by this register, such as the results of the Secure Boot verification, is not
used in this project.

For all the functions reported here, the arguments are not described in detail;
however, further information about arguments, their types and the return codes is
available in the source code documentation.

Although the HSM Firmware aims to be easy to integrate within the AUTOSAR
Framework and therefore aims to comply with the SHE API specification as much
as possible, the original specifications did not take into account certain aspects of
driver management that were, in this case, considered necessary. For this reason, it
was deemed appropriate to add functions to allow for configuring and managing
requests, as well as for HSM and Driver initialization, status check and request
post-processing.

The additional functions included in the current project are reported in the
following;:

e HSM DRIV_INIT(): initialization function for the driver, which resets all global
data, including callbacks for asynchronous communication. Since the HSM
runs on a separate core, it launches a boot-time routine autonomously and
this function waits for the HSM to be ready before returning.
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o HSM_IS BUSY(): checks whether the HSM is not busy anymore. It can be
used for polling the HSM while waiting for the end of the currently processed
request or for implementing synchronous communication, in case the Crypto
Driver Object has no other task to perform and can poll the HSM without
losing performance.

o HSM_CALLBACK_SET(): as described later during the description of the Request
Manager, callbacks have a fundamental role in providing the asynchronous
communication feature required by AUTOSAR. In particular, they allow
defining custom code for post-processing of the results. Since the only task
that can define such callbacks is the Crypto Driver Object of the HSM, it is
possible to define additional code at run-time for handling security-critical
results. Callbacks are defined per kind of operation, i.e. when set, the callbacks
are executed every time a request of a certain kind is requested, e.g. after
retrieving the results of MAC validation.

« HSM_CALLBACK_UNSET(): it reverts HSM_CALLBACK_SET(), i.e. it resets the
callback associated with a certain operation. If a request is launched without
setting a callback, no post-processing action will be taken, but the request
will be executed nonetheless.

o HSM_CMD_REMOVE_KEY(): while AUTOSAR expects the capability of loading
keys into the HSM, it does not define any specification to remove keys. This
function aims to fill this gap by providing this additional feature.

o HSM _CMD_DERIVE KEY ENC(): key derivation function to create a derived key
starting from an input key provided as an argument. It uses a compression
function based on AES (AES-MP) that acts as a cryptographical hash function
to generate a pseudo-random key. The choice of the algorithm is specifically
dictated by AUTOSAR in [4]. Once generated, the newly-defined keys can be
used as input keys for encryption and decryption.

e HSM_CMD _DERIVE KEY MAC(): by using the same algorithm of the key deriva-
tion function for encryption, it is possible to generate a derived key for MAC
generation or validation. The main difference in comparison with the previous
function relies on how the compression function is used. In particular, such
a cryptographic hash function uses a constant value to be appended to the
input key before compressing it. So, in order to generate two different keys
starting from the same input, a possible approach consists of using a different
constant value to append. Using separate keys for MAC generation and
encryption of the same message is strongly recommended as it further reduces
the correlation between the output data, such as the generated MAC and the
encrypted message.
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o HSM_ISR_HANDLE_NOTIFY(): an Interrupt Service Routine (ISR) that handles
the completion of a request. This ISR is readily available in the main project
header and can be directly included in the Interrupt Vector Table without
any modifications. In addition to the presence of a security-critical core
and the establishment of point-to-point communication between the external
domain and the HSM, there is an additional hardware requirement imposed
by the project. Specifically, the HSM must provide an interrupt line from
the HSM to the external domain to signal the completion of a request. This
requirement arises from the need to meet the asynchronous communication
requirements, as an alternative strategy, such as polling, is incompatible with
these requirements.

Moreover, all API functions that use key indices to access HSM stored keys
have also a counterpart where the key shall be provided by the user. For instance,
HSM_CMD_ENC_ECB has an equivalent function HSM_CMD_ENC_ECB_WITHKEY where
the input key is provided as a byte array. However, these functions were originally
developed to enable encryption and MAC generation in case the input key was not
stored in the HSM. However, by using HSM_CMD_LOAD_PLAIN_KEY, it is possible to
load a key once and then use it without exposing the key over the channel. Thus,
these functions are currently deprecated.

The entire API, both custom and AUTOSAR-compliant, can be viewed in
Fig. 4.3. Deprecated functions, together with the ISR, are not reported in the
figure; in particular, the latter is not a callable function for the Crypto Driver
Object since it is made accessible only to use in the Interrupt Vector Table at
boot-time.

4.2.2 Request management

After familiarizing third-party developers with the interface for communicating
with the HSM, they can proceed to submit requests to the device. At this stage, it
becomes essential to delve into the process of analyzing and filtering these requests
before they access the HSM.

The core of the driver of the HSM Firmware is the Request Manager. This
software component represents all the internal logic of the driver and has various
purposes:

o Checking the validity of the requests, e.g. verify whether the input arguments
are in a valid range.

o Checking task authentication and authorization; since the Crypto Driver
Object is the only task allowed to access the HSM, it is mandatory to identify
who asked for the HSM.
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Figure 4.3: HSM Driver API

o Forwarding valid requests to the HSM.

o Processing request results and making them accessible to the task that initiated

the request.

To determine whether a request is valid, the Request Manager needs to conduct
a series of checks whenever a new request is received. In the following, the sequence
of these checks is outlined:

1.

Verify whether the caller task is the Crypto Driver Object by means of a
whitelisting policy;

. Check that the driver has been initialized, i.e. HSM_DRIV_INIT has been called

previously;
Check whether the HSM has been correctly initialized as well;

Check that the core is currently in Privileged mode; this step further enhances
the security of the firmware, by guaranteeing that not only the caller task
corresponds to the one allowed, but also that no task with user privileges
could access the HSM;

Verify if the HSM is currently occupied, meaning it is engaged in processing
another request and has not yet completed its task.

42



HSM Firmware Design

6. Given that each request is accompanied by specific arguments, distinct checks
are conducted on these arguments according to the command specifications;

Although the HSM cannot be utilized, unauthorized tasks may still try to
obtain information about the driver’s current state, including the status of ongoing
requests and the initialization status of the HSM. The latter piece of information
could be relevant in scenarios where the HSM handles Secure Boot verification.
For example, if an attacker manipulates the Operating System image and the
HSM indicates that the current RTOS image remains uncorrupted, the attacker
may consider their strategy successful. However, such an occurrence is highly
improbable since Secure Boot verification would detect any tampering with the
RTOS image. Regardless, it is imperative to prevent unauthorized tasks from
accessing any information pertaining to the HSM and the driver. By giving priority
to task authorization checking, unauthorized access attempts would be prevented
from obtaining any status information, except for receiving an indication that the
driver rejected the request due to the initial check failure.

