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Abstract

Ground contact time and stride length analysis is crucial in high performance

running. However, the equipment currently available in the market to perform

such analysis, like optical sensors, is often only accessible to professional ath-

letes due to their high cost and the complexity of installation.

This study aims to explore a cost-effective alternative to optical sensors by

utilizing inexpensive inertial measurement units placed on the athlete’s ankles,

offering a wearable solution accessible to a larger audience.

A machine learning approach was used to address the problem, with the

creation of a training set that associates accelerometer and gyroscope recordings

when the athlete is running, to external measurements of ground contact time,

obtained with pressure sensors in the insoles, and stride length, evaluated with

a videocamera. The training set has been used to create a model that will predict

these values solely based on the data from the inertial measurement units.

The results demonstrate the suitability of this type of data for a machine

learning environment and, with the proper model training and training set, it is

possible to achieve results comparable to those obtained using optical sensors.
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Chapter 1

Introduction

Track and field competitions, like many other sports, make an extensive use

of measurements. Taking in consideration a sprinting race, the winner is the

one who take less time to cover a distance; in jumping competition the one who

jumps the longest or the highest. But the measurement of a performance is not

only performed during competitions: in every daily training it is important to

keep track of variations and improvements to organise and adapt the training

schedule.

Focusing on running, the best friend of a trainer is the stopwatch, but while

taking the time of a repetition on 100 meters is enough for most athletes, there

may be other factors a trainer would love to measure and consult, if given the

possibility. This is why we can see Marcel Jacobs using additional equipment

installed on the track during his trainings (figure 1.1): foot-ground contact
times or stance duration, and analysis on stride lenghts is crucial for high

performance athletes.
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Figure 1.1: Marcel Jacobs, winner in the 100 meters in the Tokyo 2020 Olympic Games,
on the starting blocks with optical sensors on the track

Ideally, the measurement equipment should not only not interfere to the

movements of the athlete, but also take little time to setup and be cheap and

accessible to as much people as possible.

1.1 Biomechanics of sprint running

Several studies have been done on motion analysis, however, the greatest num-

ber of studies focus on the analysis of walking or running at low speed while

with regard to high speeds there are fewer articles found in the literature. In-

dicatively, the velocity associated with a walk is around 2 to 3 m/s, increasing

the speed goes to jogging (4-5 m/s) and then up to the characteristic sprinter

speeds that exceed, for elite athletes, 10 m/s.

The spatio-temporal parameters are derived from the running step cycle (fig-

ure 1.2). It is defined from the placing of the foot on the ground, the initial
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contact, until the next placing of the same foot. Within this cycle there is a

succession of two phases: stance and a swing phase.

Figure 1.2: Step cycle scheme

In high-intensity running professional sprinters are able to minimize the

braking phase in order not to lose the speed gained, unlike walking where the

beginning of the stride cycle starts with the heel rest on the ground, thus with

a relevant braking phase; to do this the foot’s contact with the ground never

occurs with the heel but with an area closer to the forefoot. The time and mode

of contact of the foot on the ground is very important[1], because it allows the

athlete to project forward in search of the highest possible speed: the propulsion

phase, in fact, allows a more effective flight phase with a faster recovery of the

free limb and with the knee high.

Important factors are stride frequency and stride amplitude, which are the

parameters that make it possible to run faster, since the best compromise, be-

tween a high number of steps in the unit of time and a large distance covered per

stride, leads to the best possible result for each athlete. Personal characteristics

such as height, weight, quickness, and elasticity can also vary greatly among

sprinters so different combinations of stride frequency and amplitude can lead

to the same chronometric results for different athletes.

This thesis is going to focus on the measurements of the stance duration, or

foot-ground contact times, and the distance between a foot lift off, and the next

step, which is different from the distance covered by the swing phase of a single

foot.
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Chapter 2

State of the art

The gait analysis is a big subject and is mainly studied for medical purposes to

detect pathologies[2], and is performed with different methods and sensors[3, 4].

All this methods share a controlled environment and low speed, which is not

the typical case for sprint running, where the athlete wears spiked shoes and

run on a track.

For this type of gait analysis the possible instrumentation adopted are op-
tical sensors and wearable sensors like clinical insoles and inertial mea-
surement units.

2.1 Optical sensors

Optical sensors in track and field events are often associated to photo-finish and

distance measurements, but they can be employed for gait analysis.

This type of sensors are placed along the runway and one side transmit an

array of infrared signals, and the bar on the other side has an array of receivers.

Figure 2.1: Optojump modular system (source www.https://training.microgate.it
/it/prodotti/optojump-next/il-sistema-modulare)
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When the feet hit the ground they obscure some transmitters from the re-

ceivers allowing to measure the ground contact time and stride length. The

high sampling rate of 1000 Hz and sensor placement at 1,04 cm guarantee a

very high resolution in both the measurements.

As mentioned in the introduction, this type of sensors are very expensive, in

the range of tens of thousands of Euros, for a 10-20 meters installation.

2.2 Clinical insoles

Clinical insoles exploit a high number of pressure sensors to determine, among

other gait parameters, the ground contact time. These are highly used for walk-

ing gait analysis, but can be employed for sprinting too. A commercially avail-

able option provide 150 Hz sampling rate, so a 6.67 ms in ground contact time

resolution.

As experienced directly in this thesis, this solution is not the best in terms

of user experience and reliability, because the insole do not stay fixed in place

when sprinting multiple times and this inconvenience may alter the gait and

the parameters detection.

2.3 Inertial measurement units

Inertial measurement units (referred as IMUs from this point forward) are sen-

sors that are very lightweight and relatively cheap.

These devices are often a cluster of different sensors, including tri-axial ac-

celerometer and tri-axial gyroscope, which are related to movement as they

track respectively the acceleration and angular velocity.

Many different algorithms have been developed in order to interpret this

type of data, but were developed either with high sampling rate devices, and

therefore very costly, or in non-sprinting pace and do not represent the real

world conditions on track.

5



2.3.1 Gait features assessment using gryoscope data

Yonatan Hutabarat et al.[5, 6] propose a heuristic-threshold based algorithm

applied to the gyroscope data of two IMUs with 148 hz sampling rate to detect

various gait events: their results are relatively good for either temporal and

spatial features of gait, as they registered an error of 4.22±15.48 ms and −8.31±
21.02 ms (mean± standard deviation) in initial and final contact measurements,

and an overestimation of 7.72 cm in the stride length against a force plate gold

standard.

