
POLITECNICO DI TORINO

Master Degree Course in Computer Engineering

Master Degree Thesis

Enhanced attribute retrieval and
provisioning through the eIDAS digital

identity infrastructure

Supervisors
Prof. Antonio Lioy
Assist. Prof. Diana Berbecaru

Candidate

Sahar saadatmandi

July 2023

To my family who always

encouraging me pursue my

aspirations.

To my love who his

unwavering support has

meant the world to me.

Summary

This thesis explores the integration of eIDAS and OAuth 2.0 frameworks for secure digital iden-
tity verification, access control, and attribute retrieval. eIDAS, a European Union regulation,
establishes a standardized framework for electronic identification and trust services, while OAuth
2.0 is an authorization framework widely used in web and mobile applications.

The combination of eIDAS and OAuth 2.0 enhances the security and functionality of digital
services. eIDAS serves as the primary authentication mechanism, while OAuth 2.0 provides a
standardized protocol for secure authorization and access delegation. This integration enables
controlled access to user resources while leveraging secure identity verification.

The thesis extends the eIDAS node’s Specific part to support additional attribute retrieval.
It introduces the AP Connector interface within the IdP Proxy, implementing AP-Proxy and
AP-OAuth2 versions. These connectors integrate OAuth 2.0 with the eIDAS network, facilitating
attribute retrieval and transfer. Modifications are made to the IdP Proxy to retrieve additional
attributes from a national Attribute Provider, enhancing authentication and authorization pro-
cesses.

The thesis also emphasizes the integration of eIDAS and OAuth 2.0 with the SPID system in
Italy, providing a standardized and secure digital identity system. SPID attributes are securely
exchanged using eIDAS and OAuth 2.0, enhancing trust, security, and interoperability within the
system.

Additionally, the thesis highlights the role of JSON Web Tokens (JWT) in facilitating infor-
mation exchange within the system. JWT is a compact format used for securely transmitting
information as a JSON object, commonly used in authentication and authorization scenarios.

4

Acknowledgements

I would like to express my sincere gratitude to Prof. Diana Berbecaru and Cesare Cameroni for
their invaluable support and guidance throughout the development and writing of this thesis.
Their expertise, patience, and availability have been instrumental in shaping the direction of this
research and enhancing its quality. I am truly grateful for their mentorship and the knowledge
they have imparted to me during this process. Their contributions have greatly enriched my
understanding and have been crucial in the successful completion of this thesis.

I would like to express my heartfelt gratitude to my sister. Your constant encouragement
and unwavering support have played a vital role in shaping my journey. Without your push, I
would not have reached the heights I have achieved today. Thank you for always believing in
me, motivating me, and pushing me to pursue my goals. Your presence in my life has been truly
invaluable.

5

Contents

List of Tables 9

List of Figures 10

1 Introduction 11

2 Background 13

2.1 What is eIDAS? . 13

2.1.1 Introduction . 13

2.1.2 Characteristics . 17

2.1.3 Components and Attributes of the eIDAS Node 17

2.1.4 Versions Of the Code and Running Environments 18

2.1.5 Management of Trust . 19

2.1.6 A Short Summary of a few Notified eID Schemes 19

2.1.7 eID Identifiers . 20

2.1.8 A Service Using eIDAS . 21

2.2 Connecting Attribute Providers to the eIDAS Network 22

2.2.1 Attributes Classification . 22

2.2.2 AP Connector Models . 22

2.2.3 Integration of the AP Connector with the Italian eIDAS Node 23

2.2.4 Italian SPID System . 24

2.2.5 The Italian eIDAS Node’s Generic Part . 25

2.2.6 Idp Proxy, a Specific Part of the Italian eIDAS Node 26

2.2.7 Details of AP Connector Implementation 26

2.2.8 New Attributes are Available on the eIDAS Node 27

2.2.9 AP Proxy . 27

2.2.10 AP OAuth2 . 29

2.3 OAuth 2.0 . 29

2.3.1 Principles of OAuth 2.0 . 30

2.3.2 OAuth 2.0 Roles . 30

2.3.3 OAuth 2.0 Scopes . 30

2.3.4 OAuth 2.0 Access Tokens and Authorization Code 30

6

2.3.5 OAuth 2.0: How Does It Operate? . 31

2.3.6 Grant Types in OAuth 2.0 . 31

2.4 JWT . 32

2.4.1 JSON Web Token Structure . 32

2.4.2 JSON Web Tokens: How Do They Operate? 34

2.4.3 Why Should We Use JSON Web Tokens? 35

2.5 Redis . 35

3 Design and Implementation 37

3.1 Implementation Diagram . 37

3.2 Idpproxy . 41

3.2.1 Spit . 41

3.3 OAuth2 Authorization Server . 44

3.3.1 Authorization Code Grant Flow . 44

3.3.2 Client and User Registration . 44

3.3.3 Authorization Endpoint . 45

3.3.4 Citizen Identification Data Request . 46

3.3.5 Authorization Form . 46

3.3.6 User Scopes Approval . 46

3.3.7 Token Endpoint . 47

3.3.8 RSA Private and Public Keys . 49

3.3.9 Token Endpoint Response . 50

3.4 OAuth2 Client . 52

3.4.1 Client and User Registration . 52

3.4.2 OAuth 2.0 Client Details . 53

3.4.3 Authorization Code Request . 54

3.4.4 Citizen Identification Data Request . 55

3.4.5 Citizen Identification Data Response . 55

3.4.6 Authorization Code Response . 56

3.4.7 Access Token Request . 57

3.4.8 Protected Resource Access . 57

3.5 OAuth2 Resource Server . 57

3.5.1 Maven Dependencies . 58

3.5.2 JWT Authentication Mechanism . 59

3.5.3 The Secured Endpoints . 59

3.6 Dockerization . 60

4 User’s Manual 63

4.1 Software Dependencies . 63

4.2 Source Code . 63

7

5 Developer’s Manual 72

5.1 Frameworks, Libraries and Environment . 72

5.1.1 Modules . 72

5.1.2 IntelliJ IDEA . 76

6 Conclusion 78

Bibliography 79

8

List of Tables

2.1 eIDAS natural person attributes. 18

2.2 An explanation of the eIDAS PersonIdentifier property. 20

2.3 The eID4U project defined additional eIDAS attributes (personal and academic-
specific).(Source: [1]) . 23

2.4 SPID attributes. (Source: [1]) . 26

9

List of Figures

2.1 AP connections (logical) integration with the Italian eIDAS node . (Source:[1]) . . 24

2.2 Internal view of the Italian eIDAS node showing both the general and particular
eIDAS proxy service components. . (Source: [1]) 25

2.3 Internal view of the Italian eIDAS node showing both the general and particular
eIDAS proxy service components. . (Source: [1]) 28

2.4 Components involved in the AP connector implementation exploiting OAuth 2.0
protocol . (Source: [1]) . 29

2.5 Encoded JWT example. (Source: [2]) . 33

2.6 Client Credentials Grant. (Source: [2]) . 34

2.7 Comparison of the length of an encoded JWT and an encoded SAML.(Source: [2]) 36

3.1 Flow diagram. 40

3.2 id token JWT structure. (Source: [2]) . 43

3.3 Access Token of Polito AP. (Source: [2]) . 56

3.4 Access Token of eidas client. (Source: [2]) . 58

4.1 Screen Step-1-0. 64

4.2 Screen Step 1-1. 65

4.3 Screen Step 1-2. 65

4.4 Screen Step 1-3. 66

4.5 Screen Step 2. 66

4.6 Screen Step 3-0. 67

4.7 Screen Step 3-1. 67

4.8 Screen Step 3-2. 68

4.9 Screen Step 4. 68

4.10 Screen Step 5. 69

4.11 Screen Step 6-0. 69

4.12 Screen Step 6-1. 70

4.13 Screen Step 7. 70

4.14 Screen Step 8. 71

4.15 Screen Step 9. 71

5.1 IntelliJ IDEA. 77

10

Chapter 1

Introduction

Authorization rules are a fundamental aspect of Identity and Access Management (IAM) within
computer systems. IAM encompasses various practices and technologies that assist system man-
agers in controlling user access to system resources and establishing client privileges. The purpose
of authorization, within the IAM framework, is to determine and enforce the permissions and priv-
ileges granted to individuals or entities, ensuring that they can access the appropriate resources.

To better comprehend the concept of authorization and its application in computer systems,
real-world examples can be useful in illustrating its meaning and usage. One such example is
owning a house. As the owner, you have unrestricted access to the house, which represents the
resource. However, as the owner, you also possess the authority to grant permission to others to use
it. In this context, you can be seen as the authority figure granting individuals the authorization
to access the house. By using this straightforward example, we can further explore the idea of
authorization within the context of permissions.

For instance, entering the house is a permission, representing an activity that individuals are
allowed to carry out on the resource. Additionally, other activities related to the house, such as
furniture arrangement, cleaning, or repairs, may require specific approval or permission. These
activities require additional permissions, and when granted, they become privileges or rights
associated with those permissions.

However, it’s important to note that individuals seeking permission to perform certain actions
may need your consent or approval beforehand. Continuing with the house ownership analogy,
consider the scenario where you hire an interior decorator to furnish your home. In this case,
the action the decorator wants to carry out in your home represents the scope of the permission
request. Before granting permission, you may need to provide your consent for the decorator to
proceed.

The connection between identification and authorization can also be observed in certain in-
stances. Let’s consider the boarding procedure for a plane. According to your boarding pass,
you are permitted to board the aircraft. However, the gate agent won’t allow you to board solely
based on the boarding pass. In addition to the boarding pass, you must possess a passport with
an identity page. The gate agent verifies whether the name on your passport matches the name
on your boarding pass before granting you access to the plane.

In the context of authorization, your name serves as an attribute of your identification. Other
attributes, such as age, linguistic ability, credit card details, or any other relevant information,
may be considered depending on the specific situation. Your name on the passport serves as a
claim or declaration that you possess that particular attribute. The trust placed in the government
that issued your passport ensures that anyone who reads your name from it can be certain that
it belongs to you.

In the boarding process, the boarding pass functions as an ”access token” that combines
access rights to board the aircraft with evidence of customers’ identities. It serves as a form of
authentication and authorization, ensuring that only individuals with valid boarding passes and
matching identification are granted access.[3]

11

Introduction

Expanding beyond these real-world examples, the eIDAS network provides a standardized
framework for electronic identification and trust services across the European Union (EU). It aims
to ensure secure and reliable digital transactions while reducing costs and risks associated with
additional verification procedures. The eIDAS network allows individuals to authenticate with
government-issued electronic identities, transferring core personal attributes to service providers
(SPs). However, for long-term applications or specific use cases, additional attributes may be
required, and the eIDAS network allows for the request and authorization of these additional
attributes. By leveraging authorization mechanisms within the eIDAS network, SPs can establish
a higher level of trust and security for transactions, eliminating the need for separate verification
procedures to collect additional data.

In summary, authorization rules within IAM play a crucial role in limiting user access to
system resources and establishing client privileges. Real-world examples, such as owning a house
and the boarding process for a plane, help illustrate the concepts of permission, privilege, scope,
identification, and attributes within the context of authorization. Additionally, the eIDAS network
offers a standardized framework for electronic identification and trust services, ensuring secure and
reliable digital transactions. By implementing effective authorization mechanisms, organizations
can ensure the secure and controlled access to their IT systems, protecting sensitive resources
from unauthorized use while enabling trustworthy digital interactions.

12

Chapter 2

Background

In today’s digital age, electronic transactions are becoming more and more common. However,
with this increase in online activity comes an increased need for security measures to ensure the
safety and privacy of personal information. One such measure is the use of electronic identification,
authentication, and trust services, commonly referred to as eIDAS.

2.1 What is eIDAS?

eIDAS is a framework for Electronic Identification, Authentication and Trust Services that is
recognized across the European Union (EU). The framework is designed to enable secure and
convenient access to digital services by establishing a legal and technical framework for electronic
identification and trust services.

The eIDAS Regulation was introduced in 2014 to replace the previous EU regulation on
electronic signatures. The regulation applies to all EU member states and aims to ensure the
seamless use of electronic identification and trust services across the EU.

The eIDAS Regulation aims to provide a harmonized legal framework for electronic identifi-
cation and trust services across the EU. The regulation establishes a network of trusted service
providers (TSPs) that offer electronic identification and trust services to users. This network is
known as the eIDAS network.[4]

2.1.1 Introduction

Nowadays, using the internet for an expanding range of services is standard practice. However,
robust and user-friendly authentication and identification are required to securely access remote
services in various domains (such as health, finance, or academia) in order to prevent attacks like
data leakage or identity theft. The European Member State (MS) nations have improved their
eID management methods with this end in mind since the late 1990s. A digital representation
of a natural or legal person is known as an electronic (or digital) identity.[1] The European
governments have begun issuing government eID credentials to citizens, such as national eID
cards with a digital (public key) certificate on-board, to enable residents to confirm who they are
(with high confidence level) in public or private services [5]-[6].

After completing numerous identification processes, such as reviewing national registers or
identity documents, these credentials are granted. As a result, they offer a high level of assurance
regarding a person’s identification. There are now credentials that are easier to use, like one-time
passwords that are combined with personal devices [7]. Citizens can access a Service Provider
(SP) by using these credentials to authenticate at an Identity Provider (IdP), which may give
some basic identification information about the person. In this situation, bilateral agreements or
national digital identification systems are used to establish trust between the IdP and SP. As an
illustration, organizations in Italy such as InfoCert [8] and Poste Italiane [9] provide authentication

13

Background

credentials that are accepted by the SPID (Sistema Pubblico di Identità Digitale, or Public System
for Digital Identity) [10] national system.

The citizens might use these credentials to gain access to public or private services that sup-
port SPID, such registering kids for school or filing taxes. The mobile sector made a substantial
contribution to the development of digital identity systems in other nations, including Estonia,
Finland, Norway, and Switzerland [11]. The European eIDAS network integrating the eID sys-
tems of many EU countries has been established and put into place to enable mutual recognition
of eIDs and to promote people’ access to foreign services with national credentials. By allowing
cross-border authentication with national credentials for both legal and natural people [12], this
network complies with the eIDAS Regulation 910/2014 [13]. It takes advantage of the SAML
2.0-based national eIDAS nodes that communicate using the eIDAS protocol [14]. The national
identity infrastructure of each nation is interacted with by the eIDAS node utilizing certain tech-
nologies and protocols. The eIDAS network only transmits a limited set of attributes for natural
persons known as the eIDAS Minimum Data Set (MDS) [14]. FirstName, FamilyName, DateOf-
Birth, and PersonIdentifier are the four required attributes in this set. BirthName, PlaceOfBirth,
CurrentAddress, and Gender are the four optional attributes.

The SPs may utilize the eIDAS MDS properties in one-off services without any additional
requirements. On the other hand, in addition to the MDS traits, the SPs also require other
citizen attributes for long-term services. For identification matching purposes, they could want
information about the nationality or photo, for instance [15]. Domain-specific information, such as
professional credentials, financial standing, academic record, or present employment, is useful in
delivering targeted services. Unfortunately, self-assessed user data cannot be trusted, so research
is now being done on how to safely and privately collect such attributes from authoritative parties.
More information could be retrieved by the eIDAS network from reliable national sources. The
eIDAS nodes may facilitate the exchange of various attributes, following the eIDAS specification
[14].

It is possible to establish new attributes, however those that are not listed in the eIDAS
attribute profile [12] can call for a bilateral agreement. To put it another way, nations may select
if they wish to improve the node so that they can exchange other attributes (in addition to the
MDS) with other nations. The European Commission (EC) recently adopted the European Digital
Identity framework [16], which emphasizes the need to expand the eIDAS network with additional
cross-border recognized person identification data sets to support identity matching. Additionally,
this EC report offers three options to support citizens’ and businesses’ use of electronic IDs and
electronic attestation of the credentials and attributes associated with those eIDs.The attributes
and credentials might theoretically be connected to the users’ eIDs via a trust service provider or
a digital wallet.

Methodology: In order to retrieve and send more properties across the eIDAS network, we
have overcome a number of obstacles:

1. Support for attribute retrieval and new attribute addition on the eIDAS node. An key topic
is deciding what kind of extra data (personal or domain-specific) and how much data the
eIDAS network should transport. The eIDAS nodes must minimize the amount of data they
retrieve (data minimization) and limit the types of data they gather (collection limitation)
in accordance with the privacy by default principle [17]. We decided which extra academic
and personal characteristics to make available on the eIDAS node. Then, we retrieved them
from an Attribute Provider (AP) different from the IdP(s) connected to the eIDAS network
using two methods, AP Proxy and AP-OAuth2.

2. AP Connector design and installation. The user agent (browser), the SPs providing services,
the eIDAS nodes, the IdPs authenticating citizens with national credentials, and possibly
the APs providing additional person or domain-specific attributes, are all involved in au-
thentication and attribute retrieval via the eIDAS network. Interoperability is a difficult
task in this situation [18]. Local entities favor ”lighter” protocols like Open Authorization
(OAuth) 2.0 [19] and more straightforward formats for attribute transfer, like JSON [20], for
managing user consent and authorizing users. There are adapters in a logical AP Connector
module to translate the eIDAS protocol messages to other particular protocols.

14

Background

3. Privacy and user consent concerns. The user’s consent is necessary for the data collection
even when more data is enabled in the eIDAS network.Citizens must agree on the data to be
retrieved and to whom it will be released, hence user consent management needs to be taken
seriously. Users must not, however, find the user consent dialogs annoying or repetitious
when it comes to their privacy. We examine user consent management, identifying various
eIDAS process steps where consent is obtained. Additionally, the parties involved in the
proposed AP Connector implementations handle user consent in a different way.

Contribution: Our primary contributions are (1) a detailed analysis of the (natural person)
attributes supported by the eIDAS network currently, and justifications for supporting new ones
to address user identification and service needs; (2) a discussion on the utilization of eIDAS MDS
attributes in one-off and long-term services; (3) the presentation of two AP Connector models
used by the eIDAS nodes for attribute retrieval; the description of two potential AP Connector
implementations and their testing in experimental testbeds. The eIDAS node creates a direct
HTTPS backend channel for communication with the AP in the first one, dubbed AP Proxy. The
node in the second one, known as AP-OAuth2, takes advantage of the OAuth 2.0 protocol to
authorize the disclosed attributes.

The government eIDs issued through schemes notified under eIDAS are supported by mutual
cross-border recognition under the eIDAS Regulation. The nations who have notified their eID
schemes must recognize the eIDs of those nations.

According to [16], the MS nations voluntarily notify the European Commission of their eID
scheme(s). The European Commission then asks MS specialists to conduct a peer assessment
of the scheme, determining if it complies with the standards outlined in the eIDAS Regulation,
implementing acts, and guidelines [21]. The scheme is published on a special list of ”notified eID
schemes” after notification and peer assessment are complete [22]. For instance, the SPID system
and the CIE (Carta d’Identità Elettronica) are two schemes that Italy has announced.

The eIDAS interoperability network, made up of national ”eIDAS nodes,” has been put up and
is currently in use to support the mutual eID recognition in practice. The three levels of assurance
(LoA) that eIDAS defines low, considerable, and high refer to a restricted, significant, or high level
of confidence in the identification of a person being claimed or asserted. The procedures used to
issue credentials to citizens, verify their identities, and manage credentials are all covered at the
LoA level. The LoA levels are internally mapped by the nations into the national authentication
credentials of their eID schemes.

In general, the LoA level is high when using a national smart card for authentication. The
SPs must accept considerable and high levels of verification from citizens and may also accept
lower levels of authentication.

