
POLITECNICO DI TORINO

Master Degree course in Computer Engineering

Master Degree Thesis

Stratum V2: the next generation
protocol for Bitcoin pooled mining

Supervisors
Prof. Antonio J. Di Scala

Candidate
Gabriele Vernetti

Company Supervisor
Alps Blockchain

Francesco Sannicolo’

Academic Year 2022-2023



Acknowledgements

This work would not have been possible without the trust and support that Profes-
sor Antonio Di Scala has given me for the past two years. Thanks to his enthusiasm,
I had the first opportunities to explore the fascinating world of Bitcoin mining, from
a pragmatic point of view. Thanks to him, my entire master’s degree has been en-
riched by other academic experiences that have helped me grow tremendously.

I would like to extend a sincere thanks to Alps Blockchain, especially to Francesco,
who gave me the opportunity to work on the practical part of this thesis. But more
importantly, since the day I learned about their activities, they have introduced me
to a world of possibilities where Bitcoin mining can be applied in different real-life
contexts. These guys are doing an amazing job, and I am incredibly grateful for
the chance to collaborate with them.

A special gratitude goes to Giorgio and Salvatore. Together, we have motivated
and inspired each other to create one of the most remarkable experiences that has
defined my entire time at Politecnico: BitPolito. Thank you for believing in the
mission of our student team to an extent that I could have never imagined before.

Thanks to the entire Trust In Food team. Thank you for being with me during
my first-ever startup experience. Without all of you and our shared journey, I
wouldn’t have developed certain thoughts that help me evaluate every step of my
life.

Thanks to all the members of The Pub. Without all of you, I couldn’t say that
I have lived wonderful years of my life.

Thanks to Push, Jaco, and Gabri for making me rejoice in every day spent in
Turin.

Thanks to my entire family, who has always understood me and supported every
decision I have made in life.

Thanks to my Irene, who has revolutionized my life and for the past four years
has been my driving force to become a constantly improving man.

2



Abstract

Bitcoin is a distributed, «peer-to-peer electronic cash system» [1].
Since the publication of its white paper, on 31st of October 2008, Bitcoin has ex-
perienced a very rapid evolution. Many aspects of the protocol has changed in
the years, permitting it to keep up with the exponential growth in terms of users,
services and companies involved into it.
The primary focus of the entire research centers on one of the fundamental pillars
of the entire ecosystem: Bitcoin mining. More specifically, the thesis investigates
the details of the approach that has characterized mining operations since Bitcoin’s
early history: pooled mining.
The introductory chapters of this thesis provide a comprehensive understanding of
Bitcoin, its network composition, and the concept of Proof of Work. The subse-
quent chapters focus on mining, exploring both solo and pooled mining approaches,
as well as the history and evolution of mining operations.
During its growth, many protocols have been developed to manage the pooled min-
ing operations, such as Getwork, Getblocktemplate (GBT), and Stratum (V1).
However, the central focus of the thesis is Stratum V2: its inception, inner de-
tails, and the significant differences it brings compared to its predecessor, Stratum
(V1). Concepts like protocol security, binary framing, and the power of transac-
tions selection are deeply discussed, to provide all the detailed context necessary to
understand the importance of this protocol update. The current implementations
of Stratum V2 are also discussed to provide a practical perspective on its adoption.
In addition to this, the thesis introduces the Stratum Reference Implementation
(SRI), a key tool for understanding and experimenting with Stratum V2. Detailed
explanations are provided on how SRI works, how to get started with it, and po-
tential future directions for research and development.
The research concludes with a reflection on the advancements made in Stratum V2
and their implications for the future of Bitcoin pooled mining. The concept of SV2
protocol benchmarking is introduced, along with the exploration of non-custodial
pools as a promising pathway for future innovation. Overall, this thesis aims to
dig into the profound significance of Stratum V2 as a transformative protocol in
the domain of Bitcoin pooled mining, and its potential to shape the landscape of
mining practices in the years to come.



Contents

List of Figures 4

1 Introduction 7

2 Bitcoin 9
2.1 What is Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 How the network is composed . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Bitcoin network nodes: types and roles . . . . . . . . . . . . 13
2.2.2 Extended Bitcoin network . . . . . . . . . . . . . . . . . . . 14
2.2.3 Geographical distribution and statistics . . . . . . . . . . . . 15

2.3 Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Mining 21
3.1 How mining works . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Mining history and evolution . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Solo mining and Pooled mining . . . . . . . . . . . . . . . . . . . . 27

4 History of pooled mining protocols 29
4.1 Getwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 What is Getwork: why and when it was born . . . . . . . . 29
4.1.2 How Getwork works . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Getwork usage into pooled mining and protocol extensions . 35
4.1.4 Why Getwork usage ended up . . . . . . . . . . . . . . . . . 37

4.2 Getblocktemplate (GBT) . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 What is GBT: why and when it was born . . . . . . . . . . 38
4.2.2 How GBT works . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Why GBT usage ended up . . . . . . . . . . . . . . . . . . . 44

4.3 Stratum (V1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 What is Stratum (V1): why and when it was born . . . . . . 45
4.3.2 How Stratum (V1) works . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Stratum (V1) vulnerabilities and security issues . . . . . . . 53
4.3.4 Why Stratum (V1) needs to be updated . . . . . . . . . . . 58

2



5 Stratum V2 61
5.1 What is SV2: why and when it was born . . . . . . . . . . . . . . . 61
5.2 How SV2 works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Differences between SV1 and SV2 . . . . . . . . . . . . . . . . . . . 68
5.4 Current implementations . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Stratum Reference Implementation (SRI) 75
6.1 How SRI works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Testing SRI configurations . . . . . . . . . . . . . . . . . . . 79
6.3 Final thoughts and future ideas . . . . . . . . . . . . . . . . . . . . 87

6.3.1 SRI Pool fallback . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2 Non-custodial pools . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.3 SRI benchmarking suite . . . . . . . . . . . . . . . . . . . . 88

7 Conclusion 91

Bibliography 93

3



List of Figures

2.1 Bitcoin supply and subsidy, created by Coindesk Research . . . . . . 11
2.2 Bitcoin prehistory, created by @danheld . . . . . . . . . . . . . . . . 11
2.3 Bitcoin Genesis Block, in HEX and ASCII encoding . . . . . . . . . 12
2.4 Times headline, Jan 3, 2009 . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Functionalities that a node participating in the Bitcoin network can

have. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Umbrel implementation of a Bitcoin full node . . . . . . . . . . . . 15
2.7 Antminer S19XP Hydro, one of the most powerful ASIC machines

for Bitcoin mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Map of the "Extended Bitcoin Network." . . . . . . . . . . . . . . . 16
2.9 Screenshot of the live map on Bitnodes.io. . . . . . . . . . . . . . . 17
2.10 Price, hashrate and difficulty representation, insights.braiins.com . . 19

3.1 SHA-256 hash function in action . . . . . . . . . . . . . . . . . . . . 22
3.2 Bitcoin block and block header fields . . . . . . . . . . . . . . . . . 23
3.3 Flow chart of mining activity . . . . . . . . . . . . . . . . . . . . . 24
3.4 Bitcoin mining hardware evolution, in relation to the network difficulty 25
3.5 Antminer S19 model series, with relative efficiency (J/TH) . . . . . 26
3.6 Mining pool share difficulty and network difficulty [2] . . . . . . . . 28

4.1 Satoshi getwork update announcement, Bitcoin Talk Forum . . . . . 29
4.2 Bitcoin block header fields, from [3] . . . . . . . . . . . . . . . . . . 30
4.3 Example Bitcoin block header, in hexadecimal format . . . . . . . . 31
4.4 Getwork method details and parameters . . . . . . . . . . . . . . . 31
4.5 Luke-Jr mining operations recommendations, on Bitcoin Talk Forum 37
4.6 Luke-Jr getblocktemplate announcement, Bitcoin Talk Forum . . . . 38
4.7 Description of the initial block template request parameters, using

GBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Mutations which can be asked from a miner, using GBT [4] . . . . . 40
4.9 Description of the template fields sent by the mining pool, using GBT 41
4.10 Transaction fields, present in the template sent by pool server, using

GBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4

https://insights.braiins.com/en


4.11 Slush stratum announcement, Bitcoin Talk Forum . . . . . . . . . . 45
4.12 Real communication between miner and pool server . . . . . . . . . 52
4.13 Coinbase tx details . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 Preconditions of attack, Blackhat Asia 2021 . . . . . . . . . . . . . 54
4.15 Job injection based on set_extranonce, Blackhat Asia 2021 . . . . . 55
4.16 Time segment attack, Blackhat Asia 2021 . . . . . . . . . . . . . . 56

5.1 Pavel Moravec, Jan Čapek and Matt Corallo, co-authors of SV2 specs 61
5.2 Typical Division of Downstream and Upstream Roles, Galaxy Digital

Research [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 SV2 protocol binary framing . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Transaction selection decentralization brought by Stratum V2 [6] . . 68
5.5 First SV2 implementation released by Braiins team, in 2020 . . . . 72
5.6 SRI homepage on stratumprotocol.org . . . . . . . . . . . . . . . . . 73

6.1 SRI configuration A . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 SRI configuration B . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 SRI configuration C . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 SRI configuration D . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 SV2 Pool connected to the hosted Template Provider, config C . . . 80
6.6 Translator Proxy connected to the SV2 Pool, config C . . . . . . . 81
6.7 SV1 CPU-miner running, using the Translation Proxy, config C . . 82
6.8 Pool settings of a Antminer S19J Pro . . . . . . . . . . . . . . . . . 83
6.9 Translation Proxy logs successfully the ASIC miner SV1 requests . 83
6.10 SV2 Pool connected to the local Template Provider, config D . . . . 84
6.11 Translator Proxy which acts as a Job Negotiator, config D . . . . . 85

5



6



Chapter 1

Introduction

The emergence of Bitcoin in 2008 introduced a unique and innovative concept of
decentralized digital currency. Bitcoin, as described in its white paper published
on October 31st, 2008, proposed a "peer-to-peer electronic cash system" [1]. Since
then, Bitcoin has experienced remarkable growth, attracting a significant num-
ber of users, businesses, and services into its ecosystem. As the Bitcoin network
expanded, mining became a crucial component for securing and maintaining the
system’s integrity.
To fully realize the importance of mining in the Bitcoin ecosystem, it’s important
to get a comprehensive understanding of Bitcoin itself. Chapter 2 provides an
overview of Bitcoin, its underlying technology, and the composition of its network.
The concept of Bitcoin network nodes, their types, and roles in supporting the
decentralized nature of the system are explored. Bitcoin’s security is based on a
consensus mechanism known as Proof of Work (PoW). Chapter 2 dives into the
concept of PoW and its role in the mining process. PoW ensures that miners invest
computational power to solve a mathematical problem, validating transactions and
adding new blocks to the blockchain. Understanding PoW is crucial for under-
standing the motivations behind mining and its evolution over time.
Chapter 3 focuses on the mining process, exploring its mechanics, historical de-
velopment, and evolution. The workings of mining, the computational challenges
involved, and the incentives for miners to participate in the network are explained.
The transition from solo mining to pooled mining, which brought significant changes
to the mining landscape, is highlighted. Pooled mining enabled miners to collab-
orate and share resources, improving their chances of receiving rewards in a more
predictable way.
Chapter 4 provides a deep exploration of the history of pooled mining protocols.
The initial protocol, Getwork, its functionalities, and limitations are analyzed. Af-
ter that, the introduction of Getblocktemplate (GBT) and its improvements over
Getwork protocol are discussed. However, the central focus of this chapter is on
Stratum (V1), which revolutionized pooled mining by introducing a more efficient

7



Introduction

and simpler protocol, becoming the standard "de facto" of the pooled mining ac-
tivities. Then, the vulnerabilities and security issues associated with Stratum (V1)
and the need for its subsequent update are discussed.
Chapter 5 dives into the core topic of the entire thesis, Stratum V2, a significant
upgrade to the Stratum protocol. The motivations behind the development of Stra-
tum V2 and its inner workings are explored. The differences between Stratum V1
and Stratum V2 are highlighted, particularly the enhanced security, transaction
selection responsibility, and other improvements introduced by the new protocol.
Moreover, the current implementations of Stratum V2 and its adoption path within
the mining community are examined.
To facilitate a practical understanding and experimentation with Stratum V2,
Chapter 6 introduces the Stratum Reference Implementation (SRI). The work-
ings of SRI, guidance on getting started with it, and potential future directions
for research and development are explained. Concepts such as SRI Pool fallback,
non-custodial pools, and the importance of a benchmarking suite for Stratum V2
are explored.
The research presented in this thesis aims to shed light on the profound significance
of Stratum V2 as a transformative protocol within the domain of Bitcoin pooled
mining. By examining the history, evolution, and current implementations of min-
ing protocols, a comprehensive understanding of the advancements made and their
implications for the future is provided.

The aim of this exploration is to make a meaningful contribution to the continuous
development and advancement of Bitcoin mining methods, consequently influencing
the future direction of this essential aspect of the Bitcoin ecosystem.

8



Chapter 2

Bitcoin

2.1 What is Bitcoin

«The root problem with conventional currency is all the trust that’s required to
make it work. The central bank must be trusted not to debase the currency, but
the history of fiat currencies is full of breaches of that trust. Banks must be trusted
to hold our money and transfer it electronically, but they lend it out in waves of
credit bubbles with barely a fraction in reserve.» [7]

Beginning with the words of its creator, the pseudonym Satoshi Nakamoto, Bitcoin
was born out of a desire to create a decentralized, secure, and accessible form of
currency that does not rely on any form of trust in centralized institutions. Bitcoin
provides an alternative to conventional currencies and aims to offer greater finan-
cial sovereignty to individuals while addressing some of the perceived weaknesses
of the existing financial system. Besides that, Bitcoin is a digital currency ecosys-
tem which incorporates many concepts and technologies discovered in the last 50
years of deep research and development around Cryptography, Internet protocol,
and Peer-to-Peer networks. It operates through the use of units of currency called
"bitcoin" (with a lowercase ’b’), which are used to store and transfer value among
participants within the Bitcoin network.
Bitcoin protocol enables users to transfer bitcoin across the network, facilitating
activities such as buying and selling goods, or sending money to individuals and
organizations. Specialized currency exchanges allow for the purchase, sale, and ex-
change of bitcoin with other fiat currencies. Bitcoin’s characteristics make it the
perfect type of money for Internet as it offers speed, security, and borderless trans-
actions. Since bitcoin are a form of virtual currencies, the coins are represented
in transactions that transfer value from the sender to the recipient. Bitcoin users
possess private keys that prove ownership of bitcoin within the Bitcoin network.
These keys enable them to sign transactions, unlocking the value and transferring

9



Bitcoin

it to a new owner. As already said, Bitcoin is as a distributed peer-to-peer sys-
tem, who lives without the need for a central server or entity. The creation of new
bitcoins is managed through a process called mining. Miners compete to solve
mathematical problems while processing Bitcoin transactions. Approximately ev-
ery 10 minutes, a miner successfully confirms the transactions received from its own
node, mining them into a new block, and is rewarded with newly minted bitcoin,
called block subsidy. Basically, when miners solve the Proof-of-Work algorithm
on the block they are working on, they immediately communicate this new valid
block of transactions to all the other Bitcoin nodes which are connected to. At
this point, these latter verify the validity of the mined block, and simply add it to
their local copy of the ledger shared by every node of the network, the so-called
blockchain.
The Bitcoin protocol incorporates built-in algorithms that regulate the mining pro-
cess across the network, such as the difficulty adjustment. The difficulty of the
mining activity is dynamically adjusted to ensure that, on average, a miner suc-
ceeds every 10 minutes, regardless of the number of miners competing at any given
moment. Additionally, the protocol halves the rate at which new bitcoin is created
every 4 years (more precisely every 210.000 blocks), and there is a fixed maximum
limit of just under 21 million coins. Every coin is composed by 108 satoshi,
which is the unit of account of the Bitcoin network. By protocol rules, there will
be 32 halvings, one every 210.000 blocks. In 2009, the system rewarded successful
miners with 50 bitcoin every 10 minutes. The entire emission of bitcoin units can
be represented by the following formula:

32∑︂
i=0

210.000 · 50
2i

Consequently, the number of bitcoins in circulation follows a predictable curve that
approaches 21 million by the year 2140.

As greatly represented in Figure 2.2, «Bitcoin represents the culmination of decades
of research in cryptography and distributed systems and includes four key innova-
tions brought together in a unique and powerful combination. Bitcoin consists
of:

• A decentralized peer-to-peer network (the Bitcoin protocol)

• A public transaction ledger (the blockchain)

• A set of rules for independent transaction validation and currency issuance
(consensus rules)

• A mechanism for reaching global decentralized consensus on the valid blockchain
(Proof-of-Work algorithm)» [8]

10



2.1 – What is Bitcoin

Figure 2.1: Bitcoin supply and subsidy, created by Coindesk Research

In fact, during the late 1980s, with the increasing understanding and availabil-
ity of cryptography, researchers started to experiment on utilizing cryptography
to construct digital currencies. [9] Valuable examples can be: Ecash (1982, David

Figure 2.2: Bitcoin prehistory, created by @danheld

11



Bitcoin

Chaum), E-gold (1996, Douglas Jackson and Barry Downey), Bit gold (1998, Nick
Szabo), B-money (1998, Wei Dai), Reusable Proof of Work (2004, Hal Finney).
Even if these initial digital currencies worked effectively, all of them possessed a
centralized nature, and for this reason they were susceptible to attacks by govern-
ments and malicious hackers.

