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Abstract

The term "micromobility" has just recently entered our lexicon (approximately 2017)
and it can be defined simply as mobility pertaining to short routes and distances,
primarily in cities. Micro vehicles, which have a light mass and a constrained
speed, are included in the idea of micromobility, both powered and unpowered,
private and shared vehicles are covered in this list. The shared use of vehicles,
specifically bicycles, is the main topic of this thesis. Micromobility sharing services
have expanded significantly since this idea was first proposed in many parts of the
world.

In this study, the usage of these services was analyzed using some Machine Learning
models such as: ARIMA, Linear Regression, Lasso, Ridge, Random Forest and
Gradient Boosting. The goal of this thesis is addressing the problem of predicting
the availability of bikes for a station-based sharing service and the flux of bikes
in a certain area. Specifically, it investigates the applicability of machine learning
models to forecast the number of occupied slots of a particular sharing station
of bikes in San Francisco (USA) and the number of bikes that cross the Fremont
Bridge in Seattle (USA). To accomplish this, a methodology has been developed.
First, the data was collected, after which it was cleaned, integrated, and subjected
to preliminary analysis to determine how best to manage it. Next, the chosen
machine learning models were trained using the sliding window technique, their per-
formance was compared, and the best machine learning model was chosen. Lastly,
by analyzing temporal and weather contexts, using the chosen Machine Learning
model trained on past data, we obtained a good future prediction on bike occupancy.

The outcomes allow us to provide practical guidelines to setup and tune Ma-
chine Learning models on these fields. As a practical result of this work, it is
possible to forecast the arrival of bikes or, more broadly, people in a certain urban
area, which might help businesses or local governments to enhance the services
they provide there.

Keywords: micromobility, data analysis, machine learning, ARIMA, Linear Re-
gression, Lasso, Ridge, Random Forest, Gradient Boosting.
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Chapter 1

Introduction

1.1 Context

Micromobility is a relatively new term which was coined by Horace Dediu (ap-
proximately in 2017), a Romanian-American industry analyst, who advocates that
the term has in itself the definition: "micro" denotes something small or minimal
and "mobility" denotes the capacity to move. He defined micro-vehicles as vehicles
with a mass of maximum 1000 Kg. The intergovernmental organization called ITF
tried to find a more specific definition of micro-vehicles and they arrived to the
conclusion that they are vehicles with top speed equal to 45 km/h and top weight
350 kg. Finding a unique definition for micro-vehicles is difficult because there are
different legislation in different countries concerning them. This is one reason why
it is not so easy to find open micromobility data in every country and sometimes it
is necessary to pay to have them.

This thesis aims to be able to predict as accurately as possible the bike occu-
pancy levels of a certain area, using machine learning techniques. To do this, a
framework and methodology were first created to serve as the basis for whatever
dataset is to be used; mobility data need to be acquired first, then, since not all
datasets that are available have the same structure and since the data needs to be
arranged in a specific way in order to be utilized in the following steps, it needs to
be cleaned. The following phase is "data integration for data enrichment" where
the dataset in use is enriched with weather data and temporal data, then the data
is explored to find the best time period to study and more important how to study
the dataset. If the dataset in question has too high granularity sampling needs
to be done. Then the windowing technique is applied to the dataset, the chosen
Machine Learning models is trained and the prediction is done. Following these
stages, a set of guidelines needs to be formulated.

1



Introduction

There are two datasets used in this study: the first one is an open dataset based
in San Francisco, specifically in the Bay Area and it is about station-based bike
sharing vehicles. The second one is also an open dataset based in Seattle, specifi-
cally on the Fremont Bridge and it is about the number of bikes that cross the bridge.

The Machine Learning techniques used to perform this study are regression models
such as ARIMA, Linear regression, Lasso, Ridge, Random Forest and Gradient
Boosting. To evaluate the performance of these different algorithms some evaluation
metrics were used such as Mean Absolute Error, Mean Squared Error, Root Mean
Squared Error and R2 score. The methodology discussed earlier was applied to the
selected datasets and the experimental analysis was done: first of all the ARIMA
model was tested using the windowing technique, but the outcome wasn’t as good
as expected, then all the different techniques were tested using the same parameters
and the outcome was that the Random Forest was the best model among the others.
The next experimental session was done by doing all the combination between
the window size and the horizon to find the best one and the prediction was done.
Then the data enrichment was done by adding the time features and the prediction
was compared to the first one. Then the weather features were added to compare
this prediction with the two before. Lastly the unavailability of most recent data
was tested by varying the parameter called "lead time".

This study could be useful for companies providing station-based sharing bicycle
service to know whether there will be a need to redistribute them to other stations
or to add new ones to the station under consideration, in the case of bike flow it
is useful for companies or municipalities to understand whether there is enough
turnout to be able to build useful services to the community in that particular
area.

1.2 Thesis outline
This thesis has the following organization:

• Chapter 2: Description of micromobility and the laws concerning it in Europe
and the United States and description of datasets found in the online world.

• Chapter 3: Description of datasets used in the study.

• Chapter 4: Introduction to the framework and description of the methodology
used in this study.

• Chapter 5: Description of theoretical concepts and tools used in this study.

2
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• Chapter 6: Discussion related to the application of the proposed methodology
to the datasets.

• Chapter 7: Experimental analysis and discussion of the results obtained.

• Chapter 8: Conclusions and future work.

3



Chapter 2

Urban mobility data

2.1 Mobility and Micromobility

All types of movement within cities are referred to as "urban mobility". It encom-
passes forms of transportation like biking, walking, and public transportation.
Micro-mobility, as defined by the Treccani dictionary (2020) [1], is "mobility related
to short routes and distances mainly in cities, characterized by the use of means of
transportation that are less heavy and bulky and potentially less polluting than
traditional ones (e.g., scooters, electric scooters, pedal-assisted bicycles)."
Horace Dediu is credited with coining the term "micromobility" [2]; he maintains
that it derives from the two words that make up the term: "micro" denotes some-
thing small or minimal, and "mobility" denotes the capacity to move. According to
what he said earlier, the concept is "the ability of movement through minimalistic
means." Dediu contends that in light of this, micromobility must be defined by
focusing on its intended purpose, which is to move a human being with the least
amount of interference to their freedom of movement. Weight, a characteristic
of people, was the unit of measurement he used to describe this notion. He then
selected a limit equal to a multiple of 5 of the average person’s weight across all
continents, or roughly 100 kg (taking clothing and personal goods into account).
The vehicle’s weight cannot exceed 500 kg, which is the limit for micromobility. To
be safe, a restriction of 1000 kg was then established, which continues to exclude
cars.
ITF (International Transport Forum) [3], an intergovernmental organization that
serves as an advocacy group for transportation policy, claims that the phrase is
vague because it encompasses a variety of light vehicles, including bicycles, kick
scooters, and powered skates. They suggest that using micro vehicles, those weigh-
ing less than 350 kg and traveling at a top speed of no more than 45 km/h, is
what is meant by "micromobility." Vehicles that are powered by humans and by

4
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electricity are both included in this description. The ITF classifies micro-vehicles
as follows:

Figure 2.1: Micro vehicles classification [3]

They are first divided into two groups based on their top speed: up to 25 km/h
and between 25 and 45 km/h. They can then be further divided into two categories
based on weight: less than 35 kg and between 35 and 350 kg. Although this,
there are some distinctions between the United States of America and European
definitions of micromobility.