The top speed analysed is 10 km/h, which is way below the speed an average

athlete can reach.

2.3.2 Sprinting ground contact times with high sampling
rate IMUs

Using relatively high sampling rate with IMUs, it is possible to find some pat-

terns in the acceleration and gyroscope data. Brendan Purcell et al.[7] used 250

Hz IMUs and achieved an error of 0±12 ms, −2±3 ms, and −1±1 ms (mean±
standard deviation) in jog, run and sprint conditions respectively, when com-

pared to a force plate runway gold standard.

Marcus Schmidt et Al.[8] validated this method using 1 kHz IMUs with the

Optojump gold standard, obtaining similar results.
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Chapter 3

Machine Learning approach

Machine Learning is referred to the method of programming an algorithm with-

out explicitly programming it: given some data and a task, the computer devel-

ops a model that can perform such task.

Two of the main tasks it can perform are classification and regression:

these are supervised tasks, which means that the training data you feed to the

algorithm includes the desired solutions, called labels.

In the case of classification, the model must sort the given data in a number

of predefined classes; an example can be, given a set of images with a single

shape drawn on it, to recognise if the shape is a triangle, a square or a circle,

sorting the data in three classes.

In a regression instead, the model must predict a value given a set of fea-

tures: an example can be to predict the price of a car based on mileage, age, and

brand.

Exploiting these tools it may be possible to extrapolate parameters of perfor-

mance of an athlete using indirect measurements and data. Humans (better if

they are trainers) actually do it all the time: they analyse visual data coming

from their eyes and give feedback to the athlete, but having a numerical data

on parameters which cannot be measured easily is a clear advantage.

This approach has already been explored and resulted successful in walk-
ing gait analysis[9, 10], and in this thesis aims to apply it to sprinting gait.

3.1 Model training and type

The data that will be used to train the machine is called "dataset", which is

a collection of samples and corresponding labels. Many datasets are available

online for many different purposes, but in this case it will be created from the

ground up.

7



Once the dataset is ready it is then divided into a training and a test set:

the model is trained using the training set and then it is evaluated comparing

its predictions on the test set.

To avoid the risk of overfitting, a portion of the training set is designated

as validation set. During the training the model is constantly evaluated also

on the validation set, in this way it knows if it is becoming too specialized at

predicting the training set samples, but not as good with new samples.

A regression approach may be the correct way to tackle the problem: the

features provided may be some data collected during the analysed event, and

the value to predict is a continuous output. Although that does not mean

that some classifications steps may be employed for a more complex model.

Among the various regression models available, the state of the art suggest

the use of Deep Neural Networks and Convolutional Neural Networks for

this type of task.

After this preliminary planning, the following step is to chose a set of mea-

surable parameters to assemble a dataset from which extrapolate the ground

contact time and the stride length.

3.2 Dataset creation - data collection

A possible equipment that satisfy the characteristics of the equipment defined

in chapter 1 is the employment of inertial measurement units as they are

very lightweight and are relatively cheap.

They can be placed on both ankles, so they are unobtrusive to the natural

movements of the athlete, and can track relatively closely the movements of
the feet: they will not measure directly the ground contact time or the stride

length of each step, but their data will be used to extrapolate those measure-

ments.

It is theoretically possible to get a position relative to a predefined origin

through geometrical considerations and double integration of the acceleration,

although it is not advisable, as the low sampling rate yield too much error.[11]

Mounting the IMUs on the ankle of a running person it is possible to see

that every step is different, but has a somewhat recognisable shape: for example

8



when the foot lands on the ground there are very big fluctuation in the vertical

axis of the accelerometer (figure 3.1), and every time a leg overtake the one on

the ground there is a peak in the mediolateral axis of the gyroscope (figure 3.2).

Figure 3.1: Acceleration readings in the vertical axis at 100Hz; highlighted in red are the
moments in which the foot is touching the ground, data obtained using pressure insoles
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Figure 3.2: Angular velocity readings in the mediolateral axis at 100Hz; highlighted
in red are the moments in which the foot is touching the ground, data obtained using
pressure insoles

These patterns can be spotted and exploited in a machine learning environ-

ment, where a model can be trained to recognise that the values recorded by the

sensors correspond to a certain ground contact time and a stride length.

3.3 Dataset creation - labels collection

The IMUs provide the data to be trained, but what about the labels? Additional

equipment is needed to provide the target values, on top of the IMUs measure-

ment.

The additional equipment must provide contact time and stride lengths, so

the optical sensors highlighted in chapter 2 are actually perfect, but unfortu-

nately those were not available.

Another somewhat available option is an instrumented treadmill, which

can provide both contact time and stride length for each step; the downside

of using a treadmill is that it cannot be used in conjunction with spiked shoes
(which are mandatory for high intensity running trials).
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Lastly a combination of a video-camera and pressure sensors in the
shoes to get respectively spatial and temporal data of the trials; this is the

setup that was used in this thesis.

The camera is responsible of determining the positions of each step using pixel

counting, while pressure insoles are inside the shoes of the athlete which deter-

mine the moments in which the foot hit the ground and when it takes off with

pressure sensors.

All systems needs to be synchronised in order to have a correspondence in

time of IMUs data and external measurements: the video-camera can be syn-

chronised with a visual indication in the video recording while the pressure in-

soles can exploit internal clock synchronisation in conjunction with an external

trigger.

In the end, two different dataset are created: the first comprehend the sam-

ples in the form of time windows of data from the IMUs in a neighbour-
hood of when the foot is on the ground, and its labels are the ground
contact times measured by the pressure insoles; and the second compre-

hend the samples in the form of time windows of data from the IMUs in
a neighbourhood of the moments between a step and the next one and

its labels are the stride lengths calculated after the elaborations of the
video recordings.

The bigger the datasets, the more accurately the model will be able to recog-

nise the target values.
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Chapter 4

Materials

4.1 ProMove-mini - IMUs system

4.1.1 Inertial Measurement Units

Inertial measurements are acquired using the ProMove-mini IMU system. From

the ProMove-mini user manual [12] "The default system consists of a number of

ProMove-mini sensor nodes, the Advanced Inertia Gateway and Inertia Studio

(PC Software) for monitoring and logging the inertial data. The standard setup

is depicted in Figure 4.1. The sensor nodes communicate wirelessly with the

gateway in the 2.4 GHz ISM band. The gateway is connected through the mini-

USB connector or the Ethernet connector with a PC that runs Inertia Studio."