Finally, on 3rd of January 2009, Satoshi Nakamoto created the first block
in the Bitcoin blockchain. Since it’s the official starting point of the entire Bitcoin
history, it’s called Genesis Block.
In this block, more precisely in the coinbase transaction data, Satoshi left a message
which represents the Bitcoin’s raison d’être:

"The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"

This message is a reference to the Times headline of 3rd of January 2009, which
proves that the Bitcoin Genesis Block could not have been created before that date.
More importantly, the message is a clear statement of the entire Bitcoin movement.
It declares the desire to fight the central bank policies, which are characterized by
a culture of easy money. Bitcoin, on the other hand, aims to bring back individual
responsibility through a monetary system based on sound money. Bitcoin aims to
be money which can’t be devalued or controlled to benefit a lucky few.

Figure 2.3: Bitcoin Genesis Block, in HEX
and ASCII encoding

Figure 2.4: Times headline,
Jan 3, 2009

12



2.2 – How the network is composed

2.2 How the network is composed
The architecture of the network that allows the existence of Bitcoin is of type Peer-
to-Peer (P2P).
This means that each node participating in the network is equal to the others and
collaborates with the others by providing the services and functionalities defined by
the shared protocol, which is executed by all nodes in a similar manner. Being the
antithesis of the most well-known and widely used architecture in the current con-
text, defined as Client/Server (C/S), the Bitcoin network does not require central-
ized servers to provide any type of service. On the contrary, each node constitutes
a point in the network, attributing decentralization and resilience to the protocol
that only Peer-to-Peer networks can guarantee. Examples of P2P networks that
have been very successful are those used for file-sharing, initially popularized by
Napster in 1999, and later evolved into better protocols, such as BitTorrent.

Similarly to the aforementioned implementations, Bitcoin was designed to be a
Peer-to-Peer system for the management and use of digital money, capable of func-
tioning without the intervention of central authorities, with the specific goal of being
an uncensorable and resilient tool against centralized control, distributed among
the nodes that want to participate in the network. Due to these characteristics, the
chosen design for Bitcoin could only be a P2P network.

2.2.1 Bitcoin network nodes: types and roles
The functionalities that nodes can perform to be part of the network are those
defined by the Bitcoin protocol, and they can be identified in Figure 2.5. Based on
the functionalities that each node decides to implement, several categories of nodes
can be outlined:

• Full Node

• Simplified Payment Verification Node (SPV)

• Miner Node

A full node is a node that is responsible for maintaining a complete copy of
the Bitcoin blockchain, keeping it up to date through constant communication
with other nodes in the network. By having a local copy, it can verify every
new transaction or block that arrives without depending on third-party nodes.
At the time of writing, the technical requirements to implement a full node re-
main quite accessible, both in terms of hardware (2GB of RAM, 500GB of free
disk space) and technical know-how, thanks to the abundance of online guides and
"plug-and-play" style implementations (Figure 2.6) developed over the years. It is

13



Bitcoin

worth emphasizing the importance, for true decentralization, of having the low-
est possible technological barrier: the higher the number of full nodes, the more
distributed the network is, resulting in increased overall robustness and resilience.

Figure 2.5: Functionalities that a node
participating in the Bitcoin network can
have.

A Simplified Payment Verification (SPV)
node, on the other hand, contains a copy
of all block headers but not the trans-
actions and other data related to them.
It verifies the validity of the headers of
new blocks and is also able to verify
transactions of interest with the help
of a connected full node. For this rea-
son, nodes of this type are also called
lightweight nodes. The main advan-
tage of this category of nodes is their
lower use of hardware resources (disk
space) compared to full nodes, mak-
ing them more suitable for contexts
with stricter resource limitations (e.g.,
smartphones). The main disadvantage
of SPV nodes is their dependence on
other full nodes when they require a
specific series of blocks that they do not have locally. During this process, a Sybil
attack could occur, compromising the privacy of an SPV client. To overcome and
mitigate this risk, bloom filters have been introduced. [10] A Miner node, unlike
the previous types, has the specific purpose of solving the Proof-of-Work (POW)
algorithm in order to claim the reward for a new block. It uses increasingly spe-
cialized hardware, such as Application Specific Integrated Circuits (ASICs), which
have been the norm for several years now (see Figure 2.7). Once a miner solves
the block they are working on, they communicate the solution to the rest of the
network through their full node or by transmitting the new block to a connected
node. At that point, transactions contained in that mined block are considered
confirmed, since they are included in a block and subsequent blocks will be added
on top, forming a chain of confirmations. The number of confirmations increases
the level of trust in the transactions.

2.2.2 Extended Bitcoin network
The composition of the network described above represents the basic functioning
of the Bitcoin P2P protocol. Actually, Bitcoin network is further enriched by other
nodes that execute specific protocols (e.g. Stratum, FIBRE). An overview of the
so-called Extended Bitcoin Network can be better understood through Figure 2.8.
Analyzing the map, three protocols (highlighted in different colors) can be observed,

14



2.2 – How the network is composed

Figure 2.6: Umbrel implementation of a
Bitcoin full node

Figure 2.7: Antminer S19XP
Hydro, one of the most pow-
erful ASIC machines for Bit-
coin mining

which are fully compatible with each other and allow various interactions between
different types of nodes, depending on the functionalities each node decides to
implement and make available to the extended network. For example, a portion
of the network is strongly connected to a Pool Server, which consists of a series of
nodes responsible for mining operations by aggregating their hash power in a mining
pool. This is done to reduce the inherent variance associated with Proof-of-Work.
The pool server manages communication and interaction through its own protocol
specifically developed for these mining operations. The opposite of pooled mining
is represented by nodes called Solo Miners. They do not rely on any mining pool for
their mining operations and require a local copy of the blockchain (indicated by the
blue dot within the nodes) to independently verify new transactions before starting
the search for the nonce. All the differences between Solo Mining and Pooled Mining
will be deeply discussed and analyzed in Chapter 3. The protocol represented by
the red connections is called the Stratum Protocol. It was developed around 2012
as an alternative to the previous pooled mining model. The goal of Stratum is to
define a kind of standard for managing communications between mining pool servers
and miners. This pooled mining protocol will be deeply discussed and analyzed in
section 4.3.

2.2.3 Geographical distribution and statistics
Using certain functions defined within the Bitcoin protocol, implemented and made
available by most nodes, it is possible to perform a recursive search of the connec-
tions present between nodes and obtain some statistics related to the global geo-
graphical distribution of the Bitcoin network. It is important to note that many
popular implementations for creating a personal full node in a more user-friendly

15



Bitcoin

Figure 2.8: Map of the "Extended Bitcoin Network."

way (such as Umbrel, RaspiBlitz, MyNode, or RoninDojo) operate through the Tor
network. In these cases, the IP address detected by Bitnodes does not geolocate
the actual physical location of the node but rather the Tor exit node to which it is
connected.
Based on the data collected from Bitnodes.io, at the time of writing, the entire Bit-
coin network consists of approximately 17,000 reachable nodes. The term "reach-
able" refers to nodes that accept new incoming connections, providing access to
new nodes and allowing them to download the entire blockchain starting from the
genesis block. On the same website, it is possible to find the estimate of the total
number of nodes (both reachable and unreachable), which currently exceeds 44,000
nodes. [11]
In addition to statistics on countries and cities worldwide, another interesting data
point is the percentage of nodes that are updated to the latest version of the Bitcoin

16



2.2 – How the network is composed

protocol (25.0.0), which is approximately 23%. Regarding the data on Autonomous
System Numbers (ASNs) identified by Bitnodes.io’s crawlers, it can be observed
that around 60% of nodes communicate through the Tor network, while only 2.3%
are hosted on AWS servers.

Figure 2.9: Screenshot of the live map on Bitnodes.io.

17



Bitcoin

2.3 Proof of Work

As mentioned in the previous introductory section, Proof-of-Work (PoW) is defined
as the consensus algorithm of the entire Bitcoin network.

However, the term "Proof of Work" was born even before Bitcoin began, since
it was introduced by the cryptographer Adam Back, in his work on the so-called
Hashcash system: «Hashcash was originally proposed as a mechanism to throttle
systematic abuse of un-metered internet resources such as email, and anonymous
remailers in May 1997.» [12] The basic idea behind Hashcash was to require a com-
putational effort from the sender of a message, making it costly and time-consuming
to send a large number of messages or launch coordinated attacks. In order to send
an email to a Hashcash user, the sender would have to find a hash of the email
that fell within a certain range. Since a hash is a large, unpredictable number,
producing such a hash takes many guesses. Once the valid hash was found, the
sender could include it in the message header. In this way, the recipient was able
to immediately verify the validity of the result contained in the message header.
In that case, the Proof-of-Work system was intended as a method to combat email
spam and denial-of-service attacks. Satoshi Nakamoto, while designing the Bitcoin
protocol, most likely took inspiration from it: for this reason Hashcash is also con-
sidered a precursor to the Bitcoin consensus algorithm.
Moreover, with his invention, the creator of Bitcoin was able to solve with a practical
solution a very known problem in distributed computing, defined as the Byzantine
Generals’ Problem. This concept can be understood by reading the first lines
of the original paper which described and gave birth to the term itself: «Reliable
computer systems must handle malfunctioning components that give conflicting
information to different parts of the system. This situation can be expressed ab-
stractly in terms of a group of generals of the Byzantine army camped with their
troops around an enemy city. Communicating only by messenger, the generals must
agree upon a common battle plan. However, one or more of them may be traitors
who will try to confuse the others. The problem is to find an algorithm to ensure
that the loyal generals will reach agreement.» [13]
Bitcoin found definitely a solution to this, by introducing the concept of Proof of
Work as the foundational problem to solve during mining operations. In this way it
also found a way to ensure that users could agree on a single state of the ledger, at
the same time avoiding any double spending attempts or other invalid transac-
tions. To summarize, PoW in Bitcoin definitely enabled consensus without relying
on a central trusted authority.

The other innovative concept introduced in Bitcoin, is the above-mentioned mecha-
nism called difficulty adjustment. It’s a fundamental piece of the entire protocol,
since it allows the network to automatically regulate the level of difficulty associated

18



2.3 – Proof of Work

with mining a block. The difficulty adjustment is based on the mining speed of par-
ticipants in the network. By dynamically adjusting the mining difficulty, increasing
or decreasing the range of valid hash results, Bitcoin ensures that new coins are
produced at a predetermined rate, one block every 10 minutes (on average), regard-
less of the total computing power dedicated to mining. This automatic adjustment
mechanism is done every 2016 blocks mined (about 2 weeks), and it contributes
to the network’s resilience and scalability, preventing issues like hyperinflation or
compromised security. From an economic perspective, the difficulty adjustment is
a unique mechanism which provides a never discovered property for something who
can aspire to be used as money. As perfectly stated by the economist Saifedean
Ammous, in his great work "The Bitcoin Standard": «For anything to function as
a good store of value, it has to beat this trap: it has to appreciate when people de-
mand it as a store of value, but its producers have to be constrained from inflating
the supply significantly enough to bring the price down.» [14]
This is a very unique discovery, since every form of money before Bitcoin has al-
ways followed the following rule: the more the good used as money appreciated,
because of a demand growth for it, the more it has been produced. In this case,
very uniquely, the demand for the good used as money (bitcoin) will never be able
to modify (by increasing or decreasing) the offer of it. This property guarantees
that Bitcoin supply in almost perfectly inelastic, since the production rate on newly
minted bitcoin is totally determined by the difficulty adjustment mechanism.

Figure 2.10: Price, hashrate and difficulty representation, insights.braiins.com

19

https://insights.braiins.com/en


Bitcoin

Furthermore, Bitcoin introduced the notion of blockchain immutability, ensuring
the integrity of past transactions. Each new block is added to the end of the ex-
isting blockchain, forming an unbreakable chain of transactions. Modifying a past
transaction would require rewriting the entire block containing the transaction and
all subsequent blocks. Additionally, the attacker would need to generate new blocks
at a faster rate than the entire Bitcoin network combined in order to catch up and
create a longer chain, which is practically infeasible.

In summary, the combination of PoW, difficulty adjustment, which regulates the
rate of coin emission, and the immutability of the blockchain, which fortifies past
transactions, contribute to the decentralized and secure nature of the Bitcoin net-
work. These features allow Bitcoin to operate autonomously and efficiently without
relying on a central authority.

20



Chapter 3

Mining

In the previous chapter was introduced the concept of Proof of Work, with a par-
ticular focus on the previous systems which gave inspiration to Satoshi Nakamoto’s
invention. In addiction, it was analyzed the problems that Proof-of-Work solves,
such as double spending and consensus in an asynchronous distributed network.
The scope of this chapter is to dive more deeply into the Bitcoin mining theme,
exploring how it actually works, the evolution in term of hardware used for the
operations, and the differences between Solo Mining and Pooled Mining.

To better understand the basics of Bitcoin mining, since it’s totally based on solving
the above-described PoW (2.3), a little reminder about hash functions is needed.
A hash function is a mathematical function that takes an input (of any size) and
produces a fixed-size string of characters, which is typically a sequence of alphanu-
meric characters. The output generated by a hash function is called "digest," or
simply "hash". Hash functions are used in computer science and cryptography for
many purposes, since the characteristic features of a hash function are:

• Deterministic: for the same input, a hash function will always produce the
same output. This property allows for consistent, verifiable and repeatable
hashing.

• Fixed-size output: a hash function generates a hash value of a fixed length,
regardless of the size of the input. For example, a hash function might always
produce a 256-bit hash value.

• One-way (pre-image resistance): given a hash value, it is computationally
infeasible to determine the original input. Basically, it should be extremely
difficult to reverse-engineer the input given its hash value.

• Collision resistance: it should be highly improbable that two different inputs
produce the same hash value. While collisions are theoretically possible a
good hash function minimizes the chances of collisions.

21



Mining

Figure 3.1: SHA-256 hash function in action

In the case of Bitcoin, the hash function used is the SHA-256, as illustrated in
Figure 3.1.

3.1 How mining works
Bitcoin mining, as already anticipated, is a mechanism which constitutes a founda-
tional piece of the entire protocol. To put it simply, «mining is a lottery to create
new blocks in the Bitcoin blockchain. There are two main purposes for mining:

1. To Permanently add transactions to the blockchain without the permission
of any entity.

2. To fairly distribute the 21 million bitcoin supply by rewarding new coins to
miners who spend real world resources (electricity) to secure the network.» [2]

In order to mine a valid block, miners need to find the pre-image which corresponds
to a hash (or digest) which satisfies the current Bitcoin network difficulty. As de-
scribed earlier, the difficulty adjustment mechanism regulates the mining difficulty
for the entire Bitcoin network, every 2016 blocks. From a practical point of view,
what it does is to simply increase or decrease a value which is present into Bitcoin
block headers, which is called target (or nBits). The target represents the current
maximum value that a hash found by miners has to be, in order to be considered
valid for the entire network. From another point of view, it represents the size of
the set of valid solutions for the current PoW algorithm.
Of course, the object which miners utilize as input for the SHA-256 hash function,
is a block fulfilled with transactions received from their Bitcoin full-nodes. More
specifically, the input is constituted by the block header which is derived from
the block template built by miners, along with a random value called nonce. The
nonce is constantly changed until a valid hash value is found.
As represented in 3.2, miners build the so-called candidate block, which contains
all the best transactions received from their full-nodes (which typically are the
transactions that pays more fees to be firstly included in a new block). Once they

22



3.1 – How mining works

got the transactions, they need to complete the candidate block by building the
corresponding block header, which includes the following fields:

• Version: a 4 bytes field which indicates the version of the Bitcoin protocol
being used. It allows for future upgrades and compatibility with different
protocol enhancements.

• Previous Block Hash: a 32 bytes field which contains the hash value of the
previous block in the blockchain. It links the current block to the previous
one, forming a chain of blocks.

• Merkle root: a 32 bytes hash computed by combining the transaction hashes
of all the transactions included in a particular block. These transaction hashes
are then paired and hashed together until a single hash is obtained.

• Difficulty target: a 4 bytes field that represents the current network diffi-
culty level, which, as already explained, indicates the maximum allowed value
for the block hash to be considered valid.

• Timestamp: a 4 bytes field that records the approximate time when the
block was mined.

• Nonce: a 32-bit value that miners adjust in their attempts to find a valid
block hash. Miners repeatedly change the nonce, double hash the block
header, and check if the resulting hash meets the difficulty requirement.

Figure 3.2: Bitcoin block and block header fields

23



Mining

Figure 3.3: Flow chart of mining activity

Basically, during mining
activity, the miner tries to
solve the Proof-of-Work by
constantly changing the nonce
value contained in the block
header which is working on.
Every time the miner applies a
double SHA-256 to the block
header, and if the output is
greater than the current Bit-
coin difficulty target, the miner
needs to increment the nonce
value and retry the double hash
again. When the output of the
double SHA-256 corresponds to
a number which is less than the
Bitcoin current target, it means
the miner found a valid solution
to the Proof-of-Work, and so he
adds the new mined block to its local copy of the blockchain and he immediately
broadcasts the new block to all the other peers which he is connected to. He needs
to be as fast as possible during the so-called block-propagation, since it’s crucial to
let him claim the block reward. To better resume the mining activity, the flow
chart present in Figure 3.3 can be very helpful.

In the Bitcoin ecosystem, miners play a crucial role by utilizing electricity to solve
the above-described Proof-of-Work. When a miner successfully completes the task
and validates all the transactions according to the consensus rules, they become
eligible to receive a reward. This reward is typically in the form of new minted
Bitcoin and transaction fees. Importantly, the reward is granted only when the
miner demonstrates their ability to accurately validate the transactions without
the need for a central authority. This delicate balance between mining, validation,
and reward ensures the security of Bitcoin’s network.