Europe

The L-category vehicles were established by European Union regulation N°168/2013
as a standard for member nations. Powered two-, three-, and four-wheel vehicles
are under the L category. Depending on the power, power source, speed, length,
height, and width, the classification criteria alter. A significant category known as
"light two-wheel powered vehicle" is L1e, which is made up with:

• L1e-A powered bicycle: an electric bike with an auxiliary motor, a top speed
of 25 km/h, and a net power range of 250 to 1000 watts.

• Two-wheel vehicles with a top speed between 26 and 45 km/h and a maximum
net power of 4000 watts are classified as L1e-B two-wheel mopeds.

5
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Excluded from this category are several micro-vehicles, such as human-powered
vehicles, bicycles with pedal assistance up to 25 km/h and with an auxiliary electric
motor with a maximum continuous rated power of up to 250 watts, self-balancing
vehicles, and vehicles without seats.

United States

Electric bikes and scooters are primarily controlled at the state level in the United
States. According to state rules, an e-bike must belong to one of the following
three categories in order to be used:

• A class 1 electric bike is one that has a motor that only assists when the rider
is pedaling and stops once the bike achieves a speed of 32 km/h.

• A class 2 electric bicycle is one that has a motor that can only be used to
move the vehicle forward and is unable to assist once it reaches a speed of 32
km/h.

• An electric bicycle classified as a class 3 is one that has a motor that only
assists the rider when they are pedaling and stops when they reach a speed of
45 km/h. It also has a speedometer.

Other efforts to classify micromobility

For engineers working in a variety of industries, SAE International is a U.S.-
based, internationally active professional association and standards development
organization. According to the J3194TM Standard, which SAE International
published, powered micro mobility is a subcategory of powered vehicles that may
be categorized using four primary factors (SAE, 2019):

• vehicle weight of up to 227 kg

• vehicle width of up to 1.5 m

• top speed of up to 48 km/h

• power source by an electric motor or a combustion engine

6
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Figure 2.2: SAE 2019 [3]

The J3194 standard identified six different categories of powered micro-vehicles:
powered bicycle, powered standing scooter, powered seated scooter, powered self-
balancing board, powered non-self-balancing board, and powered skates. Only
automobiles intended primarily for passenger transportation and for use on paved
roads and walkways are included. Only human-powered vehicles, such as standard
bikes, are excluded. However it makes a distinction between three e-bike classes:

• Class 1: low-speed, pedal-assisted e-bike

• Class 2: low-speed, throttle-assisted e-bike

• Class 3: speed pedal-assisted e-bike

An alternate classification of vehicles places more emphasis on the top speed,
weight, emissions, spatial footprint, and health footprint (a result of the physical
activity input), normalized by the vehicle’s passenger capacity.

Apart from how micro vehicles might be categorized, they can be used privately,
docked- or dockless-shared. A docked device can be picked up and released from a
certain position, whereas a dockless item can be dropped and picked up from any
area.
In this thesis, the focus is just on bikes.

From various reports on the web, it is possible to see how micromobility is
becoming increasingly important and necessary within different cities around the
world. In particular, this thesis being focused on bicycles, looking at the following
graphs it can be seen how their use has grown over the years (apart during 2020
when there was the COVID-19 pandemic).

7
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Figure 2.3: Bike sharing in Italy [4]

Figure 2.4: Bike sharing in USA [5] using the number of trips as a metric

There are certain open datasets available on the Internet that can be used
to examine how people move around cities using sustainable vehicles (micro-
vehicles), but it was quite challenging to locate accessible datasets based in Europe,
particularly in Italy. This may be because shared services are very new in our
nation. Some of the more pertinent datasets are given here:

• London dataset [6] contains data regarding e-bikes,

• Austin dataset [7] contains shared micromobility vehicle trip data for both
e-bikes and e-scooters,

• Berlin and Munich dataset [8] that is a reference matrix of more than half
a million e-scooters from former micromobility provider circa from the second
half of 2019 for the cities of Berlin and Munich. Information on number of
trips, average trip duration, and route are aggregated by the hour and in small
area,

8
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• Chicago dataset [9] that contains electric scooter trips taken during the
2020 Chicago pilot program,

• Norfolk dataset [10] that is about trips on electric scooters and electric-
assisted bikes. Data represents trips from July 2019 to the present and is
updated weekly.

Since the ultimate goal would be to use a dataset containing Italian data, a
company called Fluctuo [11] was discovered, which was created in 2019 and is
situated in France, that sells several datasets related to micromobility. The price
of data varies depending on how far back in time you require them.
After all this research, it is clear that data are useful and important because often
it is necessary to pay to investigate mobility in various cities and nations.

9



Chapter 3

Data description

This chapter describes the datasets utilized in this thesis.
For this study anonymous mobility data from the bike and e-scooter rental business
was used.

3.1 Station-based SF Bay Area Bike Share
The San Francisco Bay Area Bike Share [12] was the first dataset taken into consid-
eration and it is about station-based bike sharing vehicles. This dataset is made up
of four files, each of which contains details about various aspects of renting bicycles.
The following files are included: station.csv (which contains data that represents a
station where users can pick up or return bikes), status.csv (which contains data
about the number of bikes and docks available for a given station and minute),
trips.csv (which contains data about individual bike trips), and weather.csv (which
contains data about the weather on a specific day for specific zip codes). Only
weather records and statistics regarding the number of bikes at each station were
taken into account for this study.

The file "status.csv" consists of the following fields:

• station_id: this is the identification number of the specific station.

• bikes_available: this number represents the number of bikes that are parked
in a specific station at a specific time.

• docks_available: this number represents the number of docks that are free
in a specific station at a specific time.

• time: this field in the data set refers to the time when the data on the number
of bikes available/docks available were collected.

10



Data description

The "weather.csv" file contains information about the weather and includes
the following fields:

• date: date in which the weather data was collected.

• max_temperature_f : maximum temperature expressed in Fahrenheit.

• mean_temperature_f : mean temperature expressed in Fahrenheit.

• min_temperature_f : minimum temperature expressed in Fahrenheit.

• max_dew_point_f : maximum dew point expressed in Fahrenheit.

• mean_dew_point_f : mean dew point expressed in Fahrenheit.

• min_dew_point_f : minimum dew point expressed in Fahrenheit.

• max_humidity: maximum humidity.

• mean_humidity: mean humidity.

• min_humidity: minimum humidity.

• max_sea_level_pressure_inches: maximum sea level pressure expressed
in inches.

• mean_sea_level_pressure_inches: mean sea level pressure expressed in
inches.

• min_sea_level_pressure_inches: minimum sea level pressure expressed
in inches.

• max_visibility_miles: maximum visibility expressed in miles.

• mean_visibility_miles: mean visibility expressed in miles.