Figure 4.1: ProMove-mini example setup

The nodes have an internal configuration controlled by the Inertia Studio

software. The configuration specify which of the multiple sensors inside the
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nodes are active, which one are disabled, and their sampling frequency.

The active sensors are:

• Accelerometer

• Accelerometer for high g

• Gyroscope

And their specifications are the summed up in table 4.1.

Tri-axial accelerometer
Range Selectable: ±2, ±4, ±8, ±16g
Resolution 62 µg @ ±2 g range
Sampling rate Up to 1000 Hz

Tri-axial gyroscope
Range Selectable: ±250, ±500, ±1000, ±2000 °/s
Resolution 0.007 °/s @ ±250 °/s range
Sampling rate Up to 1000 Hz

Tri-axial accelerometer for high g
Range Selectable: ±100, ±200, ±400g
Resolution 49 mg @ ±100 g range
Sampling rate Up to 1000 Hz

Table 4.1: Inertia node sensors’ specifications

Software settings

The acquisition frequency is set to 1000 Hz, the data willi be downsampled to

100 Hz in the processing of the data.
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Figure 4.2: Inertia Studio’s software settings, global settings

Figure 4.3: Inertia Studio’s software settings, accelerometer settings

Figure 4.4: Inertia Studio’s software settings, gyroscope settings

The accelerometer for high g will not practically be used, nonetheless is ac-

tive in case further studies find this data to be useful.
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4.1.2 Wireless gateway

The Inertia Gateway is connected and powered via USB to the PC. The gateway

is the element that enable the synchronization of the data between the different

systems thanks to its I/O ports that can be set to high or low signals via software.

The port 1 is connected to an external LED, and to a sensor as shown in

figure 4.5.

Figure 4.5: Gateway connection to PC

Figure 4.6: LED placement

The LED is connected to the right side of the BNC splitter and is placed in

the field of view of the camera: a high value on the port 1 can be detected in

the video footage when the LED turns on; at the same time this change of state

(rising edge) is recorded in the IMUs log, allowing to synchronise the IMUs
data to the video.

The other sensor connected to the left side has an internal clock synchro-
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nised to the insoles system, and every time it registers rising or falling edge in

the signal it saves a timestamp, and is used in later elaborations to cut and
elaborate the insole data.

Since they are connected to the same port, once the video is cut upon the

LED turn on detection every data is synchronised.

The I/O configuration in the Inertia Studio software is shown in figure 4.7.

The output trigger is fired manually on the software during acquisitions, since

automatic actions on start and stop of flash logging is not reliable due to logging

lag.

Figure 4.7: Inertia Studio’s software settings, I/O ports configuration
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4.2 INDIP system - pressure insoles

To provide the ground contact time of each step it employed the INDIP[13][14]

system.

The complete INDIP system is a combination of magneto-inertial and dis-

tance sensors connected to instrumented insoles with pressure sensors. These

sensors operate synchronously and save their readings in a on-board storage.

The pressure insoles (figure 4.8) are responsible for the ground contact times;

they host 16 pressure sensors operating at 100 Hz sampling frequency. These

sensing elements are based on force sensing resistor, which exhibit a resistance

which is inversely proportional to the force that is applied to them. Gait events

are identified exploiting the sensor redundancy and a cluster-based strategy.

Figure 4.8: Pressure insole and magneto inertial measurement unit of the INDIP system
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This system is the golden standard for the ground contact time, which is

associated to the inertial movement. However, the proposed standard resolution

of 0.01 s not ideal for high performance athletes, for comparison high end optical

sensors have a resolution of 0.001 s.

For this reason the system firmware has been modified to achieve a sam-
pling frequency of 200 Hz, by reducing the number of active pressure sen-
sors to 8.

4.3 Camera

The camera used to determine the position of the steps during the acquisitions

is the GoPro HERO10, which allows to record videos at 240Hz, 2.7k (2704 by

1520 pixels) resolution at a wide angle.

Figure 4.9: GoPro HERO10 (source
www.gopro.com)

Figure 4.10: Camera placement with respect
to the LED and the gateway

18



Chapter 5

Methods

In order to get a meaningful amount of data, estimated around 2000 samples,

to submit to the model for training, it has been chosen to test 13 different
subjects, each running 50 meters for 15 times.

Subject Gender (M/F) Age (y.o.) Height (cm) Weight (kg)
1 M 25 180 68
2 M 25 174 66
3 F 23 166 49
4 M 20 182 65
5 F 22 162 48
6 M 22 178 78
7 M 22 184 71
8 F 21 188 65
9 M 19 178 74
10 M 24 171 71
11 M 20 182 82
12 M 33 183 76
13 M 21 181 74

Avg. 77% M 22.8 177.6 68.2
Std. - 3.4 7.2 9.7

Table 5.1: Summary of participants for track acquisitions

For each trial around 19 steps are sampled, so with a simple multiplication

the acquired samples should be around 3705. This is not the case due to unreli-

ability of IMUs connection, camera recordings, insoles faultiness or simply less

trials performed by the athlete. So the overall final datasets are smaller:

• 1676 samples for contact time;

• 2216 samples for stride length.
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Subject
CTa trials
collected

% weight on
the CT model

SLb trials
collected

% weight on
the SL model

1 8 8.4 10 6.0

2 7 7.4 10 6.0

3 10 10.5 12 7.2

4 10 10.5 15 9.0

5 10 10.5 15 9.0

6 10 10.5 15 9.0

7 - - 7 4.2

8 - - 8 4.8

9 - - 15 9.0

10 4 4.2 15 9.0

11 14 14.7 15 9.0

12 12 12.6 15 9.0

13 10 10.5 15 9.0

Table 5.2: Summary of acquired data for each subject

aGround Contact Time
bStride Length

5.1 Acquisition setup

The athletes run for 50 meters, but only the last 40 meters are framed by the

camera to get a reasonably defined image of the athlete during the trial: the

camera is placed in the middle at 20 meters and displaced transversally by 15

meters.

