
POLITECNICO DI TORINO

Master degree course in Ingegneria Informatica

Master Degree Thesis

Integration of the DICE specification
into the Keystone framework

Supervisor
Prof. Antonio Lioy
Ing. Sisinni Silvia
Ing. Bravi Enrico

Candidate

Valerio Donnini

Luglio 2023

To my family, that believed

in me since the beginning

Summary

The scope of this thesis is to implement a design that permits the correct implementation of the
Device Identifier Composition Engine (DICE) in Keystone.

The first three chapters have been used to write the stare of the art of the different topics
debated. The first one is related to the most important characteristics of Device Composition
Engine (DICE), its hardware requirements and the different type of architecture on which it is
based on. The second chapter talks about the Trusted Execution Environments, briefly explains
what is and what is its feature. The rest of the chapter presents the different technologies that
are actually on the market and a platform that produce standards about this topic. The third
one, instead, is associated to the presentation of the Keystone Project, the project on which the
thesis is based, showing how it works, its features and its weaknesses.

The practical part has been focused on the implementation of the DICE specification in the
Keystone project making all the things needed to obtain the better results: the fourth chapter
describes the design that have been chosen and in the fifth the implementation with description
of this design has been provided.

The last part is associated to the tests that have been made to check the correctness of what
have been done.

4

Acknowledgements

A special thanks to the professor Antonio Lioy that permits me to work on this topic and assists
me over the entire thesis.

A lot of gratitude also to Dr. Silvia Sisinni and Dr. Enrico Bravi that follow me over the
months and help me with the development of the thesis.

An enormous thanks go to my parents because without them, I will never be here because they
give to me all the economic support and also they let me live free of pressure in my academic travel.

A big thanks also to all my friends, both the new ones meet in this two years and the old
ones, that provide me a way to have fun and to be carefree.

A special mention also for my brother, Michele and his fianceé, Tania, that have filled my heart
of happiness with their beautiful daughter, Sofia.

Last but not least, a gigantic thanks to Federica, that goes with me since the beginning of
this year, that allows me to really understand what to be happy means and has changed my life
in a way that I never expected.

5

Contents

1 Introduction 9

2 Device Identifier Composition Engine architecture 10

2.1 What DICE is . 10

2.2 Hardware requirements for DICE . 10

2.3 DICE Layering architecture . 12

2.3.1 TCB capabilities . 15

2.3.2 Keys and credentials . 15

2.3.3 Layered Certification . 17

2.4 DICE attestation architecture . 22

2.4.1 Layered device attestation . 25

3 Trusted Execution Environment (TEE) 27

3.1 Introduction to Trusted Execution Environment 27

3.1.1 Prerequisite: Separation Kernel . 28

3.1.2 TEE Definition . 28

3.1.3 What ”trust” means . 29

3.1.4 TEE building blocks . 29

3.2 CPU based Trusted Execution Environments . 30

3.2.1 x86 System Management Mode . 31

3.2.2 ARM platforms: TrustZone . 32

3.2.3 Intel platforms: Software Guard Extention (SGX) 34

3.2.4 AMD platforms: Secure Encrypted Virtualization (SEV) 36

3.2.5 IBM Secure Execution (IBM Z) . 39

3.2.6 RISC-V Keystone . 40

3.2.7 Standards and frameworks to provide unified Application Program Inter-
faces (APIs) . 41

3.3 An example of coprocessor-Based TEEs in one SoC: Apple Secure Enclave Processor
(SEP) . 43

3.4 An example of Coprocessor-Based TEEs in external SoC: Microsoft Azure Sphere:
Pluton . 45

3.4.1 Architecture overview . 45

3.4.2 Firmware load flow . 46

6

4 Keystone Enclave 47

4.1 RISC-V overview . 47

4.1.1 RISC-V Privilieged ISA . 47

4.1.2 Physical Memory Protection (PMP) . 48

4.1.3 Interrupt, exceptions and virtual address translation 48

4.2 Customizable TEEs . 48

4.3 Keystone overview . 49

4.4 Security monitor . 50

4.4.1 Memory isolation . 51

4.5 Keystone Modular Runtime . 51

4.6 Security analysis and weaknesses . 52

4.6.1 Protection of the Enclave . 52

4.6.2 Protection of the Host OS . 53

4.6.3 Protection of the SM . 53

4.6.4 Protection against Physical Attackers . 53

4.6.5 Weaknesses . 53

5 DICE specification in Keystone: design 54

5.1 Root of Trust requirements and keys generation in Keystone 54

5.2 DICE concepts applied to Keystone TEEs: proposed design 55

5.3 Hardware layer: keys and certificates . 57

5.4 Security Monitor: keys and certificates . 57

5.5 Trusted Applications: keys and certificates . 58

6 DICE specification in Keystone: implementation 60

6.1 X509 custom library . 60

6.2 DICE Engine . 62

6.3 Security Monitor . 65

7 Test sets for the proposed solution 69

7.1 Testbed description . 69

7.2 Functional tests . 69

7.3 Performance test . 73

8 Conclusions 75

Bibliography 76

A User’s Manual 78

A.1 System requirements . 78

A.1.1 Keystone enclave . 78

A.2 Performing tests . 79

A.2.1 Functional tests . 79

A.2.2 Performance tests . 80

7

B Developer’s Guide 81

B.1 How the manufacturer cert is created . 81

B.2 How the SM cert and CDI are created . 82

B.3 How the variables have been copied and how the formal structure of the X.509
DER format is controlled . 83

B.4 How the different certificates have been verified and how the keys of the ECA are
derived . 84

B.5 How the CDI of each enclave, its Local Attestation key (with the certificate) are
created . 85

B.6 The functions exposed to the enclave . 86

8

Chapter 1

Introduction

During the last years, lots of new devices have been introduced in the market, most of them rely
on the category of IoT. These products, differently from the standard ones, are characterized by
hardware specifications that are not so powerful, due to different reason, for example, the minimal
space or the necessity to maintain the cost as low as possible.

For these reasons to achieve strong security features in these devices is not so easy: a help
to obtain them in this field can be the Device Identifier Composition Engine (DICE), that is
a security standard that has been made by the Trusted Computing Group in order to obtain
enhance security and privacy on systems with a Trusted Platform Module, but also to have viable
security and privacy foundation in all the systems without a TPM. More in detail, it can be used
to check the integrity of the software that is run in a device and also do some form of remote
attestation.

This standard is not so easy to be implemented in most of the commercial Trusted Execution
Environment (TEE), that have not the possibility to be modified, because they are proprietary
of specific companies and for sure not open-source. This not happens with Keystone enclave, a
framework that can be used to run customizable TEEs completely open source and so completely
changeable.

Keystone is a framework that has been developed by the Linux foundation and one of its
most important characteristic is that it can be run in general purpose processor that respects the
standard of the RISC-V architecture, doesn’t having the constraint to be associated to a specific
one and so, it can be associated to systems like the IoT devices.

Implementing the DICE core in it, will be generated a package that can be used in lots of
different platforms, from the most powerful to the light one, obtaining important security features
that guarantee the correct execution of a system, or in the other case, provide a way to understand
if something goes wrong and make operations to correct the situation: can be used for example to
check if a specific TEE (called Enclave) is under the control of a malicious actor or also to check
at boot if the platform is in a secure state.

In this work, all the arguments cited will be analyzed, showing the principal features of each
one and talking related to the TEEs, also the differences from the actual products present in the
marked are described. In the second part, a possible design and its implementation of the DICE
specification in the Keystone project is proposed, comparing how it affects the performance with
the respect to the original work.

9

Chapter 2

Device Identifier Composition
Engine architecture

2.1 What DICE is

DICE stands for Device Identifier Composition Engine and it is a standard created by the Trusted
Computing Group (TCG) [1]. This group associates to this topic the DICE Architecture Work
Group and the goal of this project is to address the security problems related to the Internet of
things, targeting products such as MCUs and system on a chip (SoCs).

This type of architecture can be integrated without increasing the silicon requirements using
the hardware of security products during manufacturing. The most important thing of this type
of architecture is that it can be used in systems where traditional Trusted Platform Modules may
be unfeasible due to the limitations associated to the cost, power, space and so on.

2.2 Hardware requirements for DICE

This subchapter is used to specify what are the hardware requirements [2] and the process that
are needed by DICE to create an identity value that is derived from a Unique Device Secret and
the identity (a representation) of the first mutable code (see Fig. 2.1). The value that is derived
from this process is called Compound Device Identifier (CDI) and it can be used for different
application (for example it can be used to attest the trustworthiness of an embedded device). An
important thing to say, is that for the DICE specification, the engine that performs this type of
computation (the derivation of the CDI) can be updated, but those updates are not measured in
the CDI and must be inherently trusted. Different from this, the first mutable code is the part of
the code that is executed after the Device Identifier Composition Engine and for this reason it is
not inherently trusted.

The CDI is obtained starting from the Unique Device Secret (UDS) and adding to it the
measurement of the first mutable code that runs on the platform after the DICE. This value can
also include some information about the hardware state and/or some configuration data that can
change how the first mutable code is executed. The engine that generates the CDI is called Device
Identifier Composition Engine (DICE). It is the only one that can access the UDS after the reset
of the machine before giving the control to the first mutable code. The manufacturer provides
the UDS in a way that has to be consistent with the specification. Changing for any reason the
value of the UDS, implicate that also the CDI will change. The most important characteristic
that the CDI must have is that it has to be calculated in a way that having it and the measure of
the first mutable code is not possible to recover the UDS. To have this feature the DICE can be
implemented using different types of techniques: the first one is to use a secure hash algorithm
[3] to hash the concatenation of the two starting value (UDS and measure).

10

Device Identifier Composition Engine architecture

Reset

Measurement of the first
mutable code and optionally

hw state and config data

Device Identifier Composition
Engine (DICE)

Combine Unique Device
Secret (UDS) and

measurement with one way
function to obtain Compound

Device Identifier (CDI)

Transfer control to upper
layer, passing CDI

Protect the access of UDS
(clean the memory related)

First Mutable code

Measurement of the
first mutable code
and optionally hw
state and config

data

UDS

One way
function

Compound Device Identifier

Figure 2.1. Compound Device IdentifierDerivation Process (source: [2])

H(UDS || H(FirstMutableCode))

The second one is using a HMAC where the UDS is the key of the computation (using this method
it will obtain twice the level of security with the respect to the level of security obtained with the
simple hash, but at the same time the operation will take a little more time).

HMAC(UDS, H(FirstMutableCode))

How the two values have to be combined is chosen by the manufacturer and the choice will not
affect the interoperability. In this scenario, the device is responsible to do all the things to be
sure that the access to the CDI to do operations of reading, writing and changing is protection.
One of the most important benefit of the CDI is that it changes each time the first mutable code
changes, so for example if there is a malware that replace the first mutable code, the CDI that
is computed by the DICE and probably passed to the malware is not the original CDI that were
computed when the application were not affected by it. For the same reason the CDI obtained
will be different from the original one if the first mutable code is updated with a security patch.
The update process of the first mutable code has to be implemented in a way that it can be done
only with the ”assistance” of the manufacturer. It means for example that the updates of the
first mutable code have to be signed with a private key, for which the public part is owned by
the manufacturer. These requirements can be used in two different types of immutability of the
DICE. In a simple device the DICE and all its dependencies can be invariant and not change
after manufacturing. In more complex system, instead, can be implemented a DICE that can
be manipulated directly or indirectly by the manufacturer. According to the DICE specification,
these changes have not to be reflected in a modification of the resulting CDI. This changes can
be needed to balance risks associated to complex systems. The changes to the DICE and to its
dependencies are the basis for confidence to see if there are some modification in the UDS, in the
first mutable code or in some resulting measurements. The types of protection mechanisms that
are used to update the DICE and other stuff have to be inherently trusted. From the strength
of this mechanism derives the ability of the customer to trust the CDI. The UDS has to respect
these properties:

• Uncorrelated and statically unique

11

Device Identifier Composition Engine architecture

• Each entity has its own UDS

• The security strength of the UDS has to be at least the same of the attestation process

• If the attestation process is not under the control of the manufacturer, the UDS must have
a length of at least 64 bytes

• Can not be rewritten

Instead, the DICE has to respect these types of properties:

• Has to be the only one that can access the UDS

• If there is a debug mode, it has to be active after the DICE

• If there is a debug mode, it can not be used to read the UDS

These are the basis properties that all the DICE must have, then, dependently from the type of
DICE implemented other ones can be needed.

A first distinction that can be made of the DICE, is that if it is mutable or immutable. In the
first case:

• The DICE updating process has to be secure and controlled by the manufacturer

• After the updating process, the new DICE has to respect the specification

• The UDS should not to be changed during the manufacturer controlled update process

In the second one:

• The DICE becomes immutable from the end of the manufacturing process of the device

So, making a recap, the different operations that the DICE can do are the following:

• It is executed without any interference after each reset of the device before any mutable
code of the platform

• The UDS has to be combined with the measure of the first mutable code before its execution

• The CDI has to be created with a one-way function (at least the same security strength of
the attestation process or 64 bytes in case this process is not present)

• After that the CDI is calculated and before the first mutable code is executed, the UDS
shall be set in a way that is impossible to use it until the next reset.

• The DICE has to erase all the data that can used to obtain info of the UDS before the first
mutable code is executed

• The CDI has to be written in a place in memory where the first mutable code has exclusive
access until it requires exclusive access

2.3 DICE Layering architecture

This type of architecture [4] uses DICE as the basis of a multi-layered Trusted Computing Base
to which is associated a hardware Root of Trust (RoT) that has to be inherently trusted because
if it doesn’t work properly, this type of failure can not be detected. One of the most important
feature of a layered TCB is that each layer can provide trusted functionality to the upper layer
and to obtain this, only a minimal set of functions are needed.

12

Device Identifier Composition Engine architecture

Hardware

Layer 0

Layer 1

Layer 2

Layer 3

Layer ...

Processor Boot
ROM

Boot Loader

HLOS

 Container
Runtime

Container

Dynamic RTM

Hypervisor
Loader

Hypervisor

VM

 Container
Runtime

Container

TEE

Enclave
Runtime

Enclave Applet

Processor Boot
ROM

Runtime Boot
Loader

Co-processor
runtime

Embedded
Fucntion

Complex OS Virtualization Enclave Embedded System

Figure 2.2. Examples of system layering (source: [4])

This type of architecture consider the different execution states started from a based hardware
layer that is assumed to be in a trustworthy state before going to layer 0. The same thing is
considered to be true when there is the transition from the layer 0 to the layer 1, so in general
when there is a movement from a layer N to a layer N+1, the layer N is considered to be in a
trustworthy state. Moving from a layer to another layer for the DICE architecture means that
the associated CDI is computed and securely passed to the next layer.

To construct the next layer on this type of architecture, a set of TCB capabilities is needed
and are protected in a hardened execution environment (as it is shown in Fig. 2.3). The passage
from a layer to another one is protected because each layer uses interaction capabilities that are
trusted by both the parts. Each TCB layer must have access to TCB capabilities used to:

• Produce TCB Component Identifier (TCI): measure that is component specific and describe
it (for example a hash value)

• Calculate CDI: the CDI of a layer n has to be associated at least to two different values: the
CDI of the previous layer and the TCI of the target TCB component. These two values are
combined together using a one-way function. In this scenario the UDS is used to provide
a statistically unique value to the DICE HRoT because no other previous context exists.
Both the mechanism used by a TCB component to produce the CDI of another layer and
how the CDI is given to the upper layer are to be trustworthy

• Use a one-way function [5]: it is a cryptographic pseudo-random function (PRF) that com-
plies with NIST SP800- 56c recommendations. These types of functions work with a seed
and a data. In the described scenario, the seed has to be the CDI obtained by a previous
layer of the actual layer and the data has to be the TCI of a subsequent component.

An important concept to underlying in this scenario is the DICE layered identity. This type
of identity lives only with a specific chain of TCB components due to the nature of how the
different CDI of each layer are calculated and because it is from that the identity is derived. This
approach is different with the respect to the randomly generated identity that can be associated
to a component or to a device. The CDI of a specific component is obtained also from the
CDI of the previous component, and the CDI of the previous component is obtained from the
CDI of the previous component and so on, so the identity that is derived from a specific layer
CDI represent not only TCB components but also their order because if two component will be
swapped also the final CDI and the derived identity will change. The DICE HRoT has to respect
some requirements:

• The security strength of the UDS must be sufficient for its usage

• The UDS and the measure of the layer 0 have to be used for the computation of the CDI of
the layer 0

13

Device Identifier Composition Engine architecture

DICE Layer 0 Layer 1 Layer n

...

TCI L0

f()OWF

CDIL0

TCI L1 TCI L2 FSD

f()OWF f()OWF f()OWF

CDIL1 CDILNUDS

Figure 2.3. TCB layering architecture (source: [4])

• The DICE have to access only the CDI value, not other layer secrets

• The trustworthiness properties of the DICE HRoT is asserted by the DICE manufacturer
of by the vendor

• DICE must have securely access to secrets not external visible

• If there is a process to generate keys, then the DICE HRoT must have a secure entropy
source

Also the layer 0 has to respect some requirements:

• Include all the common requirements for the other layers

• The DeviceID key is generated with a process that is controlled by the manufacturer

• The DeviceID key is derived from the CDI value that describes the layer 0

• Associated to this key there should be a certificate issued by the manufacturer

• If the layer 0 is not modifiable out of a process controlled by the manufacturer, then also
the DeviceID key and its certificate can not be changed

• If the layer 0 changes, then also the DeviceID key changes

In general all the different layers must respect these requirements:

• A DICE layer has to be placed in shielded location and it has to be built with protected
capabilities

• A DICE layer has to be placed in shielded location and it has to be built with protected
capabilities used by previous layers

• Each DICE layer has its own CDI and its own private keys. All of that have to be kept
secret to other layers

• A DICE layer can not implicit trust a layer that is executed after it

• All the secrets that a layer has, have to be created by the layer itself or provided by the
previous layer

• The keys associated to the layer n have to be derived directly by the layer n or given to the
layer n by the previous layer

14

Device Identifier Composition Engine architecture

• The CDI of the layer n has to be used to compute the CDI value of the layer n+1

• If there is a layer that wants to implement a CA, then this CA has to be an Embedded
Certification Authority (ECA), that can be used to certify the keys associated to specific
layer following ECA defined procedures

• If the attestation process of a layer is guaranteed by a device, it means that the attestation
is computed directly by the layer n or by some below layers

2.3.1 TCB capabilities

Some important TCB capabilities that must be present in a DICE layering architecture are the
following: certification, attestation, authentication

Certification and token issuance

Certification of a DICE layered component means issuing a certificate or a token that can be used
to bind the next layer TCB to the current one. A specific layer can generate the public keys for
the next one and certify them. A layer must have the capabilities to certify keys if this feature
is needed and the certification can be done in two different ways dependently from if the keys to
certify are asymmetric or symmetric. In the first case an X.509v3 [6] cert has to be issued, in the
second case the keys are issued in tokens.

If asymmetric keys are used, the certification can be done directly from the TCB layer n,
that generates the keys for the TCB layer n+1 and signs the certificate, or the TCB layer n+1
generates the key pair and obtains a certification from the TCB layer n. If the certification process
uses tokens (when the keys are symmetric), this token has to be built depending on the TCI of
the next layer TCB, the next layer CDI and on a symmetric key that is derived from the current
CDI. No specification for the generation of the symmetric key to use is given

Attestation

This procedure is associated to the attestation of a DICE layered component using a symmetric or
asymmetric key that has been approved by the Embedded Certificate Authority for this porpoise.
It is used to prove trustworthiness properties of a TCB layer of a component. Trustworthiness
properties can be: implicit or explicit. Implicit means that these properties are inferred by a
verifier and depend on some condition or state that wouldn’t otherwise be possible. Explicit
means that the properties are explicitly enumerated and encoded to be ready for the inspection
made by an attestation verifier. When a DICE TCB layer supports this feature means that it
will analyze a sequent layer TCB or a sequent component to obtain its trustworthiness properties.
When the TCI associated to a specific layer is computed, in this measure there are trustworthiness
properties associated to code and settings needed for the execution of a subsequent layer. An
inspecting TCB layer can also create and certify with its ECA or sign with a specific attestation
key some form of attestation evidence about a major layer that can be used later by the attester.

Authentication

Authentication of a DICE layered component means the usage of an asymmetric key or a sym-
metric key that has the porpoise to authenticate the device. This type of capability is inserted in
a TCB layer if the DICE layer has an active role in the device authentication protocol.

2.3.2 Keys and credentials

Each TCB can use different types of keys for different porpoise: there can be asymmetric keys [7],
symmetric keys [8] and each one of this category can be used for several targets. The asymmetric
keys are divided in:

15

Device Identifier Composition Engine architecture

• Embedded Certificate Authority keys: these types of keys are used to issue (sign) a
TCB component certificate for other keys that are derived for the current layer or the upper
one. This keys can only be used to sign data that are known by the current TCB layer.
Also, this type of keys can be considered to be an implicit statement of layered identity if
they are generated from the CDI of the current layer with its TCI.