• min_visibility_miles: minimum visibility expressed in miles.

• max_wind_Speed_mph: maximum wind speed expressed in mph.

• mean_wind_speed_mph: mean wind speed expressed in mph.

• max_gust_speed_mph: maximum gust speed expressed in mph.

• precipitation_inches: precipitation during that date expressed in inches.

• cloud_cover: cloud cover expressed in oktas.

11
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• events: events happened during that date, which could be: nan, ’Fog’, ’Rain’,
’Fog-Rain’, ’rain’, ’Rain-Thunderstorm’.

• wind_dir_degrees: wind direction degrees.

• zip_code: zip code that expresses where these data are valid.

3.2 Seattle: Fremont Bridge Bicycle Counter
The Fremont Bridge Bicycle Counter dataset [13] is based on a counter that tracked
the number of bicycles utilizing the pedestrian and cycling lanes to cross the bridge
between October 2012 and March 2023.
This data set is characterized by:

• Date: Date in which the number of bikes is recorded.

• Fremont Bridge Sidewalks, south of N 34th St: total number of bikes
that come on the bridge from west and east sidewalks.

• Fremont Bridge Sidewalks, south of N 34th St Cyclist East Sidewalk:
number of bikes from east sidewalk.

• Fremont Bridge Sidewalks, south of N 34th St Cyclist West Sidewalk:
number of bikes from west sidewalk.

Since the previous data collection didn’t include weather information, a new
dataset was needed. The chosen one is called "Did it rain in Seattle?" [14] and. The
rain sensor over Seattle’s airport provided the data used here, thus even though it
is not over the bridge, it was chosen to be utilized.
The dataset that was selected is made up of the following:

• DATE: Date when the weather was observed.

• PRCP: precipitation expressed in inches.

• TMAX: maximum temperature expressed in Fahrenheit.

• TMIN: minimum temperature expressed in Fahrenheit.

• RAIN: boolean that expresses if it rained or not.
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Chapter 4

Data analysis framework
and methodology

This chapter will go through the study’s methodology and the framework that was
employed.

4.1 Framework

Figure 4.1: Proposed framework

• Data acquisition: E-bikes rental data and the related weather are acquired
and stored.
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• Data preparation: In this stage, a new, cleaned, enriched, and sampled
dataset was created by selecting a consistent time period for the data, enriching
the dataset with contextual descriptors (such as temporal information and
meteorological data), sampling at a selected time rate, and filling in the gaps
with interpolation methods.

• Training of contextual models: prediction models are trained on the
considered data set using the windowing technique. Models are Machine
Learning-based algorithms.

• Model assessment and definition of context-aware guidelines: A test
sample is used to evaluate the effectiveness of the top machine learning model
in predicting the occupancy levels in the near future. The system managers
could be given a set of common guidelines based on the results attained in
various circumstances.

4.2 Proposed Methodology

4.2.1 Data Acquisition
The initial stage of the process is data acquisition, during which data is collected
from multiple open sources.

4.2.2 Data Preparation
When the first step is completed and all the necessary data are present, they must
be processed before moving on to analyze them. The four steps which make up this
phase are data cleaning, data integration for data enrichment, exploratory data
analysis, and sampling.

Data cleaning

Data collected in the initial stage must first be cleaned up and transformed into
structured data before it can be utilized for any analysis or modeling. If data isn’t
stored properly, it may be prone to mistakes, which might easily sabotage the study
or the program might not work. The data must be evaluated and errors must be
sought in order to arrive at more precise conclusions. The most frequent errors
that might be encountered are:

• Missing values

• Duplicate values
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• Values set to null when they should be zero or the opposite

• Time zone differences

• Corrupted values (i.e. invalid entries)

• Date range errors

Also, Machine Learning models need numerical values to work, so, one-hot
encoding needs to be used on the categorical values to convert them into numerical
ones.

Data integration for data enrichment

This stage involves integrating data from many open sources to expand the con-
cerned dataset as well as define the context.

Exploratory data analysis

This preliminary data exploration may help generate testable hypotheses and
determine which subsets of data to employ for subsequent modeling. In this stage,
the available data is examined for any hidden patterns. Additionally, examining
the numerous impact factors on the target variable as well as their strength is
attempted. These answers, as well as how the separate traits relate to one another
and what may be done to get the desired outcomes, can be obtained from this
procedure. This offers a starting point for the modeling process as well.

Sampling

In this phase data sampling is used to select, modify, and analyze a representative
selection of data points. Typically, it is employed when working with extremely
large datasets.

4.2.3 Training of contextual models
To be able to provide an accurate prediction, the selected models must be trained.
The properties of the sliding window algorithm, which we choose to utilize when
training the models, are displayed in the following section.

Windowing

The image below summarizes and explains the different parameters of the sliding
window technique.
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Figure 4.2: Sliding window technique parameters

• lags: represents how many previous steps will be considered, essentially it’s
the window size.

• lead_time: represents the latency between the origin of forecasting and
fetched data.

• horizon: represents the distance between the training set and the test set.

• size: represents the size of the training set.

• size_test: represents the size of the test set.

Regression models training

The occupancy levels and contextual information, such as weather and temporal
information, are taken into account as input variables in the regression models. The
data from the sliding window training set were used to train the selected models.

4.2.4 Model assessment and definition of context-aware
guidelines

System managers might develop context-aware guidelines for customizing the
settings and use of the intelligent system to the context of the real world based on
the results achieved. Guidelines may indicate:

• The best prediction model in predicting future occupancy levels.

• The ranges within which the different parameters of the sliding window
technique must lie in order to achieve accurate prediction.
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Chapter 5

State of the art

This chapter presents the theoretical concepts underlying this thesis.

5.1 Regression
Regression [15] is a form of supervised learning method used in ML to forecast
continuous numerical values based on input variables. A link between the dependent
variable (also called the goal or outcome variable) and one or more independent
variables (sometimes called predictors or features) is intended to be established
using this statistical modeling technique. Finding a mathematical function that
accurately captures the relationship between the input variables and the target
variable is the aim of regression analysis. Then, using fresh, unforeseen data, this
function can be utilized to create predictions.
This section will cover the primary supervised learning regression models used in
this study. They are: ARIMA, Linear Regression, Lasso, Ridge, Random Forest,
and Gradient Boosting, presented in that sequence.