The camera points at the center where there is an indicator with a cone.
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Figure 5.1: Camera and cone placement scheme

The indicator at 20 meters is used in the video post processing in order to

center and correct the image (figure 5.2), while the LED is connected to the Pro-

Move base to get the trigger signal of every trial: this light is detected in the

video elaboration and is used to sync the video with the other sensors.
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Figure 5.2: Camera and cone placement

The pressured insoles must be connected and are the first to start the ac-

quisitions; one of these sensors is connected to the ProMove base to get and

register the trigger signal of every trial, used to sync the pressured soles’ data

to the other sensors and video.

The ProMove sensors are placed on the outer sides of the ankles as shown in

figure 5.3.
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Figure 5.3: Sensors on the athlete

5.2 Per-run operations and data collection time-
line

A set of actions performed in a specific order is needed to get the data from the

sensors and camera.

As already mentioned, the pressured soles start acquiring data at the start of

the acquisitions and they are not turned off until the end, while the camera

and the ProMove nodes can acquire data just when actually needed during the

trials.
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When the athlete is ready to start a trial the camera and the ProMove sensor

start the acquisition; it is not needed to start simultaneously, and the recording

of the IMUs start when the athlete is near the gateway in order to ensure that

the "start recording" command is received correctly. The athlete can now go to

the 50 meters mark on the track, and when ready the camera starts recording.

The next step is to provide a way to synchronize the data: the synchroniza-

tion is performed using the I/O port of the ProMove Gateway, initiated via soft-

ware.

When the output trigger is set to "High" the ProMove software register the

timestamp to the log; the output is connected to the sensor of the pressured

soles and the LED: the sensor register its trigger timestamp, while the LED is

an indicator for the video.

This trigger is used to reset every timer and get the same start.

After the 40 meters run, the output trigger is set to "Low" and after that the

camera and ProMove sensors can stop recording: also in this case we wait for

the athlete to be near the gateway to ensure that the "Stop recording" command

is received correctly.

The video would be processed from the LED detection to its end.

Figure 5.4: Per-run operations timeline
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5.3 Raw data collection and organization

At the end of the acquisition the data is gathered in 3 types of file:

• a 00X_results.mat file containing a structure where each field contains

the data of one run in its own sub structure: here there are, initial and

final timestamps of the contacts of the foot on the ground obtained by the

pressured soles;

• a set of RunX.mat files for each athlete containing the acceleration and

gyroscope measurements with their corresponding timestamps

• a set of RunX.mp4 video files for each athlete

5.3.1 Insoles and IMUs data integrity check

A preliminary visualization of the acquired data is done in MatLab[15] and

the source code can be found in the GitHub repository[16]: for every trial sum-

mary graph of the accelerations and angular velocities is shown, overlapped

with the pressured insoles contacts.

Figure 5.5: Every window shows the left and right foot measurements on the three axes,
in blue IMUs data, in red the contacts detected by the insoles
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If any problem arise with one of these two systems the run gets discarded

for the contact time dataset creation, for example if the IMUs is missing some

data or the insoles contact times measurements are blatantly wrong like in the

case of right and left foot contacts overlapping.

5.3.2 Axes orientation mismatch

Since the IMUs are oriented in a different manner depending on which ankle

are placed, as shown in figure 5.6, the data needs to be changed in sign in some

of the axis of one of the two feet in order to get a similar behaviour of the data

in similar movements of the feet.

Figure 5.6: Axes orientation of the IMUs

For what concernes accelerations only x axis (also called vertical axis)

needs to be changed, while the y (anteroposterior axis) axis is always towards

the front from the athlete, and the z axis (mediolateral axis) is always towards

outside from the athlete; the latter have opposite absolute directions but this is

intended as only in this way the two sides have a similar behaviour.

For the gyroscope, conversely, the mediolateral and the anteroposterior axes

need to change sign in one foot: in order to have positive angular velocity in

both feet when the tiptoe of the foot rotates upwards the left foot axis needs to

be changed in sign, and the same reasoning can be made for the anteroposterior

axes.
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Problems like in figure 5.7 where the IMUs data started logging after the

start due to a connection error can be detected and that particular trial gets

discarded.

Figure 5.7: IMUs and insoles data visualisation of subject n◦ 5, Run1

5.4 Contact time dataset

A dataset needs to have a large list of samples, all of which are tied to a corre-

sponding value called "label".

In this specific case the sample is the data from the IMUs in the neigh-
bourhood of the contact time of the foot on the ground, and the corre-

sponding label is the duration of the contact of the foot on the ground in

seconds, given from the insoles data.

Since a-priori it is not possible to know when a contact take place only from

the data of the IMUs it is needed to find a way to isolate each step by just

looking the IMUs data: the adopted solution is to exploit the positive local
maxima in the data of the mediolateral axis of the gyroscope.
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Figure 5.8: Data of the right foot, in blue the mediolateral axis of the gyroscope, the areas
in red are the contacts detected by the insoles

As it is shown in figure 5.8 the contacts almost systematically falls in be-

tween two positive peaks of the mediolateral axis of the gyroscope, and it has

been developed a method to reliably include the data around the contact:

• filter the signal to remove the local maxima with a moving average filter;

chosen periodicity value is 6;

• filter through a positive threshold, enough high to take only high intensity

steps; chosen threshold is 400;

• identify the middle point in time between the peaks;

• save the IMUs neighbourhood of fixed size around these middle points;

chosen 500 ms wide.

The processed data and identified middle points are shown in figure 5.9.
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Figure 5.9: Data of the right foot, in blue the mediolateral axis of the gyroscope filtered
using a moving average filter; the red asterisks are the local maxima; the blue asterisks
are the middle points between the local maxima; the areas in red are the contacts detected
by the insoles

This is a simple method to identify and isolate the steps. From this iden-

tification it is needed to create samples with coherent size in terms of matrix

dimension, expanding from the middle points.

The data of the insoles is used to only save the neighbourhoods of which

there is a contact time to associate to the sample.

29



Figure 5.10: Kept middle points after filtering

In figure 5.11 it can be seen that the final saved "windows" of the mediolat-

eral axis of the gyroscope is wide enough to comprehend the time in which the

foot is on the ground: the chosen width of these windows is 400 ms.

The final sample is a collection of all the 6 axes.