The initial verification is performed through a whitelist policy to determine if
the calling task corresponds to the Crypto Driver Object.To implement such a
policy, there are a few assumptions to make about this task and how it is allocated
in memory. In particular, this check assumes that the task’s memory allocation
is contiguous and resides within a specific memory range without any interleaved
memory. Fig. 4.4 displays the typical memory layout of a task, created by an
Operating System once the latter starts.

It is noted that this task is defined at the system level, meaning that its existence
is not dependent on user actions and should last for virtually the entire time from
the moment the engine is turned on to when the vehicle is turned off. Moreover, it
is recalled that this is the only task that is able to communicate with the HSM,
since the Crypto Driver delegates the Crypto Driver Object to use this module [2]
and does not use it directly. Thus, it can be assumed that such a task is always
active.

Finally, given that it is a system-level task, embedded software developers that
want to integrate this project inside an AUTOSAR-compliant firmware can define
the Crypto Driver Object task within a specific address range, defined statically.

Starting from these assumptions, the whitelisting policy is based on a simple
check using the return address of the caller function, whose behaviour is reported
in Alg. 1 and depicted in Fig. 4.5.

In order to guarantee that the return address belongs to the caller task area,
it becomes imperative to enforce a restriction on the compiler to refrain from
performing any form of function inlining on all driver functions. Given that the
Hardware Security Module (HSM) is exclusively employed for security-critical
operations, where the primary latency arises from executing computationally-heavy
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Algorithm 1 Whitelisting check

1: procedure WHITELISTING__CHECK

2 > waddr_1 < lowest address of the whitelisted region

3 > waddr_h < highest address of the whitelisted region

4: ret_addr < return address of the caller function

5: if waddr_1 < ret_addr < waddr_h then

6 result < True > Authorized access
7 else

8 result < False > Unauthorized access
9: end if

10: return result

11: end procedure

requests rather than managing them, it can be reasonably assumed that this
constraint does not impose a significant performance penalty.

Implementing a stringent access policy that prohibits any function external to
the predefined whitelisted region from accessing the Hardware Security Module

44



HSM Firmware Design

significantly diminishes the driver’s attack surface. This approach ensures that
solely a trusted task possessing proper authorization can utilize the HSM, thereby
fortifying the overall security level of the system.

However, it is worth noting that the design cannot guarantee security on its own:
if a careless developer or an insider develops insecure system software, e.g. the
Crypto Driver Object is easily tampered with, then the security of the HSM also
suffers. Not surprisingly, AUTOSAR itself states that, in the absence of adequate
security measures in the rest of the system, it cannot be guaranteed that the HSM
is inviolable, even if such a module conformed to SHE specifications [4].

high address

o access fail
Malicious task

-

J.

HSM
Crypto Driver Object

acCCcess success

low address

L ——

Figure 4.5: The whitelisting strategy

Assuming that a request successfully satisfies the initial verification conducted
by the Request Manager, the subsequent phase involves formulating the request in
a manner comprehensible to the Hardware Security Module (HSM). This entails
encapsulating all input data provided by the Crypto Driver Object within a Request
Packet, which encompasses pertinent metadata such as the Request Type and,
when unknown beforehand, the size of the input arguments. Notably, certain
inputs, such as messages intended for encryption in CBC mode or input messages
for MAC generation, may exhibit variable lengths. In the present design, the HSM
needs to possess knowledge regarding the size of the data it is about to process.

Once the packet is ready, the Request Manager can send it to the HSM. At this
stage, the Hardware Abstraction Layer (HAL) assumes a crucial role in facilitating
communication between the driver and the HSM. The HAL acts as an intermediary,
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offering an abstraction layer that aims to minimize dependencies on the underlying
hardware. Consequently, the driver can interact with the HSM through a logical
interface that remains agnostic to the particular implementation details. Specifically,
the interaction between the driver and the HSM is facilitated through a logical
interface comprising the following components:

« A Status Register (9-bit long), which includes the AUTOSAR-defined Status
Register [4], but also contains additional information used by the driver and
not specificated by AUTOSAR, i.e. whether the HSM is successfully initialized
or not. From the driver’s point of view, this register is read-only.

« A Control Register (1-bit long) whose only purpose is to inform the HSM that
a new request has been successfully received from the driver; only the driver
can actively control this register.

o Two input buffers that are used in parallel when submitting a new request to
the HSM. In particular, one fixed-size buffer contains all the request metadata
that the HSM should read before analyzing the payload of the request itself,
which is received through the other buffer, whose size is configurable, with a
minimum acceptable size of 64 bytes

e Two output buffers with the same purpose and size as those mentioned above;
using two buffers instead of transmitting only the raw output of the request
allows informing the driver about the outcome, possibly communicating error
codes in case of request failure.

Since every type of request expects a specific number of arguments with different
lengths, input data is serialized according to the request type, as shown in Fig. 4.6.
By conveying the request metadata through the input buffers, the HSM can
deserialize the data and accurately interpret the payload before processing it.

Regarding the interface with the HSM, the responsibility of mapping the registers
and buffers to the memory of the Hardware Security Module lies with the imple-
mentation itself, as the driver is agnostic with respect to their specific placement
and access mechanisms. This task is instead delegated to the Hardware Abstraction
Layer, which handles the management and configuration of these elements.

The Hardware Abstraction Layer (HAL) is one of the few software modules in
the HSM Firmware project that requires customization before deployment on a
specific target board. This is because the HAL heavily relies on the underlying
hardware. As discussed in Chapter [chap. 3|, the project aims for a high level of
portability while meeting security-related constraints. To achieve this goal, it is
important to isolate software components from hardware and the operating system,
creating a clear separation between logical elements and system-specific code. As a
result, the HAL is the only software module that requires developer intervention
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Figure 4.6: Data layouts in the buffer memory of the HSM

to ensure firmware compatibility with the target board, along with the Operating
System Abstraction Layer (OSAL)

The HAL assists in forwarding requests to the HSM, which accesses them from
its buffers along with the accompanying metadata. Upon detecting a new request,
the HSM processes it according to its specific type. Once the results are generated,
it is crucial to provide the output to the caller task for further use. Specifically, in
the case of the Crypto Driver Object, the results are forwarded to the upper layers
of the Security Stack, including the Crypto Driver, the Crypto Service Manager,
and finally, the user task that initially requested the data [2]. To comply with
AUTOSAR requirements for the asynchronous communication protocol between
the HSM and the user [reference], requests need to be processed by the HSM in
a non-blocking manner. As a result, when a task initiates a request, the driver
returns control to the calling task under two circumstances:

e The request is invalid or unauthorized, thus the operation is aborted and the
driver will not forward it to the HSM;

e The request is accepted and sent to the HSM.