5.1.1 ARIMA
ARIMA[16] stands for "autoregressive integrated moving average" and it is a fore-
casting algorithm. In ARIMA regression, the dependent variable (target variable)
is represented as a linear combination of its own historical past values, the histori-
cal past values of the errors (also called residuals), and potentially some outside
variables. An ARIMA model is defined by the three parameters p, d, and q that
determine, respectively, the orders of autoregressive (AR), differencing (I) and the
moving average (MA) components:

• p is the number of autoregressive terms, it refers to the number of lagged
terms to be used as predictors;
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• d is the minimum number of differencing needed to make the series stationary
(if d = 0, the time series is already stationary);

• q is the number of moving averages, it refers to the number of lagged forecast
errors that should be included into the model;

5.1.2 Linear regression
The simplest linear regression model [15] is the one with only one indipendent
variable and the equation is the following: y = mx + b, where y is the target
variable, x is the indipendent variable, m represents the slope of the line, b is the
y-intercept (the value of the target variable when x is 0). To reduce the discrepancy
between the projected values of y and the actual values of y, the linear regression
seeks to estimate the values of m and b. This is accomplished using the least square
method, which minimizes the sum of the squared disparities between the predicted
and actual values.
Linear regression can be extended to multiple independent variables and in this
case it involves a linear combination of the input variables:

y = b0 + b1x1 + ... + bn ∗ xn (5.1)
where x1...xn are the independent variables, b0 is the y-intercept, b1...bn are

the coefficients associated with each independent variable. This model is a linear
function of the parameters (b0, ..., bn), but also a linear function of the input
variables (x1, ..., xn).

5.1.3 Lasso
Lasso [17] is an acronym that stands for "Least Absolute Shrinkage and Selection
Operator" and it is also known as L1 regularization. It is a method for linear
regression which utilizes regularization by including a penalty term in the loss
function. This term is proportional to the sum of the absolute values of the
coefficients, multiplied by a tuning parameter called lambda (λ):

Cost(W ) = RSS(W ) + λ ∗ (Sum of the absolute weights) (5.2)
Where:

• RSS represents the residual sum of squares.

• λ represents the amount of shrinkage of coefficients (larger values lead to more
shrinkage, smaller values leads to lesser shrinkage).

The addition of this penalty term results in an automatic feature selection. So,
this model performs both regression and feature selection.
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5.1.4 Ridge

Ridge regression [17] is a regularization technique (uses L2 regularization). By
including a penalty component to the cost function, it expands the ordinary least
squares (OLS) regression technique. The objective is to identify the regression
coefficients that minimize the squared difference between the predicted and actual
values. It lessens the size of the coefficients thanks to the additional penalty term.
This term is proportional to the squared sum of the coefficients multiplied by a
hyperparameter called lambda (λ) or the regularization parameter.

Cost(W ) = RSS(W ) + λ ∗ (Sum of the squared coefficients) (5.3)

Where:

• RSS represents the residual sum of squares, measures the error between the
predicted values and the actual values.

• λ represents the amount of shrinkage of coefficients (larger values lead to more
shrinkage, smaller values leads to lesser shrinkage).

5.1.5 Random forest

Random Forest Regression [18] is an algorithm that uses ensemble learning method
for regression: it creates an ensemble of decision trees and each tree is trained
on a different subset of the data. During training, the random forest model
simultaneously builds a huge number of trees and generates a class that represents
the mean of all the individual trees. The unpredictability added throughout the
tree-building process is what is meant by the "random" aspect of this algorithm.
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Figure 5.1: How Random Forest works

This is how the Random Forest algorithm works:

1. Randomly picks subsets of data (that can contain duplicate samples) from
the training set.

2. Builds a decision tree associated to each subset of data. A split is created
based on a feature that best separates the data based on a particular criterion
at each node of the tree.

3. Once all the trees have been built, each one makes forecasts on its own. To
arrive at the final prediction, the anticipated values of each tree are averaged
or combined.

4. Predictions on unseen data can now be made using the trained model.

5.1.6 Gradient boosting
Gradient boosting [19] is a machine learning algorithm which works on the ensemble
technique called ’Boosting’. The term "gradient boosting" refers to the optimization
process used to iteratively improve the model’s performance. Its idea is to train
weak learners (decision trees) sequentially, each trying to correct its predecessor.
This iterative process enables the model to improve its predictions by learning from
its mistakes.
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These are the steps performed by a Gradient Boosting algorithm:

1. Initialize the model with a simple predictive model, it could be a base tree
with single root node. It is the initial guess for all the samples.

2. Calculate the residuals (differences between predicted and actual target values)
for each training example.

3. Usually a decision tree is fit to the residuals. The aim is to find the best split
points that will reduce the residuals.

4. The tree is scaled by learning rate (value between 0 and 1). This learning rate
determines the contribution of the tree in the prediction.

5. This new tree is added to the ensemble to predict the result and the previous
step are repeated until a stopping criterion is met (maximum number of trees
is achieved, new trees don’t improve the fit etc...).

Once all the iterations are completed, the final prediction model is the combina-
tion of all the trees in the ensemble.

5.2 Evaluation Metrics for Time Series Forecast
Evaluation metrics [20] offer objective measurements of how well a model is per-
forming. We used scale-dependent metrics, which means that they are expressed
in the units of the data considered. All these metrics were used to assess which
regression model and which parameters were the best to make the prediction as
good as possible.

5.2.1 Mean absolute error
MAE [20] calculates the average absolute difference between between the predicted
and actual data. MAE assigns each error the same weight. Its formula is the
following:

MAE = 1
n

nØ
j=1

|ej| (5.4)

where
• n is size of the data set,

• ej is the difference between Aj and Pj

• Aj are the actual values

• Pj are the predicted values.
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5.2.2 Mean squared error
MSE [20] calculates the average squared difference between the predicted and actual
values. Compared to MAE, MSE gives greater errors more weight. Its formula is
the following:

MSE = 1
n

nØ
j=1

e2
j (5.5)

where

• n is size of the data set,

• ej is the difference between Aj and Pj

• Aj are the actual values

• Pj are the predicted values.

5.2.3 Root mean squared error
RMSE [20] calculates the average difference in magnitude between expected values
and actual values, known as residuals or prediction errors. It is an extension of the
MSE, it makes the error metric more understandable.

Its formula is as follows:

RMSE =
öõõô 1

n

nØ
j=1

e2
j (5.6)

or

RMSE =
√

MSE (5.7)

where

• n is size of the data set,

• ej is the difference between Aj and Pj

• Aj are the actual values

• Pj are the predicted values.
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5.2.4 R2 score and adjusted R2 score
The performance of the model considered can be showed thanks to the metric called
R2 score [21]. Its value, ideally, ranges from 0 to 1. Its formula is the following:

R2 = 1 − RSS

TSS
(5.8)

where:

• RSS is the sum of squares of residuals

• TSS is the total sum of squares

Adjusted R2 [22] is a modified version of the R2 and it depends on the features
that are added to the model: if the new feature improves the model more than
expected the value of it increases, instead if the new feature improves the model
less then expected the value of it decreases. Its formula is the following:

AdjR2 = 1 −
RSS

(n−K)
T SS
n−1

(5.9)

where:

• K is the number of parameters fit

• n is the number of data points

5.2.5 Evaluation metrics comparison
The table presented below summarizes the advantages and disadvantages of the
different evaluation metrics examined above.
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Evaluation metric Advantages Disadvantages
MAE MAE is computation-

ally cheap because of its
simplicity and provides
an even measure of how
well the model performs.
MAE is less sensitive to-
wards outliers

MAE follows a linear
scoring approach, which
means that all errors are
weighted equally when
computing the mean. Be-
cause of the steepness of
MAE, we may hop be-
yond the minima during
back propagation. MAE
is not differentiable at
zero, therefore it can be
challenging to compute
gradients.