Figure 5.11: Saved mediolateral axis data of the gyroscope for each sample
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The source code can be found in the GitHub repository[16] and the final

dataset has 1676 samples.

5.5 Video elaboration

The video recording of each run is used to determine the position of each step

and, therefore, the stride length. The GoPro HERO10 can shoot videos up

to 240 frame per second at a wide angle, but the image is affected by barrel
distortion, the typical look of a wide angle lens (figure 5.12), and for this reason

is not possible to just do a simple pixel to meters proportion. Furthermore the

video needs to be synchronised to the IMUs data in order to be sure to have the

correct association of the stride length.

Figure 5.12: Typical look of a wide angle lens, straight lines are bent

To achieve these tasks it has been developed a Python[17] script: this en-

vironment allow the employment of different libraries to solve all the issues,

like OpenCV[18] which provide a large amount of functions for image and video

transformation, and MediaPipe[19] which allow to identify of a person in an

image, and by extension the positions of the feet.
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The source code can be found in the GitHub repository[16]

5.5.1 Python script outline

Start - LED detection area

Figure 5.13: Part 1 of flow chart of video
elaboration

Before the video gets undistorted and

subjected to pose detection there are

some preliminary steps.

The LED turn-on detection is performed

on specified coordinates, but since from

run to run there may be little move-

ments of the camera, this area needs to be

checked. It is possible to click on the im-

age, the coordinates selected become the

new center of the detection area, in this

way it is possible to center it on the LED.
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LED turn-on detection - synchronisation

Figure 5.14: Part 4 of flow chart of video
elaboration

Start of the LED turn-on detection, each

new frame gets compared to the starting

frame where the LED is off: the differ-

ence of the color values filtered with a

threshold is used to determine when the

LED turns on. Only after this frame the

video is elaborated and saved in new files,

so they are synchronised with the IMUs’

and the insoles’ data.

Video leveling

Figure 5.15: Part 2 of flow chart of video
elaboration

The next step is to make sure that the

video is leveled on the horizon, for this

reason it is shown a frame of the video

with a grind overlapped: on the terminal

is possible to input an angle of rotation; if

the input is valid (a float number) a new

rotated image is shown, if it is leveled,

press enter on the terminal to go on.

33



Runway center coordinates

Figure 5.16: Part 3 of flow chart of video
elaboration

Now an area around the center of the im-

age is shown, and as with the LED turn-

on area check, it is possible to click on the

image to center it on the marker placed

at 20 meters from the start. This action is

needed to get the coordinates of the cen-

ter of the runway for the correction of the

barrel distortion.

Video elaboration

Figure 5.17: Part 5 of flow chart of video
elaboration

Start of loop where every remaining

frame of the video gets elaborated. After

the last frame, a new video file go through

the preliminary steps again.

Correct barrrel distorsion

The image gets rotated by the angle specified in the preliminary steps, then, in

order to reduce the workload on the successive steps, the image gets cropped to

just keep the central horizontal portion where the athlete is running.
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Figure 5.18: Part 6 of flow chart of video
elaboration

Two black borders are added on the

sides of the image in foresight of the

next step: the image gets corrected of

its lens distortion and the portions on

the outer sides are elongated, there-

fore without adding the borders the im-

age would have been cropped, removing

some of the captured runway.

The final result can be see in figure

5.19, and the image is saved to be part

of a new video file.

Figure 5.19: Cropped and lens corrected image, for displaying reasons it has been di-
vided in three

After the lens correction a set number of pixels reflect the same real world

length, so it is now possible to do a simple pixel to distance proportion to calcu-

late the stride length. Given x as stride length in pixels, and y as stride length

in meters:

y= x ·40m
3424px

(5.1)

where 3424 is the image width, which is showing 40 meters.
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Pose detection

Figure 5.20: Part 7 of flow chart of video
elaboration

Now it is possible to the determine

the position of each steps using the

MediaPipe[19] Python library, but since

the athlete is so small compared to the

image dimensions it is needed to crop

it: the method used is to take a portion

of the starting image which is 8 times

smaller in width, then perform pose de-

tection starting from right border (figure 5.21), and save each image to a new

video file.

Figure 5.21: One of the first frames of the pose detection

The output of the pose detection is the position in percentage of the image

dimensions for each node of the body. This values are scaled back by the image

dimensions to have the position in pixels in the current section, and based on

the current section position with respect to the original one, it can be scaled

back to the coordinates of the whole 3424 pixels image and therefore have also

the position in meters using the equation 5.1.

Figure 5.22: Part 8 of flow chart of video
elaboration

Once the athlete enters the image, the

pose detection will start and when one of

the foot is near the left border, the detec-

tion area will shift to the left keeping half

of the current image (figure 5.23).
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Figure 5.23: Chronologically saved from right to left, the athlete is still inside the image
before and after the section position change

At the end of the video is is shown a graph of the detected positions in time

(figure 5.24), this is just to check if everything went well, and the vectors con-

taining the positions and timing pairs are saved in a .mat file, to use it in further

elaborations.

Figure 5.24: Graph showing feet positions detected in time

5.6 Steps positions check

The pose detection using MediaPipe is just a starting point to speed up the pro-

cess of the manual selection of the feet positions. In fact another MatLab script
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has been employed to interact visually with the data and correct the positions.

Using the data from the insoles combined with the positions given by the

pose detection it is possible to show a frame of the athlete with a foot on the

ground for each step, and adjust the position clicking on the tip of the foot.

In case of missing data from the insoles it is possible to locate the contacts on

the ground by just looking ad the position graph, so even without contact time

information is still possible to preserve the stride length data.

The source code can be found in the GitHub repository[16]

5.6.1 MatLab script outline

Steps positions through insoles timings

Figure 5.25: Part 1 of flow chart of position
check

Each lens corrected video (figure 5.19)

will be used to check the position of

each step, and the first action is to

check if there is data present from the

insoles: if it is present a vector is cre-

ated containing the average of the ini-

tial and final contacts of each step; this

time coordinate is used to perform a

mode on the feet positions neighbour-

hood to find the step position.