• Attestation keys: these types of keys are used to sign the attestation evidence that a
layer can obtain about a major level. Like for the ECA keys, this keys can also be used to
sign data that must be known by the TCB layer. This type of keys can be considered to
be an implicit statement of layered identity if they are generated from the CDI value of the
current layer.

• Identity keys: this type of key is used for signing authentication challenges

• DeviceID key: it is an asymmetric key that is obtained starting from the CDI computed
by the DICE. It is strictly related to the UDS and to the measure of the Layer 0 and can
be used to sign the certificates that can be issued for keys of upper layers. It is considered
to be also an ECA key and an attestation key and is certified by the manufacturer with its
private key and its certificate is provided (usually) in ROM.

• Alias key: it is an asymmetric key that is obtained starting from the last CDI value in
the chain of the TCB components. Together with its certificate, it usually contains the
information that can be used to attest top-level device firmware. It is also an attestation
key because it can be used to sign attestation evidence.

If a key pair has to act as a proof of implicit layered identity, the seed starting from which the
key pair is derived must contain the measurement of the TCB component that it identifies. The
symmetric keys instead can be:

• Symmetric Alias Key: this type of key can be obtained from the CDI value and optionally
from a PSK ID Hint that has to be chosen by the verifier. The pre-shared secret in this
scenario is inserted for Symmetric Key Attestation and Layered Identity

• Wrapping Keys: this type of key can be used when it is not so comfortable to regenerate
asymmetric keys on each boot. So, the wrapping key is used to persist previously derived
asymmetric keys. For example, this type of key can be used to avoid that on each boot the
DeviceID keys are regenerated: from the CDI, it can derive a symmetric key that can be
used to store encrypted the value of the DeviceID.

Both the symmetric and the asymmetric keys can be created in different ways from the CDI
values. Starting talking about the generation of asymmetric keys, this process (see Fig. 2.4) can
generate keys that can be used to attest trustworthiness properties of a TCB layer. The keys are
generated from the CDI of a specific layer, so they implicitly represent the layering semantics.

The most common algorithm that are used to derive asymmetric key pairs are:

• ECDSA [9]: this algorithm can be used to provide deterministic key pair choosing a seed
that should be based on the specific TCB context and derived from the CDI of the layer.
Doing so, a random number is obtained, and this number will be used like the seed of the
ECDSA key generation function

• RSA [10]: the generation function can be full of a value that is generated starting from the
current layer CDI value

The symmetric keys can be derived using a Key Derivation Function where the seed of this
function is directly the UDS or the CDI obtained from it (see Fig. 2.5). The length of the CDI
has to be enough to avoid overlapping problem with the derived symmetric keys.

Talking about the generation of the keys, some considerations have to be made according to
the security, to the protection and to the management of them in a layered architecture. If an

16

Device Identifier Composition Engine architecture

HARDWARE

DICE Layer 0 Layer 1 Layer n

...

AKEYL0

TCI L1 TCI L2 FSD

f()KGEN f()OWF f()OWF

CDIL1 CDILN

CDIL0 CDIL1 CDILN

f()KGEN f()KGEN

AKEYL1 AKEYLN

Figure 2.4. Asymmetric key generation example (source: [4])

attacker can access the CDI or the TCI or any other TCB context values, he can be able to derive
or generate keys for a specific layer and impersonate it. For this reason all the stuff needed to
protect the various TCB context values have to be implemented. In particular the private part of
a key has never to be exposed above the layer that is considered to be trusted to protect it and
all the location in memory that are used to store sensitive data have to be erased before the key
protection responsibilities are passed to the next DICE layer.

There can also be some problems if there is storage of the private keys, because in this way
also if there are some changes in the code, and the sequent CDI value changes, the persistent
key that was stored derived from the previous value of the CDI, not change. It will represent a
configuration that it is not more in use. This means that also the representation of the actual
identity is not correct like the behavior and the trustworthiness state of the TCB layer. All the
keys and the secrets used to generate them have to be placed in shielded locations and don’t go
outside of them. At the same time specific key pairs of a layer may not be regenerated on every
reset cycle, due to computation reasons for example. To avoid this, wrapping keys can be used.

HARDWARE

DICE Layer 0 Layer 1 Layer n

...

SKEYL0

f()KGEN f()OWF f()OWF

CDIL1 CDILN

CDIL0 CDILN

f()KGEN f()KGEN

SKEYL1 SKEYLN

TCIL0 CDIL1 TCIL1 TCILN

Figure 2.5. Symmetric key generation example (source: [4])

2.3.3 Layered Certification

Another important point of DICE layered architecture is the Layered certification. In this scenario
is the manufacturer to certificate the device trust properties of the DICE HRoT. The manufac-
turers that are intended to produce DICE devices have to implement a CA hierarchy where the

17

Device Identifier Composition Engine architecture

manufacturer itself is considered to be the root CA and he can have one or more subordinate CAs
that issue two different type of certificate:

• Device identity: certificate that is used to check that the device is not under the control of
malicious actors because it is used to authenticate evidence (states of current configuration
and so on). For example, it can be used by a verifier to be sure that it is interacting the
expected device

• Attestation certificates: certificate used to assert that the manufacturer has embedded
a cryptographic key in a device.

The Dice architecture may rely on Public Key Infrastructure (PKI) for device provenance. It
is a duty of the device manufacturer to implement a certificate hierarchy that can used to gen-
erate certificates. It has to publish certificates for the device attribute or manifest containing
trustworthiness assertion that are associated to DICE trustworthiness.

ROOT
CA

End Entity
Certificate

Attribute
certificate or

manifest

SUB
CA 1

ROOT
CA

DEVICE

Layer N

ECA End Entity
...

Layer N+1

SUB
CA 1

Figure 2.6. Certificate hierarchy with Attribute Certificate or Manifest and Certificate hierarchy
with Embedded CA (source: [4])

The DICE TCB layering architecture has the possibility to produce certificate at any layer,
starting from layer 0 using both external and embedded CAs. It also anticipates attestation as
a precondition to certificate issuance. The ECA can issue certificates that contain attributes or
sign manifest structures that have inside attestation information all of them associated to a layer
specific end entity certificate (see Fig. 2.7).

ROOT CA SUB CA 1

Device

Layer N

ECA End Entity
...

Layer N+1

Attribute cert
or Manifest

Figure 2.7. Certificate hierarchy with Embedded CA (source: [4])

The certification process can be done by ECA inside a DICE layer TCB and it is associated to
keys that have to be certified for allowing higher DICE layer and external entities to verify trust-
worthiness at or below the DICE layer in which there is the Embedded Certification Authority. If
there is a consumer of an ECA issued certificate, he needs to trace all the cert chain of the DICE
layers until the DICE manufacturer and he expects also to have the manufacturer’s certificate.

A specific example of the layered certification can be the scenario presented in the Fig. 2.8
where in the layer 0 there is an ECA that is used to issue a cert for the layer 1. The same thing

18

Device Identifier Composition Engine architecture

is repeated between the layer 1 and the layer 2. In the layer 0 the manufacturer also provide his
certificate that can be used as initial device identity.

DeviceID

ECAL0

CAMFGCERTL0

LDevIDL1

ECAL1

ECAL0CERTL1

LDevIDL2

ECAL2

ECAL1CERTL2

CAOWNCERTL2

Alias Key

ECALN-1CERTLN

Layer 0 Layer 1 Layer 2 Layer n

...

MFG CA Owner CA

Figure 2.8. Layered certification example (source: [4])

The certification can be done in two different ways:

• using an Embedded CA: a layer issues a certificate for a higher layer to extend trust. There
are two different models of embedded CAs: the ECA can decide when issue a certificate or
the upper layer asks for the sign of a specific certificate (Certificate Signing Request CSR)

• using an External CA: the DICE TCB layer interact with some external CA to obtain device
identities that can be provided during manufacturing or when the device is into a network.
The most commonly used approach is the first one where the manufacturer can provide
both the device keys and the device identity. Another option is that the device keys are not
provided by the manufacturer but generated from the device and the identity credential is
obtained after that the device made a specific credential creation request.

Certification with Embedded CA: direct layered Certificate

With this specific configuration the ECA can emit certificates respecting some form of policy that
can be associated directly to the ECA firmware or that was configured previously in a secure way.
This type of policy is used to specify how and when the ECA can issue specific layer certificates.
What happens is that the ECA generates the key pair that has to be certified and then it will
certify them giving the possibility to the upper layer to secure access to the key pair or providing
it directly. The different steps to take this are the following (see Fig. 2.9):

1. the layer n has to measure the upper layer n+1 to obtain TCB identifier TCI n+1

2. After that the TCI is computed, the layer n uses it to obtain the CDI value for layer n+1

3. Starting from the CDI n+1 the layer n derives a key pair for the layer n+1

4. The layer n emits a certificate for the key pair generated with its ECA

5. The layer n gives all the data to the layer n+1 (CDI, certificate and optionally the private
key, because the layer n+1 can re-derive it starting from its CDI)

19

Device Identifier Composition Engine architecture

5. CERTLN+1, K Ln+1,CDI Ln+1,

TCBLN

ECALN

TCBLN+1

CERTLN+1

Layer n Layer n+1

1. Measure layer n+1: TCI Ln+1

2. Compute CDI Ln+1
3. Generate (PK Ln+1, K Ln+1)

4. Sign cert = [PK Ln+1, TCI Ln+1] K Ln

Figure 2.9. Direct Layered Certification by an ECA (source: [4])

Certification with Embedded CA: Layered TCB Certification using CSR

With this specific configuration is an upper layer that asks a previous layer ECA to certify a key
pair after that the previous layer ECA has verified that the TCB component is the same of the
CSR subject inserted in the request. The different steps needed to do this are the following (see
Fig. 2.10):

1. the layer n has to measure the upper layer n+1 to obtain TCB identifier TCI n+1

2. After that the TCI is computed, the layer n uses it to obtain the CDI value for layer n+1

3. The layer n has to give the CDI previously computed to the layer n+1

4. The layer n+1 uses its CDI value to create a key pair

5. The layer n+1 has to build a CSR containing all the information that can be useful for the
layer n to verify the TCB component of the layer n +1

6. The layer n, after that the CSR is received, has to verify that the signature of this request
has been made with the private key derived from the CDI of the layer n+1 using the public
key inserted in the CSR

7. The layer n recompute the CDI of the layer n+1 and check that it is the same that the layer
n+1 has inserted in the CSR

8. The layer n generates the key pair starting from the CDI value of the layer n+1 and check
that the public key is the same that the layer n+1 has inserted in the CSR

9. The layer n issue a certificate for starting from what is has received inside the CSR

Some considerations can be made talking about the ECA certificate issuance:

• an ECA has not the duty to remind the list of the certificates that have been issues. To
avoid the re-issue of the same certificate, the issuance can be based on some attribute that
make the process deterministic like for example the serial number and so on

• The usage of the ECA signing key has to be limited because in contrary its lifetime will be
decreased due to cryptanalysis

• An ECA has the opportunity to emit certificates for keys that have different usage related
to the RFC5280 [6] KeyUsage constraint

• An ECA has not the duty to proper manage a certificate revocation request

20

Device Identifier Composition Engine architecture

11. CERTLN+1 =
 [PK Ln+1, TCI Ln+1] K Ln

3. CDI Ln+1

TCBLN

ECALN

5. Create certificate
 ([PK Ln+1, TCI Ln+1 ...] K Ln+1)

TCBLN+1

CERTLN+1

Layer n Layer n+1

1. Measure layer n+1: TCI Ln+1

2. Compute CDI Ln+1

6. Verify message #5
7. Recompute CDI new layer

8. Verify the two CDI
9. Regenerate PK new layer

10. Verify the two PKs

4. Generate (PK Ln+1, K Ln+1)

Figure 2.10. Layered TCB Certification using a CSR (source: [4])

Certification with external CAs: issuance of LDevID certificate by the owner

This is the scenario where there is a device owner that wants to issue a local device identity using
a CA that is under his choice after having taken the possession of the device, from a supply chain
entity. The owner can also choose the layer that has to be used for the operation and depending
on it, a CSR is created using a local public key and all the chain until the RoT has to be given to
the owner to supply attestation evidence. If they are sufficient, then the owner produces, using
its CA, a certificate for the supplied public key.

4. CSR = [PK L0, TCI L0] K L0)

TCBL0

LDevIDL0
CERTL0

1. Provision TCBL0, TCIL0

8. CERTL0 = [PKL0, TCIL0] KMFG

CERTMFG

Layer 0 Manufacturer

2. Compute CDI L0
3. Generate LDevIDL0 (PK L0, K L0)

CAMFG

LDevIDL0 5. Verify CSR
6. Verify TCIL0
7. Issue CertL0

Figure 2.11. Example initial device identity (IDevID) certification by a manufacturer (source: [4])

The onboarding and ownership acquisition steps are (see Fig. 2.11):

1. A specific layer creates a public key (lDevLN) that has to be certified

2. A nonce is given by the owner to the device

3. The specific layer gives back to the owner all the certificate chain generated by the device’s
ECA and the nonce. This message, that is the attention message, is signed with the specific
layer attestation key

4. The CSR signature is verified by the owner

21

Device Identifier Composition Engine architecture

5. The certificate chain is verified by the owner

6. A certificate for the public key provisioned to the owner is issued by the owner CA

7. The owner CA gives back to the specific layer the issued certificate for the lDev pk given
before

Design consideration

When a layered DICE architecture has to be implemented some guidance have to be kept in mind
related to:

• Privacy: some applications need to interact with a single cloud infrastructure during their
lifetime that is explicitly aware of the identity of each device. In other case this type of sce-
nario can be unacceptable for some vendors and users and for this reason the firmware has to
be built in a way that the possibility to be tracker are the lowest as possible. Some strategies
to minimize tracking are for example to continuing the key derivation and certificate chain
beyond the Alias key or recycling Alias key hiding the device certificate.

• External communication: the communication over the network is not so simple to be
implemented in the first layer of the DICE architecture and for this reason the DICE HRoT
and layer 0 should be kept as simple as possible without having this feature

• Possibility to do a factory reset: it can be implemented, knowing that has not to be
possible to do a rollback after that a device has been re-provisioned. There are 4 options to
implement a factory reset:

– Change the uds in the device

– Change the layer 0

– Both the first two options

– If the UDS cannot be changed, the CDI has to be derived from some other information
that can be modified implementing the factory reset.

2.4 DICE attestation architecture

The DICE attestation architecture [11] is a form of architecture that include both implicit and
explicit attestation, defined by the Trusted Computing Group. In this type of architecture there is
a set of roles associated to actors that are needed to complete the attestation process. Dependently
on the deployment model used, an actor can combine together or separate different roles but they
not change the attestation roles or the responsibilities of each one (see Fig. 2.12).

Endorsements

Endorser

Appraisal policy
 for evidence

Verifier Owner

Appraisal policy for
attestation result

RP Owner

Evidence

Attester

Attestation
Results

Verifier Relaying Party

Figure 2.12. Attestation Roles and message flow (source: [11])

To work properly, some certificate extensions need to be defined to construct some evidence
or some reference values. For this type of architecture the functions used are:

22

Device Identifier Composition Engine architecture

• Creation of attestation evidence

• Conveyance of attestation evidence

• Appraisal of attestation evidence

The different roles that interact together are the following:

• Attester: is the role that provides attestation evidence to the verifier (see Fig. 2.13). It is
associated to a specific identity, called attestation identity established during the manufac-
turing process, that is used to authenticate the Evidence that has to be sent to the Verifier.

Device

Attester

Collect claims

Target
environment

EvidenceAttesting
environment

Verifier

Endorsements

Endorser(s)

Appraisal policy
for evidence

Verifier owner

Figure 2.13. Device with Attesting Environment and Target Environment (source: [11])

It is composed by an Attesting Environment and a target Environment. The first one is
used to obtain assertion called claims about the second one associated to its trustworthiness
properties. Implementing DICE architecture each TCB layer can be an attesting environ-
ment that can be used to generate some Evidence. If to the layer N is associated the attester
role, the layer N-1 attests the state of the layer N, the layer N-2 attests the state of the layer
N-1 and so on until the layer 0. The Target Environment is the layer N+1 with the respect
to the layer N that is the attesting environment

• Endorser: a role that is usually built with a supply chain that is needed to have reference
endorsements each one that contains some form of assertions about the device’s intrinsic
trustworthiness properties. This role is used to implement all the stuff needed to establish
the trustworthiness properties of the testing device. The association between the DICE
layers and the Endorser is not for sure 1 to 1, for example there can be more than 1
endorser for the same DICE layer

• Verifier: used to collect Endorsements and Evidence and redirect Attestation result to
Relying party/ies. Usually it is a service provider entity

• Verifier Owner: role used to set the policy that have to be followed by the verifier. It sets
the reasons to choose between an acceptable and unacceptable Evidence and Endorsements.
It also may have a type of storage where the different endorsements are saved

• Relying party: role used to accept Attestation Results from a Verifier. It evaluates the
Attestation result following the Appraisal policies defined by the Relying party Owner and
can decide to do something

• Relaying party Owner: the role used to decide the policies to determine which attestation
results are acceptable and unacceptable and to give these policies to the relaying party

Associate to the different roles, also different type of role messages can be exchanged in this type of
architecture (role message stands for message that consist of assertions about the trustworthiness
properties):

23

Device Identifier Composition Engine architecture

• Evidence: messages sent by the Attester containing claims

• Appraisal Policy for Evidence: messages contains policy used as input in the Verifier
to decide what to do associated to trustworthiness Claims in Evidence

• Endorsements: messages contain assertions that are signed by an actor that is playing the
endorser role

• Attestation Results: messages containing the result of the attestation Evidence appraisals
and following the policies defined by the Verifier Owner. The verifier protects with authen-
ticity, integrity and confidentiality this type of message

• Appraisal Policy for Attestation Results: messages containing policy used as input in
the Relaying party to decide what to do associated to trustworthiness Claims in Attestation
Result

Also, different type of message exchange pattern can be used:

• Passport model: it simulates the real case of the emission of a passport (see Fig. 2.14). There
is a passport holder with his identity credentials and gives them to the passport issuer that
builds the passport document. The different steps in this type of topology are the following:

– The Evidence message is presented by the attester to the verifier. What is inside
the message is validated with the specific policies and then the verifier produces an
attestation evaluation result. This result is signed by the verifier and or is built with
something that allows the Relaying Party to authenticate the results arrived from the
verifier

– The results are sent to the Attester and then later delivered to the Relaying party. It
authenticates and then process them.

(a) Evidence
Attester

(b) Attestation results

Verifier

Relaying Party

PolicyAccess control, remediation, ecc.

Policy

Figure 2.14. Passport Topology Model (source: [11])

• Background Check Model (see Fig. 2.15): it simulates the case where who receives the
credentials, has not the possibility to directly process them. So they have to be passed to a
background entity that does the job. Differently from the previous topology the steps are
the following:

– the Evidence message is received by the Relaying party, that ca only check its freshness,
integrity and origin so sends it to the verifier

– the verifier checks the evidence message like in the passport model and then gives the
attestation results to the Relying party

• Multipart Background check Mode: topology similar to the second one presented except
if there are more than one Relaying party. The interaction between the different parts
preserves the pattern described in Attestation Roles Architecture diagram.

24

Device Identifier Composition Engine architecture

(a) Evidence

Attester

(b) Attestation results

Verifier

Relaying Party

Policy

Access control, remediation, ecc.

Policy

(a) Evidence

Figure 2.15. Role Interactions - Background Check Topology Model (source: [11])

In this type of architecture different strategies can be used to assign roles to actors (see Fig. 2.16).
Usually the different actors use some form of interface or protocol that are needed to ensure the
correct communication of the exchanged messages. This conveyance mechanisms can be local or
remote. The first one is when the same actor is associated more than a role, so the communication
of messages to different roles are internally managed by the same actor. It means also that the
co-resident roles trust protocol for the authentication, protection and transmission of the role
messages.

Convey
endorsements

Supply Chain
Entity (SCE)

Convey
appraisal policy for
attestation results

Management
Console B

(MCB)

Convey
appraisal policy

for evidence

Management
Console A

(MCA)

Convey
evidenceDevice

Convey
attestation

results

Attestation
Service
Provider
(ASP)

Resource
Manager

(RM)

Figure 2.16. Attestation Actors (source: [11])

Another situation that can happen, is the situation where two or more Actors are combined
or co-located and the roles play by each one don’t form collectively a new hybrid one. Some
examples can be:

• Co-located Verifier and Relying Party Example

• Composite Attestation Example

• Local Verifier Example

• Layered Device Attestation Example

2.4.1 Layered device attestation

Type of attestation that is performed by the different DICE layers, where a layer n attests the
state of the layer n+1 using some form of Evidence associated to the layer n+1 signed by the
layer n (see Fig. 2.12).