MSE MSE aids in the efficient
convergence to minima
for tiny mistakes as the
gradient gradually de-
creases. MSE values are
expressed in quadratic
equations, aids to penal-
izing model in case of
outliers.

Squaring the values accel-
erates the rate of train-
ing, but a higher loss
value may result in a
substantial leap during
back propagation, which
is undesirable. MSE is
especially sensitive to
outliers, which means
that significant outliers
in data may influence our
model performance.

RMSE RMSE works as a train-
ing heuristic for mod-
els. Many optimization
methods choose it be-
cause it is easily differ-
entiable and computa-
tionally straightforward.
Even with larger values,
there are fewer extreme
losses, and the square
root causes RMSE to pe-
nalize errors less than
MSE.

As RMSE is still a lin-
ear scoring function,
the gradient is abrupt
around minima. The
scale of data determines
the RMSE, as the errors’
magnitude grows, so does
sensitivity to outliers. In
order to converge the
model the sensitivity
must be reduced, leading
to extra overhead to use
RMSE.

Table 5.1: Evaluation metrics comparison [23]
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Chapter 6

Methodology

This chapter reports the results obtained by applying the methodology shown in
Chapter 4 to the datasets that were chosen.

6.1 Data Acquisition

To study bike occupancy for a certain station and the flow of bikes passing through
a certain area, bike usage data using different datasets was acquired and stored. It
was decided to focus only on the occupancy or presence of bicycles, so the data
related to the actual rental, such as the start time of the trip or the duration of
the trip, was excluded.
The San Francisco dataset contains data covering the time period starting from
August 2013 up to August 2015.
The Fremont Bridge dataset contains data covering the time period starting from
10th March 2012 up to 30th Semptember 2022.
The Seattle weather dataset contains data covering the time period starting from
1st January 1948 up to 14th December 2017.

Dataset name number of samples time period

Fremont Bridge 87600 3649 days 23:00:00
San Francisco Bay Area 71984434 692 days 23:59:00

Table 6.1: Datasets analyzed
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Dataset name number of samples time period

Did it rain in Seattle? 25551 25550 days 00:00:00
San Francisco Bay Area 3665 732 days 00:00:00

Table 6.2: Weather datasets analyzed

6.2 Data Preparation

During this stage the data were processed so that they could be used for further
analysis. To achieve this, data need to be analyzed to take only relevant information
into account. Having two different datasets available, the same procedure was
applied with a few caveats.

Seattle dataset

bikes_available

total entries 87600
max value 1097
min value 0

mean value 107.24084899413148
non-null entries 87586

Table 6.3: Fremont Bridge statistics

It can be observed that the Seattle dataset includes null values. These anomalies
must be fixed in order to analyze these data.
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Seattle weather dataset

RAIN

total entries 25551
non-null entries 25548

Table 6.4: Seattle weather statistics

It can be observed that the Seattle weather dataset includes null values. These
anomalies must be fixed in order to analyze these data.

San Francisco dataset

bikes_available

total entries 260491
max value 24
min value 0

mean value 13.15929149183657
non-null entries 260491

Table 6.5: San Francisco Bay Area statistics

Once the San Francisco dataset was examined, it could be seen that it should have
data for each minute that has passed; however, not all minutes are present, which
could lead to issues that need to be resolved.
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San Francisco weather dataset

total entries non-null entries

max_temperature_f 3665 3661
mean_temperature_f 3665 3661
min_temperature_f 3665 3661
max_dew_point_f 3665 3661
mean_dew_point_f 3665 3661
min_dew_point_f 3665 3661

max_humidity 3665 3661
mean_humidity 3665 3661
min_humidity 3665 3661

max_sea_level_pressure_inches 3665 3664
mean_sea_level_pressure_inches 3665 3664
min_sea_level_pressure_inches 3665 3664

max_visibility_miles 3665 3652
mean_visibility_miles 3665 3652
min_visibility_miles 3665 3652

max_wind_Speed_mph 3665 3664
mean_wind_Speed_mph 3665 3664

precipitation_inches 3665 3664
max_gust_speed_mph 3665 2766

cloud_cover 3665 3664
events 3665 522

wind_dir_degrees 3665 3664
zip_code 3665 3665

Table 6.6: San Francisco Bay Area weather statistics
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It can be observed that most of the features inside the Seattle weather dataset
include null values, except the "date" and the "zip_code" ones. These anomalies
must be fixed in order to analyze these data.

6.2.1 Data cleaning
For all datasets used in this study, only a portion of time was chosen to be considered
in order to better study the phenomenon and avoid some of the problems mentioned
above.

Seattle dataset

In this dataset, the field name "Fremont Bridge Sidewalks, south of N 34th S" was
renamed to "bikes_available" and a feature selection was done, because the other
features were not useful for the purpose of this thesis.

Seattle weather dataset

This dataset did not contain any null or missing values; rather, the "RAIN" field’s
data type had been modified from true/false to 1/0 and the dataset was filtered to
be joined with the bike flow dataset.

San Francisco dataset

In order to simplify the study of this phenomenon, a particular station was selected
and its situation over time was studied. The "nearest neighbor" interpolation
approach to fill in the missing values was used: the values nearest to the point
we’re aiming to fill are those that are used in this approach to fill the empty area.

Figure 6.1: San Francisco data filling

San Francisco weather dataset

The "date" field was changed to a date type object, and the "events" field, which
listed the many kinds of weather occurrences that happened on that specific day,was
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transformed to its internal fields with the values 0/1 to denote the presence or
absence of that specific phenomenon. The feature that displayed the amount of
precipitation in inches was changed to a numeric type. In addition, null or missing
values were present for many fields in the dataset, these were replaced with the
value of the average of all field values. In order to have the weather data for the
chosen station, it was also filtered against the zip code. Although this dataset had
a large number of features, not all of them were pertinent to our investigation,
hence a feature selection was made.

6.2.2 Data integration for data enrichment

During this phase calendar descriptors were extracted from the datetime index
such as date, weekday, hour, month, weekend and holiday/working day. Also
meteorological data, associated to the day that was considered in our prediction,
was extracted from the weather dataset and joined with the main dataset. All this
information is important because it helps capture trends in the analyzed data.

Figure 6.2: Data enrichment San Francisco example

6.2.3 Exploratory data analysis

To investigate the data and assess its trends in this step, a consistent and interesting
time period must be selected.

Seattle dataset

It was decided to take into account the time period that goes from the 1st April of
2016 at 00:00:00 to the 4th of September of 2016 at 23:00:00 (6.3).
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Figure 6.3: Bikes available during the considered time period

The usage of bikes during the week has been shown to be relevant, so, exploiting
the properties of the index, the amount of bikes that were crossing the bridge
against the time considering weekdays and working days was plotted (6.4).

Figure 6.4: Bikes usage during the week

From the plot above (6.4), it is clear that most individuals use the Fremont
Bridge to go to work or come back home from work, as the peak bike traffic hours
are around 8 AM and 5 PM. As opposed to weekdays, there is much less traffic on
the bridge during weekends.