Privacy and User Consent Issue

The ability of citizens to generate, manage, and share information relating to their eID(s) is a
key component of digital identity systems, and Satchell et al. [23] examined this topic. They
generally desire to have many identities that may overlap and prefer to remain ”anonymous”
during transactions. Another study using three well-known digital identity providers (Google,
Facebook, and Google+) found that most users (specifically, 399 out of 424) felt that having
control over what information an IdP gave to an SP was ”very” or ”extremely important” [24].

In addition, 50% of the study’s participants favored using numerous IdPs over a single one.
Another noteworthy point raised by the same study is that the participants were unclear as to
what data had been transmitted to the SPs. However, as more data was sent, they became aware
that more attributes had been sent, even though they were unsure of which ones. The consent
dialogs had little impact on their propensity to ”log in,” but privacy worries did. For instance, the
majority of users reported feeling ”uncomfortable” sending their friend list and images, whether
they were given to a reputable website or not.

As a result, when more data travels across the eIDAS network, adequate care must be taken in
choosing the requested attributes. The requirements for the service must be clearly identified and

15

Background

described. If too much information is requested, users may be reluctant to use the site because of
privacy concerns. In order to provide users control over the spread of their personal information,
Gomi created a framework for tracking the history of identity information transfers across various
domains [25]. Other methods, like My Data [26], put the individual at the center of data use.
MyData raises awareness of the value of personal data and encourages its more moral application.
They offer technical guidelines as well as encouraging users’ and businesses’ consciousness.

The most recent EC report [27] examines how the eIDAS Regulation supports the needs for
customer data portability and provides information on how the user may control their credentials
through the verifiable claims that are emerging in various initiatives, including the European
Blockchain Service Infrastructure. Taniguchi et al. in [28] offered a plan to use anonymity and
pseudonymity to defend the privacy of digital identities. The concept is that while a person
can act in an anonymous manner in most situations, they can reveal their identity in unusual
circumstances.

Identities and User Identifier(s)

User identities were divided into two categories by Bhargav-Spantzel et al. [29]: weak and strong.
A population’s members can all be identified by a weak identifier, whereas a strong identifier can
be used to identify a single member of the population. The population size and the uniqueness
of the identifying attribute determine whether an identifier is strong or weak. The same authors
noted that a unique identification could result from combining many weak identities. This research
proves that a number of traits are often required for person identification, which is helpful in the
context of this study.explored the issue of homonyms (people with the same first and last names
as well as the same birthdate) in the person identification procedure [1].

Attribute Aggregation

Different models of attribute aggregation in federated identity management systems were exam-
ined by Ferdous and Poet [30]. They talked on the criteria for trust while modeling attribute
aggregation on each side, taking into account the traditional actors in the federated architecture
(SP, IdP, and the client). We pay attention to the ”identity proxying model,” in which the SP
enables the user to combine attributes from many IdPs using a very reliable IdP (a sort of ”super
IdP”).

In this model, the user is first sent to the trusted IdP, which then sends them on to additional
IdPs. The user returns to the trusted IdP with an assertion containing the evaluated charac-
teristics after being separately authenticated at each IdP. Finally, the trusted IdP combines the
attribute values after retrieving and validating each assertion. The trustworthy IdP may supple-
ment the combined set with its user characteristics before reasserting all user attributes to the
SP. The SP and the trusted IdP have a trust relationship, and the SP is unaware of the other
IdPs from which the attributes have been gathered. The Italian IdP Proxy (a component of the
eIDAS node) described in this thesis and the trusted IdP in [30] have certain similarities. They
both serve as trusted attribute aggregators and collectors. In contrast, the user only needs to
authenticate (using eIDAS) once at an IdPs that uses a recognized eID scheme, and the SP creates
a trust relationship with the local eIDAS node.

Trust Models

The trust requirements of various identity management solutions were examined by Jsang et al.
[31] using a condensed model made up of clients, service providers, and identifier & credential
providers. The authors categorized the architectures into 4 categories based on how the afore-
mentioned entities interacted: isolated, federated, centralized, and personal. The primary trust
criteria for each architecture have been outlined. The eIDAS node, which actively connects with
the other nodes and the national bodies, is a new addition to the eIDAS network compared to
the earlier models.

16

Background

2.1.2 Characteristics

The eIDAS network satisfies a number of crucial requirements, including security and decentral-
ization. Additionally, it might expand to include more sectors in the future. The eIDAS network,
which was first developed as a prototype within the framework of the STORK and STORK 2.0
[32]-[33] European-funded projects, is currently the de facto Pan-European eID interoperability
framework connecting the digital identity systems of several EU countries to enable the integration
of e-services in a variety of domains. [34]

Decentralization

The eIDAS network lacks a central (control or data storage) point. Through dedicated (national)
eIDAS nodes that are part of a circle of trust, the authentication requests and responses are
transmitted. The nodes communicate eIDAS metadata, also known as SAML metadata, on a
bilateral basis for the trust establishment.

Security

Given that the many components of the eIDAS network are operated by different companies
and that the network is decentralized, its overall security is not straightforward. To prevent
such potential attacks, the eIDAS node operators (national agencies or public ministries) must
adhere to tight cryptographic specifications [35] for eIDAS message protection and TLS channel
formation. For instance, the eIDAS nodes are required to utilize cipher suites with forward secrecy
and qualified X.509 certificates in the TLS connections [36].

The processing and protection of data transported through the eIDAS network must be suf-
ficient [37]. ”The security and privacy of the user identification information, both certified and
uncertified, are of highest importance nowadays,” as stated in [29], When natural person attributes
are retrieved and transferred through the eIDAS nodes, security prevents theft and impersonation,
while privacy guards against the attributes disclosure. ”Node operators of eIDAS nodes shall prove
that...the node fulfills the requirements of standard ISO/IEC 27001 by certification, by equivalent
methods of assessment, or by complying with national legislation,” states the eIDAS specifica-
tion. In addition, ”Nodes shall not keep any transaction data including personal data beyond
that needed by Article 9(3) of [4]” for privacy concerns. In short, the eIDAS node operator must
maintain (just) the data necessary to reconstruct the sequence of the message exchange in the
case of an incident, allowing for the location and kind of the incident to be determined. This
information consists of the eIDAS node’s identifier, a message identification, and the date and
time of the message. While there are hints for the security of messages sent to other eIDAS nodes,
the protection of information sent to national SPs and IdPs is dependent on the country.

Cross-sectorial

The cross-sectorial functionality allows for the use of attributes from one (particular) domain that
are made available over the eIDAS network in other application domains. For instance, a person’s
academic standing (such as that of a student) might be utilized in the public transportation sector
services to gain customized discounts.

2.1.3 Components and Attributes of the eIDAS Node

The eIDAS Connector and the eIDAS Proxy Service are the two primary logical components of
the eIDAS node. The nation(s) host one or more eIDAS Connector(s) that offer either public or
private services, as well as one or more proxy services. Germany offers a Middleware program
to be deployed and used on the eIDAS nodes of the other MS nations in place of a Proxy Ser-
vice. The eIDAS authentication request (eIDAS-Auth-Req) is obtained from the national service
provider and forwarded to the foreign eIDAS Proxy Service in the sending MS country by the

17

Background

(eIDAS) Connector in the so-called Receiving MS country. The national IdP(s) are contacted
using MS-specific protocols when the eIDAS Proxy Service processes the eIDAS-Auth-Req, often
by translating it into a request (in local format). When eIDs recognized by eIDAS are used for
authentication, the IdP creates an authentication response in local format and sends it back to
the neighborhood proxy service. The Proxy Service creates an eIDAS authentication response
(eIDASAuth-Res) based on the received response and transmits it to the foreign Connector for
further processing. If the SP supports the eIDAS protocol, the Connector may return the eIDAS-
Auth-Res in eIDAS format; otherwise, it translates the answer into the particular protocol that
the SP supports. In more detail, a Generic portion and a Specific part make up both the Connec-
tor and the Proxy Service. The Generic component enables eIDAS protocol connection with the
counterpart nodes [14]. The Specific component is engaged in the eIDAS node’s communication
with the national SP(s) and IdPs. The list of requested characteristics is one of the contents of
the eIDAS-Auth-Req. Eight MDS properties for natural individuals are defined by the eIDAS at-
tribute profile [12] (Table 2.1), of which four are required, namely PersonIdentifier, FamilyName,
FirstName, and DateOfBirth. The remaining four attributes are optional.

Name Description Type
PersonIdentifier* Unique identifier. String
FamilyName* Family name. String
FirstName* First name. String
DateOfBirth Date of birth. Date
BirthName First name or family name at birth. String
PlaceOfBirth Place of birth. String
CurrentAddress Current address. String
Gender Gender. String

Table 2.1. eIDAS natural person attributes.

2.1.4 Versions Of the Code and Running Environments

The eIDAS specification must be followed by the operating eIDAS nodes [14]. While some nations
have created their own ad hoc implementation, others are using the eIDAS code(s) made available
by the European Commission and modified in the Specific section. The eIDAS code version 1.4.x
(branch) and the eIDAS code version 2.x (branch), both written in Java, have both been made
available. We will only go into depth about the key changes between the two code branches
because every release includes improvements.

The Specific components transfer messages between the format of the national eID scheme
and the eIDAS format in the eIDAS code version 1.4.x. Through the eIDAS protocol, the Generic
components are communicated with. The Generic and Specific components are separate services
in this version, and they may even operate on different servers. Instead, the translation of au-
thentication messages in the eIDAS code version 2.x is divided into two parts: the Specific part
translates between the national eID scheme and an intermediate format, and the Generic part
translates between the intermediate format and the eIDAS one. The Specific and Generic parts
of the eIDAS 2.x version communicate with each other using a so-called lightweight protocol, and
they are intended to run on the same server.

eIDAS code is often implemented in a variety of settings. While the experimental nodes are
operating in test settings, the official nodes are accessible in production environments. Tests on
a near-production setting are often conducted in the pre-production or Quality Assurance (QA)
environment. The eIDAS code is used in many nations’ production settings, and the majority
of them have separate test and production environments. The eIDAS node’s support for extra
natural person traits has been put to the test in a pre-production setting. Only the eIDAS MDS
properties are currently supported by the eIDAS nodes running in production environments.

18

Background

2.1.5 Management of Trust

To maintain a continuous chain of trust, the eIDAS nodes are securely recognized using eIDAS
metadata sharing [38]. There isn’t a single trust anchor for all Member States, like at the website
of the European Commission; rather, each MS acts as the trust anchor for its own eIDAS node.
The MS nations trade bilaterally the trust anchors. To ensure that the signature on its eIDAS
metadata file is authentic, each MS nation operating an eIDAS node securely distributes the
eIDAS metadata signing certificate (CerteIDAS metadata sign). [38] provides a description of
the processes utilized for eIDAS information sharing, verification, pre-fetching, and caching. The
X.509 digital certificates required by the other nodes for eIDAS are contained in the eIDAS
metadata file.

The X.509 digital certificates needed by the other nodes to decode the attribute values in the
eIDAS-Auth-Res messages and to verify the signatures on the eIDAS-Auth-Req and eIDAS-Auth-
Res messages are stored in the eIDAS metadata file. Each node’s eIDAS metadata specifically
includes the following information:

• the CerteIDAS message sign certificate required to validate the digital signatures on the
eIDAS-Auth-Req and eIDAS-Auth-Res messages produced by that eIDAS node.

• the user characteristics that are encrypted in eIDAS-Auth-Res messages delivered to other
eIDAS nodes using the certificate (CerteIDAS attributes encrypt).

2.1.6 A Short Summary of a few Notified eID Schemes

Presently, eIDAS supports cross-border authentication and identification using 19 notified eID
schemes from 15 distinct MS countries [39]. We highlight a few of these schemes in this section,
but [40] has a complete list of schemes together with the LoA levels of the credentials recognized
by eIDAS. Be aware that certain nations (such as Slovenia or Austria) have not disclosed their
plans for a variety of reasons that are mentioned in [16]. This fact means that other nations may,
but are not required to, accept authentication using eIDs from non-notified scheme(s).

The first generation of eID cards were initially issued in Belgium in 2003. The deployment
of the second generation of eID cards began in 2014, with an estimated 2 million cards issued
annually [41]. In 2020, more than 2.5 million individuals would have utilized the mobile-based
”itsme” authentication system [42], up from 49% of households in 2018 [43]. In the Czech Republic,
owners of the national eID can use it to log into legal firms, online gambling and betting sites,
and health insurance providers [16]. Around 4.7 million Danes use the NemID scheme for online
banking authentication, resulting in more than 55 million transactions each month [44]. The
national eID card is owned by 98% of Estonians, and 67% of them frequently use it [45]. In
instance, 60% of eID card holders in 2018 utilized their cards at least once for authentication
or signature [46]. Up to 2018, 53 million eID cards were distributed in Germany, but the goal
is to reach all eligible citizens by 2020 [5]. More than 19.5 million Italians hold an electronic
identity card, or CIE (Carta d’Identità Elettronica) [47]. Over 18 million SPID credentials have
been issued in a short period of time, growing exponentially [48]. The use of eID cards is now
voluntary in Latvia, but they will be required by 2023 [49].

The eID cards are optional and recommended to ID card applicants in Luxembourg as well
[50]. Since Portugal’s national eID cards (Carto de Citado) have been in use since 2008, about
45% of cardholders have activated the digital certificate needed for authentication and signature
[6]. However, the ’Chave Mvel Digital’ mobile authentication and signature solution is now more
widely used, with 160,000 users in 2018 [7]. The rollout of eID cards in Slovakia began in December
2013 [51] and is expected to exceed 600,000 monthly authentications in 2019 [52]. In 2006, Spain
started issuing eID cards (DNIe - Document Nacional de Identidad electronico), and in 2015 it
started issuing DNIe 3.0, which included NFC functionality [53].

In the Netherlands, 13.8 million active users used the DigiD authentication system in 2018,
resulting in more than 307 million authentications [54].

19

Background

2.1.7 eID Identifiers

eIDAS Identifiers, Natural Persons, and Digital Identities

What exactly is a digital identity? We have taken into consideration the definitions supplied by
ITU-T and the eIDAS Regulation in our work, despite the fact that there are other meanings for
the word ”digital identity” that exist. Digital identity is defined by the ITU-T Focus Group on
Identity and Authentication as ”mechanisms that assert and verify personal data attributes in the
context of digital services and transactions, based on three processes: identification, authentica-
tion, and authorization.” [11]. Three categories of digital identities foundational, functional, and
transactional were identified by the ITU-T Group [11]. A foundational (core) digital identity is
created as part of a national digital identity scheme or something comparable, and it is based on
the ”formal establishment of identity through the examination of qualifying (breeder) documents
such as birth records, marriage certificates, and social security documents.” The functional digital
identity responds to the unique requirements of a certain industry, like healthcare. ”Intended to
facilitate the performance of financial or other transactions across several sectors,” the transac-
tional identity. According to the same assessment, state-issued eID serves as a solid, trustworthy
fundamental identity. Additionally, it shows that there are two categories of attributes that can
be used to define a person’s digital identity: biographic attributes, such as name, age, and gender,
and biometric attributes, such as fingerprints, iris texture, voice, or facial geometry. When civil
registration systems are nonexistent or official birth certificates are not present, as is the case in
underdeveloped nations, biometric features are essential to uniquely identifying a person [55].

Digital ID is ”the process of using personal identification data in electronic form to uniquely
represent either a natural or legal person, or a natural person representing a legal person,” ac-
cording to the eIDAS Regulation. Since the national eID schemes obtain the information needed
to identify a person from national registries or official (identification) documents, eIDAS deals
with biographic attributes for natural persons. We conclude that the eIDAS network deals with
the transfer of biographic traits associated with fundamental digital identity in light of the afore-
mentioned definitions.

eIDAS PersonIdentifier discussion: The eIDAS MDS characteristics are an element of a per-
son’s fundamental digital identity, with the exception of the eIDAS PersonIdentifier. The eIDAS
PersonIdentifier, what about it? There is a specific syntax for this eIDAS characteristic, which is
briefly given in (Table 2.2) [12]. With the exception of nationality codes, each MS country chooses
how to construct it, therefore it is possible but not required that it be derived from the national
identification. In fact, it may even be a transaction-specific pseudonym [56]. Multiple eIDAS
PersonIdentifiers are possible for a natural person. These identification numbers are ensured to
be exclusive in that no two individuals inside the EU may share the same eIDAS PersonIdenti-
fier. We note that an individual’s eIDAS PersonIdentifier is not often the same as his national
identification number.

Description Example
Country’s nationality code, followed by a slash IT/
Nationality code of the nation supplying the service, then a slash AT/
A string of legible characters that distinguishes the
claimed identity in the country of origin

02635542Y

Table 2.2. An explanation of the eIDAS PersonIdentifier property.

Additional information might be required to provide the service when a citizen presents his
eIDAS PersonIdentifier (along with his name, surname, and date of birth) to a foreign SP. The
SP may request extra personal information from the citizen or require them to register with a
national registry in order to get long-term services. Instead, for short-term (or one-off) services
(as described in Section IV-B), the eIDAS MDS attributes may be deemed adequate to deliver
the service. From a functional standpoint, the SPs demand that each European citizen have a
single, unique, and (potentially) permanent person identification, comparable to those that are
employed at the national level. Despite the fact that the eIDAS PersonIdentifier falls short of

20

Background

meeting all SP expectations, it has been regarded as a viable option. Even though the eIDAS
PersonIdentifier falls short of meeting all SP standards, it has been accepted since each MS nation
can determine the value as long as it continues to be unique throughout the EU. The following are
some potential explanations: a) the eIDAS PersonIdentifier is derived from the national identifier,
so its value would be as persistent as the national identifier; b) the national IdP(s) performing
the eIDAS authentication assigns or derives it; and c) it is an eID pseudonym that changes from
one transaction to the next.

2.1.8 A Service Using eIDAS

While other services need stringent identification of a person, some do not. For instance, being
able to identify the natural person specifically is necessary for responsibility. We distinguish
between two different categories of services: one-time and ongoing. We go over the criteria in
terms of the necessary eIDAS properties for each type of service.

One-Shot Services: These services, like renting a bike or registering for ski passes, are only
meant to be used once. The eIDAS MDS properties in such services have to be adequate to
deliver the service. Because the SP may store the eIDAS MDS attributes and offer the service,
the authentication through the eIDAS network, for instance, may allow a foreign citizen to reserve
the bike in the case of a bike-sharing service. When age-based discounts are given (such as when
issuing ski pass cards), the confirmed characteristic with the date of birth is sufficient. Based
on the eIDAS MDS characteristics, the SP may request additional information on the citizen’s
identity in his country of origin in the event of a disagreement (for example, in the instance of
bike damage). The organization that assigned the eIDAS PersonIdentifier may resolve potential
homonyms, for instance, by searching its regional database or a national registration of local
residents.

Long-Term Services: These services use the eIDAS MDS characteristics to deliver essential,
reliable information about a person. In any case, the SP often needs more information for the
service or must install further identification checks or processes before offering the service. For
instance, the Tax Agency may need the foreign citizen to register on the specific online portal in
order to file a tax return in an eIDAS-enabled service. As part of this procedure, the Tax Agency
would generate an identifier (in the national format) for the foreign citizen, and the newly formed
profile would include the eIDAS PersonIdentifier as well as the other information acquired from
the eIDAS network. For foreign citizens, the whole data may be kept in a national registration.[1]

The ”Login with eIDAS” service for academic staff is another illustration of a long-term service
[19]. In this instance, the university (acting as SP) has already indexed the individuals based on
their national identify and registered them in the internal database. The individual must link
the current eIDAS PersonIdentifier to his national identifier in his profile in order to permit
eIDAS authentication. The individual must update the identification in his profile if the eIDAS
PersonIdentifier changes, as can occur, for instance, in Italy if a person authenticates with several
SPID IdPs. Otherwise, the eIDAS authentication will fail. We note that the SPs frequently
request identity matching for long-term services [15]. This calls on them to determine whether
the person who provided their eIDAS network authentication matches one of the individuals who
have previously been registered on their end. To do this, they might compare the data from
the eIDAS MDS with the records or data stored locally in the SP’s database or obtained from
a centralized national source, such as the national civil registry. In spite of this, homonym or
transliteration issues might result in false positives or false negatives for this method. When
two people share the same name, last name, and birth date, they are said to be homophones.
Furthermore, the SP operator may need to manually check for transliteration issues (i.e., minor
discrepancies found in the registered names or surnames). This problem is more prevalent when
surnames and given names contain accented or unique characters. The eIDAS MDS characteristics
might be expanded to store additional identifying information, such as the passport or eID card
number, a picture, or the European Health Insurance Card number, in order to enhance identity
matching at the SP.