25

Device Identifier Composition Engine architecture

Issue certificate

Response

Attestation
challenge

ECA

End entity
certiticate

Evidence PolicyAttestation evidence
extension

Appraisal

Layer N Layer N+1 Verifier

KeyLn KeyLn + 1
Result

Figure 2.17. Layered Attestation (source: [11])

There are different possible solution to provide evidence to a Verifier; three different approaches
can be used:

• X.509 identity certificates and certificate revocation lists (CRLs) with extensions that con-
tain Evidence

• X.509 attribute certificates containing Evidence

• Manifests containing Evidence

An extension that can be used is the TCB Info Evidence Extension that contains attestation
Evidence about the DICE layer to which the subject key is associated. If this extension is used, it
has to be marked s critical. An alternative that can be used when the initial state of a DICE TCB
is associated to multiple measurements, can be the Multiple DiceTcbInfo Structures Extension
where there is a sequence of DiceTcbInfo structures, one for each measurement. Another extension
is UEID Evidence Extension that can be used when the content of this extension is used in the
generation of the CDI. An evidence can be created starting from an X.509 certificate attribute,
signed it with a specific key called attestation key. It is generated by the Attestation environment,
the environment that controls the attestation key, starting from the target environment, or alter-
nately can be created starting from a manifest always signed with the attestation key. A verifier
to check the proof of the Evidence, usually uses Endorsements, the reference value made by the
manufacturer or the supplier for the checking process. Like the evidence, the Endorsements can
also be encoded with different techniques:

• X.509 identity certificate extensions containing Endorsement values

• X.509 attribute certificates containing Endorsement values

• CoSWID (Concise Software Identification Tags) manifest containing Endorsement values

• SWID (Software Identification (SWID) Tagging) manifest containing Endorsement values.

Talking about the attesting environments, it must ensure that if there are non-constant fields,
each one of this, is usually used to derive the associated CDI value to be sure that there is the
consistency between the actual state described by the Evidence and what has been evaluated.

26

Chapter 3

Trusted Execution Environment
(TEE)

3.1 Introduction to Trusted Execution Environment

Nowadays, the traditional security technology are no longer sufficient to satisfy the different
security requirements of various architectures. This is the main reason for why there is a new
trend that is characterized by the integration of trusted computing concepts in different types of
systems, like for example embedded systems [12].

Trusted computing was born to help the systems to obtain secure computation, privacy and the
protection of the data. At the beginning, the trusted computing was associated to specific separate
hardware module that exposes interfaces to obtain platform security. The Trusted Platform
Module (TPM) is used to provide a proof of the integrity of a specific system and also allows a
secure management of cryptographic keys (they are stored in tamper-evident hardware module).

The principal problem of the TPM is that it can’t be used by a third party, so it can expose
only a predefined set of APIs. To overcome this problem, a new approach based on the execution
of arbitrary code within a specific environment that guarantees tamper-resistant execution has
been developed. This type of environment can be called in different ways, for example closed-box
VM, operator virtual machine (OVM), TrustZone [13] software (TZSW), and trusted language
runtime, but the most used one is become trusted execution environment (TEE).

A more specific definition of Trusted Execution Environment can be the following: a TEE is a
secure, integrity-protected processing environment, consisting of memory and storage capabilities.
Nevertheless, there is no official definition associated to this term and for this reason during the
years TEE has been bind with different explanations:

• Ben Pfaff, Terra [14], 2003, ”The TEE is a dedicated closed virtual machine that is isolated
from the rest of the platform. Through hardware memory protection and cryptographic
protection of storage, its contents are protected from observation and tampering by unau-
thorized parties.”

• OMTP, Advanced Trusted Environment [15], 2009, ”The TEE resists against a set of de-
fined threats and satisfies a number of requirements related to isolation properties, lifecycle
management, secure storage, cryptographic keys and protection of applications code.”

• GlobalPlatform, TEE System Architecture [16], 2011, ”The TEE is an execution environ-
ment that runs alongside but isolated from the device main operating system. It protects its
assets against general software attacks. It can be implemented using multiple technologies,
and its level of security varies accordingly.”

• Jonathan M. McCune, Trustworthy Execution on Mobile Devices [17], 2013, ”The set of
features intended to enable trusted execution are the following: isolated execution, secure
storage, remote attestation, secure provisioning and trusted path.”

27

Trusted Execution Environment (TEE)

Comparing the different reported sentences, it can be clear that the world isolated execution
and secure storage are directly related to the Trusted Execution Environments. But they are
not aligned in total because for example in the first definition the secure storage is lined with
the feature of having states cryptographic protection, while in the third sentence the concept
associated to the secure storage is more general and it refers only to the needed to have some
space to protect the assets. It can be also seen that the first definition also say something about
the isolation and how it has to be bind with the integrity and the confidentiality of the TEE
runtime states. Other consistent differences are with the respect to the threat model: there is no
specification in the first and the fourth definition, instead in the third one there is an ambiguous
reference to all the software attacks while in the second one the threat model is precisely detailed
defining all the attacks that must not damage a TEE.

All these definitions not center the most important aspects and on the contrary they seem to
be a little ambiguous in some parts. For this reason a new definition of TEE has been given, but
before that, some concepts have to be defined.

3.1.1 Prerequisite: Separation Kernel

One of the most important component related to the TEE is the separation kernel. It is needed
because it is the part that provides the isolated execution. Its main goal is to allow the presence
in the same platform of different systems that needed different level of security. What it does is
essentially the division in different partition of the entire platform and provides strong isolation
between the different parts.

The security requirements that are needed to implement this are defined in ”the Separation
Kernel Protection Profile (SKPP)”. Differently from the traditional security kernels, the separa-
tion kernel is more simple and it is used to guarantee the division in terms of space and time.
The security requirements are characterized by four main security policies:

• Data separation: each partition can access only its data

• Sanitization: if there are some shared resources, they can’t be used to achieve information
between different partitions

• Control of information flow: the communication between different partitions have to be
explicitly allowed

• Fault isolation: a security breach in a partition has to remain in the specified partition
and doesn’t go the other.

3.1.2 TEE Definition

The newer definition that can be done associated to a TEE is the following: a tamper-resistant
processing environment that is associated to a separation kernel. It is used to guarantee that the
code that has to be executed is authentic, the runtime states are right (associated to the integrity)
and the code, data and runtime states are saved in persistent storage securely with confidentiality.
A TEE may be able to do remote attestation that can be used by the environment to prove its
trustworthiness to third parties. It can be also updated in a secure way and has to be able to
resist to all the software or physical attacks that can be done on the main memory of the system.
Backdoor security flaws cannot be used to attack the system.

The TEE protects its runtime states and stored assets and it can be updated changing its
code and data. It has also to be associated to something that can be used to securely attest its
trustworthiness to third-parties. All the attacks that can be made or in the main memory or on
its non-volatile memory are inserted in the threat model.

28

Trusted Execution Environment (TEE)

3.1.3 What ”trust” means

A crucial aspect talking about the TEEs is the concept of trust, because for example it can be
used to compare two different TEE. In the computer world, this word assumes the meaning of
something that is behaving as expected. Trust can be:

• static: means that an evaluation based on a specific set of security requirements has been
made

• dynamic: means that the states associated to a running systems have to be associated to
states that can be considered to be trust

More in detail, dynamic trust can be linked to the concept that there are some proof about
the trust state of a specific system. So, in this particular scenario, the concept of trust can be
associated to the concept of secure. However, to achieve this, there is the necessity to have an
entity that is called Root of Trust (RoT) that gives trustworthy evidence associated to the state
of a platform. The RoT has the duty to:

• do trusted measurements

• compute trust score

For sure the Rot has to be tamper-resistant hardware module and can be implementing using
different types of know-how. How it is implemented is directly bind with the hardware platform
that has been chosen to provide the isolation properties inside the separation kernel.

Specific talking about the TEE, the trust can be considered hybrid: before the real deployment,
following a protection profile, a TEE has to be certified and after this on each boot, the RoT
controls that the TEE that is has been loaded is the same with the respect to the one that was
certified by the manufacturer. When the TEE is running, there is the separation kernel that
guarantees its integrity and for this reason the trust associated to the TEE is semi-dynamic: the
trust level associated to the TEE is not supposed to change during execution. The measurements
that are done are integrity measurements and the trust score is simply a boolean flag that is used
to know if the state has been modified or not (true if the TEE is trust, false otherwise).

3.1.4 TEE building blocks

Normal OS

Inter-environment
communication

TEE

Trusted Applications

Trusted Kernel
Secure

provisioning
Secure

attestation
Secure
storage

Inter-environment communication Trusted IO
path

Separation kernel

Information flow control Secure scheduling

Root of trust

Root keys Secure boot

Figure 3.1. TEE building blocks (source: [12])

A TEE is composed by a set of building blocks (see Fig. 3.1):

29

Trusted Execution Environment (TEE)

• Secure boot: process that is used to ensure that only code with a certain property is
executed. If a change in the code is captured, the boot process is stopped. One of the
most used techniques to implement the secure boot is to check the integrity of the following
component comparing the measurement with a reference value, usually provided by the
manufacturer. Designing secure boot means implementing chain of trust because it is usually
composed by a set of different stages. This chain can be represented as follows:

I0 = true
Ii+1 = Ii ∧ Vi(Li+1)

Where Ii is associated to the integrity of the layer i, instead Vi is the function that has
to be used for the verification. The cryptographic hash of a layer has been made with the
specified function and then the results are compared with the value provided. Because of
the nature of this implementation, if the integrity of the initial boot code can not be verified,
also any other integrity check goes wrong. For this reason to the initial boot is associated
a tamper-evident hardware module.

• Secure scheduling: used to be sure that the execution of the TEE does not affect the
performance of the main OS

• Inter-Environment Communication: the interface that is needed to allow the commu-
nication between the TEE and the rest of the system. It is a necessary component but at
the same time introduce new threats: for example it introduces message overload attacks.
There are different mechanism that can be used to implement this component, the important
thing is that each one of this mechanism has to respect this attribute:

– reliability

– minimum overhead

– protection of communication structures

• Secure storage: storage that provides confidentiality, integrity and freshness of the data
inserted. The access to this storage is allowed only to authorized entity. This is usually
implemented with sealed storage

• Trusted I/O Path: paths that are used to have a secure communication between the TEE
and the peripherals. Also, the data that are exchanged have to be protected from some
types of attacks like for example sniffing attacks or tampering attacks. More in detail, this
type of component is used to obtain the protection against:

– screen-capture attack [18]

– key logging attack [19]

– overlaying attack

– phishing attack [20]

3.2 CPU based Trusted Execution Environments

In this section of the second chapter, different solutions to implement a TEE in a CPU will be
presented. The full list of the various technologies that will be analyzed are the following:

• x86 System Management Mode [21]

• ARM platforms: TrustZone [13]

• Intel platforms: Software Guard Extention (SGX) [22]

• AMD platforms: Secure Encrypted Virtualization (SEV) [23]

• IBM Z [24]

30

Trusted Execution Environment (TEE)

• RISC-V Keystone [25]

Will be also discussed something about the Standards and frameworks to provide unified Appli-
cation Program Interfaces (APIs) like for example:

• Global Platform specifications [26]

• Open Portable Trusted Execution Environment [27]

3.2.1 x86 System Management Mode

One of the most important feature to have in a system like Windows 10 is the guarantee about
the healthy and the trustworthiness of the firmware platform. If it is true, also other feature like
Hypervisor-protected code integrity (HVCI) and Windows Defender Credential Guard will behave
as expected. To obtain this, Windows use a hardware-based RoT that protects from the execution
of code like Unified Extensible Firmware Interface (UEFI) malware before the bootloader launches.

A way to obtain that the hypervisor and the rest of the system is protected is to avoid that the
System Management Mode is compromised. The System Management Mode [21] is an execution
mode in x86 based CPUs that runs in a level that is higher than the level of the hypervisor. It
is usually used to make interactions with some specific type of hardware, like NV RAM, or to
emulate functions associated to hardware, to manage hardware interrupts and so on.

To avoid attacks from obtaining the control of the SMM, the OS must have the guarantee
about the correct SMM’s behavior. Intel and AMD have developed mechanism that are used to
enforce the isolation of the SMM with the respect to the OS and to understand to which resources
the SMM has access to.

The isolation of the SMM is composed by three parts (see Fig. 3.2):

1. Original Equipment Manufacturer’s (OEMs) are associated to specific policy that are used
to understand to which resources they require access

2. This policy are enforced by the chip vendor on System Management Interrupts (SMIs)

3. The compliance to this policy is reported to the OS by the chip vendor

OEM SMM code
access resources

Silicon enforces pre-
defined policy on

SMIs

Silicon reports policy
compliance to OS

Figure 3.2. SMM isolation (source: [21])

Inside the policy gives by the OEM there is a list that contains the different resources that the
SMI handlers requires access to. This policy is not under the control of the OS, it only enforces the
policy stated. The chip vendor’s reporting mechanism provide the enforced policy to the Trusted
Computing Base (Tcb) Launch and it compares the OEM’s SMM access policy with different
layers of Windows SMM isolation requirements in a way that it is able to understand the level of
isolation provided. This level obtained is later used for attestation and it is given to the OS.

Isolation levels means the type of restrictions that an SMI has related to what it can access
and can be associated to:

• SMM page configuration lockdown

• Static page tables

31

Trusted Execution Environment (TEE)

• Model-Specific Register (MSR) access

• IO port access

• Processor state save access

The Dynamic RoT Measurement (DRTM) is strictly related with the SMM isolation because if
the first one is not present, what has been evaluated during the boot can not be trusted by the
OS because it is not protected from the influence of the SMM. During the DRTM the different
SMIs are not working because, doing this the DRTM can establish a new RoT and with this, the
evaluation of the SMM access policy can be done.

Enforcement
module

SMI handler Page tablesPage tablesPage tables

System management mode (SMM)

MSRs and I/O

System memory

Figure 3.3. SMM interactions (source: [21])

3.2.2 ARM platforms: TrustZone

ARM TrustZone [13] is a hardware security extension technology, that is used to obtain secure
execution environment dividing the resources in two different execution world, one that is con-
sidered to be trusted, the secure world, and another one that is not considered to be trusted, the
normal world. This type of extension is not specific for a particular ARM architecture: it can be
implemented in targets that running normal applications, like for example the smartphone or in
microcontrollers.

Making a very general overview about the ARM architecture [28], it can be said that it
is a RISC (Reduced Instruction Set Computer) architecture and the principal features are the
following:

• only a large uniform register file

• the operations associated to data can only be done using registry, not memory

• the addressing mode is simple

• it has some instructions that combine both the shift operation and the arithmetic one

• auto-increment and auto-decrement addressing modes are implemented to obtain better
performance with program loops

• can load and store multiple instructions to obtain the best data throughput

• the execution throughput is boost with the conditional execution of many instructions

Talking about TrustZone, it can be said that it is an optional hardware security extension of the
different ARM processor architectures. To implement this type of extension, that is based in the
division in two different execution world, one secure and the other one not trusted, hardware
barriers are implemented in a way that the normal component, situated in the normal world, can
not access directly the secure world. More in detail, the implemented memory system has the
following features, regarding what the normal world can do with the respect of the secure one:

• if a memory region is designed to be secure, the normal world can’t access it

32

Trusted Execution Environment (TEE)

Processor mode Abbr. ARM v7 Priv. level ARM v8 Exc. level Security state

User usr PL0 EL0 Both

Supervisor svc PL1 EL1 Both

System sys PL1 EL1 Both

Abort abt PL1 EL1 Both

IRQ irq PL1 EL1 Both

FIQ fiq PL1 EL1 Both

Undefined und PL1 EL1 Both

Monitor mon PL1 EL3 Secure only

Hyp hyp PL2 EL2 Non-secure only

Figure 3.4. The different processor modes in ARM v7-A architecture (source: [13])

• system controls related to the secure world, can’t be access by the normal one

• the normal world can’t access state switching if it is not included in few approved mechanisms

An other thing to say is that, this type of division can be both physical and virtual.

Hardware Architecture of TrustZone

TrustZone has been implemented with some system additions that are used to have the guarantee
about the security restrictions but at the same time not consume so much power and respects
other advantages ARM’s design.

The AMBA3 AXI to APB Bridge is used to have secure communication between a CPU and
the peripherals because the Advanced eXtensble Interface (AXI) bus has a bit (NS bit) that
specify where the read/write operations are going to be done (secure/normal world). Also, the
Cache Controller also looks for the same bit that is usually the 33rd of the address. According
to the fact the physical cache is one for the two different world, there will be two different set of
addresses that are related respectively one to the normal world and the other one to the secure
world. The Direct Memory Access (DMA) can manage at the same time events related to the two
different world, giving full support for interrupts and peripherals. The TrustZone Address Space
Controller (TZASC) is used to associate dynamically to each AXI slave memory-mapped device
if it is secure or not. It is controlled directly by the secure world and it permits the splitting of a
unit of memory instead of asking separate secure and non-secure units. The number of partitions
that can be created is arbitrary. The TrustZone Memory Adapter (TZMA) is used to split on-chip
static memory in secure and not secure, instead the Generic Interrupt Controller (GIC) manages
the secure and not secure prioritized interrupts. The last component is the TrustZone Protection
Controller that is a signal-control unit.

Software Architecture of TrustZone

From the point of view of the software the secure world can be implemented as an operating
system that can be customized Linux or OP-TEE. So the functionality that the device must have,
are the following:

• implementation of the proper boot of the two different systems

• implementation of the proper way to make the two different worlds communicate

With the respect to the boot, ARM has implemented a secure boot to avoid that a malicious
version can be booted by the device. The secure boot is implemented building a chain of trust,
where each step can be cryptographically verified, usually starting with a vendor-specific public
key. Recapping the different steps that are done during the boot:

33

Trusted Execution Environment (TEE)

1. the most important peripherals are initialized by the ROM-based bootloader

2. the secure world can be load from a flash drive

3. the other OS boots

After the booting phase, the communication between the two world can be done using a secure
monitor that acts as a normal context switch (see Fig. 3.5). The only way that the normal
world has to access the secure one is through a hardware interrupt, an external abort signal
or the software instruction SMC (guarantee the possibility to pass message without a complete
changeover) To simplify the life of the TrustZone software at application level, ARM has also

Normal world Secure world

Non secure application

Non secure OS

Secure
application

Secure OS

Secure Monitor

SMC

Figure 3.5. Interaction from the normal world to the secure one (source: [13])

published some specification for TrustZone API that is strictly related to the communication
from and to the secure world.

In the implementation of the TrustZone for the ARMv8-M architecture, the monitor mode is
not provided (see Fig. 3.6). In this way the interrupt latency is reduced because a transition mode
has been removed. In this type of implementation, the secure state is defined not with the NS
bit but according to where the code that has to be executed is placed. This provides the feature
that a non-secure application can call a secure application, simply jumping to a specified memory
location.

Normal world Secure world

Threat
mode

Handler
mode

Handler
mode

Threat
mode

IRQ/ RETURN IRQ/ RETURN
IRQ/

RETURN

IRQ/
RETURN

FUNCTION CALL/
IRQ/ RETURN

FUNCTION CALL/
IRQ/ RETURN

Figure 3.6. TrustZone on ARM cortex-M (source: [13])

3.2.3 Intel platforms: Software Guard Extention (SGX)

Intel SGX [22] is composed by CPU instructions and a set of hardware and it is used to provide
user-level applications with specific hardware-enforced confidentiality and integrity protections.
It permits to the developer to split their app in different secure containers, referring to them like

34

Trusted Execution Environment (TEE)

enclaves, each one is hardware-protected. An SGX enclave can be considered like an isolated
container that is placed inside the running application’s address space. The main feature related
to an enclave are the following:

• the tamper-resistant property is associated to the code that is executed inside an enclave

• all the data that are associated to an enclave are protected from snooping or disclosure

The memory associated to an enclave has some features that guarantee that it is separated from
the rest of the system memory:

• hardware-enforced checks does not permit that non-enclave code can read or modify the
data inside the enclave

• hardware-based SGX Memory Encryption Engine (MEE) is used to encrypt and authenti-
cate all the data associate to the enclave before writing them to the untrusted memory

The principal benefits of this type of TEE are the following (see Fig. 3.7):

• Protection from Higher Privilege Levels: all the data and the code associated to a specify
enclave is protected from higher privilege levels, like for example OS, VMM and so on. The
only entity trusted by the enclave is the CPU hardware and the code that has to be executed
in the enclave itself. It derives is in a massive reduction of the attack surface because the
application’s trusted computing base decrease its size. More over, also if the machine will be
compromised, all the data that have been stored in some parts of the non-trusted memory,
have the property of confidentiality and integrity, so they can not be disclosure

• Attestation and Sealing: SGX includes some mechanism that can be used to check that the
running enclave is legit, both in local or remotely. This guarantees the trustworthiness of
the enclave to the challenging entity, that for example has to be known as the entity wants
to send to the enclave some sensitive data. All the data are encrypted before storing using
a sealing key derived from the SGX hardware and they can be restored only by the same
instance of the same enclave running on the same machine

APP APP APP

OS

VMM

HARDWARE

APP APP APP

OS

VMM

HARDWARE

Attack
surface

Attack surface without enclaves Attack surface with enclaves

Figure 3.7. Comparison of attack surface between application running with and
without SGX enclaves (source: [22])

The principal caveats associated to this technology are the following:

• Ring 3 (no syscalls): certain instruction will be illegal inside an enclave, due to the fact that
the protections are only related to user-level (ring 3). All the instruction that are directly
related to a VMEXIT can not be executed in an enclave.