The weekly mean of the number of bikes and the one-year rolling mean were
plotted using the entire dataset in order to better understand the trends seen in
this dataset (6.5).
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Figure 6.5: Seattle trends

From the plot above it can be seen that the bikes were used mainly during the
central parts of the year. However, starting in 2020, when the COVID-19 epidemic
began, there is a decline in usage.

Then, a consistent time period was chosen and, to see how the dataset behaves,
the actual number of bikes was plotted along with the mean and the standard
deviation (6.6).

Figure 6.6: Seattle rolling statistics

From the plot above it can be seen that Both the mean and the standard
deviation, which varies little from the mean itself, change little over time. Because
the measurements made on different days of the month have such wide variations
in values, the standard deviation is higher than the mean.
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San Francisco dataset

The time period that goes from the 1st October 2013 at 00:00:00 to 4th March
2014 at 23:00:00 was taken into account (6.7).

Figure 6.7: Bikes available during the considered time period

The usage of bikes during the week has been shown to be relevant, so, exploiting
the properties of the index, the amount of bikes that were crossing the bridge
against the time considering weekdays and working days was plotted (6.8).

Figure 6.8: Bikes usage during the week

From this distribution (6.8) it can be seen that people living in San Francisco
use bikes mainly during weekdays during working hours (from more or less 9 AM
to 4 PM).

It was important to examine how the weekly mean and 1-month rolling mean
contrasted to the re-sampled dataset 6.9. (devo cambiare le immagini con il nuovo
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sampling)

Figure 6.9: San Francisco trends

From the plot above (6.9) it can be seen that both the weekly mean and the
monthly rolling mean vary quite a bit.

Then, a consistent time period was chosen and, to see how the dataset behaves,
the actual number of bikes was plotted along with the mean and the standard
deviation (6.10).

Figure 6.10: San Francisco rolling statistics

From the plot above (6.10) it can be seen that both the mean and the standard
deviation vary quite a bit over time. Focusing on the standard deviation curve, it
can be said that its value consistently falls between 0 and 5, which denotes low
data variability.
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6.2.4 Sampling
Seattle dataset

This dataset was resampled with weekly frequency and with daily frequency just
to visualize how the dataset behaves, but no sampling was used during forecasting.

San Francisco dataset

This dataset was resampled with 60 minutes frequency, because the granularity
was too high.

Figure 6.11: Bikes available resampled

6.3 Training of contextual models
See Chapter 7.

6.4 Model assessment and definition of context-
aware guidelines

Given the analysis completed and the experiments carried out, it can be inferred
that the best machine learning regression model to use in this context is the Random
Forest and the sliding window’s parameters should be set as follows in order to
have a good prediction: the window size should be 12 (hours) or 24 (hours), and
the horizon should be between 6 (hours) and 48 (hours).
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Chapter 7

Experimental analysis

This chapter will describe the steps performed on the San Francisco dataset and
Seattle dataset to achieve the best possible prediction. These experiments were
conducted by varying the parameters that characterize the sliding window technique
and carried out using an ideal configuration of the algorithms, which was achieved
by fine-tuning the hyperparameters using a grid search.

7.1 Seattle dataset

7.1.1 ARIMA

To test how well the ARIMA model works with our dataset, the first ever experi-
mental session was run using this model with the sliding window technique.

Figure 7.1: ARIMA forecasting for Seattle dataset
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MAE MSE R2 MAPE

40.508 3022.507 0.675 2548398381496615.500

Table 7.1: ARIMA evaluation metrics Seattle

Figure 7.2: ARIMA forecasting for Seattle dataset

According to the plots and the table above, even though the forecast curve
resembles the curve of actual values, this model does not predict very well: the
R2 score is quite low, the MSE is quite high, which indicates that data points are
dispersed widely around the mean of our dataset, increasing the error. However,
because our values range from approximately 0 to approximately 900, the MAE is
not too bad. All things considered, this model does not perform particularly well.

7.1.2 First experimental session

In order to determine which regressor could most accurately predict the number
of bikes crossing the Fremont Bridge for the Seattle dataset, the first round of
experiments involved applying each regressor to the dataset in question. To do
this, the horizon parameter was changed, and the other parameters were configured
using a base configuration: lags (window size) equal to 6 (hours), lead_time equal
to 1, size equal to 24*120, size_test equal to 24.
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Figure 7.3: Random Forest for Seattle dataset, using base configuration

Comparing each output obtained from the application of the regressors, due to
the evaluation metrics considered (RMSE, MSE, MAE, R2), the Random Forest
was found to be the best regressor among all, having each metric better than all
other regressors considered.

7.1.3 Second experimental session
Since Random Forest turned out to be the best regression model, in the second
round of experiments we focused on finding the best parameters for the sliding
window technique using this regression model. For this round of experiments we
decided to use as features only the instants that make up the sliding window, for
example if the window size is equal to 6 hours, the features taken into account will
be the current hour plus the previous 5 hours taken individually.
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Window size horizon MAE RMSE MSE R2

6 6 21.12 36.92 13613.08 0.971775
6 12 21.20 37.56 1410.48 0.970747
6 24 21.09 37.68 1419.54 0.970480
6 48 21.37 38.45 1478.33 0.969896

12 6 15.59 24.76 613.14 0.987297
12 12 15.93 25.25 637.51 0.986776

12 24 15.72 24.60 605.36 0.987410
12 48 15.91 25.34 642.18 0.986924
24 6 15.66 26.38 695.89 0.985585
24 12 15.71 26.74 714.94 0.985175
24 24 15.87 27.88 777.11 0.983864
24 48 15.76 27.14 736.63 0.985009
48 6 16.41 28.41 806.99 0.983293
48 12 16.19 28.14 792.12 0.983573
48 24 15.83 27.32 746.61 0.984489
48 48 16.40 28.38 805.34 0.983624

Table 7.2: Random Forest metrics based on the combination of parameters

From the table above, we can see that the prediction done with window size
equal to 12 hours and horizon equal to 6 hours has the best MAE, which is the
first metric that we are going to consider. The second best one is the one with
window size equal to 12 hours and horizon equal to 24 hours which has a lower
MAE, but has better RMSE, MSE and R2.
Looking at these results we find that three different groups can be identified: the
first is defined by window size equal to 6 hours, this group identifies the four worst
performers by looking at the metrics, then there is the middle group, identified by
window size equal to 12 hours and 24 hours, where performance remains stable and
the metrics vary slightly, and then there is the last group identified by window size
of 48 hours where we can see, again, a deterioration in performance.
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Addition of time features

To see how prediction could be improved and evolved, new features were included
for the first two best combination of parameters and for the worst one, that was
the one with window size equal to 6 hours and horizon equal to 48 hours. The new
features are:

• day_before: represents the data of the day before.

• week_before: represents the data of the week before.

• hour_sin: : represents the sine of the hour of the date we are considering.

• hour_cos: represents represents the cosine of the hour of the date we are
considering.

• month_sin: represents the sine of the month of the date we are considering.

• month_cos: represents the cosine of the month of the date we are considering.