As already anticipated, the reward is constituted by the sum of the block reward
and transaction fees from all the transactions included in the block. This quan-
tity is contained and encoded in the so-called coinbase transaction. Differently
from regular transactions in Bitcoin, the coinbase transaction does not use Unspent
Transaction Outputs (UTXOs) as inputs. Instead, it contains only one input known
as the coinbase, which essentially generates new Bitcoin out of nothing. The coin-
base transaction has a single output, which is designed to be paid to the miner’s
own Bitcoin address.

24



3.2 – Mining history and evolution

3.2 Mining history and evolution
This section aims to dive into the fascinating history and evolution of Bitcoin mining
equipment, tracing its origins from the early days of Bitcoin to its present-days.
The focus will be especially onto the technologies that have transformed, year after
year, Bitcoin mining into a globally recognized industry.
As already said, the first block was mined by Satoshi Nakamoto on January 3, 2009.
At the beginning of Bitcoin, the network difficulty was 1. Since there was very little
people who was mining in the first days, the difficulty didn’t increased, and so it
was possible to mine Bitcoin blocks using an average personal computer. In fact, it
was the unique time in which only a Central Processing Unit (CPU) was enough
to mine bitcoin. As the potential reward for mining received more media attention,
especially after the historical first-ever real-world transaction using bitcoin where
the programmer named Laszlo Hanyecz spent 10000 bitcoin on two Papa John’s
pizzas (May 18, 2010 [15]), the mining difficulty started to rise.
In October 2010, the first mining device based on Graphics Processing Units
(GPUs) was developed. As clearly represented in 3.4, thanks to GPU’s excellence
at computing simple mathematical operations in parallel, GPUs hugely increased
the global hashrate, leading to a network difficulty increase.

Figure 3.4: Bitcoin mining hardware evolution, in relation to the network difficulty

25



Mining

During the following year, 2011, the Field Programmable Gate Arrays (FPGA)
came into the mining game. They were even faster than GPUs in term of hashing
power, contributing to the ever-increasing network hashrate, and difficulty.
The third major advancement in Bitcoin mining required an extensive allocation
of resources, time, and development efforts. The focus during those years was on
creating a completely novel machine solely specialized to Bitcoin mining. The hard
work in research & development got the first results in 2013, when the Chinese
company called Canaan Creative, introduced the first set of Application-Specific
Integrated Circuits (ASICs) designed exclusively for Bitcoin mining.
In contrast to CPUs, GPUs, and FPGAs, these ASIC devices were specifically
built with the intention of being used exclusively for Bitcoin mining. This included
pre-designing and optimizing all hardware and software components of these ASIC
devices to efficiently compute the precise calculations required for generating new
Bitcoin blocks. While Canaan Creative emerged as the inaugural Bitcoin ASIC
manufacturer, other players like Bitmain and MicroBT also joined the game, in-
troducing their own models of ASIC mining devices with increasingly advanced
hardware. A significant evolution in ASIC mining technology since 2013 has been
the consistent reduction in chip size. Beginning at a size of 130nm in 2013, the
ASIC chips have undergone remarkable shrinkage, with the latest hardware models
featuring diminutive sizes as small as 5nm. The transistor size reduction led to an
increasing efficiency in ASIC machines. Nowadays, an ASIC bitcoin mining device
is estimated to be 100 billion times more efficient than the average CPU back in
2009.

Figure 3.5: Antminer S19 model series, with relative efficiency (J/TH)

26



3.3 – Solo mining and Pooled mining

3.3 Solo mining and Pooled mining
Given the huge transformation that the entire Bitcoin mining activity faced, as
analyzed in the previous section, a clarification about two opposite approaches
that characterized mining operations since its beginning is needed. In this section
the aim is to clarify the operational differences between the so called Solo mining
and Pooled mining, focusing on their relative pros and cons.

Solo mining

In Solo mining, the miner relies solely on its own computational power to compete
against the entire network in the race to find a valid block. In this process the
hashes are calculated individually, in order to find a valid block whose reward
will be paid entirely to the miner in ownership of the hashing power. This is
obtained by explicitly put the miner Bitcoin address into the coinbase output script,
when preparing the block template to mine on. In this case, the miner needs to
run a local Bitcoin full-node, to get transactions to validate from, in addiction to
the other fields needed to build the block header.
However, considering a certain network difficulty defined as D, «Block finding when
mining solo with a constant hashrate h is a Poisson process with h

232·D as the rate
parameter. We said that mining for time t results in ht

232·D blocks on average.» [16]
As described in the last section, Bitcoin mining became a very competitive field,
and since its first years (2011-2013) it definitely started to transform more and more
into an industrial activity. Since those years, miners had to start considering many
factors during their business activity, such as the intrinsic variance of valid blocks
finding during Solo mining. As the Bitcoin network has grown, the mining difficulty
has increased significantly. This means that the chances of an individual miner
successfully mining a block and earning rewards have diminished considerably. For
this reason, since the first years of Bitcoin mining activity, the concept of Pooled
mining started to become increasingly popular.

Pooled mining

In the current highly competitive mining landscape, solo miners operating alone,
face significant challenges. The probability of solo miners successfully finding a
block to pay their electricity and hardware expenses has become so low that it
constitutes a very risky behaviour. To counter these odds, miners have resulted
to collaborating and forming mining pools, systems used to combine their hashing
power and sharing the resulting rewards among a large number of participants.
Mining pools coordinate thousands of miners, efficiently splitting the nonce search-
space and assigning them to individual miners. The individual miners configure
their mining equipment to connect to a pool server, and communicate a Bitcoin
address to the pool, which is used to receive their share of the rewards. Their

27



Mining

mining hardware remains connected to the pool server while mining, synchronizing
their efforts with the other miners. In this case, candidate block are built to pay
the reward to a pool Bitcoin address, differently from the Solo mining approach.
At regular intervals, the pool server initiates payments to the Bitcoin addresses of
participating miners once they have accumulated a specific threshold of rewards.
The main business model of the pool operators is typically a percentage fee which is
cut off from the rewards collected by miners. To understand how the pool collects
the work done by individual miners, the concept of share has to be explained.

Figure 3.6: Mining pool share difficulty and network diffi-
culty [2]

Similarly to how a solo
miner has to satisfy the
Bitcoin network cur-
rent difficulty, in order
to submit a valid block
to the entire network,
a miner who works in a
mining pool has to find
an output to the dou-
ble SHA-256 function
which is lower than the
so called share diffi-
culty target. As rep-
resented in Figure 3.6,
the mining pool sets
a higher target (lower
difficulty) for earning
a share, typically more
than 1,000 times easier
than the Bitcoin net-
work’s target. When someone in the pool successfully mines a block, the reward is
earned by the pool and then shared with all miners in proportion to the number of
shares they contributed to the effort.
The first mining pool ever created is the so called slushpool, born in 2010. Since
those year, in fact, the need for mining pool operations were increasingly faced,
to reduce the above-mentioned reward variance associated with the solo mining
approach. However, in order to manage all the communications between individual
miners and mining pool servers, some kind of specialized pooled mining protocol
had to be developed.
The scope of the entire next chapter is about the history and the evolution of
the pooled mining protocols, which began with the so called Getwork protocol. It
contains a deep exploration of these protocols from an operational point of view,
underlining the differences between them, with their relative pros and cons.

28



Chapter 4

History of pooled mining
protocols

4.1 Getwork

4.1.1 What is Getwork: why and when it was born
Getwork is a RPC method used by miners for retrieving block headers to find a
solution for, or sending valid proofs of work; it was designed and introduced by
the user called m0mchil in 2010. [17] Getwork was implemented in Bitcoin Core on
23rd November 2010: it’s possible to read the official announcement regarding the
Bitcoin Core update by Satoshi on BitcoinTalk Forum. [18]

Figure 4.1: Satoshi getwork update announcement, Bitcoin Talk Forum

The idea behind the getwork method was born by m0mchil’s project called POCLbm
(PyOpenCL bitcoin miner), the first open-source GPU miner software ever devel-
oped. [19]

29



History of pooled mining protocols

Before entering the details of the getwork method, a reminder of the block header
structure is needed, as represented in Figure 4.2.

Figure 4.2: Bitcoin block header fields, from [3]

NOTE: Data present in the block header are all represented in little-endian order,
except for the hashes (Hash of previous block’s header and Merkle root) which
are in internal-byte order (the original order of the SHA256 output, which can be
considered little-endian as well).

Considering the example in Figure 4.3, hash of previous block’s header is repre-
sented in its internal byte order, but if you want to look for the corresponding block
using a blockchain explorer, you must transform it to the RPC Byte Order (big-
endian), obtaining this: 00000000000000000cca48eb4b330d91e8d946d344ca
302a86a280161b0bffb6. The block corresponding to this hash is the one at height
328733. [20]
For any further clarifications, on the BTC Information website can be found a com-
plete documentation about the differences between internal-byte order and RPC
Byte Order. [21]

30



4.1 – Getwork

Figure 4.3: Example Bitcoin block header, in hexadecimal format

4.1.2 How Getwork works
Getwork is a JSON-RPC method sent over a HTTP transport. If it’s called with-
out any argument, it provides a pre-processed block header to work on, contained
in the data key field. During this process, little endian byte order is used; in ad-
diction to this, due to the getwork implementation in Bitcoin Core, every 4 bytes
chunks are byte swapped. To check the code which swaps the chunks, it’s pos-
sible to have a look at lines 196-198 in "src/rpcmining.cpp" contained in commit
1f3bfa329f96b0e4564c410b539765909601ad1d of Bitcoin Core.

Figure 4.4: Getwork method details and parameters

For this reason, before starting to hash the header received, miner must do some
bytes manipulation on data, which will be illustrated in the following examples.

Example N.1: data content present in the response of a getwork request

00000002 0597ba1f0cd423b2a3abb0259a54ee5f783077a4ad45fb620000021800000000
8348d1339e6797e2b15e9a3f2fb7da08768e99f02727e4227e02903e43a42b31 51155310
1a051f3c 00000000 0000008000000000000000000000000000000000000000000000000
00000000000000000000000000000000080020000

• Version –> 4 bytes –> 0x00000002

31

https://github.com/bitcoin/bitcoin/pull/2905/commits/1f3bfa329f96b0e4564c410b539765909601ad1d#diff-aef7835a9e55f9cd866fb418fa6fc7c49f200540746812da4ef44b53cd115e4bL196


History of pooled mining protocols

• Prev_block_hash –> (need to transform it) –> 0597ba1f0cd423b2a3abb0
259a54ee5f783077a4ad45fb620000021800000000 –> from little endian to big
endian (every 4 bytes chunks) –> 1fba9705b223d40c25b0aba35fee549aa477307
862fb45ad1802000000000000 –> reverse (every byte) –> 0000000000000218
ad45fb62783077a49a54ee5fa3abb0250cd423b20597ba1f

This is the hash of previous block’s header of block at height 220249, which
is the hash of block 220248.

• Merkle root –> transform it as the Prev_block_hash –> 32 bytes

• Timestamp –> 4 bytes –> 0x51155310 (hex) –> 1360352016 (dec) –>
8 February 2013 19:33:36

• nBits –> 4 bytes –> 0x1a051f3c

• Nonce –> 4 bytes –> 0 (initial value)

At this point, to mine the work received in the response, the miner need first byte
swap each 32-bit chunk from little-endian to big-endian:

02000000 1fba9705b223d40c25b0aba35fee549aa477307862fb45ad1802000000000000
33d14883e297679e3f9a5eb108dab72ff0998e7622e427273e90027e312ba443 10531551
3c1f051a 00000000 8000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000280

Take the first 80 bytes (block template header):

02000000 1fba9705b223d40c25b0aba35fee549aa477307862fb45ad1802000000000000
33d14883e297679e3f9a5eb108dab72ff0998e7622e427273e90027e312ba443 10531551
3c1f051a 00000000

Hash them (SHA-256) twice, changing the nonce value, until a value which is lower
than the difficulty target is reached.

Example N.2: data content present in the response of a getwork request

00000002 b15704f4ecae05d077e54f6ec36da7f20189ef73b77603225ae56d2b00000000
bcf59695a4e35a2f7535e1a86b306a3b08c212bf0b833764018fe39f01919381 510c2811
1c0e8a37 00000000 000000800000000000000000000000000000000000000000000000
000000000000000000000000000000000080020000

• Version –> 4 bytes –> 0x00000002

32



4.1 – Getwork

• Prev_block_hash –> (need to transform it) –> b15704f4ecae05d077e54f6e
c36da7f20189ef73b77603225ae56d2b00000000 –> from little endian to big en-
dian (every 4 bytes chunks) –> f40457b1d005aeec6e4fe577f2a76dc373ef8901220
376b72b6de55a00000000 –> reverse (every byte) –> 000000005ae56d2bb77
603220189ef73c36da7f277e54f6eecae05d0b15704f4

This is the hash of previous block’s header of block at height 49133 of the
bitcoin testnet, which is the hash of block 49132.

• Merkle root –> transform it as the Prev_block_hash –> 32 bytes

• Timestamp –> 4 bytes –> 0x510c2811 (hex) –> 1359751185 (dec) –>
1 February 2013 20:39:45

• nBits –> 4 bytes –> 0x1c0e8a37

• Nonce –> 4 bytes –> 0 (initial value)

Now, to mine the work received by the response, same operations on data field than
before has to be done (bytes swapping, hashing twice SHA-256).
After that, a HTTP POST request must be sent to pool server to submit the
valid block.

POST / HTTP/1.1
Authorization: Basic Y2RlY2tlcjphYmMxMjM=
Host: localhost:18332
Content-type: application/json
X-Mining-Extensions: longpoll midstate rollntime submitold
Content-Length: 305
User-Agent: cgminer 2.8.1
{
"method": "getwork",
"params": [ "00000002b15704f4ecae05d077e54f6ec36da7f20189ef
73b77603225ae56d2b00000000b052cbbdeed2489ccb13a526b77fadcee
f4caf7d3bb82a9eb0b69ebb90f9f5a7510c27fd1c0e8a37fa5313380000
00800000000000000000000000000000000000000000000000000000000
000000000000000000000000080020000"],
"id":1
}

33



History of pooled mining protocols

Example N.3: getwork complete protocol flow

1. getwork request:

{"method":"getwork","params": [],"id":1}

2. getwork response:

{"id": "1",
"result": {

"hash1":"0000000000000000000000000000000000000000000
0000000000000000000000000008000000000000000000000000
000000000000000000000000000010000",
"data":"00000001c570c4764aadb3f09895619f549000b8b51a
789e7f58ea750000709700000000103ca064f8c76c390683f820
3043e91466a7fcc40e6ebc428fbcc2d89b574a864db8345b1b00
b5ac000000000000008000000000000000000000000000000000
0000000000000000000000000000000000000000000000008002
0000",
"midstate":"e772fc6964e7b06d8f855a6166353e48b2562de4
ad037abc889294cea8ed1070",
"target":"ffffffffffffffffffffffffffffffffffffffffff
ffffffffffffff00000000"

},
"error": null}

3. Same operations on data field than before (bytes swapping, hashing
twice SHA-256)

4. getwork request sending a valid proof of work:

{"method": "getwork",
"params":

["0000000141a0e898cf6554fd344a37b2917a6c7a6561c20733b09
c8000009eef00000000d559e21882efc6f76bbfad4cd13639f4067c
d904fe4ecc3351dc9cc5358f1cd54db84e7a1b00b5acba97b604000
0008000000000000000000000000000000000000000000000000000
00000000000000000000000000000080020000"],

"id":1
}

34



4.1 – Getwork

4.1.3 Getwork usage into pooled mining and protocol ex-
tensions

The getwork RPC method was developed and written into Bitcoin Core as all the
other RPCs, in this way anyone who was running a full node was able to use it to
mine new blocks.
By the way, even if Bitcoin was just born (3rd January 2009), the first mining pools
started to appear (slushpool was born in 2010 as well). Due to the nature of the
RPC method, it had been used also into a pooled mining context: it could be sent
over HTTP transport layer, providing an elegant way for the pool operators to get
and distribute new jobs to miners who were joining the pool.
In the context of pooled mining, where every single miner had to communicate
with the pool server, the exploitation of some protocol extensions seemed to be
particularly useful in that scenario. [22]
More specifically, when getting new work, miners could send a X-Mining-Extensio
ns header with a space-delimited list of supported extensions:

• Hostlist
The server may include a X-Host-List header with a list of available servers
formatted in JSON as an array of objects with server details. The field "host"
specifies the server’s hostname or IP address, "port" specifies a TCP port,
and "ttr" is "time to return". If you use server with non-zero ttr you should
try to return to the server with 0 ttr after this number of minutes.
Example:

X-Host-List: [{"host":"server.tld","port":8332,"ttr":0},
{"host":"backup.tld","port":8332,"ttr":20}]

This string says that "server.tld" is the main server. When you detect connec-
tion problems, you need to try the next server - "backup.tld" for 20 minutes
and then try to switch back to "server.tld". If the main server is still offline
you should continue to use "backup.tld" for another 20 minutes.

• Longpoll
If mining pool does supports Long Polling, it should include a X-Long-Polling
header with a relative or absolute URI. The absolute URI may specify a dif-
ferent port than the original connection. Miner must start a request to long
polling URI with GET method and same basic authorization as on main
connection. This request is not answered by server until it wishes to ex-
pire current block data, and new data is ready. The answer is the same as
getwork on the main connection. Upon receiving this answer, miner should
drop current calculation in progress, discard its result, and start working on

35



History of pooled mining protocols

received data and make a new request to a long polling URI. There is a 60
second limit before new work should be requested (the normal way) regardless
of response from longpoll (though this may be overridden by the rollntime
extension below).