35

Trusted Execution Environment (TEE)

• Limited Memory: there is the limitation of 128Â MB to the size of the enclave memory that
can be protected

• Overheads: it is associated principally to the operation of encryption and decryption of
enclave data when they have to be saved in memory. These operations don’t come for free.

• Licensing: to use SGX hardware, the developer has to but a license from Intel. If the license
is not bought, the developer has no access to the full functionality of the SGX, because he
can only run the enclaves in software simulation or on hardware that has the support, but
without having the full confidentiality and integrity protection of the hardware.

3.2.4 AMD platforms: Secure Encrypted Virtualization (SEV)

Secure Encrypted Virtualization [23] is a feature that has been added in the AMD architecture
which has been properly built to manage in the proper way the complexity and isolation needed
in the modern systems. It is used to boost the isolation through the usage of cryptography and
encrypting code and data. Also, this type of technology provide a way to securely protect code
from higher privileged code.

The usual security model used in tradition computing is the model associated to different rings
each one of them has the possibility to access specific resources, higher is the level, more are the
resource that the level can access. The scenario presented is different from what happens in the
SEV model (see Fig. 3.8), where code that has to be executed at different level is isolated and
for this reason there is no part that can access the resource of the other one. The higher level,
such that the hypervisor level, has not the possibility to access the resource associated to lower
level because it is protected with cryptographic isolation. This permits the lower level to be more
secure without trusting the higher level code. In this scenario the hypervisor can still interact
with the guest, but the communication path is tightly controlled.

Program code/
data

SEV security
layer

Existing CPU
security layer

Traditional
model

AMD SEV
model

Hypervisor

Guest Hypervisor Guest
(Secure)

Figure 3.8. Security layers and SEV security model (source: [23])

In the threat model built around the SEV model, consequently, an attacker can also have the
possibility to execute malware at higher level code, for example at the level of hypervisor. It can
be also assumed that the attacker can have full access to the DRAM and more in general to the
physical machine because SEV provides assurance about the protection of the guest from this
type of attacks.

SEV use cases

SEV can be used in different scenario, the principals are the following:

• Cloud: SEV technology can be used in the scenario of Infrastructure as a Service, where
there is the possibility that different owners of VMs are associated to the same physical
machine and if the isolation between the VMs fails, there will be the possibility that there
is a leakage of sensitive data. SEV can be used to boost the security features providing

36

Trusted Execution Environment (TEE)

better isolation rooted in the hardware itself. The workloads associated to each customer
will be protected cryptographically from the other ones and at the same time it will be also
protected from the hosting software. If SEV will be used, it can also help with the situation
where there is a malicious administrator that wants to access data related to a specific VM.

Cloud

Encrypted
VM

Encrypted
VM

Hosting
software

Figure 3.9. Encrypted VMs in clouds (source: [23])

• Sandboxing: SEV hardware can be used to isolate a very large portion of code, like for
example a full VM, or to do a better fined isolation, like for example, protecting a container.

SEV architecture

The SEV architecture (see Fig. 3.10) is based on the usage of a specific tags, called VM ASID,
that associate data and code to the VM that has generated them in a way that only the specific
VM can access both the parts. This tag is associated to the data when inside the SOC, and avoid
non owner VMs to access it.

VM1 VM2 VM3

Hypervisor

AES-128 Engine

KEY1 KEY2 KEY3

DRAM

Figure 3.10. SEV architecture (source: [23])

Outside the SOC the data are encrypted with AES-128 [29] using a specific key that is associ-
ated to the tag, related to the VM. Each VM will have its key, also the hypervisor, and depending
on the tag in the SOC, each VM can only access a specific key. If it tries to access data that are
associated to another VM, the key that will be used to decrypt the data is not correct, so the VM
will not be able to see the correct data. This ensure that there is strong cryptographic isolation
between the VMs.

To understand which are the pages that are encrypted the SEV architecture use a bit called
C-bit that has that functionality. One of the most important feature of SEV is that all VMs are
free to choose which data have to be private and which not. this decision is full under the control
of the guest and in the first case, the data is encrypted with the specific key of the VM, in the

37

Trusted Execution Environment (TEE)

second one the hypervisor key is used to encrypt them. In this situation each VM can liberally
decide which are the pages that they want to share and the other that instead have to be kept
private (see Fig. 3.11).

Page tables
(private)

Instruction
memory
(private)

Data
memory
(private)

Data
memory
(shared)

Guest

Memory SME
(encrypted)

HV

Memory
(shared)

Figure 3.11. Guest-VM communication example (source: [23])

The last aspect to cover about the SEV architecture is the key management. This is one of the
core aspect to obtain the proper level of security, because if for this reason an attacker would find
the different keys, all the data protected with them associated to different VMs will be disclosed.
To avoid that the hypervisor has to directly managed the different keys, there is a secure key
management interface that is provided by the SEV firmware that runs inside the AMD-SP. This
interface is used by the hypervisor to enable SEV for secure guest and perform usual activities.
To obtain the protection of SEV enabled guest, the firmware is built for guaranteeing three main
security properties:

• authenticity of the platform: used to avoid that a malicious software or a rogue can not
say to be a legit platform. The proof is given with an identity key that is signed by AMD
platform key with SEV capabilities and signed by the owner of the platform to underlying
who is that has the control on the device for the guest owner’s.

• attestation of a launched guest (see Fig. 3.12): used to ensure to the secure guest’s owner
that their guest has securely launched with SEV enabled. The firmware provides to the
guest owner a signature of some components of the SEV associate to the guest state. This
is used by the owner to check if the hypervisor has interfered with the initialization of SEV.

1. Guest image

4. Disk Decryption Key

Guest owner
3. Measurement

2. Launch

SEV firmware

Guest

Figure 3.12. Guest attestation example (source: [23])

• confidentiality of the guest’s data: encrypting the memory associated to the guest with a
specific key that is managed by the SEV firmware and it is never exported outside if the
recipient is not authenticated. This avoids that the hypervisor will take the control of the
key and consequently of the guest’s data

An other feature that can be implemented is the migration of the guest data to another SEV capa-
ble platform. All the data are passed encrypted and when the remote platform is authenticated,
also the guest encryption key are sent in a secure way.

38

Trusted Execution Environment (TEE)

SEV software implications

With the respect to the hypervisor, SEV continues to be associated to it for many VM functions,
but at the same time the reliance on the hypervisor is reduced for security. A guest with SEV
enabled, uses the hypervisor as usual, but at the same time it is protected marking what the
pages that have not to be shared as private. The management of the encryption is demanded
to the AMD-SP with which the hypervisor communicates during the runtime. This interaction
between these two entities is also done when the hypervisor has to attest the guest to create a
secure mechanism. The ASID used to run a VM is also under the control of the hypervisor, and
consequently also the selection of the encryption key.

From the point of view of the guest, the OS that is placed in an SEV-enabled guest have to
know the new hardware feature for configuring properly the page tables. An important aspect
to underlay is that the DMA has not the possibility to access guest encrypted memory. All the
DMA has to be directed to shared guest memory. It is a choice of the guest to select which pages
can be accessed by the DMA or to configure a special buffer for DMA purposes. Also, there are
no performance penalties with multicore guests supported by SEV because the hypervisor must
simply use the same ASID for all virtual CPU.

3.2.5 IBM Secure Execution (IBM Z)

IBM Secure Execution [24] for Linux is a z/Architecture security technology that is used to add to
the data of a KVM guest, protection from being inspected or modified by the server environment;
no entity can access the data associate to a guest that has been run as an IBM Secure Execution.
This technology is used to add pervasive encryption to the data that protect them while they are
at-rest, in-flight and at-use.

If the scenario is where the KVM guest is run in cloud, the principal security risks, related to
the workload are the following:

• malicious actors that might gain root privileges if there are some security problems in the
administration of the hypervisor

• Code associated to the hypervisor that has been introduced by a malicious actor

• virtual machine out of the control of the hypervisor that try to obtain hypervisor privileges

Introducing the pervasive encryption, data stored are protected and are also protected during
processing (see Fig. 3.13).

IBM Z LPAR

KVM host

Malicious
workload

KVM guest

Workload

Intruder

Malicious code

Figure 3.13. Protection of workloads with IBM Secure Execution (source: [24])

39

Trusted Execution Environment (TEE)

IBM Secure Execution components

IBM Secure Execution for Linux provides technology to defend against different security threats.
The IBM Secure Execution implements the following feature:

• Boot image protection: specific image built to be run by the ultravisor. This image is
encrypted and a crypto hash of it is calculated, with its IBM Secure Execution header. The
image encryption keys and the hashes are located there encrypted. The header also includes
the customer root key that is encrypted with the host’s public key, this is due to the fact
a host key document has to be associated to a specific host system. Inside the boot image,
can be inserted also some sensitive data, because it is encrypted.

• Memory protection: in a normal situation the hypervisor can access the data of the virtual
servers. Instead, if IBM Secure Execution has been used to run a secure way a virtual
server, the hypervisor can not access its virtual memory. If it tries to do that, its request
will be rejected and redirected to the ultravisor. After that the boot image is decrypted by
the ultravisor, it is placed in the secure memory and in this way all the memory that will
be used by the virtual server continues to be secure

• State protection: all the information that are used to describe the state of a virtual server
are protected by the ultravisor

The ultravisor is the entity that controls the execution instead of the KVM. It has the duty to do
all the stuff to maintain secure a virtual server, so for example secures its memory and manages
it and so on. The first thing that the ultravisor does is to load the image of a guest that has to
be secure ad check for its integrity after that it was decrypted. After that it set all the memory
associated to the created virtual server as secure and do the operations needed to secure the state
of it. The ultravisor is also used to protect against of manipulation of the workload and changing
of memory pages because when a page has to be swapped out by the hypervisor, before that, the
ultravisor computes the hash of this page and encrypts it without that the hypervisor can access
the page. Once the page can return to the memory, the ultravisor checks for its integrity (see
Fig. 3.14).

LPAR

KVM host

KVM guest KVM guest 1
secure exe mode

KVM guest w
secure exe mode

Guest mem Guest mem Guest mem

Firmware Ultravisor
tableGuest 1 Guest 2

PR/SM Guest
state

Protected
guest state

Protected
guest state

Ultravisor

Figure 3.14. IBM Secure Execution protects guest memory and state (source: [24])

To understand which pages are associated to a specific virtual server, the ID of the server is
used to label them. Obviously each virtual server can only access its memory pages and if it tries
to access pages related to something else, the IBM Z memory management hardware and the
firmware avoid that.

3.2.6 RISC-V Keystone

This section is used only to present a general overview of the RISC-V Keystone [25], because the
next chapter is totally used to explain in detail this type of TEE and the principal characteristics

40

Trusted Execution Environment (TEE)

of the RISC-V architecture, architecture used to run TEE associated to Keystone.

Keystone is considered to be an open-source Trusted Execution Environment that has been
developed for RISC-V processors. Keystone can be tested in different platforms:

• QEMU

• FireSim

• SiFive HiFive Unleashed board.

Keystone Enclave can be migrated to a generic RISC-V [30] processor, knowing that there will be
the necessity to make some changes on hardware to plant the silicon RoT. To check the current
capabilities of Keystone Enclave the Keystone Demo can be used. It is placed in this repository
https://github.com/keystone-enclave/keystone-demo and inside also a documentation of
the things can be found.

The principal components of which the Keystone repository is composed are the following:

• patches: something needed for to change the submodules includes in Keystone repo

• bootrom: the bootrom for Qemu virt board. It also includes the trusted boot chain

• buildroot: used to build a Linux image for testing in platforms

• docs: contains the manual

• riscv-gnu-toolchain: used to build riscv targets. It is needed also to build all the other
components

• linux-keystone-driver: the loadable kernel module for the different Keystone enclave

• linux: Linux kernel

• SM: contains the Keystone Security Monitor (SM) and the OpenSBI firmware

• qemu: contains all that is needed to properly run QEMU

• sdk: contains all the stuff needed for testing, running and building examples Enclave on
Keystone

3.2.7 Standards and frameworks to provide unified Application Pro-
gram Interfaces (APIs)

The most common standards and specification that can be used to provide Application Program
Interfaces, talking about the Trusted Execution Environment, are the following:

• Global platform specifications [31]

• Open Portable TEE [32]

Global platform specification

Global Platform [31] is an organization that has the objective to make technical standards used
for the efficient launch and management of digital services and devices that are innovative and
secure-by-design delivering to the users end-to-end different features like security, privacy and
simplicity. Its main goal is to public standardized technologies and certifications that can be used
by the various technology and service provider to realize their device and services fitting the best
their business, security and so on. One of the most important feature that is provided by the
Global Platform is the secure component specification:

41

Trusted Execution Environment (TEE)

• Device Trust Architecture: to access securely services from a device

• IoTopia Framework: to secure launch and manage device that are connected through
each other

• SESIP Methodology: used to certify IoT devices

More related to the Trusted Execution Environment, the Global Platform has also published some
papers about the specification of:

• Secure Element (SE) [26]: is a tamper-resistant platform that can be used to obtain the
secure execution of an application giving to it the confidentiality of the data. The security
features that are provided by the SE have to follow the rules and security requirements
defined by the trusted authorities. There can be different types of Secure Element:

– embedded SE

– smart microSD

– SIM/UICC

The SEs can be considered as an evolution of the traditional chip that are located in smart
cards, that have been adapted to address the new security necessities in the different devices.
Global Certification can release a certification that guarantees that the functional behavior
of a product compared with the requirements outlined by GlobalPlatform Se configurations
and spec is compliant with market interoperability. Dependently from the specific needs,
GlobalPlatform has released different documents for the SE community. Some of the topics
of these documents are the following:

– End-to-End (E2E) Frameworks

– Confidential Card Content Management (Amendment A)

– NFC Managing Entity Specification

• Trusted Execution Environment (TEE) [27]: papers in which the following security
features have been defined and have to be respected by the TEEs:

– Isolation from the Rich OS

– Isolation from the other Trusted Applications

– Application management control

– Identification and binding

– Trusted Storage

– Trusted access to the peripherals

– State-of-the-art cryptography

• Trusted Platform Services(TPSs): papers used to specify the different mechanism that
can be used to access platform services that have been offered by secure components like
SE, or TEE, from an internal or external device. A secure component inside a device can be
considered to be trustworthy and also the service offered is the same, thanks to a Chain of
Trust directly to the application that can be attested. The principal objective of these papers
is to simplify the linkage between strong security technology offered by secure components
in products built by service providers or application developers. This is obtained through
GlobalPlatform’s Device Trust Architecture (DTA).

42

Trusted Execution Environment (TEE)

Open Portable TEE

Open Portable TEE [32] is a Trusted Execution Environment that has been developed has the set
of a non-secure Linux kernel running on ARM and Cortex-A cores that use TrustZone technology.
It has the Tee Internal Core API v1.1.x that is the API that can be used by the Trusted Applica-
tions and the TEE Client API v1.0, that is the API that describes how the communication with
the TEE can be made. The non-secure OS is called Rich Execution Environment (REE) and it
is usually a Linux OS flavour.

The design of OP-TEE is principally related to the ARM TrustZone technology and so based
for example to the hardware isolation mechanism. However, each type of isolation technology
suitable for the TEE concepts and goals can be used in OP-TEE due to how it has been defined.

OP-TEE has been developed to achieve:

• Isolation: the TEE guarantees the isolation from the non-secure part and the secure one
and the uses the underlying hardware supports to defend the security of the loaded Trusted
Application from the other ones.

• Small footprint: the size of the TEE has to kept as small as possible, to be sure that it
can store in a reasonable amount of on-chip memory

• Portability: the TEE can be easily moved from a type of architecture to another one and
from a type of HW to another one. It must have also the support to be associated with
different client OSes or different TEEs.

The different components that compose OP-TEE are the following:

• secure privileged layer

• secure user space libraries used by the Trusted applications

• Linux kernel TEE framework and driver

• Linux user space library

• Linux user space supplicant daemon used for the remote services

• test suite

• examples

• build scripts

3.3 An example of coprocessor-Based TEEs in one SoC:
Apple Secure Enclave Processor (SEP)

Secure Enclave [33] is an integrated subsystem built into Apple systems on chip (see Fig. 3.11).
There is the isolation between the secure enclave and the main processor in a way that, also if the
Application Processor kernel is compromised, the sensitive user data continue to be secure. It is
composed by different parts:

• bootrom to establish RoT

• AES engine for crypto operations

• protected memory: it does not include a secure dedicated storage but implements mech-
anism to store data securely on the attached storage in a space that can’t be used by the
Application Processor and operating system

43

Trusted Execution Environment (TEE)

Application
processor

Nand flash controller

AES engine

Memory controller

TRNG

Secure
Enclave AES

Engine

PKA IC2 BUS

Secure Enclave
processor

Memory
protecion

engine

Nand flash storage DRAM

Secure non volatile storage

KEY

Figure 3.15. Overview of the secure enclave (source: [33])

The most important components that compose this TEE are the following:

• Secure Enclave processor: is the processor used by the secure enclave to do operations.
It can not be used by the normal applications and this prevents some type of attacks like
for example the side-channel attacks. It runs a specific version of microkernel, the Apple-
customized version of the L4 microkernel, that works at a lower clock speed to avoid power
attacks. It is composed of memory-protected engine, encrypted memory, secure boot, AES
engine and random number generator.

• Memory protection engine: the mechanism by which the memory of the Enclave is
protected is the following:

– at the starts, an ephemeral memory protection key is generated by the Secure Enclave
Boot Rom

– if the Secure Enclave has to write something, the key is used to encrypt data and also
an authentication tag is generated (Cipher-based Message Authentication Code)

– if the Secure Enclave has to read something, first the authentication tag is verified,
the blocks that have to be read s decrypted, otherwise an error is sent to the Secure
Enclave and the Secure Enclave is stopped until the next reboot.

The Memory protection engine is completely transparent to the Secure Enclave. It writes
and reads from the memory like if this operation were made in the normal way, not knowing
what the engine will do. This permits to not have software or performance complexity
tradeoffs.

• Secure Enclave Boot ROM: it is used to establish the hardware RoT. It associates to
the Secure Enclave specific memory region and starts the Memory protection engine

• Secure Enclave Boot Monitor: it is used to be sure that there is strong integrity on the
has representing the booted sepOS (Secure Enclave Processor Operating System)

• Root Cryptographic Keys: each Secure Enclave has associated a unique ID root cryp-
tographic key. The UID that is generated during manufacturing is inserted in the SoC. It is
generated directly by the Secure Enclave TRNG and written to the fuses using a software
that is run directly in the Secure Enclave. This makes the UID invisible outside the Secure
Enclave.

44

Trusted Execution Environment (TEE)

• AES Engine: an AES256 crypto engine is associated to each Apple device that has a Secure
Enclave and it is directly integrated in the DMA path. During the boot the sepOS created
an ephemeral wrapping key, derived with the TRNG and it is given to the AES Engine
with dedicated wires. This key can be used to mask other keys that have to be used by the
Application Processor file-system driver. When an operation of reading or writing has to
be made, the wrapped key is sent to the AES Engine that unwraps it. An important thing
to say is that the key no more unwrapped is never exposed to the software (see Fig. 3.16).

Application
processor system

memory AES engine

Secure Enclave

Nand flash storage
DMA

KEY

Figure 3.16. AES Engine (source: [33])

• Secure nonvolatile storage: the different encryption keys that are used are rooted in
entropy saved there. In the latest devices there is also the Secure Storage Component that
is used for entropy storage. The communication between the Enclave and the Secure Storage
Component is made with a protocol that guarantees authentication and encryption to access
the entropy.

3.4 An example of Coprocessor-Based TEEs in external
SoC: Microsoft Azure Sphere: Pluton

Microsoft Pluton [34] security processor is a security technology that follows the Zero Trust prin-
ciples (security strategies in designing and implementing security principles like verify explicitly,
use the least privilege access, assume breach). Pluton implements different security services:

• hardware-based RoT

• secure identity

• secure attestation

• crypto operations

Pluton can be thought as a secure subsystem that run in a system on chip that is combined with
Microsoft authored software that is the software that runs on it.

More in detail, Pluton can be considered as a secure crypto-processor used to have the code
integrity and always the latest update provided by Windows Update. It can use also to store
securely credentials, identities, and so on. It is compliant with all the functionalities that a
Trusted Platform Module must have and also with the specification of TPM 2.0.