21

Background

2.2 Connecting Attribute Providers to the eIDAS Network

Services typically require more information about people, such as their profession (teacher, doc-
tor), position within a company (manager, director), or country of origin. Such characteristics
may be retrieved by the eIDAS node from either a specific AP or an IdP serving as an AP. In our
work, we only take into account the APs in the citizen’s home nation where he has successfully
authenticated using his eIDAS eID.

Additionally, the APs might also need to perform identity matching. The eIDAS MDS prop-
erties by themselves might not be adequate due to homonym and transliteration issues, hence
the AP requires additional attributes to prevent instances where a person’s profile is mapped to
someone else’s or when access to his profile is prohibited. The AP often demands information like
a Tax Reference number, a Passport or ID card number, a combination of them, and a unique
national identification.

2.2.1 Attributes Classification

Due to the possibility that eIDAS nodes may obtain characteristics from several APs, we ad-
dressed attributes categorization in our study. We categorize the attributes’ properties into two
groups: (1) general properties, which define the attributes’ innate features; and (2) attribute value
properties, which provide information on how the attributes are valued. The attributes’ general
characteristics include, for instance: (a) Category, which can be personal or industry-specific; (b)
Persistence (permanent, non-permanent), depending on whether its value may change over time
(for the same person); and (c) Strength (strong or weak, where a strong attribute can be used to
uniquely identify a user while many different weak attributes may be required at the same time
to lower the risk of incorrect identification).

For instance, although the passport number is personal, non-permanent, and weak, the Italian
fiscal number also known as a ”tax reference number” or ”codice fiscale” is powerful, permanent,
and personal. Attribute Level of Assurance (ALOA) and Source of Authority (SoA) are two
examples of attribute value characteristics. Different ALOA levels (low, medium, or high) could
be defined in the future for the degree of credibility of the attribute values. Instead, the SoA
offers details on the organization (entity) held and responsible for an attribute value. The URI
that may be used to access the attribute value and the name of the entity or authority are two
examples of the subparts that, in our opinion, make up the SoA.[1]

2.2.2 AP Connector Models

We developed new attributes for the eID4U project [57] (Table 2.3) and a logical AP Connector
component to retrieve the new characteristics from the APs [58]. This component, which use
several technologies to connect to the national APs and the eIDAS nodes, can be operated by
many organizations. In the eID4U project, there are now two AP Connector models [59]-[60]. In
the first, the AP Connector interacts with the Specific part of the eIDAS Proxy Service to carry
out attribute processing, such as attribute retrieval, filtering or aggregation with other attributes
valued by the IdP, and conversion into eIDAS format. The AP Connector in this paradigm can
either be a standalone element outside the node or a part of the Specific section of the eIDAS
Proxy Service. In a variation of this model, the AP Connector communicates with the eIDAS
Proxy Service as a whole rather than just with its Specific component. MS nations that have
created and implemented their own code for the eIDAS node may use this solution. As a result,
they might not have distinct pieces for the generic and specific components. The second model
does not either collect attributes or translate the attributes to/from the eIDAS format to national
formats; instead, it just minimally modifies the eIDAS node to accommodate new characteristics
and transfer them to the counterpart nodes. In this instance, the eIDAS node does not transform
the messages into any other particular forms and is agnostic to the attribute names (formats)
used inside the nation. The IdP primarily handles the aforementioned functions while one or
more APs provide extra qualities. In this instance, the AP Connector is positioned between the
IdP and the AP.Keep in mind that the IdP’s contact with the national APs is MS-specific and

22

Background

can be carried out in a variety of ways. For instance, a protocol based on SAML 2.0 might be
utilized by both the IdP and the APs.

eIDAS attributes Description Type
TaxReference Fiscal number String
IdType Passport or national identity String
IdNumber Document ID number String
IdIssuer Document issuer String
IdExpiryDate Date in the format YYYY-MM-DD Date
EhicId European Health Insurance Card ID String
Nationality ISO 3166-1 alpha-2 code of the country String
Citizenship ISO 3166-1 alpha-2 code of the country String
MaritalState Marital status String
CountryOfBirth ISO 3166-1 alpha-2 code of the country String
CurrentPhoto Picture Document
TemporaryAddress Current address String
Email Email address String
Phone Phone number String
HomeInstitutionName Name of the home institution String
HomeInstitutionIdentifier Erasmus code of the home institution String
HomeInstitutionCountry ISO 3166-1 alpha-2 code of the country String
HomeInstitutionAddress Current address String
CurrentLevelOfStudy ISCED code representing the level of current study Integer
FieldOfStudy ISCED code representing the field of study Integer
CurrentDegree Name of the degree the user is attending at home institution String
Degree ISCED code representing previously achieved level of study Integer
DegreeAwardingInstitution Name of the degree awarding institution String
GraduationYear Graduation year Integer
DegreeCountry ISO 3166-1 alpha-2 code of the country String
LanguageProficiency Base64 encoded Europass 3.3 compliant declaration of language proficiency europass3
LanguageCertificates Base64 encoded list of documents binaries Document

Table 2.3. The eID4U project defined additional eIDAS attributes (personal and
academic-specific).(Source: [1])

2.2.3 Integration of the AP Connector with the Italian eIDAS Node

This section explains how the Italian eIDAS infrastructure was integrated with the AP Connector
and the SPID identification system. The IdP Proxy, a specific component of the node’s Specific
section, was created and built by the FICEP project [61] to enable communication between
the Italian eIDAS node and the SPID IdPs. The citizen can choose the SPID IdP to use for
authentication by using this component. Additionally, it converts eIDAS communications into
SPID messages (and the other way around).

First, we added support for the properties in Table 2.3 by extending the eIDAS code. After
that, we altered the IdP Proxy to obtain the extra characteristics from a national AP, combine
them with those that the SPID IdP valued, and then transform them into the eIDAS format.
Figure 2.2 depicts the components of the Generic and Specific sections of the eIDAS Proxy Service
that are engaged in this process. Sections VI-B and VI-C detail the processes that are run in
the Generic and Specific parts of the eIDAS node, respectively. We used the (Italian) fiscal
number issued by the national Tax Agency with the eIDAS MDS characteristics to identify the
natural people throughout the attribute retrieval procedure.The fiscal number is one-of-a-kind,
permanent, and its value is constant across time. The AP Connector interface, which we created
for the IdP Proxy, is seen in Figure 2.1[1].

The eIDAS node interacts directly over a specialized backed channel with a so-called AP Proxy
module to get the properties in the initial AP Connector implementation, dubbed AP-Proxy. The
AP returns to the AP Proxy module more properties than required in this implementation. The
AP Proxy module filters the additional properties as a result. The AP and the eIDAS node
support the OAuth 2.0 protocol in the second AP Connector version, known as AP-OAuth2, for
improved authorisation of the data released and management of user permission.

23

Background

Figure 2.1. AP connections (logical) integration with the Italian eIDAS node . (Source:[1])

2.2.4 Italian SPID System

To take use of the SPID system [10], a citizen must register with an authorized SPID IdP, who
must verify his identity before issuing an SPID credential. You should be aware that a citizen
may register with many SPID IdPs and get multiple SPID credentials with various levels of
security. The citizen can use the services offered by the SPs that support SPIDs after receiving an
SPID credential. Numerous Italian organizations, including towns, universities, the tax authority,
hospitals, or other governmental bodies, now permit citizen identification via the SPID system
since it is now required that public services implement SPID [1].

SPID Protocol: Technically speaking, the SPID system is based on the SAML 2.0 standard
as well; the operational modes are those offered by SAML v2 for the ”Web Browser SSO” pro-
file. When a citizen uses a service that supports SPID, the SP creates a digitally signed SPID
authentication request (SPID-Auth-Req) and transmits it to the SPID IdP, where the citizen
authenticates using his SPID credential. After a successful authentication, the SPID IdP gives
the SP a digitally signed SPID authentication response (SPID-AuthRes) message, and the SP
decides whether to grant or deny access to the service depending on the answer.

SPID Metadata: Specific SAML metadata is used to disseminate the certificate(s) that are
utilized to validate the signatures of SPID messages. In reality, AgID (Agenzia per l’Italia Digitale)
[62] manages an SPID Registry [63] via which the SPID IdPs and SPs share the (SPID) SAML
metadata. This organization conducts verifications to prevent anyone other than accredited IdPs
and validated SPs from connecting to the SPID system. It also specifies the SPID messages format.
SPID Characteristics The IdP sends the so-called SPID properties to the SPs at authentication
time. We provide the terms defined for natural people in Table 2.4 [64]. In SPID attribute
sets, the attributes are organized. Each SP defines one or more attribute sets in its own SAML
metadata, and each set is recognized.

SPID attributes: The IdP sends the so-called SPID characteristics to the SPs at the moment
of authentication. We provide the terms defined for natural people in Table 2.4 [64]. In SPID
attribute sets, the attributes are organized. Each SP defines one or more attribute sets in its
own SAML metadata, and each set is given a unique numerical index. The index number of an
SPID attribute set is added to the request when the SP constructs the SPID-Auth-Req. By using
the attribute set index present in the SP’s SAML metadata, the SPID IdP is able to identify
the desired attributes. We have developed a novel concept for the interaction between the IdP
Proxy serving as an SPID SP in the communication with the SPID IdPs. We have created a new
attribute set and the matching index for the interaction between the IdP Proxy serving as an
SPID SP in the communication with the SPID IdPs. This set includes a person’s fiscal number
together with the bare minimum of reliable information about them (name, surname, and date of
birth).[1]

24

Background

Figure 2.2. Internal view of the Italian eIDAS node showing both the general and particular
eIDAS proxy service components. . (Source: [1])

2.2.5 The Italian eIDAS Node’s Generic Part

Using the node components depicted in Figure 2.2, the Italian eIDAS node processes an eIDAS-
Auth-Req obtained from a related eIDAS Connector by carrying out the procedures. The node
must first get the CerteIDAS message sign certificate of the eIDAS Connector since the request is
digitally signed. The Connector’s eIDAS information, which includes this certificate, is retrieved
and verified using the eIDAS metadata processing module. The eIDAS message processor module
then gets ready to prepare the eIDAS-AuthReq if the eIDAS metadata has been properly checked.

25

Background

Name Description Type
spidCode Identification code assigned by the SPID IdP, must be unique in SPID system. String
familyName* String of one or more non-empty substrings String
name* String of one or more non-empty substrings String
dateOfBirth* Date in the format YYYY-MM-DD Date
countryOfBirth* Two-characters code of the italian province of birth String
placeOfBirth* Four-characters code of the italian municipality of birth String
address* String of one or more non-empty substrings String
gender* Gender F/M String
fiscalNumber* Unique, single and permanent fiscal identification number String
mobilePhone* Phone number String
email* Email address String
idCard* String of four fields: idType, idNumber, idIssuer, idIssueDate, idExpirationDate String
expirationDate Date in the format YYYY-MM-DD Date
digitalAddress* Certified email address String

Table 2.4. SPID attributes. (Source: [1])

In actuality, the node generates a fresh eIDAS-Auth-Req that is sent to the IdP Proxy. The
procedures are followed by the node to retrieve and validate the eIDAS metadata from the IdP
Proxy. The next step is to see if the metadata of the IdP Proxy contains the desired properties.
The new eIDAS-Auth-Req is delivered to the IdP Proxy, which processes it in accordance with
Section VI-C. It is digitally signed using the private key corresponding to the Generic part’s
CerteIDAS message sign. The node receives and verifies IdP Proxy metadata after receiving
an eIDAS-Auth-Res from the IdP Proxy. It then uses the associated encryption certificate to
decode the eIDAS attribute values, and for each of the decrypted attributes, it creates a user
consent form. It then produces a new eIDAS-Auth-Res containing the attributes encrypted using
the CerteIDAS attributes encrypt certificate of the Connector after retrieving and validating the
Connector’s eIDAS information. The digitally signed eIDAS-Auth-Res is returned to the eIDAS
Connector in the last step [1].

2.2.6 Idp Proxy, a Specific Part of the Italian eIDAS Node

The IdP Proxy interacts with the SPID IdPs and retrieves additional characteristics. The eIDAS-
AuthReq obtained from the Generic portion is first verified using the associated eIDAS infor-
mation, which is downloaded and processed instantly. The IdP Proxy then changes the charac-
teristics’ format from eIDAS to SPID. The IdP Proxy adds the SPID fiscalNumber to the list
of requested characteristics to identify the citizen in the attribute retrieval phase if the request
contains attributes that the SPID IdP is unable to value. The IdP Proxy then downloads the
SPID IdP information and verifies that it contains the desired properties. The SPID IdP receives
a signed SPIDAuth-Req that was created after choosing the SPID attribute set index.

The received SPID-Auth-Res is handled in the manner. First, the message is verified by
utilizing the associated SPID IdP information. The next step is to get any properties that the
SPID IdP hasn’t valued from the AP using either the AP Proxy (discussed in Section VII-B) or the
AP-OAuth2 method (discussed in Section VII-C). The equivalent CerteIDAS attributes encrypt
of the Generic component is used to transform the returned attributes into the eIDAS format
and encrypt them. The IdP Proxy then generates a fresh eIDASAuth-Res that has been digitally
signed and transmitted to the Generic section of the eIDAS node.[1]

2.2.7 Details of AP Connector Implementation

This section provides information on the proposed AP Connector implementations as well as the
changes made to the Generic and Specific sections of the eIDAS code. We utilized the Apache
Tomcat 8 and Apache Struts 2 framework-based [65] eIDAS code version 1.4.4 [66], [67]. On
the eIDAS node and certain machines at our location, we have installed the implemented AP
Connector components. Keep in mind that we have no influence over the SPID IdP or the AP
backend (i.e., the university database).

26

Background

2.2.8 New Attributes are Available on the eIDAS Node

The Generic part of the eIDAS node allows support for new attributes of common types. We filled
in the empty configuration file named saml-engine-additional-attributes.xml with the details of the
attributes defined in [59]-[68] and reported in Table 2.3. For example, we defined the TaxReference
attribute for the natural person in the following way [59]:

<entry key="14.NameUri">

http://eidas.europa.eu/attributes/

naturalperson/TaxReference

</entry>

<entry key="14.FriendlyName">

TaxReference

</entry>

<entry key="14.PersonType">

NaturalPerson

</entry>

<entry key="14.Required">false</entry>

<entry key="14.XmlType.NamespaceUri">

http://eidas.europa.eu/attributes/

naturalperson

</entry>

<entry key="14.XmlType.LocalPart">

TaxReferenceType

</entry>

<entry key="14.XmlType.NamespacePrefix">

eidas-natural

</entry>

<entry key="14.AttributeValueMarshaller">

eu.eidas.auth.commons.attribute.impl.

LiteralStringAttributeValueMarshaller

</entry>

We changed the IdP Proxy classes to accommodate the AP Proxy approach’s attribute ex-
traction from the AP, attribute aggregation, and user consent. Three distinct classes make up
the IdP Proxy: In order to communicate with the eIDAS Proxy-Service, the EIDASController
class implements the eIDAS interface. In order to communicate with SPID IdPs, the SPIDCon-
troller class implements the SPID interface, and the IdpProxyService class converts messages
from the eIDAS protocol to the SPID protocol and vice versa. We introduced additional logic to
the IdpProxyService class to provide user consent on the IdP Proxy [1].

2.2.9 AP Proxy

For this strategy, we created the remedy displayed in Figure 2.3 . Below are more explanations
of both the implementation specifics and the sequence diagram. Using Python’s Flask web ap-
plication framework [69], we developed the AP Proxy application as a RESTful Web service [70].
We have introduced a new class named APProxyRequestData to the AP Connector interface of
the IdP Proxy on the eIDAS node.The SPIDController class calls the aforementioned class by
sending it the person’s fiscal number and the list of desired properties. The APProxyRequest-
Data then creates a mutually authorized TLS connection with the AP Proxy application. The
program makes an HTTP GET request with the fiscal number and the extra desired information
across the TLS secured channel. The fiscal number is read by the AP Proxy application and sent
through an HTTP GET request to a specific web service operating at the Student Service Office
backend. The JSON response’s attributes are returned using the same technique [69]. AP Proxy
application characteristics, for instance, are displayed below in JSON format:

{

"Citizenship": "IT",

27

Background

Figure 2.3. Internal view of the Italian eIDAS node showing both the general and particular
eIDAS proxy service components. . (Source: [1])

"CountryOfBirth": "IT",

"CurrentAddress": "QklUVEk=",

"CurrentDegree": "",

"CurrentFamilyName": "ROSSI",

"CurrentGivenName": "MARCO",

"DateOfBirth": "1994-03-29",

"Email": "s111122@studenti.polito.it",

"Gender": "Male",

"HomeInstitutionAddress": "Q2..JUxZ\f\n",

"HomeInstitutionCountry": "IT",

"HomeInstitutionIdentifier": "POLITO",

"HomeInstitutionName":

"Politecnico di Torino",

"IdIssuer": "MCTC-NU",

"IdNumber": "NU5341568Z",

"MaritalState": "N/A",

"Nationality": "IT",

"PersonIdentifier": "176311",

"Phone": "3465678312345",

"PlaceOfBirth": "Milano",

"TemporaryAddress": "QklUVEk="

}

The AP Proxy program discards any characteristics that were not requested, while converting
any that were to a format that is compatible with eIDAS. As an illustration, the characteristics
with addresses (like CurrentAddress) are added to tags. The characteristics are transmitted back

28

Background

to the IdP Proxy in JSON format. The SPIDController class receives the valued properties once
the APProxyRequestData class has parsed the JSON response. We have gotten TLS certificates
from Let’s Encrypt Certification Authority (CA) and configured them into the deployed compo-
nents in order to establish mutually authenticated TLS connections between IdP Proxy and AP
Proxy. A TLS termination proxy is provided by the NGINX reverse proxy [71] that is put in
front of the AP proxy [?]. We also inserted the TLS certificates from the IdP Proxy and the
reverse proxy, respectively, into the dedicated certificate keystore of the IdP Proxy. According
to Figure 2.3, the user’s consent is requested in four separate phases. For the necessary eIDAS
MDS characteristics, as well as the optional eIDAS MDS attributes and the extra ones, the eIDAS
Proxy Service creates user consent pages. For the requested SPID characteristics, the SPID IdP
provides a user consent page, whereas the IdP Proxy creates user consent pages for the requested
AP attributes. Finally, before transferring the valued attributes to the complementary eIDAS
node, the eIDAS Proxy Service requests the user’s permission).

Figure 2.4. Components involved in the AP connector implementation exploiting
OAuth 2.0 protocol . (Source: [1])

2.2.10 AP OAuth2

To assist with this strategy, we created and put into action the architecture depicted in Figure
2.4, which takes use of the OAuth 2.0 protocol’s Authorization (AuthZ) Code Grant procedure.
We will explain in more detail in Chapter 3.