• Noncerange

In addition to X-Mining-Extensions, the miner should also send X-Mining-
Hashrate, with an integer value of expected hashrate measured in full hashes
per second. The server may then add an additional field to the JSON re-
sponse, "noncerange", which contains two 32-bit integers specifying the start-
ing and final nonce the miner is allowed to scan. While both values are given
in big endian, miners should iterate over the range in their native 32-bit inte-
ger type (SHA256 works with 32-bit integers, not character data). The miner
should implement rollntime by starting from the first nonce in the range every
second.

Example:

"noncerange": "000000001fffffff"

Response:

solution: "...dddddd1f..."

A very interesting discussion about the noncerange extension can be found
on Bitcoin Talk Forum [23].

• RollNtime If the getwork response includes a "X-Roll-Ntime" header with
any value other than "N" or the null string, the miner may (within reason)
change the ntime field in addition to the nonce. The server may send a value
of "expire=<N>", where <N> is an integer number of seconds it is willing to
accept the other headers for. Note that if the "X-Roll-NTime" header is NOT
present in a work response, that work may NOT be rolled, even if earlier
work from the same server allowed it. Also note that the headers of a share
submission should not influence the behavior of work. More specifically, if a
share submit does not have the header, it should not disable rollntime for the
current work (which did).

To investigate more deeply, an official discussion about the RollNtime ex-
tension can be found on Bitcoin Talk Forum [24].

36



4.1 – Getwork

Figure 4.5: Luke-Jr mining operations recommendations, on Bitcoin Talk Forum

4.1.4 Why Getwork usage ended up
During those years (2010-2012), the entire mining ecosystem was growing, and
so many things started to change: as seen in Chapter 3, network hashrate was in-
creasing, solo mining was slowly disappearing, and mining equipment was becoming
more powerful year after year.
Getwork method was the only mining protocol that was used at that time, but, as
we’ve seen before, it permitted miners to change only the 32 bits of original nonce
field in the header received from bitcoind. In addition to those 4 bytes of nonce
space, miners could exploit the nTime field of the header (thanks to the RollNtime
extension that was supported by most mining pools at that epoch). Anyway, one
getwork job was enough for a 4.2GHash/s (232 bits) mining rig and (thanks to
nTime rolling) this job was usable for one minute or until a new Bitcoin block
arrived (depending on what happened first). Beyond that, a block created from
massively modified nTime could/can be rejected by the Bitcoin network.
That maximum rate was extremely too low for the mining performances of the
newest equipment of that period, so an alternative needed to be found. Fortu-
nately, a group of Bitcoin Core developers specialized in mining operations, worked
very hard during 2012, to show up a valid alternative to the standard getwork
method: they developed the so called getblocktemplate method or GBT.
The enhancements brought by GBT will be deeply explained and described in the
next chapter, which will be followed by the chapter focused on Stratum: the pooled
mining protocol which became the standard "de facto" nowadays. It was developed
at the same time of getblocktemplate, from the big effort of the developer called
slush, the founder of the first mining pool ever created, slushpool.

The official removal of Getwork method from Bitcoin Core had been proposed
on 16th August 2013, through the Pull Request #2905 [25]. To dig into more
details of the removal, a very interesting discussion can be found on Bitcoin Talk
Forum [26].

37



History of pooled mining protocols

4.2 Getblocktemplate (GBT)

4.2.1 What is GBT: why and when it was born
Getblocktemplate, or GBT, was born over the mid 2012. It was the first alterna-
tive to the getwork method, openly developed by some of the most skilled Bitcoin
Core developers of that time, promoted and directed firstly by the Bitcoin Core de-
veloper Luke Dashjr. The official announcement of GBT was made by Luke Dashjr
himself on 12th September 2012, on Bitcoin Talk Forum [27].

Figure 4.6: Luke-Jr getblocktemplate announcement, Bitcoin Talk Forum

GBT was defined as a new mining protocol standard, developed to accommodate
both solo mining and pooled one, thanks to its usage flexibility. The main reason
why it was developed was the need to find a solution for the issue described at the
end of the previous chapter: miners were becoming more and more powerful, and
the nonce research space of the previous getwork method was not enough for the
maximum hashrate of the newest equipment.
Getblocktemplate introduced different new features to the mining operations of
that time, but the most important point which mainly drove the entire develop-
ment (apart from the solution at the nonce research space issue) was the attempt
to decentralize the power obtained from the mining pool operators. At that time,
as said in the previous chapter, most of the miners were using the getwork method
in a pooled mining context: in this way the only entities responsible for building
the blocks, selecting the transactions from the mempool, were the pools themselves.
Most miners were just mining onto the block headers received from the pool server,
never building their own block templates: this was a huge security risk from the
point of view of the GBT developers and supporters, that could have led to a high
single-point failure and censorship risk.

38



4.2 – Getblocktemplate (GBT)

The group of developers involved into GBT followed the standard procedure for
proposing and implementing new features into Bitcoin Core: they published two
Bitcoin Improvement Proposal(s) [28], specifically BIP22 and BIP23.
Getblocktemplate was officially implemented in Bitcoin Core release v.0.7.0, on
17th September 2012 [29].

4.2.2 How GBT works
As explained in the above section, getblocktemplate was coded into Bitcoin Core
as any other RPCs, so it was (and it still is) perfectly usable by anyone who has
got a Bitcoin full node. However, the main reasons which took to its development,
derived from the ever-growing context of pooled mining.
Because of this, the focus will be about how GBT works and how it was used as a
communication mining protocol between single miners and mining pools.

First, the miner must connect to the pool server, asking for an initial block tem-
plate. There can be only one JSON Object in the request, containing request
parameters (divided in "capabilities" and "mode"):

{
"id": 0,
"method": "getblocktemplate",
"params":
[{

"mode": "template", (or "proposal")
"capabilities": ["coinbasetxn", "workid", "coinbase/append"],

}]
}

Figure 4.7: Description of the initial block template request parameters, using GBT

In the template request, the miner can indicate to pool server the features supported
client-side, such as "longpoll", specifying the desired mutations in the "capabilities"
field.

39



History of pooled mining protocols

Figure 4.8: Mutations which can be asked from a miner, using GBT [4]

At this point, pool server must return a JSON Object containing all the details
needed to begin mining:

{"result": {
"coinbasetxn": {
"data": "010000000100000000000000000000000000000000000000000000
00000000000000000000ffffffff1302955d0f00456c667697573005047dc66
085fffffffff02fff1052a010000001976a9144ebeb1cd26d6227635828d60d
3e0ed7d0da248fb88ac01000000000000001976a9147c866aee1fa2f3b3d5ef
fad576df3dbf1f07475588ac00000000"

},
"previousblockhash": "000000004d424dec1c660a68456b8271d09628a80c
c62583e5904f5894a2483c",
"transactions": [],
"expires": 120,
"target": "00000000fffffffffffffffffffffffffffffffffffffffffffff
fffffffffff",
"longpollid": "some gibberish",
"height": 23957,
"version": 2,
"curtime": 1346886758,
"mutable": ["coinbase/append"],
"bits": "ffff001d"

},"id": 0}

40



4.2 – Getblocktemplate (GBT)

Figure 4.9: Description of the template fields sent by the mining pool, using GBT

Figure 4.10: Transaction fields, present in the template sent by pool server, using
GBT

41



History of pooled mining protocols

In the template sent by pool server, the "mutable" key can be used to specify
which modifications the miner is allowed to make, on that specific template. In
this specific case, the pool has agreed upon the miner request to edit the coinbase
transaction, with can be used as an extranonce, to enlarge the nonce research space.
This is specified by both miner template request and pool template response, in
the "mutable" key field, as ["coinbase/append"] value.

So, as soon as the template is received, the miner needs to customize the coin-
base transaction, with the only limitation about not exceeding the 100 bytes data
limit. Coinbase data (which are the ones customizable) begins after 42 bytes, in
the coinbase transaction, and the 42nd byte represents the data length. So, miner
must insert the custom data right after the "original" data already present in the
coinbase provided by pool server. At the end, it needs to change the 42nd byte,
inserting the new data length. This is an example Python script which customizes
the coinbase transaction data, inserting the ’my block’ string:
import b i n a s c i i
co inbase = b i n a s c i i . a2b_hex ( template [ ’ co inbasetxn ’ ] [ ’ data ’ ] )
extradata = b ’my block ’
or igLen = ord ( co inbase [ 4 1 : 4 2 ] )
newLen = origLen + len ( extradata )
co inbase = co inbase [ 0 : 4 1 ] + chr ( newLen ) . encode ( ’ a s c i i ’ ) +
co inbase [ 4 2 : 4 2 + or igLen ] + extradata + co inbase [42+ origLen : ]

Since the coinbase transaction data has been modified, the new merkle root needs
to be re-built, before starting hashing on the new customized block header. First,
miner must put the modified coinbase transaction at the first place in the trans-
actions list received from the pool server. At this point he needs to apply double
SHA-256 to every transaction in the list; after that, he needs to redo the double
SHA-256 to every couple of transactions (concatenated), as long as it remains just
one single hash string, which is the final merkle root. To do this, the following
Python script can be used as an example:
import ha sh l i b
de f dblsha ( data ) :

r e turn hash l i b . sha256 ( ha sh l i b . sha256 ( data ) . d i g e s t ( ) )
. d i g e s t ( )

t x n l i s t = [ co inbase ] + [ b i n a s c i i . a2b_hex ( a [ ’ data ’ ] )
f o r a in template [ ’ t r an sac t i on s ’ ] ]
merklehashes = [ dblsha ( t ) f o r t in t x n l i s t ]
whi l e l en ( merklehashes ) > 1 :

i f l en ( merklehashes ) % 2 :
merklehashes . append ( merklehashes [ −1])

merklehashes = [ dblsha ( merklehashes [ i ] + merklehashes [ i + 1 ] )
f o r i in range (0 , l en ( merklehashes ) , 2) ]

merk leroot = merklehashes [ 0 ]

42



4.2 – Getblocktemplate (GBT)

Once the new merkle root has been computed, the new block header has to be
assembled. To do this, miner can take the data already present in the template
sent by pool server, substitute the merkle root with the one just computed, and
start hashing on the customized block header.
import s t r u c t
blkheader = s t r u c t . pack ( ’<I ’ , template [ ’ ver s ion ’ ] ) + \

b i n a s c i i . a2b_hex ( template [ ’ prev iousb lockhash ’ ] ) +
merk leroot + \
s t r u c t . pack ( ’<I ’ , template [ ’ curtime ’ ] ) + \
b i n a s c i i . a2b_hex ( template [ ’ b i t s ’ ] ) + \
b ’NONC’

Whenever the miner finds a share (or block) which is valid, he needs to send it
immediately to the pool server, to be rewarded for it. To do this, a submitblock
method is exploited, which requires just one parameter: the serialized block data.
To build a serialized block, miner needs to concatenate the block header, the number
of transactions, and the transactions in the block (placed in the same order of the
merkle tree used to compute the merkle root) [30].

{"id": 0,
"method": "submitblock",
"params": ["020000003c48a294584f90e58325c60ca82896d071826b45680a6
61cec4d424d00000000de6433d46c0c7f50d84a05aec77be0199176cdd47f77e3
44b6f50c84380fddba66dc47501d00ffff0000010001010000000100000000000
00000000000000000000000000000000000000000000000000000ffffffff1302
955d0f00456c6967697573005047dc66085fffffffff02fff1052a01000000197
6a9144ebeb1cd26d6227635828d60d3e0ed7d0da248fb88ac0100000000000000
1976a9147c866aee1fa2f3b3d5effad576df3dbf1f07475588ac00000000"]

}

While the miner is hashing on the block header, changing nonce and time fields, he
needs to be updated from the pool whenever a new block is found, to not wasting
time and energy. To achieve this, an optional long polling extension was designed
into getblocktemplate protocol. To use it, miner needs to explicitly indicate it in
the template request message, like this:

{"id": 0,
"method": "getblocktemplate",
"params": [{

"capabilities": ["coinbasetxn", "workid", "coinbase/append"],
"longpollid": "some gibberish",

}]}

In this way, as soon as a new block is found on the Bitcoin network, pool server
can immediately notify the miner which is putting hash power into the pool.

43



History of pooled mining protocols

In addition to the described "standard" behavior, getblocktemplate protocol per-
mits many possible execution flows, depending on the mutations and pool extension
used by the miner. To investigate them more deeply, in the description of BIP23
there’s a dedicated section for it: moreover, there are some interesting answers to
basic questions and doubts which came out during the weeks which followed the
publication of the protocol itself.

4.2.3 Why GBT usage ended up
As mentioned in the last words of the previous section, getblocktemplate wasn’t the
only mining protocol which was developed and proposed during 2012, since the
discussed issues related to the getwork protocol touched lots of different people and
businesses in the mining sector.
During the same year, the developer called slush proposed his alternative to the get-
work protocol, which is called Stratum. Marek "slush" Palatinus was the founder
of one of the first Bitcoin mining pools, called slushpool, and he was worried about
the performance issues related to the mining protocol used at that time. With his
experience as a mining pool operator, he developed the above-mentioned protocol
alternative, publishing the design details right after the announcement of getblock-
template.
For this reason, under the announcement of GBT on Bitcoin Talk Forum can be
found a lot of discussions related to the comparison between GBT and Stratum,
adorned by not a few mutual criticisms. During the weeks which followed the first
discussions, mining pools operators started to test both protocols, trying to estab-
lish the one to implement in their own businesses.

At the end, performances of the Stratum protocol were better than getblocktem-
plate’s, and the design was a way cleaner and easier to be understood and im-
plemented by the mining pools operators of that time. Thanks to its efficiency
improvements, and for other specific features which will be deeply discussed in
the next chapter, Stratum became the standard "de facto" of the pooled mining
protocols.

44



4.3 – Stratum (V1)

4.3 Stratum (V1)

4.3.1 What is Stratum (V1): why and when it was born
As said in the conclusion of the previous sub-chapter, Stratum protocol was born
during the same period of getblocktemplate, in the second half of 2012. The main
developer and proposer of Stratum was Marek Palatinus (aka "slush"), who was the
founder of one of the first Bitcoin mining pools, called slushpool. He announced this
new protocol on 11th September 2012, in a thread on Bitcoin Talk Forum [31].

Figure 4.11: Slush stratum announcement, Bitcoin Talk Forum

The reason which took slush to develop Stratum, was the same as getblocktem-
plate’s: the mining protocol used at that time (getwork) was not efficient anymore,
due to the newest more powerful mining equipment, which was coming, in addition
to the ever-growing pooled mining activities. As discussed in the announcement
thread, getwork permitted just 32 bits manipulation for the nonce research (in most
cases they could also change the timestamp field, thanks to the nTime-rolling ex-
tension supported by most of the pools), so frequent requests from miners to mining
pool server were needed to get new jobs to work on.
The other bad aspect of getwork was related to the necessity of HTTP protocol to
transport the JSON-RPC methods: since HTTP is a protocol which is most suit-
able for websites navigation, it was not ideal for Bitcoin mining operations. With
the growing global hashrate of that time, it was revealing very inefficient to manage
the frequent requests coming from miners, especially for what regards the load on
the pool servers and the bandwidth needed. As we have seen in 4.1.3, a mitigation
that was implemented in the getwork protocol was the exploitation of Long Polling
extension. However, its usage led to another issue: the packet storms which were
received by the pool server from the miners who were trying to reconnect to the
server after long polling broadcasts: most of the times it was hard to distinguish
long polling re-connections from possible DDoS attacks.
For these reasons, getwork was totally unable to scale pooled mining operations:
that’s why Stratum was designed very differently from it.

To investigate more deeply upon the architectural choices of Stratum protocol,

45



History of pooled mining protocols

it can be useful to look at the draft protocol specifications present in a publicly
shared Google document [32].

4.3.2 How Stratum (V1) works
As explained in the above introduction, Stratum aimed to solve two main ineffi-
ciencies of the previous getwork protocol:

1. HTTP used as a transport protocol.

2. Excessive number of job requests made by miners to the pool server due to
the absence of an extranonce field to modify during mining activity.

To solve the first issue, Stratum was developed as «a line-based protocol using plain
TCP socket, with payload encoded as JSON-RPC messages. Client simply opens
TCP socket and writes requests to the server in the form of JSON messages finished
by the newline character. Every line received by the client is again a valid JSON-
RPC fragment containing the response. There’s no HTTP overhead involved and
there are no hacks like mining extension flags encoded in HTTP headers anymore.
But the biggest improvement from HTTP-based getwork is the fact, that server can
drive the load by itself, it can send broadcast messages to miners at any time with-
out any long-polling workarounds, load balancing issues and packet storms.» [33]

To go into deeper details, Stratum solved the inefficiencies introduced by using
HTTP as the transport protocol through the following key solutions:

• Line-Based Protocol: Stratum introduced a line-based protocol over plain
TCP sockets. Instead of relying on the complexities of HTTP, the communi-
cation in Stratum is simplified by sending and receiving messages as lines of
text. Each line represents a valid JSON-RPC fragment containing requests
or responses.

• JSON-RPC Encoding: Stratum encodes the payload of the communication
as JSON-RPC messages: JSON provides a lightweight and structured data
format that is easy to parse and generate. By utilizing JSON-RPC, Stratum
achieves efficient and compact encoding of data, reducing the overall size of
the transmitted messages.