3.4.1 Architecture overview

Pluton is composed of three different layers (see Fig. 3.17):

• Hardware: secure element that provides the TEE and all the crypto services needed

• Firmware: Microsoft firmware used to make possible the communication between the
software, the application and Pluton. During the Pluton Hardware initialization, it is loaded

• Software: drivers and app that can be used by end user to use the hardware capabilities
provided by Pluton

45

Trusted Execution Environment (TEE)

During Windows startup, the
latest version of Pluton

firmware, if available, is used,
instead

Software block

Windows OS

Pluton
drivers

Pluton
firmware

Hardware and firmware block

CPU (System-onChip)

CPU cores
Pluton Security

processor

Microsoft Pluton
firmware Pluton firmware loaded from

Flash storage

Figure 3.17. Pluton architecture (source: [34])

3.4.2 Firmware load flow

The firmware load flow is described as follows:

1. initialization of Pluton hardware and ROM

2. Loading of Pluton firmware from SPI storage

3. UEFI boot

4. UEFI handover to boot manager

5. if the version of Pluton is updated, it is loaded, otherwise the firmware is loaded from the
SPI Flash

6. Boot on Windows

46

Chapter 4

Keystone Enclave

4.1 RISC-V overview

As mentioned in the previous chapter, Keystone enclave is based on the RISC-V [30] architecture.
This is a type of instruction set architecture, and one of its most important feature is that it is
open and free, so each one that has sufficient knowledge can decide for sure to use it, but also to
modify and extend. Some important characteristics of RISC-V are the following:

• Physical Memory Protection: security oriented primitives that allow efficient isolation

• the ISA is evolving and all the changes are community driven. Keystone can decide to use
only the security features that are considered to be useful and at the same time integrates
the good idea in the standard itself

• all the stuff like open-source cores and products are associated to RISC-V. For this reason,
Keystone can be used in a very large set of platform.

At the moment Keystone is compatible with a specific subset of the RISC-V ISA:

• rv64gc-lp64d (Sv39 virtual addressing mode)

• rv32gc-ilp32d (Sv32 virtual addressing mode)

4.1.1 RISC-V Privilieged ISA

RISC-V is composed of three different privilege levels (the order used is to specify an increasing
level of the operations possible):

• user mode (U-mode)

• supervisor mode (S-mode)

• machine mode (M-mode)

It is not possible to have at the same time more than one level associated to the processor.

What a running software can do while it is in execution in the processor, is strictly associated
to the privilege level. The privilege levels are usually associated to the following usage:

• U-mode: user processes

• S-mode: kernel and also the hypervisor

47

Keystone Enclave

• M-mode: bootloader and firmware

M-mode is the most powerful privilege level. In this mode, there is the full control of all the
physical peripherals and of the interrupts. In Keystone the Security monitor (SM) runs in this
mode, that is the Trusting Computing Base of the system. There are different advantages when
the M-mode software is the TCB:

• Programmability: existing programming languages and toolchain can be used to compose
M-mode software

• Agile patching: adding patches is very simple due to the fact that the SM is all software,
so there is not the needed to make hardware-specific updates

• Verifiability: usually the hardware is more complex to check instead of the software part

4.1.2 Physical Memory Protection (PMP)

Physical Memory Protection is a strong standard primitive that has been included in RISC-V
and permits the control of the physical memory access by the M-mode. It decides which part of
the memory can access the lower privilege levels. This feature is required by Keystone to provide
the isolation between the different enclaves. This feature is implemented using a control status
register (CSR) and setting it properly. The platform design influences the number of PMP entries.
It works on physical addresses, so the capability of the S-mode to configure the virtual addresses
is not influenced.

4.1.3 Interrupt, exceptions and virtual address translation

The interrupts and the exceptions are by default received by the M-mode that can decide to
delegate the CPU scheduling and configuration to the S-mode.

Each one of the interrupts can also be enabled or disabled by the M-mode and referring to
the traps, they can be redirected to the S-mode simply change the setting of a bit of a specific
register. Making this a more efficient managing of the frequent traps, for example, can be done,
avoiding the interaction with the M-mode handler.

In RISC-V there is a memory management unit that is used to make the virtual address
translation. This component is composed of:

• page table walker

• translation look-aside buffer

In RISC-V architecture multi-level page table is implemented and an important thing to say is
that the Keystone enclaves cannot be attacked trying to modify the page table, because its enclave
has its page table that is protected from being accessed by the OS.

4.2 Customizable TEEs

Customizable TEE means that the TEE uses a common software framework to build a specialized
TEE for a porpoise, that has multiple stakeholder’s input. When the platform provider decides
to realize a specific TEE instance, it has the duty to choice different aspects, like the hardware
interface, the trust model and what are the requirements associated to the enclave programmer’s
feature.

One of the most important reason of the customizable TEE is that there is not a defined
threat model associated to different use cases, applications or the platform chosen. Implementing

48

Keystone Enclave

customizable TEE, each enclave has the possibility to define what are the security features that
have to be implemented.

Differently from Keystone enclave, the other TEE systems that are on the market, have a
specified threat model, that can’t be changed and that is directly linked with the hardware plat-
form. Using instead RISC-V architecture, introduces the possibility to have multiple concurrent
and potentially multithreaded enclaves that each one of them has associated a memory region
while at the same time there is the open of the supervisor-mode and also the MMu for the en-
clave use. In this way an enclave can liberally choose to have inside both a lightweight o a full
supervisor-mode OS.

A platform that has the support for Keystone, must have the following hardware requirements:

• device specific secret key (visible by only the boot process)

• hardware source of randomness

• trusted boot process

4.3 Keystone overview

A system that is compliant with Keystone [25] is associated to different components each one as
specific privilege mode (see Fig. 4.1):

Untrusted Enclave 1

...

Enclave N

App 1 App 1...

Operating System (OS)

Enclave App (EApp)

Runtinme (RT) 1

Enclave App (EApp)

Runtinme (RT) N

Security Monitor (SM)

RISC-V Cores Optional H/W features Root Of TrustTrusted HW

Machine
(M-Mode)

Supervisor
(S-Mode)

User
(U-Mode)

Higher
privilege

Figure 4.1. Different components in a system that implements Keystone enclaves (source: [25])

• Trusted hardware: hardware compliant with the Keystone-compatible standards RISC-V
cores that has been built by a trustworthy vendor that also provided the RoT. Some optional
features like cache partitioning, memory encryption and so on can be included.

• Security monitor: software that runs in M-mode that has a small TCB. It is used to
provide all the functions that are needed to manage the lifecycle of enclaves and to use
features related specific to the platform.

• Enclaves: environments totally isolated from all the other enclaves and the non-secure
part. Each one has associated a specific memory region that has been protected with PMP

• Enclave application: the application that runs in the enclave.

• Runtime: it can be thought as the OS of the enclave that is used to manage the system
calls, trap and so on.

Associated to Keystone, there are two different workflows (see Fig. 4.2) due to the fact that
the elements that compose the systems can be edited and modified at the same time both by

49

Keystone Enclave

the platform provider and by the enclave developer.The first one is who provides where to run
Keystone enclaves. During the provisioning stage the SM is built by it and deployed to the device.

Some duty of the platform provider are the one, two and third presented in the figure below
that are associated to the configuration, the building and the deployment of the SM with the
hardware. The second one, instead, builds the enclave using the Keystone SDK. It has to develop

Development

Eapp sources

Host sources

Enclave config

Keystone library

Keystone tools

RT sources

RT plugins

Untru. host bin.

Eapp bin.

RT bin.

Enclave hash

Keystone
framework (user)

4 5

SM sources

SM plugins

Keystone framework
(platform provider)

Platform config

Platform pubkey

Platform spec.

SM bin.

SM hash

Platform pubkey

Platform spec.

1 2

RT

Eapp

RT

Eapp

RT

Eapp

Unt OS

Host User pr User pr

Keystone SM

Trusted platform

Remote verifier

Untrusted machine

3

7

6

Provisioning

Deployment

Attestation

C
ha

lle
ng

e

R
es

po
ns

e

Ve
rif

y

Figure 4.2. Keystone workflow (source: [25])

the eapp, the host and the runtime binaries (point 4 in the figure). The remote machine that runs
Keystone receives the different enclaves components and build them. (point 5,6,7 in the figure).

Another feature that is supported by Keystone is also the remote attestation where the enclave
is measured by the SM and this measure can be provided to a remote attester for the validation
(point 8).

With the respect to the Enclave, the workflow associated to its life (see Fig. 4.3) is the following:

1. creation: when the enclave has to be started, a contiguous range of physical memory called
enclave private memory (EPM) is associated to it. This allocation is made by the untrusted
host that after it makes other operations like the initialization of enclave’s page table, of the
runtime and of the eapp. After that, the untrusted OS calls the SM asking for the creation
of a new enclave and it answers isolating and protecting the EPM adding a new PMP entry.
The status associated to the PMP is delivered to all the cores, that knowing that, guarantee
the protection of the EPM. Then, before the execution, the enclave is also measured and
verified.

2. execution: to enter into the enclave using a core, the host has to ask for and after that
the permission to access the PMP have been released by the SM to the core, that become
allowed to execute the enclave. The PMP permissions have to be changed all the time that
the core does an enter/exit operation for continues having the property isolation

3. destruction: the enclave can be destroyed at any time by the host. If it has to be done,
the EPM associated to the enclave are cleaned by the SM that also has the duty to free the
PMP entry.

4.4 Security monitor

It is the most important part of the Keystone TEE. It can be easily ported from different platforms
all implementing RISC-V architecture. The default implementation of the SM is used to provide
the isolation and ensure that some security-critical features are respected, this to reduce as possible
the attack surface.

50

Keystone Enclave

Unused memory

PT RT Eapp FreeMem

PT RT Eapp FreeMem

PT RT Eapp FreeMem

Enclave memory

Enclave memory

Enclave memory

0000...0000

Unused memory

C
re

at
e

Ex
ec

ut
e

D
es

tro
y

Memory status Core PMP status
This / Others Operations

...

Not locked

Not locked

...

...

...

...

...

Not locked

Allocate memory

Load binaries

Create enclave

Verify and measure

Run/Resume enclave

Stop/Exit enclave

Dynamic resizing

Destroy enclave

Deallocate memory

Figure 4.3. Enclave lifecycle (source: [25])

4.4.1 Memory isolation

This feature is provided by the SM using the PMP provided by the RISC-V architecture where
S-mode and U-mode can access only the memory region that are associated to them with PMP
entry (see Fig. 4.4). During the SM boot, Keystone configures the first PMP entry to be applied
to its memory region, don’t allow the U-mode and the S-mode to have the possibility to access it.

When an enclave has to be created, the SM creates a new PMP entry, that has higher priority
than OS PMP entry, with all the permission disabled. When the Enclave has to take the control,
the SM enables the PMP permission bits associated to the specific enclave and at the same time
disable all the OS PMP entry permission in a way that the enclave can only access its memory
region. When there is a context-switch that consist of exiting from the enclave, the reverse process
is done, to protect the memory of the enclave and to permit the OS to access its memory regions.
Other important features related to the SM are all the actions that have to be made for the
managing of the enclave lifecycle (creation, execution, destruction) and the related operations
that have to be made for the proper assigning and managing of the enclave memory.

4.5 Keystone Modular Runtime

The Keystone Modular Runtime is the private code that is run by the enclave in S-mode. Its
functionalities can be compared to the functionality that has a kernel, but with not so much
effort. The runtime that has been developed is called Eyrie. Due to the fact that the runtime is
executed in S-mode, it can be easily modified to implement new features needed without affecting
user applications.

Some additional modules can be added to the Eyrie RT to allow it to manage in a flexible way
the memory:

• Module for Free memory: used to allow the RT to do page table management in an un-
mapped physical memory that is not included in the enclave measurement

• Module for In-Enclave Self paging: used to implement the swapping paging mechanism.

• Module for Protecting the Page Content Leaving the Enclave: used to protect with integrity
and confidentiality the pages that have to be swapped out where there is a page fault

Some functionality modules included in Keystone are the following:

51

Keystone Enclave

...

0

1

2

N

SM OS DRAM

Priority

pmpaddrpmpcfg

...

0

1

2

N

SM OS DRAM

Priority

rwx = 111

rwx = 000

pmpaddrpmpcfg

...

0

1

2

N

SM OS DRAM

Priority

rwx = 111

rwx = 000

pmpaddrpmpcfg

...

0

1

2

N

SM OS DRAM

Priority

rwx = 111

rwx = 000

pmpaddrpmpcfg

...

0

1

2

N

SM OS DRAM

Priority

rwx = 111

rwx = 000

pmpaddrpmpcfg

Enclave
1

Enclave
2

Enclave
1

Enclave
2

Enclave
2

Shared
buffer

Enclave
2

rwx = 111

rwx = 000

a) b)

c)

e)

d)

Figure 4.4. How Keystone uses RISC-V PMP for memory isolation

• Edge call interface: mechanism that is used to access memory that is not associated to
the enclave. To perform this type of operations (read/write) there must be a buffer shared
from Eyrie RT and the host

• Multi-threading: the Eyrie RT manages the different threads associated to the eapps.

4.6 Security analysis and weaknesses

4.6.1 Protection of the Enclave

A Keystone Enclave is protected from the following types of attacks:

• Mapping attacks: The RT is considered to be trusted, so malicious virtual to physical
addresses mapping can’t be created and this means that also the mapping will be valid.
While the enclave is running, the RT also check if the layout is not compromised when the
mapping is updated. The RT also checks if the new pages that can be associated to the
enclave during the dynamic resizing are safe.

• Syscall Tampering attacks: Keystone is designed to use shielded systems to protect
against Iago attacks and system call tampering attacks.

52

Keystone Enclave

• Side channel attacks: due to the fact that the enclaves are completely isolated with the
respect to the state with the OS or the user application, there is not the possibility to
controlled channel attacks. All what happens in the Enclave can only be seen by the SM,
not the OS

4.6.2 Protection of the Host OS

The host cannot be attacked by the Enclave because it can access only its memory region due to
the PMP protection, can’t change the page table that is not associated to him, modify the state
associated to the host because when the control is passed to the enclave, the SM does a complete
context switch.

4.6.3 Protection of the SM

It is certain that the SM memory cannot be attacked by lower level components such as the Eyrie
RT and the Host OS due to the PMP protection. A DOS attack cannot be done because the SM
is only a monitor that is used as reference and it also uses techniques to be protected from Cache
attack and Time attack

4.6.4 Protection against Physical Attackers

The enclave is protected from physical attackers due to the presence of the on-chip memory
connected with RT’s paging module that guarantee the integrity and the confidentiality of the
pages that leave the on-chip memory. In the backing store there are pages that are encrypted and
also protected with the PMP.

The SM code should have placed entirely in the on-chip memory in a way that all that is
situated outside that is not considered to be trusted or there are the protections of the encryption
and the integrity.

4.6.5 Weaknesses

Keystone does not come only with some advantages, but present also some weaknesses that are
explained as follows:

• Keystone is pretty young as a project

• at the moment it can only be used in RISC-V architecture

• it is strictly related to the PMP

• there are a number of maximum enclaves that can be created

• all the project is based on the fact that the SM, the RT and the eapps are bug free: the
RT is not so easy to verify, because it is not so small as the SM and adding feature will be
always more difficult to ensure that it is without bugs.

• there are no defenses against speculative attacks

53

Chapter 5

DICE specification in Keystone:
design

5.1 Root of Trust requirements and keys generation in Key-
stone

To implement the hardware requirements needed for the DICE core, the RoT has been designed
in this way: on the real device, the platform has to be associated with a secure root device
keystore, that will be used to store the UDS in a way that is has not to be rewritable and only
the DICE can access it. For testing porpoise, it is supposed that the UDS is statically defined
in the bootloader.c file and used when there is the necessity. When the boot process ends, the
memory associated to the store of the uds variable is erased in a way that no other layer can use
or access it.

To calculate the CDI value, the simple hash function has been chosen because the standard
implementation of the Keystone project comes with already defined all the methods related to
the SHA3 family function.

SHA3(UDS ||(SM Measure))

This family of functions is considered to be perfect for the embedded systems because it is:

• strong: due to the fact the multi-round permutation f is intricate (the operation that is
used to change the state of the hash algorithm)

• cost-effective: if it is compared with other algorithms (provide better protection with the
respect to the SHA2 family algorithm)

• efficient: not so expensive to be implemented both in silicon that in software

It is based on the KECCAK cryptographic function where the input has not a defined length and
at the same time it is the user that chooses the length of the output. This function can be used
for different aims, from the support of symmetric cryptographic functions to the authenticated
encryption. Once the CDI has been calculated it is passed to the SM securely: the variable is
located in a part of the memory that is shared only by the DICE core and the SM. This is done
because the SM is considered to be trusted, and also because not having the access to the UDS,
it cannot obtain the CDI differently.

The key generation in Keystone comes for free with the default implementation that is provided
on GitHub and it is associated more in detail to the following files:

• ed25519.h

54

DICE specification in Keystone: design

• keypair.c

in which there is the definition and then the implementation of the function:

void ed25519_create_keypair (unsigned char *public_key, unsigned

char *private_key, const unsigned char *seed)

This function is based on the SUPERCOP ”ref10” implementation and it is a portable version
so all the files needed to make the function properly works are the only included in the folder
ed25519 of the Keystone project.

It creates a keypair starting from the seed that is provided of 32 bytes and provides in the two
buffer public key and private key respectively the public key and the private key, the first one
with a length of 32 bytes and the second one with a length of 64 bytes.

More in general, Ed25519 is a public-key signature system that has the following features:

• Fast single-signature verification: the number of cycles that are needed to verify a signature
is not so big

• Even faster batch verification: the time needed to batch 64 separate signature verifications
are not so big

• Very fast signing: very slow numbers of cycles to make the signature of a message

• Fast key generation: this operation is as fast as the signature operation

• High security level: its security target is of 2128

• Foolproof session keys

• Collision resilience: if some hash-function collisions have been founded, they cannot break
the system

• No secret array indices: the secret addresses in RAM are never read from the implementation
of the algorithm

• No secret branch conditions: all the jumps made due to specific conditions are never based
on secret data

• Small signatures: the size of the signatures are only of 64 bytes

• Small keys: the keypair that can be created is composed of the public key of 32 bytes and
the private key of 65 bytes

5.2 DICE concepts applied to Keystone TEEs: proposed
design

The figure below (Fig. 5.1) shows what is the design chosen to implement the DICE specification
in the Keystone project.

More in detail, the DICE core is associated to the RoT, the layer 0 of the DICE specification
is associated to the SM and the layer 1 of the architecture is related to the different Enclaves that
can be present in the platform (the enclave level embeds both the Runtine RT and the EApp).
The RoT comes provided with:

• Unique Device Secret (UDS in the figure)

• Signature of the Measure of the SM (SMSM in the figure): signature of the SM measure
provided by the manufacturer obtained with its private key

55

DICE specification in Keystone: design

DICE

LAYER0

LAYER1

ROOT OF TRUST

SECURITY MONITOR

ENCLAVE 1 ENCLAVE 16

UDSSMSM

C M

C D
DICE

LAYER0

LAYER1

ROOT OF TRUST

SECURITY MONITOR

ENCLAVE 1 ENCLAVE 16

UDSSMSM

CM

CD

ECA

Figure 5.1. Proposed design to implement DICE specifications in Keystone

• Certificate of the Manufacturer (CM in the figure): X.509 certificate in DER format of
the manufacturer issued by certification authority

• Certificate of the Device Root Key (CD in the figure): X.509 certificate in DER format
of the Device Root Key signed by the manufacturer

All these data are stored securely in memory and the Unique Device Secret can only be accessed
during the booting process. The Signature of the Measure of the SM is used to implement the
so called secure boot: a way that avoids the completion of the boot and stops the system if the
SM has been compromised. It is implemented calculating the hash of the SM and then, using
the public key of the manufacturer certificate, verifying the SMSM with the specific method. If
the verification goes well, the boot process continues, otherwise all the system is stopped and a
message is shown to the user to specify the error (see Fig. 5.2).

Signature of
the Measure
of the Security

Monitor

SM measure
computed during

booting phase Manufacturer
Certificate

Continuing
booting process

Stop boot

Verification of
the signature

WRONG

OK

Figure 5.2. Secure Boot

The Certificate of the Device Root Key is the certificate that has been issued by the manufac-
turer associated to the public part of the Device Root Key. This keypair is derived from the CDI
of the level 0 that is calculated from the measure of the SM and the Unique Device Secret. The
Certificate can be issued by the manufacturer in advance because the SM must have a specific
measure if it is not compromised, the UDS is provided directly by the manufacturer, so he can
calculate the same Device Root Key keypair and produce an X.509 cert associated to the public
part.

The SM is also the Embedded Certification Authority (ECA in the figure) that provides the
X.509 certificates associated to the Local Attestation keys that are generated with the creation of
the enclaves each one with its keypair. The ECA keypair is derived from a seed that is obtained
hashing together the CDI of the level 0 and the SM measure.