2.3 OAuth 2.0

Open Authorization 2.0 (OAuth 2.0)[72] is a standard that enables a website or application to
access resources hosted by other web apps on behalf of a user. In 2012, it took the place of

29

Background

OAuth 1.0 and is currently the de facto industry standard for online authorization. Without ever
disclosing the user’s credentials, OAuth 2.0 offers agreed-upon access and limits the activities the
client app can do on the user’s behalf on resources.

2.3.1 Principles of OAuth 2.0

OAuth 2.0 is a protocol for authorization, NOT for authentication. As a result, its main purpose
is to enable access to a range of resources, such as external APIs or user data.

OAuth 2.0 makes use of Access Tokens. The authorization to access resources on behalf of the
end user is represented by an access token, which is a piece of data. A specific format for Access
Tokens is not specified by OAuth 2.0. JSON Web Token (JWT) format, however, is frequently
used in specific situations. As a result, data can be included in the token itself by token issuers.
Access Tokens could have an expiration date as well for security reasons.

2.3.2 OAuth 2.0 Roles

The OAuth2.0 authorization framework’s main definition includes the concept of roles. The
following list identifies the fundamental parts of an OAuth 2.0 system:

• Resource Owner: A user or system with ownership of and access control over protected
resources.

• Client: The system that needs access to the protected resources is referred to as the client.
The Client must possess the proper Access Token in order to access resources.

• Authorization Server: Requests for Access Tokens are received from the Client by this
server, which then provides them upon successful resource owner authorization and authen-
tication. The Authorization endpoint, which manages the user’s interactive authentication
and consent, and the Token endpoint, which is involved in a machine-to-machine connection,
are the two endpoints that the Authorization server exposes.

• Resource Server: A server that handles access requests from the client and safeguards the
user’s resources. The appropriate resources are then returned to the Client after accepting
and validating an Access Token from them.

2.3.3 OAuth 2.0 Scopes

The concept of scopes is crucial to OAuth 2.0. They are used to precisely define the grounds
for granting access to resources. The Resource Server determines what resources are relevant to
acceptable scope values.

2.3.4 OAuth 2.0 Access Tokens and Authorization Code

After the Resource Owner has given permission for access, the OAuth 2.0 Authorization server
might not immediately return an Access Token. An Access Token is then exchanged for an
Authorization Code in place of this, which would provide greater security. Along with the Access
Token, the Authorization server may also issue a Refresh Token. Refresh Tokens, in contrast to
Access Tokens, typically have long expiration dates and can be traded for new Access Tokens
when the latter expires. Due to these characteristics, clients must securely store Refresh Tokens.

30

Background

2.3.5 OAuth 2.0: How Does It Operate?

At the most fundamental level, before OAuth 2.0 can be utilized, the Client must obtain its own
credentials, a client id and client secret from the Authorization Server in order to identify and
authenticate itself when making a request for an Access Token.

Access requests are made via OAuth 2.0 by the Client, such as a desktop application, smart
TV app, website, mobile app, etc. The overall flow of the token request, exchange, and response
is as follows:

1. The client submits an authorization request to the authorization server, identifying them-
selves by providing their client id and secret. They also include the scopes and an endpoint
URI (redirect URI) to which the access token or authorization code should be sent.

2. The Authorization server validates the Client’s identity and confirms that the requested
scopes are legal.

3. The owner of the resource communicates with the authorization server to provide access.

4. Depending on the grant type, as described in the following section, the authorization server
redirects back to the client with either an authorization code or an access token. Addition-
ally, a Refresh Token might be given back.

5. The Client asks the Resource server for access to the resource using the Access Token.

2.3.6 Grant Types in OAuth 2.0

Grants are the series of actions a Client must take in order to obtain resource access authorization
in OAuth 2.0. The authorization framework offers a number of grant types to handle various
scenarios:

• Authorization Code grant: The Client exchanges the single-use Authorization Code
received from the Authorization server for an Access Token. For conventional web pro-
grams, where the exchange may safely take place on the server side, this is the ideal choice.
Mobile/native apps as well as Single Page Apps (SPA) may employ the Authorization Code
flow. However, because the client secret cannot be safely kept here, just the client id can
be used for authentication throughout the exchange. The Authorization Code with PKCE
grant, as below, is a preferable substitute.

• Implicit Grant: A more straightforward flow where the Client is given the Access Token
directly. The authorization server may provide the Access Token in response to a form post
or as a parameter in the callback URI in the implicit flow. Because of a possible token leak,
the first option has been deprecated.

• Authorization Code Grant with Proof Key for Code Exchange (PKCE): This
authorization flow is comparable to the Authorization Code grant, but it includes extra
steps to increase security for native and mobile apps as well as SPAs.

• Resource Owner Credentials Grant Type: The credentials of the resource owner must
first be obtained by the Client and sent to the Authorization server in order to receive this
permission. As a result, it is only available to those who can be entirely trusted. It has the
benefit of not requiring a redirect to the Authorization server, making it useful in use cases
where a redirect is infeasible.

• Client Credentials Grant Type: Used for non-interactive applications, such as auto-
mated workflows and microservices. Using its client id and secret, the application in this
instance is authenticated per se.

• Device Authorization Flow: A grant that makes it possible for apps to be used on
input-limited devices, including smart TVs.

• Refresh Token Grant: The flow that entails trading a Refresh Token for a new Access
Token.

31

Background

2.4 JWT

JSON Web Token (JWT) [2] is an open standard (RFC 7519) [73] that specifies a condensed and
independent method for sending information securely between parties as a JSON object. Due to
its digital signature, this information can be checked and trusted. A secret can be used to sign
JWTs using the HMAC algorithm, or a public/private key pair can be used to sign JWTs using
RSA or ECDSA.

Despite the fact that JWTs can be encrypted to additionally offer confidentiality between
parties, we will concentrate on signed tokens. While encrypted tokens conceal those claims from
outside parties, signed tokens allow the integrity of the claims they contain to be verified. When
signing tokens with public/private key pairs, the signature also attests that the token was signed
by only the party that possesses the private key.

Here are a few situations in which JSON Web Tokens are helpful:

• Authorization: The most typical use case for JWT is this one. Once logged in, the user
can access the routes, services, and resources that are made available with that token by
including the JWT in each request going forward. Due to JWT’s low overhead and simplicity
of use across several domains, single sign-on is a feature that is frequently utilized nowadays.

• Information Exchange: Information can be securely transmitted between parties using
JSON Web Tokens. You can be certain that the senders are who they claim to be because
JWTs can be signed (for instance, using public/private key pairs). You may also confirm
that the content hasn’t been altered because the signature is created using the header and
the payload.

2.4.1 JSON Web Token Structure

JSON Web Tokens are made up of three sections that are separated by dots (.). These three
components are as follows:

• Header

• Payload

• Signature

As a result, this is how a JWT usually appears.

xxxxx.yyyyy.zzzzz

Let’s examine each component separately.

• Header: The type of the token, which is often a JWT, and the signature algorithm being
used, like HMAC SHA256 or RSA, are both typically included in the header.

{

"alg": "HS256",

"typ": "JWT"

}

The first component of the JWT is created by Base64Url encoding this JSON.

• Payload: The payload, which includes the claims, makes up the token’s second component.
Claims are assertions about a subject (usually the user) and supplementary information.
Registered, public, and private claims are the three different categories of claims.

32

Background

– Registered Claims: In order to provide a set of useful, interoperable claims, this set
of preconfigured claims is provided. They are not required, but they are suggested. To
name a few of them: iss (issuer), exp (expiration time), sub (subject), aud (audience),
and others.

JWT is designed to be small, therefore you’ll see that the claim names are only three
characters long.

– Public Claims: Those that use JWTs have complete freedom to specify these. The
IANA JSONWeb Token Registry or a URI that contains a collision resistant namespace
should be used to define them in order to prevent collisions.

– Private claims: These are not registered or public claims; rather, they are private
claims made specifically to transmit information between persons who consent to uti-
lizing them.

{

"sub": "1234567890",

"name": "John Doe",

"admin": true

}

The second component of the JSONWeb Token is the payload, which is thenBase64Url
encoded.

Please be aware that with signed tokens, this information is accessible to anybody even
though it is protected from tampering. Unless it is encrypted, private information should
not be included in the payload or header sections of a JWT.

• Signature: You must sign the encoded header, encoded payload, secret, and algorithm
indicated in the header to construct the signature portion.

For instance, if you choose to employ the HMAC SHA256 method, the signature will be
generated as follows:

HMACSHA256(

base64UrlEncode(header) + "." +

base64UrlEncode(payload),

secret)

The signature is used to ensure that the message was not altered along the route, and in
the case of tokens signed with a private key, it can also ensure that the JWT was sent by
the specified party.

When compared to XML-based standards like SAML, the result consists of three Base64-URL
strings separated by dots that may be given with ease in HTML and HTTP settings.

The JWT that is displayed in the example below is signed using a secret and has the header
and payload from the preceding JWT encoded.

Figure 2.5. Encoded JWT example. (Source: [2])

33

Background

2.4.2 JSON Web Tokens: How Do They Operate?

A JSON Web Token will be returned in the authentication process after the user successfully logs
in with their credentials. Tokens are credentials, thus extreme caution must be exercised to avoid
security problems. Tokens shouldn’t generally be kept any longer than necessary.

Due to a lack of security, you should also avoid storing important session data in the browser’s
storage.

The user agent should provide the JWT whenever the user tries to access a protected route
or resource, often in the Authorization header using the Bearer schema. The header’s text
should contain the following information:

Authorization: Bearer <token>

In some circumstances, this may serve as a stateless permission mechanism. The user will be
permitted to access protected resources if a valid JWT is found in the Authorization header,
which is checked by the server’s protected routes. The requirement to query the database for
some activities may be diminished if the JWT contains the required data, albeit this may not
always be the case.

Keep in mind that you should try to keep JWT tokens from growing too large if you send
them using HTTP headers. Some servers will only accept headers up to 8 KB in size. A different
approach, such as Auth0 Fine-Grained Authorization, may be required if you are trying to embed
excessive amounts of data in a JWT token, such as by incorporating all of the user’s rights.

Cross-Origin Resource Sharing (CORS), which doesn’t employ cookies, won’t be a problem if
the token is sent in the Authorization header.

A JWT can be acquired and used to access APIs or services according to the diagram below:

Figure 2.6. Client Credentials Grant. (Source: [2])

1. The application or client asks the authorization server for permission. One of the several
authorization flows is used for this. For instance, a typical OpenID Connect compliant web
site will use the authorization code flow to pass through the /authorize endpoint.

2. The authorization server provides the application with an access token after approving the
request.

3. A protected resource is accessed by the application using the access token (like an API).

Be aware that with signed tokens, even while users or other parties cannot change the infor-
mation, it is still completely visible to them. This indicates that you shouldn’t include sensitive
information in the token.

34

Background

2.4.3 Why Should We Use JSON Web Tokens?

Comparing JSON Web Tokens (JWT) to Simple Web Tokens (SWT) and Security
Assertion Markup Language Tokens (SAML), let’s discuss the advantages of each.

JWT is more compact than SAML because JSON is less verbose than XML and has a reduced
overall file size when encoded. JWT is an excellent option for passing in HTML and HTTP
environments because of this.

Security-wise, SWT can only be symmetrically signed using the HMAC algorithm by a shared
secret. However, a public/private key pair in the form of an X.509 certificate can be used to sign
JWT and SAML tokens. In contrast to the ease of signing JSON, signing XML with an XML
Digital Signature is quite difficult to do without creating hidden security flaws.

Most computer languages employ JSON parsers because of how well it maps to objects. On
the other hand, there is no inherent document-to-object mapping in XML. As a result, working
with JWT is simpler than SAML claims.

JWT is utilized on the Internet at a large extent. This demonstrates how the JSON Web
token can be processed easily on the client-side across many platforms, particularly mobile.

2.5 Redis

Redis [74] is a distributed, in-memory key/value database, cache, and message broker with optional
durability that is used as an in-memory data structure store. Various abstract data structures,
including strings, lists, maps, sets, sorted sets, HyperLogLogs, bitmaps, streams, and spatial
indices, are supported by Redis.

35

Background

Figure 2.7. Comparison of the length of an encoded JWT and an encoded SAML.(Source: [2])

36

Chapter 3

Design and Implementation

In order to facilitate the attribute retrieval and authorization process within our system, we
made several modifications to the existing components. The primary focus was on enhancing
the functionality of the IdP Proxy, specifically by updating the processResponse method in the
SPIDController class.

The processResponse method plays a pivotal role in handling the SPID-Auth-Res received
from the SPID IdP. It extracts the citizen’s identification data, such as the SPID fiscal number,
and initiates the attribute retrieval process using the OAuth2 protocol. The OAuth client is
invoked to handle this attribute retrieval, and upon receiving the attribute response, it sends the
data back to the SPIDController class.

Within the SPIDController class, further processing takes place. The retrieved attributes
are converted into the eIDAS format, and they are combined with the previously obtained SPID
attributes. This step involves attribute aggregation and formatting to prepare the data for the next
stage. Finally, the IdP Proxy prepares an eIDAS-Auth-Res message, which is then transmitted
to the Generic part of the eIDAS Proxy Service.

In addition to the modifications made to the IdP Proxy, we have implemented several other
components within our system. These include the OAuth client, the Authorization Server (AuthZ
server), and the Resource Server. Each component plays a specific role in the overall attribute
retrieval and authorization process.

For project management and handling dependencies, we utilized Maven [75]. Our implemen-
tation is based on Jakarta EE [75] - [76] with MicroProfile, and Open Liberty serves as the server
runtime environment. To manage JWT (JSON Web Token) tokens, we employed the Nimbus
JOSE (Javascript Object Signing and Encryption) and JWT library [77].

By adopting this implementation approach, we have created a robust system that efficiently
handles attribute retrieval, authorization, and token management using well-established technolo-
gies and frameworks.

3.1 Implementation Diagram

The provided steps outline a series of actions related to attribute request, authorization, and data
exchange within a system. These steps play a crucial role in securely retrieving and authorizing
citizen identification data. Here is a description of each step:

1. Attributes Request: Upon a successful SPID login, the IdP Proxy retrieves the academic
requested attributes along with the MDS (name, familyName, dateOfBirth, identifier, and
fiscalNumber) from the eIDAS response. It then prepares a signed JWT using a private key
and sends it as an id token to the Client.

37

Design and Implementation

2. Authorization Code Request: The Client receives the id token and decodes it using the
public key. The Client stores the MDS (name, familyName, dateOfBirth, and fiscalNumber)
in Redis. It then generates an authorization code for the Polito AP client to create an access
token later in step 4. This step involves starting the OAuth 2.0 flow for the eidas client
by calling the HTTP GET /authorize endpoint of the Authorization Server. The required
parameters and academic requested attributes are passed in a scope.

3. Citizen Identification Data Request: The logged-in user’s information is kept in Redis
on the client side. The Authorization Server needs to obtain this information, so it uses
an access token for data exchange. The Authorization Server calls the HTTP GET /token
endpoint, providing the authorization code (openidconnect code) generated in step 2.

4. Citizen Identification Data Response: The Client generates an access token and in-
cludes an id token as part of the response in JWT format.

5. Validate Citizen Information: The Authorization Server receives the id token and stores
it in Redis. It then validates the user’s identity based on the received token.

6. Show Authorization Form: After successful validation, the user is redirected to an
authorization form.

7. Authorize Attributes: In order to receive a response from the Resource Server in the
subsequent steps, the user checks the requested attributes and grants permission for their
access.

8. Send User Choices: The Authorization Server receives the user’s chosen attributes along
with the approval status.

9. Authorization Code Response: To prevent CSRF (Cross-Site Request Forgery), the
Authorization Server sends the user to the redirect URI defined in step 2, including the
code and state parameter.

10. Access Token Request: The client obtains the authorization code, verifies that the state
parameter matches the one sent earlier, and prepares an HTTP POST to the authoriza-
tion token endpoint. The client encodes the secret in Base64url format and includes the
authorization code, redirection URI, and grant type as form items.

11. Access Token Response: The Authorization Server decodes the authorization header,
verifies the credentials, extracts the code, and generates an access token. It loads the Redis
datastore, retrieves the fiscal number, and includes it as a claim in the access token. The
response also includes the signed and serialized JWT for access, the expiration time (30
minutes), the token type, and the authorized scopes in the JSON response.

12. Resources Access Request: The Client prepares an HTTP GET request to the /api/re-
source/read endpoint, including the access token in the authorization header. The Client
extracts the signed serialized JWT from the access token variable in the JSON response and
verifies its signature using the public key. The Client then stores the access token to request
resources from the Resource Server.

13. Attributes Request: The Resource Server, with the public key available locally, verifies
the JWT provided by the Client. It uses the Private Claim of the group to map the Jakarta
RR Roles on the requested resources. In this case, since resource.read is the only relevant
group, access is granted for the resource read request. The Resource Server prepares the
response by including a welcome message for the user in HTML format.

14. Attributes Response: The Resource Server calls an endpoint (which can be a JSON
file) to retrieve the information related to the authorized fiscal code based on the requested
scopes. It reads the subject from the access token, decodes it with the public key, and
retrieves the fiscal number.

15. Resources Access Response: The Resource Server responds to the Client with the re-
quested attributes in a POST form.

38

Design and Implementation

16. Attributes Response: The Client receives the response and provides the IdP Proxy with
the requested information from step 1.

These implementation steps provide a comprehensive overview of the attribute retrieval, autho-
rization, and data exchange process within the system.

39

Design and Implementation

IdP Proxy

SpitController

7.Authorize
attributes

OAuth2 Client

TokenEndpoint

CallbackServlet

DownstreamCallServlet

AuthorizationCodeServlet

1.Attributes Request:
POST /authorization

{requested attributes + citizen identification information}
User

OAuth2
Authorization

Server

AuthorizationEndpoint

TokenEndpoint

12.Resources access request:
GET /api

Authorization:[Access Token string]

OAuth2
Resource

 Server

5.Validate citizen
information

13.Attributes request

ProtectedResource

9.Authorization code response:
GET /callback?

code=[Authorization_code]&
state=[state parameter]

AP Backend

14.Attributes response14.Attributes response

2.Authorization Code Request:
GET /authorize?

response_type=code&
redirect_uri=[OAuth2 Client]/callback&

scope=[Requested attributes]&
state=[State parameter]&

openidconnect_code=[Qzk23gF6]&
client_id=eidas_client

3.Citizen Identification Data Request:
GET /token?

code=[Qzk23gF6]&
client_id=Polito_AP&
scope=openid,eidas

4.Citizen Identification Data Response:
{access_token:[Access Token String],

expires_in:[expire time].
token_type: "Bearer",
scope:"openid eidas",

id_token:[ID Token string]}

8.Send User choices
POST /authorize

scope=[selected attributes] & approval_status=[YES/NO]

11.Access Token response:
{ access_token: [Access Token string],

expires_in: [expire time],
token_type: "Bearer",

scope: [authorized attributes] }

15.Resources access response:
{ [Returned attributes] }

16.Attributes response

6.Show authorization form

10.Access Token request:
POST /token

Authorization: Basic [Base64 encoded
client_id and client_secret]

grant_type=authorization_code&
code=[Authorization code]&

redirect_uri=[OAuth client URI]/callback

Figure 3.1. Flow diagram.

40

Design and Implementation

3.2 Idpproxy

The request is actually handled by the idpproxy, which finishes the necessary translations, creates
an SPID Authentication Request, and then transmits it to an Idp that is a component of the
SPID domain. It then receives the response with the requested attributes. consists of a gateway
that communicates with SPID Idp and eIDAS Node as national and EU SP, respectively.

3.2.1 Spit

It is an SPID Proxy Service Provider that can communicate with SPID Idps to collect attributes
and authenticate users. This suggests that Spit will transmit requests from an eIDAS Node
proxy service, handled by other sub modules, to an SPID Node, enabling the Spit interface to
communicate with an SPID Idp for user authentication.