• weekday_sin: represents the sine of the day of the week that we are consid-
ering.

• weekday_cos: represents the cosine of the day of the week that we are
considering.

• is_weekend: : binary value that represents if the day is during weekend (1)
or not (0).

• holiday: binary value that represents if the day is a holiday or not.

Figure 7.4: Errors Random Forest with window size 12 horizon 24
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Figure 7.5: Evaluation metrics Random Forest with window size 12 horizon 24

Figure 7.6: Errors Random Forest with window size 12 horizon 6

Figure 7.7: Evaluation metrics Random Forest with window size 12 horizon 6
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Figure 7.8: Errors Random Forest with window size 6 horizon 48

Figure 7.9: Evaluation metrics Random Forest with window size 6 horizon 48

The graphs above show that the evaluation metrics for the two best parameter
combinations are slightly worsened by the addition of these temporal features, with
the exception of the MAE of the model with a window size of 12 and a horizon
of 6, which stays the same. If we concentrate on the parameter combination with
the worst performance, we can see that all of the evaluation metrics significantly
improve.

Addition of weather features

Then, weather features were added, where the only feature was "RAINED", that is
a boolean value that says if during that day it rained or not.
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Figure 7.10: Errors Random Forest with window size 12 horizon 24

Figure 7.11: Evaluation metrics Random Forest with window size 12 horizon 24

Figure 7.12: Errors Random Forest with window size 12 horizon 6
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Figure 7.13: Evaluation metrics Random Forest with window size 12 horizon 6

Figure 7.14: Errors Random Forest with window size 6 horizon 48

Figure 7.15: Evaluation metrics Random Forest with window size 6 horizon 48

The graphs above demonstrate that, with the exception of the MAE of the
model with window size equal to 12 and horizon equal to 24, the addition of
these weather elements slightly degrades the evaluation metrics for the two best
parameter combinations. If we focus on the parameter combination that performs
the worst, we can see that all of the evaluation metrics improve compared to when
the window size is the only feature, but they slightly degrade compared to when
the window size and the temporal feature are features.
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7.1.4 Third experimental session

The best model identified in the previous phase was used in this session, and the
"lead-time" parameter was modified to examine how the prediction performs when
the most recent data are not available.

Figure 7.16: Error histograms and evaluation metrics for prediction with lead
time equal to 6

Figure 7.17: Error histograms and evaluation metrics for prediction with lead
time equal to 12

45



Experimental analysis

Figure 7.18: Error histograms and evaluation metrics for prediction with lead
time equal to 24

Figure 7.19: Error histograms and evaluation metrics for prediction with lead
time equal to 48

The graphs and evaluation metrics show that, when compared to the situation
where the lead time is equal to 1 (7.2), the prediction consistently performs poorly.
Compared to the situations where the lead time is equal to 12 and 24, it is clear
that the evaluation metrics are superior when the lead time is equal to 48.

7.1.5 Machine learning regression models comparison
These tests were carried out using an ideal configuration of the algorithms, which
was achieved by fine-tuning the hyperparameters using a grid search.
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Figure 7.20: Random forest with base configuration
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Figure 7.21: Gradient Boosting with base configuration
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Figure 7.22: Lasso with base configuration
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Figure 7.23: Linear Regression with base configuration
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Figure 7.24: Ridge with base configuration

The Random Forest model is the best one, as can be shown from the evaluation
metrics.

Let’s investigate if the Random Forest model still performs the best when the
value of the horizon is changed.
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Figure 7.25: Random Forest with horizon 48
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Figure 7.26: Gradient Boosting with horizon 48
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Figure 7.27: Ridge with horizon 48
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Figure 7.28: Lasso with horizon 48
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Figure 7.29: Linear Regression with horizon 48

As can be seen, the Random Forest model continues to be the best performing.
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7.2 San Francisco dataset
7.2.1 ARIMA

Figure 7.30: ARIMA forecasting for San Francisco dataset

MAE MSE R2 MAPE

0.987 2.125 0.725 0.071

Table 7.3: ARIMA evaluation metrics San Francisco

Figure 7.31: ARIMA forecasting for San Francisco dataset
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According to the plots and the table above, even though the forecast curve resembles
the curve of actual values, this model does not perform very well: the R2 score is a
respectable value, the MSE value is quite low and that means that the values are
dispersed closely to the mean, so the errors are smaller and the estimation is better,
the MAPE is very low and that means that the forecasted values are quite similar
to the actual ones. Since our values range from approximately 4 to approximately
15, the MAE is quite good too. But, all things considered, this model does not
perform particularly well: we can see that it predicts good only for short term data
but it is not a good model for long-term predictions as we can see in picture 7.31.

7.2.2 First experimental session

In order to determine which regressor could most accurately predict the bike oc-
cupancy in the chosen station, the first round of experiments involved applying
each regressor to the dataset in question. To do this, the horizon parameter was
changed, and the other parameters were configured using a base configuration:
lags (window size) equal to 6 (hours), lead_time equal to 1, size equal to 24*120,
size_test equal to 24.
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Figure 7.32: Random Forest for San Francisco dataset, prediction made using
base configuration

Comparing each output obtained from the application of the regressors, due to
the evaluation metrics considered (RMSE, MSE, MAE, R2), the Random Forest
was found to be the best regressor among all, having each metric better than all
other regressors considered.

7.2.3 Second experimental session
Since Random Forest turned out to be the best regression model, in the second
round of experiments we focused on finding the best parameters for the sliding
window technique using this regression model. For this round of experiments we
decided to use as features only the instants that make up the sliding window, for
example if the window size is equal to 6 hours, the features taken into account will

59



Experimental analysis

be the current hour plus the previous 5 hours taken individually.

Window size horizon MAE RMSE MSE R2

6 6 0.76 1.33 1.78 0.986314
6 12 0.78 1.34 1.79 0.986218
6 24 0.79 1.36 1.84 0.985771
6 48 0.83 1.38 1.90 0.985338

12 6 0.70 1.25 1.56 0.987907
12 12 0.72 1.29 1.67 0.987062
12 24 0.73 1.33 1.76 0.986364
12 48 0.76 1.33 1.76 0.986283

24 6 0.69 1.24 1.53 0.988009
24 12 0.71 1.28 1.65 0.987058
24 24 0.76 1.29 1.67 0.986866
24 48 0.77 1.32 1.75 0.986228
48 6 0.74 1.30 1.70 0.986762
48 12 0.77 1.31 1.71 0.986618
48 24 0.81 1.34 1.79 0.985995
48 48 0.84 1.37 1.86 0.985322

Table 7.4: Random Forest metrics based on the combination of parameters

From the table above, we can see that the prediction done with window size
equal to 24 hours and horizon equal to 6 hours has the best parameters. The
second best one is the one with window size equal to 12 hours and horizon equal
to 6 hours which has slightly worse parameters.
Looking at these results we find that three different groups can be identified: the
first is defined by window size equal to 6 hours, this group identifies the four worst
performers by looking at the metrics, then there is the middle group, identified by
window size equal to 12 hours and 24 hours, where performance remains stable and
the metrics vary slightly, and then there is the last group identified by window size
of 48 hours where we can see, again, a deterioration in performance.
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Addition of time features

To see how prediction could be improved and evolved, new features were included
for the first two best combination of parameters and for the two worse, that were
the one with window size equal to 6 hours and horizon equal to 48 hours and the
one with window size equal to 48 hours and horizon equal to 48 hours. The new
features are:

• day_before: represents the data of the day before.