The starting point of Keystone Project does not come with already implemented the managing
of the X.509 certificates. To respect the DICE specification, this feature has been added from

56

DICE specification in Keystone: design

scratch in Keystone creating a custom library called X509 custom. This library has been built
starting from MBed tls, another library that offers cryptographic functionality and specific for
the porpoise, embeds all the functions that are necessary for the correct managing of the X.509
certs. All the functions needed to the creation, population and translation of an X.509 certificate
have been taken and inserted in X509 custom, doing all the stuff to make compatible them with
Keystone; a change made, for example, has been to replace all the calls made to the functions
free and malloc, because Keystone does not have the possibility to use them.

5.3 Hardware layer: keys and certificates

All the keys that are provided and/or generated in the hardware layer are the following:

• Device Root Key keypair: keypair that is derived from the CDI associated to the level 0.
The CDI is computed starting from the Unique Device Secret and the Trusted Compound
Identifier (TCI) of the SM. This keypair is needed to sign the X.509 certificate that is issued
during this process associated to the public key of the Embedded Certification Authority
because the public part is certified by the manufacturer and the manufacturer is certified
by a specific certification authority so a trusted chain of X.509 certs can be created.

• ECA keypair: keypair that is associated to the Embedded Certification Authority that is
derived from combining the CDI of the level 0 with the measure of the SM using a hash
function. An X.509 certificate is issued during the boot process associated to the public
part of this keypair

All the certificate that are provided/generated in the hardware layer are the following:

• Manufacturer certificate: certificate that is provided using a secure part of the memory
that is needed to check the signature made by him on the measure of the SM and also to
create with the two following certificate a trusted chain of certificates

• Device Root Key certificate: certificate that is provided that contains the public part
of the Device Root Key keypair that is signed by the manufacturer

• ECA keypair certificate: certificate that is created during the booting process related to
the public part of the associated keypair where the issuer is set to be the ”Root of Trust”
and the subject is the ”Security Monitor”. This cert is the first one in the chain that has to
be used in the different enclaves to check if the signature of the certificate related to their
local attestation keys are correct or not.

5.4 Security Monitor: keys and certificates

From the hardware layer no keys are directly provided to the SM. This is due to the fact the only
keys necessary to the SM is the keypair related to the Embedded Certification Authority. The
public part is provided in the associated certificate and the private key can be calcuated directly
by the SM because its measure is inserted as extension in the certificate above-mentioned and the
CDI of the level 0 is securely provided. Instead, the lower level provides the following certificates:

• X.509 Certificate related to the manufacturer public key

• X.509 Certificate related to the public part of the Device Root Key keypair

• X.509 Certificate related to the public part of the ECA keypair

The keys that are generated in this layer are the following:

57

DICE specification in Keystone: design

• Local Attestation keys: keypair that is created when a new enclave has to be created.
It is obtained using as a seed the first 32 bytes related of the CDI of the enclave. The CDI
of the enclave is calculated hashing the CDI of the level 9 from the measure of the enclave
that come for free from the standard implementation of Keystone Project. It is used for the
attestation report of the enclave

• Local Device ID: keypair that is created and it is used to create an identity of the enclave.
It is certified by a remote verifier that, after checking if the enclave has the excepted measure
or not, issue for this key an X.509 certificate

The X.509 certificate that are generated in this layer is the following:

• Certificate of the local attestation keys: certificate that is associated to the public
part of the keypair created during the creation of the enclave used to have the chain of certs
until the RoT

5.5 Trusted Applications: keys and certificates

Differently from what is said in the DICE specification, in the proposed design, each enclave has
not direct access to the keys associated to it, more in detail to the private part of each keypair,
so for this reason it cannot create them in any way.

What an enclave can do is to ask the SM to provide him all the keypairs that it needs but
knowing that the private part will not be under its control. When it has to do specific operation
related to the private part, for example the signature of some data, there are specific interfaces
exposed by the SM to permit the operations in a way that they are totally transparent for the
enclave: it has only to provide the public part of the keypair and the data that have to be signed.
Is the SM that will have the duty to recognize the key provided, to find the related private part,
and to do all the operations needed to make the signature and at the end to provide the signature
to the enclave. This has been made to avoid that an enclave can be moved from a machine to
another machine. If it can be done, it is not correct because each keypair is derived from the CDI
of the enclave and some other data. But the CDI of the enclave depends on the CDI of the SM
and so on until the RoT. So if the enclave can be moved from a platform to another platform
there will be a consistency problem due to what has been described above. Implementing each
enclave without that it can have the possibility to directly control its keypair, prevent this type
of error and this is the main reason for why there is the requirement for the enclave to pass from
the SM to do stuff related to the private key of some keypairs.

used to verifyManufacturer
cert

used to verify

Device Root
Key cert

used to verify ECA cert
Local

Attestation Key
cert

Supposing
self-signed

Figure 5.3. The chain from the Local Attestation Key to the Manufacturer cert
(supposing it self-signed)

The mechanism provided to make possible the interaction between the SM and the Enclave is
similar to the mechanism that is used by an operating system to manage the system call: what
happens is that an enclave can call a specific function that is associated to an SBI CALL (SBI

58

DICE specification in Keystone: design

stands for Supervisor Binary Interface and is the interface between code that runs at different
operational levels). This SBI CALL is managed by the SM sbi handler that dependently from the
code used, passes the control to a function implemented at SM level and after that the operations
are done, returns the control to the enclave if all goes well. More in detail the execution flow is
(see Fig. 5.4):

1. the EApp calls a Software Development Kit (SDK) function

2. the SDK function makes a syscall passing a specific value

3. dependently from the specific value provided, the Runtime calls a sbi function

4. this sbi function makes a SBI CALL with a specific flag that is intercepted by the sbi ecall
enclave handler that is present at SM level

5. a specific function exposed by the SM to the enclave is called dependently from the flag
provided by the Runtime

Custom app

Moving to
syscall.c
of SDK

Calling SDK
function

from main.cpp

Moving to
syscall.c

of runtime

Doing syscall of
Runtime, passing

specific value

SDK

Enclave app

Moving to
sbi.c

of runtime

Calling sbi_function
dependently from the

flag passed

Moving to
sm-sbi-opensbi.c

of SM

Doing SBI_CALL with
a flag that is intercepted

from the sbi ecall enclave
handler present at

SM level

Calling the specific
 function associated to the

flag passed from the
Runtime

Runtime

Enclave SM

Figure 5.4. The communication flow between the EApp and the SM

With the respect to the generation of different keypairs, the SM exposes a specific interface to do
that and it is for this reason that each enclave can have associated a variable number of keypairs
dependently on what it has to do to. However, each enclave has at least associated two different
keypairs that are the following:

• Local Device Id Key

• Local Attestation Key

At the same time, also the creation of X.509 certificates is forbidden in the enclave and what it
can do is only obtaining the cert chain of the Local Attestation keys passing through specific SBI
to check it.

59

Chapter 6

DICE specification in Keystone:
implementation

6.1 X509 custom library

Before starting analyzing the parts that have been implemented in the different layers of the
Keystone project, a brief overview of the X509_custom library is needed.

This library has been created to solve the problem that in the native Keystone project there
is not the possibility to manage the X.509 certificates. The only things that were made related
to this topic are the following code lines shown in the below figure (Lis. 6.1), that is something
very far from the ”real” X.509 certificate managing:

Listing 6.1. How is the original ”X.509 management”

void sm_print_cert()

{

int i;

printm("Booting from Security Monitor\n");

printm("Size: %d\n", sanctum_sm_size[0]);

printm("============ PUBKEY =============\n");

for(i=0; i<8; i+=1)

{

printm("%x",*((int*)sanctum_dev_public_key+i));

if(i%4==3) printm("\n");

}

printm("=================================\n");

printm("=========== SIGNATURE ===========\n");

for(i=0; i<16; i+=1)

{

printm("%x",*((int*)sanctum_sm_signature+i));

if(i%4==3) printm("\n");

}

printm("=================================\n");

}

The library has been built taking from an existing library called MBed TLS all the structures
and the methods that are necessary for the creation and parsing of an X.509 certificate (making

60

DICE specification in Keystone: implementation

all the stuff needed to make the code portable). The most important structures that have been
introduced in Keystone are:

• mbedtls_x509write_cert: structure that is used to embed together all the info that have to
be inserted in an X.509 certificate like the subject, the issuer, the key used to the signature,
the public key that has to be put in the certificate, the validity and the extensions.

• mbedtls_x509_crt: structure used to parse an X.509 cert in DER format inserting all the
info in the specific field. This is the structure associate to an X.509 cert. It contains all
the fields that a cert must have. With the respect to the standard implementation, a new
important field called hash has been inserted. This field contains the measure of what layer
of the Keystone architecture the certificate is associated to: for example if the certificate is
associated to the Local Attestation key of an enclave, this field contains the hash value of
the enclave.

The principal methods that are used to manage the X.509 certs are the following:

• void mbedtls_x509write_crt_init(mbedtls_x509write_cert *ctx): this method is
used to clean the memory of the mbedtls_x509write_cert variable and to set the version
of the certificate to 3

• int mbedtls_x509write_crt_set_issuer_name_mod(mbedtls_x509write_cert *ctx,

const char *issuer_name): this method is used to set who is the issuer of the certificate

• int mbedtls_x509write_crt_set_subject_name_mod(mbedtls_x509write_cert *ctx,

const char *subject_name): this method is used to set who is the owner of the certificate

• void mbedtls_x509write_crt_set_subject_key(mbedtls_x509write_cert *ctx,

mbedtls_pk_context *key): this method is used to set the public key that will be inserted
in the certificate

• void mbedtls_x509write_crt_set_issuer_key(mbedtls_x509write_cert *ctx,

mbedtls_pk_context *key): this method is used to set the private key that will be used
to sign the certificate, so the key of the issuer

• int mbedtls_x509write_crt_set_serial_raw(mbedtls_x509write_cert *ctx,

unsigned char *serial, size_t serial_len): this method is used to set the serial of
the certificate

• void mbedtls_x509write_crt_set_md_alg(mbedtls_x509write_cert *ctx,

mbedtls_md_type_t md_alg): this method is used to set the hash algorithm used to make
the hash of the certificate before making the signature

• int mbedtls_x509write_crt_set_validity(mbedtls_x509write_cert *ctx,

const char *not_before, const char *not_after): this method is used to set the va-
lidity of the certificate

• int mbedtls_x509write_crt_set_extension(mbedtls_x509write_cert *ctx,

const char *oid, size_t oid_len, int critical, unsigned char *val, size_t

val_len): this method is used to set the hash value of the component as extension of the
X509 certificate

• int mbedtls_x509write_crt_set_basic_constraints(mbedtls_x509write_cert *ctx,

int is_ca, int max_pathlen): this method is used to add an extension to the final X.509
cert, that is needed when that certs are used to sign another certificate, so the subject acts
as a Certification Authority

• int mbedtls_x509write_crt_der(mbedtls_x509write_cert *ctx, unsigned char

*buf, size_t size, int (*f_rng)(void *, unsigned char *, size_t), void

*p_rng): this method is used to create an X.509 certificate in DER format, starting from a
variable of type mbedtls_x509write_cert and signing it with the private key of the issuer
provided in the structure

61

DICE specification in Keystone: implementation

• int mbedtls_x509_crt_parse_der(mbedtls_x509_crt *chain, unsigned char *buf,

size_t buflen): this method is used to parse an X.509 certificate in DER format in a
variable of type mbedtls_x509_crt

This library has been introduced in all the layers of the Keystone architecture where it is necessary:
the booting phase is one of them but also at SM level.

- Owner
- Issuer

- Public key of the
cert

- Private key of the
issuer

-...

All the info that the X509
cert must contain

Signing
the DER cert

with the
Issuer SK

mbedtls_x509write_cert
structure

X509 DER format (array
of bytes)

...
.

mbedtls_x509_crt
structure

Issuer SK
contained in the

structure

Figure 6.1. The flow to obtain a mbedtls_x509_crt variable

One of the most important changes was to make compatible the original files with the em-
bedded functions of signature and verification already present in Keystone. In fact, the standard
implementation of MBed TLS does not foresee the usage of ed25519 and to make it possible some
adjustments have been made to allow the correct functioning.

With this has been also defined the new type of extension that can be attached to the X.509
certs to allow the insertion of the hash value, extension not previously present and consequently
also the methods of creating and parsing the certs and the structure above described have been
modified accordingly. The other type of extension ported in the custom library is the extension
related to the possibility of using a private key to sign other certs, so considering the subject like
a Certification Authority.

6.2 DICE Engine

This section is used to describe all the stuff that have been made to implement the DICE Engine
in the Keystone project. The first thing that can be said is that the original Keytone project
comes with already defined a file, called test dev key.h that contains a keypair that is used
in the project. The private part of this keypair as been associated to the so call in the DICE
architecture, Unique Device Secret, instead the public part has been considered to be the public
key inserted in the X.509 certificate of the manufacturer. (see Fig. 6.2)

Public key of the
keypair provided

Private key of the
keypair provided

UDS

Public key of the
manufacturer

Figure 6.2. How the keypair of the original Keystone project is used

62

DICE specification in Keystone: implementation

With the respect to the DICE specifications, the platform has to come with already the
certificate of the manufacturer and the certificate associated to the Device Root Key. The first
one has been created using a specific script that produces the DER format of the cert. After that
it has been saved and inserted in a specific pre-defined variable that is provided to the booting
stage. In this test situation, it is supposed that this cert is self-signed by the manufacturer, but in
the real case it is signed by a Certification Authority of which the certificate can be easily found
and so on until the real RoT. In the same way the certificate of the Device Root Key can be
calculated and provided and this is done simulating the real scenario, but in the booting phase
this certs in DER format is calculated again because the public key inserted on it, depends on
the measure of the CDI of level 0 that depends on the measure of the SM. So, until the SM is
modified, to make all the things working there is necessity to compute ”on the fly” this cert (see
Fig. 6.3).

Provided to

Manufactuer Cert
signed by CA

Provided to

Device Root Key cert
signed by Manufacturer

Root of trust

REAL SCENARIO

Provided to

Manufactuer Cert
self-signed

Computed on the fly

Computed on the fly

Root of trust

IMPLEMENTED SCENARIO

Device Root Key cert
signed by Manufacturer

Provided to

Sign of the measure
of the Security Monitor

Sign of the measure
of the Security Monitor

Figure 6.3. The real scenario vs the implemented scenario

Entering more in detail on what happens during the booting phase, that is the hardware
layer that implements the DICE engine, can be said that the first thing that is done is the
implementation of the secure boot mechanism (the signed measure of the SM is calculated ”on
the fly” for the same reason written above) (see Fig. 6.4):

1. the SM is measured

2. the signature is verified

3. if the signature is ok, the booting process continues and the end, if no other errors arrive, it
returns 0, otherwise the value 1 is returned and the process is stopped with the next step:

(a) the bootloader() function called by the bootloader.S file, ends and the return value,
that is stored in the a0 register is saved in the s10 register.

63

DICE specification in Keystone: implementation

(b) the file fw_base.S is called and it does all the operations that have to do, until the end,
where the content of the s10 register is controlled and if it is wrong (1), it calls a specific
function present in the file sbi init.c, void to_be_stopped(struct sbi_scratch

*scratch, bool flag)

(c) this function resumes the normal start calling the function sbi_init(), but passing it
a flag with value 0 that symbolizes that the boot has to be stopped

(d) the function sbi_init sends the same flag to init_coolboot(), that is the first place
where the process can be stopped calling the function sbi_hart_hang() and printing
to the terminal an error message.

1
calls

3
insert return value in s10 and gives

the control to

STARTING POINT
booloader.S

int bootloader() in
bootloader.c

4A
If s10 is 1 (error)

Fw_base.S

5
calls with flag

set to 0

void to_be_stopped(...)
in sbi_init.c

6
calls passing the flag

void sbi_init(...)

6A
if flag is set to 0

void
init_coldboot(...)

Stop booting
and error
message

4B
if s10 is 0 (boot ok), calls

without setting flag

Continue
booting

6B
if flag not 0

Figure 6.4. Secure boot flow

After that what is done is the following (see Fig. 6.5):

• The CDI of level 0 is calculated from the UDS and the measure of the SM

• the Device Root Keys are derived from the CDI

• the keypair associated to the Embedded Certification Authority is generated from the hash
obtained concatenated the CDI value with the measure of the SM

• the X.509 certificate in DER format related to the public key of the ECA keypair is issued
and signed with the private key of the Device Root Key keypair

• what has to be passed to the SM is inserted in the specified variables

• all memory related to the secret data (UDS, DRK sk, ECA sk) is freed

Due to the fact that each layer of Keystone is built independently, there is a specific mechanism
(Lis. 6.2) that is used to make possible the communication between them, more in detail associated
to the transfer of shared variables. This mechanism is related to some specific .ldS files (.lds is
the extension of Linker Script file) that are used to specify where in memory the variables have
to be stored and how much space they need. In this way, specifying the same linking option both
in the bootloader and in SM, allow the two different layers to share variables. The variables that
have to be passed from the booting stage to the SM are:

• CDI of layer 0

• the X.509 certificate of the manufacturer

• the length of the certificate of the manufacturer

• the X.509 certificate of the Device Root Key

64

DICE specification in Keystone: implementation

SM measure UDS

CDI L0

SM measure

SHA3
FUNCTION

SHA3
FUNCTION

ECA keypair

Generation of the
cert

Certificate
of the ECA

keypair

Creation of the
Device Root Keys

Private key used to sign

Device Root
Keys

Figure 6.5. What happens during booting stage

• the length of the certificate of the Device Root Key

• the X.509 certificate of the ECA key

• the length of the certificate of the ECA key

Listing 6.2. The configuration file for the linker

. = 0x801ff000; /* the last page before the payload */

.

.

/* 64 Bytes : security monitor’s signature by device */

PROVIDE(sanctum_CDI = .);

. += 0x40;

/* 512 Bytes : security monitor’s signature by device */

PROVIDE(sanctum_cert_man = .);

. += 0x200;

/* 512 Bytes : security monitor’s signature by device */

PROVIDE(sanctum_cert_sm = .);

. += 0x200;

6.3 Security Monitor

When the control passes to the SM, with the respect to the original implementation, at the be-
ginning it stores the variable that the Booting phase as passed to it (if all goes well) in some

65

DICE specification in Keystone: implementation

internal variables and then parses all the certificate in DER format inside variables of type
mbedtls_x509_crt. All the process stops, if there are some problems with the parsing of the
certificates (see Fig. 6.6).

Saving data in
internal variables

Parsing the der
format certs to obtain

X.509 variables

Something
goes
wrong

All goes wellChecking the
correctness of the
parsing process

Stop start SM
process

Continue start SM
process

Figure 6.6. The initial operations at SM level

At this point the content of the different certificates can be print on the screen to check
for example if some fields inserted in the original mbedtls_x509write_cert has been correctly
inserted and passed. After this a more important thing is that the SM has to do are:

1. To check that all the X.509 certificates are formally correct and does not have some needed
fields missing

2. To verify the signature of each certificates until the certificate of the manufacturer that it is
supposed to be the RoT in the implementation. To make this thing possible, each variable
of type mbedtls_x509_crt has a specific field called tbs that contains the data on which the
signature has been made. This field is built during the parsing process and if the certificate
has been manipulated what has been inserted in the field is not more the original data that
have been used to make the signature, so the verification will fail. So, this field has to be
used in the first moment to do the hash and this hash will be used to verify the signature
of the certificate using the correct public key. If for some reason the verification of each one
of the certificate does not go well the all the system stops working (see Fig. 6.7).

mbedtls_x509_crt
structure

Computing
hash

tbs field

signature
field

...

Verifying
signature

pk field

mbedtls_x509_crt
structure associated to
the cert of the issuer

Figure 6.7. How the signature verification process works

3. To derive the private key of the Embedded Certification Authority, starting from the
CDI of the level 0 and itself measure that can be found in the field called hash of the
mbedtls_x509_crt variable obtained parsing the ECA key certificate (see Fig. 6.8).

After this, other important operations that have been implemented at the SM layer are the
operations that have to be done when there is the creation of a new enclave. In fact, for each
enclave that has to be created, the associated CDI has to be calculated starting from the CDI
provided from the Booting stage to the SM and the TCI of the specific enclave. This value

66

DICE specification in Keystone: implementation

mbedtls_x509_crt structure
related to the ECA

Extension
containing

measure of the
SM

SHA3
FUNCTION

CDI securely
provided

ECA keypair
Extensions

Figure 6.8. How the private key of the ECA keypair is calculated

is stored in a variable added in the structure used to manage the information related to the
enclave, not present in the starting implementation. Moreover, also a keypair has been created by
default for each enclave, the Local Attestation Key that has also to be certified by the Embedded
Certification Authority always during the creation process. The seed used to obtain this keypair
are the first 32 bytes of the CDI of the enclave (see Fig. 6.9).