It is technically a java servlet [78], a Java program that runs on a web server or application
server that supports Java. It is utilized to manage requests received from web servers, process
those requests, generate responses, and then transmit those responses back to the web servers.

After SPID authentication, we receive the requested attributes in SpitController.java. Since
the requested attributes do not contain a fiscal number, we then verify the missing attributes and
put the fiscal number there.

Take note that we create a default fiscal number in the case that the attribute provider does
not provide the fiscal number. This is only for testing the flow; in a production environment, it
must be removed [1].

idpproxy/test/src/idpproxy-eid4u-taxreference/src/main/java/it/

telecomitalia/ficep/idpproxy/spit/controller/SpitController.java

@RequestMapping(value = PROCESS_RESPONSE, method = RequestMethod.POST)

public ModelAndView

processResponse(@RequestParam(Constants.SPID_SAMLRESPONSE_PARAM_NAME)

String samlSpidREsponse,

@RequestParam(Constants.SPID_RELAYSTATE_PARAM_NAME) String relayState,

ModelMap model,

HttpServletRequest request) {

/..

List<String> first_name = dt.getAttributeMapWithValues().get("name");

List<String> family_name = dt.getAttributeMapWithValues().get("familyName");

List<String> date_of_birth =

dt.getAttributeMapWithValues().get("dateOfBirth");

List<String> fiscalNumber =

dt.getAttributeMapWithValues().get("fiscalNumber");

String academicRequestedAttributes = missingAttributes.toString();

academicRequestedAttributes = academicRequestedAttributes.replace("[","");

academicRequestedAttributes = academicRequestedAttributes.replace("]","");

try {

String jwtIdpproxy =

JWT.createJWTPV(first_name.get(0),family_name.get(0),date_of_birth.get(0),

fiscalNumber.get(0),academicRequestedAttributes);

model.put("id_token", jwtIdpproxy);

}

catch (Exception ex){

41

Design and Implementation

System.out.println(ex.getMessage());

request.setAttribute("error", ex.getMessage());

}

view = new ModelAndView("oauth2",model);

}

It’s time to send these pieces of information to the oauth2-client. There is a Java library called
jsonwebtoken[79] that can be used to create and sign JWTs, as we discussed in the background.
However, there are some dependencies that need to be installed, they need to be added to the
pom.xml file.

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-api</artifactId>

<version>0.11.2</version>

</dependency>

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-impl</artifactId>

<version>0.11.2</version>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-jackson</artifactId> <!-- or jjwt-gson if Gson is

preferred -->

<version>0.11.2</version>

<scope>runtime</scope>

</dependency>

Setting up the claims and other information needed to construct a JWT is the initial step,
followed by signing it with an RSA private key.

The JWTDemo.java code contains a function named createJWTPV() that we use to accom-
plish it.

idpproxy/test/src/idpproxy-eid4u-taxreference/src/main/java/it/

telecomitalia/ficep/idpproxy/spit/utils/JWTDemo.java

public static String createJWTPV(String name,String familyName,String

dateOfBirth,String fiscalNumber, String requestedAttributes) throws

Exception {

String pemEncodedRSAPrivateKey =

readKeyAsString("/META-INF/private-key-jwt1.pem");

RSAKey rsaKey = (RSAKey)

JWK.parseFromPEMEncodedObjects(pemEncodedRSAPrivateKey);

PrivateKey privateKey = rsaKey.toRSAPrivateKey();

Instant now = Instant.now();

Date expirationTime = Date.from(now.plus(expiresInMin,

ChronoUnit.MINUTES));

42

Design and Implementation

JwtBuilder builder = Jwts.builder()

.setIssuedAt(Date.from(now))

.setAudience("https://oauth2-client-eid4u.polito.it/")

.setIssuer("https://idp-proxy-test-eid4u.polito.it/")

.setSubject("id_token")

.claim("fiscalNumber", fiscalNumber)

.claim("name", name)

.claim("familyName", familyName)

.claim("dateOfBirth", dateOfBirth)

.claim("requestedAttributes", requestedAttributes)

.setExpiration(expirationTime)

.signWith(privateKey);

//Builds the JWT and serializes it to a compact, URL-safe string

return builder.compact();

}

The JWT (id token) has finally been generated and serialized into a String.

In the following section, RSA Private and Public Key (Section 3.3.8), I will describe how the
private and public keys are generated using OpenSSL.

After being created and signed by the private key in the idpproxy, the id token will then be
validated and decoded by the public key in the oauth2-authorization-server.

Figure 3.2. id token JWT structure. (Source: [2])

43

Design and Implementation

We may transmit the id token to the oauth2-client using POST now that we have it. (Figure
5.1 - Step 1).

It’s important to note that the id token expires after 10 minutes.

Before I explain the OAuth 2.0 flow, I should mention that this solution uses two OAuth 2.0
flows, which are divided by the client name:

• eidas client: This is the primary OAuth 2.0 flow that requests the access token in order
to access the resources.

• Polito AP: This will be used for the exchange of id token.

3.3 OAuth2 Authorization Server

With the help of Java EE and MicroProfile, we will offer an implementation of the OAuth 2.0 Au-
thorization Framework[80] . Most crucially, use the Authorization Code grant type to implement
the interaction between OAuth 2.0 roles.

We will implement the Authorization Endpoint, the Token Endpoint, as well as the JWK Key
Endpoint, which is helpful for the Resource Server to retrieve the public key, for the most crucial
job, the Authorization Server.

We are going to use a pre-registered store of clients and users, and obviously a JWT store for
access tokens, because we want the solution to be straightforward and simple for a quick setup.

3.3.1 Authorization Code Grant Flow

The authorization server’s /authorize endpoint is redirected to by the client in order to request
permission. The program issues a callback to this endpoint.

The end-user, or resource owner, is typically asked for approval by the authorization server.
If the end user agrees, the authorization server then sends a code back to the callback.

After receiving this code, the application calls the authorization server’s /token endpoint with
authentication. We define ”authenticated” as the application presenting identification as part of
this call. The token is returned by the authorization server if everything looks to be in order.

The resource server’s API will verify the token when the program submits its request with the
token in hand. Using the /introspect endpoint, it can request that the authorization server confirm
the token. Alternatively, the resource server can optimize by locally confirming the signature of
the token if it is self-contained, like with JWT.

We will concentrate on the most used grant type in this implementation, the Authorization
Code.

3.3.2 Client and User Registration

Before it can allow a request, an authorization server need to know about the client and user.
Also typical is the presence of a user interface on an authorization server.

But for the sake of simplicity, we will use the pre-configured client, which is saved in src/-
main/resources/data.sql.template :

• eidas client

44

Design and Implementation

INSERT INTO clients (client_id, client_secret, redirect_uri, scope,

authorized_grant_types)

VALUES (’eidas_client’, ’eidasclientsecret’,

’https://oauth2-client-eid4u.polito.it/callback’,

’Citizenship CountryOfBirth CurrentDegree Email HomeInstitutionCountry

HomeInstitutionIdentifier HomeInstitutionName IdIssuer IdNumber

MaritalState Nationality Phone’, ’authorization_code’);

And a pre-configured user:

INSERT INTO users (user_id, password, roles, scopes)

VALUES (’user_server’, ’usersecret’, ’USER’, ’Citizenship CountryOfBirth

CurrentDegree Email HomeInstitutionCountry HomeInstitutionIdentifier

HomeInstitutionName IdIssuer IdNumber MaritalState Nationality Phone’,

’authorization_code’);

For the purposes of this implementation, it should be noted that we used plain-text passwords;
however, in a production environment, passwords should be hashed.

3.3.3 Authorization Endpoint

The primary function of the authorization endpoint is to authenticate the user before requesting
the scopes or permissions that the application requires.

However, since eIDAS has previously verified our identity, we may skip this step and still
regard the user as authorized in our scenario.

The authorization endpoint can now begin processing the application’s request (Figure 5.1
- Step 2), which must include the parameters response type, client id, redirect uri, scope,
and state. Additionally, there is a parameter called openidconnect code.

In our scenario, the client id should be a legitimate client from the client database table
(eidas client).

Additionally, the redirect uri, if specified, must coincide with the information in the clients
database record (https://oauth2-client-eid4u.polito.it/callback).

The openidconnect code, which is the Polito AP client’s authorization code, is manually gen-
erated in the oauth2-client ’s IndexServlet.java file. We will utilize it in (Figure 5.1 - Step 3) to
obtain the id token and access token.

Furthermore, response type is code since we are using an authorization code.

We can temporally save these values in the session because permission is a multi-step process:

request.getSession().setAttribute("ORIGINAL_PARAMS", params);

• HTTP GET Endpoint that validates the secrets, the redirect URI, and the requested
scope, saves all of these parameters in the session, and then redirects the user to autho-
rize.jsp. It calls the client /token endpoint in the meantime to obtain the id token as we
will discuss in Section 3.3.4, while the user can confirm their consent.

• HTTP POST Endpoint that, after receiving the user’s consent from authorize.jsp,
uses the previously saved parameters to populate a new authorization code model with the
authorization code, the client id, the approved scopes, the expiration date, and so on, and
then redirects back to the client on the redirect uri by adding the new code and the state
obtained at the beginning to the query parameters in order to prevent CSRF. The table
must contain the redirect uri as an allowed URI for redirection.

45

Design and Implementation

3.3.4 Citizen Identification Data Request

There is an additional step to pass it through OAuth 2.0 using Polito AP client at this point
(Figure 5.1 - Step 3), as we need the id token in the authorization server.

Furthermore, since we already know the authorization code for this client (openidconnect code),
we can just call the /token endpoint to obtain the id token as a json parameter with access token.
In this case, there is an HTTP GET request from the authorization server to the client, followed
by an HTTP POST and JAX RS Client implementation. More information on these steps is
provided in Section 3.4.4. (Figure 5.1 - Step 3,4).

In order to use the id token in upcoming steps, we additionally used Redis to store it for a
short period of time with a 2-minute expiration time.

Jedis jedis = new Jedis("redis");

jedis.set("id_token",id_token);

jedis.expire("id_token", 120); // Deleted after two minutes

jedis.close();

3.3.5 Authorization Form

For eidas client, we get ready to redirect to the authorize.jsp page and ask the user what permis-
sions the application may use:

String allowedScopes = checkUserScopes(user.getScopes(), requestedScope);

request.setAttribute("scopes", allowedScopes);

request.getRequestDispatcher("/authorize.jsp").forward(request, response);

3.3.6 User Scopes Approval

The user makes a choice at this stage (Figure 5.1 - Steps 6, 7, and 8), when the browser shows an
authorized UI for them. The user’s choice is then submitted by the browser via an HTTP POST:

@POST

@Consumes(MediaType.APPLICATION_FORM_URLENCODED)

@Produces(MediaType.TEXT_HTML)

public Response doPost(@Context HttpServletRequest request, @Context

HttpServletResponse response,

MultivaluedMap<String, String> params) throws Exception {

MultivaluedMap<String, String> originalParams =

(MultivaluedMap<String, String>)

request.getSession().getAttribute("ORIGINAL_PARAMS");

// ...

String approvalStatus = params.getFirst("approval_status"); // YES OR

NO

// ... if YES

List<String> approvedScopes = params.get("scope");

// ...

}

We then create a temporary code that makes reference to the user id, client id, and
redirect uri, all of which the application will utilize once it reaches the token endpoint.

So let’s make an AuthorizationCode JPA Entity with an auto-generated id:

46

Design and Implementation

@Entity

@Table(name ="authorization_code")

public class AuthorizationCode {

@Id

@GeneratedValue(strategy=GenerationType.AUTO)

@Column(name = "code")

private String code;

//...

}

Then fill it with data:

AuthorizationCode authorizationCode = new AuthorizationCode();

authorizationCode.setClientId(clientId);

authorizationCode.setUserId(userId);

authorizationCode.setApprovedScopes(String.join(" ", authorizedScopes));

authorizationCode.setExpirationDate(LocalDateTime.now().plusMinutes(2));

authorizationCode.setRedirectUri(redirectUri);

The code attribute is automatically filled up when the bean is saved, allowing us to retrieve
it and send it back to the client:

appDataRepository.save(authorizationCode);

String code = authorizationCode.getCode();

It’s important to keep in mind that our permission number will expire in two minutes, so we
should be as careful as we can with it. It can be brief because the client will immediately exchange
it for an access token.

After that, we redirect to the application’s redirect uri (Figure 5.1 - Step 9), passing it the
code and any state parameters it included in its /authorize request:

StringBuilder sb = new StringBuilder(redirectUri);

// ...

sb.append("?code=").append(code);

String state = params.getFirst("state");

if (state != null) {

sb.append("&state=").append(state);

}

URI location = UriBuilder.fromUri(sb.toString()).build();

return Response.seeOther(location).build();

Again, keep in mind that redirectUri is not the redirect uri request parameter but rather
whatever is present in the clients database.

In order to proceed, the client must first get this code and then use the token endpoint to
convert it into an access token.

3.3.7 Token Endpoint

The token endpoint, in contrast to the authorization endpoint, does not require a browser to
communicate with the client, so we will implement it as a JAX-RS endpoint (JAX-RS[81] provides
portable APIs for creating, making available, and using Web applications created and implemented
in accordance with the principles of REST architectural style):

47

Design and Implementation

@Path("token")

public class TokenEndpoint {

List<String> supportedGrantTypes =

Collections.singletonList("authorization_code");

@Inject

private AppDataRepository appDataRepository;

@Inject

Instance<AuthorizationGrantTypeHandler>

authorizationGrantTypeHandlers;

@POST

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_FORM_URLENCODED)

public Response token(MultivaluedMap<String, String> params,

@HeaderParam(HttpHeaders.AUTHORIZATION) String authHeader) throws

JOSEException {

//...

}

}

Both a POST and the application/x-www-form-urlencoded media type are required for the
token endpoint’s parameters.

As we previously explained, we will only support the grant type for an authorization code:

List<String> supportedGrantTypes =

Collections.singletonList("authorization_code");

Therefore, it is necessary to support the received grant type as a required parameter:

String grantType = params.getFirst("grant_type");

Objects.requireNonNull(grantType, "grant_type params is required");

if (!supportedGrantTypes.contains(grantType)) {

JsonObject error = Json.createObjectBuilder()

.add("error", "unsupported_grant_type")

.add("error_description", "grant type should be one of :" +

supportedGrantTypes)

.build();

return Response.status(Response.Status.BAD_REQUEST)

.entity(error).build();

}

Then, using HTTP Basic authentication, we verify the client authentication. Specifically,
we determine whether the client id and client secret supplied through the Authorization header
correspond to a client that has already been registered:

String[] clientCredentials = extract(authHeader);

String clientId = clientCredentials[0];

String clientSecret = clientCredentials[1];

Client client = appDataRepository.getClient(clientId);

if (client == null || clientSecret == null ||

!clientSecret.equals(client.getClientSecret())) {

JsonObject error = Json.createObjectBuilder()

.add("error", "invalid_client")

.build();

return Response.status(Response.Status.UNAUTHORIZED)

48

Design and Implementation

.entity(error).build();

}

Finally, we assign a corresponding grant type handler to produce the TokenResponse:

public interface AuthorizationGrantTypeHandler {

TokenResponse createAccessToken(String clientId,

MultivaluedMap<String, String> params) throws Exception;

}

Since the authorization code grant type is the one in which we are most interested, we have
offered a suitable implementation as a CDI bean and decorated it with the Named annotation:

@Named("authorization_code")

The CDI Instance mechanism at runtime activates the appropriate implementation in accor-
dance with the received grant type value:

String grantType = params.getFirst("grant_type");

//...

AuthorizationGrantTypeHandler authorizationGrantTypeHandler =

authorizationGrantTypeHandlers.select(NamedLiteral.of(grantType)).get();

Time to create /token’s response is now. (Figure 5.1 - Step 10).

3.3.8 RSA Private and Public Keys

An RSA private key is required before creating the token so it can be signed.

We will employ OpenSSL for this objective:

PRIVATE KEY

openssl genpkey -algorithm RSA -out private-key.pem -pkeyopt

rsa_keygen_bits:2048

Using the fileMETA-INF/microprofile-config.properties, the server receives the private-key.pem
through the MicroProfile Config signingKey property:

signingkey=/META-INF/private-key.pem

The inserted Config object allows the server to read the property:

String signingkey = config.getValue("signingkey", String.class);

A similar public key can be created by following these steps:

PUBLIC KEY

openssl rsa -pubout -in private-key.pem -out public-key.pem

And to read it, use the MicroProfile Config verificationKey:

verificationkey=/META-INF/public-key.pem

The resource server should be able to access it on the server so that it can be verified. Through
a JWK endpoint, this is done.

A useful library in this case is Nimbus JOSE+JWT. Adding the nimbus-jose-jwt dependency
first:

49

Design and Implementation

<dependency>

<groupId>com.nimbusds</groupId>

<artifactId>nimbus-jose-jwt</artifactId>

<version>7.7</version>

</dependency>

We can now make use of Nimbus’s JWK support to make our endpoint simpler:

@Path("jwk")

@ApplicationScoped

public class JWKEndpoint {

@GET

public Response getKey(@QueryParam("format") String format) throws Exception {

//...

String verificationkey = config.getValue("verificationkey", String.class);

String pemEncodedRSAPublicKey = PEMKeyUtils.readKeyAsString(verificationkey);

if (format == null || format.equals("jwk")) {

JWK jwk = JWK.parseFromPEMEncodedObjects(pemEncodedRSAPublicKey);

return

Response.ok(jwk.toJSONString()).type(MediaType.APPLICATION_JSON).build();

} else if (format.equals("pem")) {

return Response.ok(pemEncodedRSAPublicKey).build();

}

//...

}

}

The format parameter has been used to alternate between the PEM and JWK formats. Both
of these forms are supported by the MicroProfile JWT that we’ll use to create the resource server.

3.3.9 Token Endpoint Response

Now the token response needs to be created by the specified AuthorizationGrantTypeHandler. We
will only support the structured JWT Tokens in this implementation.

We will use the Nimbus JOSE+JWT library once more to create a token in this manner,
although there are many more JWT libraries as well [80].

Therefore, in order to create a signed JWT, the JWT header must first be created:

JWSHeader jwsHeader = new

JWSHeader.Builder(JWSAlgorithm.RS256).type(JOSEObjectType.JWT).build();

Then, we construct the payload, which is a collection of pre-built and original claims:

Instant now = Instant.now();

Long expiresInMin = 30L;

Date in30Min = Date.from(now.plus(expiresInMin, ChronoUnit.MINUTES));

JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder()

.issuer("http://oauth2-server-eid4u.polito.it")

.subject(authorizationCode.getUserId())

.claim("upn", authorizationCode.getUserId())

.audience("http://oauth2-resource-eid4u.polito.it")

.claim("scope", authorizationCode.getApprovedScopes())

.claim("groups", Arrays.asList(authorizationCode.getApprovedScopes().split("

")))

50

Design and Implementation

.claim("fiscal_number", fiscal_number)

.expirationTime(in30Min)

.notBeforeTime(Date.from(now))

.issueTime(Date.from(now))

.jwtID(UUID.randomUUID().toString())

.build();

SignedJWT signedJWT = new SignedJWT(jwsHeader, jwtClaims);

The MicroProfile JWT requires upn and groups in addition to the regular JWT claims, thus
we have added those as well. Both the upn and the groups will be mapped to Jakarta EE Roles
and the Security CallerPrincipal in that platform.

Additionally, we have introduced a new claim called fiscal number, which we will utilize in
the Resource Server to retrieve academic data about the logged-in user that is denoted by the
fiscal number.