• week_before: represents the data of the week before.

• hour_sin: : represents the sine of the hour of the date we are considering.

• hour_cos: represents represents the cosine of the hour of the date we are
considering.

• month_sin: represents the sine of the month of the date we are considering.

• month_cos: represents the cosine of the month of the date we are considering.

• weekday_sin: represents the sine of the day of the week that we are consid-
ering.

• weekday_cos: represents the cosine of the day of the week that we are
considering.

• is_weekend: : binary value that represents if the day is during weekend (1)
or not (0).

• holiday: binary value that represents if the day is a holiday or not.

Figure 7.33: Random Forest error histograms with window size 24 horizon 6
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MAE MSE RMSE R2

0.70 1.47 1.21 0.988651

Table 7.5: Evaluation metrics window size 24 horizon 6

Figure 7.34: Random Forest error histograms with window size 12 horizon 6

MAE MSE RMSE R2

0.74 1.56 1.25 0.987917

Table 7.6: Evaluation metrics window size 12 horizon 6
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Figure 7.35: Random Forest error histograms with window size 6 horizon 48

MAE MSE RMSE R2

0.86 1.75 1.32 0.986416

Table 7.7: Evaluation metrics window size 6 horizon 48

Figure 7.36: Random Forest error histograms with window size 48 horizon 48
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MAE MSE RMSE R2

0.92 2.06 1.44 0.984189

Table 7.8: Evaluation metrics window size 48 horizon 48

The graphs and tables above show that the evaluation metrics for the best
parameters combination improve except for the MAE that worsen slightly. For the
second best combination the evaluation metrics worsen if we concentrate on MAE,
stays the same if we concentrate on RMSE and MSE and improves if we concentrate
on R2. For the combination window size equal to 6 and horizon equal to 48 MAE
worsens, instead the other metrics improve. For the combination window size equal
to 48 and horizon equal to 48 every metric worsens.

Addition of weather features

Then, weather features were added, where the features that were chosen to take
into account are the following:

• precipitation_inches: represents the amount of inches of rain.

• cloud_cover: is a measure of how much the sky is covered by clouds. It is
measured in oktas, if the value is equal to 8 the sky is completely overcast.

• Fog: Boolean value that indicates whether there is fog or not.

• No events: Boolean value that indicates whether there is a meteorological
event or not.

• Rain: Boolean value that indicates if it rained or not.
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Figure 7.37: Random Forest error histograms with window size 24 horizon 6

MAE MSE RMSE R2

0.86 1.94 1.39 0.986887

Table 7.9: Evaluation metrics window size 24 horizon 6

Figure 7.38: Random Forest error histograms with window size 12 horizon 6
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MAE MSE RMSE R2

0.85 1.91 1.38 0.987132

Table 7.10: Evaluation metrics window size 12 horizon 6

Figure 7.39: Random Forest error histograms with window size 6 horizon 48

MAE MSE RMSE R2

0.87 2.08 1.44 0.985926

Table 7.11: Evaluation metrics window size 6 horizon 48
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Figure 7.40: Random Forest error histograms with window size 48 horizon 48

MAE MSE RMSE R2

0.85 1.93 1.39 0.986932

Table 7.12: Evaluation metrics window size 48 horizon 48

The graphs and tables above demonstrate that the addition of these weather
elements slightly degrades the evaluation metrics for the two best parameter
combinations, but looking at the combination with window size 6 and horizon 48
and the combination of window size 48 and horizon 48 it can be seen that their R2

score improves.

7.2.4 Third experimental session

The best model identified in the previous phase was used in this session, and the
"lead-time" parameter was modified to examine how the prediction performs when
the most recent data are not available.
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Figure 7.41: Error histograms for prediction with lead time equal to 6, plus
evaluation metrics

Figure 7.42: Error histograms for prediction with lead time equal to 12, plus
evaluation metrics
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Figure 7.43: Error histograms for prediction with lead time equal to 24, plus
evaluation metrics

Figure 7.44: Error histograms for prediction with lead time equal to 48, plus
evaluation metrics

The graphs and evaluation metrics show that, when compared to the situation
where the lead time is equal to 1 (7.4), the prediction consistently performs poorly.
Compared to the situations where the lead time is equal to 12, it is clear that
the evaluation metrics are superior when the lead time is equal to 48. When lead
time is equal to 24 there is a slightly improvement for the MSE, RMSE and R2

compared to lead time equal to 12.

7.2.5 Machine learning regression models comparison
These tests were carried out using an ideal configuration of the algorithms, which
was achieved by fine-tuning the hyperparameters using a grid search.
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Figure 7.45: Random Forest with base configuration
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Figure 7.46: Gradient Boosting with base configuration
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Figure 7.47: Ridge with base configuration
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Figure 7.48: Lasso with base configuration

73



Experimental analysis

Figure 7.49: Linear Regression with base configuration

The Random Forest model is the best one, as can be shown from the evaluation
metrics.

Let’s investigate if the Random Forest model still performs the best when the
value of the horizon is changed.
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Figure 7.50: Random Forest with horizon 48
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Figure 7.51: Gradient Boosting with horizon 48
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Figure 7.52: Ridge with horizon 48

77



Experimental analysis

Figure 7.53: Lasso with horizon 48
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Figure 7.54: Linear Regression with horizon 48

As can be seen, the Random Forest model continues to be the best performing.
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Chapter 8

Conclusions and future
works

The analysis of micromobility data in an urban setting using several machine
learning models, including ARIMA, linear regression, Lasso, Ridge, Gradient
Boosting, and Random Forest, was the focus of the thesis work described in this
study. As can be seen, the methodology described was tested on two actual use
cases from two distinct urban contexts. The conducted analyses and the results
made it possible to write down some guidelines for using this framework, such as
the best machine learning model to use, the range in which the value of the sliding
window size or the value of the horizon must fall. In addition, this framework
demonstrates that, depending on the situation, it may be necessary to enrich the
data with new features, while in other situations it may not. Additionally, the
results of this study may be helpful to companies that offer station-based bike
sharing services in determining whether it will be necessary to move existing bikes
to other stations or add new ones to the station under consideration. In the case
of bike flow, it is important for businesses or municipalities to know whether there
is sufficient demand to enable the development of useful services for the local
community in that particular area.
Future research could build on this study by enriching the framework with more
contextual metadata, such as the existence of points of interest nearby or the
presence of specific events in the city context, all of which could improve the
accuracy of the occupancy prediction. In order to profile users and tailor the service
to their needs, user data from those who use it could also be integrated. Different
mobility vectors might be explored, different cities and nations could use the same
methodology, or the problem might be handled as a classification problem rather
than a regression problem.
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