CDI L0 TCI of the
enclave N

SHA3
FUNCTION

CDI of the
enclave N

Computing Local
Attestation Keypair using

first 32 bytes of CDI

Generating X.509
cert in der format

related to the keypair
created

Used to sign

X.509 certificate
of the ECA

Figure 6.9. Computing the CDI of the enclave and its Local Attestation key

Other variables added to the enclave structure are the following:

• pk_ldev and sk_ldev: keypair used to store the Local Device keypair, that is a keypair
that have to be certified by a remote attester

• sk_array and pk_array: array used to store all the keypairs associated to the specific
enclave

The last things that have been implemented to satisfy the proposed design are two different
functions, that can be called by the different enclaves to satisfy their necessities in terms of the
management of their keypairs. These methods are called following the schema explained in the
previous chapter and are:

• unsigned long create_keypair(enclave_id eid, unsigned char* pk, int seed_enc):
function called by the enclave to ask the SM to create a new keypair that will be stored in
the two related array (see Fig. 6.10).

67

DICE specification in Keystone: implementation

Asking for the
creation of a keypairENCLAVE N

SM LEVEL Creation of the
keypair

Storing the keys in
the related array of

the enclave

sks array of
enclave N

pks array of
enclave NProviding back the

public key of the
keypair

Obtaining the public
key of the new

keypair

Figure 6.10. Creation of a keypair for a specific enclave

• unsigned long get_cert_chain(enclave_id eid, unsigned char** certs, int*

sizes): function used to get the cert chain and all the related information.

• unsigned long do_crypto_op(enclave_id eid, int flag, unsigned char* data,

int data_len, unsigned char* out_data, int* len_out_data, unsigned char*

pk): function that acts as an interface that integrates some cryptographic operations that
can be made with private keys. The enclave specifies what has to be one passing a specific
flag. One of the function is the creation of the signature related to the TCI of the enclave
and the public part of the Local Device key used to obtain the remote certification. The
SM knows what is the enclave that asks for the operation, so can easily find the related
Local Attestation key that has to be used for the porpoise. The other one is used to make
a generic signature of some data given by the enclave in hash format, using the private
key associated to the public one always provided by the enclave. Other functions can be
implemented if they will be needed.

68

Chapter 7

Test sets for the proposed solution

This chapter is used to show some tests that have been made on the proposed solution to integrate
the DICE specifications into the Keystone project. Two types of tests are performed:

• Functional tests: tests used to show the features that have been added in the Keystone
project

• Performance tests: tests used to see what is the overhead added into the Keystone project
from the features introduced to satisfy the DICE specifications

7.1 Testbed description

All the features that have been introduced from the booting phase to the SM, have been success-
fully tested using the QEMU emulator and the script provided by the original Keystone project,
that allow the user to launch it and check what has been done.

So, all the test can be done in a single physical machine, that must support the configuration
and the installation of the Keystone project. More in detail the machine used to perform all the
tests is the following: Lenovo Ideapad 720s 13-ARR. This machine has:

• CPU: AMD Ryzen 5 2500u with radeon vega gfx x 8

• Storage: 1TB

• RAM: 8GB

• OS: Ubuntu 20.04.6 LTS 64 bit

7.2 Functional tests

Different functional tests have been done to check if the features added work properly.

The first test presented here is the test used to see the Secure Boot mechanism: to simulate the
failure of the verification of the signature, provided by the manufacturer, of the SM, the measure
computed during the booting process has been modified changing a byte with a random value. In
this way when the function provided by the ed25519.h to check the signature is called, it returns
the 0 value that means that there was a problem verifying it. After this the mechanism discussed
in the previous chapter related to the Secure Boot when there is a problem, starts, and what can
be seen launching QEMU is the shown in the Fig. 7.1.

Arriving to the SM level, the first test that has been implemented is the test related to a
possible failure that can happen when the X.509 certificate generated during the booting process

69

Test sets for the proposed solution

Figure 7.1. Secure Boot test

associated to the keypair of the Embedded CA has to be parsed from the DER format into the
specific structure. The test has been achieved changing in the related parsing function the field
related to the version of the certificate, simulating that there was an error in a field when the
certificate has been produced. If this type of error occurs, like in the other cases, the system
stops, otherwise if all the certificate has been correctly parsed, a message on the screen is printed
(see Fig. 7.2).

Figure 7.2. Failure during parsing

With the same philosophy, also a test to see if there is an error in a field of the certificate after
that it has been parsed, has been made. The certificate structure has lots of fields, but someone
of these are mandatory, for example the public key, the subject, the issuer, the expiration date
and so on. It can happen that the certificate is correctly parsed but some of these fields are not
present. So a function used to check the correct fulfillment is called after the parsing process and
if there is at least one error, a message related to that is printed on the screen and the booting
process stops (Fig. 7.3)

If no error occurs, a message that the validation process has gone well is printed on the screen.
The most important test made is the test related to the verification of the different signatures
of the certificates from the cert of the ECA to the manufacturer certificate, a test made to be
sure that no changes have been done to the X.509 certificates. Also in this situation an error
determines the stop of the system and otherwise a message is printed (Fig. 7.4). To be in this
scenario, a byte of one of the provided certs has been changed in a way that the signature cannot
be verified.

After this, a test that has been made is related to check if the value inserted in the extension
of the Embedded CA certificate is the same value of the SM measure passed from the original
implementation of Keystone. This test is very useful because allow to understand if the different
features have been correctly made (see Fig. 7.6 and Fig. 7.5); to obtain equivalent values, the
functionalities that have to work properly are:

• creation of X.509 extension with the proper value

70

Test sets for the proposed solution

Figure 7.3. Failure during validating fields

Figure 7.4. Failure during verifying certs

• creation of the structure mbedtls_x509write_cert with the associated value

• parsing in DER format of the above structure

• parsing into mbedtls_x509_crt structure

• exchanging of shared variables between different layers

The last test done is related to check if the different SBIs exposed by the SM to the enclave work
properly. What has been implemented are three different interactions between the EApp and the
SM, each one used to check a specific function provided:

• the first one have been done to see the creation of a new keypair giving to the SM a specific
seed

• the second one have been done to obtain from the SM the full chain of the cert in DER
format with their length

71

Test sets for the proposed solution

Figure 7.5. Failure during checking the equivalence of the SM measure with the value of the
original implementation of Keystone

Figure 7.6. Correct start of the system

• the third one have been done to test all the methods of the crypto interface implemented in
the SM

Each one of this test as associated to a .sh file present in the scripts folder of the build directory
where the Keystone project has been installed except of the last one that is associated to a package
(.ke). The different files are:

• error_sb.sh: to see what happens if the SM is compromised

• error_parsing_crt.sh: to see what happens if the certs cannot be correctly parsed

• error_validating_crt.sh: to see what happens if the parsed certs don’t have the same
required fields

• error_verifying_crt.sh: to see if the chain cannot be entirely verified

72

Test sets for the proposed solution

• correct.sh: to see what happens if the system can be correctly launched

• hello-native.ke: to check the new SBIs

More detail on how to launch this scripts and the package will be given in the user’s manual.

7.3 Performance test

To test how the performance have been downgraded due to the introduction of all the features
needed to implement the DICE specifications, the number of ticks necessary to enter a spe-
cific situation have been taken. This is possible thanks to a specific library, called sbi time.h

that is provided with the original Keystone project and gives the user to know the number
of ticks passed from when the timer has been activated using a specific function called u64

sbi_timer_value(void). Using these, the time has been taken in three different situations:

• when the process to start the SM is initialized

• when the SM has been initialized

• when the process to start the enclave is initialized

• when the enclave has been initialized

These numbers have been used to generate three different comparisons that show the difference
from the original project and the custom one in terms of how much time is needed to: making
the booting process, starting the SM and starting an enclave.

In the figure (Fig. 7.7), it can be seen that there is a performance penalty due to the different
operations that have been introduced in the booting stage; the order of magnitude of the value
doesn’t change but at the same time it increases of 40% more or less. This is due to the fact that
an X.509 certificate has to be made and parsed in DER format, but the most expensive operation
is the measurement of the SM and the verification of the signature provided by the Manufacturer,
as it can be seen in the second situation.

Test Modified Keystone Original Keystone

Test 1 20.314.525 13.599.866

Test 2 21.823.525 14.099.286

Test 3 20.091.522 14.528.310

Test 4 22.832.593 13.633.591

Test 5 20.149.767 11.472.875

Test 6 20.146.785 12.342.890

Test 7 20.098.723 12.563.710

Test 8 19.765.232 13.986.195

Test 9 21.234.128 11.328.564

Test 10 21.988.187 12.139.648

Test 11 22.008.453 12.123.129

Test 12 20.109.765 11.004.308

Test 13 20.008.100 11.323.679

Test 14 21.985.321 11.783.211

Test 15 20.098.434 13.337.862

Test 16 20.653.871 12.490.765

Test 17 20.121.119 14.004.003

Test 18 20.008.045 11.239.652

Test 19 20.121.289 13.289.544

Test 20 21.787.199 13.288.448

0

6.000.000

12.000.000

18.000.000

24.000.000

Number of ticks to enter the SM starting process

Test 1 Test 3 Test 5 Test 7 Test 9 Test 11 Test 13 Test 15 Test 17 Test 19

Modified Keystone Original Keystone

Figure 7.7. Comparison of the time needed to complete the booting process

Differently from the previous comparison, the performances are subject to an important de-
terioration (Fig. 7.8): the order of magnitude of the ticks changes and this is due to the fact
that during the starting of the SM all the chain of the certificates, from the cert of the ECA

73

Test sets for the proposed solution

Test Modified Keystone Original Keystone

Test 1 206.786 19.097

Test 2 200.527 20.736

Test 3 204.906 20.012

Test 4 200.202 18.927

Test 5 214.661 20.066

Test 6 201.123 21.167

Test 7 204.189 20.682

Test 8 200.186 20.789

Test 9 200.985 20.099

Test 10 205.673 19.764

Test 11 202.349 19.875

Test 12 203.784 20.784

Test 13 207.410 20.176

Test 14 200.178 20.872

Test 15 199.489 21.489

Test 16 199.897 19.875

Test 17 201.586 19.921

Test 18 202.108 19.450

Test 19 205.321 19.089

Test 20 203.129 20.765

0

55.000

110.000

165.000

220.000

Number of ticks to start the SM
Test 1 Test 3 Test 5 Test 7 Test 9 Test 11 Test 13 Test 15 Test 17 Test 19

Modified Keystone Original Keystone

Figure 7.8. Comparison of the time needed to start the SM

to the manufacturer cert, has to be verified. Consequently, two times have to be made hashing
operations and for two times a signature has to be verified. Checking how far are the values in
the tests, can be deduced that these types of operations are very expensive, differently from the
operations of issuing X509 cert, that have not done in this phase: comparing the results of the
first test with these, it can be deduced that these types of operations are not so CPU-consuming.

In the last comparison (Fig. 7.9) associated to the time needed to create an enclave, it can
be seen that the performances are not so affected after the introduction of the new operations.
These are related principally to the creation of the X.509 certificate in DER format of the Local
Attestation Key associated to the enclave. The order of magnitude doesn’t change and the values
don’t defer so much, other proof that both the issuing of an X.509 cert and the generation of
keypairs are operations CPU-friendly.

Test Modified Keystone Original Keystone

Test 1 4.181.234 3.841.234

Test 2 4.156.734 3.772.367

Test 3 4.201.289 3.785.656

Test 4 4.008.962 3.765.323

Test 5 4.268.945 3.912.300

Test 6 3.984.390 3.775.050

Test 7 4.253.219 3.881.254

Test 8 4.027.858 3.764.040

Test 9 4.065.187 3.905.670

Test 10 3.986.445 3.761.139

Test 11 4.056.723 3.784.556

Test 12 4.067.411 3.795.102

Test 13 4.110.098 3.726.743

Test 14 4.014.378 3.897.832

Test 15 4.049.089 3.885.121

Test 16 4.023.787 3.821.289

Test 17 4.133.334 3.784.400

Test 18 4.212.389 3.891.267

Test 19 4.123.429 3.874.331

Test 20 4.005.655 3.901.004

3.200.000

3.475.000

3.750.000

4.025.000

4.300.000

Number of ticks to start an enclave
Test 1 Test 3 Test 5 Test 7 Test 9 Test 11 Test 13 Test 15 Test 17 Test 19

Modified Keystone Original Keystone

Figure 7.9. Comparison of the time needed to start an enclave

74

Chapter 8

Conclusions

All that has been presented in this work has been done to show the state of the art of the actual
technologies present in the market, related to the TEEs and also to exhibit what are the main
characteristics of the DICE specification and of the Keystone enclave.

The design proposed can be implemented in the reality to obtain all the security features that
are needed to be sure about the integrity of a platform and its correct operation. Using the
Keystone project as the basis for the introduction of the DICE Engine, allow the users to have
under their hands secure environment that are completely modifiable depending on the different
needed, property not present using proprietary technology like for example Apple Secure Enclave.

The RISC-V architecture, used to run the Keystone project, is perfect to be used on the
Internet of Things devices, due to its flexibility and the property to be adjustable. All that has
been introduced, compared with the original Keystone project, is something that can be managed
also in devices that are not so powerful, also if the performances a little make worse, because to
be properly implemented the DICE specification foresees the presence of X.509 certificates that
have to be verified in the different layers.

The goal presented in the Introduction can be considered completed and this work can be the
starting point for other projects due to what has been inserted to respect the DICE specification;
an example can be the dynamic attestation: process implemented while the different enclaves are
running that measures them, certifies the measures with the LAK and then provides the TCIs
to a remote verifier that knows the excepted value and check if what has been obtained from
the platform is correct or not, implementing a way to stop the specific enclave if it is under the
control of a malicious actor. Others future works can be for example the implementation of a
mechanism that check statically when an enclave is created if it is compromised or to make a
remote attestation of a specific key created by the SM for the enclave.

75

Bibliography

[1] “About TCG”, https://trustedcomputinggroup.org/about/
[2] TCG, “Hardware Requirements for a Device Identifier Composition

Engine”, https://trustedcomputinggroup.org/wp-content/uploads/

Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_

For-Publication.pdf

[3] Rohit, S. Kamra, M. Sharma, and A. Leekha, “Secure Hashing Algorithms and Their Com-
parison”, 2019 6th International Conference on Computing for Sustainable Global Develop-
ment (INDIACom), New Delhi (India), March 13-19, 2019, pp. 788–792

[4] The TCG group, “DICE Layering Architecture”, https://trustedcomputinggroup.org/
wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf

[5] L. A. Levin, “The tale of one-way functions”, Problems of Information Transmission, vol. 39,
Jan 2003, pp. 92–103, DOI 10.1023/A:1023634616182

[6] S. S. D.Cooper, NIST, “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile”, RFC-5280, May 2008, DOI 10.17487/RFC5280

[7] Z. Meng and Y. Wang, “Asymmetric Encryption Algorithms: Primitives and Ap-
plications”, 2nd International Conference on Electronic Technology, Communication
and Information (ICETCI), Changchun (China), May 27-29, 2022, pp. 876–881, DOI
10.1109/ICETCI55101.2022.9832032

[8] S. Chandra, S. Bhattacharyya, S. Paira, and S. S. Alam, “A study and analysis on sym-
metric cryptography”, International Conference on Science Engineering and Management
Research (ICSEMR), Chennai (India), November 27-29, 2014, pp. 1–8, DOI 10.1109/IC-
SEMR.2014.7043664

[9] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital Signature Algorithm
(ECDSA)”, International Journal of Information Security, vol. 1, Aug 2001, pp. 36–63, DOI
10.1007/s102070100002

[10] X. Zhou and X. Tang, “Research and implementation of RSA algorithm for encryption and
decryption”, 6th International Forum on Strategic Technology, Harbin (China), August 22-
24, 2011, pp. 1118–1121, DOI 10.1109/IFOST.2011.6021216

[11] The TCG group, “DICE Attestation Architecture”, https://trustedcomputinggroup.org/
wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf

[12] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Environment: What It is,
and What It is Not”, IEEE Trustcom/BigDataSE/ISPA, Helsinki (Finland), August 20-22,
2015, pp. 57–64, DOI 10.1109/Trustcom.2015.357

[13] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “TrustZone Explained: Archi-
tectural Features and Use Cases”, 2016 IEEE 2nd International Conference on Collaboration
and Internet Computing (CIC), Pittsburgh (PA,USA), November 1-3, 2016, pp. 445–451,
DOI 10.1109/CIC.2016.065

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A virtual machine-
based platform for trusted computing”, Operating Systems Review (ACM), vol. 37, Septem-
ber 2003, pp. 193–206, DOI 10.1145/945445.945464

[15] OMTP Limited, “Advanced Trusted Environment”, http://www.omtp.org/OMTP_

Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf

[16] Global platform, “TEE System Architecture v1.3”, https://globalplatform.org/

specs-library/tee-system-architecture/

[17] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “TrustZone Explained: Archi-
tectural Features and Use Cases”, 2016 IEEE 2nd International Conference on Collaboration

76

https://trustedcomputinggroup.org/about/
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://doi.org/10.1023/A:1023634616182
https://doi.org/10.17487/RFC5280
https://doi.org/10.1109/ICETCI55101.2022.9832032
https://doi.org/10.1109/ICSEMR.2014.7043664
https://doi.org/10.1109/ICSEMR.2014.7043664
https://doi.org/10.1007/s102070100002
https://doi.org/10.1109/IFOST.2011.6021216
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/CIC.2016.065
https://doi.org/10.1145/945445.945464
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
https://globalplatform.org/specs-library/tee-system-architecture/
https://globalplatform.org/specs-library/tee-system-architecture/

Bibliography

and Internet Computing (CIC), Pittsburgh (PA, USA), November 1-3, 2016, pp. 445–451,
DOI 10.1109/CIC.2016.065

[18] MITRE, “Screen capture attack”, https://attack.mitre.org/techniques/T1113/
[19] M. Srivastava, A. Kumari, K. K. Dwivedi, S. Jain, and V. Saxena, “Analysis and Implemen-

tation of Novel Keylogger Technique”, 5th International Conference on Information Systems
and Computer Networks (ISCON), Mathura (India), October 22-23, 2021, pp. 1–6, DOI
10.1109/ISCON52037.2021.9702433

[20] M. A. Ivanov, B. V. Kliuchnikova, I. V. Chugunkov, and A. M. Plaksina, “Phishing Attacks
and Protection Against Them”, IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (ElConRus), St. Petersburg and Moscow (Russia), January 26-29,
2021, pp. 425–428, DOI 10.1109/ElConRus51938.2021.9396693

[21] Microsoft corporation, “System Management Mode deep dive: How SMM isolation
hardens the platform”, https://www.microsoft.com/en-us/security/blog/2020/11/12/
system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/

[22] J. Sobchuk, S. O’Melia, D. Utin, and R. Khazan, “Leveraging Intel SGX Technology to
Protect Security-Sensitive Applications”, IEEE 17th International Symposium on Network
Computing and Applications (NCA), Cambridge (MA, USA), November 1-3, 2018, pp. 1–5,
DOI 10.1109/NCA.2018.8548184

[23] David Kaplan, Jeremy Powell, Tom Woller, “AMD MEMORY ENCRYP-
TION”, October 18, 2021, https://www.amd.com/system/files/TechDocs/

memory-encryption-white-paper.pdf

[24] IBM corporation, “Introducing IBM Secure Execution for Linux 1.3.0”, November, 2022,
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf

[25] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: an open framework
for architecting trusted execution environments”, Heraklion (Greece), April 17, 2020, pp. 1–
16, DOI 10.1145/3342195.3387532

[26] Global Platform, “Introduction to Secure Elements”, May, 2018, https://globalplatform.
org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf

[27] Global Platform, “Introduction to Trusted Execution Environments”,
May, 2018, https://globalplatform.org/wp-content/uploads/2018/05/

Introduction-to-Trusted-Execution-Environment-15May2018.pdf

[28] P. B. Hemanthkumar, R. A. Shreekar, F. T. Josh, and R. Venkatesan, “Introduction to
ARM processors, its types and Overview to Cortex M series with deep explanation of each of
the processors in this Family”, International Conference on Computer Communication and
Informatics (ICCCI), Coimbatore (India), January 25-27,2022, pp. 1–8, DOI 10.1109/IC-
CCI54379.2022.9740768

[29] S. Arrag, “Design and Implementation A different Architectures of mixcolumn in FPGA”,
International Journal of VLSI Design and Communication Systems, vol. 3, August 2012,
pp. 11–22, DOI 10.5121/vlsic.2012.3402

[30] A. Raveendran, V. B. Patil, D. Selvakumar, and V. Desalphine, “A RISC-V instruction set
processor-micro-architecture design and analysis”, 2016 International Conference on VLSI
Systems, Architectures, Technology and Applications (VLSI-SATA), Bengaluru (India), Jan-
uary 10-12, 2016, pp. 1–7, DOI 10.1109/VLSI-SATA.2016.7593047

[31] Global Platoform, https://globalplatform.org
[32] Open Platform project, “About OP-TEE”, https://optee.readthedocs.io/en/latest/

general/about.html

[33] Apple corporation, “Secure Enclave”, https://support.apple.com/pl-pl/guide/

security/sec59b0b31ff/web

[34] Microsoft corporation, “Microsoft Pluton security processor”, May 12, 2023,
https://learn.microsoft.com/en-us/windows/security/information-protection/

pluton/microsoft-pluton-security-processor

77

https://doi.org/10.1109/CIC.2016.065
https://attack.mitre.org/techniques/T1113/
https://doi.org/10.1109/ISCON52037.2021.9702433
https://doi.org/10.1109/ElConRus51938.2021.9396693
https://www.microsoft.com/en-us/security/blog/2020/11/12/system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/
https://www.microsoft.com/en-us/security/blog/2020/11/12/system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/
https://doi.org/10.1109/NCA.2018.8548184
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/l130se03.pdf
https://doi.org/10.1145/3342195.3387532
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://doi.org/10.1109/ICCCI54379.2022.9740768
https://doi.org/10.1109/ICCCI54379.2022.9740768
https://doi.org/10.5121/vlsic.2012.3402
https://doi.org/10.1109/VLSI-SATA.2016.7593047
https://globalplatform.org
https://optee.readthedocs.io/en/latest/general/about.html
https://optee.readthedocs.io/en/latest/general/about.html
https://support.apple.com/pl-pl/guide/security/sec59b0b31ff/web
https://support.apple.com/pl-pl/guide/security/sec59b0b31ff/web
https://learn.microsoft.com/en-us/windows/security/information-protection/pluton/microsoft-pluton-security-processor
https://learn.microsoft.com/en-us/windows/security/information-protection/pluton/microsoft-pluton-security-processor

Appendix A

User’s Manual

A.1 System requirements

A.1.1 Keystone enclave

To deploy the same environment proposed in the previous chapter, the Keystone project has to be
compatible with the physical platform that will be used because a modified instance of it and the
original one have to be installed in order to repeat the performance and functional tests proposed.
(The two different projects are needed only for the performance tests)
All the operations needed to do that are the following:

1. install dependencies

$ sudo apt update

$ sudo apt install autoconf automake autotools-dev bc \

bison build-essential curl expat libexpat1-dev flex gawk gcc

git \

gperf libgmp-dev libmpc-dev libmpfr-dev libtool texinfo tmux \

patchutils zlib1g-dev wget bzip2 patch vim-common lbzip2

python3 \

pkg-config libglib2.0-dev libpixman-1-dev libssl-dev screen \

device-tree-compiler expect makeself unzip cpio rsync cmake

ninja-build p7zip-full

$ curl --proto ’=https’ --tlsv1.2 -sSf https://sh.rustup.rs | sh

$ rustup toolchain install nightly

$ rustup +nightly component add rust-src

$ rustup +nightly target add riscv64gc-unknown-none-elf

$ cargo +nightly install cargo-xbuild

2. install the original version of the Keystone project (skip if don’t want to redo performance
tests)

$ git clone https://github.com/keystone-enclave/keystone

$ cd keystone

$./fast-setup.sh (once it has finished do the operation written

in the screen)

$ source source.sh

3. build original Keystone framework

$ mkdir build

$ cd build

$ cmake ..