Due to the fact that id token is a JWT, in order to obtain the fiscal number from it, we must
import the public key for that JWT into the authorization server. Once there, we can use the
public key to verify the fiscal number and decode it.

its public key can be found in:

resources/META-INF/public-key-jwt.pem

In the JWTDemo.java class, decodeToken() is used to both verify and decode it.

handler/JWTDemo.java

public static Claims decodeToken(String token) throws Exception {

String pemEncodedRSAPublicKey =

readKeyAsString("/META-INF/public-key-jwt.pem");

RSAKey rsaPublicKey = (RSAKey)

JWK.parseFromPEMEncodedObjects(pemEncodedRSAPublicKey);

PublicKey publicKey = rsaPublicKey.toRSAPublicKey();

Claims claims = Jwts.parser()

.setSigningKey(publicKey)

.parseClaimsJws(token).getBody();

return claims;

}

We must sign the access token using an RSA private key now that we have the header and the
content. The resource server can utilize the matching RSA public key to check the access token
by exposing it over the JWK endpoint or making it accessible in another way.

Since the private key was given in PEM format, we should obtain it and convert it to an
RSAPrivateKey :

SignedJWT signedJWT = new SignedJWT(jwsHeader, jwtClaims);

//...

String signingkey = config.getValue("signingkey", String.class);

String pemEncodedRSAPrivateKey =

PEMKeyUtils.readKeyAsString(signingkey);

RSAKey rsaKey = (RSAKey)

JWK.parseFromPEMEncodedObjects(pemEncodedRSAPrivateKey);

The JWT is then serialized and signed:

51

Design and Implementation

signedJWT.sign(new RSASSASigner(rsaKey.toRSAPrivateKey()));

String accessToken = signedJWT.serialize();

We then create a token response:

return Json.createObjectBuilder()

.add("token_type", "Bearer")

.add("access_token", accessToken)

.add("expires_in", expiresInMin * 60)

.add("scope", authorizationCode.getApprovedScopes())

.build();

which, due to JSON-P, is serialized to JSON format and transmitted to the client:

{

"access_token": "acb6803a48114d9fb4761e403c17f812",

"token_type": "Bearer",

"expires_in": 1800,

"scope": "Citizenship CountryOfBirth CurrentDegree Email

HomeInstitutionCountry HomeInstitutionIdentifier

HomeInstitutionName IdIssuer IdNumber MaritalState Nationality

Phone"

}

3.4 OAuth2 Client

The Servlet, MicroProfile Config, and JAX RS Client APIs will be used in this part to create a
web-based OAuth 2.0 Client.

To be more specific, we will be putting in place two main servlets: one for requesting the
authorization server’s authorization endpoint and obtaining a code using the authorization code
grant type, and another servlet for using the code obtained to obtain an access token from the
authorization server’s token endpoint.

One more servlet will also be put into place to allow access to the resource server’s APIs [80].

3.4.1 Client and User Registration

To authorize its requests, the Client (which is actually the authorization server for the second
client Polito AP) needs to be aware of the Client and User.

The pre-configured client is kept in src/main/resources/data.sql.template.

• Polito AP

INSERT INTO clients (client_id, client_secret, redirect_uri, scope,

authorized_grant_types)

VALUES (’Polito_AP’, ’Polito_secret’,

’https://oauth2-client-eid4u.polito.it/token’,

’openid eidas’, ’authorization_code’);

INSERT INTO users (user_id, password, roles, scopes)

VALUES (’user_client’, ’usersecret’, ’USER’, ’openid eidas’);

For the purposes of this implementation, it should be noted that we used plain-text passwords;
however, in a production environment, passwords should be hashed.

52

Design and Implementation

3.4.2 OAuth 2.0 Client Details

Considering that the client is already registered with the authorization server, we must first
provide the client registration details:

• client id : Client Identifier is often given out by the authorization server at the time of
registration.

• client secret : Client Secret.

• redirect uri : Location where the authorization code can be obtained.

• scope: Client requested permissions.

The client should also be aware of the authorization and token endpoints of the authorization
server:

• authorization uri : Location of the authorization server authorization endpoint that we can
use to get a code.

• token uri : Location of the authorization server token endpoint that we can use to obtain a
token.

The client side’s META-INF/microprofile-config.properties file, which contains all of this data,
provides it:

Client registration

client.clientId=eidas_client

client.clientSecret=eidasclientsecret

client.redirectUri=http://oauth2-client-eid4u.polito.it/callback

client.scope=Citizenship CountryOfBirth CurrentDegree Email

HomeInstitutionCountry HomeInstitutionIdentifier HomeInstitutionName

IdIssuer IdNumber MaritalState Nationality Phone

client.downstream=http://oauth2-client-eid4u.polito.it/downstream?action=read

Polito Client registration

client.polito.clientId=Polito_AP

client.polito.scope=openid eidas

client.polito.redirectUri=http://oauth2-client-eid4u.polito.it/token

Provider

provider.authorizationUri=https://oauth2-server-eid4u.polito.it/authorize

provider.tokenUri=https://oauth2-server-eid4u.polito.it/token

Resource

resource.serverUri=https://oauth2-resource-eid4u.polito.it/api

openidconnect code

We receive the id token from the idpproxy in the IndexServlet.java, store it in Redis for a short
period of time that will expire in 2 minutes, and use it in the subsequent Section 3.4.4.

Jedis jedis = new Jedis("redis");

jedis.set("id_token",request.getParameter("id_token"));

jedis.expire("id_token", 120); // Deleted after two minutes

jedis.close();

53

Design and Implementation

The client then produces an authorization code, which is a random string, to be able to use
the /token endpoint in order to give the id token to the authorization server because it is already
registered within the oauth2-client (which functions as an authorization server for the Polito AP
client).

//generate a random unique code

String openidconnect_code = UUID.randomUUID().toString();

//creating the second client as Polito_AP and assign openid code

final AuthorizationCode authorizationCode = new AuthorizationCode();

authorizationCode.setClientId(config.getValue("client.polito.clientId",

String.class));

authorizationCode.setUserId("user_client");

authorizationCode.setApprovedScopes(config.getValue("client.polito.scope",

String.class));

authorizationCode.setExpirationDate(LocalDateTime.now().plusMinutes(2));

authorizationCode.setRedirectUri(config.getValue("client.polito.redirectUri",

String.class));

authorizationCode.setCode(openidconnect_code);

appDataRepository.save(authorizationCode);

3.4.3 Authorization Code Request

The process of obtaining an authorization code for the eidas client begins at this point.

In order to begin, we must create and save a session’s security state value:

String state = UUID.randomUUID().toString();

request.getSession().setAttribute("CLIENT_LOCAL_STATE", state);

Next, we obtain the client configuration data:

String authorizationUri = config.getValue("provider.authorizationUri",

String.class);

String clientId = config.getValue("client.clientId", String.class);

String redirectUri = config.getValue("client.redirectUri", String.class);

String scope = config.getValue("client.scope", String.class);

String openidconnect_code = openidconnect_code;

Then, we will add these details as query parameters to the /authorize endpoint of the autho-
rization server:

String authorizationLocation = authorizationUri + "?response_type=code"

+ "&client_id=" + clientId

+ "&redirect_uri=" + redirectUri

+ "&scope=" + scope

+ "&state=" + state

+ "&openidconnect_code=" + openidconnect_code;

The browser will then be sent to this URL as a last step:

response.sendRedirect(authorizationLocation);

54

Design and Implementation

3.4.4 Citizen Identification Data Request

At this point, the Polito AP client-related process will be carried out by the authorization server
using the openidconnect code (which serves as Polito AP ’s authorization code), which will call:

https://oauth2-client-eid4u.polito.it/token?code=A123&client_id=Polito_AP

&scope=openid,eidas.

And it’s actually calling the GET /token endpoint which will call an internal function to create
an access token with the id token.

In fact, it’s contacting the GET /token endpoint, which calls a procedure inside to generate
an access token using the id token.

The access token creation function is located in:

oauth2-client/src/main/java/com/homework/oauth2/client/handler/

AuthorizationCodeGrantTypeHandler.java

3.4.5 Citizen Identification Data Response

The id token is first retrieved from Redis, after which the access token is used to build the JWT
Payload, and finally the id token is added to the JSON response.

//get id_token

String id_token = "";

Jedis jedis = new Jedis("redis");

if (jedis.exists("id_token")) {

id_token = jedis.get("id_token");

jedis.del("id_token");

jedis.close();

}

jedis.close();

//3. JWT Payload or claims

String accessToken = getAccessToken(clientId, authorizationCode.getUserId(),

authorizationCode.getApprovedScopes());

return Json.createObjectBuilder()

.add("token_type", "Bearer")

.add("access_token", accessToken)

.add("expires_in", expiresInMin * 60)

.add("scope", authorizationCode.getApprovedScopes())

.add("id_token",id_token)

.build();

And will send it back to the server of authorization.

{

"token_type": "Bearer",

"access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJ1c2VyX2NsaWV

udCIsImF1ZCI6Imh 0dHA6XC9cL29hdXRoMi1zZXJ2ZXItZWlkNHUucG9saXRvLml0IiwidXBuIjoi

dXNlcl9jbGllbnQi LCJuYmYiOjE2NjA0OTA2NTIsInNjb3BlIjoib3BlbmlkIGVpZGFzIiwiaXNz

IjoiaHR0cDpcL1wvb 2F1dGgyLWNsaWVudC1laWQ0dS5wb2xpdG8uaXQiLCJncm91cHMiOlsib3Bl

bmlkIiwiZWlkYXMiXS wiZXhwIjoxNjYwNDkyNDUyLCJpYXQiOjE2NjA0OTA2NTIsImNsaWVudF9p

ZCI6IlBvbGl0b19BUCI sImp0aSI6IjI0YTQzZDFiLTQxZDEtNDEwZC1hZjFlLWViMzFiNmFiMDZjN

SJ9.K9IfkZoCII5zW5GH1oVNq29yevUjtY3rsiqyWYxrvR2-y7ZBpTPPHmxhJidIOs-3v3b6d_mJH4L

55

Design and Implementation

8orouxxTuDYktntE6 _MS9ddWCIJ4g8S1_Fmgz8AQx6TbcGaF953mmCa7yf7UkzPO8f77EosLfsg8

JPOZUvJttRl_I5jYGQ R-Pd33N1LJn9dpCQLtzoqK42qgw6czXPd26Qi2ix06woaLt0CUqogI8LdZ

4J2_Y4_gJTCrHQT1B0qhGB8hWgkpz-YCbl1CvKMKuR-1RfB2bnEcZIEyw_iCxqEmEXi2oPOWVmQgjI

bH3UhG6XKxpS5sei8t ZJz6EmlyM1hxsOq_eCg",

"expires_in": 1800,

"scope": "openid eidas",

"id_token": "eyJhbGciOiJSUzI1NiJ9.eyJpYXQiOjE2NjA0OTA2NDQsImF1ZCI6Imh0dHBzOi8

vb2F1dGgyLXN lcnZlci1laWQ0dS5wb2xpdG8uaXQvIiwiaXNzIjoiaHR0cHM6Ly9pZHAtcHJveHk

tdGVzdC1laWQ0 dS5wb2xpdG8uaXQvIiwic3ViIjoiaWRfdG9rZW4iLCJmaXNjYWxDb2RlIjoiVEl

OSVQtU0xDWkdTM ThBNzlDOTI0TSIsImZhbWlseU5hbWUiOiJDYXR0YW5lbyIsIm5hbWUiOiJHaW9

iYmUiLCJkYXRlT2 ZCaXJ0aCI6IjE5NzktMTEtMTUiLCJleHAiOjE2NjA0OTEyNDR9.BL7Iv1rZ1d

Ebsheib1eznTjCDU 9CpnhHjtaYKufsaDEqVSMtrWK7ir6g5LOiE0uKfgW6krvZDs4zQhk9jy9g23

ZCeqMeU5yy_-RxO2RUA9edvMBkWkpltAZjQqj3k3a8NQkEFjqa8i8LYbdybKnhKuzyor4QzvMPTS-i

65WpKEdabD1bzD62 o4jD0gOViz5-WCOWXyTmmz_xdnBFcRQcDyUkjadnLCx8vXGgVtHtYTPC3NZa3

kD9yYHUA7olj9IHd MNngVwxcoN37vRQpOz9HrtS-SGkgRLQfx2IeqVJRE7ZpTQNi3sVCRb4g6j3yt

RUoTFQapotPsY93O i4EmSDSw"

}

Figure 3.3. Access Token of Polito AP. (Source: [2])

3.4.6 Authorization Code Response

After handling the request, the authorization endpoint of the authorization server will generate
and add a code, along with the received state argument, to the redirect uri and reroute the
browser.

https://oauth2-client-eid4u.polito.it/callback?code=A123&state=Y.

56

Design and Implementation

3.4.7 Access Token Request

The CallbackServlet.java client’s /callback initializes by verifying the received state:

String localState = (String)

request.getSession().getAttribute("CLIENT_LOCAL_STATE");

if (!localState.equals(request.getParameter("state"))) {

request.setAttribute("error", "The state attribute doesn’t match!");

dispatch("/", request, response);

return;

}

We will next use the code we previously got to make a token endpoint request for an access
token from the authorization server:

String code = request.getParameter("code");

Client client = ClientBuilder.newClient();

WebTarget target = client.target(config.getValue("provider.tokenUri",

String.class));

Form form = new Form();

form.param("grant_type", "authorization_code");

form.param("code", code);

form.param("redirect_uri", config.getValue("client.redirectUri",

String.class));

TokenResponse tokenResponse = target.request(MediaType.APPLICATION_JSON_TYPE)

.header(HttpHeaders.AUTHORIZATION, getAuthorizationHeaderValue())

.post(Entity.entity(form, MediaType.APPLICATION_FORM_URLENCODED_TYPE),

TokenResponse.class);

As we can see, there is no interaction with the browser during this call; instead, an HTTP
POST request is made directly utilizing the JAX-RS client API.

The client id and client secret have been added to the Authorization header since the token
endpoint needs client authentication.

The client can call the resource server APIs, which are covered in the following section, using
this access token.

3.4.8 Protected Resource Access

Now that we have a valid access token (Figure 5.1 - Step 11), we can use the /read APIs on the
resource server.

The Authorization header must be provided in order to accomplish that. This is easily ac-
complished by using the Invocation.Builder header() method of the JAX-RS Client API:

resourceWebTarget = webTarget.path("resource/read");

Invocation.Builder invocationBuilder = resourceWebTarget.request();

response = invocationBuilder

.header("authorization", tokenResponse.getString("access_token"))

.get(String.class);

3.5 OAuth2 Resource Server

Building a secure online application using JAX-RS, MicroProfile JWT, and MicroProfile Config
will be the focus of this part. The MicroProfile JWT is responsible for validating the incoming
JWT and mapping the JWT scopes to roles in the Jakarta EE [80].

57

Design and Implementation

Figure 3.4. Access Token of eidas client. (Source: [2])

3.5.1 Maven Dependencies

Furthermore to the dependency Java EE Web API [82], we need also the MicroProfile Config [83]
and MicroProfile JWT [84] APIs:

<dependency>

<groupId>javax</groupId>

<artifactId>javaee-web-api</artifactId>

<version>8.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.eclipse.microprofile.config</groupId>

<artifactId>microprofile-config-api</artifactId>

<version>1.3</version>

</dependency>

<groupId>org.eclipse.microprofile.jwt</groupId>

<artifactId>microprofile-jwt-auth-api</artifactId>

<version>1.1</version>

</dependency>

58

Design and Implementation

3.5.2 JWT Authentication Mechanism

The Bearer Token Authentication technique is implemented by the MicroProfile JWT. The Au-
thorization header’s JWT is processed, a Jakarta EE Security Principal is made accessible as a
JsonWebToken holding the JWT claims, and the scopes are mapped to Jakarta EE roles. For
further information, look at the Jakarta EE Security API [76].

The LoginConfig annotation must be added to the JAX-RS application in order to enable the
server’s JWT authentication mechanism:

@ApplicationPath("/api")

@DeclareRoles({"Citizenship CountryOfBirth CurrentDegree Email

HomeInstitutionCountry HomeInstitutionIdentifier HomeInstitutionName

IdIssuer IdNumber MaritalState Nationality Phone"})

@LoginConfig(authMethod = "MP-JWT")

public class OAuth2ResourceServerApplication extends Application {

}

The RSA public key is also required by MicroProfile JWT in order to validate the JWT
signature. Introspection or, for sake of simplicity, manually copying the key from the authorization
server might be used to supply this. In both cases, we must specify where the public key is stored:

mp.jwt.verify.publickey.location=/META-INF/public-key.pem

Last but not least, the MicroProfile JWT must confirm the incoming JWT’s iss claim, which
must be present and match the value of the MicroProfile Config property:

mp.jwt.verify.issuer=https://oauth2-server-eid4u.polito.it

Typically, this is where the Authorization Server is situated.

3.5.3 The Secured Endpoints

We will build a resource API with a single endpoint just to show how it works.

Through the @RolesAllowed annotation, the scopes are restricted:

@Path("/resource")

@RequestScoped

public class ProtectedResource {

@Inject

private JsonWebToken principal;

@GET

@RolesAllowed("Citizenship CountryOfBirth CurrentDegree Email

HomeInstitutionCountry HomeInstitutionIdentifier

HomeInstitutionName IdIssuer IdNumber MaritalState Nationality

Phone")

@Path("/read")

public String read() {

return "Protected Resource accessed by : " +

principal.getName();

}

}

Now that we have access to the resources, we can call an endpoint to retrieve academic
information about the logged-in user. Since this information uses the fiscal number as a key, we

59

Design and Implementation

read the fiscal number from the claim of the access token before using a json file to search inside
of it to retrieve the authorized attributes instead of having access to the Polito database. Finally,
we return this information to the idpproxy by POST.

public Response read() {

String outputString = "";

JSONObject json = new JSONObject();

try {

JSONParser parser = new JSONParser();

Object obj = parser.parse(new FileReader("/AP.json"));

JSONObject jsonObject = (JSONObject) obj;

JSONArray users = (JSONArray) jsonObject.get("users");

String[] requestedAttributes = ((String)

principal.getClaim("scope")).split(" ");

String fiscalNumber = (String) principal.getClaim("fiscal_number");

for (int i = 0; i < users.size(); i++) {

JSONObject user = (JSONObject) users.get(i);

String fn = (String) user.get("fiscalNumber");

if (fn.equals(fiscalNumber)) {

for (String attribute : requestedAttributes) {

json.put(attribute, user.get(attribute));

}

}

}

outputString = json.toString();

System.out.println(outputString);

} catch (Exception e) {

e.printStackTrace();

}

return Response.ok(outputString).build();

}

3.6 Dockerization

There is a Dockerfile for each server module that is only utilized by the docker-compose.yml
to fully build and operate the solution locally [85]. The project includes Open Liberty [86] as
a Maven dependency, which is used by the three servers as their server run-time. To properly
output a customized version of the configuration file, several arguments are modifiable from the
composition (e.g. for the User credentials definition or for the Client credentials definition).

docker-compose.yml:

AuthZ service

app-server:

Configuration for building the docker image for the authz server

image: eid4u/app-server

build:

60

Design and Implementation

context: .

dockerfile: ./oauth2/oauth2-authorization-server/Dockerfile

args:

Secrets

client_id: eidas_client

client_secret: eidasclientsecret

ports:

- "9080:9080" # Forward the exposed port 9080 on the container to port 9080

on the host machine

networks:

eidas_net:

aliases:

- app-server-0

restart: on-failure

Resource service

app-res:

Configuration for building the docker image for the client server

image: eid4u/app-res

build:

context: .

dockerfile: ./oauth2/oauth2-resource-server/Dockerfile

ports:

- "9280:9280" # Map the exposed port 9280 on the container to port 9280 on

the host machine

depends_on:

- app-server

networks:

eidas_net:

aliases:

- app-res-0

restart: on-failure

Client Service

app-client:

Configuration for building the docker image for the resource server

image: eid4u/app-client

build:

context: .

dockerfile: ./oauth2/oauth2-client/Dockerfile

args:

Secrets

client_id: eidas_client

client_secret: eidasclientsecret

server_client_id: Polito_AP

server_client_secret: Politosecret

ports:

- "9180:9180" # Map the exposed port 9180 on the container to port 9180 on

the host machine

depends_on:

- app-res

networks:

eidas_net:

aliases:

- app-client-0

restart: on-failure

61

Design and Implementation

Additionally, we update nginx to include the virtual hosts for each server, each of which has
a unique configuration that can be found in:

nginx/test/eid4u/conf/050oauth2.conf

nginx/test/eid4u/conf/060oauth2.conf

nginx/test/eid4u/conf/070oauth2.conf

They are added to the docker-compose.yml in reverse proxy part:

#

Reverse proxy in front of eIDAS components

#

revproxy:

image: ficep/nginx:test

build: ./nginx/test

networks:

eidas_net:

aliases:

/..