In the latter scenario, the driver does not wait for the operation to complete.
Instead, it relies on the HSM to notify the driver when the final output is ready,
allowing the driver to retrieve it from the HSM buffers. This notification mechanism
is implemented through an Interrupt Service Routine (ISR) that is triggered
automatically by the HSM using a special interrupt line. HSM-compatible boards
designed for real-time applications, such as automotive ECUs, require non-blocking
high-latency operations to meet critical time constraints and prevent system failures.
These boards typically have interrupt lines dedicated to event management between

47



HSM Firmware Design

the HSM and the driver, as interrupts offer an established approach for implementing
event-driven architectures that are inherently responsive In the present work, the
ISR is already defined and can be used by a future developer to include it in the
Interrupt Vector Table of the target processor where the driver is deployed. In
this way, minimal intervention is required to support the real-time communication
between the HSM and the driver.

Actually, the behaviour of the Interrupt Service Routine (ISR) is straightforward,
as it serves the singular purpose of activating a designated task specifically intended
for the driver: the Notification Task, which intervenes during the last steps of the
request lifecycle. In fact, when the HSM informs the driver about the completion
of a request by triggering the special interrupt line, the ISR wakes up this task that
arranges to extract the output from the HSM buffers by means of the Hardware
Abstraction Layer. An additional purpose of the task consists of applying post-
processing routines in case they have been defined for the current request type;
once the Notification Task has post-processed the results, it is suspended until
another request has been completely processed by the HSM.

It is worth mentioning that the driver and the HSM have only two instances of
communication throughout the request lifecycle:

o When the request is forwarded to the HSM after passing all initial checks in
the driver;

o After the request has been processed by the HSM, so that the driver can
retrieve the results and report them to the Crypto Driver Object.

This approach minimizes the exposure of information moving from or reaching
the HSM, reducing the information leakage and the effectiveness of a MITM attack.

To define tasks, the presence of a Real-Time Operating System (RTOS) is
mandatory. However, the present work does not impose any restrictions on the
choice of Real-Time Operating System (RTOS) to be used, aiming to maintain
maximum flexibility within the project. For this reason, the Operating System
Abstraction Layer defines a light software module whose purpose is to contextualize
generic RTOS calls for the target system on which the driver is deployed. Indeed,
it has been supposed that, while the HSM itself runs on a bare-metal configuration,
the external domain leverages a consolidated RTOS. Not all the functionalities of
an RTOS are required for the driver. Indeed, the OSAL implements only basic
procedures to create tasks, check privilege levels and handle software signals, which
are used to suspend and wake up the Notification Task.

In principle, it is possible to integrate the functionality of the Notification Task
directly into the Interrupt Service Routine (ISR). However, this approach poses a
scheduling risk as the ISR would hinder the execution of all tasks, including critical
ones, until its completion. It is important to highlight that the Notification Task
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primarily serves the purpose of transferring result data, and certain operations,
such as CBC mode encryption, involve processing large volumes of data, resulting
in an ISR with excessive latency. Consequently, the ISR has the potential to disrupt
the overall system behavior and inadvertently cause priority inversion. To mitigate
this risk, the Notification Task has been designed to prevent failures caused by the
HSM Firmware

As mentioned above, the driver provides the further capability of applying
post-processing algorithms to output data before returning it to the caller task.
Specifically, the Crypto Driver Object can benefit from dynamically selected routines
that are systematically applied after processing a request of a specific type, thus
simplifying the internal logic of the Crypto Driver Object.

To enable this feature, the driver supports a set of callbacks, one per request
type, that can be configured at run-time by the caller task. During the initialization
phase, the callbacks are instantiated and associated with the driver, rather than
with the specific task utilizing them, making them global in scope. When the
Notification Task updates the caller’s memory with the request results, it also
checks whether a callback has been defined for that type of request. If that is the
case, the output is post-processed according to the caller’s policy. After this final
step, the driver and the HSM are not busy anymore and can process new incoming
requests.

It is important to highlight that all callbacks are globally defined and directly
associated with a driver instance, rather than being specific to individual tasks.
As a result, the callbacks are shared among all potential users of the HSM. This
implies that when multiple tasks utilize the driver concurrently, it can result in
inconsistencies in the driver’s behavior Consider the scenario where two tasks utilize
their respective callbacks to post-process a key update operation. Due to the lack
of awareness between the tasks, one task may mistakenly assume that the current
callback being used is the intended one, even though this cannot be guaranteed.
Even defining the callback immediately before submitting the request would not
resolve this issue. In a situation where two tasks simultaneously need to submit
the same type of request, a race condition would occur, making it unpredictable
which callback would ultimately be utilized after the operation. This condition is
visually depicted in Fig. 4.7.

However, this problem is not a limitation for the driver in the current case. It
is secure to assume that, if the driver is used in a project that is compliant with
AUTOSAR’s Security stack, then it is known that one and only one task will use
the HSM: the Crypto Driver Object associated with the module itself.

Finally, Fig. 4.8 reports the entire lifecycle of a request from the point of view
of the driver.
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Figure 4.7: Race condition with callbacks if multiple tasks use the driver

4.3 The HSM

4.3.1 The HSM Manager

Once the driver successfully forwards the requests coming from the Crypto Driver
Object, they undergo processing within the Hardware Security Module. It is within
the HSM that the requests are executed and the corresponding results are computed.
Indeed, the HSM module of the project represents the core of the peripheral and
enables all the security-critical features required by the specifications.

Essentially, the only purpose of the Hardware Security Module is to fetch
new requests coming from the driver, identify their type and arguments, execute
them and eventually expose the results. Fig. 4.2 depicts the internal structural
architecture of the module.

The HSM Manager holds all the internal logic to handle incoming requests;
essentially, it is a Finite State Machine. This FSM is initialized in an Idle state,
representing the fact that the HSM is waiting for a new request to be processed.
When the driver issues a new request, it informs the HSM via the Control Register
of the HSM, using the HAL. Then, the HSM wakes up and can start handling the
request during the Fetch State. First, it fetches all metadata from one input buffer
and all input arguments from the other. By accessing request metadata, the HSM
can recognize the operation type and subsequently, it can interpret the content of
the other input buffer correctly. Indeed, it is recalled that the request arguments
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Figure 4.8: Sequence Diagram of the request lifecycle

on the buffer are placed differently depending on the request type, as represented
in Fig. 4.6.