78

User’s Manual

$ make

$ make image

4. install the modified version of the Keystone project (the root directory has to be different)

$ git clone https://github.com/valerio1805/my_keystone.git (and

rename the folder in keystone)

$ cd keystone

$./fast-setup_edit.sh (once it has finished do the operation

written in the screen)

$ source source.sh

$ sudo cp ./original_files/boot.c ./qemu/hw/riscv/

$ sudo cp ./original_files/virt.c ./qemu/hw/riscv/

$ sudo cp ./original_files/virt.h ./qemu/include/hw/riscv/

$ sudo cp ./original_files/fw_base.ldS ./sm/opensbi/firmware

$ chmod 777 -R ./sm

5. build modified Keystone framework

$ mkdir build_dir

$ cd build_dir

$ cmake ..

$ make buildroot KBUILD_MODPOST_WARN=1

$ make qemu

$ make linux KBUILD_MODPOST_WARN=1

$ make sm

$ make bootrom

$ make driver

$ cp ../hello-native.ke ./overlay/root/

$ make image

A.2 Performing tests

A.2.1 Functional tests

To run functional tests associated to .sh scripts (using the edited version of Keystone):

1. move all the content of tests folder into the folder ./build dir/scripts

2. open each .sh file and change the installation directory of the keystone project of the field
rom, bios, kernel and file according to your setup

3. give the permission to the .sh files to be executed (if needed)

4. go to the build directory (build dir according to this guide)

5. run each test [example: ./scripts/error sb.sh]

To run the functional test related to the hello-native.ke package (using the edited version of
Keystone), from the build directory (build dir according to this guide) do:

$./script/run-qemu.sh (username: root password: sifive)

$ insmod keystone-driver.ko

$./hello-native.ke (if it is not executable, give to it the permission

with the chmod 777 command)

79

User’s Manual

A.2.2 Performance tests

To run performance test:

1. replace the files sm.c and enclave.c of the original Keystone project with the two provided
in the folder edited files of the modified version of Keystone in the
path [installation path]/keystone/sm/src/

2. go to the build directory of the original Keystone project and do:

$ make sm

$ make hello-package

$ cp examples/hello/hello.ke ./overlay/root

$ make image

$./scripts/run-qemu.sh (username: root password: sifive)

$ insmod keystone-driver.ko

$./hello.ke

3. go to the build directory of the edited Keystone project and do:

$ make hello-package

$ cp examples/hello/hello.ke ./overlay/root

$ make image

$./scripts/run-qemu.sh (username: root password: sifive)

$ insmod keystone-driver.ko

$./hello.ke

4. comparing the two different terminals to see what has been presented in the seventh chapter

80

Appendix B

Developer’s Guide

B.1 How the manufacturer cert is created

The code below has been used to create the cert associated to the manufacturer, that in the reality
comes provided with the platform. (Lis. B.1)

Listing B.1. How the manufacturer cert is created

mbedtls_x509write_cert cert_man;

mbedtls_x509write_crt_init(&cert_man);

// Setting subject and issuer of the issuer of the cert

ret = mbedtls_x509write_crt_set_issuer_name_mod(&cert_man,

"O=Manufacturer");

ret = mbedtls_x509write_crt_set_subject_name_mod(&cert_man,

"O=Manufacturer");

...

// Parsing the private key of the embedded CA that will be used to sign the

certificate of the security monitor

ret = mbedtls_pk_parse_public_key(&issu_key_man, sanctum_dev_secret_key,

64, 1);

ret = mbedtls_pk_parse_public_key(&issu_key_man, sanctum_dev_public_key,

32, 0);

// Parsing the public key of the security monitor that will be inserted in

its certificate

ret = mbedtls_pk_parse_public_key(&subj_key_man, sanctum_dev_public_key,

32, 0);

// Setting serial, validity, algorithm that has to be used fot the

signature and the keys inside the structure

mbedtls_x509write_crt_set_subject_key(&cert_man, &subj_key_man);

mbedtls_x509write_crt_set_issuer_key(&cert_man, &issu_key_man);

mbedtls_x509write_crt_set_serial_raw(&cert_man, serial_man, 3);

mbedtls_x509write_crt_set_md_alg(&cert_man, KEYSTONE_SHA3);

ret = mbedtls_x509write_crt_set_validity(&cert_man, "20230101000000",

"20240101000000");

// Setting manufacturer cert as a certificate used to sign other certs

mbedtls_x509write_crt_set_basic_constraints(&cert_man, 1, 10);

81

Developer’s Guide

// The structure mbedtls_x509write_cert is parsed to create a X.509 cert in

DER format, signed and written in memory

ret = mbedtls_x509write_crt_der(&cert_man, cert_der_man, 1024, NULL,

NULL);//, test, &len);

if (ret != 0)

{

effe_len_cert_der_man = ret;

}

unsigned char *cert_real_man = cert_der_man;

// effe_len_cert_der stands for the length of the cert, placed starting

from the end of the //buffer cert_der

int dif_man = 1024-effe_len_cert_der_man;

// cert_real points to the starts of the cert in DER format

cert_real_man += dif_man;

B.2 How the SM cert and CDI are created

The code below has been used to create the cert associated to the Embedded Certification Au-
thority, placed at SM level and to derive the CDI of the level 0. (Lis. B.2)

Listing B.2. How the SM cert and CDI are created

// Combine hash of the security monitor and the device root key to obtain the

CDI

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, sanctum_uds, sizeof(*sanctum_uds));

sha3_update(&hash_ctx, sanctum_sm_hash, sizeof(*sanctum_sm_hash));

sha3_final(sanctum_CDI, &hash_ctx);

// The device root keys are created from the CDI

// This keys are certified by the manufacuter and the cert is stored in

memory, like the cert of the manufacturer

ed25519_create_keypair(sanctum_device_root_key_pub,

sanctum_device_root_key_priv, sanctum_CDI);

// The ECA keys are obtained starting from a seed generated hashing the CDI

and the measure of the SM

unsigned char seed_for_ECA_keys[64];

sha3_init(&hash_ctx, 64);

sha3_update(&hash_ctx, sanctum_CDI, 64);

sha3_update(&hash_ctx, sanctum_sm_hash, 64);

sha3_final(seed_for_ECA_keys, &hash_ctx);

ed25519_create_keypair(sanctum_ECASM_pk, sanctum_ECASM_priv,

seed_for_ECA_keys);

// The process is the same with the respect to the previous described to

the generation of the manufacturer certs, the difference are related to

what parameters are passed to the different functions

...

// Define and set the two extensions of the certificate: the hash of the

security monitor and the possibility to use this cert to sign other

certs

82

Developer’s Guide

mbedtls_x509write_crt_set_extension(&cert, oid_ext, 3, 0, sanctum_sm_hash,

65);

mbedtls_x509write_crt_set_basic_constraints(&cert, 1, 10);

// The creation process ends in the same way of the previuos creation

proposed

...

// Erasing the memory

memset((void *)sanctum_ECASM_priv, 0, sizeof(*sanctum_ECASM_priv));

memset((void *)sanctum_device_root_key_priv, 0,

sizeof(*sanctum_device_root_key_priv));

memset((void *)sanctum_dev_secret_key, 0, sizeof(*sanctum_dev_secret_key));

B.3 How the variables have been copied and how the formal
structure of the X.509 DER format is controlled

The code below has been used to moving in internal variables of the SM level all the data that
have been passed from the Booting stage; after this, the verification of the correct parsing of the
certificate provided in DER format is controlled. (Lis. B.3)

Listing B.3. Copying variables and verifying the correct parsing of the certs at SM level

// All the variables passed from the boot stage are copied in sm variables

sbi_memcpy(CDI, sanctum_CDI, 64);

sbi_memcpy(cert_sm, sanctum_cert_sm, sanctum_length_cert);

sbi_memcpy(cert_root, sanctum_cert_root, sanctum_length_cert_root);

sbi_memcpy(cert_man, sanctum_cert_man, sanctum_length_cert_man);

length_cert = sanctum_length_cert;

length_cert_root = sanctum_length_cert_root;

length_cert_man = sanctum_length_cert_man;

// The different certs are parsed if there are no problems

if ((mbedtls_x509_crt_parse_der(&uff_cert_sm, cert_sm, length_cert)) != 0){

// If there are some problems parsing a cert, all the start process is

stopped

sbi_printf("\n\n\n[SM] Error parsing the ECA cert created during the

booting process");

sbi_hart_hang();

}

else{

sbi_printf("\n[SM] The certificate of the security monitor is correctly

parsed\n\n");

}

// For the other certs is the same

83

Developer’s Guide

B.4 How the different certificates have been verified and
how the keys of the ECA are derived

The code below has been used at SM level to check the signatures inserted in the different X.509
certs provided and in the second part the derivation of the ECA keys has been done. (Lis. B.4)

Listing B.4. Verifying the signatures and deriving ECA SM private key

// Check that all the certs in the chain are formally correct usually the

defined function

char* str_ret = validation(uff_cert_sm);

if(my_strlen(str_ret) != 0){

sbi_printf("[SM] Problem with the ECA certificate: %s \n\n", str_ret);

sbi_hart_hang();

}

else

{

// The same for the other two certs

...

}

// Once the cert in DER format is parsed, there is a field inserted in the

structure that represents the raw data of the cert that is used to

compute the hash

// Using this field, the sm can verify the signature inserted in his cert,

using the public key of the issuer (in this case the issuer is the RoT)

sha3_init(&ctx_hash, 64);

sha3_update(&ctx_hash, uff_cert_sm.tbs.p, uff_cert_sm.tbs.len);

sha3_final(hash_for_verification, &ctx_hash);

sbi_printf("[SM] Verifying the chain signature of the certificates until

the man cert...\n\n");

if(ed25519_verify(uff_cert_sm.sig.p, hash_for_verification, 64,

uff_cert_root.pk.pk_ctx.pub_key) == 0){

sbi_printf("[SM] Error verifying the signature of the sm

certificate\n\n");

sbi_hart_hang();

}

else{

// The same is repetaed for the cert associated to the DRK

}

// From the CDI and its measure inserted as extension in the ECA keys

certificate,

// the sm can directly obtain the keys associated to the emebedded CA

// that are used to signed the cert associated to the attestation key of

the different enclaves

sha3_init(&ctx_hash, 64);

sha3_update(&ctx_hash, CDI, 64);

sha3_update(&ctx_hash, uff_cert_sm.hash.p, 64);

sha3_final(seed_for_ECA_keys, &ctx_hash);

ed25519_create_keypair(ECASM_pk, ECASM_priv, seed_for_ECA_keys);

84

Developer’s Guide

//Checking the equality between the SM TCI inserted in the extension of the

ECA cert with the value provided to the SM by the original Keystone

implementation

if(my_memcmp(uff_cert_sm.hash.p, sm_hash, 64) != 0){

sbi_printf("[SM] Problem with the extension of the ECA certificate");

sbi_hart_hang();

}

else

sbi_printf("[SM] No differeces between ECA cert extension and value

provided by original Keystone implementation\n\n");

B.5 How the CDI of each enclave, its Local Attestation key
(with the certificate) are created

The code below has been used to derive for each enclave that is created its CDI and to compute
the Local Attestation key, releasing also its X.509 certificate in DER format. (Lis. B.5)

Listing B.5. Computing CDI of the enclave and deriving its local attestation key with its cert

// The CDI of the sm is combined with the measure of the enclaves to obtain

the CDI of the enclave

sha3_init(&hash_ctx_to_use, 64);

sha3_update(&hash_ctx_to_use, CDI, 64);

sha3_update(&hash_ctx_to_use, enclaves[eid].hash, 64);

sha3_final(enclaves[eid].CDI, &hash_ctx_to_use);

unsigned char seed_for_local_att_key[32];

for(int i = 0; i < 32; i ++)

seed_for_local_att_key[i] = enclaves[eid].CDI[i];

// The CDI of the enclave is used to create the local attestation keys of

the enclave

ed25519_create_keypair(enclaves[eid].local_att_pub,

enclaves[eid].local_att_priv, seed_for_local_att_key);

// The process needed to generate the DER format of the X.509 certificate

related to the local attestation key of the enclave is the same

described when the keys associated to the security monitor have been

created during the booting process

// The difference is that this cert has not set the extension related to

the basic constraint because it is not associated to a key of a

Certification authority

...

// Once the DER format has been created, it and its length are stored in

the specific variables of the enclave structure

enclaves[eid].crt_local_att_der_length = effe_len_cert_der;

my_memcpy(enclaves[eid].crt_local_att_der, cert_real, effe_len_cert_der);

// The number of the keypair associated to the created enclave that are not

the local attestation keys is set to 0

enclaves[eid].n_keypair = 0;

85

Developer’s Guide

B.6 The functions exposed to the enclave

The code below has been used to expose to each enclave three different functions:

• the first one is the function that the enclave can call to ask the SM to create a keypair
(Lis. B.6)

Listing B.6. Function exposed to create keypairs for the enclave

unsigned long create_keypair(enclave_id eid, unsigned char* pk, int

seed_enc){

unsigned char seed[PRIVATE_KEY_SIZE];

unsigned char pk_app[PUBLIC_KEY_SIZE];

unsigned char sk_app[PRIVATE_KEY_SIZE];

unsigned char app[65];

// The new keypair is obtained adding at the end of the CDI of

the enclave an index, provided by the enclave itself

my_memcpy(app, enclaves[eid].CDI, 64);

app[64] = seed_enc + ’0’;

sha3_ctx_t ctx_hash;

// The hash function is used to provide the seed for the keys

generation

sha3_init(&ctx_hash, 64);

sha3_update(&ctx_hash, app, 65);

sha3_final(seed, &ctx_hash);

ed25519_create_keypair(pk_app, sk_app, seed);

// The new keypair is stored in the relatives arrays

...

// The first keypair that is asked to be created is the Local

Device Keys, that is inserted in the relative variables

...

// The location in memoty of the private key of the keypair

created is clean

my_memset(sk_app, 0, 64);

return 0;

}

• the second one is the function that the enclave can call to obtain all the certificates chain
(Lis. B.7)

Listing B.7. Function used to provide certificates chain

unsigned long get_cert_chain(enclave_id eid, unsigned char**

certs, int* sizes){

// Providing the X.509 cert in DER format of the ECA and

its length

my_memcpy(certs[0], cert_sm, length_cert);

sizes[0] = length_cert;

86

Developer’s Guide

// Providing the X.509 cert in DER format of the Device

Root Key and its length

my_memcpy(certs[1], cert_root, length_cert_root);

sizes[1] = length_cert_root;

// Providing the X.509 cert in DER format of the

manufacturer key and its length

my_memcpy(certs[2], cert_man, length_cert_man);

sizes[2] = length_cert_man;

return 0;

}

• the third one is the function that the enclave can call to ask the SM to do some crypto
operations (Lis. B.8)

Listing B.8. Function used to expose signature functionality to the enclave

unsigned long do_crypto_op(enclave_id eid, int flag, unsigned char*

data, int data_len, unsigned char* out_data, int* len_out_data,

unsigned char* pk){

sha3_ctx_t ctx_hash;

unsigned char fin_hash[64];

unsigned char sign[64];

int pos = -1;

switch (flag){

case 1:

// Sign of TCI|pk_lDev with the private key of the ECA .

// The sign is placed in out_data. The attestation pk

can be obtained calling the get_chain_cert method

...

ed25519_sign(sign, fin_hash, 64, ECASM_pk, ECASM_priv);

my_memcpy(out_data, sign, 64);

*len_out_data = 64;

return 0;

break;

case 3:

// Sign of generic data with a specific private key.

// In this case the enclave provides directly the hash of

the data that have to be signed

// The same of the cae 2, without have to compute the hash

that is provided by the enclave

...

break;

default:

return -1;

break;

}

return 0;

}

87

	Introduction
	Device Identifier Composition Engine architecture
	What DICE is
	Hardware requirements for DICE
	DICE Layering architecture
	TCB capabilities
	Keys and credentials
	Layered Certification

	DICE attestation architecture
	Layered device attestation

	Trusted Execution Environment (TEE)
	Introduction to Trusted Execution Environment
	Prerequisite: Separation Kernel
	TEE Definition
	What "trust" means
	TEE building blocks

	CPU based Trusted Execution Environments
	x86 System Management Mode
	ARM platforms: TrustZone
	Intel platforms: Software Guard Extention (SGX)
	AMD platforms: Secure Encrypted Virtualization (SEV)
	IBM Secure Execution (IBM Z)
	RISC-V Keystone
	Standards and frameworks to provide unified Application Program Interfaces (APIs)

	An example of coprocessor-Based TEEs in one SoC: Apple Secure Enclave Processor (SEP)
	An example of Coprocessor-Based TEEs in external SoC: Microsoft Azure Sphere: Pluton
	Architecture overview
	Firmware load flow

	Keystone Enclave
	RISC-V overview
	RISC-V Privilieged ISA
	 Physical Memory Protection (PMP)
	Interrupt, exceptions and virtual address translation

	Customizable TEEs
	Keystone overview
	Security monitor
	Memory isolation

	Keystone Modular Runtime
	Security analysis and weaknesses
	Protection of the Enclave
	Protection of the Host OS
	Protection of the SM
	Protection against Physical Attackers
	Weaknesses

	DICE specification in Keystone: design
	Root of Trust requirements and keys generation in Keystone
	DICE concepts applied to Keystone TEEs: proposed design
	Hardware layer: keys and certificates
	Security Monitor: keys and certificates
	Trusted Applications: keys and certificates

	DICE specification in Keystone: implementation
	X509_custom library
	DICE Engine
	Security Monitor

	Test sets for the proposed solution
	Testbed description
	Functional tests
	Performance test

	Conclusions
	Bibliography
	User's Manual
	System requirements
	Keystone enclave

	Performing tests
	Functional tests
	Performance tests

	Developer's Guide
	How the manufacturer cert is created
	How the SM cert and CDI are created
	How the variables have been copied and how the formal structure of the X.509 DER format is controlled
	How the different certificates have been verified and how the keys of the ECA are derived
	How the CDI of each enclave, its Local Attestation key (with the certificate) are created
	The functions exposed to the enclave