The mode is used because the pose

detection often confuses left and right

feet, but as can be seen in figure 5.26,

when a feet is on the ground an hori-

zontal line can be seen on the graph and

the value on the y axis is position of the

foot: the mode performed on both the

right and left foot positions, with a tol-

erance of 2 cm; this ensures that the most stable position is chosen, regardless

of which foot is on the ground.
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Figure 5.26: In orange: right foot positions; in blue: left foot positions; in yellow: steps
positions calculated using mode on a neighbourhood wide 40 values, the label is 0 for
right foot, and 1 for left foot; in black, linear regression of the steps

Add missing steps

Figure 5.27: Part 2 of flow chart of position
check

After this initial determination of the

steps position, since the insoles may

have missing values at the start or the

end, it is needed to add missing steps.

As we can see in figure 5.28, the last

recognisable step before the 9th second

it has not been marked, so the script

wait for a click in that area: it is im-

portant to get the right position only on

the x axis in this stage, since the posi-

tion will be checked later, and to do so

it is needed to click on the crossing of

the right and left feet, as shown in fig-

ure 5.29. Also the black line is a linear

regression of the previous steps, and it is displayed as a guide for the new steps
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to add manually.

Figure 5.28: The interface is waiting for click input
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Figure 5.29: Zoom in around the 9th second

In the case of missing insoles information, this interface is presented right

away, and all the steps needs to be input chronologically.

Side assignment

Figure 5.30: Part 3 of flow chart of position
check

Since some of the first steps may be

missing form the insoles data, or miss-

ing altogether, it is needed to assign

again which foot has taken the steps.

To do this the first step is shown, and

clicking on right or the left side of the

image it is assigned to the first step,

and the other are assigned alternating

left and right proceding chronologically.
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Figure 5.31: First step shown, the interface is waiting for a click input, in this case it is
a right foot step, so the click will have to be on the right half side

After the side selection, a recap graph is shown with all the steps selected

with a label associated with it: a "0" if it is a rigth step, a "1" if it is a left step,

which as can be seen in figure 5.32, are alternated.

Figure 5.32: Recap graph of the selected steps and side assignment
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Steps position check

Figure 5.33: Part 4 of flow chart of position
check

For each saved step is is shown an

image taken from the lens corrected

video: it is centred on the position

of the step and a white line show

the current saved value; now the in-

terface wait for a click input to cor-

rect the position, or close it to con-

firm and procede to the next step. In

figure 5.34 it is shown the first step

and the cursor is placed where the

correct position needs to be; the ver-

tical coordinate is irrelevant, the po-

sition needs to be adjusted horizon-

tally.

Figure 5.34: Original position shown, the interface is waiting for an input
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Figure 5.35: Image shown after clicking. It is still waiting for an input

After clicking, the same image but centered on the new position will be

shown (figure 5.35). It is still waiting for an input but if the new position is

correct it is needed to just close the window to make the next step check inter-

face appear.

After all the steps and all the trials are processed, the times positions and

sides of the steps are saved in three matrices and stored in a .mat file for further

elaborations.

5.7 Stride length dataset

Similar to the contact time dataset, the stride length dataset needs to associate

a large number of samples to their labels. In this case the samples are the

IMUs data from when a foot lift off from the ground, to when the other touches

the ground, and the labels are the stride lengths.

An addition label is assigned to the samples, marking if the lift off foot is the

right, marked as "0" or the left one, marked as "1".
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Figure 5.36: The stride length is the distance between two subsequent steps

Since both of the feet are interested in this running action (which is not the

case in the ground contact time), both feet data will be part of the sample.

The general idea of isolating the steps using the mediolateral axis of the

gyroscope is the same as the contact time dataset, but the elaboration differs in

the last steps:

• filter the signal to get only big local maxima with a moving average filter;

chosen periodicity value is 6;

• filter through a positive threshold, enough high to take only high intensity

steps; chosen threshold is 400;

• merge left and right local maxima and find the middle point in time be-

tween both left and right local maxima;

• save the IMUs neighbourhood of fixed size around these middle points;

chosen 500 ms wide.

The last steps are different because as it can be seen in figure 5.37, now each

local maxima falls in the proximity of the contact of the other foot, so in order

to find a suitable middle point, the average time between two local maxima of

both feet has been calculated for the IMUs neighbourhood data selection middle

point (figure 5.38).
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Figure 5.37: The local maxima are in the proximity of the middle point of contacts of the
feet

Figure 5.38: In blue are shown the middle points of the local maxima
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Knowing the the timings of the steps of which position in known, only the

corresponding local maxima are selected (figure 5.39).

Figure 5.39: In blue are shown only the selected local maxima that will be the center
point of the data of the samples

Now it is possible to store the IMUs data in the neighbourhood of these

middle points as shown in figure 5.40; note that two lines are shown for each

sample, as both left and right IMUs data are stored.
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Figure 5.40: Selected gyroscope mediolateral axis neighbourhood data for each local
maxima

The source code can be found in the GitHub repository[16] and the final

dataset has 2216 samples.
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5.8 Ground contact time model training

With the dataset ready a model has been trained to see if it is possible to recog-

nise ground contact time and the stride length from just IMUs data.

The source notebook can be found in the GitHub repository[16]

5.8.1 Import

Figure 5.41: Part 1
of flow chart of the
ground contact model

The first steps of a ML model is to import the necessary

Python libraries and the dataset. The most notable li-

braries imported are Sklearn, TensorFlow and Keras:

• Sklearn[20] provide simple and efficient tools for

data preprocessing and models creation;

• TensorFlow[21] provide the tools necessary to build

a model with Deep Neural Networks;

• Keras[22] which is a TensorFLow interface to build

user-friendly and modular Deep Neural Networks,

allowing for easy implementation of the convolu-

tional layers on top of other layers like dropout,

batch normalization and pooling.
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5.8.2 Data preprocessing

Figure 5.42: Part 2
of flow chart of the
ground contact model

Some data gets excluded based on the labels values: if

the label is bigger than 300 ms or smaller than 80 ms,

the sample is probably an outlier as these are unrealistic

measurements and should not be included in the training.

Subsequently the data gets normalized from 0 to 1:

xN = x
xMax − xMin

+ xN,Max − xN,min

2

xN = x
2 · sensorrange

+ 1−0
2

the accelerometer and gyroscope sensor’s range are 32 g

and 4000 ◦/s respectively. (figure 5.45) This step aims to

bring the data to the same scale, and additionally the val-

ues being closer to each other helps in these types of mod-

els.