- oauth2-server-eid4u.polito.it

- oauth2-client-eid4u.polito.it

- oauth2-resource-eid4u.polito.it

ports:

- "80:80"

- "443:443"

depends_on:

/..

- app-server

- app-res

- app-client

volumes:

/..

- "./nginx/test/eid4u/conf/050oauth2.conf:/etc/nginx/conf.d/050oauth2.conf:ro"

- "./nginx/test/eid4u/conf/060oauth2.conf:/etc/nginx/conf.d/060oauth2.conf:ro"

- "./nginx/test/eid4u/conf/070oauth2.conf:/etc/nginx/conf.d/070oauth2.conf:ro"

restart: on-failure

62

Chapter 4

User’s Manual

The development environment for the entire manual will be a Linux system based on Ubuntu.
Based on this presumption, all commands and processes are used.

4.1 Software Dependencies

There are a few fundamental prerequisites that must be installed before installing and running
the implementation: Install Docker and Docker-Compose after installing Linux on the computer.

How to correctly install Docker on Ubuntu is described in the Docker documentation [85].

1. Install docker:

sudo apt-get install docker

2. Install docker-compose:

sudo apt-get install docker-compose

3. Set up docker run without sudo:

sudo usermod -aG docker ${USER}
sudo service docker restart

su - ${USER}

Docker install done.

4.2 Source Code

The repository on Github has the source code available:

1. Clone the git repository

git clone https://github.com/torsec/eidas-oauth2.git

2. Run eIDAS OAuth2 using docker-compose

sudo docker-compose up --build -d && docker-compose logs -f

63

User’s Manual

3. Since we have several domain names on a single server, we use Apache Virtual Host [87]. In
order to do that, we need to set up nginx which we’ll go over in the section on dockerization
Section 3.6. The only thing left to do right now is to add domain names to the etc/hosts
file after executing all of the docker containers, but first, we need to find out the gateway
information for the running containers. To do this, we can use the docker network as shown
below:

docker network ls

docker network inspect thesis_github_eidas_net

Add the following domains to the /etc/hosts file after copying the

gateway:

sudo gedit /etc/hosts

..*.* demo-sp-test-eid4u.polito.it

..*.* service-test-eid4u.polito.it

..*.* connector-test-eid4u.polito.it

..*.* idp-proxy-test-eid4u.polito.it

..*.* demo-ap-test-eid4u.polito.it

..*.* demo-idp-test-eid4u.polito.it

..*.* oauth2-server-eid4u.polito.it

..*.* oauth2-client-eid4u.polito.it

..*.* oauth2-resource-eid4u.polito.it

4. Launch the browser and enter the URL.

https://demo-sp-test-eid4u.polito.it/SP

In order to run the project you should follow these steps as shown in the following screens:

Figure 4.1. Screen Step-1-0.

64

User’s Manual

Figure 4.2. Screen Step 1-1.

Figure 4.3. Screen Step 1-2.

65

User’s Manual

Figure 4.4. Screen Step 1-3.

Figure 4.5. Screen Step 2.

66

User’s Manual

Figure 4.6. Screen Step 3-0.

Figure 4.7. Screen Step 3-1.

67

User’s Manual

Figure 4.8. Screen Step 3-2.

Figure 4.9. Screen Step 4.

68

User’s Manual

Figure 4.10. Screen Step 5.

Figure 4.11. Screen Step 6-0.

69

User’s Manual

Figure 4.12. Screen Step 6-1.

Figure 4.13. Screen Step 7.

70

User’s Manual

Figure 4.14. Screen Step 8.

Figure 4.15. Screen Step 9.

71

Chapter 5

Developer’s Manual

5.1 Frameworks, Libraries and Environment

The installation of Java JDK8 [88] is the only prerequisite. As a build automation tool, Apache
Maven [89] was used. In addition, since Maven is already included in the project, there is no need
to install it on the computer (by utilizing maven-wrapper).

Last but not least, installing Docker and Docker-Compose is necessary to dockerize the solu-
tions.

5.1.1 Modules

• idpproxy: It is based on the Spring Framework [90].

72

Developer’s Manual

/

...

idpproxy

config

...

test

...

src

...

idpproxy-eid4u-taxreference

...

src

main

java

it

...

telecomitalia

ficep

idpproxy

spit

controller

SpitController.java

discovery

...

utils

JWT.java

...

resources

META-INF

private-key.jwt1.pem

...

webapp

...

js

...

oauth2.js

pages

...

oauth2.jsp

...

• oauth2-client: A Jakarta EE [91] implementation of the OAuth2 Client.

73

Developer’s Manual

/

...

oauth2

oauth2-client

src

main

java

com

homework

oauth2

client

api

TokenEndpoint.java

handler

AbstractGrantTypeHandler.java

AuthorizationCodeGrantTypeHandler.java

AuthorizationGrantTypeHandler.java

JWT.java

model

...

security

...

AuthorizationCodeServlet.java

CallbackServlet.java

DownstreamCallServlet.java

..

liberty

...

resources

META-INF

microprofile-config.properties.template

persistence.xml

private-key1.pem

private-key-jwt2.pem

public-key-jwt1.pem

security

keyclient.jks

data.sql.template

webapp

WEB-INF

attributes.jsp

eid.jsp

index.jsp

...

• oauth2-authorization-server : A Jakarta EE implementation of the OAuth2 Authorization
Server.

74

Developer’s Manual

/

...

oauth2

oauth2-authorization-server

src

main

java

com

homework

oauth2

authorization

server

api

AuthorizationEndpoint.java

JWKEndpoint.java

TokenEndpoint.java

handler

AbstractGrantTypeHandler.java

AuthorizationCodeGrantTypeHandler.java

AuthorizationGrantTypeHandler.java

JWT.java

RefreshTokenGrantTypeHandler.java

model

...

security

...

liberty

...

resources

META-INF

microprofile-config.properties

private-key2.pem

public-key1.pem

public-key-jwt2.pem

security

data.sql.template

webapp

WEB-INF

authorize.jsp

error.jsp

login.jsp

login-error.jsp

• oauth2-resource-server : A Jakarta EE implementation of the OAuth2 Resource Server.

75

Developer’s Manual

/

...

oauth2

oauth2-resource-server

src

main

java

com

homework

oauth2

resource

server

secure

ProtectedResource.java

Oauth2RecourseServerApplication.java

liberty

resources

META-INF

AP.json

microprofile-config.properties

public-key2.pem

webapp

...

...

...

...

5.1.2 IntelliJ IDEA

A Java-based integrated development environment (IDE) called IntelliJ IDEA [92] is used to create
applications in JAR-based languages including Groovy, Kotlin, and Java. JetBrains developed it
(formerly known as IntelliJ).

It is a robust IDE with a good user interface that was quite helpful to me when I was developing.

Installation

Access the linux version here:

https://www.jetbrains.com/idea/download/#section=linux

It is not a free tool and only offers a 30-day free trial, although there are certain exclusive
deals that grant students a full year of free use.

76

https://www.jetbrains.com/idea/download/#section=linux

Developer’s Manual

Figure 5.1. IntelliJ IDEA.

77

Chapter 6

Conclusion

In conclusion, the extension of the specific part of the eIDAS architecture with attributes is a
significant enhancement that enables organizations to implement robust authorization and access
control mechanisms. This expansion empowers organizations to effectively manage user access and
privileges within their systems, aligning the eIDAS network with specific industry requirements.
By incorporating these attributes, the eIDAS framework becomes even more adaptable, ensuring
that authorization mechanisms are tailored to various sectors and use cases.

Authorization rules within Identity and Access Management (IAM) are essential for control-
ling user access and establishing client privileges in computer systems. Real-world examples,
such as house ownership and the boarding process for a plane, provide tangible illustrations of
authorization concepts like permissions, privileges, scope, identification, and attributes.

The eIDAS network represents a significant advancement in electronic identification and trust
services across the European Union. Its standardized framework aims to facilitate secure and
reliable digital transactions while reducing costs and risks associated with additional verification
procedures. By leveraging government-issued electronic identities, individuals can authenticate
themselves and transfer core personal attributes to service providers (SPs).

Moreover, the eIDAS network allows for the authorization and request of additional attributes,
which may be necessary for specific use cases or long-term applications. This flexibility enhances
the trust and security of transactions conducted through the network. By incorporating effective
authorization mechanisms within the eIDAS framework, SPs can establish a higher level of trust,
eliminating the need for separate verification procedures and reducing the collection of additional
data.

Connecting this to digital wallets, the eIDAS network plays a vital role in enhancing the secu-
rity and usability of digital wallet systems. Digital wallets serve as virtual repositories for various
forms of digital assets, such as cryptocurrencies, payment credentials, and identity information.
By leveraging the eIDAS network’s standardized framework for authentication and authorization,
digital wallet providers can strengthen the security of their platforms. This includes verifying
the identity of users, ensuring proper authorization for accessing wallet contents, and facilitating
secure and reliable transactions.

With the integration of the eIDAS network’s authorization mechanisms, digital wallets can
offer a higher level of trust and security to their users. This empowers individuals to confidently
manage their digital assets, knowing that access to their wallet and the transactions they conduct
are protected by robust authentication and authorization protocols. Additionally, the standard-
ized framework provided by eIDAS simplifies cross-border digital wallet usage within the EU,
fostering seamless and secure digital transactions across member states.

In summary, the extension of the specific part of the eIDAS architecture with attributes
provides organizations with the tools to implement effective authorization and access control
mechanisms. This enhances the adaptability of the eIDAS network, aligning its authorization
mechanisms with specific industry requirements. By incorporating these attributes, organizations
can effectively manage user access and privileges within their systems, ultimately contributing to
enhanced security and trust in digital transactions.

78

Bibliography

[1] D. G. Berbecaru, A. Lioy, and C. Cameroni, “On Enabling Additional Natural Person and
Domain-Specific Attributes in the eIDAS Network”, IEEE Access, vol. 9, September 2021,
pp. 134096–134121, DOI 10.1109/ACCESS.2021.3115853

[2] “JWT”, https://jwt.io/introduction, Accessed: 06-02-2022
[3] “What is Authorization”, https://auth0.com/intro-to-iam/what-is-authorization/,

Accessed: 10-10-2021
[4] “EU: Commission Implementing Regulation (EU) 2015/1501 of 8 September 2015 on the

Interoperability Framework Pursuant to Article 12(8) of Regulation (EU) No 910/2014 of
the European Parliament and of the Council on Electronic Identification and Trust Ser-
vices for Electronic Transactions in the Internal Market”, https://eur-lex.europa.eu/
legalcontent/EN/TXT/?uri=CELEX%3A02015R1501-20150909, Accessed: 10-05-2021

[5] “Overview of the German Identity Card Project and Lessons Learned”, https:

//www.thalesgroup.com/en/markets/digital-identity-and-security/government/

inspired/eid-in-germany, Accessed: 18-05-2021
[6] “15 years of eID: Portugal’s citizen card”, https://www.thalesgroup.com/en/markets/

digital-identity-and-security/government/customer-cases/portugal-id, Accessed:
18-05-2021

[7] “Portugal Lets Citizens Sign Documents With a Smartphone”, https://joinup.ec.europa.
eu/collection/joinup/news/digital-mobile-key, Accessed: 18-05-2021

[8] “Infocert”, https://www.infocert.it/, Accessed: 18-05-2021
[9] “Poste Italiane”, https://www.poste.it/, Accessed: 10-05-2021

[10] “Sistema Pubblico di Identità Digitale”, https://www.spid.gov.it/?lang=en-001, Ac-
cessed: 10-05-2021

[11] ITU Report, “Digital Identity in the ICT Ecosystem”, https://www.itu.int/dms_pub/

itu-d/opb/pref/D-PREF-BB.ID01-2018-PDF-E.pdf, Accessed: 18-05-2021
[12] “eIDAS SAML Attribute Profile Version 1.2”, https://ec.europa.eu/cefdigital/

wiki/download/attachments/82773108/eIDAS%20SAML%20Attribute%20Profile%20v1.

2%20Final.pdf, Accessed: 10-05-2021
[13] J. Dumortier, “Regulation (EU) No 910/2014 of the European Parliament and of the Council

of 23 July 2014 on Electronic Identification and Trust Services for Electronic Transactions in
the Internal Market and Repealing Directive 1999/93/ec”, SSRN Electronic Journal, 2016

[14] “eIDAS SAML Attribute Profile Version 1.2”, https://ec.europa.eu/cefdigital/

wiki/download/attachments/82773108/eIDAS%20SAML%20Message%20Format%20v.1.2%

20Final.pdf, Accessed: 10-05-2021
[15] “How Can Identity Matching improve the Experience of Citizens on Online Public

Services”, https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2019/06/

27/How+can+Identity+Matching+improve+the+experience+of+citizens+on+online+

public+services, Accessed: 18-05-2021
[16] “Commission Staff Working Document Impact Assessment Report Accompanying the Doc-

ument Proposal for a Regulation of the European Parliament and of the Council amend-
ing Regulation (EU) No 910/2014 as Regards Establishing a Framework for a Euro-
pean Digital Identity”, https://op.europa.eu/en/publication-detail/-/publication/
6f30628d-c458-11eb-a925-01aa75ed71a1/language-en, Accessed: 18-05-2021

[17] A. Cavoukian, “Privacy by Design—The 7 Foundational Principles”, https://iapp.org/
resources/article/privacy-by-design-the-7-foundational-principles/, Accessed:
18-05-2021

79

https://doi.org/10.1109/ACCESS.2021.3115853
https://jwt.io/introduction
https://auth0.com/intro-to-iam/what-is-authorization/
https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A02015R1501-20150909
https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A02015R1501-20150909
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/eid-in-germany
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/eid-in-germany
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/inspired/eid-in-germany
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/customer-cases/portugal-id
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/customer-cases/portugal-id
https://joinup.ec.europa.eu/collection/joinup/news/digital-mobile-key
https://joinup.ec.europa.eu/collection/joinup/news/digital-mobile-key
https://www.infocert.it/
https://www.poste.it/
https://www.spid.gov.it/?lang=en-001
https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.ID01-2018-PDF-E.pdf
https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.ID01-2018-PDF-E.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Attribute%20Profile%20v1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Attribute%20Profile%20v1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Attribute%20Profile%20v1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20SAML%20Message%20Format%20v.1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2019/06/27/How+can+Identity+Matching+improve+the+experience+of+citizens+on+online+public+services
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2019/06/27/How+can+Identity+Matching+improve+the+experience+of+citizens+on+online+public+services
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2019/06/27/How+can+Identity+Matching+improve+the+experience+of+citizens+on+online+public+services
https://op.europa.eu/en/publication-detail/-/publication/6f30628d-c458-11eb-a925-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/6f30628d-c458-11eb-a925-01aa75ed71a1/language-en
https://iapp.org/resources/article/privacy-by-design-the-7-foundational-principles/
https://iapp.org/resources/article/privacy-by-design-the-7-foundational-principles/

Bibliography

[18] S. Stalla-Bourdillon, H. Pearce, and N. Tsakalakis, “The GDPR: A game changer for elec-
tronic identification schemes? The case study of Gov.UK Verify”, Computer Law Security
Review, vol. 34, August 2018, pp. 784–805, DOI 10.1016/j.clsr.2018.05.012

[19] D. Hardt., “The OAuth 2.0 Authorization Framework”, RFC-6749, October 2012, DOI
10.17487/RFC6749

[20] “JavaScript Object Notation”, https://www.json.org/json-en.html, Accessed: 10-05-
2021

[21] E. Union, “Commission implementing regulation (eu) 2015/1501 of 8 september 2015 on
th interoperability framework: Commission implementing regulation (eu) 2015/1502 of 8
september 2015 on setting out minimu technical specifications and procedures for assur-
ance levels for electronic identification; commission implementing decisio (eu) 2015/1984
of 3 november 2015 defining the circumstances, formats and procedures of notification”,
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1502, Ac-
cessed: 05-03-2021

[22] S. Lips, N. Bharosa, and D. Draheim, “eIDAS Implementation Challenges: The Case of Esto-
nia and the Netherlands”, Electronic Governance and Open Society: Challenges in Eurasia,
(Springer, Switzerland), January 2021, pp. 75–89, DOI 10.1007/978-3-030-67238-6 6

[23] C. Satchell, G. Shanks, S. Howard, and J. Murphy, “Beyond Security: Implications for
the Future of Federated Digital Identity Management Systems”, Proceedings of the 18th
Australia Conference on Computer-Human Interaction: Design: Activities, Artefacts and
Environments, (New York, NY, USA), 2006, p. 313–316, DOI 10.1145/1228175.1228231

[24] L. Bauer, C. Bravo-Lillo, E. Fragkaki, and W. Melicher, “A Comparison of Users’ Perceptions
of and Willingness to Use Google, Facebook, and Google+ Single-Sign-on Functionality”,
Proceedings of the 2013 ACM Workshop on Digital Identity Management, (New York, NY,
USA), 2013, p. 25–36, DOI 10.1145/2517881.2517886

[25] H. Gomi, “User-centric identity governance across domain boundaries”, Proceedings of the
5th ACM Workshop on Digital Identity Management, (New York, NY, USA), 2009, p. 35–44,
DOI 10.1145/1655028.1655038

[26] “MyData Global”, https://mydata.org/, Accessed: 13-07-2021

[27] “Commission Staff Working Document Accompanying the Document Report From the Com-
mission to the European Parliament and the Council on the Evaluation of Regulation (EU)
No 910/2014 on Electronic Identification and Trust Services for Electronic Transactions
in the Internal Market (eIDAS)”, https://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=CELEX%3A02015R1501-20150909, Accessed: 13-07-2021

[28] N. Taniguchi, K. Chida, O. Shionoiri, and A. Kanai, “DECIDE: A Scheme for Decentralized
Identity Escrow”, Proceedings of the 2005 Workshop on Digital Identity Management, (New
York, NY, USA), November 2005, p. 37–45, DOI 10.1145/1102486.1102493

[29] A. Bhargav-Spantzel, A. C. Squicciarini, and E. Bertino, “Establishing and protecting digital
identity in federation systems”, Journal of Computer Security, vol. 14, June 2006, pp. 269–
300, DOI 10.3233/jcs-2006-14303

[30] M. S. Ferdous and R. Poet, “Analysing Attribute Aggregation Models in Federated Identity
Management”, Proceedings of the 6th International Conference on Security of Information
and Networks, (New York, NY, USA), 2013, p. 181–188, DOI 10.1145/2523514.2526998

[31] A. Jøsang, J. Fabre, B. Hay, J. Dalziel, and S. Pope, “Trust Requirements in Identity Manage-
ment”, https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV44Josang.pdf,
Accessed: 28-09-2021