After the input has been fetched, the HSM analyzes it for early detection of
invalid input data. It has been deemed necessary to check the validity of the input
arguments as early as possible, to detect invalid requests that must be rejected.
This approach, while avoiding needless processing, would limit the effects of a
Denial of Service attack that would benefit from the HSM undergoing high-latency
operations, which are reserved for valid requests.

Once the request is deemed valid, the HSM provides for dispatching them to
the fitting functional unit of the HSM that shall ultimately fulfil it. In particular,
the dispatching strategy follows a straightforward architecture where every kind of
request is statically associated with a request handler, i.e. a function whose only
purpose consists of fulfilling that specific type of request. So, the HSM enters the
Execution State where the corresponding request handler processes the request
and stores its results locally.

To provide the HSM Firmware with a high level of flexibility, this module has
been designed with a generic architecture in mind for what concerns the requests
that the HSM needs to support; in this way, future developers aiming to integrate

51



HSM Firmware Design

new request types can implement the additional logic without any overhead.

Finally, output data must be provided to the driver so that the original caller
task can eventually access it. To achieve this goal, the HSM enters a Completion
Stage, where the final output is loaded in one of the two output buffers and the
updated request metadata is moved to the other. At this point, request metadata
holds the return code that can be used by the driver and the caller task to retrieve
the final status of the operation and, particularly, whether it succeeded. The
last stage of the request lifecycle consists of triggering the special interrupt line
connecting the HSM with the external domain so that the driver can finalize the
request as soon as the HSM concludes its routines. After triggering this interrupt,
the HSM returns to the Idle State and a new cycle of the FSM starts.

About error management, the HSM prevents any invalid request from reaching
the Execution Stage; when it detects that the request must not be processed, the
HSM skips the Execution Stage and enters the Completion State directly, which is
still necessary as this latter stage is where all output is prepared to forward it to
the driver. In this way, the driver can retrieve the results and recognize that the
request ultimately failed.

Fig. 4.9 depicts the state transitions of the HSM Manager. The initialization
phase represents the boot time of the HSM, where it configures itself to enter the
nominal state cycle.

t is important to note that all the registers and buffers mentioned for the HSM
are defined at a logical level rather than in hardware. This means that an HSM-
compliant device is not necessarily required to support the exact hardware interface
described. Instead, it is the responsibility of the developer to define the access
mechanisms for these memory areas, adapting the HAL to the specific target board.

4.3.2 The Crypto Unit

After the HSM has effectively retrieved and examined an incoming request, it can
assign it to either of its two functional units depending on the specific type of
request. First, we will focus on the Cryptographic Unit, also known as the Crypto
Unit. This functional block is primarily activated whenever the HSM is required
to perform operations related to AES-128, such as:

Encryption/Decryption in ECB mode;

Encryption/Decryption in CBC mode;

Key derivation for the key update;

MAC generation and validation;
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Encryption and decryption, both in ECB and CBC mode, strictly follow the
original definition of the AES-128 algorithm, with no further modification. Inside
the HSM, messages whose size must be a multiple of the block length are processed
by using a secret key that is chosen by the caller. In particular, an application
task shall use an integer index that represents the target key to use. As described
later in sec 4.3.3, the HSM holds a constant number of keys that are accessible via
their index, so that no key is provided in plaintext by application-level tasks, as
illustrated in Fig. 4.10.

About the message size, it is up to the caller to ensure that the input message size
is an integer multiple of the block. To ensure this, padding such as PKCS#7 [40] can
be used to detect the padding bytes easily. In the current work, it is assumed that
user-level tasks provide properly padded messages, or at least the Crypto Driver
Object pre-processes them so that the driver receives a padded input. Otherwise,
the request is still forwarded to the HSM, but the latter will reject it.

As reported in sec. 3.2.2, block cyphers such as AES-128 can be used as a basis
for MAC generation algorithms. Indeed, NIST illustrates how to build CMACs
starting from AES [33]. AUTOSAR, starting from the latter guideline, defines
the CMAC mode as the reference strategy for checking message authentication
and integrity [4]. Consequently, the current project follows the same guideline as
AUTOSAR to comply with SHE specifications.

When computing the CMAC for an input message, the HSM utilizes a secret
input key to initiate the processing. In the current implementation, this key is
securely obtained from the stored keys within the HSM. The CMAC generation
requests accept an integer value as the identifier for the secret key, ensuring that
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Figure 4.10: Example of Encryption in ECB mode inside the HSM (the API
call is used to show how input arguments are actually propagated to the HSM, it
cannot access the HSM directly)

no critical information is generated or transferred out of the Hardware Security
Module. Once the inputs are defined, the algorithm proceeds by computing two
subkeys. These subkeys are used in two distinct steps. A first key is used to apply
AES-128 in CBC mode to the input message, while the second one is used during
the last step when the latest output is further encrypted in ECB mode using the
second key. In particular, the first key corresponds to the original input key, while
the other is computed using such a key and an irreducible binary polynomial.

Given the two keys, the algorithm can process the message, whose size may not
correspond to a multiple of the block length. If that is the case, a sequence of 10
is appended to the last block of the message, where a* stands for the repetition
operator and the product represents a concatenation.

Then, the input message undergoes encryption in CBC mode using the pro-
vided key for the block cypher. Notably, the last block is subjected to a distinct
processing method, where the second key is XORed with the last block prior to
the application of the final block encryption. To visualize the mechanics of the
CBC-MAC generation algorithm, a thorough reference can be found in [33].

Upon the successful implementation of MAC generation, incorporating support
for MAC validation becomes a straightforward task. The MAC validation process
involves taking a message and its corresponding MAC, recomputing the MAC
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of the input message by using the MAC generation algorithm and subsequently
comparing it with the provided MAC. If the computed MAC matches the provided
MAC, the MAC validation algorithm affirms the validity of the inputs by returning
a positive result.

Notably, when dealing with commands involving data of potentially infinite
size, the HSM imposes a limitation by setting a maximum size for input messages.
This constraint serves two crucial purposes: firstly, it establishes an upper limit
for the latency of these operations, enabling an assessment of the HSM’s real-time
capabilities; secondly, it acts as a preventive measure against potential DoS attacks.
By imposing a maximum size, the HSM mitigates the risk of being overwhelmed
by requests that require extensive computations, which could otherwise hinder
its ability to process subsequent requests. The current implementation allows
developers to define the maximum allowable size of input messages, providing the
flexibility to evaluate the trade-off between latency and reactivity for the specific
implementation.