Finally the data is split in training set and test set us-

ing the train_test_split tool from scikit-learn, with a ratio

of 0.2.
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Figure 5.43: Acceleration data of the sam-
ple

Figure 5.44: Gyroscope data of the sample

Figure 5.45: Normalized sample data, not the same sample as the previous two images
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5.8.3 Model building and evaluation

Figure 5.46: Part 3
of flow chart of the
ground contact model

The model itself has been build with a Keras Sequential

which allows to assemble different subsequent layers.

• Input layer, the dimension of the sample provided is

[41,6,1]: timesteps, features and depth of the data;

the last dimension is useful for the convolutional 2D

layers;

• Convolutional 2D layer with 32 filters, kernel size

8 by 1: this layer perform 32 filters of size 8 along

each feature to the 41 by 6 samples. The output of

this layer is 32 filtered variants of each sample;

• Convolutional 2D layer with 64 filters, kernel size

4 by 1. The output is 64 filtered versions of each

sample;

• MaxPooling 2D layer with pool size 2 by 1 and

stride 2 by 1 select the highest value between two

adjacent one with a stride of two, effectively shrinking the size of the sam-

ple to 21 by 6, keeping 64 variants.

• Dropout layer that randomly sets input units to 0 with a frequency of

0.5 rate at each step during training time. This helps prevent overfitting.

Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all

inputs is unchanged. The input have shape (timesteps, features) and to

set the same dropout mask to be the same for all timesteps a noise_shape

argument needs to be specified with a 1 in the time dimension: in this case

is [None,1,6,64];

• Flatten layer merge all the features in one dimension;

• Dense layer, or fully-connected layer of output size 256 with "softmax"

activation;
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• Dropout layer with 0.1 rate;

• Dense layer of output size 1, without activation to have one continuous

output.

After the creation of the model the compile() method is used to specify the loss

function and the optimizer: in this case the "nadam"[23]) optimizer (adaptive

moment estimation[24], plus Nesterov momentum has been used in combina-

tion with the mean absolute error as loss function.

The fit() method is then used to actually train the model with the train set.

The arguments allow to specify the number of epochs and a validation set
ratio. The number of epochs is the number of times the model tries to im-

prove from the previous training based on the value of the loss function: after

generally 50-100 epochs the model is not able to improve further and stabilizes

around a loss value. This value is set to 100.

The validation set ratio specifies the portion of the training set devoted to

the validation process during the training to prevent overfitting and is set to

0.2.

Showing the history of the loss throw the epochs it can be seen that the

validation loss expressed in mean absolute error, stabilizes around 12 ms.
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Figure 5.47: Mean absolute error evaluation of each epoch of the training set and the
validation set. In red is the insole resolution of 5 ms

As it can be seen in figure 5.47 the model performs better around the 35th

epoch on the validation set, and the later epochs show that the model is overfit-

ting the training set while keeping mean absolute error around the same value.

5.9 Stride length model training

The stride length model has been structured in two steps, the first is a classi-
fication, the second a regression.

The first 6 columns is always data from the right foot, but this data could be

a lift off from the ground or a landing movement. So first a classification

is performed to determine which foot is lifting off from the ground, and in

order to have a coherent dataset describing the same movement for the regres-

sion step, the first 6 features get swapped with the rest. Since the data

is specular is really easy for a model to recognise and classify correctly. This

classification uses the first column of the "y" matrix for the training where the

label is "0" when the right foot lift off, and "1" when the right foot lands.

The source notebook can be found in the GitHub repository[16]
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5.9.1 Classification model

Figure 5.48: Part 1 of
the flow chart of the
stride length model

The data and libraries import and data preprocessing
steps are the same as the ground contact model, with the

exclusions of labels which are above 3 meters, which is

most likely an error in the data collection.

The classification model is created using a Keras Sequen-

tial method, but no convolutional layers are needed for

this very easy task.

• Flatten layer merge all the features in one dimen-

sion;

• Dense layer, or fully-connected layer of output size

2 with "softmax" activation for 2 class classification.

The model is compiled using the "adam" optimizer

and accuracy as loss function, and the fitting is per-

formed with 30 epochs and 0.2 validation ratio.

The model reaches almost 100% accuracy, leading

to 2 prediction errors on 443 test samples.
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5.9.2 Regression model

Figure 5.49: Part 2 of
the flow chart of the
stride length model

After the classification all the samples that are recognised

as category "0" gets the first 6 columns of data swapped

with the remaining 6: in this way the dataset is now co-

herent where the first 6 columns always describe a foot

that is landing, and the last 6 columns describe a foot that

is leaving the ground. This could have been the other way

around, the goal is to achieve a coherent dataset.

The regression model is very similar to the ground con-

tact time one:

• Input layer, the dimension of the sample provided

is [50,12,1];

• Convolutional 2D layer with 32 filters, kernel size

8 by 1. The output of this layer is 32 filtered variants

of each sample;

• Convolutional 2D layer with 64 filters, kernel size

4 by 1. The output is 64 filtered versions of each

sample;

• MaxPooling 2D layer with pool size 2 by 1 and

stride 2 by 1 select the highest value between two

adjacent one with a stride of two, effectively shrinking the size of the sam-

ple to 25 by 12, keeping 64 variants.

• Dropout layer with 0.1 rate and noise_shape [None,1,12,64];

• Flatten layer merge all the features in one dimension;

• Dense layer, or fully-connected layer of output size 256 with "relu" activa-

tion;

• Dropout layer with 0.1 rate;
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• Dense layer of output size 1, without activation to have one continuous

output.

Showing the history of the loss throw the epochs it can be seen that the

validation loss expressed in mean absolute error, stabilizes around 6,2 cm.

Figure 5.50: Mean absolute error evaluation of each epoch of the training set and the
validation set. In red is the position resolution of 1.1 cm
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Chapter 6

Results

6.1 Ground contact time model performance

The model is evaluated comparing its predictions of the ground contact time on

the test set.

Figure 6.1: On the x axis is the order number associated with the sample; in blue the
labels, in red the predictions
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Figure 6.2: Histogram showing the distribution of the test labels and the predictions

The mean absolute error value on the test set is very similar to the MAE on

the validation set, around 12.5 ms.