• Direct Socket Connection: Stratum utilizes direct socket connections be-
tween the mining pool server and the miners. This direct communication
enables a more efficient data exchange, eliminating the need for the addi-
tional overhead and complexities associated with HTTP.

46



4.3 – Stratum (V1)

• Real-time Updates and Push Mechanism: Stratum introduced a push
mechanism for real-time updates. Unlike the previous getwork protocol,
where miners had to explicitly request new mining jobs, Stratum allows min-
ing pool servers to proactively push mining jobs to subscribed miners. This
eliminates the delay and latency caused by frequent client requests, ensuring
that miners are always provided with the correct mining work.

• Load Management and Broadcast Messages: Stratum enables mining
pool servers to manage the load and send broadcast messages to miners as
needed. This eliminates the need for workarounds such as Long Polling and
mitigates the issues of load balancing and packet storms that were present in
the getwork protocol. The mining server can efficiently control and distribute
the workload across the connected miners.

By implementing these solutions, Stratum solves the inefficiencies introduced by
using HTTP as the transport protocol. The line-based protocol, combined with
JSON-RPC encoding and direct socket connections, reduced the communication
overhead and improved the efficiency of data transfer. Real-time updates and the
push mechanism allowed for immediate job distribution, eliminating the delays
caused by explicit client requests.

To overcome the second getwork inefficiency, Stratum protocol introduced the con-
cept of an extranonce field. The extranonce field is a mutable portion of the
coinbase transaction in the block template that miners can modify during the min-
ing process. By allowing miners to modify the extranonce, Stratum expanded the
search space for a valid block nonce without requiring frequent job requests to the
pool server.
With the extranonce field, miners could vary its value while keeping the rest of the
block template unchanged. This effectively increased the available nonce research
space, allowing miners to continue their operations for a longer period without
needing to request entirely new jobs from the server. Miners could exhaust the
nonce space of the original job and then modify the extranonce to start a new
search without interrupting the mining process.
By reducing the number of job requests, Stratum greatly improved the efficiency
and scalability of pooled mining operations. Miners could engage in uninterrupted
mining activity for longer durations, reducing the pressure on the pool server and
optimizing network resources. In summary, the introduction of the extranonce field
in the Stratum protocol provided miners with a more efficient solution to search
for valid block nonces. It minimized the need for frequent job requests to the
pool server, enhancing the overall mining experience by improving efficiency and
scalability.

47



History of pooled mining protocols

Stratum typical messages exchange [34]

In the Stratum protocol, the communication between the mining pool server and
the miners involves a typical message exchange that follows a specific pattern.

1. Connection Setup: the miner establishes a TCP socket connection with
the mining pool server. This connection is typically initiated on a specific
port designated for Stratum communication, which typically is 3333.

2. Subscription message: upon successful connection, the miner sends a sub-
scription request to the server. This request is sent as a JSON-RPC message
and tells the server that the miner wants to subscribe to mining work.

{"id": 1, "method": "mining.subscribe", "params": ["user agent/
version", "extranonce1"]}

The optional second parameter specifies a mining.notify subscription id the
client wishes to resume working with (possibly due to a dropped connection).
If provided, a server may issue the connection the same extranonce1.
The server responds to the subscription request with a subscription response,
providing the miner with necessary details such as the mining job, extranonce,
and other relevant information.

{"id": 1, "result": [[["mining.set_difficulty","subscription id
1"],["mining.notify","subscription id 2"]], "extranonce1", "ext
ranonce2_size"], error: null}

The result contains three items:

• Subscriptions details: 2-tuple with name of subscribed notification
and subscription ID.

• Extranonce1: Hex-encoded, per-connection unique string which
will be used for coinbase serialization later.

• Extranonce2_size: Represents the length of extranonce2 which will
be generated by the miner.

3. Authorization message: after receiving the subscription response, the
miner may need to provide authorization details, such as a username and
password, to the server.

{"id": 2, "method": "mining.authorize", "params": ["username",
"password"]}

48



4.3 – Stratum (V1)

The server validates the authorization details and responds with an autho-
rization result:

{"id": 2, "result": true, "error": null}

The result indicates whether the authorization was successful or not.

4. Notify message: once the miner is subscribed and authorized, it can start
requesting mining jobs from the server.

{"id": null, "method": "mining.notify", "params": ["job_id", "pre
vhash", "coinb1", "coinb2", "merkle_branches", "version", "nbits",
"ntime", "clean_jobs"]}

Description of the notification field in the order:

• job_id - ID of the job. Use this ID while submitting share generated
from this job.

• prevhash - Hash of previous block.
• coinb1 - Initial part of coinbase transaction
• coinb2 - Final part of coinbase transaction.
• merkle_branch - List of hashes, will be used for calculation of merkle

root. This is not a list of all transactions, it only contains prepared
hashes of steps of merkle tree algorithm.

• version - Bitcoin block version.
• nbits - Encoded current network difficulty
• ntime - Current ntime
• clean_jobs - When true, server indicates that submitting shares from

previous jobs don’t have a sense and such shares will be rejected. When
this flag is set, miner should also drop all previous jobs, so job_ids can
be eventually rotated.

With the mining job details obtained from the job notification, the miner
performs the mining calculations using its hashing power to search for a valid
block nonce. The miner modifies the extranonce2 field within the coinbase
transaction to expand the search space and increase the chances of finding a
valid nonce.

49



History of pooled mining protocols

Details about how to build the coinbase transaction with data received from
pool server, and how to assemble the block header to start mining on, will be
explained in the next paragraph called "How to build Coinbase Transaction
and Block Header".

5. Set difficulty message: the mining pool server can adjust the difficulty
required for miner shares with the "mining.set_difficulty" method.

{"id": null, "method": "mining.set_difficulty", "params": [2]}

This means that difficulty 2 will be applied to every next job received from
the pool server.

6. Submit Share message: If the miner successfully finds a valid share nonce,
it submits a share to the server for verification and potential inclusion in the
blockchain. The miner sends a share submission request to the server.

{"id": 4, "method": "mining.submit", "params":["username", "job_
id","extranonce2", "ntime", "nonce"]}

Values in particular order: worker_name (previously authorized), job_id, ex-
tranonce2, ntime, nonce.

The server processes the share submission and responds with a share sub-
mission result:

{"id": 4, "result": true, "error": null}

The result indicates whether the submitted share was accepted or rejected by
the server.

How to build Coinbase Transaction and Block Header

Once the miner has received all the necessary data to serialize the coinbase trans-
action, including Coinb1, Extranonce1, Extranonce2_size, and Coinb2, the process
of constructing the coinbase transaction can begin.

50



4.3 – Stratum (V1)

The following steps outline the procedure:

1. Generate Extranonce2: The miner needs to generate Extranonce2, which
should be unique for each job_id. The Extranonce2_size parameter speci-
fies the expected length of the binary structure. It is crucial to ensure that
the Extranonce2 generator always produces an Extranonce2 with the correct
length. For example, if the Extranonce2_size is set to 4, a valid Extranonce2
in hexadecimal format would be: 00000000.

2. Concatenate Components: To build the coinbase transaction, the miner
concatenates the following components together in the specified order: Coinb1
+ Extranonce1 + Extranonce2 + Coinb2. This concatenation creates a co-
hesive coinbase transaction structure.

With the necessary components at hand, the final step is to construct the block
header to mine on.

The following process describes the steps involved:

1. Concatenate Components: Combine the following components in the
specified order to build the block header for hashing: version + prevhash
+ merkle_root + ntime + nbits + ’00000000’ + ’00000080000000000000000
0000000000000000000000000000000000000000000000000000000000000080020
000’.
The initial zeroes represent the blank nonce, followed by padding to uint512,
and the latter part remains constant for all block headers.

2. Reversed Byte Order: Ensure that the merkle_root component is in re-
versed byte order.

51



History of pooled mining protocols

Stratum (V1) protocol real interaction

This section contains a real log of the communication between miner and pool server
which solved the testnet block with hash equal to: 000000002076870fe65a2b6eeed84
fa892c0db924f1482243a6247d931dcab32. (https://blockstream.info/testnet/block/
000000002076870fe65a2b6eeed84fa892c0db924f1482243a6247d931dcab32)

Figure 4.12: Real communication between miner and pool server

52

https://blockstream.info/testnet/block/000000002076870fe65a2b6eeed84fa892c0db924f1482243a6247d931dcab32
https://blockstream.info/testnet/block/000000002076870fe65a2b6eeed84fa892c0db924f1482243a6247d931dcab32


4.3 – Stratum (V1)

4.3.3 Stratum (V1) vulnerabilities and security issues
Stratum protocol, as we’ve seen, dramatically increased the performances of pooled
mining operations, being effectively an efficient, robust, and scalable communica-
tion protocol. It introduced a very different approach to pooled mining, giving the
responsibility to drive the load and to distribute jobs for the miners to the mining
pool operators.
By the way, it was developed in 2012: at that time the Bitcoin network difficulty
was around 3.000.000 (global hashrate was 13 TH/s, at the time of writing it’s 342
EH/s). As already said, the main purpose who took to the development of Stratum
protocol, was to find a valid alternative to the previous getwork, given the fact that
newest mining ASIC equipment was arriving at that time.
However, it’s important to note that the security aspects of the Stratum proto-
col were not the primary focus during its development. At that time, the overall
hashrate was relatively low compared to the present scenario, and considerations
regarding encryption or secure communication were not extensively taken into ac-
count. As a result, the Stratum protocol was built with plaintext transmission
for all protocol messages, without any encryption mechanisms to protect against
potential security threats.

Blackhat Asia 2021 - hashrate stealing attacks

In 2021, during the Blackhat Asia event, a group of researchers (Xin Liu, Rui
Chong, Yuanyuan Huang, Yingli Zhang, Qingguo Zhou) demonstrated how they
succeeded in stealing some hashrate secretly, exploiting the plaintext communica-
tions present in the Stratum protocol [35].

Figure 4.13: Coinbase tx details

Before entering in the details of the two
attacks which they discovered, a brief
reminder of the coinbase transaction
data, the set.extranonce message, and
client.reconnect message is needed.
The coinbase transaction is not sent entirely
by the mining pool server to the miner, but
it’s constructed by the miner once every
needed information is received. After the
subscription request sent by the miner,
the mining pool server answers with a mes-
sage containing the extranonce1 (which is
different for every connection) and the ex-
tranonce2 size. Using the notify mes-
sage, instead, pool server sends to the
miner the other components needed to build the entire coinbase transaction: the

53



History of pooled mining protocols

so called coinbase1, and coinbase2 data.
The set.extranonce message, instead, it’s used from the mining pool server to
replace the initial subscription values beginning with the next mining.notify job.

mining.set_extranonce("extranonce1", extranonce2_size)

The client.reconnect message, instead, can be used by mining pool server to ask
for a re-connection to the miner, and the syntax is:

client.reconnect("hostname", port, waittime)

The attacks which will follow, exploit specifically this set.extranonce message, since
it can be used to redirect hashrate of the miner to another "malicious" mining
pool used by the attacker. The precondition of the two attacks described by the
researchers, is using MITM strategies to hijack the communication between the
miner and the mining pool connected. At the same time, the adversary opens a
TCP connection to another "malicious" mining pool, which will be used to redirect
hashrate to in the next steps.

Figure 4.14: Preconditions of attack, Blackhat Asia 2021

Given this precondition, the research group studied and analyzed two different
possible attacks:

• Job injection based on set_extranonce

• Time segment

54



4.3 – Stratum (V1)

Job injection based on set_extranonce

In the first attack scenario, basically the adversary firstly collects the subscription
response of the two mining pool servers, saving locally the two couple of (entra-
nonce1, extranonce2_size).
At this point, the attacker sends to the miner the correct pool data, and he trans-
fers all the future messages without changing them.
In the moment in which the adversary wants to steal the miner hashrate, he sends
a set.extranonce message in which is put the "malicious" pool data (entranonce1,
extranonce2_size). Doing this, the miner will start working for the mining pool
chosen by the attacker, without noticing it.

Figure 4.15: Job injection based on set_extranonce, Blackhat Asia 2021

55



History of pooled mining protocols

Time segment

Regarding the second attack documented by the research group, it has some sim-
ilarities to the previous one, but this time the client.reconnect message is used to
ask the miner a re-connection to the "malicious" pool server, after a specific time
segment.

Figure 4.16: Time segment attack, Blackhat Asia 2021

The job injection based on the set_extranonce attack model provides better hiding
aspect due to its ability to insert a small number of "malicious" mining pool jobs
into the miner’s job flow at a low frequency. This makes it difficult for the mining
pool operator and the miner to detect the presence of the attack.
In the second attack model, the connection between the legitimate pool and the

56



4.3 – Stratum (V1)

"malicious" pool is switched within specific time segments. In this way, the mining
pool administrator may observe fluctuations in the overall computing power.

Both of the attack schemes described above are designed with the intention of
illicitly stealing part of the miner hashrate, and both of them perfectly work. To
investigate more about the Proof of Concept done by the above-mentioned research
group, some live-demonstration videos are available on Youtube. [36]

57



History of pooled mining protocols

4.3.4 Why Stratum (V1) needs to be updated
In conclusion, Stratum (V1) protocol, introduced in 2012, significantly improved the
performances of pooled mining operations by efficiently distributing jobs to miners
and managing in a brilliant way the load on the mining pool servers. However, as
described in the previous sub-chapters, its development was primarily focused on
performance over security. To better resume the overall evaluation of the protocol
which became the standard "de facto" in the pooled mining context, it’s better to
analyze its pros and cons.

Pros:

1. Efficiency: Stratum (V1) has demonstrated high efficiency and scalability in
managing pooled mining operations. It effectively distributes jobs to miners,
optimizing the overall mining process.

2. Easy implementation: the simplicity of the Stratum (V1) protocol made
it relatively easy to be implemented and integrated into mining software,
firmware, and hardware. This has contributed to its widespread adoption
and compatibility across different mining setups.

3. Wide adoption: Stratum (V1) has been widely adopted in the Bitcoin min-
ing industry. Its widespread usage has led it to be the "de-facto" standardized
communication protocol, allowing miners to easily connect with various min-
ing pools.

Cons:

1. Security vulnerabilities: Stratum (V1) lacks crucial security features. The
protocol relies on plaintext communication, making it sensible to attacks such
as hashrate stealing.

2. Privacy concerns: the absence of encryption in Stratum V1 exposes sensi-
tive information, including plaintext mining pool subscriptions and job data.
This compromises miners’ privacy and makes their activities easily traceable.

3. Limited authentication: Stratum (V1) lacks robust authentication mecha-
nisms, making it vulnerable to man-in-the-middle attacks. This increases the
risk of miners connecting to malicious or untrusted pools.

4. Data bandwidth: the payload of Stratum (V1) messages is encoded JSON-
RPC, so it can be more efficient, saving precious bandwidth during mining
operations.

58



4.3 – Stratum (V1)

5. Centralization risks: since the transactions selection is delegated to the
mining pool servers, Stratum (V1) contributes to the centralization of mining
power as mining pool operators hold significant control and responsibility
in job distribution. This concentration of power raises concerns regarding
network resilience, decentralization, and censorship-resistance of the entire
network.

To address these security and efficiency concerns, and provide a more optimized
protocol, the development of Stratum V2 became necessary. Stratum V2 aims to fix
the vulnerabilities of its predecessor by introducing encryption and other security
mechanisms. It focuses on enhancing the security, privacy, and efficiency of pooled
mining operations. By incorporating new sub-protocols like job negotiation, en-
crypted communication channels, and binary framing, Stratum V2 aims to provide
a more secure, efficient, and decentralized framework, for miners and mining pool
operators.

59



60



Chapter 5

Stratum V2

5.1 What is SV2: why and when it was born
Stratum V2 was initially proposed in the year of 2019. It was introduced by Pavel
Moravec and Jan Čapek (the two founders of the company called Braiins), in col-
laboration with Matt Corallo and other experts in the mining field.
Stratum V2 was proposed with a specific purpose in mind: to address the lim-
itations and shortcomings (analyzed in the previous chapter) of its predecessor,
Stratum V1. The introduction of Stratum V2 aimed to overcome the inefficien-
cies, lack of security measures, and inadequate performance associated with the
JSON-based Stratum V1 protocol.

Figure 5.1: Pavel Moravec, Jan Čapek and Matt Corallo, co-authors of SV2 specs

61



Stratum V2

As the Bitcoin mining industry continued to mature and expand, there was a
growing need for a more efficient and secure solution. Stratum V2 was proposed to
meet these evolving demands, offering a precise and well-defined protocol for pooled
mining operations. By incorporating authentication, optimizing data transfers, and
enhancing security against potential attacks, Stratum V2 aims to provide a more
streamlined, robust, and reliable framework for miners, proxies, and pool operators.
To encapsulate the principal aspects of its predecessor, Stratum V1, which SV2
aims to address, they can be classified into four categories:

• Security concerns
As described in the previous chapter, no security measures against MITM
attacks are takled, by protocol. In addiction to this, no strong authentication
mechanism are considered in the Stratum (V1) protocol.

• Data encoding inefficiencies
Messages payload in Stratum (V1) is JSON-encoded: it has been revelead
a very winning technique at the time of its announcement (2012), due to
its simplicity for debugging and implementation purposes. However, JSON
is not the most optimal method for encoding specialized data, compared to
more compact binary protocols.

• Transaction selection centralization
In Stratum (V1) protocol, the mining pool server is responsible for selecting
which transactions are included in the block that miners are trying to solve.
This means that the mining pool operators have control over which trans-
actions are prioritized and included in the block’s transaction list. This can
undermine the censorship resistance of the network.