Finally, there exist boards supporting hardware accelerators for security-critical
operations [42]. The current work would benefit from the possibility to leverage
optimized hardware to perform computationally heavy operations such as encryption
and MAC generation. For this reason, a future developer can decide whether to
implement the Crypto Unit in software or in hardware; in the latter case, they
shall define how to interact with the hardware accelerator and how to perform
a single AES-128 encryption in ECB mode. Apart from that, all other derived
operations, such as AES-128 in CBC mode or MAC generation, are automatically
programmed to use AES-128 in ECB mode as their starting point. Considering
that the algorithm is executed in hardware and that to trigger an encryption cycle
only minimal peripheral configuration shall be prepared, it should be possible
to use these hardware accelerators with very low overhead from the developer’s
perspective.

4.3.3 The Key Manager

Along with the Crypto Unit, the Key Manager is the other internal component of
the HSM that is responsible for fulfilling requests from outside. In particular, this
module focuses on the management of secret keys, their storage and use. According
to AUTOSAR specifications [4], a Secure Hardware Extension shall define a constant
number of secret keys, with different permissions and storage requirements. Indeed,
the HSM-protected keys are not equal and can be distinguished into various
categories:

o Keys for encryption, decryption, MAC generation and validation using AES-
128;
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o Critical keys, acting as master keys when updating other protected keys;

o Temporary keys used for intermediate computations, but that must not be
used for other security-critical purposes.

Besides, since SHE specifications also define how to implement features such as
Secure Boot and Pseudo Random Number Generation, they also include special
keys for RNG seeding and to validate the Secure Boot procedure. However, they
are out of the scope of the project and thus not reported further. The entire key
management system strictly follows SHE specifications [4].

Within the scope of this project, there are 15 keys defined by AUTOSAR, with
different purposes as explained above. Among these keys, there is a root key, called
Secret Key, which is read-only, meaning its value is hardcoded and extracted from a
unique identifier for the ECU. This has significant implications when it comes to key
updates. It is noted that the mechanism to access this key is hardware-dependent,
thus it is included in the HAL to allow a fast adaptation of the firmware to the
underlying platform.

The update protocol, which is invoked when issuing a load, update or remove
request, involves the target and an authentication key, where the latter must be
used to verify the trustworthiness of the entity requesting the key update. Each key
has a predefined set of authentication keys, established during the design phase and
unchangeable thereafter. Consequently, a hierarchical dependency exists among the
keys, as illustrated in [4], with the Secret Key acting as the root that enables access
to the others. The use of an unpredictable unique identifier necessitates that the
caller task possesses knowledge of this secret so as to access the HSM key storage,
thus providing an additional layer of authentication. Without this secret, any task
would be capable of potentially accessing and modifying the HSM keys, since all of
them would be exposed without requiring theft or unauthorized acquisition.

The entire key update protocol is thoroughly described in [4]; it is based on the
combination of several strategies to ensure protocol security such as:

1. Key derivation, achieved by using a special compression algorithm based on
AES-128 applied with the Miyaguchi-Preneel scheme, called AES-MP; given
the target key k; to update, the requesting task must know the current value
of k; in order to modify it. Thus, starting from this value, the requester
needs to compute two derived keys that shall be used for the next steps of the
algorithm.

2. Encryption using AES-128, which is applied to the input request containing
the new value for the target key. One of the derived keys is used in this step
to encrypt the input message.
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3. CMAC usage to verify message integrity, by using the AES-CMAC algorithm
reported in sec. 4.3.2. Here, the other derived key is used to compute the
CMAC of the input message.

During these steps and especially during key derivation, it is required to store
intermediate keys without exposing them outside of the HSM. For this reason, the
HSM Key manager offers a Ram Key, whose content can be loaded in plaintext; once
loaded, this key is stored inside the HSM and can be used for any purpose, including
encryption and MAC generation. It is worth noting that this key shall be used
sparingly and only when strictly needed, e.g. when the user task must authenticate
the key update request by uploading the current value of k; for the subsequent key
derivation step. Notably, the current value of k; would be exposed while it is being
loaded to the Ram Key; however, it is supposed that the communication channel
between the external domain and the HSM cannot be observed by an external task.

Moreover, exposing the key implies a higher risk in the case where the attacker
can spy the memory of the external domain by means of a debugger. For this reason,
AUTOSAR mandates the implementation of debugger detection mechanisms to
forbid any HSM operation in case it is present. In the current work, no debugger
detection mechanism is implemented by default since it is hardware-dependent,
thus defining it is up to the developer. A possible future work can consist of
integrating a debugger detection mechanism in the Hardware Abstraction Layer of
the HSM, thus facilitating this integration step.

About the keys, there are two additional keys, not expected by AUTOSAR,
which shall be used to encrypt the keys themselves before storing them during
a key update procedure. This additional overhead is deemed useful to prevent
side-channel attacks consisting in accessing the HSM memory by means of physical
tampering. As for the Secret Key, the mechanism to retrieve these two hardwired
special keys is up to the specific implementation and is thus included in the HAL.

4.3.4 The Memory Protection Unit

After examining the functional units of the Hardware Security Module and their
cooperation with the HSM Manager, we can now focus on the final component
of the module: the Memory Protection Unit (MPU). Memory Protection Units
(MPUs) are well-established technologies used for monitoring memory access. They
offer a fast and reliable hardware-based solution.Essentially, MPUs consist of a
software-programmed memory map that is stored in the peripheral. When a new
load or store instruction is issued, the Memory Management Unit uses the MPU to
check for the privileges and access rights of the caller. In particular, there exist
MPUs that are able to check whether the target memory region is accessible in
user mode or if, instead, it can only be used when the processor is in privileged
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mode [39]. Additionally, it is possible to specify whether a region is read-only,
write-only, or, in the case of code areas, execute-only [43].Currently, many Real-
Time Operating Systems and processors include MPUs for handling security-critical
operations [38]. The current work leverages the capabilities of widespread ARM
Cortex-M cores to implement the HSM. Not surprisingly, ARMv7 cores such as
many processors of the Cortex-M family already embed a Memory Protection Unit
on their own [39][43]. Hence, it is possible to use the underlying hardware to
implement memory protection in software, too.

Before integrating the MPU into the firmware, it is essential to determine the
specific areas that the MPU needs to protect. Moreover, it is also required to
select the granularity of the memory protection. Indeed, ARM-defined MPUs can
accommodate up to eight memory regions for protection, with each region’s size
being a power of two, denoted as 2 bytes, where k € N. For this reason, four
non-overlapping memory regions are defined in the HSM Memory Map:

Code Area It holds all the code and the read-only data structures that could be
stored in a ROM. It can only be used in read-only mode.

Data Area It contains all data that can be stored in a RAM, i.e. zero-initialized
data, variables and, in general, any information that can be deleted at power-
off. The RAM Key is also allocated in this memory region, in contrast with
the other protected keys that are defined in the Flash Area.