The test dataset is being sorted in ascending order in figure 6.1 and in figure

6.2 it can be seen that the model tends to concentrate the predictions on the

middle values; this is probably due to the lack of enough data on the edge cases.

6.2 Stride length model performance

The model is evaluated comparing its predictions of the stride length on the test

set.
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Figure 6.3: On the x axis is the order number associated with the sample; in blue the
labels, in red the predictions

Figure 6.4: Histogram showing the distribution of the test labels and the predictions

The mean absolute error registered on the test set is 6.0 cm, a bit lower than

the validation set MAE.

As it is highlighted in figure 6.3, where the labels have been sorted in as-

cending order, and figure 6.4 the MAE is pretty uniform along all the stride

length possible values, with a bit of overestimation on lower values, and a little

underestimation when above 2.1 m.
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Chapter 7

Conclusions

7.1 General considerations

The results shows that movements recorded with IMUs operating at 100 Hz

are a type of data that is trainable in a machine learning environment: despite

that fact that so much movement data is lost between each cent of seconds, the

little variations between the steps are still present and detectable, allowing the

recognition of the target parameters.

The ground contact time model has its labels assigned by the insoles data:

they have a resolution of 5 ms, and the model has a mean absolute error of 12.5

ms which is just over two times the original resolution.

This result is not good enough in terms of usability: the smaller ground contact

times ranges from 150 to 100 ms and even below, an error of 12.5 ms would be

around 10% of the total measurement, so it cannot be employed in everyday use.

Ideally it is required to reach at least 10 ms of resolution or less and could be

achievable with further developments.

The stride length model based its labels on the videocamera recordings,

which has a resolution of 1.1 cm. The final mean absolute error of the model

is 6 cm, which make it just below 6 times higher; it may seem a bad result, but

since the average stride length is around 2 meters, this error represent just the

3% of the the measurement, and it is totally acceptable even in this state.

7.2 Current model limitations

The models are limited by the acquisitions setup itself which lead to the creation

of a pretty specific dataset.
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7.2.1 Sampled running phase

The subjects run for 50 meters, but the first 10, where the athlete accelerate,

were not captured by the videocamera, and the insoles do not register the first

steps. This means that currently the model is only trained to recognise steps of

cruise phase of running.

7.2.2 Sampled running intensity

The subjects had to run many times (up to 16 times), therefore they could not

push their speed to the limit. Lower speed, generally means higher ground

contact times[25], so there is a lack of smaller ground contact times samples.

7.2.3 Datasets acquisitions

Acquiring new data is not easy in the current setup, as it took 2 hours for each

athlete, with cumbersome preparations and many systems to take care of.

Furthermore the track had to not be crowded as if a person would get in the

shot, it would interfere with the videocamera recordings. This meant that it was

difficult to find subjects to test in times of the day where few people trained on

the track. This is the main reason why the datasets are of modest dimensions.

7.2.4 Datasets augmentation

The datasets have not been submitted to data augmentation, because the model

needs to be trained only on real differences between the samples, and not from

artificially augmented ones.

One way to possibly create a bigger dataset is to select multiple samples to

associate to the same label as shown in figure 7.1.
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Figure 7.1: Multiple samples are selected for each contact, only three contact shown as
example

Instead of taking the approach of the steps isolation looking at the local

maxima of the mediolateral axis of the gyroscope (which can still be employed

for hen steps have to be isolated in the actual use of the final product), the

IMUs data is taken multiple times with fixed width windows around the contact

moments, making sure to always comprehend them.

The figure 7.1 also highlight how smaller ground contact durations would lead

to more acquired samples with the same label.

7.2.5 Insoles unreliability

A final inspection of the labels provided by the insoles highlighted a behaviour

that is possibly not intended, and if fixed could improve the ground contact time

performances.
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Figure 7.2: Histogram showing the distribution of the labels provided by the insoles

As it is highlighted in figure 7.2, the better part of the labels present a "0" in

the 3rd digit after the comma. In theory this should not happen, and the values

should be "0" or "5" equally distributed.

7.3 Dataset possible improvements

While the IMUs sensors are proven to be employable for this type of task, it is

possible to change the labels collection using different types of sensors.

Using optical sensors would reduce the resolution to 1 ms for the ground

contact times, while keeping almost the same resolution in the stride length,

around 1 cm, but the acquisition setup would be simplified as the requirement

to have an empty track would not be required anymore.

Simplifying the acquisitions and reducing the labels resolutions would ben-

efit greatly in the creation of a bigger and more precise dataset.
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Chapter 8

Direction of future developments

8.1 Final user experience

As this thesis proves that it is possible to measure some running parameters

using cheaper sensors, let us define the user experience the athlete could face

while using this new equipment to complement its training gear.

The final system could be a combination of the two sensors and a smart-

phone with an application to interface the data provided by the sensors. And

the experience could something like the following:

• sensors turn on;

• bluetooth pairing to the smartphone app for internal clock and data syn-

chronization;

• the sensors start recording after being paired for the first time after turn

on;

• the smartphone app act a stopwatch to define the start and stop of the

running trials to elaborate;

• when the sensors are in the proximity of the smartphone, the app requests

the samples relative to the defined start and stop by the app;

• the app uses the models to elaborate the data and show the results of each

run.

The proposed user experience highlights the need for the development of
custom sensors and application capable of bluetooth pairing and data trans-

ferring.
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8.2 Stride length predictions refinements

Currently the model treats every sample as standalone, but in a real life im-

plementation, most of the times the total length of the trial is known, and this

could be an additional data to exploit.

Given the precise start and stop of the trial and the total distance covered by

the athlete, the sum of the model’s predictions needs to be equal to that distance.

In this way the model could refine its predictions.

8.3 Stopwatch function with smartphone cam-
era

Using the touchscreen of a smartphone to define the start and stop of a trial is

not as comfortable as a physical stopwatch, but at least the stop function could

be replaced with a function in the application.

Every smartphone is equipped with a high resolution camera, and they are

able to record at least at 60 at lower resolutions like 720p: 60 frames per second

means a frame every 16 ms, and this time resolution is good enough to use the

smartphone camera as a "photo-finish" of the trial.

This implementation would require the user to setup the smartphone on a

tripod, aligned to the finishing line, and use some kind of video elaboration to

detect when the athlete finishes the trial, and therefore record the stop time.
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