• Non-standardization
The Stratum (V1) protocol was announced by Marek "Slush" Palatinus in
2012, and it received criticism for its lack of community-centeredness. Addi-
tionally, it suffers from inadequate documentation and a lack of standardized
shared specifications. For example, biggest mining farm typically use some
custom proxies which are helpful in the connections aggregation, but they are
not standardized someway by the protocol.

• Lack of flexibility
Stratum (V1) is considered to be a relatively simple and basic protocol. How-
ever, it lacks built-in mechanisms for easy upgrades or extensions. This can
make it challenging to introduce new features, improve security, or address
emerging issues.

62



5.1 – What is SV2: why and when it was born

In the next section, there will be deeply explanations about the differences between
Stratum V2 and Stratum (V1), focusing on the enhancements brought by Stratum
V2, to specifically solve the above-mentioned issues relative to Stratum (V1).
To dig more into this first overview of the main Stratum (V1) issues and how
Stratum V2 aims to solve them, it’s recommended to listen the interview to the
co-authors of the protocol available on Youtube [37].

63



Stratum V2

5.2 How SV2 works
In the previous section have been analyzed the goals of Stratum V2, especially in
regards to the inefficiencies related to its predecessor.
Before entering into the detailed differences between SV1 and SV2, it’s necessary
to provide a concise explanation about the new sub-protocols, roles, and chan-
nel types, introduced and standardized by the Stratum V2 protocol specifications.

Roles

The roles involved in data flow can be classified as either downstream or upstream
in relation to each other. Here are the roles and their respective classifications:

• Mining Device
The mining device is the physical hardware that carries out the hashing pro-
cess. It is considered the most downstream role.

• Pool Service
This role belongs to the entity where the actual hashrate produced by the
mining devices is consumed. It is considered the most upstream role.

• Mining Proxy
This role represents the proxy server situated between the mining device and
the pool service. It handles message coordination and aggregation. In relation
to the mining device, it is considered upstream, while in relation to the pool
service, it is considered downstream.

• Job Negotiator
The job negotiator receives transactions from the Template Provider (which
is essentially the Bitcoin client) and constructs custom block templates. It
also negotiates the use of these templates with the pool.

• Template Provider
This role is fulfilled by a Bitcoin client responsible for generating custom block
templates. These templates are then sent to the Job Negotiator for mining
purposes.

Sub-protocols

To fulfill the goals related to pooled mining operations efficiency, decentralization
of the transaction selection process, and the other aspects previously declared,

64



5.2 – How SV2 works

Stratum V2 had to introduce some new sub-protocols. Regarding the main mining
protocol, new types of communication channels were standardized.

• Mining Protocol
The mining protocol is the primary protocol used for mining and serves as
the direct successor to Stratum (V1). It enables communication between a
mining device and its upstream node, pool, or proxy. This protocol is essential
and must be implemented in all mining scenarios. In cases where a miner or
pool does not support transaction selection, the mining protocol is the only
protocol used.
The protocol defines three types of communication channels:

– Standard channels: they don’t manipulate the Merkle path / coin-
base transaction, greatly simplifying the communication required be-
tween them and upstream nodes.

– Extended channels: they are given extensive control over the search
space so that they can implement advanced use cases (e.g. translation
between V1 and V2, difficulty aggregation, custom search space splitting,
etc.).

– Group channels: they are simply collections of standard channels that
are opened within a particular connection so that they are addressable
through a common communication channel.

• Job Negotiation Protocol
The job negotiation protocol is utilized by a miner, typically a mining farm,
to negotiate a block template with a pool. The results of this negotiation
can be reused for all mining connections to the pool, reducing computational
intensity. In other words, a single negotiation can be applied to an entire
mining farm or even multiple farms with a large number of devices, leading to
greater efficiency. This protocol is separate to allow pools to terminate these
connections on separate infrastructure from mining protocol connections.

• Template Distribution Protocol
The template distribution protocol shares a similar structure to facilitate ob-
taining information about the next block from Bitcoin Core. It is designed to
replace getblocktemplate with a more efficient and easier-to-implement solu-
tion for those incorporating other aspects of Stratum V2 into their systems.

To better understand the list of differences between SV1 and SV2 which will fol-
low, a preface with some more deep aspects which regard the SV2 protocol choices in
term of protocol security, binary framing, and censorship resistance enhancements
is needed.

65



Stratum V2

Figure 5.2: Typical Division of Downstream and Upstream Roles, Galaxy Digital
Research [5]

SV2 protocol security

«Stratum V2 employs a type of encryption scheme called AEAD (authenticated
encryption with associated data) to address the security aspects of all communi-
cation that occurs between clients and servers. This provides both confidentiality
and integrity for the ciphertexts (i.e. encrypted data) being transferred, as well as
providing integrity for associated data which is not encrypted. Prior to opening any
Stratum V2 channels for mining, clients MUST first initiate the cryptographic ses-
sion state that is used to encrypt all messages sent between themselves and servers.
Thus, the cryptographic session state is independent of V2 messaging conventions.
At the same time, the SV2 protocol specification proposes optional use of a particu-
lar handshake protocol based on the Noise Protocol framework [38]. The client and
server establish secure communication using Diffie-Hellman (DH) key agreement, as
described in greater detail in the Authenticated Key Agreement Handshake section
of the specifications document.
Using the handshake protocol to establish secured communication is optional on
the local network (e.g. local mining devices talking to a local mining proxy). How-
ever, it is mandatory for remote access to the upstream nodes, whether they be
pool mining services, job negotiating services or template distributors.» [39]

66



5.2 – How SV2 works

SV2 binary framing

The Stratum V2 protocol is binary, with fixed message framing. Each message
begins with the extension type, message type, and message length (six bytes in
total), followed by a variable length message. Figure 5.3 describes the message
framing used by the protocol.

Figure 5.3: SV2 protocol binary framing

SV2 transaction selection

In section 4.3, related to Stratum (V1), it’s well explained how the current pooled
mining operations work. Today, the selection of the transactions to be inserted in
the block templates, which are distributed in the form of jobs to the miners, is a
pool responsibility. The only entities who took valid Bitcoin transactions from the
mempool and decide the ones who will be mined in the next block are the pool
operators. Since pool are public entities, they can be attacked from governments,
and this is not so ideal for the censorship-resistance property of the Bitcoin network
as a whole.
With Stratum V2, miners now have the ability to choose their own work (i.e.
choose their own transaction set), making mining process more decentralized. This
is implemented separately from the main mining protocol, as described previously,
and it is optional for pools and miners. In Figure 5.4, it’s very clear the benefits
that will be brought by having miners (single miners, mining farms, etc.) selecting
transactions from their local bitcoin node’s mempool, and negotiating their own
block template with the pool, instead relaying on the pool responsibility.

67



Stratum V2

Figure 5.4: Transaction selection decentralization brought by Stratum V2 [6]

5.3 Differences between SV1 and SV2

This section aims to explore and analyze the key differences between Stratum V1
and Stratum V2, highlighting the advancements and improvements introduced by
the latter. It will follow the public SV2 documentation from Braiins, summarizing
the most interesting SV2 enhancements [40].

Bandwidth consumption
The use of a binary protocol in-
stead of a text-based one signif-
icantly reduces bandwidth us-
age. In Stratum V1, making
messages readable by humans
resulted in some messages be-
ing unnecessarily large, approx-
imately 2-3 times bigger than
needed. However, in V2, these
messages have been minimized
to their essential size. Furthermore, V1 includes certain unnecessary messages like
mining.subscribe, which have been eliminated in V2.

Server CPU load
Thanks to the introduction of standard and group channels, Stratum V2 achieves

68



5.3 – Differences between SV1 and SV2

a reduction in server CPU load by implementing header-only mining for end de-
vices (it will be explained later). This implies that the Merkle root, which was
previously handled by end devices, is now always provided by an upstream node.
Consequently, end devices are lighter since there’s no need to perform any coinbase
modifications. This simplifies the computational tasks for miners and, at the same
time, significantly lightens the workload required for work validation (i.e. CPU
load) on the server side.

Header-only mining
As anticipated in section 5.2, Stratum V2 introduces the possibility for miners to
open standard mining channels that don’t permits coinbase transaction manipula-
tion. In other words, end mining devices don’t do any extranonce or Merkle path
handling. This process if called header-only mining. The size of the search
space for a device doing header-only mining for a particular value in the nTime
field is 2NONCE_BIT S+V ERSION_ROLLING_BIT S = 280Th, where NONCE_BITS =
32 and VERSION_ROLLING_BITS = 16. This is a guaranteed search space be-
fore nTime rolling. The client that opens a particular standard channel owns the
entire assigned search space and can split it further (e.g. between multiple hashing
boards or individual chips) if necessary.

Binary vs non-binary
As described in 5.2, SV2 has fixed message framing and it is precisely defined,
which means that there isn’t room for different interpretations of Stratum V2 like
there was with V1.
Instead, Stratum V1 protocol relies on JSON, which has a sub-optimal ratio be-
tween the size of the message payload and the actual information transmitted. By
transforming Stratum V2 into a binary protocol, the data efficiency significantly
improves. This enhanced efficiency allows for the saved bandwidth to be allocated
towards more frequent job submissions, thereby reducing hashrate variance.

Job distribution latency
In Stratum V1, mining pool
servers send jobs to miners con-
taining both the prevhash and
Merkle root of the transaction
lists to be included in the next
block (this is done using the
SV1 mining.notify message, as
discussed in 4.3.2). So, these
two pieces of data aren’t sepa-
rable, so there is a heavy (slow)
data transfer necessary to distribute new jobs as soon as a new block (with a new

69



Stratum V2

prevhash) has been found and propagated.
In Stratum V2, it’s possible to separate the prevhash from the rest of the predefined
block data, which allows for the block data to be sent before a new prevhash is
available. As a result, the new prevhash message can be sent on its own as soon
as a valid block is found, and this transmission can occur much faster because the
message doesn’t include heavier data. This enables miners to begin working on new
jobs more quickly than they could with Stratum V1.

Man-in-the-middle attack prevention
As analyzed at 5.2, Stratum V2 introduces a type of encryption scheme called
AEAD (authenticated encryption with associated data) to address the security as-
pects of all communication that occurs between miners and pool servers. This
provides both confidentiality and integrity for the ciphertexts (i.e. encrypted data)
being transferred, as well as providing integrity for associated data which is not en-
crypted. Stratum V2 uses authenticated encryption with associated data (AEAD)
so that possible adversaries will be unable to use share submission data to iden-
tify particular miners, thus maintaining the privacy of miners and protecting them
against hashrate hijacking.

Empty block mining elimination
Very similarly to the 5.3 point, the elimination of the incentive for empty block min-
ing comes down to the separation of the prevhash message from other block header
data. With Stratum V1, there is an incentive for pools to send empty blocks con-
taining the new prevhash as soon as possible, as these messages will arrive faster
than a message containing a full block. By separating these two messages in Stra-
tum V2, it’s now possible for pools to send full blocks to miners before the new
prevhash message. In other words, the miners can be prepared to start working
on a new (full) block before the previous block has been found, and then all they
need is the new prevhash message to begin working on that next block. Since this
prevhash message is the same size (i.e. takes the same amount of time to arrive)
regardless of whether or not the pool has sent an empty block or a full block, there
is no longer an incentive to mine on empty blocks.

Job selection
Job selection by end miners has been included as an optional component of Stratum
V2, separate from the main mining protocol. The name Job ’Negotiation’ Protocol
is telling, as job selection is indeed a negotiation process between a miner and a
pool. The miner proposes a block template, and it is up to a pool to accept or reject
it. Once a negotiated template has been accepted, the results can be used by any
number of mining devices, even hundreds of thousands of them. The reason this is
separate from the main mining protocol is to allow pools to terminate connections
on separate infrastructure from the main mining protocol, that way there is no

70



5.3 – Differences between SV1 and SV2

impact on the efficiency of actual share submissions.

Multiplexing
In SV2, there can theoretically be as many as 232 (around 4.3 billion) open chan-
nels within a single physical connection (e.g. TCP) to an upstream stratum node.
These channels are independent and have unique channel IDs, meaning that many
devices can simultaneously receive different job assignments using the same connec-
tion, saving on infrastructure costs. At the same time, the channels may all share
some information for greater efficiency, such as when a new prevhash is broadcasted.

Native version rolling
Each Bitcoin block header contains a version field whose bits can be freely used
to extend the search space for a miner. Rolling the version bits can greatly re-
duce the frequency with which new jobs need to be distributed, and it’s already
a common technology (BIP320, https://en.bitcoin.it/wiki/BIP_0320). With SV2,
version rolling becomes a native part of the mining protocol.

The features and improvements mentioned earlier are the main additions brought
by the Stratum V2 protocol. They are taken from the protocol specifications re-
leased in 2019, as mentioned before.
In the next section, it will be explained the current implementations of the SV2
protocol specifications, including the birth of an independent development group,
which is focused on standardizing a totally open source and community-based im-
plementation, called SRI (Stratum Reference Implementation).

71

https://en.bitcoin.it/wiki/BIP_0320


Stratum V2

5.4 Current implementations
BraiinsOS

As explained in the previous sections, Stratum V2 protocol specifications were
designed and published in the late 2019. However, the first SV2 implementation
appeared in the first half of 2020, announced from the Braiins team, again. They
developed a first basic Stratum V2 implementation, which was directly incorporated
in their own Braiins OS firmware.
«That’s finally ready to change. Today, we are launching a new product that
includes a working implementation of Stratum V2 as well as additional autotuning
functionality that has strong user demand. The product is an ASIC firmware called
Braiins OS, which was the first mining firmware to implement overt AsicBoost back
in 2018 and is also the first fully-open source firmware in the industry.» [41].

Figure 5.5: First SV2 implementation released by Braiins team, in 2020

Initially, the Braiins team focused on implementing the ASIC protocol logic in
the ASIC’s firmware, suggesting to use a translation proxy which was in charge of
translating the SV2 messages received from the SV2 firmware-miner. As described
in 5.5, in that manner the proxy would let the miner communicate correctly with
any mining pool which was supporting only Stratum (V1).
In that way, any miner could take advantage of the security and data efficiency
brought by Stratum V2 protocol, using an encrypted communication channel and
the binary framing defined in the SV2 specs.

However, after some months, the Braiins co-founders (co-authors of the SV2 specifi-
cations) decided to pass the future development of the protocol to someone who was

72



5.4 – Current implementations

external to their business. Doing this, they declared that the Stratum V2 proto-
col implementation should have been done by an independent community, without
having the responsibility to be linked in some way to the Braiins company itself.

Stratum Reference Implementation (SRI)

For the above-mentioned reason, during 2020 a new group of people composed by
independent developers started to work on a fully open-source implementation of
Stratum V2, called SRI (Stratum Reference Implementation).
The purpose of SRI group is to build, beginning from the SV2 specifications dis-
cussed in the previous section, a community-based implementation, with the aim to
discuss and open the development with as many people of the Bitcoin community
as possible.

Figure 5.6: SRI homepage on stratumprotocol.org

In the last year, SRI group did a great work in expanding the SV2 features already
covered by the Braiins implementation.
For example, they shipped the translator proxy, capable of translating SV1 mes-
sages coming from a "SV1" miner to the SV2 logic. Some months ago, SRI group
developed and announced the so called job-negotiator, which permits the trans-
action selection by miners, further decentralizing the power which is currently in
the hands of the mining pools operators: «the new update is "a major milestone in
democratizing transaction selections in pooled mining and decentralizing bitcoin,"
as it allows miners to select transactions via a new sub-protocol and their node.» [42]

73



Stratum V2

In this chapter have been discussed all the major differences between Stratum (V1)
and Stratum V2, the enhancements brought by the latter, the new sub-protocols
and roles, and the current SV2 implementations.

In the next chapter, the focus will be about the most important adoption path,
which is the Stratum Reference Implementation (SRI). There will be a very deep
analysis of the four different configuration which it permits, with a practical part
in which two of them will be tested on both cpuminers and real ASIC machines.

74



Chapter 6

Stratum Reference
Implementation (SRI)

6.1 How SRI works
As explained in the previous chapter, the Stratum Reference Implementation (SRI),
is a full open-source, community based implementation of the Stratum V2 protocol
specifications. The team who is building it started some years ago, and it’s com-
posed by independent developers majorly funded by individual grants. The project
is supported by many companies involved into mining operations, such as Braiins,
Foundry, Galaxy Digital. In addiction to them, there are engaged also entities like
Bitmex, Human Rights Foundation, Spiral and the Summer of Bitcoin.
Nowadays, most of the implementation work has been done, but there are still some
open discussions related to the protocol specifications, such as roles structure, noise
encryption, job negotiation/declaration protocol.
However, as previously anticipated, Stratum V2 is a very flexible protocol, espe-
cially if compared to the current one used for pooled mining operations (Stratum
V1). To fill the lack of flexibility of its predecessor, Stratum V2 introduced some
news sub-protocols and roles.

SRI roles

The Stratum Reference Implementation, in particular, provides a well defined set
of these new roles, which are contained in the "roles" folder of its Rust codebase [43].

The current repository contains 4 different roles:

• SV2 Pool
This role represents a Stratum V2 Pool server. It can open any kind of

75



Stratum Reference Implementation (SRI)

communication channels (as defined in 5.2) with downstream roles (proxies
or mining devices).

• SV2 Mining Proxy
The SV2 Mining Proxy acts as an intermediary between the mining devices
and the SV2 Pool. It receives mining requests from multiple devices, aggre-
gates them, and forwards them to the SV2 pool. It can open group/extended
channels with upstream (the SV2 pool) and standard channels with down-
stream (SV2 Mining Devices).