I/O Area It represents the memory region that exposes the memory interface to
the driver. Logical registers and 1/O buffers of the HSM are allocated to this
memory region. Even though the driver interface and the data area share
similar privileges, as they are both R/W regions accessible only in privileged
mode, the driver interface can be defined as a device region. Indeed, the
microcontroller allows defining regions for memory-mapped peripherals, which
shall not be cached because of their volatility. Moreover, memory-mapped
peripherals must lie within specific address ranges, which are not compatible
with those for RAM R/W regions [43].

Flash Area All protected keys must persist between one power-on to power-off
cycle and the other, otherwise their content would be easily predicted at boot-
time, encouraging attacks during the early stages of activity of the vehicle, i.e.
while it is turning on. Thus, a non-volatile memory region for special keys is
defined specially.

All these memory regions must be accessed in privileged mode, to guarantee a
higher degree of internal security. Fig. 4.11 displays a typical Memory Map for an
ARM Cortex-M core, based on the memory map of an STM32F4 microcontroller.
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Figure 4.11: HSM Memory Map for an ARM Cortex-M core (based on an
STM32F4 microcontroller)

Any ARMv7-M core supports up to eight memory regions in their MPUs [39].
Thus, in addition to the four main memory regions, a developer could define up to
four custom regions for special use. For instance, memory-mapped cryptographic
units for encryption and MAC generation could use a special address range that
does not overlap with any of the other default regions. If that is the case, the
developer needs only to define how many custom regions are required and which
address range they are linked to.

It is worth noting that it is impossible to find a memory map that fits any
existing board, even if they use the same microcontroller. Indeed, memory-mapped
peripherals are hardware-dependent and so their address range is since there is
no standard regulating address range allocation for peripherals. Hence, a future
developer must know which is the HSM memory map and, for this purpose, they
must define the address ranges themselves.

To enhance portability, the project simplifies this process by allowing developers
to define only the address ranges. A predefined scatter file, following Armlink’s
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specifications, automatically retrieves these ranges and utilizes them during link-
time before deploying the firmware to the target board. Once the HSM Memory
Map is defined, it is possible to integrate the MPU into the firmware. In order to
use the MPU, the latter is configured at boot-time, during the initialization stage
of the HSM Manager. At configuration time, the MPU stores the statically defined
Memory Map, which is immutable once the HSM boots, together with the access
rights of each region. Then, after a successful configuration, the MPU is enabled:
after this step, the MPU will seamlessly monitor memory access and recognize any
attempt to use a memory location which is covered by no region in the memory
map.

In the architecture of the HSM, the Memory Protection Unit acts as a safeguard
during the execution of a request. Since the only access point to the HSM consists
of its interface towards the driver and the latter updates this interface once a new
request is forwarded to the HSM, it is during the execution of the latest request
that the HSM could be attacked. A potential attack could consist of a memory
overflow, which commonly occurs when invalid memory accesses are made beyond
the permitted range. In such cases, the MPU can play a crucial role in detecting
and promptly terminating the current request upon detecting this condition.

Throughout the execution of a request, the MPU remains constantly active,
monitoring memory access and thwarting any unauthorized attempts. If illegal
access is detected, the MPU promptly triggers an interrupt, which subsequently
activates an ISR. The sole objective of this ISR is to raise a flag, used by the HSM
to recognize that a memory access violation has taken place. Indeed, the HSM
and the MPU work asynchronously, as memory violations could be detected at
any point during the request lifecycle in the HSM. Thus, the HSM periodically
polls this flag to check for occurred violations. If detected, the HSM Manager
immediately stops the execution of the current request and skips to the Completion
State, where the occurrence of an MPU violation shall be signalled to the driver.

Once successfully configured, the MPU is enabled, allowing it to actively monitor
memory access and identify any attempts to access memory locations not covered
by any region in the memory map. Otherwise, a potential attacker could paralyze
the module by managing to forward a dummy illegal request to the HSM that would
trigger a memory violation. To improve recovery after the detection of a memory
access violation, the HSM especially checks for violations before high-latency
operations, e.g. key update or encryption.

It’s important to note that the driver, located in the external domain, lacks a
memory protection mechanism.Indeed, it is supposed that the external domain will
utilize an RTOS, which will incorporate its own mechanisms for memory protection.
Furthermore, the memory map of the external domain is considerably more intricate
and unpredictable compared to that of the HSM, as it necessitates knowledge of the
architecture encompassing the entire software operating within the ECU. Therefore,
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it is the responsibility of the developer to determine whether a memory protection
policy should also be applied to the driver.
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Chapter 5

Final implementation and
conclusions

5.1 Implementation and Testing

After defining the fundamentals of the HSM Firmware project, how it fits within
the automotive context and, in particular, the AUTOSAR specification framework,
a working implementation of the project can be realized. So, this chapter proposes
how the previously obtained design can be put into practice.

One of the hardware prerequisites specified in this project pertains to the board
selection for deployment. Specifically, the HSM Firmware project is designed to be
compatible only with boards that have the inherent capability to accommodate
a Hardware Security Module. The project assumes the existence of a dedicated
core where the HSM Firmware can operate concurrently with the external domain.
Additionally, it is essential that a private channel exists between the HSM core
and the external domain, exclusively allowing communication between the HSM
Driver and the HSM itself. This ensures that malicious individuals are unable to
eavesdrop on the inputs and outputs of incoming requests.

Regrettably, a suitable board was unavailable during the project’s development,
necessitating adaptations to enable development using a more commonly available
board for validation. As a consequence, two different Execution modes have been
defined, starting from the same design:

Simulation mode The version of the project resulted from the equipment con-
straints. In Simulation mode, the entire project runs on a single core, i.e. both
the driver and the HSM share the same microcontroller. Notably, this mode
implies that a scheduler must be present to allow the driver and the HSM to
run concurrently.
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Real mode The expected deployment of the project, where a suitable board is
used and is possible to distribute the HSM code in a special core for security-
critical operations, while the driver is usable in the external domain and acts
as the only access point to the device.

The current work supports both modes; however, it requires following distinct
deployment procedures to prepare the target board for hosting the project. These
procedures are further elaborated in the source code.

Regarding the Simulation mode, since it runs on a single core, it is required
to parallelize the execution of the driver and of the HSM; thus, a scheduler is
needed. This additional requirement translates into the necessity to use a Real-Time
Operating System (RTOS) whose scheduling capabilities can ease the subsequent
adaptation of the project. Using an RTOS, we can define two separate tasks, one
for the driver and one for the HSM, that can run in parallel.