[32] D. G. Berbecaru, A. Lioy, and C. Cameroni, “Providing digital identity and academic at-
tributes through European eID infrastructures: Results achieved, limitations, and future
steps”, Software: Practice and Experience, vol. 49, August 2019, pp. 1643–1662, DOI
10.1002/spe.2738

[33] D. G. Berbecaru and A. Lioy, “On the design, implementation and integration of an At-
tribute Provider in the Pan-European eID infrastructure”, IEEE Symposium on Com-
puters and Communication (ISCC), (Messina, Italy), June 2016, pp. 1263–1269, DOI
10.1109/iscc.2016.7543910

[34] “What can eID do for You”, https://ec.europa.eu/cefdigital/wiki/display/

CEFDIGITAL/eID+for+You, Accessed: 10-05-2021

[35] “eIDAS Cryptographic Requirements for the Interoperability Framework, TLS and

80

https://doi.org/10.1016/j.clsr.2018.05.012
https://doi.org/10.17487/RFC6749
https://www.json.org/json-en.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1502
https://doi.org/10.1007/978-3-030-67238-6_6
https://doi.org/10.1145/1228175.1228231
https://doi.org/10.1145/2517881.2517886
https://doi.org/10.1145/1655028.1655038
https://mydata.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015R1501-20150909
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02015R1501-20150909
https://doi.org/10.1145/1102486.1102493
https://doi.org/10.3233/jcs-2006-14303
https://doi.org/10.1145/2523514.2526998
https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV44Josang.pdf
https://doi.org/10.1002/spe.2738
https://doi.org/10.1109/iscc.2016.7543910
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eID+for+You
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eID+for+You

Bibliography

SAML, Version 1.0”, https://ec.europa.eu/cefdigital/wiki/download/attachments/
82773108/eidas__crypto_requirements_for_the_eidas_interoperability_

framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2, Accessed:
10-05-2021

[36] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3”, RFC-8446, August
2018, DOI 10.17487/RFC8446

[37] D. G. Berbecaru, A. Atzeni, M. De Benedictis, and P. Smiraglia, “Towards Stronger Data
Security in an eID Management Infrastructure”, 25th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP), (St. Petersburg, Russia), 2017,
pp. 391–395, DOI 10.1109/pdp.2017.90

[38] “eIDAS Interoperability Architecture Version 1.2”, https://ec.europa.eu/cefdigital/

wiki/download/attachments/82773108/eIDAS%20Interoperability%20Architecture%

20v.1.2%20Final.pdf, Accessed: 10-05-2021

[39] “New Notified eID Schemes in 2020”, https://ec.europa.eu/cefdigital/wiki/display/
CEFDIGITAL/2020/12/17/New+notified+eID+schemes+in+2020

[40] “Overview of Pre-Notified and Notified eID Schemes Under eIDAS”, https://ec.

europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+

notified+eID+schemes+under+eIDAS, Accessed: 10-05-2021

[41] “Electronic ID cards in Belgium: The keystone of eGovernment”, https:

//www.thalesgroup.com/en/markets/digital-identity-and-security/government/

customer-cases/belgium, Accessed: 10-05-2021

[42] “Itsme”, https://www.itsme.be/en/blog, Accessed: 10-05-2021

[43] “Belgium: share of households with an eID card reader
2008-2015”, https://www.statista.com/statistics/558946/

share-of-households-with-an-eid-card-reader-inbelgium/, Accessed: 10-05-2021

[44] “Next Generation NemID”, https://en.digst.dk/digitisation/eid/

next-generation-nemid/, Accessed: 10-05-2021

[45] “e-Estonia.Com E-Identity”, https://e-estonia.com/solutions/e-identity/id-card/,
Accessed: 10-05-2021

[46] “Estonian Information System Authority Means of eID”, https://e-estonia.com/

solutions/eidentity/id-card/, Accessed: 10-05-2021

[47] “Carta d’Identità Elettronica”, https://www.cartaidentita.interno.gov.it/, Accessed:
18-05-2021

[48] “Avanzamento Trasformazione Digitale, SPID”, https://avanzamentodigitale.italia.
it/it/progetto/spid, Accessed: 10-05-2021

[49] “Public Broadcasting of Latvia, eID Cards to Become Mandatory Identifi-
cation Documents in 2023”, https://eng.lsm.lv/article/society/society/

eid-cards-to-becomemandatory-identification-documents-in-2023.a290382/,
Accessed: 10-05-2021

[50] “LuxTrust, What Exactly is an Electronic Identity (eID)”, https://www.luxtrust.com/
whatexactly-is-an-electronic-identity-eid/, Accessed: 10-05-2020

[51] “The Year of the Slovakian eID”, https://silicontrust.org/2014/03/31/

2014-the-year-of-the-slovakian-eid/, Accessed: 10-05-2020

[52] “Slovakia Uses eID Card for Safe Digital Public Ser-
vices”, https://thrive.dxc.technology/eur/2019/05/16/

slovakia-uses-eid-card-for-safe-digital-public-services/, Accessed: 10-05-
2020

[53] “Spanish ID Cards, Evolution and Meaning of DNI 3.0 Fields”, https://www.mobbeel.com/
en/blog/spanish-id-cards-evolution-and-meaning-of-dni-3-0-fields/, Accessed:
10-05-2020

[54] “Digital Government Factsheet 2019-The Netherlands”, https://joinup.ec.europa.eu/

sites/default/files/inline-files/Digital_Government_Factsheets_Netherlands_

2019_0.pdf, Accessed: 10-05-2020

[55] U. B. Mir, A. K. Kar, Y. K. Dwivedi, M. Gupta, and R. Sharma, “Realizing digital identity in
government: Prioritizing design and implementation objectives for Aadhaar in India”, Gov-
ernment Information Quarterly, vol. 37, April 2020, p. 101442, DOI 10.1016/j.giq.2019.101442

81

https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eidas__crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eidas__crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eidas__crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf?version=1&modificationDate=1497252920224&api=v2
https://doi.org/10.17487/RFC8446
https://doi.org/10.1109/pdp.2017.90
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20Interoperability%20Architecture%20v.1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20Interoperability%20Architecture%20v.1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/82773108/eIDAS%20Interoperability%20Architecture%20v.1.2%20Final.pdf
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2020/12/17/ New+notified+eID+schemes+in+2020
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/2020/12/17/ New+notified+eID+schemes+in+2020
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Overview+of+pre-notified+and+notified+eID+schemes+under+eIDAS
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/customer-cases/belgium
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/customer-cases/belgium
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/customer-cases/belgium
https://www.itsme.be/en/blog
https://www.statista.com/statistics/558946/share-of-households-with-an-eid-card-reader-inbelgium/
https://www.statista.com/statistics/558946/share-of-households-with-an-eid-card-reader-inbelgium/
https://en.digst.dk/digitisation/eid/next-generation-nemid/
https://en.digst.dk/digitisation/eid/next-generation-nemid/
https://e-estonia.com/solutions/e-identity/id-card/
https://e-estonia.com/solutions/eidentity/id-card/
https://e-estonia.com/solutions/eidentity/id-card/
https://www.cartaidentita.interno.gov.it/
https://avanzamentodigitale.italia.it/it/progetto/spid
https://avanzamentodigitale.italia.it/it/progetto/spid
https://eng.lsm.lv/article/society/society/eid-cards-to-becomemandatory-identification-documents-in-2023.a290382/
https://eng.lsm.lv/article/society/society/eid-cards-to-becomemandatory-identification-documents-in-2023.a290382/
https://www.luxtrust.com/whatexactly-is-an-electronic-identity-eid/
https://www.luxtrust.com/whatexactly-is-an-electronic-identity-eid/
https://silicontrust.org/2014/03/31/2014-the-year-of-the-slovakian-eid/
https://silicontrust.org/2014/03/31/2014-the-year-of-the-slovakian-eid/
https://thrive.dxc.technology/eur/2019/05/16/slovakia-uses-eid-card-for-safe-digital-public-services/
https://thrive.dxc.technology/eur/2019/05/16/slovakia-uses-eid-card-for-safe-digital-public-services/
https://www.mobbeel.com/en/blog/spanish-id-cards-evolution-and-meaning-of-dni-3-0-fields/
https://www.mobbeel.com/en/blog/spanish-id-cards-evolution-and-meaning-of-dni-3-0-fields/
https://joinup.ec.europa.eu/sites/default/files/inline-files/Digital_Government_Factsheets_Netherlands_2019_0.pdf
https://joinup.ec.europa.eu/sites/default/files/inline-files/Digital_Government_Factsheets_Netherlands_2019_0.pdf
https://joinup.ec.europa.eu/sites/default/files/inline-files/Digital_Government_Factsheets_Netherlands_2019_0.pdf
https://doi.org/10.1016/j.giq.2019.101442

Bibliography

[56] N. Tsakalakisz, S. Stalla-Bourdillon, and K. O’Hara, “Identity Assurance in the UK: tech-
nical implementation and legal implications under eIDAS”, Journal of Web Science, vol. 3,
December 2017, pp. 32–46, DOI 10.1561/106.00000010

[57] “eID4U Project”, https://ec.europa.eu/inea/en/connecting-europe-facility/

cef-telecom/2017-eu-ia-0051, Accessed: 10-05-2021

[58] D. G. Berbecaru and C. Cameroni, “On integration of academic attributes in the eIDAS
infrastructure to support cross-border services”, 22nd International Conference on System
Theory, Control and Computing (ICSTCC), (Sinaia, Romania), 2018, pp. 691–696, DOI
10.1109/ICSTCC.2018.8540674

[59] D. G. Berbecaru, A. Lioy, and C. Cameroni, “Electronic Identification for Universities: Build-
ing Cross-Border Services Based on the eIDAS Infrastructure”, Information, vol. 10, June
2019, p. 210, DOI 10.3390/info10060210

[60] D. G. Berbecaru, A. Lioy, and C. Cameroni, “Providing login and Wi-Fi access services with
the eIDAS network: A practical approach”, IEEE Access, vol. 8, 2020, pp. 126186–126200,
DOI 10.1109/access.2020.3007998

[61] “ FICEP First Italian Crossborder eIDAS Proxy Server”, https://www.eid.gov.it/

presentazioneprogetto?lang=en-001, Accessed: 28-09-2021

[62] “Agenzia Per l’Italia Digitale”, https://www.agid.gov.it/, Accessed: 10-05-2021

[63] “SPID Registry”, https://registry.spid.gov.it/, Accessed: 10-05-2021

[64] “SPID Regole Tecniche”, https://docs.italia.it/italia/spid/

spid-regole-tecniche/it/stabile/attributi.html, Accessed: 10-05-2021

[65] “Apache Struts 2”, https://struts.apache.org/, Accessed: 10-05-2021

[66] “eIDAS Node Version 1.4.4 Source Code”, https://ec.europa.eu/cefdigital/wiki/

display/CEFDIGITAL/eIDAS-Node+version+1.4.4, Accessed: 10-05-2021

[67] “eIDAS-Node Installation Manual v1.4.4”, https://ec.europa.eu/cefdigital/wiki/

download/attachments/84421967/eIDAS-Node%20Installation%20Manual%20v1.4.4.

pdf, Accessed: 10-05-2021

[68] D. G. Berbecaru and C. Cameroni, “ATEMA: An attribute enablement module for attribute
retrieval and transfer through the eIDAS network”, 24th International Conference on System
Theory, Control and Computing (ICSTCC), (Sinaia, Romania), October 2020, pp. 532–539,
DOI 10.1109/icstcc50638.2020.9259642

[69] “NGINX Reverse Proxy”, https://docs.nginx.com/nginx/admin-guide/web-server/

reverse-proxy/, Accessed: 28-09-2021

[70] A. Rodriguez, “Restful Web Services: The Basics. IBM developerWorks”, https://

cs.calvin.edu/courses/cs/262/kvlinden/references/rodriguez-restfulWS.pdf, Ac-
cessed: 10-05-2021

[71] “NGINX SSL Termination”, https://docs.nginx.com/nginx/admin-guide/

security-controls/terminatingssl-http/, Accessed: 10-05-2021

[72] “What is OAuth 2.0”, https://auth0.com/intro-to-iam/what-is-oauth-2/, Accessed:
10-10-2021

[73] M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT)”, RFC-7519, May
2015, DOI 10.17487/RFC7519

[74] “Introduction to Redis”, https://redis.io/docs/about/, Accessed: 09-05-2021

[75] “Jakarta EE”, https://jakarta.ee/, Accessed: 10-05-2021

[76] “Jakarta EE Security API”, https://www.baeldung.com/java-ee-8-security, Accessed:
10-10-2021

[77] “Nimbus JOSE + JWT Library”, https://connect2id.com/products/nimbus-jose-jwt,
Accessed: 10-05-2021

[78] “Introduction to Java Servlets”, https://www.geeksforgeeks.org/

introduction-java-servlets/, Accessed: 14-02-2022

[79] “JSON Web Token with Java”, https://github.com/oktadev/okta-java-jwt-example,
Accessed: 14-02-2022

[80] “The OAuth 2.0 Authorization Framework Using Jakarta EE”, https://www.baeldung.
com/java-ee-oauth2-implementation, Accessed: 14-02-2022

[81] “JAX-RS”, https://restfulapi.net/create-rest-apis-with-jax-rs/, Accessed: 14-
02-2022

82

https://doi.org/10.1561/106.00000010
https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2017-eu-ia-0051
https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/2017-eu-ia-0051
https://doi.org/10.1109/ICSTCC.2018.8540674
https://doi.org/10.3390/info10060210
https://doi.org/10.1109/access.2020.3007998
https://www.eid.gov.it/presentazioneprogetto?lang=en-001
https://www.eid.gov.it/presentazioneprogetto?lang=en-001
https://www.agid.gov.it/
https://registry.spid.gov.it/
https://docs.italia.it/italia/spid/spid-regole-tecniche/it/stabile/attributi.html
https://docs.italia.it/italia/spid/spid-regole-tecniche/it/stabile/attributi.html
https://struts.apache.org/
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-Node+version+1.4.4
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-Node+version+1.4.4
https://ec.europa.eu/cefdigital/wiki/download/attachments/84421967/eIDAS-Node%20Installation%20Manual%20v1.4.4.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/84421967/eIDAS-Node%20Installation%20Manual%20v1.4.4.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/84421967/eIDAS-Node%20Installation%20Manual%20v1.4.4.pdf
https://doi.org/10.1109/icstcc50638.2020.9259642
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://cs.calvin.edu/courses/cs/262/kvlinden/references/rodriguez-restfulWS.pdf
https://cs.calvin.edu/courses/cs/262/kvlinden/references/rodriguez-restfulWS.pdf
https://docs.nginx.com/nginx/admin-guide/security-controls/terminatingssl-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/terminatingssl-http/
https://auth0.com/intro-to-iam/what-is-oauth-2/
https://doi.org/10.17487/RFC7519
https://redis.io/docs/about/
https://jakarta.ee/
https://www.baeldung.com/java-ee-8-security
https://connect2id.com/products/nimbus-jose-jwt
https://www.geeksforgeeks.org/introduction-java-servlets/
https://www.geeksforgeeks.org/introduction-java-servlets/
https://github.com/oktadev/okta-java-jwt-example
https://www.baeldung.com/java-ee-oauth2-implementation
https://www.baeldung.com/java-ee-oauth2-implementation
https://restfulapi.net/create-rest-apis-with-jax-rs/

Bibliography

[82] “Java EE Web API”, https://search.maven.org/search?q=g:javax%20AND%20a:

javaee-web-api&core=gav/, Accessed: 10-10-2021
[83] “MicroProfile Config”, https://search.maven.org/search?q=g:org.eclipse.

microprofile.config%20AND%20a:microprofile-config-api&core=gav, Accessed:
10-10-2021

[84] “MicroProfile JWT”, https://search.maven.org/search?q=g:org.eclipse.

microprofile.config%20AND%20a:microprofile-config-api&core=gav, Accessed:
10-10-2021

[85] “Docker”, https://docs.docker.com/engine/install/ubuntu/, Accessed: 09-05-2021
[86] “Open Liberty Project”, https://openliberty.io/, Accessed: 10-05-2021
[87] “Apache Virtual Host”, https://httpd.apache.org/docs/2.4/vhosts/, Accessed: 10-10-

2021
[88] “JDK”, https://www.oracle.com/it/java/technologies/javase/

javase8-archive-downloads.html, Accessed: 14-02-2022
[89] “Apache Maven”, https://maven.apache.org/, Accessed: 14-02-2022
[90] “Spring Framework”, https://spring.io/, Accessed: 14-02-2022
[91] “JAKARTA EE”, https://jakarta.ee/, Accessed: 14-02-2022
[92] “IntelliJ IDEA”, https://www.jetbrains.com/idea/, Accessed: 13-11-2021

83

https://search.maven.org/search?q=g:javax%20AND%20a:javaee-web-api&core=gav/
https://search.maven.org/search?q=g:javax%20AND%20a:javaee-web-api&core=gav/
https://search.maven.org/search?q=g:org.eclipse.microprofile.config%20AND%20a:microprofile-config-api&core=gav
https://search.maven.org/search?q=g:org.eclipse.microprofile.config%20AND%20a:microprofile-config-api&core=gav
https://search.maven.org/search?q=g:org.eclipse.microprofile.config%20AND%20a:microprofile-config-api&core=gav
https://search.maven.org/search?q=g:org.eclipse.microprofile.config%20AND%20a:microprofile-config-api&core=gav
https://docs.docker.com/engine/install/ubuntu/
https://openliberty.io/
https://httpd.apache.org/docs/2.4/vhosts/
https://www.oracle.com/it/java/technologies/javase/javase8-archive-downloads.html
https://www.oracle.com/it/java/technologies/javase/javase8-archive-downloads.html
https://maven.apache.org/
https://spring.io/
https://jakarta.ee/
https://www.jetbrains.com/idea/

	List of Tables
	List of Figures
	Introduction
	Background
	What is eIDAS?
	Introduction
	Characteristics
	Components and Attributes of the eIDAS Node
	Versions Of the Code and Running Environments
	Management of Trust
	A Short Summary of a few Notified eID Schemes
	eID Identifiers
	A Service Using eIDAS

	Connecting Attribute Providers to the eIDAS Network
	Attributes Classification
	AP Connector Models
	Integration of the AP Connector with the Italian eIDAS Node
	Italian SPID System
	The Italian eIDAS Node's Generic Part
	Idp Proxy, a Specific Part of the Italian eIDAS Node
	Details of AP Connector Implementation
	New Attributes are Available on the eIDAS Node
	AP Proxy
	AP OAuth2

	OAuth 2.0
	Principles of OAuth 2.0
	OAuth 2.0 Roles
	OAuth 2.0 Scopes
	OAuth 2.0 Access Tokens and Authorization Code
	OAuth 2.0: How Does It Operate?
	Grant Types in OAuth 2.0

	JWT
	JSON Web Token Structure
	JSON Web Tokens: How Do They Operate?
	Why Should We Use JSON Web Tokens?

	Redis

	Design and Implementation
	Implementation Diagram
	Idpproxy
	Spit

	OAuth2 Authorization Server
	Authorization Code Grant Flow
	Client and User Registration
	Authorization Endpoint
	Citizen Identification Data Request
	Authorization Form
	User Scopes Approval
	Token Endpoint
	RSA Private and Public Keys
	Token Endpoint Response

	OAuth2 Client
	Client and User Registration
	OAuth 2.0 Client Details
	Authorization Code Request
	Citizen Identification Data Request
	Citizen Identification Data Response
	Authorization Code Response
	Access Token Request
	Protected Resource Access

	OAuth2 Resource Server
	Maven Dependencies
	JWT Authentication Mechanism
	The Secured Endpoints

	Dockerization

	User's Manual
	Software Dependencies
	Source Code

	Developer's Manual
	Frameworks, Libraries and Environment
	Modules
	IntelliJ IDEA

	Conclusion
	Bibliography