• SV2 Mining Device
This role represents a conceptual Mining Device written in Rust that is com-
patible with SRI stack. It can connect to an SV2 Pool or Mining Proxy and
performs the mining operations.

• SV1-SV2 Translator Proxy ( + Job Negotiator)
The SV1-SV2 Translator Proxy is responsible for translating the communica-
tion between SV1 actual Mining Devices and an SV2 Pool or Mining Proxy. It
enables SV1 devices to interact with SV2-based mining infrastructure, bridg-
ing the gap between the older SV1 protocol and SV2. It can open extended
channels with upstream (the SV2 pool or Mining Proxy)
If correctly configured, it can act as a Job Negotiator, so it can enable the
transaction selection feature for the miners which are connected to it.

For what regards the so called Template Provider [44], as already said, it enables
the extraction of transactions from the Bitcoin nodes which are miner-side. In this
way, miners are now able to create custom block templates and negotiate their use
with the Job Negotiator via the Job Negotiation Protocol. On June 11, 2023 a first
official proposal to add a SV2 template provider natively in Bitcoin Core, has been
opened and discussed on the Bitcoin Core repository [45].

SRI configurations

As described in the homepage of the SRI website [46], thanks to all these different
roles and sub-protocols, Stratum V2 can be used in many different mining contexts.
The SRI working group defined 4 main possible configurations which can be the
most probable real use-cases, and they are defined as the following listed.

76



6.1 – How SRI works

• Configuration A
As already said, before Stratum
V2, transaction sets to be mined
in the next blocks were selected
by pools. With this SV2 config-
uration they’re selected by indi-
vidual miners, making the net-
work more censorship-resistant.
In this case, miners run SV2
compatible firmware, connecting
to the SV2 Mining Proxy. Us-
ing the Job Negotiator role, in-
dividual miners are able to pick
up their transactions locally, ex-
tracting them from their local
Template Provider, and declare
them to an SV2 Pool.

Figure 6.1: SRI configuration A

• Configuration B
Mining Devices run SV2
firmware, so they are able to
connect to a SV2 Mining Proxy
(typically through a standard
channel). The proxy aggregates
all the standard channels opened
into just one open channel with
the SV2 Pool (group channel or
an extended channel). In this
configuration, the Proxy doesn’t
have the Job Declarator setup, so
it’s unable to select transactions
from its local Template Provider.
Transactions selection is done
by the SV2 Pool, as it was done
in Stratum V1, but now it can
benefit from all the security and
performance features brought by
SV2. Figure 6.2: SRI configuration B

77



Stratum Reference Implementation (SRI)

• Configuration C
With this setup, Mining Devices
don’t need to run a SV2 compat-
ible firmware. The Proxy which
is used to let for efficiency, is also
able to translate the SV1 mes-
sages that come from the Min-
ing Device into SV2 messages for
the SV2 Pool. In this case, the
Translator Proxy is not config-
ured to talk to a local Template
Provider, so transactions selec-
tion is done by the pool. How-
ever, this configuration permits
to test and use the SV2 pro-
tocol features without installing
any other SV2 firmware on the
machines.

Figure 6.3: SRI configuration C

• Configuration D
This configuration is very sim-
ilar to the previous (config C),
but it’s able to add the transac-
tions selection feature to it. As
represented in Figure 6.4, the
Translator Proxy is joined by a
Job Negotiator and a Template
Provider: it’s able, in this way, to
build its own block templates and
declare them to the SV2 Pool,
through an extended channel.

Figure 6.4: SRI configuration D

78



6.2 – Getting Started

6.2 Getting Started
In this section, the goal is to explore in details the SRI configurations which are
available for testing purposes. Tests will be done on both CPU-miner and real
ASIC machine (Antminer S19J Pro), following the official Getting Started guide
which can be found at [46].

6.2.1 Testing SRI configurations
SRI working group currently developed and shipped all the roles which are needed
for every of the 4 configurations introduced in the previous section. However, the
ones which will be tested here, are the Config C and D, since they are the most
ready and documented for testing on real ASIC machines.
To start testing also Config A and B, of course, it’s possible to run every individual
role, following the indications reported in the README of them (e.g. for the SV2
Mining Proxy, follow the guidelines on the official SRI Github repository).

Prerequisites

Before entering the Configurations details, there are some first-steps that needs to
be checked:

• Rust installed: if not, install it by running this command in the terminal:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

• Clone the SRI repository locally:
git clone https://github.com/stratum-mining/stratum.git

At this point everything is correctly setup and ready for the testing phase.

Config C

This configuration, as seen in 6.1, allows Mining Devices running SV1 firmware to
connect to a SV2 Pool through a Translation Proxy (tProxy). The proxy is designed
to sit in between a SV1 downstream role (most typically Mining Device(s) running
SV1 firmware) and a SV2 upstream role (most typically a SV2 Pool Server).
In this case, since there is not intended to be a Template Provider miner-side,
transactions selections is delegated to the SV2 Pool server, which is running its
local Template Provider, as explained in Figure 6.3.

79



Stratum Reference Implementation (SRI)

First of all, once the SRI project repository just cloned is accessed, the SV2 Pool
server has to be run:

cd stratum/roles/v2/pool/
cp pool-config-example.toml ./conf/pool-config.toml
cd conf/

Now the example config file called pool-config.toml is copied into the /conf di-
rectory. This file contains all the parameters needed for the pool to be correctly
configured. It’s possible to enter the file and customize it for the most desired be-
haviour, following the guidelines available in the README file of the pool role. For
simplicity, it’s possible to use the testnet Template Provider which is hosted by the
SRI working group: in this way it’s not needed to be run a local one. To do that,
it’s needed to comment the line corresponding to tp_address = "127.0.0.1:8442",
and uncomment the one which corresponds to tp_address = "89.116.25.191:8442".

After that, to finally run the SV2 Pool:
cargo run -p pool_sv2

As described in the command output, the Pool is now connected to the hosted
testnet Template Provider, and it will get the transactions to be put in the next
block template from it.
Now the Pool is ready to get connection requests, listening on the port 342254.

Figure 6.5: SV2 Pool connected to the hosted Template Provider, config C

At this point, since will be used SV1 Mining Devices, the Translator Proxy is
needed. In a new terminal:

cd stratum/roles/translator/
cp proxy-config-example.toml ./conf/proxy-config.toml
cd conf/

Since the configuration file provided is already prepared for the Config C, the Trans-
lator Proxy is ready to be run:

cargo run -p translator_sv2

The Translator Proxy is now running, and as can be seen in the command output,
it has requested a connection to the SV2 Pool, asking to open an extended chan-
nel [47], and it received an extended mining job, and a prev hash. So it’s now ready

80



6.2 – Getting Started

to customize the templates that it will distribute to the Mining Devices which will
be connected to it!

Note: to learn more about the messages exchanged during this phase, look at:

• Setup connection message

• OpenExtendedMiningChannel message

• NewMiningJob message

• SetNewPrevHash message

All the messages details are well explained in the SV2 mining protocol spec-
ifications repository.

Figure 6.6: Translator Proxy connected to the SV2 Pool, config C

Now, the only role which is missing is the SV1 Mining Device. There are two
alternatives to run it:

• CPU-miner
An open-source SHA-256, multi-threaded CPU-miner for Bitcoin which works
following the Stratum (V1) protocol. Once downloaded, in a new terminal:

cd Downloads/
./minerd -a sha256d -o stratum+tcp://localhost:34255 -q -D -P

81



Stratum Reference Implementation (SRI)

Figure 6.7: SV1 CPU-miner running, using the Translation Proxy, config C

As described in the Figure 6.7, the SV1 CPU-miner is running correctly: it
connected to the Translator Proxy on port 34255, doing the subscription and
receiving a new job with the mining.notify SV1 message. Then, it started
working and sending shares to the tProxy, with the mining.submit SV1 mes-
sage.

• ASIC miner
With a real ASIC machine, it’s very easy to configure it to point to the
Translator Proxy. In the miner pool settings, the following string has to be
added to the current endpoints:

stratum+tcp://<tProxy ip>:34255

Once configured, the ASIC miner will restart automatically and it will point
its hashrate to the Translator Proxy IP previously set.
As captioned in Figure 6.9, the Translator Proxy logs correctly the connec-
tion request coming from the machine, parsing the SV1 messages (subscribe,
authorize, etc.).

82



6.2 – Getting Started

Figure 6.8: Pool settings of a Antminer S19J Pro

Figure 6.9: Translation Proxy logs successfully the ASIC miner SV1 requests

Config D

As described in 6.1, this configuration allows Mining Devices running SV1 firmware
to connect to a SV2 Pool through a Translation Proxy (tProxy). In this case the83



Stratum Reference Implementation (SRI)

tProxy is designed also to implement the Job Negotiation (JN) sub-protocol: allow-
ing miners to select transactions locally and send them to the Pool-side JN. In the
following guide a Template Provider (TP) is installed locally on the same machine,
to provide block templates to the JN.
Since Config D is very similar to the configuration previously tested, the focus here
wants to be on the Template Provider and Job Negotiator roles.

As already explained, here the big difference comes from the addition of the transac-
tions selection feature: to let the miner locally do it, a local Template Provider
is needed.
First of all, in a new terminal window:

git clone https://github.com/stratum-mining/bitcoin.git
git checkout last-tested-tp
cd bitcoin/
./autogen.sh && ./configure --enable-template-provider
make check

Once the local Template Provider (which is a version of Bitcoin Core full node with
the ability to act as a SV2 TP) is installed:

./src/bitcoind -testnet

After checking that the TP is correctly running, the SV2 Pool server has to be
run:

cd stratum/roles/v2/pool/
cp pool-config-example.toml ./conf/pool-config.toml
cd conf/

Since the example config file is already configured to let the SV2 Pool connect to a
local instance of Template Provider, nothing has to be changed in the configuration
parameters. So, now run the SV2 Pool:

cargo run -p pool_sv2

As described in the command output, the Pool is now connected to the local Tem-
plate Provider (127.0.0.1), and it will get the transactions to be put in the next
block template from it.

Figure 6.10: SV2 Pool connected to the local Template Provider, config D

84



6.2 – Getting Started

At this point, like in the previous configuration tested, the Translator Proxy is
needed. In a new terminal:

cd stratum/roles/translator/
cp proxy-config-example.toml ./conf/proxy-config.toml
cd conf/

This time, since the Translator Proxy needs to act as a Job Negotiator, selecting
the transaction from its own local Template Provider, some changes in its configu-
ration file has to be done.

• Uncomment the line 27 of the proxy-config.toml, enabling the JNP.

• Ensuring that line 31 (tp_address = "127.0.0.1:8442") is uncommented.

Now the Translator Proxy is ready to be run:
cargo run -p translator_sv2

Figure 6.11: Translator Proxy which acts as a Job Negotiator, config D

As before, the Translator Proxy is now correctly running. This time, the big dif-
ference is inside the last log message of the command output:

INFO translator_sv2::upstream_sv2::upstream: Send custom job to upstream

In this moment, as described in the logs of 6.11 the Translator Proxy was able
to create a custom job (block template to work on) using its own local Template

85



Stratum Reference Implementation (SRI)

Provider, and it communicated it to the Job Negotiator which is Pool-side!

However, since the details about the messages involved into the Job Negotiator
Protocol are still material of discussions, the analysis about it won’t go deeper
than this. To be updated upon the final version and implementation details about
this sub-protocol, it’s suggested to have a look at https://github.com/stratum-
mining/sv2-spec/blob/main/06-Job-Negotiation-Protocol.md.

Now, the only role which is missing is the SV1 Mining Device. And, as in
the previous configuration, it will work with both CPU-miner and the real ASIC
machine, in the same way described above.

86

https://github.com/stratum-mining/sv2-spec/blob/main/06-Job-Negotiation-Protocol.md
https://github.com/stratum-mining/sv2-spec/blob/main/06-Job-Negotiation-Protocol.md


6.3 – Final thoughts and future ideas

6.3 Final thoughts and future ideas

As described and analyzed in the previous section, Stratum Reference Implemen-
tation (SRI) has achieved a substantial progress during last year, delivering crucial
features and roles like the Translator Proxy and the Job Negotiation.
While the first permits to use the SV2 protocol without changing the ASIC ma-
chine’s firmware, the second is the critical feature that allows a real decentralization
of the transactions selection power (which is now entirely in the hands of mining
pools operators).
However, as already anticipated, some details about the messages involved into the
Job Negotiation Protocol are material of discussion: firstly it will be renamed into
Job Declaration Protocol, and the reasons for that will be explained in the next
subsection about SRI Pool fallback.
Besides of that, SRI developers group defined many future further enhancements
of the SV2 protocol, which are already been studied, such as the implementation
of some specific payment pool, necessary to build a non-custodial pool, and the
development of a protocol benchmarking suite.

6.3.1 SRI Pool fallback

The SRI Pool fallback is a feature which is already in the SRI roadmap, and it will
be a very crucial piece of the protocol.
Basically, once the last little changes about the Job Declarator Protocol will be
done, a miner who aims to work with a setup like the previously analyzed Config
D (6.1), or even better Config A (6.1), will be able to build its own block tem-
plates, extracting the most profitable Bitcoin transactions from its local Template
Provider. At this point, the miner will have a Job Declarator Client who is in
charge of declaring this own block template to the Job Declarator Server (JDS)
which will be Pool-side.
At this stage, the Pool-side JDS can still refuse the block template proposed by
the miner (for any reason, could also be for censorship imposed by States or gov-
ernmental agencies), and if this will be the case, the Job Declarator Client will
automatically declare the same block template (containing the same trans-
actions set) to another JDS of another mining Pool, choosing from a customized
pre-configured backup list.
In the very extreme case in which all the JDS of the backup Pools are refusing
the block template proposed by the miner, it will automatically start to do solo
mining, without the need of any manual intervention.
By doing in this way, any possible future attacks to the censorship-resistance of the
entire network will be extremely disincentivized and ineffective.

87



Stratum Reference Implementation (SRI)

6.3.2 Non-custodial pools
Another subject of research of the SRI group is related to the current centralized
and trusted payout mechanism used by the actual mining pools. As described in
section 3.3, nowadays the addresses inserted into the coinbase output to get the
block reward is the ones belonging to the mining pools operators. Then, accord-
ingly to the shares submitted from every miner who joins the pool, this reward is
split and sent to the miners, through normal asynchronous Bitcoin transactions.
The concentration of the entire funds in a central entity exposes pooled mining
operations to a significant risk. As the payout process is based on a trusted cen-
tralized third-party pool service, miners must place complete trust in the fairness
of their payouts, without the ability to independently verify whether the pool is
withholding a portion of their rewards, a practice known as pool skimming [48].
The most valuable solution to address this issue is based on implementing a payout
scheme where miners directly collect the coinbase reward, without the need for a
centralized pool to control their funds: in this way, it would be possible to operate
a fully non-custodial pool.
In the past, some possible solutions emerged from the market, but the most promis-
ing one was called P2Pool, who was announced in this way: «P2Pool is a decen-
tralized pool that works by creating a P2P network of miner nodes. These nodes
work on a chain of shares similar to Bitcoin’s blockchain. Each node works on
a block that includes payouts to the previous shares’ owners and the node itself.
There is no central point of failure, making it DoS resistant.» [49]. However, its
payout scheme was based on locking funds to miners’ individual addresses within
the coinbase transaction outputs, leading to a significant increase in the size of the
coinbase: for this reason it revealed to be a very inefficient solution.
Three developers from the SRI team, published a RFC containing their own new
payout scheme for a non-custodial mining pool on the bitcoin dev list [50]. As
stated into the document, «Our scheme is introduced through the concept of a
payment pool, where the participants are the miners of the mining pool. The
presented payment pool scheme uses ANYPREVOUT [51], does not rely on any
off-chain technology and it is trustless, in the sense that a participant does not have
to trust in collaboration of all other participants: a non-collaborating participant is
automatically ejected from the payment pool and it is not a threat for accessibility
of funds. Our study assumes the pool to be centralised, but it can be generalised
to decentralised pools. Our payment pool scheme is meant to be a future extension
of Stratum V2 mining protocol.» [52]

6.3.3 SRI benchmarking suite
As already told in 5.4, SRI development started some years ago. However, a major
mining protocol update like the one proposed by the SRI is very sensitive, due to

88



6.3 – Final thoughts and future ideas

the ever growing importance of the mining operations of nowadays.
During last year the SRI work started to get some real encouraging feedbacks from
the Bitcoin community, thanks to the last major updates and to the communication
efforts done in the last months.

By the way, to encourage Stratum V2 wide adoption, the SRI developers group
think that a complete evaluation and precise measurements of the enhancements
brought by SV2 is needed. A benchmarking suite which is able to easily test and
benchmark protocol performances in different mining scenarios, capable of compar-
ing the current version of Stratum (V1) with SV2 is necessary. In this way, mining
industry professionals and the broader market will be able to easily understand ev-
ery possible configuration permitted by SRI, evaluating and measuring themselves
the potential benefits in terms of efficiency and consequently, profitability. The
main purpose of benchmarking is to demonstrate, with precise measurements, all
the performance improvements brought by SV2, pushing at this point its natural
adoption by both miners and mining pools.