In the current work, the RTOS has only the purpose to parallelize two separate
tasks, no additional features are strictly required; so any solution would suffice, and
choosing one RTOS over another comes down to a matter of choice. In the end,
FreeRTOS was chosen, partly because it is free, open-source, and easy to access.
Since the implementation of the Operating System Abstraction Layer (OSAL)
of the driver still requires an RTOS, the driver can use it in order to handle its
notification task. Thus, in the current implementation, the driver OSAL uses
FreeRTOS primitives.

The entire project has been developed using pVision 5 [44] as the IDE for
development and testing purposes. Moreover, this IDE has been used to emulate
the target microcontroller during the earliest stages of the process, thanks to its
emulation capabilities that can reproduce the behaviour of an ARM Cortex-M core.

More precisely, the deployment of the current project has followed two subsequent
steps:

1. First, the project has been emulated using pVision 5 in order to mimic a
Cortex-M3 microcontroller and validate the HSM Firmware. Interestingly, the
IDE inherently supports several RTOSes, including FreeRTOS. Thus, it was
straightforward to embed a Real-Time Operating System inside the emulated
environment.

2. As a second and last step, the project has been ported to a STM32 Nucleo-144
board, which mounts an ARM Cortex-M4 microcontroller [45] and is also
reported in Fig. 5.1. This microcontroller is compatible with the hardware
requirements regarding the target architecture since it belongs to the ARM-v7
family [39]. For further reference about the board, see [45].

The final stage of deployment serves a dual purpose: not only does it involve
adapting the design to a specific physical board to validate the design from a physical
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perspective. Indeed, it is important to recall that one of the key objectives of the
project is to ensure portability across multiple target boards, thereby minimizing
the effort required by programmers to tailor the codebase for each individual target
system.
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Figure 5.1: The STM32 Nucleo board used for the project (Source: STMicroelec-
tronics)

The project was carried out successfully by modifying only the SW modules
that were designed to be dependent on the underlying hardware and, therefore,
customized by the developer. These modules include the Hardware Abstraction
Layer, the Operating System Abstraction Layer, and the configuration files that
define the memory map compatible with the board’s memory layout.

About the codebase, only the library implementing AES-128 comes from third-
party developers; it corresponds to the Tiny AES-C library that can be found
in [46]. In particular, the library deals with AES-128 encryption and decryption
in ECB mode and CBC mode. Other cryptographic operations supported by
the HSM Firmware, such as MAC generation/validation and key derivation, were
implemented from scratch with the library serving as a supporting tool. During
both the development steps, it is fundamental to validate the work done thus far, in
order to prove the effectiveness of the project. To this end, it is necessary to define
a comprehensive test campaign ranging from individual components to operational
scenarios, to validate the design on multiple levels of abstraction.

A comprehensive testing campaign has been defined, following a bottom-up
approach:

1. Unit tests, involving every single functional unit without interaction with the
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other submodules. They involved components of the driver, the HSM and
the abstraction layers to facilitate software debugging during the subsequent
testing stages. About the HSM, AUTOSAR provides input vectors to validate
both cryptographic and key management functions [4]; they have been used
during the test campaign.

2. Integration tests: in particular, a set of tests has been defined to validate the
data flow inside the HSM, from the moment when a new request arrives to
the time when output has been computed and is made available on the output
buffer.

3. System tests: here, the entire request lifecycle is verified, for every possible
request type and input. However, the MPU is disabled during these tests:
since the MPU memory map assumes that only the HSM-related code is
running on the target microcontroller, any activity of the driver or of the
operating system could result in an MPU violation, which would not occur
in case the system was deployed in Real mode. During these tests, the test
routine impersonated the Crypto Driver Object, i.e. the routine was forcibly
mapped to the whitelisted memory region, thus validating this authentication
strategy. When simulating operational scenarios, the test routine interacted
in a synchronous manner to simplify test design and implementation by using
the HSM_IS BUSY() function to recognize whether the driver was ready to
process the next step. Hence, the driver can be used both in asynchronous
and synchronous modes by means of this API function.

For this project, a custom implementation of the ltest framework by Martin
Bloedorn [47] was utilized as a testing framework. This framework offers a JUnit-
like testing environment for projects based on the C programming language. The
current project provides, together with the HSM Firmware source code, both
the testing framework and test suite used for validation in order to allow future
developers to check that their design is compliant with the project functional
specifications without the need of redefining a custom test campaign.

It is worth noting that all the tests described thus far only validate the functional
properties of the project, without focusing on latency or worst-case execution
scenarios. Indeed, the only purpose of implementing the Simulation mode is to
enable software development and testing even if it is not possible to use a suitable
board that follows the specifications reported in sec. 3.1. If such a board is not
available, it is deemed worthless to delve into timing analysis and optimization.
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5.2 Conclusions and Future Work

After introducing the HSM Firmware, how it has been designed and its final
implementation with a subsequent testing campaign, the HSM Firmware has been
thoroughly described. The success of the testing campaign and the capability of
the system to be adapted to different hardware environments proves the portability
of the system. These results encourage to further expand the number of boards
that are officially supported in order to make the current work a reliable open-
source project that vehicle manufacturers could use to speed up the development
of security-critical components.

Moreover, by complying with the AUTOSAR framework, it should be possible to
use the current project in AUTOSAR’s Security stack reported in [2]. In particular,
this framework can be considered as a reliable reference point for ECU software
development in the automotive context; the current project aims to be integrated
into such a secure software environment.

Interestingly, the testing campaign highlighted the capability of the current work
to be used both in asynchronous and synchronous mode, thus making it slightly
more adaptable to the internal logic of the Crypto Driver Object, which is the only
task allowed to interact with the driver as by AUTOSAR specifications [2].

Also, the success of the testing campaign proves the functional capabilities of
the system, especially in request handling, key management and cryptography.
However, non-functional properties such as the worst-case latency for all operations
could not be verified because of the unavailability of a suitable board satisfying
the hardware requirements of the project. However, this did not stop the project
development, which focused more on the product’s functional features.

This constraint itself reveals a potential area for improvement in the current
work: exploring and analyzing the project’s performance using a board with at
least two separate processors. In particular, one of them should be designed for
security-critical operations or, at least, a private communication channel with the
surrounding hardware; this property would ensure that the communication between
the driver and the HSM can not be monitored by a malicious task.

However, the project can be subject to several improvements which have not been
covered by the current work. Indeed, it is recalled that AUTOSAR’s framework
includes additional security features in its specifications for Secure Hardware
Extensions [4], which could further improve the capability of the HSM Firmware
project while providing software compatibility with SHE.

A notable example of such improvement is the support for Secure Boot verifi-
cation [4], which consists of the capability to validate the image of the Operating
System that is running on the ECU. Typically, this verification procedure involves
a cryptographic unit that must implement MAC generation and validation func-
tions, which are known for being a useful tool for checking the integrity of a given
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bitstream.

In this case, the bitstream corresponds to the entire image of the Operating
System, which can be condensed in a byte array with almost no memory overhead,
e.g. 16 bytes in case the MAC is computed using the MAC generation algorithm
involving AES-128. At boot time, the Secure Boot verification procedure computes
the MAC corresponding to the detected OS image and, if it matches with the
expected digest, the system boots as expected; otherwise, a major failure is detected
and the system will not boot at all, thus preventing a potentially malicious OS
image from controlling the system.

AUTOSAR’s specifications for SHE [4] recognize the importance of checking
the running OS image of the system; as a consequence, it expects that a thorough
implementation of a Secure Hardware Extension must detect a Secure Boot condi-
tion. By leveraging the current cryptographic capabilities of the HSM Firmware
project, i.e. the possibility to generate MACs using AES-128 and validate them
subsequently, a future developer could focus on this feature without the overhead
of designing a cryptographic unit from scratch.

Regarding the cryptographic unit, it is known that the HSM Firmware supports
message encryption in CBC mode using AES-128; however, it is reported in sec. 4.3
that the current version of the firmware requires that the size of the input message
to either encrypt or decrypt must be known a priori. This is due to the fact
that there is no current support for padding of input messages, e.g. by using
PKCS#7 [40].

Padding serves as a valuable mechanism to adjust the input length to conform
to the expected protocol requirements, such as the 16-byte length in the case of
AES-128. This adaptation allows for a broader range of inputs that can be processed
by the algorithm or the HSM. Furthermore, certain padding schemes like PKCS#7
offer an additional advantage by exposing the last block of a message, eliminating
the need to determine the message size prior to encryption. By leveraging padding,
the HSM can accommodate varying input sizes more effectively and simplify the
encryption process. This concept is further illustrated in Fig. 5.2 for clarity.

Therefore, the inclusion of padding could be considered a potential enhancement
for future iterations of the present work. Given the widespread support for various
padding schemes, it is anticipated that incorporating these schemes would seamlessly
integrate with the existing environment.

At present, requests undergo processing within a single cycle. When a valid
request is received by the driver, it is promptly forwarded to the HSM. Upon reaching
the HSM, the inputs are immediately utilized to generate the corresponding output,
which is subsequently sent back to the driver and, eventually, to the requesting
Crypto Driver Object. It is important to highlight that this processing cycle
necessitates a single data transmission from the driver to the HSM.

Nevertheless, there may arise situations where multiple cycles are necessary to
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Figure 5.2: Example of message padding with PKCS#7 (It is noted that only
the last message follows this pattern)

process all the input data. It is important to consider that the HSM’s software
buffer has a fixed capacity. Consequently, if a request is intended to be processed
within a single cycle, all the input data must fit within this buffer. For request
types with fixed-sized input data, such as key updates, this is typically not a critical
concern as allocating sufficient memory in the buffer would be adequate. However,
this issue can become critical in cases where there is a requirement, dictated by
system specifications, to encrypt extensive volumes of data using CBC mode. It
should be noted that CBC encryption can accommodate input data of varying
lengths, with the developer determining the input length constraint as a trade-off
with worst-case latency.

When faced with the limitation of extending the HSM buffers further, a potential
solution to address this issue involves implementing a buffering strategy, enabling
the processing of input data in multiple cycles. This approach involves multiple
iterations and interactions between the driver and the HSM, continuing until the
request is completed.

During each iteration, the driver transmits a portion of the input data that has
not yet been processed to the HSM. The HSM then computes a partial output
for the request and returns it to the driver. The driver, in turn, stores the partial
output in the destination memory and prepares the input for the following iteration.
This iterative process continues until all the input data has been processed.
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It is important to note that this approach is suitable for processing input requests
as a continuous stream of data, without the need for all input data to be available
before processing. Specifically, in the current scenario, two operations, namely
MAC generation/validation and encryption/decryption in CBC mode, benefit from
buffering to expand the range of data they can handle. These operations rely on
AES-128 encryption in CBC mode, which inherently processes data in a sequential
manner, with each block being processed after its predecessor. Additionally,
AUTOSAR provides specifications for handling errors when generating output in
multiple iterations [4], demonstrating the compatibility of this strategy with the
Hardware Security Module.

An additional feature that the AUTOSAR framework describes in [4] is the
possibility to generate random numbers, either using a physical noise source or
with deterministic algorithms that generate output with a sufficient degree of
unpredictability, such as cryptographic functions. By generating unpredictable
data, the HSM can use simple primitives to generate highly secure keys whose
content is not easy to infer.

Similar to MAC generation and validation, AES-128 can serve as a source of
pseudo-random numbers, provided that the PRNG implementation adheres to
specific security requirements reported in [4]. The framework defines a separate
section of the Secure Hardware Extensions API for PRNG-related functions, such
as generating seeds and constructing new random values from them using the
aforementioned encryption algorithm.

Finally, a final additional feature could be explored in future versions of the
current work. This feature aims to improve the capabilities of the HSM to filter out
suspicious requests coming from an unauthorized task. Currently, a whitelisting
policy, reported at sec. 4.2, is the main strategy to recognize such requests and
reject them. It is recalled that this strategy is based on a check on the return
address of the task that called the driver: if and only if such address belongs to a
trusted memory region, then the driver continues to process the request, eventually
forwarding it to the HSM.

By implementing this strategy, the HSM can effectively detect unauthorized
requests originating from memory regions not included in the whitelist.

Nevertheless, it is important to acknowledge that an attacker could potentially
manipulate the trusted memory region, such as through code injection within the
task. However, executing such an attack would require the Crypto Driver Object
to have a vulnerability that could be exploited, such as a buffer or stack overflow.
If such an attack were successful, the attacker could assume the identity of the
trusted task and interact with the HSM. In this scenario, the attacker could submit
invalid requests to render the HSM completely inaccessible.

In such scenarios, the HSM could identify the Crypto Driver Object as unreliable
by monitoring the frequency of invalid requests from a specific memory region
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within the whitelist. If the number of illegal requests surpasses a predetermined
threshold, the driver may decide to reject all requests originating from that region,
treating it as an unauthorized memory region. Although this approach does not
fully neutralize the attack, it enhances the responsiveness of the HSM and enables
it to handle requests from unaffected areas within the whitelist.

Finally, once a more complete HSM Firmware is available, Vulnerability Assess-
ment and Penetration Tests could be performed to finalize the firmware validation
also from a security perspective.
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