89



90



Chapter 7

Conclusion

In conclusion, this thesis has provided a comprehensive exploration of the evolu-
tion of mining protocols in the Bitcoin ecosystem, with a specific focus on the
transformative potential of Stratum V2. By examining the history, mechanics, and
limitations of previous protocols such as Getwork and Getblocktemplate, as well
as the current dominant protocol Stratum (V1), the need for a more efficient and
secure protocol became apparent. The emergence of Bitcoin as a decentralized
digital currency highlighted the importance of mining in maintaining the system’s
integrity and security. The concept of Proof of Work (PoW) was introduced as a
consensus mechanism, ensuring that miners invest computational power to validate
transactions and add new blocks to the blockchain. However, the transition from
solo mining to pooled mining brought significant changes, enabling miners to collab-
orate and increase their chances of receiving rewards in a more predictable manner.
Unfortunately, because of the way Stratum (V1) protocol works, this benefit is
gained at the expense of a centralization about the selection of the transactions to
be included in blocks.

The main argument of this thesis centers around the significance of Stratum V2
as a transformative protocol for Bitcoin pooled mining. Stratum V2 addresses
the centralization concerns associated with Stratum (V1) and introduces enhanced
security, operational efficiency, transaction selection decentralization, and other im-
provements. By decentralizing power and giving more control to individual miners,
Stratum V2 aims to maintain the decentralized and uncensorable nature of the
Bitcoin network.
While Stratum V2 presents a promising solution, its adoption in the mining com-
munity is still in progress. Real-world data and concrete evidence showcasing the
efficiency improvements brought by the protocol update will be essential in encour-
aging individual miners to embrace Stratum V2. Continued research and develop-
ment, as well as the creation of benchmarking suites and practical implementations
like the Stratum Reference Implementation (SRI), will play a vital role in further

91



Conclusion

advancing the protocol and its adoption. It is crucial to emphasize the dangers
associated with centralization in the hands of a few mining operators. Stratum V2
offers a pathway to mitigate these risks and maintain the decentralized nature of
the Bitcoin network. By fostering a collaborative and secure mining environment,
Stratum V2 has the potential to shape the future direction of Bitcoin mining meth-
ods and ensure the continued development of the Bitcoin ecosystem.

In conclusion, this thesis contributes to the understanding of the advancements
made in mining protocols and highlights the significance of Stratum V2 as a ground-
breaking protocol within the Bitcoin ecosystem. By addressing centralization con-
cerns and introducing improvements in security and efficiency, Stratum V2 builds
the way for a more decentralized and resilient Bitcoin network. As further research
and development take place, and as the benefits of Stratum V2 become more evi-
dent through real-world implementations and data, it is expected that the mining
community will increasingly adopt this protocol, ultimately enhancing the overall
strength and uncensorability of the entire Bitcoin network.

92



Bibliography

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Oct 2008.
[2] Daniel Frumkin. Bitcoin Mining Handbook. Braiins Publishing, 1st edition,

2022.
[3] Block Chain - Bitcoin — developer.bitcoin.org. https://developer.

bitcoin.org/reference/block_chain.html#block-headers.
[4] BIP 0023 - Bitcoin Wiki — en.bitcoin.it. https://en.bitcoin.it/wiki/

BIP_0023#Mutations.
[5] Rachel Rybarczyk. The Future of Bitcoin Mining Protocols: Making Every

Watt Count — galaxy.com. https://www.galaxy.com/research/insights/
future-of-bitcoin-mining-protocols/, 2022.

[6] Bitcoin’s Decentralization with Stratum V2 | Braiins — braiins.com. https:
//braiins.com/blog/stratum-v2-bitcoin-decentralization, 2020.

[7] P. Champagne. The Book Of Satoshi. Wren Investment Group, LLC, first
edition, 2014.

[8] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-
Currencies. O’Reilly Media, Inc., 1st edition, 2014.

[9] Bitcoin Legacy Project. The Bitcoin Legacy Project — thebitcoinlegacypro-
ject.org. https://www.thebitcoinlegacyproject.org/.

[10] Bitcoin Optech. Transaction bloom filtering — bitcoinops.org. https:
//bitcoinops.org/en/topics/transaction-bloom-filtering/.

[11] Addy Yeow. Global Bitcoin Nodes - Bitnodes — bitnodes.io. https:
//bitnodes.io/nodes/all/.

[12] Adam Back et al. Hashcash-a denial of service counter-measure, 2002.
[13] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine

generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
[14] Saifedean Ammous. The Bitcoin Standard: The Decentralized Alternative to

Central Banking. Wiley Publishing, 1st edition, 2018.
[15] laszlo. Pizza for bitcoins? — bitcointalk.org. https://bitcointalk.org/

index.php?topic=137.0, May 2010.
[16] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv

preprint arXiv:1112.4980, 2011.
[17] m0mchil. GitHub - m0mchil/bitcoin-getwork: bitcoin getwork patch —

93

https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://developer.bitcoin.org/reference/block_chain.html#block-headers
https://en.bitcoin.it/wiki/BIP_0023#Mutations
https://en.bitcoin.it/wiki/BIP_0023#Mutations
https://www.galaxy.com/research/insights/future-of-bitcoin-mining-protocols/
https://www.galaxy.com/research/insights/future-of-bitcoin-mining-protocols/
https://braiins.com/blog/stratum-v2-bitcoin-decentralization
https://braiins.com/blog/stratum-v2-bitcoin-decentralization
https://www.thebitcoinlegacyproject.org/
https://bitcoinops.org/en/topics/transaction-bloom-filtering/
https://bitcoinops.org/en/topics/transaction-bloom-filtering/
https://bitnodes.io/nodes/all/
https://bitnodes.io/nodes/all/
https://bitcointalk.org/index.php?topic=137.0
https://bitcointalk.org/index.php?topic=137.0


Bibliography

github.com. https://github.com/m0mchil/bitcoin-getwork, 2010.
[18] satoshi. New getwork — bitcointalk.org. https://bitcointalk.org/index.

php?topic=1901, November 2010.
[19] m0mchil. GitHub - m0mchil/poclbm: PyOpenCL bitcoin miner —

github.com. https://github.com/m0mchil/poclbm.
[20] mempool - Bitcoin Explorer — mempool.space. https://mempool.space/

block/00000000000000000cca48eb4b330d91e8d946d344ca302a86a280161b\
0bffb6?showDetails=true#details.

[21] RPC Byte Order - Bitcoin Glossary — btcinformation.org. https://
btcinformation.org/en/glossary/rpc-byte-order.

[22] Getwork - Bitcoin Wiki — en.bitcoin.it. https://en.bitcoin.it/wiki/
Getwork.

[23] Luke-Jr. Mining protocol extension: noncerange — bitcointalk.org. https:
//bitcointalk.org/index.php?topic=24336.0.

[24] Luke-Jr. X-Roll-Ntime extension — bitcointalk.org. https://bitcointalk.
org/index.php?topic=22561.0.

[25] jgarzik. RPC: Remove ’getwork’ deprecated mining protocol by jgarzik Â·
Pull Request #2905 - bitcoin/bitcoin — github.com. https://github.com/
bitcoin/bitcoin/pull/2905.

[26] jgarzik. [RFC] removal of "getwork"; RPC mining protocol — bitcointalk.org.
https://bitcointalk.org/index.php?topic=277631.0, August 2013.

[27] Luke-Jr. Decentralized mining protocol standard: getblocktemplate (ASIC
ready!) — bitcointalk.org. https://bitcointalk.org/index.php?topic=
108854.0, September 2012.

[28] Emi Lacapra. What are Bitcoin improvement proposals (BIPs), and how do
they work? — cointelegraph.com. https://cointelegraph.com/explained/
what-are-bitcoin-improvement-proposals-bips-and-how-do-they-work.

[29] Bitcoin-Qt version 0.7.0 released — bitcoin.org. https://bitcoin.org/en/
release/v0.7.0#bitcoin-improvement-proposals-implemented, 2012.

[30] Block Chain - Bitcoin — developer.bitcoin.org. https://developer.
bitcoin.org/reference/block_chain.html#serialized-blocks.

[31] Marek "Slush" Palatinus. [ANN] Stratum mining protocol - ASIC ready
— bitcointalk.org. https://bitcointalk.org/index.php?topic=108533.0,
September 2012.

[32] Marek "Slush" Palatinus. Stratum - network protocol spec
— docs.google.com. https://docs.google.com/document/d/
17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit?hl=en_US.
[Accessed 06-Jul-2023].

[33] Marek "Slush" Palatinus. Stratum V1 Docs | Mining Protocol — braiins.com.
https://braiins.com/stratum-v1/docs, 2012.

[34] Stratum mining protocol - Bitcoin Wiki — en.bitcoin.it. https://en.
bitcoin.it/wiki/Stratum_mining_protocol.

94

https://github.com/m0mchil/bitcoin-getwork
https://bitcointalk.org/index.php?topic=1901
https://bitcointalk.org/index.php?topic=1901
https://github.com/m0mchil/poclbm
https://mempool.space/block/00000000000000000cca48eb4b330d91e8d946d344ca302a86a280161b\0bffb6?showDetails=true#details
https://mempool.space/block/00000000000000000cca48eb4b330d91e8d946d344ca302a86a280161b\0bffb6?showDetails=true#details
https://mempool.space/block/00000000000000000cca48eb4b330d91e8d946d344ca302a86a280161b\0bffb6?showDetails=true#details
https://btcinformation.org/en/glossary/rpc-byte-order
https://btcinformation.org/en/glossary/rpc-byte-order
https://en.bitcoin.it/wiki/Getwork
https://en.bitcoin.it/wiki/Getwork
https://bitcointalk.org/index.php?topic=24336.0
https://bitcointalk.org/index.php?topic=24336.0
https://bitcointalk.org/index.php?topic=22561.0
https://bitcointalk.org/index.php?topic=22561.0
https://github.com/bitcoin/bitcoin/pull/2905
https://github.com/bitcoin/bitcoin/pull/2905
https://bitcointalk.org/index.php?topic=277631.0
https://bitcointalk.org/index.php?topic=108854.0
https://bitcointalk.org/index.php?topic=108854.0
https://cointelegraph.com/explained/what-are-bitcoin-improvement-proposals-bips-and-how-do-they-work
https://cointelegraph.com/explained/what-are-bitcoin-improvement-proposals-bips-and-how-do-they-work
https://bitcoin.org/en/release/v0.7.0#bitcoin-improvement-proposals-implemented
https://bitcoin.org/en/release/v0.7.0#bitcoin-improvement-proposals-implemented
https://developer.bitcoin.org/reference/block_chain.html#serialized-blocks
https://developer.bitcoin.org/reference/block_chain.html#serialized-blocks
https://bitcointalk.org/index.php?topic=108533.0
https://docs.google.com/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit?hl=en_US.
https://docs.google.com/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit?hl=en_US.
https://braiins.com/stratum-v1/docs
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://en.bitcoin.it/wiki/Stratum_mining_protocol


Bibliography

[35] X. Liu, R. Chong, Y. Huang, Y. Zhang, and Q. Zhou. Disappeared coins:
Steal hashrate in stratum secretly. 2021. Blackhat Asia.

[36] Eddy Zhang. Job injection based on set_extranonce. https://www.youtube.
com/watch?v=ZvpdOj6U0vM, 2021.

[37] Braiins. Bitcoin mining stratum v2 - behind the scenes with slush pool’s
ceos & square crypto’s matt corallo. https://www.youtube.com/watch?v=
sp6QEFzkAyI, 2020.

[38] Trevor Perrin (noise@trevp.net). The Noise Protocol Framework — noisepro-
tocol.org. https://noiseprotocol.org/noise.html.

[39] Stratum V2 - protocol security specifications - stratum-mining/sv2-spec —
github.com. https://github.com/stratum-mining/sv2-spec/blob/main/
04-Protocol-Security.md.

[40] Stratum V2 | The next generation protocol for pooled mining — braiins.com.
https://braiins.com/stratum-v2.

[41] Driving Stratum V2 Adoption with Braiins OS+ Autotuning
Firmware | Braiins — braiins.com. https://braiins.com/blog/
driving-stratum-v2-adoption-with-braiins-os-autotuning-firmware,
2020.

[42] btccasey. Developers announce stratum v2 up-
date for decentralized bitcoin mining — bitcoin-
magazine.com. https://bitcoinmagazine.com/technical/
developers-announce-stratum-v2-update-for-decentralized-bitcoin\
-mining, 2023.

[43] stratum-mining — github.com. https://github.com/stratum-mining/.
[44] Template provider - stratum-mining/bitcoin at last-tested-tp — github.com.

https://github.com/stratum-mining/bitcoin/tree/last-tested-tp.
[45] ccdle12. [WIP] add a stratum v2 template provider by ccdle12 Â· Pull

Request #27854 - bitcoin/bitcoin — github.com. https://github.com/
bitcoin/bitcoin/pull/27854.

[46] StratumV2 — stratumprotocol.org. https://stratumprotocol.org/.
[47] Stratum V2 - mining protocol specifications - stratum-mining/sv2-spec —

github.com. https://github.com/stratum-mining/sv2-spec/blob/main/
05-Mining-Protocol.md#512-extended-channels.

[48] chasdabigone. Mining Pool Skimming — bitcointalk.org. https://
bitcointalk.org/index.php?topic=1750050.0.

[49] forrestv. p2pool: Decentralized, DoS-resistant, Hop-Proof pool — bit-
cointalk.org. https://bitcointalk.org/index.php?topic=18313.0.

[50] Fi3 and Lorban. [bitcoin-dev] A payout scheme for a non custodial min-
ing pool — lists.linuxfoundation.org. https://www.mail-archive.com/
bitcoin-dev@lists.linuxfoundation.org/msg12616.html. [Accessed 06-
Jul-2023].

95

https://www.youtube.com/watch?v=ZvpdOj6U0vM
https://www.youtube.com/watch?v=ZvpdOj6U0vM
https://www.youtube.com/watch?v=sp6QEFzkAyI
https://www.youtube.com/watch?v=sp6QEFzkAyI
https://noiseprotocol.org/noise.html
https://github.com/stratum-mining/sv2-spec/blob/main/04-Protocol-Security.md
https://github.com/stratum-mining/sv2-spec/blob/main/04-Protocol-Security.md
https://braiins.com/stratum-v2
https://braiins.com/blog/driving-stratum-v2-adoption-with-braiins-os-autotuning-firmware
https://braiins.com/blog/driving-stratum-v2-adoption-with-braiins-os-autotuning-firmware
https://bitcoinmagazine.com/technical/developers-announce-stratum-v2-update-for-decentralized-bitcoin\-mining
https://bitcoinmagazine.com/technical/developers-announce-stratum-v2-update-for-decentralized-bitcoin\-mining
https://bitcoinmagazine.com/technical/developers-announce-stratum-v2-update-for-decentralized-bitcoin\-mining
https://github.com/stratum-mining/
https://github.com/stratum-mining/bitcoin/tree/last-tested-tp
https://github.com/bitcoin/bitcoin/pull/27854
https://github.com/bitcoin/bitcoin/pull/27854
https://stratumprotocol.org/
https://github.com/stratum-mining/sv2-spec/blob/main/05-Mining-Protocol.md#512-extended-channels
https://github.com/stratum-mining/sv2-spec/blob/main/05-Mining-Protocol.md#512-extended-channels
https://bitcointalk.org/index.php?topic=1750050.0
https://bitcointalk.org/index.php?topic=1750050.0
https://bitcointalk.org/index.php?topic=18313.0
https://www.mail-archive.com/bitcoin-dev@lists.linuxfoundation.org/msg12616.html
https://www.mail-archive.com/bitcoin-dev@lists.linuxfoundation.org/msg12616.html


Bibliography

[51] Decker Christian and Towns Anthony. BIP118 - SIGHASH_ANYPREVOUT
for Taproot Scripts — bips.xyz. https://bips.xyz/118, 2017.

[52] Fi3, Lorban, and Rachel Rybarczyk. RFC-payment_pools-0.3
— docs.google.com. https://docs.google.com/document/d/
1qiOOSOT7epX658_nhjz-jj0DlnSRvytemOv_u_OtMcc/edit#heading=h.
z5edqe4exehb.

96

https://bips.xyz/118
https://docs.google.com/document/d/1qiOOSOT7epX658_nhjz-jj0DlnSRvytemOv_u_OtMcc/edit#heading=h.z5edqe4exehb
https://docs.google.com/document/d/1qiOOSOT7epX658_nhjz-jj0DlnSRvytemOv_u_OtMcc/edit#heading=h.z5edqe4exehb
https://docs.google.com/document/d/1qiOOSOT7epX658_nhjz-jj0DlnSRvytemOv_u_OtMcc/edit#heading=h.z5edqe4exehb

	List of Figures
	Introduction
	Bitcoin
	What is Bitcoin
	How the network is composed
	Bitcoin network nodes: types and roles
	Extended Bitcoin network
	Geographical distribution and statistics

	Proof of Work

	Mining
	How mining works
	Mining history and evolution
	Solo mining and Pooled mining

	History of pooled mining protocols
	Getwork
	What is Getwork: why and when it was born
	How Getwork works
	Getwork usage into pooled mining and protocol extensions
	Why Getwork usage ended up

	Getblocktemplate (GBT)
	What is GBT: why and when it was born
	How GBT works
	Why GBT usage ended up

	Stratum (V1)
	What is Stratum (V1): why and when it was born
	How Stratum (V1) works
	Stratum (V1) vulnerabilities and security issues
	Why Stratum (V1) needs to be updated


	Stratum V2
	What is SV2: why and when it was born
	How SV2 works
	Differences between SV1 and SV2
	Current implementations

	Stratum Reference Implementation (SRI)
	How SRI works
	Getting Started
	Testing SRI configurations

	Final thoughts and future ideas
	SRI Pool fallback
	Non-custodial pools
	SRI benchmarking suite


	Conclusion
	Bibliography

